WO2015101005A1 - 侧立磁场电机及应用其的散热风扇 - Google Patents

侧立磁场电机及应用其的散热风扇 Download PDF

Info

Publication number
WO2015101005A1
WO2015101005A1 PCT/CN2014/081965 CN2014081965W WO2015101005A1 WO 2015101005 A1 WO2015101005 A1 WO 2015101005A1 CN 2014081965 W CN2014081965 W CN 2014081965W WO 2015101005 A1 WO2015101005 A1 WO 2015101005A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
field motor
base
heat
thermal conductive
Prior art date
Application number
PCT/CN2014/081965
Other languages
English (en)
French (fr)
Inventor
杨成鹏
晁汐
李亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112016015445A priority Critical patent/BR112016015445A8/pt
Priority to EP14875931.9A priority patent/EP2985889B1/en
Publication of WO2015101005A1 publication Critical patent/WO2015101005A1/zh
Priority to US14/980,609 priority patent/US10079527B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/082Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit having provision for cooling the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/187Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to inner stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks

Definitions

  • the invention relates to a Chinese patent application filed on December 31, 2013 by the Chinese Patent Office, the application number is 201310753140.1, and the invention name is "side magnetic field motor and a cooling fan using the same". Priority is hereby incorporated by reference in its entirety.
  • the present invention relates to telecommunications equipment accessory technology, and more particularly to a side field magnetic motor and a cooling fan using the same. Background technique
  • FIG. 1 the heat dissipation fan of the side-mounted magnetic field motor is shown in FIG. 1 , which includes a fan frame 10 , a fan base 12 fixedly connected to the frame 10 via the support frame 11 , and a fan shaft 7 fixedly connected to the fan base 12 .
  • the seat 13 and the fan shaft 7 seat 13 are fixedly connected with a side vertical magnetic field motor for arranging and pressing the fan blades 14.
  • the side-standing magnetic field motor includes a motor base 15 fixedly coupled to the bearing housing 13 , and a stator (an iron steel sheet) is fixed on the motor base 15 ;
  • the stator includes a cylindrical body 161 , and a coil 162 wound on the body 161 is disposed on the body
  • An insulating sheet 163 is disposed between the body 161 and the coil 162 on the upper and lower end faces of the 161.
  • the coil 162 is bonded and fixed to the motor base 15 by means of glue filling, thereby completing the fixing of the stator.
  • a rotor is provided on the outer side of the stator.
  • the rotor includes a cylindrical casing 171.
  • the fan 171 is sleeved on the outer side of the casing 171, and the rotor magnet 172 is fixed on the inner side.
  • the rotor magnet 172 and the stator coil 162 have a certain gap.
  • the stator can drive the rotor to rotate due to the magnetic induction, so that the cooling fan works normally.
  • the heat generated by the coil is mainly dissipated through the gap between the stator and the rotor.
  • the gap between the stator and the rotor is usually small, resulting in a small air flow between the two, and therefore the heat dissipation efficiency by the above-mentioned gap is low. Summary of the invention
  • Embodiments of the present invention provide a side-standing magnetic field motor and a heat-dissipating fan using the same, to provide a motor capable of efficiently and quickly dissipating heat generated by a coil of a side-standing magnetic field motor.
  • a side field magnetic motor in a first aspect, includes a stator, the stator includes a body and a coil disposed on the body, the magnetic field motor further includes a base for fixing the stator, and the stator is provided with a heat transfer material a heat conducting structure; the heat conducting structure is in contact with and connected to the base.
  • the body is a cylindrical structure.
  • the heat conducting structure includes a heat conducting column disposed in the cylindrical body, and the first end of the heat conducting column is located inside the body, The second end protrudes from the body; the second end of the heat conducting column is inserted and fixed in the base.
  • the body is a cylindrical structure.
  • the thermally conductive column is cylindrical.
  • the heat conducting column and the body are connected by an interference fit; or, the heat conducting column and the body are The connection is fixed by welding.
  • the thermally conductive post and the housing are fixedly connected by soldering or gluing.
  • the plurality of heat conducting columns disposed in one body of the body are plurality, and the plurality of the heat conducting columns are along a circumferential direction of the body Row Cloth.
  • the heat conducting structure includes two first heat conducting frames, and the two first heat conducting frames are respectively located at upper and lower end faces of the stator body; Winding on the first heat conducting frame and the body; the first heat conducting frame located at the lower end surface of the body is fixedly connected to the base.
  • the body is a cylindrical structure.
  • the first heat conduction frame is an annular structure that matches the body.
  • the first heat conduction frame is coupled to the base screw; or the first heat conduction frame and the The base is glued and connected.
  • the first heat conducting frame and the base are filled with a heat conductive material.
  • the coil and the base are filled with a heat conductive material.
  • the coil includes a plurality of metal strips of a sheet structure arranged at intervals;
  • the heat conducting structure is an interconnecting board disposed between the stator and the base And the interconnecting plate is fixedly connected to the base;
  • each of the metal strips comprises two plate-like bodies, and the two strips are respectively attached to the inner and outer sidewalls of the body, two The first ends of the tabs are connected, and the second ends of the two tabs are electrically connected by an internal circuit of the interconnecting board, the metal strip and the circuit inside the interconnecting board Together, a conductive path of the coil is formed.
  • the body is a cylindrical structure
  • the interconnecting plate is a hollow disc-shaped structure; an outer diameter of the interconnecting board Greater than the diameter of the body; a plurality of the metal strips are arranged along the circumferential direction of the body.
  • the surface of the interconnecting board is fixedly provided with a pad, and the second ends of the two strips are respectively provided with an extended end fixedly connected to the pad; the pad and the extending end are Correspondingly, the interconnection board is internally provided with a circuit for connecting two of the pads corresponding to the two sheet-like bodies, and the two extended ends of each of the metal strips are fixed to each other independently On the pad; two of the tabs are in communication with a circuit inside the interconnect via a pad.
  • the interconnecting board and the base are fixedly connected by gluing.
  • the stator body further includes a second heat conducting frame, the second heat conducting frame top surface and the The bottom end surface of the body is fixedly connected, and the bottom end surface of the second heat conducting frame is in contact with the interconnecting plate.
  • the body is a cylindrical structure
  • the second heat conduction frame is an annular shape matching the cylindrical body. a structure; a side surface of the second heat conducting frame is in contact with the second end of the sheet body.
  • the interconnecting board is made of A1N ceramic material.
  • a heat dissipation fan in a second aspect, includes a fan frame, a fan base fixedly coupled to the fan frame through the support frame, and a fan blade, and further includes the above-mentioned device for driving the fan blade to rotate a side magnetic field motor; the base of the side magnetic field motor is fixedly connected to the fan base.
  • the base and the fan base are integrally formed.
  • the support frame is provided with heat dissipating teeth.
  • the side-standing magnetic field motor and the heat-dissipating fan using the same include a stator composed of a cylindrical body and a coil disposed on the body, the stator is fixed on the frame of the side-standing magnetic field motor, and the stator
  • the heat conducting structure is made of a heat conductive material, and the heat conducting structure is in contact with and connected to the base. According to the analysis, by providing a heat conducting structure made of a heat transfer material on the body and/or the coil, the heat generated during the working of the coil can be transferred to the heat conducting structure through the coil itself and/or the body, and then the heat is transferred.
  • the heat-conducting structure is made of a heat-transfer material, it has good thermal conductivity, and can ensure that the heat generated by the coil is transmitted to the frame through the heat-conducting structure in a timely and effective manner, thereby The heat is dissipated into the air through the base in time, which satisfies the heat dissipation requirement of the side magnetic field motor, improves the power density of the side magnetic field motor, and has high practicability.
  • FIG. 1 is a schematic structural view of a cooling fan in the prior art
  • FIG. 2 is a schematic structural view of a side-standing magnetic field motor and a cooling fan using the same according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing another structure of a side-standing magnetic field motor and a cooling fan using the same according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a stator of a side-standing magnetic field motor according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing another structure of a side-standing magnetic field motor and a cooling fan using the same according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a heat dissipation fan to which a side magnetic field motor is applied according to an embodiment of the present invention. detailed description
  • the embodiment of the present invention provides a side-standing magnetic field motor, as shown in FIG. 2, including a stator.
  • the stator includes a body 21 and a coil 22 disposed on the body 21.
  • the side-standing magnetic field motor further includes a base 23 for fixing the stator, and the stator
