WO2020040400A1 - 고품질 페로브스카이트 광 활성층 박막 제조 방법 및 이를 포함하는 페로브스카이트 태양전지 - Google Patents

고품질 페로브스카이트 광 활성층 박막 제조 방법 및 이를 포함하는 페로브스카이트 태양전지 Download PDF

Info

Publication number
WO2020040400A1
WO2020040400A1 PCT/KR2019/005413 KR2019005413W WO2020040400A1 WO 2020040400 A1 WO2020040400 A1 WO 2020040400A1 KR 2019005413 W KR2019005413 W KR 2019005413W WO 2020040400 A1 WO2020040400 A1 WO 2020040400A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
photoactive layer
perovskite
precursor solution
layer thin
Prior art date
Application number
PCT/KR2019/005413
Other languages
English (en)
French (fr)
Inventor
최동혁
김도형
소준영
김수경
이유선
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2020040400A1 publication Critical patent/WO2020040400A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a high quality perovskite photoactive layer thin film, and further relates to a perovskite solar cell comprising the perovskite photoactive layer thin film.
  • Perovskite solar cell is a technology that is attracting much attention, such as the efficiency of 22.7% is approved by the New Renewable Energy Research Institute (NREL), showing a rapid performance improvement.
  • NREL New Renewable Energy Research Institute
  • perovskite which is an excellent photoactive material that has high photoelectric conversion efficiency comparable to that of silicon solar cells, and is relatively inexpensive, and can be manufactured with lightweight, transparent and flexible solar cells. It is possible to produce. Accordingly, the perovskite solar cell can be applied in the form of a glass window that is difficult to apply the existing silicon solar cell, it can be applied to various applications.
  • perovskite solar cell In order to commercialize the perovskite solar cell, it is required to improve the quality of the photoactive layer such as expanding the particle size of the perovskite photoactive material and uniformizing the thin film. In order to solve this technical problem, studies have been made to form perovskite thin films by various methods such as solution-based spin coating, vapor deposition, and thermal deposition.
  • the solution-based spin coating process is the most widely used and studied as a method of forming a thin film easily.
  • the thin film may be formed using the principle that the perovskite precursor material is crystallized.
  • the perovskite thin film formed by the method of simply heat treatment after spin coating has a problem in that the solvent in the perovskite solution evaporates quickly to produce small and non-uniform particles in a short time.
  • the quality of the thin film varies greatly depending on the heat treatment method in the crystallization process of the perovskite precursor material.
  • the quality of the perovskite thin film is deteriorated and a large deviation occurs depending on the number of processes. Accordingly, a situation in which a spin coating and heat treatment process capable of manufacturing a high quality perovskite photoactive layer thin film is required.
  • One object of the present invention is to provide a method for producing a perovskite photoactive layer thin film, which has a simple process and a reduced manufacturing cost.
  • Another object of the present invention is to provide a method for producing a high quality perovskite photoactive layer thin film.
  • Another object of the present invention is to manufacture a solar cell comprising the perovskite thin film.
  • a coating step of forming a precursor solution coating layer by coating a precursor solution containing a compound represented by the following formula (1) or formula (2) on one surface of a substrate A first heat treatment step of heat treating the precursor solution coating layer by contacting the first heat source; And a second heat treatment step of applying a second heat source formed of heated predetermined gas to the precursor solution coating layer and heat-treating with hot air.
  • A includes at least one monovalent cation selected from the group consisting of C 1-20 linear alkyl, branched alkyl or alkali metal ions substituted with an amine group, M is Pb 2+ , At least one divalent metal cation selected from the group consisting of Sn 2+ , Ge 2+ , Cu 2+ , Ni 2+ , Co 2+ and Fe 2+ , wherein X is a halogen anion.
  • the precursor solution includes a first organic solvent
  • the first organic solvent is N, N-dimethylformamide (DMF), gamma-butyrolactone, GBL), at least one selected from the group consisting of 1-methyl-2-pyrolidinone, N, NN, N-dimethylacetamide, and dimethylsulfoxide (DMSO). Characterized in that it comprises a.
  • the precursor solution coating layer is selected from the group consisting of spin coating, dip coating and spray coating.
  • the method may further include adding a second organic solvent in the coating step of forming the precursor solution coating layer, and the second organic solvent may be toluene, chlorobenzene, or dichlorobenzene. It characterized in that it comprises at least one selected from the group consisting of.
  • the first heat treatment step characterized in that for placing the precursor solution coating layer on the first heat source in contact with,
  • the first heat source is characterized in that the temperature range of 50 to 200 °C.
  • the first heat treatment step is performed for a time in the range of 1 to 10 minutes.
  • the second heat treatment step may be arranged to contact the other surface of the substrate on the first heat source.
  • the second heat treatment step is performed for a time in a range of 10 to 60 minutes.
  • the second heat source is characterized in that the temperature range of 50 to 150 °C.
  • the predetermined gas is characterized in that the nitrogen or argon.
  • the present invention relates to a solar cell, and relates to a solar cell using the perovskite photoactive layer thin film manufactured by the method for producing a perovskite photoactive layer thin film as the photoactive layer.
  • the solar cell the base substrate; A first electrode layer laminated on the base substrate; At least a portion of the hole transport layer overlapping the first electrode layer and formed to be stacked on the first electrode layer; The perovskite photoactive layer thin film layer formed to be stacked on the hole transport layer; An electron transport layer formed to be stacked on the perovskite photoactive layer thin film layer; And a second electrode layer overlapping at least a portion of the electron transport layer and stacked on the electron transport layer.
  • the present invention relates to a method for manufacturing a solar cell, characterized in that it comprises a method for producing the above-described perovskite photoactive layer thin film.
  • the method of manufacturing the solar cell may include forming a first electrode layer on a base substrate; Forming a hole transport layer on the first electrode layer; Forming a perovskite photoactive layer thin film as the photoactive layer on the hole transport layer; Forming an electron transport layer on the perovskite photoactive layer thin film; And forming a second electrode layer on the electron transport layer.
  • the process is simple and manufactured by the second heat treatment step through a relatively low cost hot air compared to the conventional single heat treatment method Unit cost can be reduced.
  • the perovskite photoactive layer thin film performing the first heat treatment step and the second heat treatment step, it is composed of particles of crystalline micrometer size, and can form a uniform and flat surface.
  • the grain boundary between perovskite particles is minimized, and physical defects of the thin film are reduced.
  • a solar cell having improved efficiency including a perovskite thin film composed of particles having a high crystalline micrometer size and having a uniform and flat surface.
  • FIG. 1 is a view showing a method for producing a perovskite photoactive layer thin film of the present invention.
  • FIG. 2 is a schematic diagram of a method of manufacturing the perovskite photoactive layer thin film of FIG. 1.
  • FIG. 3 is an electron microscope (SEM) image of the perovskite photoactive layer thin films of Example 1 and Comparative Example 1.
  • SEM electron microscope
  • Example 4 is an X-ray diffraction (XRD) result of the perovskite photoactive layer thin films of Example 1 and Comparative Example 1.
  • XRD X-ray diffraction
  • FIG. 5 is a view illustrating a method of manufacturing a solar cell including the perovskite photoactive layer thin film of the present invention.
  • FIG. 6 is a schematic diagram of a solar cell including the perovskite photoactive layer thin film of FIG. 5.
  • Example 7 is a real image of a translucent perovskite solar cell device manufactured according to Example 2 of the present invention.
  • FIG. 8 is a graph illustrating photoelectric conversion efficiency of a solar cell unit device having the perovskite photoactive layer thin films of Example 2 and Comparative Example 2 as the photoactive layer.
  • FIG. 9 is a graph illustrating I-V curves of solar cell unit devices having the perovskite photoactive layer thin films of Example 2 and Comparative Example 2 as photoactive layers.
  • FIG. 1 is a view showing a method for producing a perovskite photoactive layer thin film of the present invention
  • Figure 2 is a schematic diagram of a method for producing a perovskite photoactive layer thin film of FIG.
  • the method for producing a perovskite photoactive layer thin film disclosed in the present invention is a coating step (S1) to form a precursor solution coating layer, the precursor solution coating layer is brought into contact with the first heat source for heat treatment
  • the first heat treatment step is performed by directly contacting the hot plate and the photoactive layer thin film to delay the evaporation rate of the solvent to increase the perovskite particles. You can grow. Furthermore, after full growth of the particles, the solvent may be rapidly evaporated in the second heat treatment step through the hot air drying process to reduce grain boundaries between particles and to minimize physical defects of films such as pinholes.
  • the coating step S1 of forming the precursor solution coating layer may be illustrated as shown in FIG.
