WO2015102157A1 - 그래핀 제조용 조성물 및 이를 이용한 그래핀의 제조 방법 - Google Patents
그래핀 제조용 조성물 및 이를 이용한 그래핀의 제조 방법 Download PDFInfo
- Publication number
- WO2015102157A1 WO2015102157A1 PCT/KR2014/002537 KR2014002537W WO2015102157A1 WO 2015102157 A1 WO2015102157 A1 WO 2015102157A1 KR 2014002537 W KR2014002537 W KR 2014002537W WO 2015102157 A1 WO2015102157 A1 WO 2015102157A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphene
- butyl
- formula
- composition
- unsubstituted
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/194—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/184—Preparation
- C01B32/186—Preparation by chemical vapour deposition [CVD]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2204/00—Structure or properties of graphene
Definitions
- One embodiment of the present invention relates to a composition for producing graphene and a method for producing graphene using the same.
- ITO indium tin oxide
- carbon-containing materials such as carbon nanotubes, diamond, graphite, graphene, and the like has been intensively performed.
- Graphene production methods can be largely divided into mechanical and chemical methods.
- the mechanical method is to remove graphene from the graphite sample using Scotch tape.
- chemical methods chemical vapor deposition (CVD) is a typical example.
- Chemical vapor deposition is a method of growing a graphene sheet on the surface of the catalyst metal by introducing a gaseous carbon source into the vessel in which the catalyst metal is disposed, and then heating the vessel and cooling again.
- One embodiment of the present invention to provide a composition for producing graphene.
- Another embodiment of the present invention is to provide a method for producing graphene using the composition for producing a graphene.
- X 21 is N (nitrogen atom) or CR 21
- X 22 is N or CR 22
- X 23 is N or CR 23
- X 24 is N or CR 24
- X 25 is N or CR 25
- X 26 is N or CR 26
- X 27 is N or CR 27
- X 28 is N or CR 28 ,
- At least three groups of X 21 to X 28 are selected from N,
- R 11 to R 13 and R 21 to R 28 are each independently,
- the graphene a nitrogen-containing organic compound represented by the following formula (1) or (2); Oxidizing agents; And doping with a graphene manufacturing composition comprising an acid to obtain doped graphene;
- a manufacturing method of graphene comprising:
- X 21 is N (nitrogen atom) or CR 21
- X 22 is N or CR 22
- X 23 is N or CR 23
- X 24 is N or CR 24
- X 25 is N or CR 25
- X 26 is N or CR 26
- X 27 is N or CR 27
- X 28 is N or CR 28 ,
- At least three groups of X 21 to X 28 are selected from N,
- R 11 to R 13 and R 21 to R 28 are each independently,
- Another embodiment of the present invention forming the graphene on at least one side of the catalytic metal; And a nitrogen-containing organic compound represented by Chemical Formula 1 or 2; Oxidizing agents; And a step of obtaining the doped graphene by doping the graphene while simultaneously removing the catalyst metal using the graphene preparation composition including an acid.
- Embodiments of the present invention may provide a composition for producing graphene and a method for producing graphene using the same that can provide a graphene low sheet resistance value, long retention time of the sheet resistance value.
- FIG. 1 is a view schematically showing a manufacturing method of graphene according to an embodiment of the present invention.
- FIG. 2 is a view schematically showing a manufacturing method of graphene according to another embodiment of the present invention.
- FIG. 3 is a view schematically showing a method of manufacturing graphene according to another embodiment of the present invention.
- FIG. 4 is a view schematically showing a method of manufacturing graphene according to another embodiment of the present invention.
- graphene means that a plurality of carbon atoms are covalently connected to each other to form a two-dimensional film form (usually sp 2 bond).
- the carbon atoms constituting the graphene form a 6-membered ring as a basic repeating unit, but may further include a 5-membered ring and / or a 7-membered ring.
- the shape of the graphene may vary.
- Graphene may be formed of a single layer, but a plurality of them may be stacked to form a plurality of layers, and may be up to 100 nm thick.
- composition for graphene production means a composition used to remove the catalyst metal used in graphene production and / or to dope graphene.
- the term “laminate” refers to a plurality of layers including graphene, and according to each step of the method for preparing graphene according to an embodiment of the present invention, in addition to graphene, a catalyst metal, a carrier film, and a target It means the state containing 1 or more types of films further.
- the composition for producing graphene is a nitrogen-containing organic compound represented by the formula (1) or 2; Oxidizing agents; And acids may include:
- X 21 is N (nitrogen atom) or CR 21
- X 22 is N or CR 22
- X 23 is N or CR 23
- X 24 is N or CR 24
- X 25 is N or CR 25
- X 26 may be N or CR 26
- X 27 may be N or CR 27
- X 28 may be N or CR 28 ,
- At least three groups of X 21 to X 28 may be selected from N.
- X 21 is CR 21
- X 22 is CR 22
- X 23 is CR 23
- X 24 is CR 24
- X 25 is N
- X 26 is N
- X 27 may be CR 27
- X 28 may be N, but is not limited thereto.
- R 11 to R 13 and R 21 to R 28 are each independently,
- Hydrogen substituted or unsubstituted C 1 -C 60 alkyl, substituted or unsubstituted C 3 -C 10 cycloalkyl, substituted or unsubstituted C 6 -C 60 aryl and substituted or unsubstituted C 2 -C 60 hetero It can be selected from aryl.
- R 11 to R 13 and R 21 to R 28 may be each independently,
- R 11 to R 13 are independently of each other,
- R 11 , R 12 and R 13 may not simultaneously be hydrogen, but are not limited thereto.
- the nitrogen-containing organic compound represented by Chemical Formula 2 may be represented by Chemical Formula 2A, but is not limited thereto.
- R 21 to R 24 and R 27 may be as described above.
- R 21 to R 24 and R 27 may be each independently,
- the nitrogen-containing organic compound represented by Formula 1 or 2 may be 1-aminobutane, 2-amino-2methylpropane, 1-methylaminopropane, dimethylaminoethane, cyclohexylamine, and 1,2,4- It may be selected from benzotriazine, but is not limited thereto.
- the oxidizing agent may be at least one selected from H 2 O 2 , (NH 4 ) S 2 O 8 , HClO, and HClO 4 , but is not limited thereto.
- the oxidant may be H 2 O 2 .
- the oxidant may be introduced into the graphene manufacturing composition in a solid form, or may be introduced in a diluted state in a solvent such as water.
- the acid may be at least one selected from H 2 SO 4 , HNO 3 , H 3 PO 4 , HCl, HCOOH, and CH 3 COOH, but is not limited thereto.
- the acid may be introduced into the graphene manufacturing composition in a diluted state in a solvent such as water.
- the acid may be 95% by weight aqueous sulfuric acid solution, or 85% by weight aqueous solution of phosphoric acid.
- the graphene manufacturing composition may further include copper (I) ions or copper (II) ions.
- the copper source added to the graphene manufacturing composition is not limited as long as it can provide copper (I) ions or copper (II) ions.
- a copper source in the form of a copper salt such as CuCl 2 or CuCl may be added to the graphene manufacturing composition.
- the graphene composition may include 0.2 wt% to 10 wt% of the nitrogen-containing organic compound represented by Formula 1 or 2, 1 wt% to 10 wt% of an oxidizing agent, 2 wt% to 30 wt% of acid, and a residual amount of a solvent. It is not limited to this. In the present specification, the content of the nitrogen-containing organic compound, the oxidizing agent and the acid is based on the total weight of the graphene manufacturing composition.
- the graphene manufacturing composition may include a nitrogen-containing organic compound represented by Formula 1 or 2 of 0.5wt% or more, 1wt% or more, 2.5wt% or less, or 2wt% or less, but is not limited thereto. It is not.
- the graphene manufacturing composition may include 2 wt% or more, 3 wt% or more, 9 wt% or less, or 8 wt% or less of an oxidizing agent, but is not limited thereto.
- the graphene manufacturing composition may include 3 wt% or more, 5 wt% or more, 18 wt% or less, or 15 wt% or less of acid, but is not limited thereto.
- the graphene manufacturing composition is 0.2wt% to 3wt% nitrogen-containing organic compound, 1wt% to 5wt% oxidizing agent, 2wt% to 10wt% acid, 0.1wt% to 1.0wt% copper (I) ion or copper ( II) ions and the residual amount of the solvent may be included, but are not limited thereto.
- the graphene manufacturing composition may include 0.2 wt% or more, 0.5 wt% or less, or 0.4 wt% or less of copper (I) ions or copper (II) ions, but is not limited thereto.
- the graphene manufacturing composition may include 3 g / L of copper (I) ions or copper (II) ions in the composition at the time of graphene manufacturing, copper (I) ions or copper (II) ions at the time of graphene manufacturing This may be further added, but is not limited thereto.
- Water may be used as a solvent of the graphene manufacturing composition. That is, the graphene manufacturing composition may be an aqueous solution of a nitrogen-containing organic compound, an oxidizing agent, and an acid.
- the solvent of the composition is not limited thereto, and is not particularly limited as long as it can homogeneously disperse an oxidizing agent and an acid.
- the solvent may further comprise other liquids compatible with water, in addition to water.
- an organic solvent such as tetrahydrofuran may be further included to homogeneously disperse the nitrogen-containing organic compound.
- the graphene manufacturing composition may further include an additive.
- the additive may be known in the art to which the present invention belongs. Examples include dispersants, storage stabilizers, stabilizers, and combinations thereof.
- the content of the additive may range from 3 wt% to 20 wt% based on the total weight of the graphene manufacturing composition.
- the graphene composition may be used by mixing the nitrogen-containing organic compound, the oxidizing agent, the acid and the solvent represented by Formula 1 or 2 in-situ, the nitrogen-containing organic represented by Formula 1 or 2
- the prepared composition may be stored and used.
- the graphene manufacturing composition is a dispersant and preservation It may further include additives such as stabilizers.
