WO2012063991A1 - 습식공정을 이용한 알루미늄 전극의 제조방법 및 이에 의하여 제조되는 알루미늄 전극 - Google Patents

습식공정을 이용한 알루미늄 전극의 제조방법 및 이에 의하여 제조되는 알루미늄 전극 Download PDF

Info

Publication number
WO2012063991A1
WO2012063991A1 PCT/KR2010/008761 KR2010008761W WO2012063991A1 WO 2012063991 A1 WO2012063991 A1 WO 2012063991A1 KR 2010008761 W KR2010008761 W KR 2010008761W WO 2012063991 A1 WO2012063991 A1 WO 2012063991A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
substrate
precursor solution
electrode
coating
Prior art date
Application number
PCT/KR2010/008761
Other languages
English (en)
French (fr)
Inventor
이혜문
이동원
윤중열
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to CN201080066013.9A priority Critical patent/CN102822386B/zh
Priority to US13/637,235 priority patent/US10046360B2/en
Priority to JP2013501176A priority patent/JP5722987B2/ja
Publication of WO2012063991A1 publication Critical patent/WO2012063991A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • C23C18/10Deposition of aluminium only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • B05D1/286Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers using a temporary backing to which the coating has been applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means

Definitions

  • the present invention relates to a method of manufacturing an aluminum electrode using a wet process and an aluminum electrode produced thereby.
  • Aluminum with a low work function is utilized as a cathode material for environment-energy devices requiring ohmic contact such as solar cells and OLEDs.
  • Aluminum electrodes used as anode electrode materials of organic solar cells and OLED devices are manufactured using a vacuum evaporation method and a sputter coating method because of their high oxidation characteristics.
  • Thermal evaporation is a method of evaporating a substance to be deposited by heating the crucible of ceramic material by using heat.
  • a high-temperature point source can be used to evaporate metal electrodes such as Mg-Al, Al-Li and Al by heat transfer.
  • metal electrodes such as Mg-Al, Al-Li and Al by heat transfer.
  • a temperature of 1300 DEG C is required, and the efficiency of using the raw material of this method is 30% or less. The above working conditions cause a large loss of raw material and deterioration of organic matter.
  • the aluminum on the wall of the ceramic crucible has a very high wetting angle between the aluminum metal and the ceramic material so that the high- The creeping phenomenon is caused to overflow and the replacement period of the short source is brought about, and the maintenance cost of the equipment is raised.
  • the sputter coating is a method in which electrons generated by applying a negative (-) bias to a sputter gun in a vacuum system dissociate an inert gas to generate a plasma, thereby forming a target target, and kinetic energy is exchanged, so that atoms or molecules on the target surface are repelled out of the surface and adsorbed on the substrate.
  • Sputter coating has the problem that collision of energetic particles causes defects and formation of local trap sites, resulting in structural and organic distortion of the organic film. Further, the collision has a disadvantage of raising the surface temperature and deteriorating the characteristics of the organic layer.
  • the aluminum electrode paste includes three or more types of aluminum powder, glass frit and organic binder having different particle sizes.
  • the paste increases the contact area with the silicon wafer to increase the diffusion area, thereby effectively forming the back front layer (BSF), mixing the particles having different particle sizes to increase the packing density in the aluminum powder to improve the electrical characteristics, It is possible to minimize the thermal expansion of metallic materials and to minimize the shrinkage rate of the particles.
  • the first step involves heating to 80 to 200 ° C and further heating to 700 to 900 ° C, which may cause thermal defects of the organic layer.
  • the thermal evaporation method and the sputtering method are accompanied by a loss of a large amount of raw materials and a large cost is required for manufacturing and maintaining a vacuum deposition system. Due to the limitation of the size of the vacuum chamber, There is a problem that it is difficult to fabricate. In addition, there has recently been a need for large-area electrodes such as 7th-generation (1870 mm x 2200 mm) and 8th generation (2200 mm x 2500 mm) display electrodes as well as environment-energy devices such as OLED and organic solar cells.
  • the present inventors prepared an aluminum precursor solution so as to produce an aluminum electrode using a wet process, and studied a coating method using the aluminum precursor solution.
  • the aluminum electrode thus produced has an electrical characteristic that is not inferior to a vacuum deposited aluminum electrode And it can be applied to a wide area, and the present invention has been completed.
  • Another object of the present invention is to provide an aluminum electrode manufactured by the above-described manufacturing method.
  • the present invention provides a method for manufacturing an aluminum precursor solution, comprising the steps of: (1) preparing an aluminum precursor solution; Coating the precursor solution on a substrate (step 2); And a step (3) of subjecting the coated substrate to a low temperature heat treatment at 80 to 150 ⁇ .
  • the method of manufacturing an aluminum electrode using the wet process of the present invention can manufacture an electrode in a short time at an atmospheric pressure atmosphere and at a low heat treatment firing temperature of 150 DEG C or less to solve the thermal defect problem of the electrode due to the high- Effect.
  • FIG. 3 shows a process of forming an aluminum electrode on the surface of an organic or inorganic material according to the present invention
  • FIG. 6 is a SEM photograph of the fracture surface of the aluminum electrode produced in Examples 1 to 3,
  • FIG. 7 is a graph showing specific resistances according to positions of the aluminum electrodes manufactured in Examples 1 to 3.
  • FIG. 7 is a graph showing specific resistances according to positions of the aluminum electrodes manufactured in Examples 1 to 3.
  • the present invention is a.
  • Step 1 is a step of producing an aluminum precursor solution.
  • the aluminum precursor solution allows the aluminum electrode to be formed through a wet process.
  • the aluminum precursor solution is preferably prepared by mixing AlCl 3 and LiAlH 4 in a molar ratio of 1: 3.
  • the aluminum precursor solution is prepared through the reaction shown in Reaction Scheme 1 below.
  • the solvent used in step 1 preferably has a boiling point of 150 ° C or lower.
  • an organic material substrate such as an electron injection layer in which an aluminum electrode is formed is thermally stable at a baking temperature of 150 ° C. or less This is because an electrode must be formed.
  • 1,3,5-trimethylbenzene and ether organic solvents may be used.
  • a solvent having a boiling point or a pyrolysis temperature may be selected and used.
  • step 1 it is preferable that AlCl 3 and LiAlH 4 are introduced to be supersaturated in a solvent.
  • AlCl 3 and LiAlH 4 are introduced to be supersaturated in a solvent.
  • the selected solvent is added and reacted at room temperature to 100 ° C for 1 hour with stirring to produce an aluminum precursor solution. At this time, the reaction is preferably performed under an argon atmosphere in order to prevent aluminum from being oxidized.
  • the solution in which the reaction is completed includes a solution of H 3 AlO (C 4 H 9 ) 2 containing AlH 3 and precipitated LiCl do.
  • H 3 AlO (C 4 H 9 ) 2 solution which is an aluminum precursor solution.
  • Step 2 is a step of coating the precursor solution on a substrate. It is preferable that the aluminum precursor solution prepared in step 1 is performed in one kind selected from the group including spin coating, dip coating, spray coating, ink jet printing, roll coating, drop casting and doctor blade, The present invention is not limited thereto. After the coating is completed, the substrate is dried at room temperature. Step 2 It is also preferred to carry out under an argon atmosphere in order to prevent aluminum from being oxidized.
  • Step 3 is a step of subjecting the coated substrate to a low-temperature heat treatment at 80 to 150 ° C.
  • the substrate coated and dried in the step 2 is placed on a device capable of being heat-treated such as a hot plate, and is heated to a temperature of 80 to 150 ° C and heat-treated. It is preferable that the heat treatment is performed by gradually increasing the temperature. Particularly, when the heat treatment temperature exceeds 120 ° C., it is necessary to take care that a part of the aluminum electrode film is carbonized by using a preheated heat treatment apparatus.
  • the heat treatment in step 3 is preferably performed under an argon atmosphere in order to prevent aluminum from being oxidized.
  • reaction formula (2) The reaction during the low temperature heat treatment proceeds as shown in the following reaction formula (2).
  • the reaction of removing O (C 4 H 9 ) 2 and hydrogen from AlH 3 occurs simultaneously in the H 3 AlO (C 4 H 9 ) 2 film formed by drying And an aluminum film is formed.
  • the substrate on which the H 3 AlO (C 4 H 9 ) 2 film is formed is placed on the already hot plate, the H 3 AlO (C 4 H 9 ) 2 film is evaporated before the aluminum film is formed, , It is impossible to form a uniform electrode. Therefore, it is preferable to place a substrate on which a H 3 AlO (C 4 H 9 ) 2 film is formed on a hot plate at room temperature and heat it to 80 to 150 ° C. to form an aluminum film.
  • step A Preparing an aluminum precursor solution (step A);
  • step B Coating the aluminum precursor solution on a substrate made of an organic material that does not react with an inorganic or a precursor (step B);
  • step C Heating the substrate of the organic or inorganic material to be coated at 80 to 150 DEG C (step C); And a step of raising the substrate coated in step B on the organic or inorganic material substrate heated in step C and performing a low temperature heat treatment at 80 to 150 ° C. and removing a substrate composed of an organic material that does not react with an inorganic material or a precursor material
  • the present invention also provides a method of manufacturing an aluminum electrode using a wet process.
  • Step A according to the present invention is performed in the same manner as in step 1 of the method for producing an aluminum electrode using the wet process.
  • Step B according to the present invention is a step of coating the aluminum precursor solution on a substrate made of an inorganic material or an organic material that does not react with the precursor.