  • the precursor solution including the compound represented by Formula 1 or Formula 2 is coated on one surface of the substrate 1 to form a precursor solution coating layer 2 ′′.
  • A includes at least one monovalent cation selected from the group consisting of C 1-20 linear alkyl, branched alkyl or alkali metal ions substituted with an amine group, M is Pb 2+ , At least one divalent metal cation selected from the group consisting of Sn 2+ , Ge 2+ , Cu 2+ , Ni 2+ , Co 2+ and Fe 2+ , wherein X is a halogen anion.
  • the compound represented by Formula 1 or Formula 2 is an organic-inorganic halide compound such as methyl ammonium iodide (MAI), formamidinium iodide (FAI) and lead iodide (PbI 2 ) And halogenated metal compounds such as bromine iodide (PbBr).
  • MAI methyl ammonium iodide
  • FI formamidinium iodide
  • PbI 2 lead iodide
  • halogenated metal compounds such as bromine iodide (PbBr).
  • the precursor solution includes a first organic solvent
  • the first organic solvent is N, N-dimethylformamide (DMF), gamma-butyrolactone (GBL), 1 -Methyl-2-pyrrolidinone (1-Methyl-2-pyrolidinone), N, NN, N-dimethylacetamide (Dimethylacetamide), may include at least one selected from the group consisting of dimethyl sulfoxide (Dimethylsulfoxide, DMSO) have.
  • the parts by weight of the compound represented by Formula 1 or Formula 2 may be formed in 10 to 60 parts by weight per 100 parts by weight of the precursor solution.
  • the precursor solution coating layer 2 may be prepared through conventional methods used in the art.
  • the formation of the precursor solution coating layer 2 may be used if it is a conventional liquid coating method used in a semiconductor process. It is possible.
  • the liquid coating method may be selected from the group consisting of spin coating, dip coating and spray coating.
  • the spin coating rotational speed may be in the range of about 500 to 9000 rpm so that the precursor solution may remain in the form of a thin film on top of the substrate 1.
  • spin coating may be performed at a speed of 6000 rpm or less, in which spin coating may be performed two or more times at different rotational speeds to prevent loss of the precursor solution at the beginning of the spin coating.
  • the coating step (S1) of forming a precursor solution coating layer may include adding a second organic solvent, and the precursor solution may include the second organic solvent to stably maintain the precursor solution coating layer 2 ′′.
  • the second organic solvent physically separates the first organic solvent so that the perovskite particles are formed in a spherical shape.
  • the second organic solvent is preferably a solvent having a property of not dissolving the perovskite precursor and not being physically mixed with the precursor solution.
  • the second organic solvent may include at least one selected from the group consisting of toluene, chlorobenzene, and dichlorobenzene.
  • the adding of the second organic solvent may be performed during the spin coating process described above.
  • the substrate 1 on which the precursor solution coating layer 2 "is formed may be subjected to a heat treatment step of evaporating the residual precursor solution to remove the solution and form perovskite particles.
  • a first heat treatment step (S2) of contacting a precursor solution coating layer with a first heat source and performing heat treatment, and a second heat source formed by heating a predetermined gas to a precursor solution coating layer to heat treatment with hot air The heat treatment step S3 may be included in the following description with reference to the heat treatment step of the present invention.
  • the first heat treatment step S2 of contacting the precursor solution coating layer with the first heat source for heat treatment may be illustrated as shown in FIG.
  • the precursor solution coating layer 2 " may be heat-treated by contacting the hot plate 4, which is the first heat source, as shown in FIG. 2 (b).
  • the solution coating layer 2 " may be subjected to downward contact and heat treatment to form the precursor solution coating layer 2 'on which the first heat treatment step is performed.
  • the heat treatment temperature of the first heat treatment step is not particularly limited as long as the first organic solvent is sufficiently evaporated and the perovskite structure can be stably maintained.
  • the heat treatment temperature of the first heat treatment step may be a temperature of 50 to 200 °C, preferably 130 ° C or less.
  • the first heat treatment may be performed for 1 to 10 minutes, preferably 5 minutes or less.
  • the precursor solution coating layer 2 ′ on which the first heat treatment step is performed is positioned under the substrate, so that the evaporation rate of the first organic solvent in the thin film remaining during spin coating may be delayed. This means a delay in the growth rate of the perovskite crystal grains, thereby securing a time for the crystal grains to grow sufficiently. Therefore, the perovskite crystal grains of the precursor solution coating layer 2 ′ on which the first heat treatment step is performed may be formed to a micrometer ( ⁇ m) size.
  • the second heat treatment step (S3) of applying a second heat source formed of heated predetermined gas to the precursor solution coating layer and heat-treating it with hot air may be illustrated as shown in FIG. 2 (c).
  • the precursor solution coating layer 2 ′ on which the first heat treatment step is performed may be heat-treated with hot air by applying a second heat source formed of heated predetermined gas.
  • the second heat source is a device capable of applying heat, and any device capable of heat-treating the precursor solution coating layer 2 ′ in which the first heat treatment step is performed in a form capable of applying gas in a non-contact state can be used without limitation. Can be.
  • the perovskite photoactive layer thin film 2 in which the first organic solvent and the second organic solvent in the precursor solution coating layer 2 'on which the first heat treatment step is performed are evaporated and removed to perform the second heat treatment step. ) May be formed.
  • the second heat source may be hot air formed in the hot air blower 5.
  • the second heat source may be heat treated by using a hot air blower 5 by applying heated inert gas that does not chemically react with a photoactive layer such as nitrogen and argon in a non-contact state with the perovskite thin film. have.
  • the heat treatment temperature in the second heat treatment step is not particularly limited as long as the first organic solvent and the second organic solvent are evaporated and the perovskite structure can be stably maintained.
  • the temperature of the hot air of the second heat source may be a temperature in the range of 50 to 150 °C, preferably a temperature of 100 °C or less.
  • the substrate 1 on which the precursor solution coating layer 2 ′ on which the first heat treatment step is performed is formed may be heat treated by contacting the hot plate 4, which is the first heat source, as shown in FIG. This may be performed simultaneously with the heat treatment by the hot air blower 5 which is the second heat source described above.
  • the heat treatment through the first heat source in the second heat treatment step is performed similarly to the first heat treatment step described above, wherein the hot plate, which is the first heat source, has no precursor solution coating layer 2 'formed thereon.
  • the other side of the substrate 1 may be contact heated.
  • the second heat treatment step rapidly evaporates the solvent remaining between and at the boundaries of the micrometer ( ⁇ m) class perovskite crystal particles in the precursor solution coating layer 2 ′ in which the first heat treatment step is performed. It is possible to minimize the occurrence of voids in the grain boundary of the particles (grain boundaries). Through this, a uniform perovskite photoactive layer thin film including spherical micrometer-class perovskite particles may be manufactured without negative factors of aggregation or particle generation.
  • a high quality uniform perovskite photoactive layer thin film may be prepared.
  • the hot plate equipment used in the conventional single heat treatment method is used as it is, but by adding a hot air blower which is a relatively inexpensive equipment, the perovskite thin film manufacturing process according to the present invention can be applied, and thus the process is simple and economical.
  • the perovskite crystal grains of the perovskite photoactive layer thin film prepared according to the present invention are formed to a size of about 1 micrometer or more compared to the nanometer size particles of the conventional heat treatment method, so that the perovskite crystal grain inner and outer boundaries By minimizing the quality of the thin film can be improved.
  • a perovskite photoactive layer thin film was prepared.
  • ITO indium doped tin oxide
  • a precursor solution is prepared and spin coated on the substrate to form a precursor solution coating layer.
  • the precursor solution comprises 0.01 to 1 g of methyl ammonium iodide (CH 3 NH 3 I) and 0.01 to 1 g of lead iodide (PbI 2 ) in a molar ratio of 1: 1 to 1: 3. , N-Dimethylformamide, DMF) and dimethyl sulfoxide (Dimethylsulfoxide, DMSO) were dissolved in a first organic solvent mixed at 8: 2, and then stirred at 60 ° C. for 12 hours to prepare a precursor solution.
  • methyl ammonium iodide CH 3 NH 3 I
  • PbI 2 lead iodide
  • N-Dimethylformamide, DMF dimethyl sulfoxide
  • DMSO dimethyl sulfoxide
  • the precursor solution described above was spin-coated on top of the substrate for 5 seconds at a rotational speed of 1,000 rpm and for 45 seconds at a rotational speed of 6000 rpm. At this time, 20 seconds after the start of the spin coating, the step of adding a second organic solvent chlorobenzene was added to form a precursor solution coating layer.
  • the precursor solution coating layer was contacted with a hot plate, which is the first heat source, to perform a first heat treatment step at 100 ° C. for 5 minutes.
  • the precursor solution coating layer on which the first heat treatment step is performed may be formed on the substrate.