- the graphene manufacturing composition may further include an additive such as a stabilizer for controlling the oxidation reaction of the H 2 O 2 .
- the nitrogen-containing organic compound represented by Formula 1 or 2 may be a dopant included in graphene.
- the nitrogen-containing organic compound represented by Formula 1 or 2 may be chemically and / or physically bonded to the surface of graphene, or may be chemically and / or physically bonded between a plurality of layers constituting the graphene. It is not limited. That is, if the sheet resistance value of graphene can be lowered, the bonding position and bonding method of the nitrogen-containing organic compound represented by Chemical Formula 1 or 2 are not limited.
- the sheet resistance value of the graphene can be lowered, the permeability of the graphene is maintained, the lower sheet resistance value of the graphene is long Can be maintained.
- Graphene doped with a nitrogen-containing organic compound represented by Formula 1 or 2 has a sheet resistance value of more than 0 to 300 mW / sq or less, for example, 100 to 200 mW / sq.
- graphene doped with a nitrogen-containing organic compound represented by Formula 1 or 2 may be used to replace the existing ITO electrode, but is not limited thereto.
- the graphene may be used as a transparent electrode, more specifically, a transparent electrode for a touch panel.
- the graphene may be used as an electrode for a solar cell.
- FIG. 1 is a view schematically showing an embodiment of a method for manufacturing graphene.
- a method for manufacturing graphene according to an embodiment of the present invention will be described.
- the carrier film 120 is bonded to one surface of the graphene 110.
- the carrier film 120 supports the graphene 110 to facilitate the transfer, and the type of the carrier film 120 is not limited as long as it can maintain the shape of the graphene 110 and prevent damage.
- the carrier film 120 may be a heat peeling tape or a polymer support, but is not limited thereto.
- the heat-peelable tape has adhesiveness at one side at room temperature, but loses adhesiveness at a predetermined temperature or more.
- the polymer support may include a polymer such as polymethylmethacrylate (PMMA) and the like, and may form a polymer on one surface of the graphene 110 by a solution process, and then remove the organic solvent when desired.
- PMMA polymethylmethacrylate
- the doped graphene 130 is obtained by doping the laminate of the graphene 110 and the carrier film 120 with a graphene manufacturing composition including a nitrogen-containing organic compound, an oxidizing agent, and an acid represented by Formula 1 or 2 above.
- the function, type, use form and content of the nitrogen-containing organic compound, the oxidizing agent and the acid represented by Formula 1 or 2 refer to the above-described composition for preparing graphene.
- the step of obtaining the doped graphene 130 is not limited in form if it is a method to obtain the doped graphene.
- the step may be made by impregnating the stack of graphene 110 and the carrier film 120 in the graphene manufacturing composition.
- the step may be made by spraying a graphene manufacturing composition on a stack of graphene 110 and the carrier film 120.
- Obtaining the doped graphene 130 may be performed for 3 to 60 minutes.
- the graphene manufacturing composition may be doped with the graphene 110 within 3 to 60 minutes, for example, 3 to 15 minutes, 5 to 10 minutes.
- the graphene 110 When the time of 3 minutes to 60 minutes is applied, the graphene 110 may be sufficiently doped, so that the sheet resistance value of the obtained doped graphene 130 may be lowered as much as possible.
- the time for using the composition for preparing graphene may be appropriately adjusted in some cases.
- the doped graphene 130 is transferred to the target film 140.
- the target film 140 may be a part of a device to which doped graphene 130 is applied, and specifically, may be a surface of an electrode of the device.
- the carrier film 120 is removed.
- the carrier film 120 is a heat peeling tape
- the heat peeling tape is separated from the doped graphene 130 by applying a force above a predetermined temperature at which the heat peeling tape loses adhesiveness.
- an organic solvent such as acetone may be added to remove the polymer support from the doped graphene 130.
- FIG. 2 is a view schematically showing another embodiment of a method for producing graphene.
- a method for manufacturing graphene according to an embodiment of the present invention is as follows.
- the target film 240 is coupled to one surface of the graphene 210.
- Description of the target film 240 refers to the description of the target film 140 of FIG. 1 described above.
- the stack of graphene 210 and the target film 240 is doped with a graphene manufacturing composition including a nitrogen-containing organic compound, an oxidizing agent, and an acid to obtain doped graphene 230.
- FIG. 3 is a view schematically showing another embodiment of a method of manufacturing graphene.
- a method for manufacturing graphene according to an embodiment of the present invention with reference to FIG. 3 will be described.
- the catalytic metal 350 is pretreated.
- the catalytic metal 350 may be used as a place for growing graphene.
- the shape of the catalytic metal 350 is not limited as long as graphene can grow.
- the catalytic metal 350 may be a sheet, a substrate or a film.
- the catalytic metal 350 is copper (Cu), nickel (Ni), cobalt (Co), iron (Fe), platinum (Pt), gold (Au), silver (Ag), aluminum (Al), chromium (Cr) , Magnesium (Mg), manganese (Mn), molybdenum (Mo), rhodium (Rh), silicon (Si), tantalum (Ta), titanium (Ti), tungsten (W), uranium (U), vanadium (V) , Palladium (Pd), yttrium (Y), zirconium (Zr), germanium (Ge) may be one or more selected from alloys thereof, but is not limited thereto.
- the catalytic metal 350 may be a single layer or the outermost layer of a multilayer substrate consisting of two or more layers.
- the pretreatment of the catalyst metal 350 is to remove foreign substances present on the surface of the catalyst metal 350, and hydrogen gas may be used.
- hydrogen gas may be used.
- by cleaning the surface of the catalyst metal 350 using an acid or an alkaline solution it is possible to reduce the defects of the graphene when forming the graphene. This step of cleaning the surface of the catalytic metal 350 can be omitted as necessary.
- Graphene 310 is formed on at least one surface of the catalytic metal 350.
- Forming the graphene 310 on at least one surface of the catalyst metal 350 is not limited to a specific method.
- the step may include chemical vapor deposition (CVD), thermal chemical vapor deposition (TCVD), rapid thermal chemical vapor deposition (PTCVD), inductively coupled plasma chemistry.
- CVD chemical vapor deposition
- TCVD thermal chemical vapor deposition
- PTCVD rapid thermal chemical vapor deposition
- ICP-CVD Inductive Coupled Plasma Chemical Vapor Deposition
- ALD Atomic Layer Deposition
- chemical vapor deposition can be given.
- Chemical vapor deposition is a method of growing a graphene sheet on the surface of the catalyst metal by introducing a gaseous carbon source into the vessel in which the catalyst metal is disposed, and then heating the vessel and cooling again.
- the gaseous carbon source may be carbon monoxide, ethane, ethylene, ethanol, acetylene, propane, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene, toluene or mixtures of two or more thereof.
- This gaseous carbon source is separated into carbon and hydrogen atoms at high temperatures. The separated carbon atoms are deposited on the heated catalyst metal 350, and the graphene 310 is formed while the catalyst metal 350 is cooled.
- Graphene 310 may be formed on at least a surface of the catalytic metal 350. As shown in FIG. 3, the graphene 310 may be formed on one surface of the catalyst metal 350, but is not limited thereto. The graphene 310 may be formed on both surfaces of the catalyst metal 350. ) May be formed.
- the carrier film 320 is formed on one surface of the graphene 310 not provided with the catalyst metal 350.
- the description of the carrier film 320 refers to the description of the carrier film 120 of FIG. 1.
- Graphene is simultaneously removed using the composition for preparing graphene, which includes a nitrogen-containing organic compound, an oxidizing agent, and an acid in a stack of the carrier film 320, the graphene 310, and the catalyst metal 350.
- the doped graphene 330 is obtained by doping 310.
- the doped graphene 330 may be economically manufactured. That is, compared to the method of removing the catalyst metal and then doping the graphene, the method can omit one step of the manufacturing process, thereby reducing the manufacturing cost of the doped graphene. In addition, by using the graphene manufacturing composition, the lowered sheet resistance value of the doped graphene 330 can be maintained for a long time.
- Removing the catalytic metal 350 and simultaneously doping the graphene 310 to obtain the doped graphene 330 may be performed for 3 to 60 minutes.
- the graphene manufacturing composition may be doped with the graphene 310 while removing the catalyst metal 350 within 3 to 60 minutes, for example, 3 to 15 minutes and 5 to 10 minutes.
- the graphene 310 may be sufficiently doped while substantially completely removing the catalyst metal 350, thereby lowering the sheet resistance value of the obtained doped graphene 330 as much as possible.
- the time for using the composition for preparing graphene may be appropriately adjusted in some cases.
- the graphene manufacturing composition may be used in an amount of 500 to 1000 mL per 50 g of the catalyst metal 350.
- the doped graphene 330 is transferred to the target film 340.
- the description of the target film 340 refers to the target film 140 of FIG. 1.
- FIG. 4 is a view schematically showing another embodiment of a method for producing graphene.
- a method for manufacturing graphene according to an embodiment of the present invention with reference to FIG. 4 is as follows.
- the catalytic metal 450 is pretreated.
- Graphene 410 is formed on at least one surface of the catalytic metal 450.
- step of forming the graphene 410 on at least one surface of the catalyst metal 450 refer to the description of the step of forming the graphene 310 on at least one surface of the catalyst metal 350 of FIG. 3.
- Graphene 410 may be formed on at least a surface of the catalytic metal 450. As shown in FIG. 4, graphene 410 may be formed on both surfaces of the catalyst metal 450, but is not limited thereto. The graphene 410 may be formed on only one surface of the catalyst metal 450. ) May be formed.
- the carrier film 320 is formed on one surface of the graphene 410 not provided with the catalytic metal 450.
- the description of the carrier film 420 refers to the description of the carrier film 120 of FIG. 1.
- the catalytic metal 450 is removed.
- Removing the catalytic metal 450 is not limited to any particular method.