  • a heat conducting structure having a heat transfer material is disposed; the heat conducting structure is in contact with and connected to the frame 23.
  • the side-standing magnetic field motor provided by the embodiment of the invention includes a stator composed of a body and a coil disposed on the body, the stator is fixed on a frame of the side-standing magnetic field motor, and the stator is provided with a heat-transfer material A thermally conductive structure that is in contact with and connected to the housing. According to the analysis, by providing a heat conducting structure made of a heat transfer material on the body and/or the coil, the heat generated during the working of the coil can be transferred to the heat conducting structure through the coil itself and/or the body, and then the heat is transferred.
  • the heat-conducting structure is made of a heat-transfer material, it has good thermal conductivity, and can ensure that the heat generated by the coil is transmitted to the frame through the heat-conducting structure in a timely and effective manner, thereby The heat is dissipated into the air through the base in time, which satisfies the heat dissipation requirement of the side magnetic field motor, improves the power density of the side magnetic field motor, and has high practicability.
  • the position and manner of the heat-conducting structure on the stator are different, and the materials and structures used are different, but it is necessary to ensure that the heat-conducting structure is a material with good heat transfer performance.
  • the side-standing magnetic field motor is usually used in a heat-dissipating fan (side-standing magnetic field motor). Therefore, in order to facilitate the description of the heat-dissipating process of the side-standing magnetic field motor and its application scenario, the side-standing magnetic field motor and the heat dissipation thereof are applied.
  • a fan is an example.
  • the cooling fan includes a fan frame 24, and the fan base 26 is fixedly connected to the fan frame 24 through the support frame 25.
  • the fan base 26 is fixedly connected to the base 23, and the side magnetic field motor is used to connect the fan.
  • the blades (not shown in Figure 2) are capable of driving the fan blades to rotate.
  • the stator body 21 may be a silicon steel sheet having good electromagnetic properties, and the body 21 is generally a cylindrical structure, and may have a cylindrical structure, so that the coil 22 on the body 21 drives the fan blades to rotate.
  • the heat conducting structure includes a cylindrical heat conducting column 27 that is disposed in the cylindrical stator body 21.
  • the corresponding body 21 needs to be provided with a through hole for accommodating the heat conducting column 27, and the heat conducting column 27 is also It can be a structure such as a rectangular parallelepiped or a cone.
  • the first end of the heat conducting column 27 is located inside the body 21, and may be disposed coplanarly with the upper end surface of the body 21.
  • the second end of the heat conducting column 27 protrudes from the body 21, thereby The end can be inserted and fixed in the base 23.
  • the heat generated during the operation of the coil 22 is first transmitted to the body 21, and then transmitted to the heat transfer column 27 of the heat transfer material through the body 21, and then transmitted to the base 23 through the heat transfer column 27, and finally can be transmitted through the base 23.
  • a fan base 26 to which a fixed connection is made.
  • the heat in the fan base 26 can also be dissipated through the support frame 25, and in FIG. 2, the direction of the arrow is the cooling fan operation.
  • the flow direction of the air flow generated which can be seen that the air flow can take away the heat in the support frame 25 and the fan base 26 to achieve rapid heat dissipation.
  • the base 23, the fan base 26 and the support frame 25 can be selected from materials having good thermal conductivity, such as metal and ceramics. Moreover, heat dissipating teeth can be added to the support frame 25 according to the structural requirements, thereby improving the heat dissipation capability of the support frame 25.
  • the base 23 and the fan base 26 may be two parts and fixedly connected by welding, interference fit, etc., and the base 23 and the fan base 26 may be integrally formed for shortening the heat transfer path.
  • a plurality of heat conducting columns 27 may be disposed, so that the plurality of heat conducting columns 27 are equidistantly arranged along the circumferential direction of one body 21.
  • the arrangement of the coils 22 on the body 21 is generally equidistant and evenly arranged, so that the heat conducting columns 27 can be arranged between the connected coil groups to ensure the overall arrangement rationality, and the heat conducting columns 27 are hooked to transmit the coils 22 Heat, avoid local overheating.
  • the diameter of the heat-conducting column 27 can be set to a value corresponding to the thickness of the sidewall (the diameter is smaller than the thickness of the sidewall), and the gap is reduced by an interference fit between the two to ensure sufficient contact.
  • the heat conducting column 27 and the body 21 can also be fixed by welding, thereby ensuring no gap between the two, and the metal reduces the heat resistance of the heat dissipation, improves the heat transfer capability, and further improves the heat dissipation capability.
  • the heat conducting material is filled between the heat conducting column 27 and the inner wall of the through hole of the body 21, so that the heat conducting column 27 and the body are improved while the heat conducting column 27 is fixed. Heat transfer efficiency between 21.
  • the heat conducting column 27 can be fixed to the frame 23 by soldering, and the soldering can reduce the heat resistance of the heat dissipation and accelerate the heat dissipation.
  • the heat-conducting column 27 can also be fixedly connected by gluing, interference fit, or the like.
  • the heat conducting column 27 also needs to pass through the insulating sheet between the upper and lower end faces of the body 21 and the coil 22.
  • the heat dissipation path in FIG. 2 mainly transfers heat to the frame 23 through a plurality of heat conducting columns 27, and then is transmitted to the fan base 26, the support frame 25, etc., and the heat dissipation efficiency depends on the heat transfer efficiency of the heat transfer column 27, therefore, At this time, the base 23 and the fan base 26 can be fixedly connected.
  • the heat conducting structure includes two annular first heat conducting frames 31, and the two first heat conducting frames 31 are respectively located at upper and lower end faces of the stator body 21, and the coil 22 is wound on the upper and lower sides in the manner of the prior art.
  • the heat conducting frame 31 and the body 21 are as shown in FIG. It can be seen that the heat generated during the operation of the coil 22 is mainly transmitted to the body 21 through the coil 22, and then transmitted to the first heat conducting frame 31 at the lower end of the body 21 through the body 21, and then transmitted to the first heat conducting frame 31 fixed to the end.
  • the connected base 23; a part of the heat is directly transmitted to the first heat conducting frame 31 through the coil 22, and is transmitted to the base 23 through the first heat conducting frame 31 located at the lower end of the body 31.
  • the body 21 may have a cylindrical structure, and the first heat conducting frame 31 may be disposed in an annular shape matching the shape of the body 21.
  • the base 23 can be passed to the fan base 26 which is fixedly connected thereto.
  • the heat in the fan base 26 can also be dissipated through the support frame 25, and in FIG. 3, the direction of the arrow is the flow direction of the airflow generated when the cooling fan operates, thereby knowing that the airflow can support the support frame 25 and The heat in the fan base 26 is taken away for rapid heat dissipation.
  • the base 23, the fan base 26 and the support frame 25 can be selected from materials having good thermal conductivity, such as metal and ceramics. Moreover, heat dissipating teeth can be added to the support frame 25 to improve the heat dissipation capability of the support frame 25.
  • the base 23 and the fan base 26 may be two components and fixedly connected by welding, interference fit, etc.; or the base 23 and the fan base 26 may be integrally formed for shortening the heat transfer path; In the example, since the heat is mainly transmitted through the first heat conduction frame 31 located at the lower end of the body 21, in order to effectively shorten the heat transfer path, the frame 23 and the fan base 26 are integrally formed to accelerate the heat dissipation.
  • the first heat conducting frame 31 located at the lower end of the body 21 is fixed to the frame 23 by screwing or bonding, since the coil 22 is simultaneously wound on the first heat conducting frame 31, the coil 22 of the lower end region will be The base 23 is in contact, so that some of the heat generated by the coil 22 can be straight It is transmitted to the base 23 to improve the heat dissipation efficiency of the coil 22 through a multi-directional heat dissipation path.
  • the heat conductive material may be filled between the first heat transfer frame 31 and the base 23 without hindering the end.
  • a heat conductive material can be filled between the coil 22 and the base 23 to facilitate rapid heat transfer.
  • the first heat conducting frame 31 can be made of an A1N ceramic material with high thermal conductivity.
  • a plurality of uniformities may be disposed on the first heat conducting frame 31 of the lower end surface of the body 31 along a direction parallel to the center line of the body 31.
  • the columnar body 41 is arranged equidistantly, and the columnar body 41 is inserted into the base 23 and fixedly coupled to the base 23. At the same time, the columnar bodies 41 can also function as heat transfer.
  • the first heat conducting frame 31 located at the upper and lower end faces of the body 21 can also be directly used as an insulating sheet, and the first heat conducting frame 31 located at the upper end of the body 21 can also transfer heat. It can be dissipated through the gap between the stator and the rotor.