  • the precursor solution coating layer on which the first heat treatment step has been performed and the substrate are inverted to be brought into contact with the hot plate serving as the first heat source.
  • the other surface of the substrate on which the precursor solution coating layer on which the first heat treatment step is performed is not in contact with the hot plate, and the precursor solution coating layer on which the first heat treatment step is performed is exposed to the outside.
  • the heat treatment using the hot plate is performed for 10 minutes at 100 °C, and at the same time, the precursor solution coating layer subjected to the first heat treatment step exposed to the outside is heat-treated through a small hot air fan for supplying heated nitrogen gas of about 100 °C
  • a second heat treatment step is performed.
  • the perovskite photoactive layer thin film was manufactured in the same manner as the preparation of the perovskite photoactive layer thin film of Example 1, but the heat treatment step was performed differently.
  • the substrate on which the precursor solution coating layer was formed was brought into contact with the first heat source, and thermally treated at 100 ° C. for 10 minutes to prepare a perovskite photoactive layer thin film.
  • FIG. 3 is an electron microscope (SEM) image of the perovskite photoactive layer thin films of Example 1 and Comparative Example 1.
  • SEM electron microscope
  • FIGS. 3 (a) and 3 (b) are electron microscope (SEM) images of Example 1 of the present invention
  • FIGS. 3 (c) and 3 (d) are electron microscope (SEM) images of Comparative Example 1.
  • FIG. 3 (a) and 3 (b) are electron microscope (SEM) images of Example 1 of the present invention
  • FIGS. 3 (c) and 3 (d) are electron microscope (SEM) images of Comparative Example 1.
  • the surface of the perovskite photoactive layer thin film manufactured by performing the first and second heat treatment steps according to Example 1 of the present invention is uniformly and precisely It can be seen that formed.
  • the perovskite crystal grains are grown in a well developed form having a size of 1 ⁇ m or more.
  • the high quality perovskite photoactive layer thin film composed of such highly crystalline particles and maintaining an extremely flat surface is very advantageous in manufacturing photoelectric conversion devices such as solar cells and light emitting diodes.
  • the perovskite photoactive layer thin film of Comparative Example 1 has a relatively small particle size compared to the perovskite photoactive layer thin film of Example 1 described above. You can see that.
  • Example 4 is an X-ray diffraction (XRD) result of the perovskite photoactive layer thin films of Example 1 and Comparative Example 1.
  • XRD X-ray diffraction
  • the XRD peaks of MAPbI 3 were 2 ⁇ values of 14.2 ⁇ (1 1 0) and 28.5 ⁇ (for the perovskite photoactive layer thin films prepared in Example 1 and Comparative Example 1 of the present invention). 2 0 0) is clearly visible. That is, it can be clearly seen that Example 1 and Comparative Example 1 were formed into a thin film containing perovskite crystals.
  • the XRD peak intensity of the perovskite photoactive layer thin film of Example 1 according to the present invention is higher than the peak intensity of Comparative Example 1. This indicates that the perovskite photoactive layer thin film of Example 1 comprising the first and second heat treatment steps according to the present invention has higher crystallinity.
  • FIG. 5 is a diagram illustrating a method of manufacturing a solar cell including the perovskite photoactive layer thin film of the present invention
  • FIG. 6 is a schematic view of the solar cell including the perovskite photoactive layer thin film of FIG. 5.
  • a solar cell including the perovskite photoactive layer thin film disclosed in the present invention forming a first electrode layer on a base substrate (S10), and forming the first electrode layer on the first electrode layer.
  • the step (S30) of forming the perovskite photoactive layer thin film on the hole transport layer is characterized in that it comprises a method of manufacturing the above-described perovskite photoactive layer thin film.
  • the solar cell 100 shown in FIG. 6 is characterized in that the photoactive layer is formed of the perovskite photoactive layer thin film manufactured by the above-described method of manufacturing the perovskite photoactive layer thin film.
  • the solar cell 100 illustrated in FIG. 6 is an organic-inorganic hybrid solar cell, which includes a base substrate 10 ′, a first electrode layer 110, a hole transport layer 120, a perovskite photoactive layer 130, The electron transport layer 140 and the second electrode layer 150 are included.
  • the perovskite photoactive layer 130 is formed to overlap the entire surface of the base substrate 10 ′ so that the first electrode layer 110, the hole transport layer 120, the electron transport layer 140, and the second electrode layer 150 are overlapped. Are formed to be spaced apart.
  • the solar cell 100 including the photoactive layer 130 having reduced grain boundaries between perovskite particles and minimizing physical defects of films such as pinholes may be improved in efficiency.
  • the solar cell including the photoactive layer manufactured according to the above-described method for manufacturing a perovskite photoactive layer thin film was manufactured.
  • a substrate and a first electrode layer coated with indium doped tin oxide (ITO) coated on the glass substrate were prepared, washed with distilled water and isopropyl alcohol, and then treated with UV-ozone for 30 minutes.
  • ITO indium doped tin oxide
  • Nickel acetate tetrahydrate [0.01-1g of nickel (II) acetate tetrahydrate] was dissolved in a mixed solvent of 0.1-20 ml of ethanol and 0.1-20 ⁇ l of ethanolamine, followed by stirring at 60 ° C. for 12 hours to form a nickel oxide (NiO) hole transport layer precursor.
  • the solution was prepared.
  • the hole transport layer precursor solution was spin coated on the first electrode layer at a rotational speed of 4000 rpm for 40 seconds, and then heat treated at 285 ° C. for 1 hour to form a hole transport layer.
  • the perovskite photoactive layer thin film disclosed in Example 1 is formed on the hole transport layer, and the first and second heat treatment steps are performed in the same manner as in Example 1 to form the perovskite photoactive layer thin film. A photoactive layer was formed.
  • An electron transport layer is formed on the photoactive layer. Specifically, 0.01 to 0.1 g of [6,6] -phenyl-C61-butyric acid methyl ester (PCBM) is added to chlorobenzene or dichlorobenzene. After dissolving in), the mixture was stirred at 60 ° C. for 12 hours to prepare a PCBM precursor solution as an electron transport layer, and the PCBM precursor solution was spin-coated at a rotational speed of 1000 rpm for 60 seconds to form an electron transport layer.
  • PCBM precursor solution 0.01 to 0.1 g of [6,6] -phenyl-C61-butyric acid methyl ester (PCBM) is added to chlorobenzene or dichlorobenzene. After dissolving in), the mixture was stirred at 60 ° C. for 12 hours to prepare a PCBM precursor solution as an electron transport layer, and the PCBM precursor solution was spin-coated at a rotational speed of 1000 rpm for 60 seconds to form an electron transport layer.
  • a second electrode layer is formed on the electron transport layer.
  • BCP bathoproine
  • silver (Ag) metal (or Au) was thermally deposited on the electron transport layer at a rate of 0.1 mW / s, and then a second electrode layer was formed by thermally depositing silver (Ag) metal (or Au) at a rate of 0.5 mW / s. .
  • Example 7 is a real image of a translucent perovskite solar cell device manufactured according to Example 2 of the present invention.
  • a solar cell is manufactured by the same method as the manufacturing of a solar cell using the perovskite photoactive layer thin film of Example 2 as the photoactive layer, but using the perovskite photoactive layer thin film of Comparative Example 2 as the photoactive layer.
  • the solar cell including the perovskite photoactive layer thin film prepared by the manufacturing method including the first and second heat treatment step of Example 2 of the present invention as a photoactive layer of Comparative Example 2 It showed significantly better performance than solar cell.
  • Example 2 It can be seen that the photoelectric conversion efficiency, open circuit voltage, and short circuit current density of the solar cell are superior to those of the solar cell device of Comparative Example 2.
  • FIG. 8 is a graph illustrating the photoelectric conversion efficiency of the solar cell unit device using the perovskite photoactive layer thin films of Example 2 and Comparative Example 2 as the photoactive layer, and FIG. It is a graph which shows the IV curve of the solar cell unit element which makes a perovskite photoactive layer thin film the photoactive layer.
  • the crystal grains of the perovskite photoactive layer thin film manufactured by the manufacturing method including the first and second heat treatment steps according to the present invention are about nanometer-sized particles of the conventional heat treatment method. It is formed to a size of more than 1 micrometer, it is possible to improve the quality of the photoactive layer thin film by minimizing the inner and outer boundaries of the perovskite crystal grains. Through this, electrochemical performance including photoelectric conversion efficiency of the final solar cell device can be greatly increased by dissipation of electron and hole carriers and prevention of recombination generated in the perovskite photoactive layer thin film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명의 페로브스카이트 광 활성층 박막의 제조 방법에 있어서, 하기 화학식 1 또는 화학식 2로 표시되는 화합물 포함하는 전구체 용액을 기판의 일면에 코팅하여 전구체 용액 도포층을 형성하는 코팅 단계; 상기 전구체 용액 도포층을 제1열원에 접촉시켜 열처리하는 제1열처리 단계; 및 가열된 소정의 기체로 형성된 제2열원을 상기 전구체 용액 도포층에 가하여 열풍으로 열처리하는 제2열처리 단계를 포함하는 것을 특징으로 한다. [화학식 1] AMX 3 [화학식 2] A 2MX 4 상기 화학식 1 및 상기 화학식 2에서, A는 아민기가 치환된 C 1-20의 직쇄 알킬, 측쇄 알킬 또는 알칼리 금속이온으로 이루어진 군으로부터 선택된 적어도 하나의 1가의 양이온을 포함하고, M은 Pb 2+, Sn 2+, Ge 2+, Cu 2+, Ni 2+, Co 2+ 및 Fe 2+ 로 이루어진 군으로부터 선택된 적어도 하나의 2가의 금속 양이온을 포함하고, X는 할로겐 음이온이다.