- it may be an electrochemical exfoliation method.
- Electrochemical peeling is a method of immersing a stack of catalyst metal and graphene in an electrolyte solution and applying a voltage to the stack to peel the graphene from the catalyst metal.
- the electrochemical peeling method makes it possible to peel off all of the graphene formed on both surfaces of the catalyst metal.
- the electrolyte solution may include one or more selected from NaOH, Na 2 CO 3 , Na 3 PO 4 , Na 2 SiO 3, and sodium silicate, but is not limited thereto.
- the voltage may be 3 to 30V, but is not limited thereto.
- the doped graphene 430 is obtained by doping the graphene 410 using a graphene manufacturing composition including a nitrogen-containing organic compound, an oxidizing agent, and an acid in the stack of the carrier film 420 and the graphene 410.
- the lowered sheet resistance value of the doped graphene 430 can be maintained for a long time.
- the doped graphene 430 is transferred to the target film 440.
- the description of the target film 440 refers to the target film 140 of FIG. 1.
- the laminate of Cu and graphene was immersed in (NH 4 ) S 2 O 8 4 wt% aqueous solution for 120 minutes to remove Cu.
- the graphene thus obtained was immersed in a composition containing 3 wt% of 1,2,4-benzotriazine, 3 wt% of H 2 O 2 , 9 wt% of H 2 SO 4, and the balance of water for 40 minutes. Doped graphene was obtained.
- the laminate of Cu and graphene was immersed in a 9 wt% aqueous solution of sulfuric acid for 40 minutes to remove Cu.
- the graphene thus obtained was immersed in a composition containing 3 wt% of 1,2,4-benzotriazine, 3 wt% of H 2 O 2 , 9 wt% of H 2 SO 4, and the balance of water for 10 minutes. Doped graphene was obtained.
- a Cu plate at 35 ° C. was charged by CVD.
- CH 4 was flowed into the furnace at about 1000 ° C. at a rate of 30 sccm for about 5 minutes.
- cooling was carried out at a rate of 60 ° C./min up to 600 ° C. and at a rate of 40 ° C./min up to room temperature, thereby forming graphene on Cu.
- the laminate of Cu and graphene was 40 minutes in a composition comprising 3 wt% 1,2,4-benzotriazine, 3 wt% H 2 O 2 , 9 wt% H 2 SO 4, and the balance water While immersed for a while to remove Cu, while doping the graphene to obtain doped graphene.
- a Cu plate at 35 ° C. was charged by CVD.
- CH 4 was flowed into the furnace at about 1000 ° C. at a rate of 30 sccm for about 5 minutes.
- cooling was carried out at a rate of 60 ° C./min up to 600 ° C. and at a rate of 40 ° C./min up to room temperature, thereby forming graphene on Cu.
- the laminate of Cu and graphene was immersed in (NH 4 ) S 2 O 8 4 wt% aqueous solution for 120 minutes to remove Cu.
- the graphene thus obtained comprises 3 wt% 1,2,4-benzotriazine, 3 wt% H 2 O 2 , 9 wt% H 2 SO 4 , 0.3 wt% CuCl 2, and the balance water Doping graphene was obtained by immersion in the composition for 60 minutes.
- the laminate of Cu and graphene was immersed in (NH 4 ) S 2 O 8 4 wt% aqueous solution for 120 minutes to remove Cu.
- the graphene thus obtained was steam doped with 70 wt% HNO 3 for 3 minutes to obtain doped graphene.
- the sheet resistance value is the average value of the sheet resistance measured at 143 points automatically selected by the automatic sheet resistance device (available from Dasol ENG).
- Example 1 Immediately after doping 1 day later 2 days later 3 days later 4 days later 5 days later Example 1 ( ⁇ / sq) 210 213 214 213 213 215 Example 2 ( ⁇ / sq) 208 208 208 209 210 211 Example 3 ( ⁇ / sq) 210 215 215 216 215 215 Example 4 ( ⁇ / sq) 210 213 213 214 214 214 Comparative Example ( ⁇ / sq) 289 409 460 479 488 493
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
화학식 1 또는 2로 표시되는 함질소 유기 화합물 산화제; 및 산을 포함하고, 면저항 값이 낮고, 상기 면저항 값의 유지 시간이 긴 그래핀을 제공할 수 있는 그래핀 제조용 조성물 및 이를 이용한 그래핀의 제조 방법을 제공한다.
Description
본 발명의 일 실시예는 그래핀 제조용 조성물 및 이를 이용한 그래핀의 제조 방법에 관한 것이다.
디스플레이 장치 및 태양 전지와 같은 다양한 전자 장치 분야에서 신소재의 개발이 활발히 진행되고 있다. 특히, 전자 장치의 투명 전극으로 주로 사용되는 인듐-주석 산화물(Indium Tin Oxide, ITO)을 대체할 수 있는 신소재에 대한 연구가 활발히 진행되고 있다. 그 중에서도, 탄소가 포함된 재료들, 예컨대 탄소 나노튜브, 다이아몬드, 그래파이트, 그래핀(graphene) 등에 관한 연구가 집중적으로 이루어지고 있다.
특히, 그래핀은 전기 전도도와 투명도 면에서 우수하므로 그래핀을 제조하기 위한 다양한 방법이 제시되어 왔다. 그래핀의 제조 방법은 크게 기계적인 방법 및 화학적 방법으로 구분될 수 있다. 기계적인 방법으로는 스카치 테이프를 이용하여 흑연 시료로부터 그래핀을 떼어내는 방법이 있다. 화학적인 방법 중에는 대표적으로 화학 기상 증착법(Chemical vapor deposition, CVD)이 있다. 화학 기상 증착법은 촉매 금속이 배치된 용기 내에 기상의 탄소 공급원을 투입하고 상기 용기를 가열한 후에 다시 냉각시킴으로써, 상기 촉매 금속 표면 상에서 그래핀 시트를 성장시키는 방법이다.
본 발명의 일 실시예는 그래핀 제조용 조성물을 제공하고자 한다.
본 발명의 다른 실시예는 상기 그래핀 제조용 조성물을 이용한 그래핀의 제조 방법을 제공하고자 한다.
본 발명의 일 실시예는, 하기 화학식 1 또는 2로 표시되는 함질소 유기 화합물; 산화제; 및 산을 포함하는 그래핀 제조용 조성물을 개시한다:
<화학식 1>
N(R11)(R12)(R13)
<화학식 2>
상기 화학식 1 및 2 중,
X21은 N(질소 원자) 또는 CR21이고, X22은 N 또는 CR22이고, X23은 N 또는 CR23이고, X24은 N 또는 CR24이고, X25은 N 또는 CR25이고, X26은 N 또는 CR26이고, X27은 N 또는 CR27이고, X28은 N 또는 CR28이고,
X21 내지 X28 중 적어도 3개의 기(group)는 N로 선택되고,
R11 내지 R13 및 R21 내지 R28은 서로 독립적으로,
수소, 치환 또는 비치환된 C1-C60알킬, 치환 또는 비치환된 C3-C10시클로알킬, 치환 또는 비치환된 C6-C60아릴 및 치환 또는 비치환된 C2-C60헤테로아릴 중에서 선택된다.
본 발명의 다른 실시예는, 그래핀을, 하기 화학식 1 또는 2로 표시되는 함질소 유기 화합물; 산화제; 및 산을 포함하는 그래핀 제조용 조성물로 도핑하여, 도핑 그래핀을 얻는 단계; 를 포함하는 그래핀의 제조 방법을 개시한다:
<화학식 1>
N(R11)(R12)(R13)
<화학식 2>
상기 화학식 1 및 2 중,
X21은 N(질소 원자) 또는 CR21이고, X22은 N 또는 CR22이고, X23은 N 또는 CR23이고, X24은 N 또는 CR24이고, X25은 N 또는 CR25이고, X26은 N 또는 CR26이고, X27은 N 또는 CR27이고, X28은 N 또는 CR28이고,
X21 내지 X28 중 적어도 3개의 기(group)는 N로 선택되고,
R11 내지 R13 및 R21 내지 R28은 서로 독립적으로,
수소, 치환 또는 비치환된 C1-C60알킬, 치환 또는 비치환된 C3-C10시클로알킬, 치환 또는 비치환된 C6-C60아릴 및 치환 또는 비치환된 C2-C60헤테로아릴 중에서 선택된다.
본 발명의 또 다른 실시예는, 촉매 금속의 적어도 일면에 그래핀을 형성하는 단계; 및 상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물; 산화제; 및 산을 포함하는 그래핀 제조용 조성물을 사용하여 상기 촉매 금속을 제거하는 동시에 상기 그래핀을 도핑하여 도핑 그래핀을 얻는 단계;를 포함하는 그래핀의 제조 방법을 개시한다.
본 발명의 실시예들은 면저항 값이 낮고, 상기 면저항 값의 유지 시간이 긴 그래핀을 제공할 수 있는 그래핀 제조용 조성물 및 이를 이용한 그래핀의 제조 방법을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 그래핀의 제조 방법을 개략적으로 도시한 도면이다.
도 2는 본 발명의 다른 실시예에 따른 그래핀의 제조 방법을 개략적으로 도시한 도면이다.
도 3은 본 발명의 또 다른 실시예에 따른 그래핀의 제조 방법을 개략적으로 도시한 도면이다.
도 4는 본 발명의 또 다른 실시예에 따른 그래핀의 제조 방법을 개략적으로 도시한 도면이다.
이하, 본 발명의 일 실시예에 따른 그래핀 제조용 조성물 및 이를 사용한 그래핀의 제조 방법을 더욱 상세하게 설명한다.