  • the surface on which the electrode is to be formed is made of an organic material, especially if it is composed of a material reactive with the solvent used in the preparation of the precursor solution, the organic solvent contained in the precursor solution reacts with the substrate, It is important to avoid direct contact between the precursor solution and the substrate on which the electrode is to be formed. Therefore, an indirect method using a substrate composed of an inorganic material or an organic material that does not react with the precursor is used.
  • the step B is also preferably carried out under an argon atmosphere in order to prevent aluminum from being oxidized.
  • step B is carried out in one kind selected from the group consisting of spin coating, dip coating, spray coating, ink jet printing, roll coating, drop casting and doctor blade, etc.,
  • the present invention is not limited thereto, so long as it can be coated on a substrate using an aluminum precursor solution. Thereafter, the coated substrate is dried at room temperature.
  • Step C is a step of heating a substrate of an organic or inorganic material to be coated at 80 to 150 ° C. Place the electrode on the surface of the device where the electrode is to be formed facing upward, such as a hot plate, and heat it to 80 to 150 ° C.
  • the step C is preferably performed under an argon atmosphere in order to prevent aluminum from being oxidized.
  • Step D is a method for preparing a substrate comprising the organic or inorganic material heated in the step C, the substrate coated with the substrate coated in the step B, heated at a low temperature of 80 to 150 DEG C, .
  • the solvent is removed while pyrolyzing, and the hydrogen in AlH 3 is removed An Al film is formed on the material substrate.
  • An aluminum electrode is formed on an organic or inorganic material substrate on the opposite side of the substrate composed of an organic or inorganic material which is coated with the precursor solution and does not react with the dried inorganic material or precursor since the aluminum powder is formed from the precursor solution coating layer in contact with the organic material surface, Film is formed.
  • Step D is also preferably carried out under an argon atmosphere to prevent aluminum from being oxidized.
  • the steps C and D have a problem that can occur in heating the substrate coated with the aluminum precursor solution for forming the aluminum electrode in step 3 among the aluminum electrode manufacturing method composed of steps 1, 2, and 3, It can be used as a method for solving the difficulty of uniform electrode formation due to evaporation of the coating film and carbonization of the organic solvent constituting the coating film when the heat treatment is performed at a temperature exceeding 120 ⁇ in the preheated heat treatment apparatus.
  • step a Preparing an aluminum precursor solution (step a);
  • step d heat treating the second substrate of step b) at a temperature of 80 to 150 ⁇ and removing the fibrous medium containing the first substrate and the precursor solution (step d); and c) A method for manufacturing an aluminum electrode using the same.
  • Step a according to the present invention is performed in the same manner as in step 1 of the method for producing an aluminum electrode using the wet process.
  • Step b is a step of raising an aluminum precursor solution onto a first substrate by being buried in a fibrous medium.
  • a representative example of a fibrous mediator may be paper.
  • the fibrous medium can absorb a large amount of aluminum precursor solution unlike the substrate, so that a thick aluminum electrode can be formed according to the absorbed aluminum precursor solution.
  • an aluminum electrode of uniform thickness can be formed.
  • Aluminum precursor solution is buried on the first substrate and dried at room temperature.
  • Step b is also preferably carried out under an argon atmosphere to prevent aluminum from being oxidized.
  • Step c is a step of heating the second substrate for forming the electrode at 80 to 150 ° C.
  • the surface to be formed with the electrode is placed on a device capable of heat treatment such as a hot plate and heated to 80 to 150 ° C.
  • Step c is also preferably carried out under an argon atmosphere to prevent aluminum from being oxidized.
  • Step d is a step of raising the second substrate of step b above the heated substrate, performing a low-temperature heat treatment at 80 to 150 ⁇ , and then removing the fibrous medium containing the first substrate and the precursor solution.
  • the solvent is removed while thermally decomposing, and hydrogen in AlH 3 is removed as shown in Reaction Scheme 2, An Al film is formed on the substrate. Since the aluminum powder is formed from the precursor solution coating layer in contact with the second substrate surface, the aluminum electrode film is formed on the second substrate opposite to the first substrate.
  • Step d is also preferably carried out under an argon atmosphere to prevent aluminum from being oxidized.
  • an aluminum electrode manufactured according to a method of manufacturing an aluminum electrode using a wet process according to the present invention.
  • the aluminum electrode manufactured by the above method can be manufactured in a short time at an atmospheric pressure atmosphere and a low heat treatment firing temperature of 150 DEG C or less as a method of manufacturing an aluminum electrode using a wet process, It is possible to solve the defect problem. In addition, it is possible to prevent an excessive loss of aluminum raw material, and to form an electrode in an atmospheric pressure atmosphere, thereby reducing facilities and maintenance costs, thereby reducing production costs. In addition, it is possible to form aluminum electrodes of various sizes ranging from a small-area aluminum electrode to a large-area aluminum electrode. In addition, the aluminum electrode manufactured according to the present invention exhibits the same or excellent characteristics when compared with the characteristics of the organic solar cell and the OLED anode requiring the conventional low-function electrode.
  • Step 1 Step of preparing an aluminum bulb solution
  • the amorphous glass substrate was coated and dried by dipping in the aluminum precursor solution prepared in the step 1 above.
  • step 2 The substrate coated and dried in step 2 was placed on a hot plate at a room temperature before heating and heated until it reached 140 ⁇ to produce an aluminum electrode.
  • Step 1 Step of preparing an aluminum bulb solution
  • Step 1 of Example 1 was carried out in the same manner to prepare an aluminum precursor solution.
  • Step 2 of Example 1 was carried out in the same manner to form an aluminum precursor solution film on a glass substrate.
  • the glass substrate on which the electrodes were to be formed was placed on a hot plate and heated to 140 ⁇ .
  • Step 4 Step of forming aluminum electrode on inorganic material substrate
  • the glass substrate heated in step 3 was faced upward and the substrate coated with the aluminum precursor solution was raised downward on the substrate in step 2 and heated at 140 ⁇ for 1 minute to form a glass substrate To prepare an aluminum electrode.
  • Step 1 Step of preparing an aluminum bulb solution
  • Step 1 of Example 1 was carried out in the same manner to prepare an aluminum precursor solution.
  • the glass substrate was coated and dried by dipping in an aluminum precursor solution.
  • the polyethylene substrate on which the electrodes were to be formed was placed on a hot plate and heated to 140 ⁇ ⁇ .
  • Step 4 Step of forming an aluminum electrode on an organic material substrate
  • the polyethylene substrate heated in step 3 was faced upward and the substrate coated with the aluminum precursor solution was faced downward on the substrate in step 2 and heated at 140 ⁇ for 1 minute to form a polyethylene substrate To prepare an aluminum electrode.
  • Step 1 Step of preparing an aluminum bulb solution
  • Step 1 of Example 1 was carried out in the same manner to prepare an aluminum precursor solution.
  • Step 2 Step of burying aluminum bulb solution on paper
  • the aluminum precursor solution prepared in step 1 was buried in the paper, and the resultant was placed on a first substrate made of glass and dried.
  • a second glass substrate for forming an electrode was placed on a hot plate and heated to 140 ⁇ .
  • Step 4 Step of forming an aluminum electrode on an organic material substrate
  • the first glass substrate having the dried paper was placed on the second glass substrate heated in Step 3 by immersing the aluminum precursor solution in Step 2 and heated at 140 ⁇ for 3 minutes to form an aluminum electrode having a thickness of 263 nm .
  • Example 1 The aluminum electrodes prepared in Example 1, Example 2 and Example 3 were visually observed in order to examine their appearance characteristics, and the results are shown in FIG.
  • X-ray diffraction (XRD) analysis was performed on aluminum electrodes prepared in Examples 1, 2, and 3 in order to examine the crystallinity of aluminum. The results are shown in FIG.
  • the surface of the aluminum film has a dense structure in which pores are hardly formed.
  • the thicknesses of the electrodes formed on the glass substrate and PE substrate of A (Example 1), B (Example 2) and C (Example 3) were 117 nm, 102 nm and 70 nm, respectively I could.
  • the aluminum electrode has a thin film having a dense structure. The density of the electrode is required for the improvement of the electrical characteristics of the electrode, so that the above results make it possible to deduce that the aluminum electrode manufactured according to the present invention has excellent electrical characteristics.
  • the resistivity of each point and point at which the resistivity is measured is plotted.
  • the average resistivity values of the aluminum electrodes prepared in Examples 1, 2, and 3 were 12.52 ⁇ cm, 8.49 ⁇ cm, and 15.53 ⁇ cm, respectively, and the standard deviations of the positions of the electrodes were 0.46 ⁇ cm, 1.74 ⁇ cm, and 0.65 ⁇ cm, respectively, indicating that the electrical characteristics of the electrode are excellent and uniform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)
  • Chemically Coating (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 습식공정을 이용한 알루미늄 전극의 제조방법 및 이에 따라 제조되는 알루미늄 전극을 제공한다. 상기 제조방법들은 알루미늄이 형성되기 전 단계인 AlH3을 주소재로 하는 습식공정용 알루미늄 전구용액을 제조하고, 상기 알루미늄 전구용액을 습식공정을 통하여 기판에 코팅 후 건조하고 150 ℃ 이하의 저온 소성 공정을 통하여 저 일함수 알루미늄 전극을 형성한다. 본 발명에 따른 알루미늄 전극의 형성방법은 종래 기술의 고온 소성으로 인한 전극의 열적결함 문제를 해결하고, 과량의 원료 손실 방지, 상압 분위기에서 비교적 낮은 비용과 간단한 공정으로 소면적에서 대면적까지 다양한 크기의 알루미늄 전극을 제조할 수 있다.