  • the first heat conducting frame 31 can be disposed at the lower end of the body 21, and the upper end still adopts an insulating sheet structure.
  • the method of shortening the heat transfer path is adopted, that is, the frame 23 and the fan base 26 are integrally formed, which can reduce the overall thickness and facilitate the rapid transfer of heat to the support frame, etc., and the method is simple and effective.
  • the base 23 may also be referred to as a fan base 26, or a base.
  • the heat dissipation efficiency can be improved by directly changing the structure of the coil 22, as shown in Fig. 5.
  • the coil 22 includes a plurality of strip-shaped strips of metal strips, and the heat conducting structure is an interconnecting plate 51 disposed between the stator and the base 23, the interconnecting plate 51 being fixedly coupled to the base 23.
  • the coil 22 composed of a metal strip has a larger cross-sectional area and a smaller electric resistance than the conventional coil 12 in the same circumferential length, so that the thermal conductivity is strong downward and the self-heating is small.
  • Each of the metal strips includes two mutually parallel sheet-like bodies, and the two sheet-like bodies are respectively attached to the inner and outer side walls of the body 21, and the first ends of the two sheet-like bodies are connected, and the second end passes Electrical connections are made to circuitry within the interconnector 51 such that the metal strips and circuitry within the interconnector 51 together form a conductive path for the coil 22.
  • the upper surface of the interconnecting board 51 may be provided with pads, and the second ends of the two sheet bodies are provided with extended ends fixedly connected to the pads.
  • the pads are arranged in one-to-one correspondence with the extending ends, that is, each metal strip includes two extending ends, and the two extending ends respectively have one pad, and the two extending ends are not directly connected.
  • each metal strip forms a similar "several" type structure
  • the sheet body can be vertically arranged, and the extended end is horizontally disposed perpendicular to the sheet body.
  • the pad may be fixed on the interconnecting plate 51 by electroplating or heat pressing, and the interconnecting plate is further provided with a circuit communicating with the pad, and the circuit may be disposed by electroplating or hot pressing.
  • the inside of the interconnecting board 51 is simultaneously connected to the pad by soldering so that the connection to the metal strip is required later.
  • the body 21 can be a cylindrical structure
  • the interconnecting plate 51 can be a hollow disk-like structure, and the outer diameter of the interconnecting plate 51 is larger than the diameter of the body 21, so that the interconnecting plate 51 can facilitate the carrying body 21, and is convenient. Fixed connection to the extension end.
  • each of the metal strips is fixed to the body 21 in the above manner, and at the same time, the plurality of metal strips are arranged equidistantly and evenly along the circumferential direction of the body 21.
  • a plurality of metal strips are arranged on the body 21 in a plurality of ways, and the manner in Fig. 5 is a more rational and tidy arrangement.
  • each metal strip is in communication with the circuit through its respective pads so that all of the metal strips and circuitry can together form the conductive path of the coil to facilitate connection of an external power source.
  • the circuits in the interconnecting board 51 are arranged in accordance with the wiring requirements of the coil conductive paths.
  • the interconnecting plate 51 can be fixed to the frame 23 by gluing, and the material of the interconnecting plate 51 can be A1N ceramic material.
  • the two sheets are respectively attached to the inner and outer faces of the side wall of the body 21, and the extended ends are fixed to the pads by soldering, thereby completing the fixing of the coil 22.
  • the heat generated by the coil 22 is directly transmitted to the pad through the coil 22, is transmitted to the interconnecting board 51 through the pad, and is transmitted to the base 23 through the interconnecting board 51.
  • the extended end of the metal strip is soldered to the pad, due to the solder
  • the presence of metal strips can also transfer heat between the solder and the interconnector, thereby accelerating the dissipation of heat from the coil 22.
  • the base 23 can be passed to the fan base 26 which is fixedly connected thereto.
  • the heat in the fan base 26 can also be dissipated through the support frame 25, and in FIG. 5, the direction of the arrow is the flow direction of the airflow generated when the cooling fan operates, thereby knowing that the airflow can support the support frame 25 and The heat in the fan base 26 is taken away for rapid heat dissipation.
  • the base 23, the fan base 26 and the support frame 25 can be selected from materials having good thermal conductivity, such as metal and ceramics. Moreover, heat dissipating teeth can be added to the support frame 25 to improve the heat dissipation capability of the support frame 25.
  • the base 23 and the fan base 26 may be two components and fixedly connected by welding, interference fit, etc.; or the base 23 and the fan base 26 may be integrally formed for shortening the heat transfer path; In the example, since heat is mainly transmitted through the interconnecting plate 51, in order to effectively shorten the heat transfer path, the base 23 and the fan base 26 are integrally formed to accelerate heat dissipation.
  • the second heat conduction frame 52 may be disposed on the upper and lower end surfaces of the body 21, and the second heat conduction frame 52 may be matched with the body 21.
  • the upper end surface of the second heat conducting frame 52 at the lower end of the body 21 is fixedly connected to the bottom surface of the body 21, and the lower end surface is in contact with and/or connected to the interconnecting plate 51, so that part of the heat of the coil 22 can be transmitted to the body through the body 21.
  • the second heat conducting frame 52 at the lower end of the body 21 is further transmitted to the interconnecting plate 51 through the second heat conducting frame 52 at the end, and then transmitted to the base 23 and the like for rapid heat dissipation.
  • the bottom end portion of the metal strip (the second end of the sheet body) is also in contact with the side surface of the second heat conducting frame 52 at the bottom end of the body 21, thereby increasing the heat transfer path. .
  • the second heat conducting frame 52 can replace the upper and lower end insulating sheets of the body 21.
  • the method of shortening the heat transfer path is adopted, that is, the frame 23 and the fan base 26 are integrally formed, which can reduce the overall thickness and facilitate the rapid transfer of heat to the support frame, etc., and the method is simple and effective.
  • the base 23 may also be referred to as a fan base 26, or a base.
  • the heat conduction structure shown in FIG. 2 to FIG. 5 can effectively improve the heat dissipation efficiency of the side field magnetic motor, and at the same time, the heat conduction structure as shown in FIG. 2 can be used.
  • Increasing the motor power density by 60% when using the heat-conducting structure shown in Figures 3 and 5, can increase the motor power density by 100%, and has high practicability.
  • the embodiment of the present invention further provides a heat dissipation fan, including a fan frame, a fan base fixedly connected to the fan frame through the support frame, and a fan blade, and a side magnetic field described in the above embodiment for driving the fan blade to rotate. Motor; The base of the side-standing magnetic field motor is fixedly connected to the fan base.
  • the side vertical magnetic field motor since the side magnetic field motor described in the above embodiment is used, the side vertical magnetic field motor includes a stator composed of a cylindrical body and a coil provided on the body, and the stator is fixed at The base of the side magnetic field motor is provided with a heat conducting structure made of a heat conductive material, and the heat conducting structure is in contact with and connected to the base.
  • a heat conducting structure made of a heat transfer material on the body and/or the coil, the heat generated during the working of the coil can be transferred to the heat conducting structure through the coil itself and/or the body, and then the heat is transferred.
  • the heat-conducting structure is made of a heat-transfer material, it has good thermal conductivity, and can ensure that the heat generated by the coil is transmitted to the frame through the heat-conducting structure in a timely and effective manner, thereby The heat is dissipated into the air through the base in time, which satisfies the heat dissipation requirement of the side magnetic field motor, improves the power density of the side magnetic field motor, and has high practicability.
  • the base and the fan base can be fixedly connected by welding or interference fit; or, the base and the fan base are integrally formed, and if the latter is selected, the heat transfer path can be shortened.
  • a different connection structure between the base and the fan base can be selected, which is widely used, and the selection manner has been described in the above embodiments, and will not be described again.
  • the support frame may be provided with a heat dissipating tooth structure to accelerate the dissipation of heat at the position of the support frame, thereby improving the overall heat dissipation efficiency.
  • the heat sink structure can be set as needed.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicit indication of the number of technical features indicated. Thus, there is a limit of "first”,
  • the "second” feature may include one or more of the features explicitly or implicitly.
  • “multiple” means two or more unless otherwise stated.
  • connection should be understood broadly, and may be either fixed or detachable, unless explicitly stated or defined otherwise.
  • Connected, or connected integrally can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种侧立磁场电机及应用该电机的散热风扇,涉及电信设备配件技术,以提供一种能够将侧立磁场电机的线圈产生的热量有效、快速散发出去的电机。所述侧立磁场电机包括定子,定子包括本体(21)及设在本体(21)上的线圈(22),所述磁场电机还包括固定所述定子的机座(23),所述定子上设有具有传热材质的导热结构(27);所述导热结构与所述机座(23)相接触并连接。所述风扇(61)包括风扇框体、通过支撑架(25)与风扇框体固定连接的风扇底座(26)、风扇叶片及所述侧立磁场电机,侧立磁场电机的机座(23)与风扇底座(26)固定连接。