Description

고품질 페로브스카이트 광 활성층 박막 제조 방법 및 이를 포함하는 페로브스카이트 태양전지
본 발명은 고품질 페로브스카이트 광 활성층 박막 제조 방법에 관한 것이며, 나아가 상기 페로브스카이트 광 활성층 박막을 포함하는 페로브스카이트 태양전지에 관한 것이다.
최근 전통적인 화력 및 원자력 발전의 환경오염, 안정성 등 문제에 따라, 신재생에너지의 중요성이 부각되고 있다 관련 기술 중 태양전지는 무한 청정에너지로서, 상기와 같은 에너지 패러다임 변화에 대응하기 위해 필수적으로 확보해야 할 기술이다.
페로브스카이트 태양전지는 미국 신재생에너지 연구소(NREL)에 의해 22.7%의 효율이 공인되는 등 크게 주목받고 있는 기술로서, 급격한 성능 향상을 보여주고 있다. 특히, 실리콘 태양전지에 버금가는 높은 광전변환효율을 보유하고, 상대적으로 저가이며, 경량의 투명하고 유연한 태양전지를 제조할 수 있는 우수한 광활성 소재인 페로브스카이트를 적용하여, 반투명 고효율 태양전지를 제작하는 것이 가능하다. 이에 따라, 페로브스카이트 태양전지는 기존 실리콘 태양전지를 적용하기 어려운 유리창호 형태로 적용가능하며, 이에 다양한 응용분야에 적용될 수 있다.
페로브스카이트 태양전지의 상용화를 위해 페로브스카이트 광 활성물질의 입자크기 확대, 박막 균일화 등 광 활성층 고품질화가 요구된다. 이러한 기술적 문제를 해결하기 위하여 용액 기반의 스핀코팅 공정, 기상 증착, 열 증착법과 같이 다양한 방법으로 페로브스카이트 박막을 형성하는 연구가 이루어지고 있다.
특히 용액 기반의 스핀코팅 공정은 간편하게 박막을 형성할 수 있는 방법으로 가장 널리 사용되며 연구되고 있다. 일반적인 스핀코팅 공정 이후 페로브스카이트 물질의 스핀코팅 이후 열을 가하면 페로브스카이트 전구체 물질이 결정화되는 원리를 이용하여 박막을 형성할 수 있다. 하지만, 스핀코팅 이후 단순히 열처리하는 방법으로 형성되는 페로브스카이트 박막은 페로브스카이트 용액 중 용매가 빠르게 증발하여 단시간 내 작고 불균일한 입자가 생성된다는 문제점이 존재한다. 덧붙여 상기 페로브스카이트 전구체 물질의 결정화 과정에서 열처리 방법에 따라 박막 품질이 크게 달라지게 된다는 문제점이 존재한다.
상기 문제점에 의하여 페로브스카이트 박막의 품질이 저하되고, 공정 횟수에 따른 편차가 큰 문제가 발생한다. 이에, 고품질의 페로브스카이트 광 활성층 박막을 제조할 수 있는 스핀코팅 및 열처리 공정이 필요한 실정이다.
본 발명의 일 목적은 공정이 단순하고 제조 단가를 절감된 페로브스카이트 광 활성층 박막의 제조 방법을 제공하는 것이다.
또한, 본 발명의 다른 목적은 고품질의 페로브스카이트 광 활성층 박막의 제조 방법을 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 페로브스카이트 박막을 포함하는 태양전지를 제조하는 것이다.
본 발명의 페로브스카이트 광 활성층 박막의 제조 방법에 있어서, 하기 화학식 1 또는 화학식 2로 표시되는 화합물 포함하는 전구체 용액을 기판의 일면에 코팅하여 전구체 용액 도포층을 형성하는 코팅 단계; 상기 전구체 용액 도포층을 제1열원에 접촉시켜 열처리하는 제1열처리 단계; 및 가열된 소정의 기체로 형성된 제2열원을 상기 전구체 용액 도포층에 가하여 열풍으로 열처리하는 제2열처리 단계를 포함하는 것을 특징으로 한다.
[화학식 1]
AMX 3
[화학식 2]
A 2MX 4
상기 화학식 1 및 상기 화학식 2에서, A는 아민기가 치환된 C 1-20의 직쇄 알킬, 측쇄 알킬 또는 알칼리 금속이온으로 이루어진 군으로부터 선택된 적어도 하나의 1가의 양이온을 포함하고, M은 Pb 2+, Sn 2+, Ge 2+, Cu 2+, Ni 2+, Co 2+ 및 Fe 2+ 로 이루어진 군으로부터 선택된 적어도 하나의 2가의 금속 양이온을 포함하고, X는 할로겐 음이온이다.
실시예에 있어서, 상기 전구체 용액은 제1유기용매를 포함하고, 상기 제1유기용매는 N,N-디메틸포름아미드(N,N-Dimethylformamide, DMF), 감마-부티로락톤(Gamma-butyrolactone, GBL), 1-메틸-2-피롤리돈(1-Methyl-2-pyrolidinone), N,N-N,N-디메틸아세트아미드(Dimethylacetamide), 디메틸술폭시드(Dimethylsulfoxide, DMSO)로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 것을 특징으로 한다.
실시예에 있어서, 상기 전구체 용액 도포층은 스핀 코팅(spin coating), 딥 코팅(dip coating) 및 스프레이 코팅(spray coating)으로 이루어지는 군으로부터 선택되는 것을 특징으로 한다.
실시예에 있어서, 상기 전구체 용액 도포층을 형성하는 코팅 단계에서 제2유기용매를 첨가하는 단계를 더 포함하고, 상기 제2유기용매는 톨루엔(Toluene), 클로로벤젠(Chlorobenzene), 디클로로벤젠(Dichlorobenzene)으로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 것을 특징으로 한다.
실시예에 있어서, 상기 제1열처리 단계는, 상기 제1열원 상에 상기 전구체 용액 도포층을 접촉되게 배치시키는 것을 특징으로 한다,
실시예에 있어서, 상기 제1열원은 50 내지 200 ℃ 온도 범위인 것을 특징으로 한다.
실시예에 있어서, 상기 제1열처리 단계는 1 내지 10 분 범위의 시간동안 수행되는 것을 특징으로 한다.
실시예에 있어서, 상기 제2열처리 단계는, 상기 제1열원 상에 기판의 타면을 접촉되게 배치시키는 것을 특징으로 한다.
실시예에 있어서, 상기 제2열처리 단계는 10 내지 60 분 범위의 시간동안 수행되는 것을 특징으로 한다.
실시예에 있어서, 상기 제2열원은 50 내지 150 ℃ 온도 범위인 것을 특징으로 한다.
실시예에 있어서, 상기 소정의 기체는 질소 또는 아르곤인 것을 특징으로 한다.
또한, 본 발명은 태양전지에 관한것으로 전술된 페로브스카이트 광 활성층 박막의 제조 방법으로 제조된 페로브스카이트 광 활성층 박막을 광 활성층으로 하는 태양전지에 관한것이다.
실시예에 있어서, 상기 태양전지는, 베이스 기판; 상기 베이스 기판에 적층된 제1전극층; 상기 제1전극층에 적어도 일부가 오버랩되고, 상기 제1전극층에 적층되도록 형성되는 정공수송층; 상기 정공수송층 상에 적층되도록 형성되는 상기 페로브스카이트 광 활성층 박막층; 상기 페로브스카이트 광 활성층 박막층 상에 적층되도록 형성되는 전자수송층; 및 상기 전자수송층 상에 적어도 일부가 오버랩되고, 상기 전자수송층에 적층되도록 형성되는 제2전극층을 포함하는 것을 특징으로한다.
또한, 본 발명은 태양전지의 제조 방법에 관한 것으로, 전술된 페로브스카이트 광 활성층 박막의 제조 방법을 포함하는 것을 특징으로 한다.
실시예에 있어서, 상기 태양전지의 제조 방법은, 베이스 기판상에 제1전극층을 형성하는 단계; 상기 제1전극층 상에 정공수송층을 형성하는 단계; 상기 정공수송층 상에 페로브스카이트 광 활성층 박막을 광 활성층으로 형성하는 단계; 상기 페로브스카이트 광 활성층 박막 상에 전자수송층을 형성하는 단계; 및 상기 전자수송층에 제2전극층을 형성하는 단계를 포함한다.
본 발명을 통한 제1열처리 단계 및 제2열처리 단계를 수행하는 페로브스카이트 광 활성층 박막의 제조 방법을 통해 종래의 단일 열처리 방법 대비 비교적 저가인 열풍을 통한 제2열처리 단계로 공정이 단순하고 제조 단가를 절감할 수 있다.
또한, 제1열처리 단계 및 제2열처리 단계를 수행하는 페로브스카이트 광 활성층 박막의 제조 방법을 통해 결정성의 마이크로미터급 크기의 입자로 구성되어 있고, 균일하고 평탄한 표면을 형성할 수 있다. 이에, 페로브스카이트 입자 간 결정립계를 최소화시키고, 박막의 물리적 결함이 감소하는 효과가 있다.
또한, 고 결정성의 마이크로미터급 크기의 입자로 구성되어 있고, 균일하고 평탄한 표면을 가지는 페로브스카이트 박막을 포함하는 효율이 향상된 태양전지를 제조할 수 있다.
도 1은 본 발명의 페로브스카이트 광 활성층 박막의 제조 방법을 도시한 도면이다.
도 2는 도 1의 페로브스카이트 광 활성층 박막의 제조 방법의 모식도다.
도 3은 실시예1 및 비교예1의 페로브스카이트 광 활성층 박막의 전자 현미경(SEM) 이미지이다.
도 4는 실시예1 및 비교예1의 페로브스카이트 광 활성층 박막의 X-선 회절분석(XRD) 결과이다.
도 5는 본 발명의 페로브스카이트 광 활성층 박막을 포함하는 태양전지의 제조 방법을 도시한 도면이다.
도 6는 도 5의 페로브스카이트 광 활성층 박막을 포함하는 태양전지의 모식도다.
도 7은 본 발명의 실시예2에 따라 제작된 반투명 페로브스카이트 태양전지 소자의 실물 이미지이다.
도 8은 실시예2 및 비교예2의 페로브스카이트 광 활성층 박막을 광 활성층으로 하는 태양전지 단위소자의 광전변환효율을 도시한 그래프이다.
도 9는 실시예2 및 비교예2의 페로브스카이트 광 활성층 박막을 광 활성층으로 하는 태양전지 단위소자의 I-V Curve를 도시한 그래프이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도 1은 본 발명의 페로브스카이트 광 활성층 박막의 제조 방법을 도시한 도면이고, 도 2는 도 1의 페로브스카이트 광 활성층 박막의 제조 방법의 모식도다.
도 1 및 도 2를 참조하면, 본 발명에서 개시하는 페로브스카이트 광 활성층 박막의 제조 방법은 전구체 용액 도포층을 형성하는 코팅 단계(S1), 전구체 용액 도포층을 제1열원에 접촉시켜 열처리하는 제1열처리 단계(S2) 및 가열된 소정의 기체로 형성된 제2열원을 전구체 용액 도포층에 가하여 열풍으로 열처리하는 제2열처리 단계(S3)을 포함한다.
상세하게, 전구체 용액 도포층을 형성 후 결정 형성을 위한 열처리 시, 제1열처리 단계를 핫 플레이트와 광 활성층 박막을 직접 접촉시키는 공정을 적용하여 용매의 증발 속도를 지연시켜 페로브스카이트 입자를 크게 성장시킬 수 있다. 나아가, 입자의 완전한 성장 이후, 열풍 건조 공정을 통한 제2열처리 단계에서 용매를 빠르게 증발시켜 입자 간 결정립계를 줄이고, 핀홀 등의 필름의 물리적 결함을 최소화시킬 수 있다.
페로브스카이트 광 활성층 박막의 제조 방법은 전구체 용액 도포층을 형성하는 코팅 단계(S1)는 도 2의 (a)와 같이 도시화될 수 있다.