Description

습식공정을 이용한 알루미늄 전극의 제조방법 및 이에 의하여 제조되는 알루미늄 전극
본 발명은 습식공정을 이용한 알루미늄 전극의 제조방법 및 이에 의하여 제조되는 알루미늄 전극에 관한 것이다.
낮은 일함수를 지닌 알루미늄은 태양전지 및 OLED 등 오믹접촉(ohmic contact)을 요구하는 환경-에너지 소자의 음극(cathode) 소재로 활용된다. 유기태양전지 및 OLED 소자의 음극 전극소재로 사용되는 알루미늄 전극은 산화특성이 매우 크기 때문에 진공상태의 열 증발법 및 스퍼터(sputter) 코팅 방법을 사용하여 제조되고 있다.
열 증발법(thermal evaporation)은 세라믹 재질의 크루셔블(crucible)에 전열을 이용하여 가열시켜 성막 하고자 하는 물질을 증발시켜 증착시키는 방법이다. 일반적으로 Mg-Al, Al-Li, Al과 같은 금속 전극을 전열에 의해 증발시키는데 고온의 점광원(point source)을 사용할 수 있다. 금속의 음극 전극을 성막하기 위해서는 1300 ℃의 온도가 필요하며, 이 방법의 원료 사용 효율은 30% 이하이다. 상기와 같은 작업 조건은 다량의 원료 손실 및 유기물의 열화를 발생시키며, 작업도중 세라믹 크루셔블 벽면상의 알루미늄은 알루미늄 금속과 세라믹 재료간의 젖음각(wetting angle)이 매우 커서 고온의 알루미늄이 크루셔블을 타고 올라가 넘치는 크리핑(creeping) 현상을 일으켜 짧은 소스의 교체 주기를 가져와 장비의 유지비가 상승하는 문제점이 있다.
또한, 스퍼터 코팅은 진공 시스템 내의 스퍼터 건(gun)에 (-)바이어스를 인가하여 발생하는 전자들이 비활성 가스를 해리시켜 플라즈마를 발생시키고, 그로 인하여 생성된 고에너지의 이온 입자들을 증착하고자 하는 타겟(target)의 표면에 충돌시켜 운동에너지를 교환하여 타겟 표면의 원자나 분자들이 표면 밖으로 튕겨서 기판에 흡착되는 방법이다. 스퍼터 코팅은 에너지를 가진 입자들의 충돌이 결함 및 로컬 트랩 사이트(local trap sites)의 형성을 일으켜 유기 필름의 구조적, 유기적 왜곡을 가져오는 문제점이 있다. 또한, 충돌은 표면 온도를 상승시키고 유기 층의 특성을 저하시키는 단점이 있다.
상기와 같은 문제점을 해결하기 위하여 Plasma Process. Polym. 2009, 6, S808는 DC 마그네트론에 가하는 전압을 조절함으로써 유기층 결함을 최소화였다. 또한, Applied Physics Letters 88, 083513 (2006)와 J. KIEEME Vol. 85, No. 19, 8 (2004)에서는 Ar과 Kr의 혼합가스를 스퍼터링에 사용함으로써 유기층의 결함을 방지하고자 하였다. 그러나 상기 방법들은 대면적의 전극을 제조하기에는 곤란하다는 문제점이 있다.
대한민국 공개특허 2010-0111411호는 알루미늄 전극 페이스트 및 이를 이용한 태양전지소자에 관한 것이다. 상기 발명에 따르면, 알루미늄 전극 페이스트는 입도가 서로 다른 3종류 이상의 알루미늄 분말, 글라스 프릿 및 유기 바인더를 포함하여 구성된다. 상기 페이스트는 실리콘 웨이퍼와 접촉면적을 증가시켜 확산면적을 증가시킴으로써, 후면전계층(BSF)을 효율적으로 형성시키며, 입도가 서로 다른 입자를 혼합하여 알루미늄 분말 내의 충진 밀도를 높여 전기적 특성을 향상시키고 열처리 시 금속성분들의 열팽창을 최소화하여 입자들의 수축률을 극소화할 수 있는 효과가 있다. 하지만 상기 페이스트를 건조하기 위해서 1차로는 80~200 ℃로 가열하며, 다시 700~900 ℃로 가열하는 공정을 포함하고 있어, 유기층의 열적 결함을 유발할 수 있는 단점이 있다.
최근 유기 발광소자의 대형화 및 양산화를 위하여 스퍼터링 공정을 개선하기 위한 연구가 진행되고 있다. 그 일례로, Applied physics letters 85(2004), 19에 발표된 거울상 타겟 스퍼터링(mirror shape target sputtering, MSTS)을 사용함으로써 OLED의 알루미늄 음극을 플라즈마의 결함 없이 형성하는 것에 관한 것이 있다. 또한, 상기 방법을 수정하여 20 cm × 20 cm의 기판에 코팅한 사례도 있다.
하지만, 열증착법 및 스퍼터링 방법은 상기에서 언급한 바와 같이 많은 양의 원료의 손실이 따르고 진공증착 설비 제조 및 유지를 위하여 많은 비용이 필요하며, 진공챔버 크기의 대형화의 한계로 인하여, 전극을 대면적으로 제작하는 것이 어려운 문제점이 있다. 또한, 최근 OLED 및 유기태양전지와 같은 환경-에너지 소자뿐만 아니라, 7세대 (1870 mm × 2200 mm) 및 8세대 (2200 mm × 2500 mm) 디스플레이용 전극과 같이 전극의 대면적화가 필요하게 되었다.
이에, 본 발명자들은 습식 공정을 이용하여 알루미늄 전극을 제조할 수 있도록 알루미늄 전구 용액을 제조하고 이를 이용한 코팅 방법을 연구하였으며, 이에 의하여 제조된 알루미늄 전극은 진공 증착된 알루미늄 전극에 뒤지지 않는 전기적 특성을 지니며, 넓은 면적에 적용이 가능함을 확인하고 본 발명을 완성하였다.
본 발명의 목적은 습식공정을 이용한 알루미늄 전극의 제조방법을 제공하는 데 있다.
본 발명의 다른 목적은 상기 제조방법에 의하여 제조되는 알루미늄 전극을 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은 알루미늄 전구용액을 제조하는 단계 (단계 1); 상기 전구용액을 기판에 코팅하는 단계 (단계 2); 및 코팅된 기판을 80~150 ℃로 저온 열처리하는 단계 (단계 3)를 포함하는 것을 특징으로 하는 습식공정을 이용한 알루미늄 전극의 제조방법을 제공한다.
또한, 상기 제조방법에 의하여 제조되는 알루미늄 전극을 제공한다.
본 발명의 습식공정을 이용한 알루미늄 전극의 제조 방법은 대기압 분위기 및 150 ℃ 이하의 낮은 열처리 소성 온도에서 짧은 시간에 전극을 제조할 수 있어 종래 기술의 고온 소성으로 인한 전극의 열적 결함 문제를 해결할 수 있는 효과를 갖는다. 또한 과량의 알루미늄 원료 손실을 방지하고, 상압 분위기에서 전극의 형성이 가능하여 시설 및 유지비용이 절감되어 생산 원가의 절감효과가 있다. 또한 소면적의 알루미늄 전극에서부터 대면적의 알루미늄 전극에 이르는 다양한 크기의 알루미늄 전극을 형성할 수 있으며, 종래의 알루미늄 전극에 비하여 비저항 등 전기적 특성이 뒤지지 않음을 확인할 수 있다.
도 1은 알루미늄 전구용액의 제조과정을 나타낸 것이고,