본 명세서에서, "그래핀(graphene)"이란, 복수 개의 탄소원자들이 서로 공유결합으로 연결되어 2차원의 필름 형태로 형성(통상 sp2 결합)된 것을 의미한다. 그래핀을 구성하는 탄소원자들은 기본 반복단위로서 6원환을 형성하나, 5원환 및/또는 7원환을 더 포함하는 것도 가능하다. 그래핀 내에 포함될 수 있는 5원환 및/또는 7원환의 함량에 따라, 상기 그래핀의 형태는 달라질 수 있다. 그래핀은 단일층으로 이루어질 수 있으나, 이들이 복수 개 적층되어 복수 층을 형성하고 있는 것도 가능하며, 최대 100nm까지의 두께일 수 있다.
본 명세서에서, "그래핀 제조용 조성물"이란, 그래핀 제조 시에 사용되는 촉매 금속을 제거하거나/하고, 그래핀을 도핑하는데 사용되는 조성물을 의미한다.
본 명세서에서, "적층체"란 그래핀을 포함하는 복수 개의 층을 의미하는 것으로서, 본 발명의 실시예에 따른 그래핀의 제조 방법의 각 단계에 따라, 그래핀 이외에도 촉매 금속, 캐리어 필름 및 타겟 필름 중 1종 이상을 더 포함한 상태를 의미한다.
본 발명의 일 실시예에 따르면, 그래핀 제조용 조성물은 하기 화학식 1 또는 2로 표시되는 함질소 유기 화합물; 산화제; 및 산을 포함할 수 있다:
<화학식 1>
N(R11)(R12)(R13)
<화학식 2>
상기 화학식 2 중,
X21은 N(질소 원자) 또는 CR21이고, X22은 N 또는 CR22이고, X23은 N 또는 CR23이고, X24은 N 또는 CR24이고, X25은 N 또는 CR25이고, X26은 N 또는 CR26이고, X27은 N 또는 CR27이고, X28은 N 또는 CR28일 수 있고,
X21 내지 X28 중 적어도 3개의 기(group)는 N으로 선택될 수 있다.
예를 들어, 상기 화학식 2 중, X21은 CR21이고, X22은 CR22이고, X23은 CR23이고, X24은 CR24이고, X25은 N이고, X26은 N이고, X27은 CR27이고, X28은 N일 수 있으나, 이에 한정되는 것은 아니다.
상기 화학식 1 및 2 중,
R11 내지 R13 및 R21 내지 R28은 서로 독립적으로,
수소, 치환 또는 비치환된 C1-C60알킬, 치환 또는 비치환된 C3-C10시클로알킬, 치환 또는 비치환된 C6-C60아릴 및 치환 또는 비치환된 C2-C60헤테로아릴 중에서 선택될 수 있다.
예를 들어, 상기 화학식 1 및 2 중, R11 내지 R13 및 R21 내지 R28은 서로 독립적으로,
수소, 메틸, 에틸, n-프로필, iso-프로필, n-부틸, sec-부틸, iso-부틸, tert-부틸, n-펜틸, 시클로펜틸, 시클로헥실, 페닐, 나프틸 및 피리디닐; 및
중수소, 할로겐 원자, 시아노, 니트로, 메틸, 에틸, n-프로필, iso-프로필, n-부틸, sec-부틸, iso-부틸, tert-부틸, 페닐, 나프틸 및 피리디닐 중에서 선택된 적어도 하나로 치환된, 메틸, 에틸, n-프로필, iso-프로필, n-부틸, sec-부틸, iso-부틸, tert-부틸, n-펜틸, 시클로펜틸, 시클로헥실, 페닐, 나프틸 및 피리디닐; 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
다른 예로서, 상기 화학식 1 중, R11 내지 R13은 서로 독립적으로,
수소, 메틸, 에틸, n-프로필, iso-프로필, n-부틸, sec-부틸, iso-부틸, tert-부틸, n-펜틸, 시클로펜틸, 시클로헥실, 페닐, 나프틸 및 피리디닐; 중에서 선택되고;
R11, R12 및 R13가 동시에 수소는 아닐 수 있으나, 이에 한정되는 것은 아니다.
예를 들어, 상기 화학식 2로 표시되는 함질소 유기 화합물은 하기 화학식 2A로 표시될 수 있으나, 이에 한정되는 것은 아니다:
<화학식 2A>
상기 화학식 2A 중,
R21 내지 R24 및 R27은 상술한 바와 같을 수 있다.
다른 예로서, 상기 화학식 2로 표시되는 함질소 유기 화합물은 하기 화학식 2A로 표시되는 경우, R21 내지 R24 및 R27은 서로 독립적으로,
수소, 메틸, 에틸, n-프로필, iso-프로필, n-부틸, sec-부틸, iso-부틸, tert-부틸, n-펜틸, 시클로펜틸, 시클로헥실, 페닐, 나프틸 및 피리디닐; 및
중수소, 할로겐 원자, 시아노, 니트로, 메틸, 에틸, n-프로필, iso-프로필, n-부틸, sec-부틸, iso-부틸, tert-부틸, 페닐, 나프틸 및 피리디닐 중에서 선택된 적어도 하나로 치환된, 메틸, 에틸, n-프로필, iso-프로필, n-부틸, sec-부틸, iso-부틸, tert-부틸, n-펜틸, 시클로펜틸, 시클로헥실, 페닐, 나프틸 및 피리디닐; 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
예를 들어, 상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물은 1-아미노부탄, 2-아미노-2메틸프로판, 1-메틸아미노프로판, 디메틸아미노에탄, 시클로헥실아민 및 1,2,4-벤조트리아진 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물과 산을 함께 포함하는 조성물을 그래핀에 사용하는 경우, 그래핀의 면저항 값을 낮출 수 있다. 예를 들어, 상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물은 포함하나, 산은 포함하지 않는 조성물을 그래핀에 사용하면, 그래핀의 면저항 값은 낮아지지 않는다. 즉, 상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물만을 포함하는 조성물을 그래핀에 사용하면, 그래핀을 도핑할 수 없다.
상기 산화제는 H2O2, (NH4)S2O8, HClO 및 HClO4 중 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 상기 산화제는 H2O2일 수 있다. 또한, 상기 산화제는 상기 그래핀 제조용 조성물에 고체 형태로 도입될 수도 있고, 물과 같은 용매에 희석된 상태로 도입될 수도 있다.
상기 산은 H2SO4, HNO3, H3PO4, HCl, HCOOH 및 CH3COOH 중 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다. 상기 산은 물과 같은 용매에 희석된 상태로 상기 그래핀 제조용 조성물에 도입될 수 있다. 예를 들면, 상기 산은 95중량%의 황산 수용액, 또는 85중량%의 인산 수용액일 수 있다.
상기 그래핀 제조용 조성물은 구리(I)이온 또는 구리(II)이온을 더 포함할 수 있다. 상기 그래핀 제조용 조성물에 첨가되는 구리-원(source)은 구리(I)이온 또는 구리(II)이온을 제공할 수 있기만 하면 그 형태가 제한되지 않는다. 예를 들어, 상기 그래핀 제조용 조성물에 CuCl2 또는 CuCl과 같은 구리염 형태의 구리-원을 첨가할 수 있다.
상기 그래핀 제조용 조성물은 0.2wt% 내지 10wt%의 상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물, 1wt% 내지 10wt%의 산화제, 2wt% 내지 30wt%의 산 및 잔량의 용매를 포함할 수 있으나, 이에 한정되는 것은 아니다. 본 명세서에서, 상기 함질소 유기 화합물, 산화제 및 상기 산의 함량은 상기 그래핀 제조용 조성물의 총 중량을 기준으로 한 것이다.
예를 들어, 상기 그래핀 제조용 조성물은 0.5wt% 이상, 1wt% 이상, 2.5wt% 이하, 또는 2wt% 이하의 상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물을 포함할 수 있으나, 이에 한정되는 것은 아니다.
예를 들어, 상기 그래핀 제조용 조성물은, 2wt% 이상, 3wt% 이상, 9wt% 이하, 또는 8wt% 이하의 산화제를 포함할 수 있으나, 이에 한정되는 것은 아니다.
예를 들어, 상기 그래핀 제조용 조성물은 3wt% 이상, 5wt% 이상, 18wt% 이하, 또는 15wt% 이하의 산을 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 그래핀 제조용 조성물은 0.2wt% 내지 3wt%의 함질소 유기 화합물, 1wt% 내지 5wt%의 산화제, 2wt% 내지 10wt%의 산, 0.1wt% 내지 1.0wt%의 구리(I)이온 또는 구리(II)이온 및 잔량의 용매를 포함할 수 있으나, 이에 한정되는 것은 아니다.
예를 들어, 상기 그래핀 제조용 조성물은 0.2wt% 이상, 0.5wt% 이하, 또는 0.4wt% 이하의 구리(I)이온 또는 구리(II)이온을 포함할 수 있으나, 이에 한정되는 것은 아니다. 또는, 상기 그래핀 제조용 조성물은 그래핀 제조 당시의 조성물에 3g/L의 구리(I) 이온 또는 구리(II)이온을 포함될 수 있도록, 그래핀 제조 당시에 구리(I) 이온 또는 구리(II)이온이 더 추가 될 수 있으나, 이에 한정되는 것은 아니다.
상기 그래핀 제조용 조성물의 용매로는 물을 사용할 수 있다. 즉, 상기 그래핀 제조용 조성물은 함질소 유기 화합물, 산화제 및 산의 수용액일 수 있다. 그러나, 상기 조성물의 용매는 이에 한정되지 않고, 산화제 및 산을 균질하게 분산시킬 수 있는 것이라면 특별히 제한되지 않는다. 따라서, 상기 용매는 물 이외에, 물과 상용성 있는 다른 액체를 더 포함할 수 있다. 또는, 상기 함질소 유기 화합물을 균질하게 분산시키기 위하여 테트라하이드로퓨란과 같은 유기 용매를 더 포함할 수 있다.