Description

侧立磁场电机及应用其的散热风扇 本申请要求于 2013 年 12 月 31 日提交中国专利局、 申请号为 201310753140.1、 发明名称为 "侧立磁场电机及应用其的散热风扇" 的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电信设备配件技术, 尤其涉及一种侧立磁场电机及应用其的 散热风扇。 背景技术
随着社会科技的发展, 电信设备的功耗不断提升, 与此同时, 为了保证 设备的正常运行, 需要满足设备的散热要求, 因此高转速的散热风扇应用而 生, 相应的, 散热风扇的转速越高, 其所需要的电机功率密度越高。
以目前高效的侧立磁场电机为例, 其通常为侧立设置, 且能够在较小的 空间内实现较大的功率输出, 实用性高。 具体地, 如图 1 所示的应用了侧立 磁场电机的散热风扇, 包括风扇框体 10, 通过支撑架 11与框体 10固定连接 的风扇底座 12, 风扇底座 12上固定连接有风扇轴 7 座 13 , 风扇轴 7 座 13上 固定连接有用于套设并压装风扇叶片 14的侧立磁场电机。 其中, 侧立磁场电 机包括与轴承座 13固定连接的电机底座 15 , 电机底座 15上固定有定子(矽 钢片 ); 该定子包括筒状本体 161 ,缠绕在本体 161上的线圈 162,在本体 161 的上下端面上、 本体 161与线圈 162之间设有绝缘片 163 , 线圈 162通过灌胶 的方式粘接固定在电机底座 15上, 从而完成定子的固定。 在定子外侧, 设有 转子, 该转子包括筒状壳体 171 , 壳体 171外侧套设风扇叶片 14、 内侧固定 有转子磁铁 172, 转子磁铁 172与定子线圈 162之间具有一定间隙。 当给线圈 162通电后, 由于磁感应的作用, 定子能够带动转子转动, 从而使散热风扇正 常工作。 现有技术中, 线圈产生的热量主要通过定子与转子之间的间隙散发出去。 通常, 为了保证磁电感应效果, 通常定子与转子之间的间隙较小, 导致两者 之间的气流量较小, 因此通过上述间隙进行散热的散热效率较低。 发明内容
本发明的实施例提供一种侧立磁场电机及应用其的散热风扇, 以提供一 种能够将侧立磁场电机的线圈产生的热量有效、 快速散发出去的电机。
为达到上述目的, 本发明的实施例采用如下技术方案:
第一方面, 一种侧立磁场电机, 包括定子, 定子包括本体及设在本体上 的线圈, 所述磁场电机还包括固定所述定子的机座, 所述定子上设有具有传 热材质的导热结构; 所述导热结构与所述机座相接触并连接。
在第一方面的第一种可能的实现方式中, 所述本体为筒状结构。
结合第一种可能实现的方式, 在第二种可能实现的方式中, 所述导热结 构包括穿设在所述筒状本体中的导热柱, 所述导热柱第一端位于所述本体内 部、 第二端凸出于所述本体外; 所述导热柱的第二端插入并固定在所述机座 中。
结合第二种可能实现的方式, 在第三种可能实现的方式中, 所述本体为 圓筒状结构。
结合第二种和第三种可能实现的方式, 在第四种可能实现的方式中, 所 述导热柱为圓柱状结构。
结合第二种和第三种可能实现的方式, 在第五种可能实现的方式中, 所 述导热柱与所述本体之间为过盈配合连接; 或, 所述导热柱与所述本体之间 通过焊接固定连接。
结合第二种和第三种可能实现的方式, 在第六种可能实现的方式中, 所 述导热柱与所述机座之间通过焊接或胶粘方式固定连接。
结合第三种可能实现的方式, 在第七种可能实现的方式中, 所述穿设在 一个所述本体内的导热柱为多个, 且多个所述导热柱沿所述本体周向方向排 布。
在第一方面的第八种可能的实现方式中, 所述导热结构包括两个第一导 热架, 两个所述第一导热架分别位于所述定子本体的上、 下端面; 所述定子 线圈缠绕在所述第一导热架与所述本体上; 位于所述本体下端面的所述第一 导热架与所述机座固定连接。
结合第八种可能实现的方式, 在第九种可能实现的方式中, 所述本体为 圓筒状结构。
结合第九种可能实现的方式, 在第十种可能实现的方式中, 所述第一导 热架为与所述本体相匹配的圓环状结构。
结合第八种至第十种可能实现的方式, 在第十一种可能实现的方式中, 所述第一导热架与所述机座螺钉配合连接; 或, 所述第一导热架与所述机座 胶粘配合连接。
结合第八种至第十种可能实现的方式, 在第十二种可能实现的方式中, 所述第一导热架与所述机座之间填充有导热材料。
结合第八种至第十种可能实现的方式, 在第十三种可能实现的方式中, 所述线圈与所述机座之间填充有导热材料。
在第一方面的第十四种可能的实现方式中, 所述线圈包括多个间隔设置 的片状结构的金属条; 所述导热结构为设于所述定子与机座之间的互连板, 且所述互连板与所述机座固定连接; 每个所述金属条包括两个片状体, 两个 所述片状体分别贴附在所述本体的内、 外侧壁上, 两个所述片状体的第一端 相连接, 两个所述片状体的第二端通过所述互连板内部的电路实现电连接, 所述金属条与所述互连板内部的电路共同形成所述线圈的导电通路。
结合第十四种可能实现的方式, 在第十五种可能实现的方式中, 所述本 体为圓筒状结构, 所述互连板为中空圓盘状结构; 所述互连板的外直径大于 所述本体直径; 多个所述金属条沿所述本体周向方向排布。
结合第十四种和第十五种可能实现的方式, 在第十六种可能实现的方式 中, 所述互连板上表面固定设有焊盘, 两个所述片状体的第二端均设有与所 述焊盘固定连接的延伸端; 所述焊盘与所述延伸端——对应设置, 所述互连 板内部设有将所述两个片状体对应的两个所述焊盘相连通的电路, 每个所述 金属条的两个延伸端彼此独立地固定在各自的所述焊盘上; 两个所述片状体 通过焊盘与所述互连板内部的电路相连通。
结合第十四种和第十五种可能实现的方式, 在第十七种可能实现的方式 中, 所述互连板与所述机座之间通过胶粘的方式固定连接。
结合第十四种和第十五种可能实现的方式, 在第十八种可能实现的方式 中, 所述定子本体上还设有第二导热架, 所述第二导热架顶端面与所述本体 底端面固定连接、 所述第二导热架底端面与所述互连板相接触。
结合第十八种可能实现的方式, 在第十九种可能实现的方式中, 所述本 体为圓筒状结构, 所述第二导热架为与所述圓筒状本体相匹配的圓环状结构; 所述第二导热架的侧表面与所述片状体的第二端相接触。
结合第十七种可能实现的方式, 在第二十种可能实现的方式中, 所述互 连板为 A1N陶瓷材质。
第二方面, 一种散热风扇, 包括风扇框体、 通过支撑架与风扇框体固定 连接的风扇底座, 及风扇叶片, 其特征在于, 还包括用于驱动所述风扇叶片 转动的上述所述的侧立磁场电机; 所述侧立磁场电机的机座与所述风扇底座 固定连接。
在第二方面的第一种可能的实现方式中, 所述机座与所述风扇底座为一 体成型结构。
结合第一种可能实现的方式, 在第二种可能实现的方式中, 所述支撑架 上设有散热齿。
本发明实施例提供的侧立磁场电机及应用其的散热风扇中, 包括有由筒 状本体及设在本体上的线圈构成的定子, 该定子固定在侧立磁场电机的机座 上, 且定子上设有导热材质制成的导热结构, 该导热结构与机座接触并连接。 由此分析可知, 通过在本体和 /或线圈上设置由传热材质制成的导热结构, 能 够将线圈工作过程中产生的热量通过线圈自身和 /或本体传递到导热结构中, 再将热量传递到与导热结构相接触并连接的机座中, 由于导热结构由传热材 质制成, 具有良好的导热性能, 能够保证将线圈产生的热量及时、 有效地通 过导热结构传递到机座中, 从而通过机座及时将热量散发到空气中, 满足了 侧立磁场电机的散热需求, 提高了侧立磁场电机的功率密度, 实用性高。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中 所需要使用的附图作简单地介绍。
图 1为现有技术中散热风扇的结构示意图;