도 2는 본 발명에 따라 알루미늄 전극을 무기소재 표면에 형성하는 과정을 나타낸 것이고,
도 3은 본 발명에 따라 알루미늄 전극을 유기 또는 무기소재 표면에 형성하는 과정을 나타낸 것이고,
도 4는 실시예 1 ~ 실시예 3에서 제조된 알루미늄 전극의 사진이고,
도 5는 실시예 1 ~ 실시예 3에서 제조된 알루미늄 전극의 XRD 분석결과이고,
도 6은 실시예 1 ~ 실시예 3에서 제조된 알루미늄 전극의 파단면을 관찰한 SEM 사진이고,
도 7은 실시예 1 ~ 실시예 3에서 제조된 알루미늄 전극의 위치에 따른 비저항을 나타낸 그래프이다.
이하, 본 발명을 상세히 설명한다.
본 발명은
알루미늄 전구용액을 제조하는 단계 (단계 1);
상기 전구용액을 기판에 코팅하는 단계 (단계 2); 및
코팅된 기판을 80~150 ℃로 저온 열처리하는 단계 (단계 3)를 포함하는 것을 특징으로 하는 습식공정을 이용한 알루미늄 전극의 제조방법을 제공한다.
이하, 본 발명을 단계별로 상세히 설명한다.
본 발명에 따른 단계 1은 알루미늄 전구용액을 제조하는 단계이다. 상기 알루미늄 전구용액은 습식공정을 통하여 알루미늄 전극을 형성할 수 있도록 한다. 상기 알루미늄 전구용액은 AlCl3과 LiAlH4를 1 : 3의 몰비로 혼합하여 제조되는 것이 바람직하다. 상기 알루미늄 전구용액은 하기 반응식 1과 같은 반응을 거쳐 제조된다.
<반응식 1>
AlCl3 + 3LiAlH4 → 4AlH3 + 3LiCl
상기 반응식 1에 나타낸 바와 같이 1 : 3의 몰 비로 AlCl3과 LiAlH4를 혼합하여 반응시키면 AlH3과 LiCl이 생성된다.
상기 단계 1에서 사용되는 용매는 끓는점이 150 ℃ 이하인 것이 바람직하다. 유기태양전지 및 OLED 등과 같은 환경에너지 소자의 음극 소재로 알루미늄 전구용액을 활용하기 위해서는 알루미늄 전극이 형성되는 전자주입층(electron injection layer)과 같은 유기소재 기판이 열적으로 안정한 150 ℃ 이하의 소성온도에서 전극이 형성되어야 하기 때문이다. 상기 용매는 1,3,5-트리메틸벤젠(1,3,5-trimetylbenzene) 및 에테르(Ether)계의 유기 용매 등이 사용될 수 있으며, 알루미늄 생성에 필요한 온도 및 전극형성을 위한 소성 온도에 따라 알맞은 끓는점 또는 열분해 온도를 갖는 용매를 선택하여 사용할 수 있다.
상기 단계 1에서 AlCl3과 LiAlH4는 용매에 과포화 되도록 도입되는 것이 바람직하다. 원료물질인 AlCl3과 LiAlH4를 과포화로 도입할 경우 상기 반응식 1에서 평형이 오른쪽으로 이동하여 AlH3가 더 많이 생성될 것이다. 따라서 알루미늄 전극 형성을 더욱 쉽고 빠르게 구현하기 위해서는 AlCl3과 LiAlH4는 용매에 과포화 되도록 도입되어야 한다. 선택된 용매를 넣고 상온 내지 100 ℃의 온도에서 1시간 동안 교반하여 반응시키면 알루미늄 전구용액을 제조할 수 있다. 이때, 상기 반응은 알루미늄이 산화되는 것을 방지하기 위하여 아르곤 분위기하에서 수행되는 것이 바람직하다.
상기 단계 1에 대하여 디부틸에테르(Dibutyl Ether)를 용매로 사용한 경우를 예로 들면, 반응이 완결된 용액은 AlH3을 함유하는 H3AlO(C4H9)2 용액과 침전된 LiCl을 포함하게 된다. 이를 필터링하게 되면 알루미늄 전구용액인 H3AlO(C4H9)2 용액을 얻을 수 있다.
본 발명에 따른 단계 2는 상기 전구용액을 기판에 코팅하는 단계이다. 상기 단계 1에서 제조된 알루미늄 전구용액을 스핀코팅, 딥코팅, 스프레이 코팅, 잉크젯 프린트, 롤코팅, 드롭 캐스팅 및 닥터블레이드 등을 포함하는 군으로부터 선택되는 1종으로 수행되는 것이 바람직하나, 알루미늄 전구용액을 이용하여 기판에 코팅할 수 있는 방법이라면 이에 한정되지 않는다. 코팅이 완료된 후 기판을 상온에서 건조시킨다. 단계 2 또한 알루미늄이 산화되는 것을 방지하기 위하여 아르곤 분위기하에서 수행되는 것이 바람직하다.
본 발명에 따른 단계 3은 코팅된 기판을 80 ~ 150 ℃로 저온 열처리하는 단계이다. 상기 단계 2에서 코팅하고 건조된 기판을 핫플레이트와 같은 열처리가 가능한 기기에 올려놓고, 80 ~ 150 ℃의 온도로 가열하여 열처리한다. 상기 열처리는 온도를 서서히 올려 수행되는 것이 바람직하다. 특히, 열처리 온도가 120 ℃를 초과하는 경우 미리 가열된 열처리 장치를 사용하게 되면 알루미늄 전극막의 일부가 까맣게 탄화되는 현상이 발생하게 되므로 주의하여야 하여야 한다. 상기 단계 3의 열처리는 알루미늄이 산화되는 것을 방지하기 위하여 아르곤 분위기하에서 수행되는 것이 바람직하다.
상기 저온 열처리 동안의 반응은 하기의 반응식 2와 같이 진행된다.
<반응식 2>
4AlH3 → 4Al(s) + 6H2(g)
예를 들면, 디부틸에테르를 용매로 사용한 경우 서서히 가열시키면 건조되어 형성된 H3AlO(C4H9)2 막에서는 O(C4H9)2 제거와 AlH3에서 수소가 떨어져 나가는 반응이 동시에 일어나게 되어, 알루미늄 막이 형성된다. 이때 이미 가열되어 있는 핫플레이트 상에 H3AlO(C4H9)2 막이 형성된 기판을 올려놓게 되면 알루미늄 막이 형성되기 전에 H3AlO(C4H9)2 막이 증발되거나 유기용매 일부의 탄화로 인하여 균일한 전극형성이 불가능하게 되므로 상온의 핫플레이트위에 H3AlO(C4H9)2 막이 형성된 기판을 올려놓고 80 ~ 150℃로 가열하는 것이 알루미늄 막을 형성하는 데 바람직하다.
또한, 본 발명은
알루미늄 전구용액을 제조하는 단계 (단계 A);
무기물 또는 전구물질과 반응하지 않는 유기물로 구성된 기판에 상기 알루미늄 전구용액을 코팅하는 단계 (단계 B);
코팅하려는 유기 또는 무기소재의 기판을 80~150 ℃에서 가열하는 단계 (단계 C); 및 상기 단계 C에서 가열된 유기 또는 무기소재 기판 위에 상기 단계 B에서 코팅된 기판을 올리고 80~150 ℃로 저온 열처리한 후 무기물 또는 전구물질과 반응하지 않는 유기물로 구성된 기판을 제거하는 단계 (단계 D);를 포함하는 것을 특징으로 하는 습식 공정을 이용한 알루미늄 전극의 제조방법을 제공한다.
이하, 본 발명을 단계별로 상세히 설명한다.
본 발명에 따른 단계 A는 상기 습식공정을 이용한 알루미늄 전극의 제조방법의 단계 1과 동일하게 수행된다.