상기 그래핀 제조용 조성물은 첨가제를 더 포함할 수 있다. 상기 첨가제는 본 발명이 속하는 기술 분야에서 알려진 것이 될 수 있다. 예를 들면, 분산제, 보존 안정제, 안정화제 및 이들의 조합을 포함한다. 상기 첨가제의 함량은 상기 그래핀 제조용 조성물의 총 중량을 기준으로 3wt% 내지 20wt% 범위일 수 있다.
상기 그래핀 제조용 조성물은 상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물, 산화제, 산 및 용매를 인 시투(in-situ)로 혼합하여 사용할 수도 있으나, 상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물, 산화제, 산 및 용매를 혼합하여 조성물을 제조한 후, 상기 제조된 조성물을 보관하여 사용할 수도 있다. 특히, 상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물, 산화제, 산 및 용매를 혼합하여 조성물을 제조한 후, 상기 제조된 조성물을 보관하였다가 사용하는 경우, 상기 그래핀 제조용 조성물은 분산제 및 보존 안정제 등의 첨가제를 더 포함할 수 있다. 또한, 상기 그래핀 제조용 조성물이 산화제로서 H2O2를 포함하는 경우, 상기 그래핀 제조용 조성물은 상기 H2O2의 산화 반응을 조절하기 위한 안정화제 등의 첨가제를 더 포함할 수 있다.
상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물은 그래핀에 포함되는 도펀트일 수 있다. 상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물은 그래핀의 표면에 화학적 및/또는 물리적으로 결합할 수도 있고, 그래핀을 구성하는 복수 층 사이에 화학적 및/또는 물리적으로 결합할 수도 있으나, 이에 한정되지 않는다. 즉, 그래핀의 면저항 값을 낮출 수 있다면, 상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물의 결합 위치, 결합 방법은 제한되지 않는다.
AuCl3와 같은 금속염을 사용하여 그래핀을 도핑하는 경우, 그래핀의 면저항 값을 낮출 수 있으나, 그래핀의 투과도가 낮아질 수 있다. 반면에, HNO3와 같은 산을 사용하여 그래핀을 도핑하는 경우, 그래핀의 면저항 값을 낮출 수 있고, 그래핀의 투과도도 유지할 수 있으나, 이러한 도핑의 효과가 장시간 지속되지 않을 수 있다.
그러나, 상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물을 사용하여 그래핀을 도핑하는 경우, 그래핀의 면저항 값을 낮출 수 있고, 그래핀의 투과도는 유지되며, 낮아진 그래핀의 면저항 값은 장시간 유지될 수 있다.
상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물로 도핑된 그래핀은 0 초과 내지 300 Ω/sq 이하, 예를 들어, 100 내지 200 Ω/sq 의 면저항 값을 갖는다.
본 발명의 일 실시예에 따른, 상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물로 도핑된 그래핀은 기존의 ITO 전극을 대체하기 위하여 사용될 수 있으나, 이에 한정되는 것은 아니다. 구체적으로, 상기 그래핀은 투명 전극, 더욱 구체적으로는 터치 패널용 투명 전극으로 사용될 수 있다. 또한, 구체적으로, 상기 그래핀은 태양 전지용 전극으로 사용될 수 있다.
도 1은 그래핀의 제조 방법의 일 실시예를 개략적으로 도시한 도면이다. 이하, 도 1을 참조하여 본 발명의 일 실시예에 따른 그래핀의 제조 방법을 설명하면 다음과 같다.
그래핀(110)의 일면에 캐리어 필름(120)을 결합한다.
캐리어 필름(120)은 그래핀(110)을 지지하여 이송을 용이하게 하며, 그래핀(110)의 모양을 유지하고 손상을 방지할 수 있는 것이라면, 그 종류가 제한되지 않는다. 예를 들어, 캐리어 필름(120)은 열박리 테이프 또는 폴리머 지지체일 수 있으나, 이에 한정되지 않는다. 상기 열박리 테이프는 상온에서 일면이 접착성을 갖지만, 소정의 온도 이상에서 접착성을 잃는 성질을 갖는다. 상기 폴리머 지지체는 폴리메틸메타크릴레이트 (Polymethylmethacrylate:PMMA) 등과 같은 폴리머를 포함하며 그래핀(110)의 일면에 폴리머를 용액 공정으로 형성한 후, 원하는 때에 유기 용매로 제거할 수 있다.
그래핀(110)과 캐리어 필름(120)의 적층체를 상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물, 산화제 및 산을 포함하는 그래핀 제조용 조성물로 도핑하여 도핑 그래핀(130)을 얻는다.
상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물, 산화제 및 산의 기능, 종류, 사용 형태 및 함량 등은 전술한 그래핀 제조용 조성물을 참조한다.
상기 도핑 그래핀(130)을 얻는 단계는 도핑 그래핀을 얻을 수 있는 방법이라면 형식이 제한되지 않는다. 예를 들어, 상기 단계는 그래핀(110)과 캐리어 필름(120)의 적층체를 상기 그래핀 제조용 조성물에 함침시킴으로써 이루어질 수 있다. 또는, 상기 단계는 그래핀(110)과 캐리어 필름(120)의 적층체에 그래핀 제조용 조성물을 분무함으로써 이루어질 수 있다. 상기 도핑 그래핀(130)을 얻는 단계는 3 내지 60분 동안 진행될 수 있다. 예를 들어, 상기 그래핀 제조용 조성물은 3 내지 60분, 예를 들어, 3 내지 15분, 5 내지 10분 이내에 그래핀(110)을 도핑할 수 있다. 3분 내지 60분의 시간을 적용하면 그래핀(110)을 충분히 도핑할 수 있으므로 얻어지는 도핑 그래핀(130)의 면저항 값을 최대한 낮출 수 있다. 상기 그래핀 제조용 조성물을 사용하는 시간은 경우에 따라 적절하게 조절될 수 있다.
도핑 그래핀(130)을 타겟 필름(140)에 전사한다.
상기 타겟 필름(140)은 도핑 그래핀(130)이 적용되는 장치의 일 부분일 수 있으며, 구체적으로 상기 장치의 전극의 일 표면일 수 있다.
도핑 그래핀(130)을 타겟 필름(140)에 전사하기 위하여, 그래핀(110)과 캐리어 필름(120)의 적층체를 타겟 필름(140)에 결합한 후, 캐리어 필름(120)을 제거한다. 예를 들어, 캐리어 필름(120)이 열박리 테이프일 경우, 상기 열박리 테이프가 접착성을 잃는 소정의 온도 이상에서 힘을 가하여 도핑 그래핀(130)으로부터 상기 열박리 테이프를 떼어낸다. 예를 들어, 캐리어 필름(120)이 폴리머 지지체일 경우, 아세톤과 같은 유기 용매를 가하여 상기 폴리머 지지체를 도핑 그래핀(130)으로부터 제거할 수 있다.
도 2는 그래핀의 제조 방법의 다른 실시예를 개략적으로 도시한 도면이다. 이하, 도 2를 참조하여 본 발명의 일 실시예에 따른 그래핀의 제조 방법을 설명하면 다음과 같다.
그래핀(210)의 일면에 타겟 필름(240)을 결합한다.
타겟 필름(240)의 설명은 전술한 도 1의 타겟필름 (140)의 설명을 참조한다.
그래핀(210)과 타겟 필름(240)의 적층체를 함질소 유기 화합물, 산화제 및 산을 포함하는 그래핀 제조용 조성물로 도핑하여 도핑 그래핀(230)을 얻는다.
상기 함질소 유기 화합물, 산화제 및 산의 기능, 종류, 사용 형태 및 함량 등은 전술한 그래핀 제조용 조성물을 참조한다.
상기 도핑 그래핀(230)을 얻는 단계에 대한 설명은 도 1의 도핑 그래핀(130)을 얻는 단계에 대한 설명을 참조한다.
도 3은 그래핀의 제조 방법의 또 다른 실시예를 개략적으로 도시한 도면이다. 이하, 도 3을 참조하여 본 발명의 일 실시예에 따른 그래핀의 제조 방법을 설명하면 다음과 같다.
도시되지는 않았으나, 촉매 금속(350)을 전처리 한다.
촉매 금속(350)은 그래핀을 성장하는 장소로 사용될 수 있다. 촉매 금속(350)의 형태는 그래핀이 성장할 수 있기만 하면 제한되지 않는다. 예를 들어, 촉매 금속(350)은 시트, 기판 또는 필름일 수 있다.
촉매 금속(350)은 구리(Cu), 니켈(Ni), 코발트(Co), 철(Fe), 백금(Pt), 금(Au), 은(Ag), 알루미늄(Al), 크롬(Cr), 마그네슘(Mg), 망간(Mn), 몰리브덴(Mo), 로듐(Rh), 실리콘(Si), 탄탈륨(Ta), 티타늄(Ti), 텅스텐(W), 우라늄(U), 바나듐(V), 팔라듐(Pd), 이트리움(Y), 지르코늄(Zr), 게르마늄(Ge) 및 이들의 합금 중 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다.
촉매 금속(350)은 단일층일 수도 있고, 2개 이상의 층으로 이루어진 다층 기판의 최외곽 층일 수 있다.
촉매 금속(350)을 전처리하는 과정은 촉매 금속(350)의 표면에 존재하는 이물질을 제거하기 위한 것으로, 수소 기체를 사용할 수 있다. 또한, 산 또는 알칼리 용액 등을 사용하여 촉매 금속(350)의 표면을 세정함으로써, 그래핀 형성 시 그래핀의 결함을 줄일 수 있다. 촉매 금속(350)의 표면을 세정하는 본 단계는 필요에 따라 생략될 수 있다.
촉매 금속(350)의 적어도 일면에 그래핀(310)을 형성한다.