전구체 용액 도포층을 형성하는 코팅 단계(S1)는 하기 화학식 1 또는 화학식 2로 표시되는 화합물 포함하는 전구체 용액을 기판(1)의 일면에 코팅하여 전구체 용액 도포층(2")을 형성한다.
[화학식 1]
AMX 3
[화학식 2]
A 2MX 4
(화학식 1 및 상기 화학식 2에서, A는 아민기가 치환된 C 1-20의 직쇄 알킬, 측쇄 알킬 또는 알칼리 금속이온으로 이루어진 군으로부터 선택된 적어도 하나의 1가의 양이온을 포함하고, M은 Pb 2+, Sn 2+, Ge 2+, Cu 2+, Ni 2+, Co 2+ 및 Fe 2+ 로 이루어진 군으로부터 선택된 적어도 하나의 2가의 금속 양이온을 포함하고, X는 할로겐 음이온이다.)
일 실시예에서, 화학식 1 또는 화학식 2로 표시되는 화합물은 요오드화메틸암모늄(Methyl Ammonium Iodide, MAI), 요오드화포름아미디늄(Formamidinium Iodide, FAI)과 같은 유무기 할라이드 화합물과 요오드화납(PbI 2), 요오드화브롬(PbBr) 등의 할로겐화 금속 화합물을 포함할 수 있다.
나아가, 전구체 용액은 제1유기용매를 포함하고, 상기 제1유기용매는 N,N-디메틸포름아미드(N,N-Dimethylformamide, DMF), 감마-부티로락톤(Gamma-butyrolactone, GBL), 1-메틸-2-피롤리돈(1-Methyl-2-pyrolidinone), N,N-N,N-디메틸아세트아미드(Dimethylacetamide), 디메틸술폭시드(Dimethylsulfoxide, DMSO)로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다.
상세하게, 상기 화학식 1 또는 화학식 2로 표시되는 화합물의 중량부는 전구체 용액 100 중량부당 10 내지 60 중량부로 형성될 수 있다.
전구체 용액 도포층(2")은 당 업계에서 사용되는 통상적인 방법을 통해 제조될 수 있다. 상세하게, 전구체 용액 도포층(2")의 형성은 반도체 공정에서 사용되는 통상의 액상 도포 방법이면 사용 가능하다. 일 실시예에서, 상기 액상 도포 방법은 스핀 코팅(spin coating), 딥 코팅(dip coating) 및 스프레이 코팅(spray coating)으로 이루어지는 군으로부터 선택될 수 있다.
하지만, 균일한 액의 도포, 대면적 처리의 용이성 측면에서 도시된 것과 같이 스핀 코터(3)를 이용한 스핀 코팅으로 형성하는 것이 바람직하다. 상세하게, 스핀 코팅으로 전구체 용액 도포층(2")을 형성하는 경우, 기판(1)의 상부에 상기 전구체 용액이 박막의 형태로 잔류할 수 있도록 스핀 코팅 회전속도는 약 500 내지 9000rpm 범위일 수 있으며, 바람직하게는 6000rpm 이하의 속도로 스핀 코팅이 수행될 수 있다. 이때, 스핀 코팅 초반에 상기 전구체 용액의 유실을 방지하기 위하여 스핀 코팅은 상이한 회전 속도로 2회 이상으로 수행될 수 있다.
덧붙여, 전구체 용액 도포층을 형성하는 코팅 단계(S1)는 제2유기용매를 첨가하는 단계를 포함하고, 상기 전구체 용액은 상기 제2유기용매를 포함하여 전구체 용액 도포층(2")이 안정적으로 형성되도록 할 수 있다. 상기 제2유기용매는 상기 제1유기용매를 물리적으로 분리시켜 페로브스카이트 입자가 구형으로 형성되도록 한다.
이에, 상기 제2유기용매는 페로브스카이트 전구체를 용해시키지 않고, 전구체 용액과 물리화학적으로 혼합되지는 않는 특성을 갖는 용매인 것이 바람직하다. 일 실시예에서, 상기 제2유기용매는 톨루엔(Toluene), 클로로벤젠(Chlorobenzene), 디클로로벤젠(Dichlorobenzene)으로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다. 상세하게, 상기 제2유기용매를 첨가하는 단계는 전술된 스핀 코팅 공정 중에 이루어질 수 있다.
전구체 용액 도포층(2")이 형성된 기판(1)은 잔류 전구체 용액을 증발시키는 열처리 단계를 거쳐 용액을 제거하고 페로브스카이트 입자를 형성시킬 수 있다. 이에, 본 발명의 페로브스카이트 광 활성층 박막의 제조 방법은 전구체 용액 도포층을 제1열원에 접촉시켜 열처리하는 제1열처리 단계(S2) 및 가열된 소정의 기체로 형성된 제2열원을 전구체 용액 도포층에 가하여 열풍으로 열처리하는 제2열처리 단계(S3)를 포함할 수 있다. 이하, 본 발명의 열처리 단계에 대하여 상세하게 설명한다.
전구체 용액 도포층을 제1열원에 접촉시켜 열처리하는 제1열처리 단계(S2)는 도 2의 (b)와 같이 도시화될 수 있다. 상세하게, 전구체 용액 도포층(2")은 도 2의 (b)와 같이 상기 제1열원인 핫 플레이트(4)에 접촉시켜 열처리 할 수 있다. 상세하게, 핫 플레이트(4)의 상부에 전구체 용액 도포층(2")을 아래로 가게 접촉 거치 후 열처리하여 제1열처리 단계가 수행된 전구체 용액 도포층(2')을 형성할 수 있다.
이때 상기 제1열처리 단계의 열처리 온도는 상기 제1유기용매가 충분히 증발하며, 페로브스카이트 구조가 안정적으로 유지될 수 있는 온도라면 특별히 한정하지 않는다. 일 실시예에서 제1열처리 단계의 열처리 온도는 50 내지 200℃의 온도일 수 있으며, 바람직하게는 130℃ 이하의 온도일 수 있다.
또한, 제1열처리는 1분 내지 10분 간 수행될 수 있으며, 바람직하게는 5분 이하로 수행될 수 있다. 상기 제1열처리 단계에서, 제1열처리 단계가 수행된 전구체 용액 도포층(2')이 기판 하부에 위치하고 있어 스핀 코팅 중 잔류된 박막 내 상기 제1유기용매의 증발속도가 지연될 수 있다. 이는 페로브스카이트 결정입자의 성장속도의 지연을 의미하며, 이를 통해 결정입자가 충분히 성장할 수 있는 시간을 확보할 수 있다. 따라서, 제1열처리 단계가 수행된 전구체 용액 도포층(2')의 페로브스카이트 결정 입자는 마이크로미터(μm)급 크기로 형성될 수 있다.
또한, 가열된 소정의 기체로 형성된 제2열원을 전구체 용액 도포층에 가하여열풍으로 열처리하는 제2열처리 단계(S3)는 도 2의 (c)와 같이 도시화될 수 있다.
상세하게, 제1열처리 단계가 수행된 전구체 용액 도포층(2')은 가열된 소정의 기체로 형성된 제2열원을 가하여 열풍으로 열처리될 수 있다. 상기 제2열원은 열품을 가할 수 있는 장치로써, 비접촉 상태에서 가스를 가할 수 있는 형태로 제1열처리 단계가 수행된 전구체 용액 도포층(2')을 열처리 할 수 있는 장치라면 형태에 제한없이 사용될 수 있다.
즉, 제1열처리 단계가 수행된 전구체 용액 도포층(2') 내부의 상기 제1유기용매 및 제2유기용매가 증발되어 제거되어 제2열처리 단계가 수행된 페로브스카이트 광 활성층 박막(2)이 형성될 수 있다.
일 실시예에서 상기 제2열원은 열풍기(5)에서 형성된 열풍일 수 있다. 상기 제2열처리 단계에서, 상기 제2열원은 열풍기(5)를 사용하여 페로브스카이트 박막과 비접촉 상태에서 질소, 아르곤 등 광 활성층과 화학적으로 반응하지 않는 가열된 불활성 기체를 가하여 열처리를 할 수 있다. 상기 제2열처리 단계에서의 열처리 온도는 상기 제1유기용매 및 제2유기용매가 증발하며, 페로브스카이트 구조가 안정적으로 유지될 수 있는 온도라면 특별히 한정하지 않는다. 일 실시예에서 상기 제2열원의 열풍의 온도는 50 내지 150℃ 범위의 온도일 수 있으며, 바람직하게는 100℃ 이하의 온도일 수 있다.
나아가, 제1열처리 단계가 수행된 전구체 용액 도포층(2')이 형성된 기판(1)을 도 2의 (c)와 같이 상기 제1열원인 핫 플레이트(4)에 접촉시켜 열처리할 수 있다. 이는 전술된 상기 제2열원인 열풍기(5)에 의한 열처리와 동시에 수행될 수 있다. 상세하게, 상기 제2열처리 단계에서의 제1열원을 통한 열처리는 전술된 상기 제1열처리 단계와 유사하게 수행하되, 상기 제1열원인 핫 플레이트는 전구체 용액 도포층(2')이 형성되지 않은 기판(1)의 타면이 접촉 가열될 수 있다.
상세하게, 상기 제2열처리 단계는 제1열처리 단계가 수행된 전구체 용액 도포층(2') 내부의 마이크로미터(μm)급 페로브스카이트 결정 입자들의 경계 및 사이에 잔류하는 용매를 빠르게 증발시켜 입자의 결정입자 내·외부 경계(Grain boundary)의 공극 발생을 최소화할 수 있다. 이를 통해 최종적으로 응집 또는 입자 생성의 부정적 요인없이 구형 형상의 마이크로미터급 페로브스카이트 입자를 포함하는 균일한 페로브스카이트 광 활성층 박막을 제조할 수 있다.
상기 전구체 용액 중 용매의 증발 속도 제어를 하기 위한 본 발명의 제1 및 제2열처리 단계를 통해 고품질의 균일한 페로브스카이트 광 활성층 박막을 제조할 수 있다. 기존 알려진 단일 열처리 방법에서 사용되는 핫 플레이트 설비를 그대로 사용하되, 비교적 저가의 설비인 열풍기를 추가하면 본 발명에 따른 페로브스카이트 박막 제조공정을 적용할 수 있어 공정이 단순하고 경제적이다. 본 발명에 따라 제조된 페로브스카이트 광 활성층 박막의 페로브스카이트 결정입자는 기존 열처리 방법의 나노미터 크기 입자 대비 약 1 마이크로미터 이상의 크기로 형성되어, 페로브스카이트 결정입자 내·외부 경계를 최소화 시켜 박막의 품질을 높일 수 있다.
이를 통해 페로브스카이트 광 활성층 박막에서 생성된 전자·정공 캐리어의 소멸, 재결합 방지로 광전변환효율이 증가된 페로브스카이트 태양전지 소자에 이를 수 있다.
이하에서는 구체적인 실시예들을 들어, 본 발명을 보다 상세히 설명하기로 한다.
<실시예1: 페로브스카이트 광 활성층 박막의 제조 >
전술된 페로브스카이트 광 활성층 박막의 제조 방법에 따라, 페로브스카이트 광 활성층 박막을 제조하였다.
인듐 함유 산화주석(ITO; Indium doped Tin Oxide)이 코팅된 유리 기판을 증류수 및 아이소프로필알코올로 세척한 후, UV-ozone으로 30분 간 처리하여 기판을 준비하였다.
전구체 용액을 제조하고 이를 상기 기판에 스핀 코팅하여 전구체 용액 도포층을 형성한다. 상세하게, 상기 전구체 용액은 요오드화 메틸암모늄(CH 3NH 3I) 0.01 내지 1g과 요오드화납(PbI 2) 0.01 내지 1g을 1:1 내지 1:3의 몰비로 N,N-디메틸포름아미드(N,N-Dimethylformamide, DMF)와 디메틸술폭시드(Dimethylsulfoxide, DMSO)가 8:2로 혼합된 제1유기용매에 용해한 후, 60℃에서 12시간 교반하여 전구체 용액을 제조하였다.