图 2 为本发明实施例提供的一种侧立磁场电机及应用其的散热风扇结构 示意图;
图 3 为本发明实施例提供的另一种侧立磁场电机及应用其的散热风扇结 构示意图;
图 4为本发明实施例提供的另一种侧立磁场电机的定子结构示意图; 图 5 为本发明实施例提供的又一种侧立磁场电机及应用其的散热风扇结 构示意图;
图 6为本发明实施例提供的应用了侧立磁场电机的散热风扇结构示意图。 具体实施方式
下面结合附图对本发明实施例侧立磁场电机进行详细描述。
本发明实施例提供一种侧立磁场电机, 如图 2 所示, 包括定子, 定子包 括本体 21及设在本体 21上的线圈 22 , 侧立磁场电机还包括固定定子的机座 23 ,定子上设有具有传热材质的导热结构;导热结构与机座 23相接触并连接。
本发明实施例提供的侧立磁场电机中, 包括有由本体及设在本体上的线 圈构成的定子, 该定子固定在侧立磁场电机的机座上, 且定子上设有传热材 质制成的导热结构, 该导热结构与机座接触并连接。 由此分析可知, 通过在 本体和 /或线圈上设置由传热材质制成的导热结构, 能够将线圈工作过程中产 生的热量通过线圈自身和 /或本体传递到导热结构中, 再将热量传递到与导热 结构相接触并连接的机座中, 由于导热结构由传热材质制成, 具有良好的导 热性能, 能够保证将线圈产生的热量及时、 有效地通过导热结构传递到机座 中, 从而通过机座及时将热量散发到空气中, 满足了侧立磁场电机的散热需 求, 提高了侧立磁场电机的功率密度, 实用性高。
其中, 导热结构在定子上的设置位置和方式不同, 其所采用的材质、 结 构等也不同, 但需要保证导热结构为传热性能良好的材质。
此外, 侧立磁场电机通常用于散热风扇 (侧立式磁场电机) 中, 因此, 为了便于说明本实施中侧立磁场电机的散热过程及其应用场景, 以侧立磁场 电机及应用其的散热风扇为例。 如图 2 所示, 其中, 散热风扇包括风扇框体 24, 通过支撑架 25与风扇框体 24固定连接的风扇底座 26, 风扇底座 26与机 座 23固定连接, 侧立磁场电机用于连接风扇叶片 (图 2中未示出 ) , 从而能 够驱动风扇叶片转动。 在实际应用时, 定子本体 21可以为电磁性能良好的矽 钢片, 且本体 21通常为筒状结构, 可以为圓筒状结构, 便于本体 21上的线 圈 22驱动风扇叶片转动。
具体地, 如图 2所示, 导热结构包括穿设在圓筒状定子本体 21中的圓柱 状导热柱 27, 相应的本体 21上需要设置容纳该导热柱 27的通孔, 且导热柱 27也可以为长方体、 锥形体等结构。 图 2中, 为了保证定子结构的整体性, 导热柱 27的第一端位于本体 21内部, 可以与本体 21上端面共面设置, 导热 柱 27的第二端凸出于本体 21夕卜, 从而该端能够插入并固定在机座 23中。 由 此可知, 线圈 22工作过程中产生的热量首先传递给本体 21 , 再通过本体 21 传递给传热材质的导热柱 27, 进而通过导热柱 27传递给机座 23 , 最后通过 机座 23能够传递给与之固定连接的风扇底座 26。 图 2中, 风扇底座 26中的 热量还能够通过支撑架 25进行散发, 且在图 2中, 箭头方向为散热风扇工作 时产生的气流流动方向, 由此可知, 该气流能够将支撑架 25 和风扇底座 26 中的热量带走, 达到快速散热的目的。
其中, 机座 23、 风扇底座 26及支撑架 25均可以选用导热性能良好的材 质, 例如金属、 陶瓷等。 且支撑架 25上可以根据结构要求增设散热齿, 从而 提高支撑架 25的散热能力。 其中, 机座 23与风扇底座 26可以为两个部件, 并通过焊接、 过盈配合等方式固定连接; 也可以为了缩短热传递路径, 将机 座 23与风扇底座 26—体成型设置。
在实际应用时, 为了提高导热柱 27对热量的传递作用, 可以设置多个导 热柱 27, 从而多个导热柱 27沿一个本体 21的周向方向等距、 均勾排布。 其 中, 线圈 22在本体 21上的布置方式通常为等距、 均勾排布, 因此可以将导 热柱 27设在相连线圈组之间, 保证整体布置合理性, 且导热柱 27均勾传递 线圈 22的热量, 避免局部过热的现象。
进一步地, 为了提高本体 21与导热柱 27之间的热交换, 通常可以增大 两者之间的接触面积, 同时保证两者之间为无缝隙接触。 具体地, 根据本体 21的侧壁厚度, 可以将导热柱 27的直径设为与侧壁厚度相符的数值(直径小 于侧壁厚度) , 同时两者之间通过过盈配合减小缝隙, 保证充分接触。 其中, 导热柱 27与本体 21之间也可以为焊接方式固定, 从而保证两者之间无缝隙 , 且金属降低了散热的热阻, 提高传热能力, 进而提高散热能力。
另外, 也可以在导热柱 27穿设入本体 21中之后, 通过在导热柱 27与本 体 21通孔内壁之间填充导热材料, 从而在完成导热柱 27的固定的同时, 提 高导热柱 27与本体 21之间的热传递效率。
导热柱 27可以通过焊接的方式固定在机座 23上, 焊接能够减小散热的 热阻, 加速散热。 当然, 导热柱 27也可以采用胶粘、 过盈配合连接等固定连 接。
此处需要说明的是, 图 2中, 导热柱 27还需要穿设过本体 21上下端面 与线圈 22之间的绝缘片。 图 2中的散热途径主要通过多个导热柱 27及时将热量传递到机座 23 ,进 而传递到风扇底座 26、 支撑架 25上等, 其散热效率取决于导热柱 27的传热 效率, 因此, 此时机座 23与风扇底座 26可以采用固定连接的方式。 当然, 也可以通过图 3所示的导热结构, 具体如下。
图 3中, 导热结构包括两个环状第一导热架 31 , 两个第一导热架 31分别 位于定子本体 21 的上、 下端面, 且线圈 22按现有技术中的方式缠绕在上下 第一导热架 31与本体 21上, 如图 3所示。 由此可知, 线圈 22工作过程中产 生的热量主要通过线圈 22传递给本体 21 , 再通过本体 21传递给位于本体 21 下端的第一导热架 31 , 进而传递给与该端第一导热架 31固定连接的机座 23 ; 还有一部分热量通过线圈 22直接传递给第一导热架 31 , 在通过位于本体 31 下端的第一导热架 31传递给机座 23。 图 3中, 本体 21可以为圓筒状结构, 则第一导热架 31可以设置为与本体 21形状相匹配的圓环状。
最后通过机座 23能够传递给与之固定连接的风扇底座 26。 图 3中, 风扇 底座 26中的热量还能够通过支撑架 25进行散发, 且在图 3中, 箭头方向为 散热风扇工作时产生的气流流动方向, 由此可知, 该气流能够将支撑架 25和 风扇底座 26中的热量带走, 达到快速散热的目的。
其中, 机座 23、 风扇底座 26及支撑架 25均可以选用导热性能良好的材 质, 例如金属、 陶瓷等。 且支撑架 25上可以增设散热齿, 从而提高支撑架 25 的散热能力。 其中, 机座 23与风扇底座 26可以为两个部件, 并通过焊接、 过盈配合等方式固定连接; 也可以为了缩短热传递路径, 将机座 23与风扇底 座 26 —体成型设置; 本实施例中由于主要通过位于本体 21下端的第一导热 架 31传递热量, 从而为了有效缩短热传递路径, 将机座 23与风扇底座 26— 体成型设置, 以加快热量的散发。
当通过螺钉连接或粘接配合的方式将位于本体 21 下端的第一导热架 31 固定在机座 23上时, 由于线圈 22同时缠绕在第一导热架 31上, 因此下端区 域的线圈 22会与机座 23相接触, 从而线圈 22产生的热量还有一部分能够直 接传递给机座 23 , 从而通过多方位的散热途径, 提高线圈 22的散热效率。 为了进一步提高位于本体 21下端的第一导热架 31 的传热效率, 可以在 不妨碍该端第一导热架 31 的与机座 23 固定的同时, 在两者之间填充导热材 料。 同时, 还可以在线圈 22与机座 23之间填充导热材料, 便于热量快速的 传递。 其中, 第一导热架 31可以采用导热性能很强的 A1N陶瓷材料。