상기 촉매 금속(350)의 적어도 일면에 그래핀(310)을 형성하는 단계는 특정 방법에 국한되지 않는다. 예를 들어, 상기 단계에는 화학기상증착법(Chemical Vapor Deposition: CVD), 열 화학기상증착법(Thermal Chemical Vapor Deposition: TCVD), 급속 열 화학기상증착법(Rapid Thermal Chemical Vapor Deposition: PTCVD), 유도결합플라즈마 화학기상증착법(Inductive Coupled Plasma Chemical Vapor Deposition: ICP-CVD), 원자층증착법(Atomic Layer Deposition: ATLD) 등 다양한 공정이 이용될 수 있다. 상기 단계의 비제한적인 예시로서, 화학기상증착법을 들 수 있다.
화학 기상 증착법은 촉매 금속이 배치된 용기 내에 기상의 탄소 공급원을 투입하고 상기 용기를 가열한 후에 다시 냉각시킴으로써, 상기 촉매 금속 표면 상에서 그래핀 시트를 성장시키는 방법이다.
상기 기상의 탄소 공급원은 일산화탄소, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠, 톨루엔 또는 이들 중 2 이상의 혼합물일 수 있다. 이와 같은 기상의 탄소 공급원은 고온에서 탄소 원자와 수소 원자로 분리된다. 분리된 탄소 원자는 가열된 촉매 금속(350)에 증착되고, 촉매 금속(350)이 냉각되면서 그래핀(310)이 형성된다.
그래핀(310)은 촉매 금속(350)의 적어도 면에 형성될 수 있다. 도 3에 도시된 본 발명의 일 실시예와 같이 촉매 금속(350)의 일면에 그래핀(310)이 형성될 수 있으나, 이에 한정되는 것은 아니며, 촉매 금속(350)의 양면에 그래핀(310)이 형성될 수도 있다.
촉매 금속(350)이 구비되지 않은 그래핀(310)의 일면에 캐리어 필름(320)을 형성한다.
캐리어 필름(320)에 대한 설명은 도 1의 캐리어 필름(120)에 대한 설명을 참조한다.
캐리어 필름(320), 그래핀(310) 및 촉매 금속(350)의 적층체에 함질소 유기 화합물, 산화제 및 산을 포함하는 그래핀 제조용 조성물을 사용하여 촉매 금속(350)을 제거하는 동시에 그래핀(310)을 도핑하여 도핑 그래핀(330)을 얻는다.
촉매 금속(350)을 제거하는 동시에 그래핀(310)을 도핑할 수 있기 때문에, 도핑 그래핀(330)을 경제적으로 제조할 수 있다. 즉, 촉매 금속을 제거하고, 그 다음 그래핀을 도핑하는 방법에 비하여, 상기 방법은 한 단계의 제조 과정을 생략할 수 있기 때문에, 도핑 그래핀의 제조 비용이 감소한다. 또한, 상기 그래핀 제조용 조성물을 사용함으로써, 도핑 그래핀(330)의 낮아진 면저항 값이 장시간 유지될 수 있다.
상기 촉매 금속(350)을 제거하는 동시에 그래핀(310)을 도핑하여 도핑 그래핀(330)을 얻는 단계는 3 내지 60분 동안 진행될 수 있다. 예를 들어, 상기 그래핀 제조용 조성물은 3 내지 60분, 예를 들어, 3 내지 15분, 5 내지 10분 이내에 촉매 금속(350)을 제거하는 동시에 그래핀(310)을 도핑할 수 있다. 3분 내지 60분의 시간을 적용하면 촉매 금속(350)을 실질적으로 완전히 제거하면서도 그래핀(310)을 충분히 도핑할 수 있으므로 얻어지는 도핑 그래핀(330)의 면저항 값을 최대한 낮출 수 있다. 상기 그래핀 제조용 조성물을 사용하는 시간은 경우에 따라 적절하게 조절될 수 있다.
상기 그래핀 제조용 조성물은 촉매 금속(350) 50g 당 500 내지 1000 mL의 분량으로 사용될 수 있다.
도핑 그래핀(330)을 타켓 필름(340)에 전사한다.
도핑 그래핀(330)을 타겟 필름(340)에 전사하기 위하여, 그래핀(310)과 캐리어 필름(320)의 적층체를 타겟 필름(340)에 결합하는 방법은 도 1의 설명을 참조한다.
타겟 필름(340)에 대한 설명은 도 1의 타겟 필름(140)을 참조한다.
도 4는 그래핀의 제조 방법의 다른 실시예를 개략적으로 도시한 도면이다. 이하, 도 4를 참조하여 본 발명의 일 실시예에 따른 그래핀의 제조 방법을 설명하면 다음과 같다.
도시되지는 않았으나, 촉매 금속(450)을 전처리 한다.
촉매 금속(450)을 전처리하는 단계에 대한 설명은 도 3의 촉매 금속(350)을 전처리 하는 단계에 대한 설명을 참조한다.
촉매 금속(450)의 적어도 일면에 그래핀(410)을 형성한다.
촉매 금속(450)의 적어도 일면에 그래핀(410)을 형성하는 단계에 대한 설명은 도 3의 촉매 금속(350)의 적어도 일면에 그래핀(310)을 형성하는 단계에 대한 설명을 참조한다.
그래핀(410)은 촉매 금속(450)의 적어도 면에 형성될 수 있다. 도 4에 도시된 본 발명의 일 실시예와 같이 촉매 금속(450)의 양면에 그래핀(410)이 형성될 수 있으나, 이에 한정되는 것은 아니며, 촉매 금속(450)의 일면에만 그래핀(410)이 형성될 수도 있다.
촉매 금속(450)이 구비되지 않은 그래핀(410)의 일면에 캐리어 필름(320)을 형성한다.
캐리어 필름(420)에 대한 설명은 도 1의 캐리어 필름(120)에 대한 설명을 참조한다.
촉매 금속 (450)을 제거한다.
촉매 금속(450)을 제거하는 단계는 특정 방법에 국한되지 않는다. 예를 들어, 전기화학적 박리법일 수 있다.
전기화학적 박리법은 전해질 용액에 촉매 금속 및 그래핀의 적층체를 침지시키고 상기 적층체에 전압을 가하여, 상기 그래핀을 상기 촉매 금속으로부터 박리시키는 방법이다. 상기 전기화학적 박리법은 촉매 금속 양면에 형성된 그래핀 모두를 박리하여 사용할 수 있게 한다.
상기 전해질 용액은 NaOH, Na2CO3, Na3PO4, Na2SiO3 및 규산소다 중 선택된 1종 이상을 포함할 수 있으나, 이에 한정되지 않는다.
상기 전압은 3 내지 30V일 수 있으나, 이에 한정되지 않는다.
캐리어 필름(420) 및 그래핀(410)의 적층체에 함질소 유기 화합물, 산화제 및 산을 포함하는 그래핀 제조용 조성물을 사용하여 그래핀(410)을 도핑하여 도핑 그래핀(430)을 얻는다.
상기 그래핀 제조용 조성물을 사용함으로써, 도핑 그래핀(430)의 낮아진 면저항 값이 장시간 유지될 수 있다.
상기 그래핀(410)을 도핑하여 도핑 그래핀(430)을 얻는 단계에 대한 설명은 도 1의 그래핀(110)을 도핑하여 도핑 그래핀(130)을 얻는 단계에 대한 설명을 참조한다.
도핑 그래핀(430)을 타켓 필름(440)에 전사한다.
도핑 그래핀(430)을 타겟 필름(440)에 전사하기 위하여, 그래핀(410)과 캐리어 필름(420)의 적층체를 타겟 필름(440)에 결합하는 방법은 도 1의 설명을 참조한다.
타겟 필름(440)에 대한 설명은 도 1의 타겟 필름(140)을 참조한다.
이상, 도 1 내지 4를 참조하여, 그래핀의 제조 방법을 설명하였으나, 본 발명의 그래핀의 제조 방법이 이에 한정되는 것은 아니다
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오직 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들 실시예에 의하여 제한되는 것을 의미하지 않음은 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자에게 자명하다.
실시예 1
35℃의 Cu 판을 CVD로 장입하였다. 상기 로에 약 1000℃에서 CH4를 약 5분 동안 30 sccm의 속도로 흘려 주었다. 그 다음, H2 분위기 하에서, 600℃까지 60℃/min의 속도로, 상온까지 40℃/min의 속도로 냉각하여, Cu 상에 그래핀을 형성하였다.
Cu 및 그래핀의 적층체를 (NH4)S2O8 4 wt% 수용액에 120분 동안 침지하여 Cu를 제거하였다.
이렇게 얻어진 그래핀을 3 wt%의 1,2,4-벤조트리아진, 3 wt%의 H2O2, 9 wt%의 H2SO4 및 잔부의 물을 포함하는 조성물에 40분 동안 침지하여 도핑 그래핀을 얻었다.
실시예 2
35℃의 Cu 판을 CVD로 장입하였다. 상기 로에 약 1000℃에서 CH4를 약 5분 동안 30 sccm의 속도로 흘려 주었다. 그 다음, H2 분위기 하에서, 600℃까지 60℃/min의 속도로, 상온까지 40℃/min의 속도로 냉각하여, Cu 상에 그래핀을 형성하였다.
Cu 및 그래핀의 적층체를 황산 9wt% 수용액에 40분 동안 침지하여 Cu를 제거하였다.
이렇게 얻어진 그래핀을 3 wt%의 1,2,4-벤조트리아진, 3 wt%의 H2O2, 9 wt%의 H2SO4 및 잔부의 물을 포함하는 조성물에 10분 동안 침지하여 도핑 그래핀을 얻었다.
실시예 3
35℃의 Cu 판을 CVD로 장입하였다. 상기 로에 약 1000℃에서 CH4를 약 5분 동안 30 sccm의 속도로 흘려 주었다. 그 다음, H2 분위기 하에서, 600℃까지 60℃/min의 속도로, 상온까지 40℃/min의 속도로 냉각하여, Cu 상에 그래핀을 형성하였다.