기판의 상부에 전술된 전구체 용액을 1,000rpm의 회전속도로 5초, 6000rpm의 회전속도로 45초 간 스핀코팅하였다. 이때, 스핀코팅 시작 20초 경과 후, 제2유기용매인 클로로벤젠을 첨가하는 단계를 추가하여 전구체 용액 도포층을 형성하였다.
나아가, 상기 전구체 용액 도포층을 제1열원인 핫 플레이트에 접촉시켜 100℃에서 5분간 제1열처리 단계를 수행하였다. 이에, 기판 상에는 제1열처리 단계가 수행된 전구체 용액 도포층이 형성될 수 있다.
제2열처리 단계는 기판 상에는 제1열처리 단계가 수행된 전구체 용액 도포층 및 기판을 뒤집어 제1열원인 핫 플레이트에 접촉시킨다. 이에, 제1열처리 단계가 수행된 전구체 용액 도포층이 형성되지 않은 기판의 타면이 핫 플레이트와 접촉하고, 제1열처리 단계가 수행된 전구체 용액 도포층은 외부로 노출된다. 이때, 핫플레이트를 이용한 열처리는 100℃에서 10분간 수행되며, 동시에 외부로 노출된 제1열처리 단계가 수행된 전구체 용액 도포층은 약 100℃의 가열된 질소 가스를 공급하는 소형 열풍기를 통하여 열처리되어 제2열처리 단계가 수행된다.
<비교예1: 페로브스카이트 광 활성층 박막의 제조 >
전술된 실시예1의 페로브스카이트 광 활성층 박막의 제조와 동일한 방법으로 페로브스카이트 광 활성층 박막을 제조하되, 열처리 단계를 상이하게 수행하였다.
비교예1의 열처리는 전구체 용액 도포층을 형성된 기판과 제1열원을 접촉하고, 100℃에서 10분 동안 열처리하여 페로브스카이트 광 활성층 박막을 제조하였다.
<실험예1: 페로브스카이트 광 활성층 박막의 전자 현미경(SEM) 이미지 >
도 3은 실시예1 및 비교예1의 페로브스카이트 광 활성층 박막의 전자 현미경(SEM) 이미지이다.
도 3의 (a) 및 (b)는 본 발명의 실시예1의 전자 현미경(SEM) 이미지이고, 도 3의 (c) 및 (d)는 비교예1의 전자 현미경(SEM) 이미지이다.
먼저, 도 3의 (a) 및 (b)를 참조하면, 본 발명의 실시예1에 따라 제1 및 제2열처리 단계를 수행하여 제조된 페로브스카이트 광활성층 박막의 표면이 균일하고 치밀하게 형성된 것을 확인할 수 있다.
특히, 페로브스카이트 결정 입자가 1μm 이상의 크기의 잘 발달된 형태로 성장한 것을 확인할 수 있다. 이러한 고 결정성 입자로 구성되고, 극도로 평탄한 표면을 유지한 고품질 페로브스카이트 광 활성층 박막은 태양전지 및 발광 다이오드 등의 광전변환 소자 제작 시 매우 유리하다.
한편, 도 3의 (c) 및 (d)를 참조하면, 비교예1의 페로브스카이트 광 활성층 박막은 전술된 실시예1의 페로브스카이트 광 활성층 박막 대비 입자크기가 상대적으로 작게 성장된 것을 확인할 수 있다.
<실험예2: 페로브스카이트 광 활성층 박막의 X-선 회절분석(XRD)>
도 4는 실시예1 및 비교예1의 페로브스카이트 광 활성층 박막의 X-선 회절분석(XRD) 결과이다.
도 4를 참조하면, 본 발명의 실시예1 및 비교예1에서 제조한 페로브스카이트 광 활성층 박막에 대하여 MAPbI 3의 XRD 피크(peak)가 2θ값 14.2ㅀ(1 1 0), 28.5ㅀ(2 0 0)에서 또렷하게 나타나는 것을 확인할 수 있다. 즉, 실시예1 및 비교예1는 페로브스카이트 결정을 포함한 박막으로 형성된 것을 명확히 알 수 있다.
한편, 본 발명에 따른 실시예1의 페로브스카이트 광 활성층 박막의 XRD 피크 강도(intensity)가 비교예1의 피크 강도보다 더 높게 나타나는 것을 확인할 수 있다. 이는 본 발명에 따른 제1 및 제2열처리 단계를 포함하는 실시예1의 페로브스카이트 광 활성층 박막이 더 높은 결정성을 갖는 것을 나타낸다.
도 5는 본 발명의 페로브스카이트 광 활성층 박막을 포함하는 태양전지의 제조 방법을 도시한 도면이고, 도 6는 도 5의 페로브스카이트 광 활성층 박막을 포함하는 태양전지의 모식도다.
도 5 및 도 6을 참조하면, 본 발명에서 개시하는 페로브스카이트 광 활성층 박막을 포함하는 태양전지의 제조 방법은 베이스 기판상에 제1전극층을 형성하는 단계(S10), 상기 제1전극층 상에 정공수송층을 형성하는 단계(S20), 상기 정공수송층 상에 페로브스카이트 광 활성층 박막으로 형성된 광 활성층을 형성하는 단계(S30), 상기 광 활성층 박막 상에 전자수송층을 형성하는 단계(S40) 및 상기 전자수송층에 제2전극층을 형성하는 단계(S50)를 포함한다.
특히, 상기 정공수송층 상에 페로브스카이트 광 활성층 박막을 형성하는 단계(S30)는 전술된 페로브스카이트 광 활성층 박막의 제조 방법을 포함하는 것을 특징으로 한다. 이에, 도 6에 도시된 태양전지(100)는 전술된 페로브스카이트 광 활성층 박막의 제조 방법으로 제조된 페로브스카이트 광 활성층 박막으로 광 활성층을 형성하는 것을 특징을 한다.
상세하게, 도 6에 도시된 태양전지(100)는 유무기 복합 태양전지로 베이스 기판(10'), 제1전극층(110), 정공수송층(120), 페로브스카이트 광 활성층(130), 전자수송층(140) 및 제2전극층(150)을 포함한다.
이들은 서로 적어도 일부가 오버랩되고, 적층되도록 형성될 수 있다. 한편, 페로브스카이트 광 활성층(130)은 베이스 기판(10')의 전면과 오버랩되도록 형성되어 제1전극층(110) 및 정공수송층(120)과 전자수송층(140) 및 제2전극층(150)이 이격되도록 형성된다.
이에, 페로브스카이트 입자 간 결정립계를 줄이고, 핀홀 등의 필름의 물리적 결함이 최소화된 광 활성층(130)을 포함하는 태양전지(100)는 효율이 향상될 수 있다.
<실시예2: 페로브스카이트 광 활성층 박막을 광 활성층으로 하는 태양전지의 제조 >
전술된 페로브스카이트 광 활성층 박막의 제조 방법에 따라 제조된 광 활성층을 포함하는 태양전지를 제조하였다.
유리 기판에 인듐 함유 산화주석(ITO; Indium doped Tin Oxide)이 코팅된 기판 및 제1전극층을 준비하고, 증류수 및 아이소프로필알코올로 세척한 후, UV-ozone으로 30분 간 처리한다.
초산니켈 4수화물[Nickel(II) acetate tetrahydrate] 0.01 내지 1g을 에탄올 0.1 내지 20 ml와 에탄올아민 0.1 내지 20㎕의 혼합용매에 용해한 후, 60℃에서 12시간 교반하여 산화니켈(NiO) 정공수송층 전구체 용액을 제조하였다. 상기 정공수송층 전구체 용액을 제1전극층 상부에 4000rpm의 회전속도로 40초 간 스핀코팅한 후, 285℃에서 1시간 동안 열처리를 하여 정공수송층을 형성하였다.
전술된 실시예1에 개시된 페로브스카이트 광 활성층 박막을 상기 정공수송층 상부에 형성하고, 실시예1과 동일하게 제1 및 제2열처리 단계를 수행하여, 페로브스카이트 광 활성층 박막으로 형성되는 광 활성층을 형성하였다.
상기 광 활성층 상에 전자수송층을 형성한다. 상세하게, [6,6]-페닐-C61-뷰티르산 메틸 에스테르([6,6]-phenyl-C61-butyric acid methyl ester, PCBM) 0.01 내지 0.1g을 클로로벤젠(Chlorobenzene) 혹은 디클로로벤젠(Dichlorobenzene)에 용해한 후, 60℃에서 12시간 교반하여 전자수송층인 PCBM 전구체 용액을 제조하고, 상기 PCBM 전구체 용액을 1000rpm의 회전속도로 60초 간 스핀코팅하여 전자수송층을 형성하였다.
나아가, 상기 전자수송층 상에 제2전극층을 형성한다. 상세하게, 전자수송층 상부에 0.1Å/s의 속도로 BCP(bathocuproine)를 열 증착시킨 후, 0.5Å/s의 속도로 은(Ag) 금속(혹은 Au)을 열 증착하여 제2전극층을 형성하였다.
도 7은 본 발명의 실시예2에 따라 제작된 반투명 페로브스카이트 태양전지 소자의 실물 이미지이다.
<비교예2: 페로브스카이트 광 활성층 박막을 포함하는 태양전지의 제조 >
전술된 실시예2의 페로브스카이트 광 활성층 박막을 광 활성층으로 하는 태양전지의 제조와 동일한 방법으로 태양전지를 제조하되, 비교예2의 페로브스카이트 광 활성층 박막을 광 활성층으로 하는 태양전지를 제조하였다.
<실험예3: 태양전지의 효율 측정>
실시예2 및 비교예2의 페로브스카이트 광 활성층 박막을 광 활성층으로 하는 태양전지 단위소자의 광전변환효율을 확인하기 위하여, 솔라 시뮬레이터(Solar simulator, Newport Co.)로 측정하였으며, 측정 조건은 AM 1.5(1sun, 100 mW/cm 2, 25℃)이다.
이에 따른, 태양전지의 개방회로전압(Open circuit voltage, V OC, V), 단락회로전류밀도(Short-circuit current, J SC, mA/cm 2), 곡선인자(Fill factor, FF, %), 광전변환효율(Power conversion efficiency, PCE, %) 값을 측정하여 그 결과를 아래의 표 1에 나타내었다.
구분 개방회로전압[V] 단락회로전류밀도[mA/cm 2] 곡선인자[%] 광전변환효율[%]
실시예2 1.05 18.9 72.9 14.5
비교예2 1.04 17.5 68.7 12.5
상기 표 1에서 나타난 바와 같이, 본 발명의 실시예2의 제1 및 제2열처리 단계를 포함하는 제조 방법으로 제조된 페로브스카이트 광 활성층 박막을 광 활성층으로 포함하는 태양전지가 비교예2의 태양전지 대비 현저히 우수한 성능을 보여주었다. 실시예2 태양전지의 광전변환효율 및 개방회로전압, 단락회로전류밀도 모두 비교예2의 태양전지 소자 대비 우위에 있는 것을 확인할 수 있다.
덧붙여, 도 8은 실시예2 및 비교예2의 페로브스카이트 광 활성층 박막을 광 활성층으로 하는 태양전지 단위소자의 광전변환효율을 도시한 그래프이고, 도 9는 실시예2 및 비교예2의 페로브스카이트 광 활성층 박막을 광 활성층으로 하는 태양전지 단위소자의 I-V Curve를 도시한 그래프이다.
상기 실험예3의 결과를 종합하면, 본 발명에 따른 제1 및 제2열처리 단계를 포함하는 제조 방법으로 제조된 페로브스카이트 광 활성층 박막의 결정입자는 기존 열처리 방법의 나노미터 크기 입자 대비 약 1마이크로미터 이상의 크기로 형성되었으며, 페로브스카이트 결정입자 내·외부 경계를 최소화시켜 광 활성층 박막의 품질을 높일 수 있다. 이를 통해 페로브스카이트 광 활성층 박막에서 생성된 전자·정공 캐리어의 소멸, 재결합 방지 등으로 최종 태양전지 소자의 광전변환효율을 비롯한 전기화학적 성능을 크게 증가시킬 수 있다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다.
또한, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.