为了进一步保证第一导热架 31与机座 23的连接稳定性, 如图 4所示, 可以在本体 31下端面的第一导热架 31上, 沿平行于本体 31中心线方向设置 多个均匀、 等距排布的柱状体 41 , 该柱状体 41与穿设在机座 23中并与机座 23固定连接。 同时, 该些柱状体 41还能够起到传热的作用。
此处需要说明的是, 图 3中, 位于本体 21上下端面的第一导热架 31也 可以直接作为绝缘片使用, 此时位于本体 21上端的第一导热架 31也能够传 热, 该部分热量能够通过定子与转子之间的间隙散发。 当然, 可以在本体 21 下端设置第一导热架 31 , 上端仍然采用绝缘片结构。
其中, 图 3中采用缩短热传递路径的方式, 即机座 23与风扇底座 26— 体成型设置, 可以减小整体厚度, 便于热量快速传递到支撑架上等, 该种方 式实施简单, 有效。 此时, 机座 23也可以称为风扇底座 26, 或底座。
在应用磁场电机时, 由于主要的发热源为线圈 22, 则可以通过直接改变 线圈 22的结构来提高其散热效率, 具体如图 5所示。
图 5中, 线圈 22包括多个间隔设置的条状结构的金属条, 导热结构则为 设于定子与机座 23之间的互连板 51 ,该互连板 51与机座 23固定连接。其中, 由金属条构成的线圈 22相比传统绕制线圈 22, 在相同周向长度下,金属条的 截面面积大, 电阻小, 从而其向下导热能力强, 自身发热也小。 其中, 每个 金属条包括两个相互平行的片状体, 两个片状体分别贴附在本体 21的内、 外 侧壁上, 且两个片状体第一端相连接, 第二端通过与互连板 51内部的电路实 现电连接, 从而使金属条和互连板 51 内部的电路共同形成线圈 22的导电通 路。 具体地, 互连板 51上表面可以设有焊盘, 而两个片状体的第二端设有与 焊盘固定连接的延伸端。 其中焊盘与延伸端一一对应设置, 即每个金属条包 括有两个延伸端, 两个延伸端则分别对应有一个焊盘, 且两个延伸端之间不 直接相连。 这其中, 每个金属条的两个延伸端间隔、 相背设置, 从而使每个 金属条构成类似 "几" 型结构, 片状体可以竖直设置、 延伸端则垂直于片状 体水平设置。 图 5中, 焊盘可以通过电镀或热压的方式固定在互连板 51上, 且互连板内部还设有与焊盘相连通的电路, 该电路可以通过电镀或热压的方 式设在互连板 51内部, 同时通过焊接的方式与焊盘相连, 以便后需要与金属 条的连接。
将两个片状体分别贴附在本体 21的内、 外侧壁时, 两个片状体相连接的 端部与本体 21的顶端面相贴合, 此时要求该端部的长度 (两个片状体之间的 距离) 与本体 12的厚度相一致。 图 5中, 本体 21可以为圓筒状结构, 则互 连板 51可以为中空圓盘状结构, 且互连板 51的外直径大于本体 21直径, 从 而互连板 51便于承载本体 21、 便于与延伸端固定连接。 图 5中, 每个金属条 按上述方式固定在本体 21上, 同时, 多个金属条沿本体 21周向方向等距、 均匀排布。 当然, 多个金属条在本体 21上的排列方式有多种, 图 5中的方式 为较合理、 外观性较整齐的一种布置方式。
在金属条贴附完成之后, 每个金属条均通过各自的焊盘与电路相连通, 从而所有的金属条与电路能够共同构成线圈的导电通路, 以便于连接外接电 源。 其中, 互连板 51内的电路需按照线圈导电通路的连线要求布置。 互连板 51可以通过胶粘的方式固定在机座 23上, 且互连板 51的材质可以为 A1N陶 瓷材料。
两个片状体分别贴附在本体 21侧壁的内、 外侧面上, 再将延伸端通过焊 接的方式固定在焊盘上, 从而完成线圈 22的固定。 由此可知, 线圈 22产生 的热量主要通过线圈 22直接传递给焊盘, 再通过焊盘传递到互连板 51 , 再通 过互连板 51传递给机座 23。 其中, 金属条的延伸端与焊盘焊接时, 由于焊料 的存在, 金属条也可以通过焊料与互连板之间传递热量, 从而加快线圈 22热 量的散发。
最后通过机座 23能够传递给与之固定连接的风扇底座 26。 图 5中, 风扇 底座 26中的热量还能够通过支撑架 25进行散发, 且在图 5中, 箭头方向为 散热风扇工作时产生的气流流动方向, 由此可知, 该气流能够将支撑架 25和 风扇底座 26中的热量带走, 达到快速散热的目的。
其中, 机座 23、 风扇底座 26及支撑架 25均可以选用导热性能良好的材 质, 例如金属、 陶瓷等。 且支撑架 25上可以增设散热齿, 从而提高支撑架 25 的散热能力。 其中, 机座 23与风扇底座 26可以为两个部件, 并通过焊接、 过盈配合等方式固定连接; 也可以为了缩短热传递路径, 将机座 23与风扇底 座 26 —体成型设置; 本实施例中由于主要通过互连板 51传递热量, 为了有 效缩短热传递路径, 将机座 23与风扇底座 26 —体成型设置, 以加快热量的 散发。
图 5中, 为了拓展线圈 22的散热途径, 即通过本体 21进行部分热量的 散发, 也可以在本体 21的上下端面设置第二导热架 52 , 该第二导热架 52可 以为与本体 21相匹配的圓环状结构。 其中位于本体 21下端的第二导热架 52 的上端面与本体 21底断面固定连接、下端面则与互连板 51相接触和 /或连接, 从而线圈 22的部分热量能够通过本体 21传递到位于本体 21下端的第二导热 架 52 , 再通过该端第二导热架 52传递给互连板 51 , 进而传递给机座 23等进 行快速的热量散发。 另外, 由于金属条采用贴附方式, 因此金属条的底端部 分(片状体的第二端)还会与位于本体 21底端的第二导热架 52的侧表面相 接触, 增加了传热路径。
此处需要说明的是, 第二导热架 52可以代替本体 21 上下端面绝缘片。 其中, 图 5中采用缩短热传递路径的方式, 即机座 23与风扇底座 26—体成 型设置, 可以减小整体厚度, 便于热量快速传递到支撑架上等, 该种方式实 施简单, 有效。 此时, 机座 23也可以称为风扇底座 26, 或底座。 通常, 相比现有技术中的侧立磁场电机, 采用如图 2至图 5所示的导热 结构, 能够有效提高侧立磁场电机的散热效率, 同时采用如图 2 所示的导热 结构, 能够提高 60%的电机功率密度, 在采用图 3和图 5所示的导热结构时, 能够提高 100%的电机功率密度, 实用性高。
本发明实施例还提供一种散热风扇, 包括风扇框体、 通过支撑架与风扇 框体固定连接的风扇底座, 及风扇叶片, 还包括用于驱动风扇叶片转动的上 述实施例描述的侧立磁场电机; 侧立磁场电机的机座与风扇底座固定连接。
本发明实施例还提供的散热风扇中, 由于使用了上述实施例描述的侧立 磁场电机, 该侧立磁场电机包括有由筒状本体及设在本体上的线圈构成的定 子, 该定子固定在侧立磁场电机的机座上, 且定子上设有导热材质制成的导 热结构, 该导热结构与机座接触并连接。 由此分析可知, 通过在本体和 /或线 圈上设置由传热材质制成的导热结构, 能够将线圈工作过程中产生的热量通 过线圈自身和 /或本体传递到导热结构中, 再将热量传递到与导热结构相接触 并连接的机座中, 由于导热结构由传热材质制成, 具有良好的导热性能, 能 够保证将线圈产生的热量及时、 有效地通过导热结构传递到机座中, 从而通 过机座及时将热量散发到空气中, 满足了侧立磁场电机的散热需求, 提高了 侧立磁场电机的功率密度, 实用性高。
其中, 机座与风扇底座之间可以通过焊接或过盈配合固定连接; 或, 机 座与风扇底座为一体成型结构, 如果选择为后者, 能够缩短传热路径。 根据 侧立磁场电机不同的导热结构, 可以选择机座与风扇底座不同的连接结构, 应用广泛, 且该种选择方式在上述实施例中已进行描述, 再次不在赘述。
进一步地, 支撑架上可以设有散热齿结构, 从而加快热量在支撑架位置 处的散发, 从而提高整体散热效率。 散热齿结构可以根据需要而设定。