Cu 및 그래핀의 적층체를 3 wt%의 1,2,4-벤조트리아진, 3 wt%의 H2O2, 9 wt%의 H2SO4 및 잔부의 물을 포함하는 조성물에 40분 동안 동안 침지하여 Cu를 제거하는 동시에, 그래핀을 도핑하여 도핑 그래핀을 얻었다.
실시예 4
35℃의 Cu 판을 CVD로 장입하였다. 상기 로에 약 1000℃에서 CH4를 약 5분 동안 30 sccm의 속도로 흘려 주었다. 그 다음, H2 분위기 하에서, 600℃까지 60℃/min의 속도로, 상온까지 40℃/min의 속도로 냉각하여, Cu 상에 그래핀을 형성하였다.
Cu 및 그래핀의 적층체를 (NH4)S2O8 4 wt% 수용액에 120분 동안 침지하여 Cu를 제거하였다.
이렇게 얻어진 그래핀을 3 wt%의 1,2,4-벤조트리아진, 3 wt%의 H2O2, 9 wt%의 H2SO4, 0.3wt%의 CuCl2 및 잔부의 물을 포함하는 조성물에 60 분 동안 침지하여 도핑 그래핀을 얻었다.
비교예
35℃의 Cu 판을 CVD로 장입하였다. 상기 로에 약 1000℃에서 CH4를 약 5분 동안 30 sccm의 속도로 흘려 주었다. 그 다음, H2 분위기 하에서, 600℃까지 60℃/min의 속도로, 상온까지 40℃/min의 속도로 냉각하여, Cu 상에 그래핀을 형성하였다.
Cu 및 그래핀의 적층체를 (NH4)S2O8 4 wt% 수용액에 120분 동안 침지하여 Cu를 제거하였다.
이렇게 얻어진 그래핀을 70 wt%의 HNO3로 3 분 동안 증기 도핑하여 도핑 그래핀을 얻었다.
평가예
실시예 1 내지 실시예 4 및 비교예 1로 제조된 그래핀의 면저항 값 및 상기 면저항 값의 시간에 따른 변화를 측정하였다.
면저항 값은 자동면저항장비(다솔 ENG로부터 입수 가능)를 이용하여 이용하여 측정 지점을 자동으로 선택되는 143개의 지점에서 측정된 면저항의 평균 값이다.
표 1
도핑 직후 | 1일 후 | 2일 후 | 3일 후 | 4일 후 | 5일 후 | |
실시예 1(Ω/sq) | 210 | 213 | 214 | 213 | 213 | 215 |
실시예 2(Ω/sq) | 208 | 208 | 208 | 209 | 210 | 211 |
실시예 3(Ω/sq) | 210 | 215 | 215 | 216 | 215 | 215 |
실시예 4(Ω/sq) | 210 | 213 | 213 | 214 | 214 | 214 |
비교예(Ω/sq) | 289 | 409 | 460 | 479 | 488 | 493 |
표 1을 참조하면, 상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물, 산화제 및 산을 함께 포함하는 조성물을 사용하면, 함질소 유기 화합물로 그래핀을 도핑함으로써, 그래핀의 면저항 값을 낮출 수 있음을 확인하였다. 또한, 촉매 금속을 제거하는 동시에, 그래핀을 도핑하여 그래핀의 면저항도 낮출 수 있음을 확인할 수 있다.
표 1을 참조하면, 상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물, 산화제 및 산을 함께 포함하는 조성물을 사용하면, 낮아진 그래핀의 면저항이 장시간 유지됨을 확인할 수 있다.
Claims (11)
- 하기 화학식 1 또는 2로 표시되는 함질소 유기 화합물;산화제; 및산을 포함하는 그래핀 제조용 조성물:<화학식 1>N(R11)(R12)(R13)<화학식 2>상기 화학식 1 및 2 중,X21은 N(질소 원자) 또는 CR21이고, X22은 N 또는 CR22이고, X23은 N 또는 CR23이고, X24은 N 또는 CR24이고, X25은 N 또는 CR25이고, X26은 N 또는 CR26이고, X27은 N 또는 CR27이고, X28은 N 또는 CR28이고,X21 내지 X28 중 적어도 3개의 기(group)는 N로 선택되고,R11 내지 R13 및 R21 내지 R28은 서로 독립적으로,수소, 치환 또는 비치환된 C1-C60알킬, 치환 또는 비치환된 C3-C10시클로알킬, 치환 또는 비치환된 C6-C60아릴 및 치환 또는 비치환된 C2-C60헤테로아릴 중에서 선택된다.
- 제1항에 있어서,R11 내지 R13은 서로 독립적으로,수소, 메틸, 에틸, n-프로필, iso-프로필, n-부틸, sec-부틸, iso-부틸, tert-부틸, n-펜틸, 시클로펜틸, 시클로헥실, 페닐, 나프틸 및 피리디닐; 중에서 선택되고;R11, R12 및 R13가 동시에 수소는 아닌, 그래핀 제조용 조성물.
- 제1항에 있어서,상기 화학식 2로 표시되는 함질소 유기 화합물은 하기 화학식 2A로 표시되는, 그래핀 제조용 조성물:<화학식 2A>상기 화학식 2A 중,R21 내지 R24 및 R27은 서로 독립적으로,수소, 메틸, 에틸, n-프로필, iso-프로필, n-부틸, sec-부틸, iso-부틸, tert-부틸, n-펜틸, 시클로펜틸, 시클로헥실, 페닐, 나프틸 및 피리디닐; 및중수소, 할로겐 원자, 시아노, 니트로, 메틸, 에틸, n-프로필, iso-프로필, n-부틸, sec-부틸, iso-부틸, tert-부틸, 페닐, 나프틸 및 피리디닐 중에서 선택된 적어도 하나로 치환된, 메틸, 에틸, n-프로필, iso-프로필, n-부틸, sec-부틸, iso-부틸, tert-부틸, n-펜틸, 시클로펜틸, 시클로헥실, 페닐, 나프틸 및 피리디닐; 중에서 선택된다.
- 제1항에 있어서,상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물은 1-아미노부탄, 2-아미노-2메틸프로판, 1-메틸아미노프로판, 디메틸아미노에탄, 시클로헥실아민 및 1,2,4-벤조트리아진 중에서 선택되는, 그래핀 제조용 조성물.
- 제1항에 있어서,상기 그래핀 제조용 조성물은 구리(I)이온 또는 구리(II)이온을 더 포함하는, 그래핀 제조용 조성물.
- 제1항에 있어서,상기 그래핀 제조용 조성물은 0.2 내지 3wt%의 상기 화학식 1 또는 2로 표시되는 함질소 유기 화합물, 1 내지 5wt%의 산화제, 2 내지 10wt%의 산 및 잔량의 용매를 포함하는 그래핀 제조용 조성물.
- 제5항에 있어서,상기 그래핀 제조용 조성물은 0.2wt% 내지 3wt%의 함질소 유기 화합물, 1wt% 내지 5wt%의 산화제, 2 내지 10wt%의 산, 0.1wt% 내지 1.0wt%의 구리(I)이온 또는 구리(II)이온 및 잔량의 용매를 포함하는 그래핀 제조용 조성물.
- 그래핀을, 하기 화학식 1 또는 2로 표시되는 함질소 유기 화합물; 산화제; 및 산을 포함하는 그래핀 제조용 조성물로 도핑하여, 도핑 그래핀을 얻는 단계; 를 포함하는 그래핀의 제조 방법:<화학식 1>N(R11)(R12)(R13)<화학식 2>상기 화학식 1 및 2 중,X21은 N(질소 원자) 또는 CR21이고, X22은 N 또는 CR22이고, X23은 N 또는 CR23이고, X24은 N 또는 CR24이고, X25은 N 또는 CR25이고, X26은 N 또는 CR26이고, X27은 N 또는 CR27이고, X28은 N 또는 CR28이고,X21 내지 X28 중 적어도 3개의 기(group)는 N로 선택되고,R11 내지 R13 및 R21 내지 R28은 서로 독립적으로,수소, 치환 또는 비치환된 C1-C60알킬, 치환 또는 비치환된 C3-C10시클로알킬, 치환 또는 비치환된 C6-C60아릴 및 치환 또는 비치환된 C2-C60헤테로아릴 중에서 선택된다.
- 제8항에 있어서,상기 그래핀 제조용 조성물은 구리(I)이온 또는 구리(II)이온을 더 포함하는, 그래핀의 제조 방법.
- 촉매 금속의 적어도 일면에 그래핀을 형성하는 단계; 및하기 화학식 1 또는 2로 표시되는 함질소 유기 화합물; 산화제; 및 산을 포함하는 그래핀 제조용 조성물을 사용하여 상기 촉매 금속을 제거하는 동시에 상기 그래핀을 도핑하여 도핑 그래핀을 얻는 단계;를 포함하는 그래핀의 제조 방법:<화학식 1>N(R11)(R12)(R13)<화학식 2>상기 화학식 1 및 2 중,X21은 N(질소 원자) 또는 CR21이고, X22은 N 또는 CR22이고, X23은 N 또는 CR23이고, X24은 N 또는 CR24이고, X25은 N 또는 CR25이고, X26은 N 또는 CR26이고, X27은 N 또는 CR27이고, X28은 N 또는 CR28이고,X21 내지 X28 중 적어도 3개의 기(group)는 N로 선택되고,R11 내지 R13 및 R21 내지 R28은 서로 독립적으로,수소, 치환 또는 비치환된 C1-C60알킬, 치환 또는 비치환된 C3-C10시클로알킬, 치환 또는 비치환된 C6-C60아릴 및 치환 또는 비치환된 C2-C60헤테로아릴 중에서 선택된다.