본 발명에 따른 단계 B는 무기물 또는 전구물질과 반응하지 않는 유기물로 구성된 기판에 상기 알루미늄 전구용액을 코팅하는 단계이다. 전극이 형성되어야 할 표면이 유기물질로 구성되어 있을 때, 특히 전구용액 제조에 사용된 용매와 반응성이 있는 소재로 구성되어 있을 경우에는 전구용액에 포함된 유기용매와 기판이 반응하여 기판에 결함을 야기할 수 있으므로, 전구용액과 전극을 형성하고자 하는 기판과의 직접적인 접촉을 피하는 것이 중요하다. 그러므로 무기물 또는 전구물질과 반응하지 않는 유기물로 구성된 기판을 사용하는 간접적인 방법을 사용한다. 상기 단계 B 또한 알루미늄이 산화되는 것을 방지하기 위하여 아르곤 분위기하에서 수행되는 것이 바람직하다.
상기 단계 B의 코팅은 상기 단계 A에서 제조된 알루미늄 전구용액을 스핀코팅, 딥코팅, 스프레이 코팅, 잉크젯 프린트, 롤코팅, 드롭 캐스팅 및 닥터블레이드 등을 포함하는 군으로부터 선택되는 1종으로 수행되는 것이 바람직하나, 알루미늄 전구용액을 이용하여 기판에 코팅할 수 있는 방법이라면 이에 한정되지 않는다. 이후, 코팅이 완료된 기판을 상온에서 건조한다.
본 발명에 따른 단계 C는 코팅하려는 유기 또는 무기소재의 기판을 80~150 ℃에서 가열하는 단계이다. 전극이 형성되어야 할 표면을 위로 향하게 핫플레이트와 같이 열처리가 가능한 장치에 올려놓고 80 ~ 150 ℃로 가열한다. 상기 단계 C는 알루미늄이 산화되는 것을 방지하기 위하여 아르곤 분위기하에서 수행되는 것이 바람직하다.
본 발명에 따른 단계 D는 상기 단계 C에서 가열된 유기 또는 무기소재 기판 위에 상기 단계 B에서 코팅된 기판을 올리고 80~150 ℃로 저온 열처리한 후 무기물 또는 전구물질과 반응하지 않는 유기물로 구성된 기판을 제거하는 단계이다. 전구용액이 코팅되어 건조된 기판의 면과 상기 단계 C에서 가열된 코팅하려는 유기 또는 무기소재 기판의 면을 접촉시켜 놓으면, 용매는 열분해 되면서 제거되고 상기 반응식 2와 같이 AlH3 중 수소는 떨어져 나가 유기소재 기판 위에 Al 막이 형성된다. 유기 소재 표면과 접촉된 전구용액 코팅 층에서부터 알루미늄 분말이 형성되므로 전구용액이 코팅되어 건조된 무기물 또는 전구물질과 반응하지 않는 유기 또는 무기물로 구성된 기판이 아닌 반대편의 유기 또는 무기소재 기판 상에 알루미늄 전극막이 형성된다. 상기 단계 D 또한 알루미늄이 산화되는 것을 방지하기 위하여 아르곤 분위기하에서 수행되는 것이 바람직하다.
또한 단계 C와 D는 단계 1, 단계 2 및 단계 3으로 구성된 알루미늄 전극제조 방법 중 단계 3의 알루미늄 전극형성을 위한 알루미늄 전구용액이 코팅된 기판의 가열시 발생할 수 있는 문제점 즉, 미리 가열된 열처리기에서 120 ℃를 초과하여 열처리 하는 경우 코팅막의 증발 및 코팅막을 구성하는 유기용매의 탄화로 인해 균일한 전극형성이 어렵다는 점을 해결하는 방법으로도 사용될 수 있다.
나아가, 본 발명은
알루미늄 전구용액을 제조하는 단계 (단계 a);
알루미늄 전구용액을 섬유질 매개체에 묻혀 제 1 기판에 올리는 단계 (단계 b);
전극을 형성하기 위한 제 2 기판을 80~150 ℃에서 가열하는 단계 (단계 c);
가열된 기판 위에 상기 단계 b의 제 2 기판을 올리고 80~150 ℃로 저온 열처리한 후 제 1 기판 및 전구용액을 묻힌 섬유질 매개체를 제거하는 단계 (단계 d);를 포함하는 것을 특징으로 하는 습식공정을 이용한 알루미늄 전극의 제조방법을 제공한다.
본 발명에 따른 단계 a는 상기 습식공정을 이용한 알루미늄 전극의 제조방법의 단계 1과 동일하게 수행된다.
본 발명에 따른 단계 b는 알루미늄 전구용액을 섬유질 매개체에 묻혀 제 1 기판에 올리는 단계이다. 섬유질 매개체의 대표적인 예는 종이가 될 수 있다. 섬유질 매개체는 기판과는 달리 많은 양의 알루미늄 전구용액을 흡수할 수 있어, 흡수된 알루미늄 전구용액에 따라 두꺼운 알루미늄 전극을 형성할 수 있다. 또한 같은 재질에 대한 용액의 흡수량은 같으므로 균일한 두께의 알루미늄 전극을 형성할 수 있다. 알루미늄 전구용액을 묻혀 제 1 기판에 올려 상온에서 건조한다. 단계 b 또한 알루미늄이 산화되는 것을 방지하기 위하여 아르곤 분위기하에서 수행되는 것이 바람직하다.
본 발명에 따른 단계 c는 전극을 형성하기 위한 제 2 기판을 80~150 ℃에서 가열하는 단계이다. 전극이 형성되어야 할 표면을 위로 향하게 핫플레이트와 같은 열처리가 가능한 장치에 올려놓고 80 ~ 150 ℃로 가열한다. 단계 c 또한 알루미늄이 산화되는 것을 방지하기 위하여 아르곤 분위기하에서 수행되는 것이 바람직하다.
본 발명에 따른 단계 d는 가열된 기판 위에 상기 단계 b의 제 2 기판을 올리고 80~150 ℃로 저온 열처리한 후 제 1 기판 및 전구용액을 묻힌 섬유질 매개체를 제거하는 단계이다. 전구용액이 코팅되어 건조된 섬유질 매개체가 붙어 있는 제 1 기판과 가열하여 코팅하려는 제 2 기판의 면을 접촉시켜 놓으면, 용매가 열분해 되면서 제거되고 상기 반응식 2와 같이 AlH3 중 수소는 떨어져 나가 제 2 기판 위에 Al 막이 형성된다. 제 2 기판 표면과 접촉된 전구용액 코팅 층에서부터 알루미늄 분말이 형성되므로 제 1 기판이 아닌 반대편의 제 2 기판 상에 알루미늄 전극막이 형성된다. 단계 d 또한 알루미늄이 산화되는 것을 방지하기 위하여 아르곤 분위기하에서 수행되는 것이 바람직하다.
더 나아가, 본 발명은
본 발명에 따른 습식공정을 이용한 알루미늄 전극의 제조방법에 따라 제조되는 알루미늄 전극을 제공한다.
상기 방법을 통하여 제조되는 알루미늄 전극은 습식공정을 이용한 알루미늄 전극의 제조 방법으로서 대기압 분위기 및 150 ℃ 이하의 낮은 열처리 소성 온도에서 짧은 시간에 전극을 제조할 수 있어 종래 기술의 고온 소성으로 인한 전극의 열적결함 문제를 해결할 수 있는 효과를 갖는다. 또한 과량의 알루미늄 원료 손실을 방지하고, 상압 분위기에서 전극의 형성이 가능하여 시설 및 유지비용이 절감되어 생산 원가의 절감효과가 있다. 또한 소면적의 알루미늄 전극에서부터 대면적의 알루미늄 전극에 이르는 다양한 크기의 알루미늄 전극을 형성할 수 있는 효과가 있다. 또한 본 발명에 따라 제조되는 알루미늄 전극은 종래의 저 일함수 전극을 요구하는 유기태양전지 및 OLED 음극의 특성과 비교시 동일하거나 우수한 특성을 나타낸다.
이하, 본 발명을 실시예에 의하여 상세히 설명한다. 단, 하기의 실시예는 발명을 예시하는 것일 뿐, 내용이 하기의 실시예에 의하여 제한되는 것은 아니다.
<실시예 1> 유리 기판에 알루미늄 전극 제조 (I)
단계 1. 알루미늄 전구용액을 제조하는 단계