其中, 图 6为应用了侧立磁场电机 62的散热风扇 61。
在本发明的描述中, 需要理解的是, 术语 "中心" 、 "上" 、 "下" 、 "前" 、 "后" 、 "左" 、 "右" 、 "竖直" 、 "水平" 、 "顶" 、 "底" 、 "内" 、 "外" 等指示的方位或位置关系为基于附图所示的方位或位置关系, 仅是为了便于描述本发明和简化描述, 而不是指示或暗示所指的装置或元件 必须具有特定的方位、 以特定的方位构造和操作, 因此不能理解为对本发明 的限制。
术语 "第一" 、 "第二" 仅用于描述目的, 而不能理解为指示或暗示相 对重要性或者隐含指明所指示的技术特征的数量。 由此, 限定有 "第一" 、
"第二" 的特征可以明示或者隐含地包括一个或者更多个该特征。 在本发明 的描述中, 除非另有说明, "多个" 的含义是两个或两个以上。
在本发明的描述中, 需要说明的是, 除非另有明确的规定和限定, 术语 "安装" 、 "相连" 、 "连接" 应做广义理解, 例如, 可以是固定连接, 也 可以是可拆卸连接, 或一体地连接; 可以是机械连接, 也可以是电连接; 可 以是直接相连, 也可以通过中间媒介间接相连, 可以是两个元件内部的连通。 对于本领域的普通技术人员而言, 可以具体情况理解上述术语在本发明中的 具体含义。
在本说明书的描述中, 具体特征、 结构、 材料或者特点可以在任何的一 个或多个实施例或示例中以合适的方式结合。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权利 要求 书
1、 一种侧立磁场电机, 包括定子, 定子包括本体及设在本体上的线圈, 其 特征在于, 所述磁场电机还包括固定所述定子的机座, 所述定子上设有具有传 热材质的导热结构;
所述导热结构与所述机座相接触并连接。
2、 根据权利要求 1所述的侧立磁场电机, 其特征在于, 所述本体为筒状结 构。
3、 根据权利要求 2所述的侧立磁场电机, 其特征在于, 所述导热结构包括 穿设在所述筒状本体中的导热柱, 所述导热柱第一端位于所述本体内部、 第二 端凸出于所述本体外;
所述导热柱的第二端插入并固定在所述机座中。
4、 根据权利要求 3所述的侧立磁场电机, 其特征在于, 所述本体为圓筒状 结构。
5、 根据权利要求 3或 4所述的侧立磁场电机, 其特征在于, 所述导热柱为 圓柱状结构。
6、 根据权利要求 3或 4所述的侧立磁场电机, 其特征在于, 所述导热柱与 所述本体之间为过盈配合连接;
或, 所述导热柱与所述本体之间通过焊接固定连接。
7、 根据权利要求 3或 4所述的侧立磁场电机, 其特征在于, 所述导热柱与 所述机座之间通过焊接或胶粘方式固定连接。
8、 根据权利要求 4所述的侧立磁场电机, 其特征在于, 所述穿设在一个所 述本体内的导热柱为多个, 且多个所述导热柱沿所述本体周向方向排布。
9、 根据权利要求 1所述的侧立磁场电机, 其特征在于, 所述导热结构包括 两个第一导热架, 两个所述第一导热架分别位于所述定子本体的上、 下端面; 所述定子线圈缠绕在所述第一导热架与所述本体上;
位于所述本体下端面的所述第一导热架与所述机座固定连接。
10、 根据权利要求 9 所述的侧立磁场电机, 其特征在于, 所述本体为圓筒 状结构。
11、 根据权利要求 10所述的侧立磁场电机, 其特征在于, 所述第一导热架 为与所述本体相匹配的圓环状结构。
12、 根据权利要求 9-11任一项所述的侧立磁场电机, 其特征在于, 所述第 一导热架与所述机座螺钉配合连接;
或, 所述第一导热架与所述机座胶粘配合连接。
13、 根据权利要求 9-11任一项所述的侧立磁场电机, 其特征在于, 所述第 一导热架与所述机座之间填充有导热材料。
14、 根据权利要求 9-11任一项所述的侧立磁场电机, 其特征在于, 所述线 圈与所述机座之间填充有导热材料。
15、 根据权利要求 1 所述的侧立磁场电机, 其特征在于, 所述线圈包括多 个间隔设置的片状结构的金属条; 所述导热结构为设于所述定子与机座之间的 互连板, 且所述互连板与所述机座固定连接;
每个所述金属条包括两个片状体, 两个所述片状体分别贴附在所述本体的 内、 外侧壁上, 两个所述片状体的第一端相连接, 两个所述片状体的第二端通 过所述互连板内部的电路实现电连接, 所述金属条与所述互连板内部的电路共 同形成所述线圈的导电通路。
16、 根据权利要求 15所述的侧立磁场电机, 其特征在于, 所述本体为圓筒 状结构, 所述互连板为中空圓盘状结构; 所述互连板的外直径大于所述本体直 径;
多个所述金属条沿所述本体周向方向排布。
17、 根据权利要求 15或 16所述的侧立磁场电机, 其特征在于, 所述互连 板上表面固定设有焊盘, 两个所述片状体的第二端均设有与所述焊盘固定连接 的延伸端; 所述焊盘与所述延伸端——对应设置, 所述互连板内部设有将所述 两个片状体对应的两个所述焊盘相连通的电路, 每个所述金属条的两个延伸端 彼此独立地固定在各自的所述焊盘上; 两个所述片状体通过焊盘与所述互连板 内部的电路相连通。
18、 根据权利要求 15或 16所述的侧立磁场电机, 其特征在于, 所述互连 板与所述机座之间通过胶粘的方式固定连接。
19、 根据权利要求 15或 16所述的侧立磁场电机, 其特征在于, 所述定子 本体上还设有第二导热架, 所述第二导热架顶端面与所述本体底端面固定连接、 所述第二导热架底端面与所述互连板相接触。
20、 根据权利要求 19所述的侧立磁场电机, 其特征在于, 所述本体为圓筒 状结构, 所述第二导热架为与所述圓筒状本体相匹配的圓环状结构; 所述第二 导热架的侧表面与所述片状体的第二端相接触。
21、 根据权利要求 18 所述的侧立磁场电机, 其特征在于, 所述互连板为 A1N陶瓷材质。
22、 一种散热风扇, 包括风扇框体、 通过支撑架与风扇框体固定连接的风 扇底座, 及风扇叶片, 其特征在于, 还包括用于驱动所述风扇叶片转动的权利 要求 1-21任一项所述的侧立磁场电机;
所述侧立磁场电机的机座与所述风扇底座固定连接。
23、 根据权利要求 22所述的散热风扇, 其特征在于, 所述机座与所述风扇 底座为一体成型结构。
24、 根据权利要求 23所述的散热风扇, 其特征在于, 所述支撑架上设有散 热齿。
PCT/CN2014/081965 2013-12-31 2014-07-10 侧立磁场电机及应用其的散热风扇 WO2015101005A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112016015445A BR112016015445A8 (pt) 2013-12-31 2014-07-10 motor magnético lateral e ventilador de resfriamento com o uso do motor magnético lateral
EP14875931.9A EP2985889B1 (en) 2013-12-31 2014-07-10 Side-standing magnetic field motor and cooling fan using same
US14/980,609 US10079527B2 (en) 2013-12-31 2015-12-28 Side stand magnetic motor and cooling fan using side stand magnetic motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310753140.1 2013-12-31
CN201310753140.1A CN103746471B (zh) 2013-12-31 2013-12-31 侧立磁场电机及应用其的散热风扇