- 제10항에 있어서,상기 그래핀 제조용 조성물은 구리(I)이온 또는 구리(II)이온을 더 포함하는, 그래핀의 제조 방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480002491.1A CN105121338B (zh) | 2014-01-06 | 2014-03-26 | 石墨烯制造用组合物及利用该组合物的石墨烯制造方法 |
US14/669,528 US9327983B2 (en) | 2014-01-06 | 2015-03-26 | Compositions for preparing graphene and methods for preparing graphene using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140001500A KR101842033B1 (ko) | 2014-01-06 | 2014-01-06 | 그래핀 제조용 조성물 및 이를 이용한 그래핀의 제조 방법 |
KR10-2014-0001500 | 2014-01-06 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/669,528 Continuation US9327983B2 (en) | 2014-01-06 | 2015-03-26 | Compositions for preparing graphene and methods for preparing graphene using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015102157A1 true WO2015102157A1 (ko) | 2015-07-09 |
Family
ID=53493494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/002537 WO2015102157A1 (ko) | 2014-01-06 | 2014-03-26 | 그래핀 제조용 조성물 및 이를 이용한 그래핀의 제조 방법 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9327983B2 (ko) |
KR (1) | KR101842033B1 (ko) |
CN (1) | CN105121338B (ko) |
WO (1) | WO2015102157A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102025364B1 (ko) * | 2017-01-19 | 2019-09-25 | 한화에어로스페이스 주식회사 | 그래핀 제조용 조성물 및 이를 이용한 그래핀의 제조 방법 |
US10056218B1 (en) | 2017-02-17 | 2018-08-21 | Savannah River Nuclear Solutions, Llc | Graphene/graphite-based filament for thermal ionization |
US11264228B2 (en) | 2018-10-09 | 2022-03-01 | Savannah River Nuclear Solutions, Llc | Method of making a carbon filament for thermal ionization |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120012271A (ko) * | 2010-07-30 | 2012-02-09 | 성균관대학교산학협력단 | 그래핀의 제조 방법, 그래핀 시트 및 이를 이용한 소자 |
KR20120073948A (ko) * | 2010-12-27 | 2012-07-05 | 재단법인 포항산업과학연구원 | 함질소 그래핀 제조방법 |
KR20120080168A (ko) * | 2009-08-07 | 2012-07-16 | 가디언 인더스트리즈 코퍼레이션. | 그래핀의 대면적 증착 및 도핑과 이를 포함하는 제품 |
KR20120099910A (ko) * | 2011-03-02 | 2012-09-12 | 성균관대학교산학협력단 | 그래핀의 n-도핑 방법 |
KR20130110765A (ko) * | 2012-03-30 | 2013-10-10 | 엘지전자 주식회사 | 그래핀의 도핑 방법 및 그 도핑된 그래핀 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6716281B2 (en) * | 2002-05-10 | 2004-04-06 | Electrochemicals, Inc. | Composition and method for preparing chemically-resistant roughened copper surfaces for bonding to substrates |
US6884338B2 (en) * | 2002-12-16 | 2005-04-26 | 3M Innovative Properties Company | Methods for polishing and/or cleaning copper interconnects and/or film and compositions therefor |
KR20110061909A (ko) | 2009-12-02 | 2011-06-10 | 삼성전자주식회사 | 도펀트로 도핑된 그라펜 및 이를 이용한 소자 |
KR20110095751A (ko) | 2010-02-19 | 2011-08-25 | 성균관대학교산학협력단 | 그래핀의 층간에 도펀트를 포함하는 다층 그래핀, 이를 포함하는 박막 및 투명전극 |
US8877640B2 (en) * | 2010-07-06 | 2014-11-04 | United Microelectronics Corporation | Cleaning solution and damascene process using the same |
KR101429518B1 (ko) | 2010-08-05 | 2014-08-14 | 삼성테크윈 주식회사 | 그래핀의 전사 장치 및 전사 방법 |
JP5609789B2 (ja) | 2011-06-23 | 2014-10-22 | 株式会社豊田中央研究所 | 窒素含有グラフェン構造体及び蛍光体分散液 |
JP2012153555A (ja) | 2011-01-25 | 2012-08-16 | Tokyo Institute Of Technology | ヘテロ原子含有グラフェン |
JP5850720B2 (ja) | 2011-06-02 | 2016-02-03 | Jx日鉱日石金属株式会社 | グラフェン製造用銅箔、及びグラフェンの製造方法 |
TWI548728B (zh) * | 2011-08-01 | 2016-09-11 | 巴斯夫歐洲公司 | 一種製造半導體裝置的方法,其包含在包含特定有機化合物之CMP組成物的存在下化學機械拋光元素鍺及/或Si1-x Gex材料 |
JP2013063885A (ja) * | 2011-09-20 | 2013-04-11 | Toshiba Corp | グラフェン集合体およびその製造方法 |
KR102102792B1 (ko) * | 2011-12-28 | 2020-05-29 | 엔테그리스, 아이엔씨. | 티타늄 나이트라이드의 선택적인 에칭을 위한 조성물 및 방법 |
KR101461977B1 (ko) | 2012-02-23 | 2014-11-20 | 엘지전자 주식회사 | 그래핀의 도핑 방법 |
CN103101909B (zh) * | 2013-03-05 | 2015-04-01 | 南京大学 | 一种制备氮掺杂石墨烯材料的方法 |
-
2014
- 2014-01-06 KR KR1020140001500A patent/KR101842033B1/ko active IP Right Grant
- 2014-03-26 CN CN201480002491.1A patent/CN105121338B/zh active Active
- 2014-03-26 WO PCT/KR2014/002537 patent/WO2015102157A1/ko active Application Filing
-
2015
- 2015-03-26 US US14/669,528 patent/US9327983B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120080168A (ko) * | 2009-08-07 | 2012-07-16 | 가디언 인더스트리즈 코퍼레이션. | 그래핀의 대면적 증착 및 도핑과 이를 포함하는 제품 |
KR20120012271A (ko) * | 2010-07-30 | 2012-02-09 | 성균관대학교산학협력단 | 그래핀의 제조 방법, 그래핀 시트 및 이를 이용한 소자 |
KR20120073948A (ko) * | 2010-12-27 | 2012-07-05 | 재단법인 포항산업과학연구원 | 함질소 그래핀 제조방법 |
KR20120099910A (ko) * | 2011-03-02 | 2012-09-12 | 성균관대학교산학협력단 | 그래핀의 n-도핑 방법 |
KR20130110765A (ko) * | 2012-03-30 | 2013-10-10 | 엘지전자 주식회사 | 그래핀의 도핑 방법 및 그 도핑된 그래핀 |
Also Published As
Publication number | Publication date |
---|---|
CN105121338B (zh) | 2018-09-21 |
US9327983B2 (en) | 2016-05-03 |
CN105121338A (zh) | 2015-12-02 |
US20150197423A1 (en) | 2015-07-16 |
KR20150081733A (ko) | 2015-07-15 |
KR101842033B1 (ko) | 2018-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014104693A1 (ko) | 그래핀, 그래핀 제조용 조성물 및 이를 이용한 그래핀의 제조 방법 | |
WO2015016412A1 (ko) | MoS2 박막 및 이의 제조방법 | |
WO2015102157A1 (ko) | 그래핀 제조용 조성물 및 이를 이용한 그래핀의 제조 방법 | |
WO2010071364A9 (ko) | 금속 박막 또는 금속 산화물 박막 증착용 유기금속 전구체 화합물 및 이를 이용한 박막 증착 방법 | |
WO2017090862A1 (ko) | 페로브스카이트 태양전지 및 이의 제조방법 | |
WO2015099462A1 (ko) | 비공유결합 개질된 탄소구조체 및 이를 포함하는 탄소구조체/고분자 복합체 | |
KR101605650B1 (ko) | 구리막 형성용 조성물 및 상기 조성물을 이용한 구리막의 제조방법 | |
WO2019098665A1 (ko) | 고온 내산화성이 향상된 지르코늄 합금 피복관 및 이의 제조방법 | |
TW201111278A (en) | Large area deposition and doping of graphene, and products including the same | |
WO2021167214A1 (ko) | 태양 전지용 정공 수송 재료 및 이를 포함하는 태양 전지 | |
WO2016024658A1 (ko) | 탄소나노물질을 포함하는 상전이 복합체 및 이의 제조방법 | |
WO2023013938A1 (ko) | 팽창성 흑연을 사용한 전도성 박막의 제조방법 | |
WO2016043396A1 (ko) | 질소 도핑된 그래핀의 제조방법 및 이로부터 제조된 질소 도핑된 그래핀 | |
WO2018043800A1 (ko) | 탄화공정 제어를 통한 고비표면적 하드카본 기반 전극 활물질 제조방법 및 이에 의해 제조된 전극 활물질 | |
WO2021162215A1 (ko) | 페로브스카이트 용액, 이를 이용한 페로브스카이트 막의 제조방법 및 이를 이용한 페로브스카이트 태양전지의 제조방법 | |
CN109321893B (zh) | 石墨烯保护膜的制备方法、石墨烯保护膜及其使用方法 | |
EP3509988A1 (en) | Multi-doped graphene and method for preparing the same | |
WO2014182139A1 (ko) | 광활성층, 이를 포함하는 유기 태양 전지 및 이의 제조 방법 | |
WO2012063991A1 (ko) | 습식공정을 이용한 알루미늄 전극의 제조방법 및 이에 의하여 제조되는 알루미늄 전극 | |
TWI676595B (zh) | 製造石墨碳片之方法 | |
KR102025364B1 (ko) | 그래핀 제조용 조성물 및 이를 이용한 그래핀의 제조 방법 | |
WO2016053004A1 (ko) | 산화 몰리브덴의 복합체 및 이의 제조방법 | |
WO2014137057A1 (ko) | 그래핀의 결정립 경계 탐지 방법 및 이러한 방법을 사용하는 장치 | |
WO2024195914A1 (ko) | 비스(메틸시클로펜타디에닐) 니켈의 제조방법 및 이를 이용한 니켈옥사이드 박막 | |
WO2024147676A1 (ko) | 다공성 다가 전이금속 산화물 박막의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14877062 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14877062 Country of ref document: EP Kind code of ref document: A1 |