염화알루미늄과 수소화알루미늄리튬이 몰 비로 1:3이 되도록 염화알루미늄(AlCl3) 0.133 g와 수소화알루미늄리튬(LiAlH4) 0.114 g를 환류냉각기가 장착된 3구 플라스크에 넣고 디부틸에테르(Dibutyl ether) 100 mL을 용매로 하여 아르곤 분위기 하에서 1시간 동안 80 ℃로 가열하면서 교반하였다. 합성된 물질은 LiCl와 AlH3 이며, 이중 LiCl은 필터링을 통하여 제거하여 AlH3이 용매에 녹아 있는 알루미늄 전구용액 OAlH3(C4H9)2를 제조하였다.
단계 2. 기판에 전구용액 코팅하는 단계
비정질 유리 기판을 상기 단계 1에서 제조된 알루미늄 전구용액에 딥핑하는 방법으로 코팅하고 건조하였다.
단계 3. 저온 열처리하는 단계
상기 단계 2에서 코팅하여 건조한 기판을 가열 전 상온상태의 핫플레이트에 올려놓고 140 ℃가 될 때까지 가열하여 알루미늄 전극을 제조하였다.
<실시예 2> 유리 기판에 알루미늄 전극 제조 (II)
단계 1. 알루미늄 전구용액을 제조하는 단계
상기 실시예 1의 단계 1을 동일하게 수행하여 알루미늄 전구 용액을 제조하였다.
단계 2. 기판에 알루미늄 전구용액을 코팅하는 단계
상기 실시예 1의 단계 2를 동일하게 수행하여 유리기판에 알루미늄 전구용액막을 형성하였다.
단계 3. 무기소재 기판을 가열하는 단계
전극을 형성하려는 유리기판을 핫플레이트 위에 올려놓고 140 ℃로 가열하였다.
단계 4. 무기소재 기판에 알루미늄 전극 형성하는 단계
상기 단계 3에서 가열된 유리기판을 코팅하고자 하는 면이 위로 향하게 하고, 상기 기판 위에 상기 단계 2에서 알루미늄 전구용액이 코팅된 기판의 면이 아래를 향하게 올리고 140 ℃로 1분 동안 가열하여 유리기판 상에 알루미늄 전극을 제조하였다.
<실시예 3> 유기소재 기판에 알루미늄 전극 제조
단계 1. 알루미늄 전구용액을 제조하는 단계
상기 실시예 1의 단계 1을 동일하게 수행하여 알루미늄 전구 용액을 제조하였다.
단계 2. 기판에 알루미늄 전구용액을 코팅하는 단계
유리기판을 알루미늄 전구용액에 딥핑하는 방법으로 코팅하고 건조하였다.
단계 3. 유기소재 기판을 가열하는 단계
전극을 형성하려는 폴리에틸렌 기판을 핫플레이트 위에 올려놓고 140 ℃로 가열하였다.
단계 4. 유기소재 기판에 알루미늄 전극 형성하는 단계
상기 단계 3에서 가열된 폴리에틸렌 기판을 코팅하고자 하는 면이 위로 향하게 하고, 상기 기판 위에 상기 단계 2에서 알루미늄 전구용액이 코팅된 기판의 면이 아래를 향하게 올리고 140 ℃로 1분 동안 가열하여 폴리에틸렌 기판 상에 알루미늄 전극을 제조하였다.
<실시예 4> 두꺼운 알루미늄 전극의 제조
단계 1. 알루미늄 전구용액을 제조하는 단계
상기 실시예 1의 단계 1을 동일하게 수행하여 알루미늄 전구 용액을 제조하였다.
단계 2. 알루미늄 전구용액을 종이에 묻히는 단계
종이에 상기 단계 1에서 제조된 알루미늄 전구용액을 묻히고 유리재질의 제 1 기판에 얹어 건조하였다.
단계 3. 기판을 가열하는 단계
전극을 형성하려는 제 2 유리 기판을 핫플레이트 위에 올려놓고 140 ℃로 가열하였다.
단계 4. 유기소재 기판에 알루미늄 전극 형성하는 단계
상기 단계 3에서 가열된 제 2 유리 기판 위에 상기 단계 2에서 알루미늄 전구용액을 묻혀 건조한 종이가 붙어 있는 제 1 유리 기판을 올리고 140 ℃로 3분간 가열하여, 코팅된 알루미늄의 두께가 263nm인 알루미늄 전극을 제조하였다.
<실험예 1> 제조된 전극의 육안에 의한 관찰
실시예 1, 실시예 2 및 실시예 3에서 제조된 알루미늄 전극에 대하여 외관 특성을 살펴보기 위하여 육안으로 관찰하였고, 도 4에 그 결과를 나타내었다.
도 4에 나타낸 바에 따르면, 비정질 유리판(실시예 1 및 실시예 2) 및 폴리에틸렌(PE)(실시예 3) 기판에 습식공정을 이용하여 알루미늄 전극을 제조한 결과 알루미늄 필름이 고르게 입혀져 있으며, 코팅된 금속 막으로 인하여 반사판처럼 빛의 반사율이 매우 뛰어난 것을 확인할 수 있었다. 또한 폴리에틸렌 기판 위에 제조된 알루미늄 전극필름은 기판의 특성과 같이 유연하게 휘어져도 전극 필름의 박리현상과 같은 결함은 발견되지 않았다.
<실험예 2> XRD 분석
실시예 1, 실시예 2 및 실시예 3에서 제조된 알루미늄 전극에 대하여 알루미늄의 결정성을 알아보기 위하여 X선 회절(X-Ray Diffraction, XRD) 분석을 실시하고 그 결과를 도 5에 나타내었다.
도 5에 나타낸 바에 따르면, 형성된 전극의 X선 회절 패턴은 JSPDS 카드 Al(04-0407)에 따라 FCC(face centered cubic) 구조와 일치하는 것을 확인할 수 있다. 그러므로 본 발명을 통하여 제조된 알루미늄 전구용액에 함유된 AlH3이 알루미늄 막을 형성하는 데 매우 효과적임을 알 수 있다.
<실험예 3> SEM 사진 분석
실시예 1, 실시예 2 및 실시예3에서 제조된 알루미늄 전극에 형성된 알루미늄 막의 미세구조 및 두께를 알아보기 위하여 전자주사현미경(Scanning electron microscope, SEM)을 이용하여 분석하고, 그 결과를 도 6에 나타내었다.
도 6에 따르면, 알루미늄 막의 표면은 기공이 거의 형성되지 않은 치밀한 구조를 이루고 있다. 또한, 전극의 단면을 관찰한 결과 A(실시예 1), B(실시예 2) 및 C(실시예 3)의 유리기판 및 PE기판에 형성된 전극의 두께는 각각 117 nm, 102nm, 70nm 임을 확인할 수 있었다. 또한, 상기 실시예 1~3의 SEM 사진을 통하여, 제조된 알루미늄 전극은 치밀한 구조를 지닌 박막의 형태를 가짐을 알 수 있다. 전극의 밀도는 전극의 전기적 특성 향상에 필요하므로, 상기의 결과는 본 발명에 따라 제조된 알루미늄 전극은 전기적 특성이 뛰어나다는 것을 추측할 수 있게 한다.
<실험예 4> 비저항 측정
실시예 1, 실시예 2 및 실시예 3에서 제조된 알루미늄 전극에 대하여 위치별 비저항을 알아보기 위하여 비저항 측정기(4 point probe method)를 사용하여 비저항을 측정하고, 그 결과를 도 7에 나타내었다.
도 7에 따르면, 비저항을 측정한 각 지점과 지점에 따른 비저항을 그래프로 나타내었다. 실시예 1, 실시예 2 및 실시예 3에 의해 제조된 알루미늄 전극의 5개 지점 평균 비저항 값은 각각 12.52 μΩcm, 8.49 μΩcm, 15.53 μΩcm로 비교적 낮은 비저항 값을 보였으며, 전극의 위치별 표준 편차는 각각 0.46 μΩcm, 1.74 μΩcm, 0.65 μΩcm로 나타나 전극의 전기적 특성이 매우 우수하며 균일하게 나타남을 알 수 있다.