Claims (16)

  1. 페로브스카이트 광 활성층 박막의 제조 방법에 있어서,
    하기 화학식 1 또는 화학식 2로 표시되는 화합물 포함하는 전구체 용액을 기판의 일면에 코팅하여 전구체 용액 도포층을 형성하는 코팅 단계;
    상기 전구체 용액 도포층을 제1열원에 접촉시켜 열처리하는 제1열처리 단계; 및
    가열된 소정의 기체로 형성된 제2열원을 상기 전구체 용액 도포층에 가하여 열풍으로 열처리하는 제2열처리 단계를 포함하는 것을 특징으로 하는 페로브스카이트 광 활성층 박막의 제조 방법.
    [화학식 1]
    AMX 3
    [화학식 2]
    A 2MX 4
    상기 화학식 1 및 상기 화학식 2에서,
    A는 아민기가 치환된 C 1-20의 직쇄 알킬, 측쇄 알킬 또는 알칼리 금속이온으로 이루어진 군으로부터 선택된 적어도 하나의 1가의 양이온을 포함하고,
    M은 Pb 2+, Sn 2+, Ge 2+, Cu 2+, Ni 2+, Co 2+ 및 Fe 2+ 로 이루어진 군으로부터 선택된 적어도 하나의 2가의 금속 양이온을 포함하고,
    X는 할로겐 음이온이다.
  2. 제1항에 있어서,
    상기 전구체 용액은 제1유기용매를 포함하고,
    상기 제1유기용매는 N,N-디메틸포름아미드(N,N-Dimethylformamide, DMF), 감마-부티로락톤(Gamma-butyrolactone, GBL), 1-메틸-2-피롤리돈(1-Methyl-2-pyrolidinone), N,N-N,N-디메틸아세트아미드(Dimethylacetamide), 디메틸술폭시드(Dimethylsulfoxide, DMSO)로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 것을 특징으로 하는 페로브스카이트 광 활성층 박막의 제조 방법.
  3. 제1항에 있어서,
    상기 전구체 용액 도포층은 스핀 코팅(spin coating), 딥 코팅(dip coating) 및 스프레이 코팅(spray coating)으로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 페로브스카이트 광 활성층 박막의 제조 방법.
  4. 제1항에 있어서,
    상기 전구체 용액 도포층을 형성하는 코팅 단계에서 제2유기용매를 첨가하는 단계를 더 포함하고,
    상기 제2유기용매는 톨루엔(Toluene), 클로로벤젠(Chlorobenzene), 디클로로벤젠(Dichlorobenzene)으로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 것을 특징으로 하는 페로브스카이트 광 활성층 박막의 제조 방법.
  5. 제1항에 있어서,
    상기 제1열처리 단계는,
    상기 제1열원 상에 상기 전구체 용액 도포층을 접촉되게 배치시키는 것을 특징으로 하는 페로브스카이트 광 활성층 박막의 제조 방법.
  6. 제1항에 있어서,
    상기 제1열원은 50 내지 200 ℃ 온도 범위인 것을 특징으로 하는 페로브스카이트 광 활성층 박막의 제조 방법.
  7. 제1항에 있어서,
    상기 제1열처리 단계는 1 내지 10 분 범위의 시간동안 수행되는 것을 특징으로 하는 페로브스카이트 광 활성층 박막의 제조 방법.
  8. 제1항에 있어서,
    상기 제2열처리 단계는,
    상기 제1열원 상에 기판의 타면을 접촉되게 배치시키는 것을 특징으로 하는 페로브스카이트 광 활성층 박막의 제조 방법.
  9. 제1항에 있어서,
    상기 제2열처리 단계는 10 내지 60 분 범위의 시간동안 수행되는 것을 특징으로 하는 페로브스카이트 광 활성층 박막의 제조 방법.
  10. 제1항에 있어서,
    상기 제2열원은 50 내지 150 ℃ 온도 범위인 것을 특징으로 하는 페로브스카이트 광 활성층 박막의 제조 방법.
  11. 제1항에 있어서,
    상기 소정의 기체는 질소 또는 아르곤인 것을 특징으로 하는 페로브스카이트 광 활성층 박막의 제조 방법.
  12. 태양전지에 있어서,
    제1항 내지 제11항 중 어느 한 항의 페로브스카이트 광 활성층 박막의 제조 방법으로 제조된 페로브스카이트 광 활성층 박막을 광 활성층으로 하는 것을 특징을 하는 태양전지.
  13. 제12항에 있어서,
    상기 태양전지는,
    베이스 기판;
    상기 베이스 기판에 적층된 제1전극층;
    상기 제1전극층에 적어도 일부가 오버랩되고, 상기 제1전극층에 적층되도록 형성되는 정공수송층;
    상기 정공수송층 상에 적층되도록 형성되는 상기 광 활성층;
    상기 광 활성층 상에 적층되도록 형성되는 전자수송층; 및
    상기 전자수송층 상에 적어도 일부가 오버랩되고, 상기 전자수송층에 적층되도록 형성되는 제2전극층을 포함하는 것을 특징으로하는 태양전지.
  14. 태양전지의 제조 방법에 있어서,
    제1항 내지 제11항 중 어느 한 항의 페로브스카이트 광 활성층 박막의 제조 방법을 포함하는 것을 특징을 하는 태양전지의 제조 방법.
  15. 제14항에 있어서,
    상기 태양전지의 제조 방법은,
    베이스 기판상에 제1전극층을 형성하는 단계;
    상기 제1전극층 상에 정공수송층을 형성하는 단계;
    상기 정공수송층 상에 페로브스카이트 광 활성층 박막을 광 활성층으로 형성하는 단계;
    상기 페로브스카이트 광 활성층 박막 상에 전자수송층을 형성하는 단계; 및
    상기 전자수송층에 제2전극층을 형성하는 단계를 포함하는 페로브스카이트 태양전지의 제조 방법.
  16. 페로브스카이트 광 활성층 박막에 있어서,
    제1항 내지 제11항 중 어느 한 항의 페로브스카이트 광 활성층 박막의 제조 방법으로 제조된 페로브스카이트 광 활성층 박막.
PCT/KR2019/005413 2018-08-24 2019-05-07 고품질 페로브스카이트 광 활성층 박막 제조 방법 및 이를 포함하는 페로브스카이트 태양전지 WO2020040400A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0099381 2018-08-24
KR1020180099381A KR102080748B1 (ko) 2018-08-24 2018-08-24 고품질 페로브스카이트 광 활성층 박막 제조 방법 및 이를 포함하는 페로브스카이트 태양전지