Claims (9)

  1. 알루미늄 전구용액을 제조하는 단계 (단계 1);
    상기 전구용액을 기판에 코팅하는 단계 (단계 2); 및
    코팅된 기판을 80~150 ℃로 저온 열처리하는 단계 (단계 3)를 포함하는 것을 특징으로 하는 습식공정을 이용한 알루미늄 전극의 제조방법.
  2. 제 1항에 있어서, 상기 단계 1은 AlCl3과 LiAlH4를 1 : 3의 몰 비로 혼합하여 수행되는 것을 특징으로 하는 습식공정을 이용한 알루미늄 전극의 제조방법.
  3. 제 1항에 있어서, 상기 단계 1에서 사용되는 용매는 끓는점이 150 ℃ 이하인 것을 특징으로 하는 습식공정을 이용한 알루미늄 전극의 제조방법.
  4. 제 2항에 있어서, 상기 AlCl3과 LiAlH4는 용매에 과포화 되도록 도입되는 것을 특징으로 하는 습식공정을 이용한 알루미늄 전극의 제조방법.
  5. 제 1항에 있어서, 상기 단계 2의 코팅은 스핀코팅, 딥코팅, 스프레이 코팅, 잉크젯 프린팅, 롤코팅, 드롭캐스팅 및 닥터블레이드를 포함하는 군으로부터 선택되는 1종으로 수행되는 것을 특징으로 하는 습식공정을 이용한 알루미늄 전극의 제조방법.
  6. 알루미늄 전구용액을 제조하는 단계 (단계 A);
    무기물 또는 전구 물질과 반응하지 않는 유기물로 구성된 기판에 상기 알루미늄 전구용액을 코팅하는 단계 (단계 B);
    코팅하려는 유기 또는 무기소재의 기판을 80~150 ℃에서 가열하는 단계 (단계 C); 및 상기 단계 C에서 가열된 유기 또는 무기소재 기판 위에 상기 단계 B에서 코팅된 기판을 올리고 80~150 ℃로 저온 열처리한 후 무기물 또는 전구물질과 반응하지 않는 유기물로 구성된 기판을 제거하는 단계 (단계 D);를 포함하는 것을 특징으로 하는 습식 공정을 이용한 알루미늄 전극의 제조방법.
  7. 제 6항에 있어서, 상기 단계 B의 코팅은 스핀코팅, 딥코팅, 스프레이 코팅, 잉크젯 프린팅, 롤코팅, 드롭케스팅 및 닥터블레이드 등을 포함하는 군으로부터 선택되는 1종으로 수행되는 것을 특징으로 하는 습식공정을 이용한 알루미늄 전극의 제조방법.
  8. 알루미늄 전구용액을 제조하는 단계 (단계 a);
    알루미늄 전구용액을 섬유질 매개체에 묻혀 제 1 기판에 올리는 단계 (단계 b);
    전극을 형성하기 위한 제 2 기판을 80~150 ℃에서 가열하는 단계 (단계 c);
    가열된 기판 위에 상기 단계 b의 제 2 기판을 올리고 80~150 ℃로 저온 열처리한 후 제 1 기판 및 전구용액을 묻힌 섬유질 매개체를 제거하는 단계 (단계 d);를 포함하는 것을 특징으로 하는 습식공정을 이용한 알루미늄 전극의 제조방법.
  9. 제 1항, 제 6항 및 제 8항 중 어느 한 항의 방법 따라 제조되는 알루미늄 전극.
PCT/KR2010/008761 2010-11-11 2010-12-08 습식공정을 이용한 알루미늄 전극의 제조방법 및 이에 의하여 제조되는 알루미늄 전극 WO2012063991A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080066013.9A CN102822386B (zh) 2010-11-11 2010-12-08 使用溶液过程制造铝电极的方法以及由此制造的铝电极
US13/637,235 US10046360B2 (en) 2010-11-11 2010-12-08 Method for manufacturing aluminum electrode using solution process
JP2013501176A JP5722987B2 (ja) 2010-11-11 2010-12-08 湿式工程を用いたアルミニウム電極の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100112091A KR101021280B1 (ko) 2010-11-11 2010-11-11 습식공정을 이용한 알루미늄 전극의 제조방법 및 이에 의하여 제조되는 알루미늄 전극
KR10-2010-0112091 2010-11-11

Publications (1)

Publication Number Publication Date
WO2012063991A1 true WO2012063991A1 (ko) 2012-05-18

Family

ID=43938744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008761 WO2012063991A1 (ko) 2010-11-11 2010-12-08 습식공정을 이용한 알루미늄 전극의 제조방법 및 이에 의하여 제조되는 알루미늄 전극

Country Status (5)

Country Link
US (1) US10046360B2 (ko)
JP (1) JP5722987B2 (ko)
KR (1) KR101021280B1 (ko)
CN (1) CN102822386B (ko)
WO (1) WO2012063991A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015527616A (ja) * 2012-08-29 2015-09-17 エルジー・ケム・リミテッド 偏光分離素子の製造方法及び偏光分離素子
WO2017176085A1 (ko) * 2016-04-07 2017-10-12 한국기계연구원 알루미늄 전구체 합성 시스템 및 이를 이용한 알루미늄 전구체 제조방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101124620B1 (ko) 2011-08-24 2012-03-20 한국기계연구원 습식공정용 알루미늄 전구체 잉크 및 이의 제조방법
US20150349281A1 (en) * 2014-06-03 2015-12-03 Palo Alto Research Center Incorporated Organic schottky diodes
KR102072884B1 (ko) 2016-07-22 2020-02-03 주식회사 엘지화학 유-무기 복합 태양전지용 적층체 제조방법 및 유무기 복합 태양전지 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051435A (ko) * 1999-01-22 2000-08-16 김순택 이차전지의 전극 제조방법
KR100512771B1 (ko) * 1997-05-27 2005-09-07 티디케이가부시기가이샤 비수성 전해질 전지용 전극의 제조방법
JP2006066243A (ja) * 2004-08-27 2006-03-09 Furukawa Battery Co Ltd:The 非水電解液二次電池用電極板の製造方法および前記電極板が用いられた非水電解液二次電池
KR100795305B1 (ko) * 2005-08-09 2008-01-15 주식회사 엘지화학 알루미늄 또는 이의 합금으로 피복된 양극활물질 및 이를이용한 전기화학 소자
KR20100111411A (ko) * 2009-04-07 2010-10-15 엘지이노텍 주식회사 알루미늄 전극 페이스트 및 이를 이용한 태양전지소자

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2547371A (en) * 1947-09-18 1951-04-03 Everett D Mccurdy Electrolytic condenser
US4490409A (en) * 1982-09-07 1984-12-25 Energy Sciences, Inc. Process and apparatus for decorating the surfaces of electron irradiation cured coatings on radiation-sensitive substrates
FR2558485B1 (fr) * 1984-01-25 1990-07-13 Rech Applic Electrochimique Structure metallique poreuse, son procede de fabrication et applications
US5855716A (en) * 1996-09-24 1999-01-05 The United States Of America As Represented By The Secretary Of The Navy Parallel contact patterning using nanochannel glass
US6562539B1 (en) * 1999-07-05 2003-05-13 Indigo N.V. Printers and copiers with pre-transfer substrate heating
ATE474441T1 (de) * 2003-03-05 2010-07-15 Intune Circuits Oy Verfahren zur herstellung einer elektrisch leitfähigen struktur
KR100696858B1 (ko) * 2005-09-21 2007-03-20 삼성전자주식회사 유기 알루미늄 전구체 및 이를 이용한 금속배선 형성방법
US7681966B2 (en) * 2006-03-09 2010-03-23 Xerox Corporation Printing process
TW200807160A (en) * 2006-07-20 2008-02-01 Univ Nat Cheng Kung Micro/nano-pattern film contact transfer process
JP4888777B2 (ja) * 2007-06-07 2012-02-29 国立大学法人東北大学 水素貯蔵材料の製造方法
JP5071668B2 (ja) * 2008-03-24 2012-11-14 Jsr株式会社 アルミニウム膜形成用組成物及びアルミニウム膜の形成方法
JP2009280904A (ja) * 2008-04-23 2009-12-03 Fujifilm Corp 表面金属膜材料の作製方法、表面金属膜材料、金属パターン材料の作製方法、金属パターン材料、及びポリマー層形成用分散物
JP2011529126A (ja) * 2008-07-24 2011-12-01 コヴィオ インコーポレイテッド アルミニウムインク及びその製造方法、アルミニウムインクを堆積する方法、並びにアルミニウムインクの印刷及び/又は堆積により形成されたフィルム
EP2417609B1 (en) * 2009-04-07 2015-10-28 LG Innotek Co., Ltd. Paste and solar cell using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100512771B1 (ko) * 1997-05-27 2005-09-07 티디케이가부시기가이샤 비수성 전해질 전지용 전극의 제조방법
KR20000051435A (ko) * 1999-01-22 2000-08-16 김순택 이차전지의 전극 제조방법
JP2006066243A (ja) * 2004-08-27 2006-03-09 Furukawa Battery Co Ltd:The 非水電解液二次電池用電極板の製造方法および前記電極板が用いられた非水電解液二次電池
KR100795305B1 (ko) * 2005-08-09 2008-01-15 주식회사 엘지화학 알루미늄 또는 이의 합금으로 피복된 양극활물질 및 이를이용한 전기화학 소자
KR20100111411A (ko) * 2009-04-07 2010-10-15 엘지이노텍 주식회사 알루미늄 전극 페이스트 및 이를 이용한 태양전지소자

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015527616A (ja) * 2012-08-29 2015-09-17 エルジー・ケム・リミテッド 偏光分離素子の製造方法及び偏光分離素子
US9551819B2 (en) 2012-08-29 2017-01-24 Lg Chem, Ltd. Method for manufacturing polarized light splitting element and polarized light splitting element
WO2017176085A1 (ko) * 2016-04-07 2017-10-12 한국기계연구원 알루미늄 전구체 합성 시스템 및 이를 이용한 알루미늄 전구체 제조방법

Also Published As

Publication number Publication date
JP5722987B2 (ja) 2015-05-27
CN102822386B (zh) 2015-04-08
CN102822386A (zh) 2012-12-12
JP2013527880A (ja) 2013-07-04
US20130213690A1 (en) 2013-08-22
KR101021280B1 (ko) 2011-03-11
US10046360B2 (en) 2018-08-14

Similar Documents

Publication Publication Date Title
WO2012063991A1 (ko) 습식공정을 이용한 알루미늄 전극의 제조방법 및 이에 의하여 제조되는 알루미늄 전극
WO2018004259A2 (ko) 이온전도성 막의 제조 방법
WO2012064102A2 (ko) 그래핀 피복 강판 및 이의 제조 방법
WO2010056061A2 (en) A single-crystalline germanium cobalt nanowire, a germanium cobalt nanowire structure, and a fabrication method thereof
WO2019098665A1 (ko) 고온 내산화성이 향상된 지르코늄 합금 피복관 및 이의 제조방법
WO2010140792A2 (en) Method for manufacturing 3-dimensional structures using thin film with columnar nano pores and manufacture thereof
WO2013025000A2 (ko) 저온 금속 증착공정을 적용한 열변색성 유리의 제조방법 및 이에 의한 열변색성 유리
WO2023013938A1 (ko) 팽창성 흑연을 사용한 전도성 박막의 제조방법
WO2019054647A1 (ko) 태양전지 및 태양전지의 제조 방법
WO2018034422A1 (ko) 진공척용 복합체 및 그 제조방법
WO2020040400A1 (ko) 고품질 페로브스카이트 광 활성층 박막 제조 방법 및 이를 포함하는 페로브스카이트 태양전지
WO2017014343A1 (ko) 신축성이 향상된 메타 계면 구조물 및 그 제조방법
WO2014137180A1 (ko) 그래핀 산화물의 부분환원을 이용한 탄소기반 전자소자 및 이의 제조방법
WO2021210739A1 (ko) 규소산화물 제조장치 및 제조방법, 규소산화물 음극재
WO2021040442A2 (ko) 레이저 기반 멀티인쇄장치 및 이를 이용한 표면 모폴로지가 제어된 대면적 페로브스카이트 박막의 제조방법
WO2013062221A1 (ko) 타이타늄-니켈 합금박막 및 다중 스퍼터링법을 이용한 타이타늄-니켈 합금박막의 제조 방법
WO2013073802A1 (ko) 열 안정성이 우수한 투명도전막, 투명도전막용 타겟 및 투명도전막용 타겟의 제조방법
WO2019164066A1 (ko) 전극 구조체, 이의 제조방법, 및 이를 포함하는 전기 화학 소자
WO2013019041A2 (ko) 고체전해질 박막 제조방법 및 제조장치
WO2017122842A1 (ko) Cigs 광흡수층을 포함하는 태양전지 및 이의 제조방법
WO2020130371A1 (ko) 다결정 금속 필름의 비정상입자성장에 의한 단결정 금속 필름 및 그 제조방법
WO2023121088A1 (ko) 이차전지용 음극 활물질 및 이의 제조 방법
WO2021054628A1 (ko) 층상형 비화코발트의 제조방법, 그로부터 제조된 층상형 비화코발트, 그로부터 박리된 비화코발트 나노시트
WO2023008643A1 (ko) 3차원 탄소직조물 기반 금속산화물 및 전이금속 디칼코게나이드 결합으로 구성된 수소발생기로써 고효율 광전기화학 전극 및 이의 제조방법
WO2019035651A1 (ko) Nayf4 박막, 적층체, 패턴 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066013.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859435

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013501176

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13637235

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859435

Country of ref document: EP

Kind code of ref document: A1