Publications (1)

Publication Number Publication Date
WO2020040400A1 true WO2020040400A1 (ko) 2020-02-27

Family

ID=69592971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005413 WO2020040400A1 (ko) 2018-08-24 2019-05-07 고품질 페로브스카이트 광 활성층 박막 제조 방법 및 이를 포함하는 페로브스카이트 태양전지

Country Status (2)

Country Link
KR (1) KR102080748B1 (ko)
WO (1) WO2020040400A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112490371A (zh) * 2020-10-30 2021-03-12 西安交通大学 一种太阳电池基体绒面熏蒸预涂与干燥一体化方法及设备
CN115568266A (zh) * 2022-11-08 2023-01-03 湖北精诚钢结构股份有限公司 钙钛矿薄膜的制备方法、钙钛矿薄膜及柔性复合钙钛矿太阳能电池器件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102501662B1 (ko) * 2020-09-08 2023-02-21 한국전력공사 페로브스카이트 전구체 용액, 이를 이용한 페로브스카이트 태양전지, 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150038271A (ko) * 2012-08-03 2015-04-08 에꼴 뽈리떼끄닉 뻬데랄 드 로잔느 (으뻬에프엘) 유기 금속 할로겐 페로브스카이트 헤테로 접합 태양전지 및 그 제조 방법
KR101746335B1 (ko) * 2016-03-29 2017-06-21 포항공과대학교 산학협력단 금속 할라이드 페로브스카이트 나노결정입자 박막 제조방법 및 이를 이용한 광전자 소자
KR20180042441A (ko) * 2016-08-25 2018-04-25 항조우 마이크로콴타 세미컨덕터 컴퍼니 리미티드 페로브스카이트 박막의 저압 화학 증착 장비 및 그의 사용 방법과 응용
KR101861800B1 (ko) * 2017-05-08 2018-05-29 재단법인대구경북과학기술원 역구조의 무연 페로브스카이트 태양전지의 제조방법
KR101857052B1 (ko) * 2015-11-24 2018-06-25 재단법인 멀티스케일 에너지시스템 연구단 페로브스카이트, 이의 제조방법 및 이를 포함하는 태양전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150038271A (ko) * 2012-08-03 2015-04-08 에꼴 뽈리떼끄닉 뻬데랄 드 로잔느 (으뻬에프엘) 유기 금속 할로겐 페로브스카이트 헤테로 접합 태양전지 및 그 제조 방법
KR101857052B1 (ko) * 2015-11-24 2018-06-25 재단법인 멀티스케일 에너지시스템 연구단 페로브스카이트, 이의 제조방법 및 이를 포함하는 태양전지
KR101746335B1 (ko) * 2016-03-29 2017-06-21 포항공과대학교 산학협력단 금속 할라이드 페로브스카이트 나노결정입자 박막 제조방법 및 이를 이용한 광전자 소자
KR20180042441A (ko) * 2016-08-25 2018-04-25 항조우 마이크로콴타 세미컨덕터 컴퍼니 리미티드 페로브스카이트 박막의 저압 화학 증착 장비 및 그의 사용 방법과 응용
KR101861800B1 (ko) * 2017-05-08 2018-05-29 재단법인대구경북과학기술원 역구조의 무연 페로브스카이트 태양전지의 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112490371A (zh) * 2020-10-30 2021-03-12 西安交通大学 一种太阳电池基体绒面熏蒸预涂与干燥一体化方法及设备
CN112490371B (zh) * 2020-10-30 2022-12-09 西安交通大学 一种太阳电池基体绒面熏蒸预涂与干燥一体化方法及设备
CN115568266A (zh) * 2022-11-08 2023-01-03 湖北精诚钢结构股份有限公司 钙钛矿薄膜的制备方法、钙钛矿薄膜及柔性复合钙钛矿太阳能电池器件

Also Published As

Publication number Publication date
KR102080748B1 (ko) 2020-04-23

Similar Documents

Publication Publication Date Title
WO2020040400A1 (ko) 고품질 페로브스카이트 광 활성층 박막 제조 방법 및 이를 포함하는 페로브스카이트 태양전지
CN109904318B (zh) 一种基于反溶液浴的钙钛矿薄膜制备方法及太阳能电池
US20170084400A1 (en) Precipitation process for producing perovskite-based solar cells
WO2017090862A1 (ko) 페로브스카이트 태양전지 및 이의 제조방법
WO2017010674A1 (ko) 자발 확산 효과를 이용한 초고속 유/무기 박막 제조방법
WO2017057913A1 (ko) 페로브스카이트 결정 구조체의 제조 방법, 및 이를 위한 페로브스카이트 결정 구조체의 제조 장치
US9653696B2 (en) Tin perovskite/silicon thin-film tandem solar cell
CN109742246B (zh) 可控混合溶剂体系及其在制备钙钛矿材料中的用途
CN110854274A (zh) 一种钙钛矿形核过程的调控方法、钙钛矿薄膜基太阳能电池的制备方法
WO2013022234A2 (en) Method of manufacturing czt(s,se)-based thin film for solar cell and czt(s,se)-based thin film manufactured thereby
WO2021162215A1 (ko) 페로브스카이트 용액, 이를 이용한 페로브스카이트 막의 제조방법 및 이를 이용한 페로브스카이트 태양전지의 제조방법
WO2021040442A2 (ko) 레이저 기반 멀티인쇄장치 및 이를 이용한 표면 모폴로지가 제어된 대면적 페로브스카이트 박막의 제조방법
WO2012169696A1 (ko) 바코팅을 이용한 유기반도체 박막의 제조방법
WO2017176038A1 (ko) Basno3 박막 및 이의 저온 제조 방법
WO2023234601A1 (ko) 대면적 페로브스카이트 박막 형성용 코팅제 및 이를 이용한 대면적 페로브스카이트 박막 형성 방법
WO2023058983A1 (ko) 첨가제를 이용한 페로브스카이트 박막 제조 방법 및 장치
WO2022050704A1 (ko) 저온 용매화 공정을 포함하는 할라이드 페로브스카이트 단결정의 제조 방법
WO2020130561A1 (ko) 전하 전달층을 구비한 소자의 제조 방법
WO2021137407A1 (ko) 광전 디바이스, 및 상기 광전 디바이스의 제조 방법
CN114975799A (zh) 一种由p型材料协同掺杂和钝化锡基钙钛矿薄膜的方法及其应用
WO2013089305A1 (ko) 전자빔 조사를 이용한 몰리브덴 박막의 전도도 향상 방법
WO2021006554A2 (en) Perovskite compound containing divalent organic cation and device containing the same
WO2023167441A1 (ko) 고순도 세슘할라이드 제조방법 및 페로브스카이트 복합재
WO2023121020A1 (ko) 암모늄 염 처리된 금속산화물이 포함된 태양전지 및 이의 제조방법
US20240138246A1 (en) Preparation method and photoelectric device of tin-based perovskite thin film employing stress control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852491

Country of ref document: EP

Kind code of ref document: A1