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/980,609 Continuation US10079527B2 (en) 2013-12-31 2015-12-28 Side stand magnetic motor and cooling fan using side stand magnetic motor

Publications (1)

Publication Number Publication Date
WO2015101005A1 true WO2015101005A1 (zh) 2015-07-09

Family

ID=50503474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081965 WO2015101005A1 (zh) 2013-12-31 2014-07-10 侧立磁场电机及应用其的散热风扇

Country Status (5)

Country Link
US (1) US10079527B2 (zh)
EP (1) EP2985889B1 (zh)
CN (1) CN103746471B (zh)
BR (1) BR112016015445A8 (zh)
WO (1) WO2015101005A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117614186A (zh) * 2023-12-05 2024-02-27 江苏微特利电机股份有限公司 一种纯电物流车用的永磁电机系统及其安装方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746471B (zh) * 2013-12-31 2017-10-17 华为技术有限公司 侧立磁场电机及应用其的散热风扇
CN109716625B (zh) * 2016-06-23 2021-03-02 萨卢奇控股有限公司 一种包括转子、定子和电力电子装置的无刷式电机系统
EP3333688B1 (en) 2016-12-08 2020-09-02 LG Electronics Inc. Mobile terminal and method for controlling the same
CN106533061B (zh) * 2016-12-13 2023-08-08 中国工程物理研究院激光聚变研究中心 一种真空电机导热器
CN110535292A (zh) * 2018-05-23 2019-12-03 上海鸣志电器股份有限公司 一种低温升电机结构
CN109818457A (zh) * 2019-03-18 2019-05-28 扬州市华胜机电制造有限公司 一种自散热无刷电机
CN113098177B (zh) * 2021-04-07 2023-03-28 清华大学 用于内转子电机的定子散热结构、内转子电机及涵道风扇

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1257043A2 (en) * 2001-05-11 2002-11-13 Switched Reluctance Drives Limited Cooling of electrical machines
CN2901677Y (zh) * 2005-11-10 2007-05-16 江苏三江电器集团有限公司 一种直接将电机绕组与端盖机壳进行热传导的结构
JP2008178190A (ja) * 2007-01-17 2008-07-31 Tamagawa Seiki Co Ltd ステータ構造
CN102340208A (zh) * 2010-07-15 2012-02-01 建准电机工业股份有限公司 马达及具有该马达的散热风扇
CN202550806U (zh) * 2011-10-26 2012-11-21 东元电机股份有限公司 马达的外围结构
CN102957268A (zh) * 2011-08-17 2013-03-06 大银微系统股份有限公司 旋转马达的散热结构
CN103746471A (zh) * 2013-12-31 2014-04-23 华为技术有限公司 侧立磁场电机及应用其的散热风扇

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716065B2 (ja) * 2000-06-21 2011-07-06 ミネベア株式会社 軸流送風機
JP2003052142A (ja) * 2001-08-03 2003-02-21 Matsushita Electric Ind Co Ltd 電動機
JPWO2007043119A1 (ja) * 2005-09-30 2009-04-16 富士通株式会社 ファン装置
JP2007151349A (ja) * 2005-11-29 2007-06-14 Nippon Densan Corp モータ
TWI280322B (en) * 2005-12-23 2007-05-01 Delta Electronics Inc Fan and motor thereof
US8283818B2 (en) * 2006-06-19 2012-10-09 Hpev, Inc. Electric motor with heat pipes
WO2008149649A1 (ja) 2007-06-06 2008-12-11 Kabushiki Kaisha Yaskawa Denki 回転電機およびその製造方法
CN101771298A (zh) * 2008-12-26 2010-07-07 三洋电机株式会社 模制电动机及电动车辆
US8540497B2 (en) * 2010-08-13 2013-09-24 Asia Vital Components Co., Ltd. Fan self-cooling structure with heat pipe
US20120085519A1 (en) * 2010-10-12 2012-04-12 Chou Chu-Hsien Heat-dissipating structure for motor stator
DE202010017101U1 (de) * 2010-12-28 2011-02-24 Asia Vital Components Co., Ltd., Hsin Chuan City Kühlstruktur eines feuchtigkeits- und staubdichten Ventilatormotors und dessen Ventilator
US8760018B2 (en) * 2012-01-20 2014-06-24 Asia Vital Components Co., Ltd. Motor stator with heat dissipation structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1257043A2 (en) * 2001-05-11 2002-11-13 Switched Reluctance Drives Limited Cooling of electrical machines
CN2901677Y (zh) * 2005-11-10 2007-05-16 江苏三江电器集团有限公司 一种直接将电机绕组与端盖机壳进行热传导的结构
JP2008178190A (ja) * 2007-01-17 2008-07-31 Tamagawa Seiki Co Ltd ステータ構造
CN102340208A (zh) * 2010-07-15 2012-02-01 建准电机工业股份有限公司 马达及具有该马达的散热风扇
CN102957268A (zh) * 2011-08-17 2013-03-06 大银微系统股份有限公司 旋转马达的散热结构
CN202550806U (zh) * 2011-10-26 2012-11-21 东元电机股份有限公司 马达的外围结构
CN103746471A (zh) * 2013-12-31 2014-04-23 华为技术有限公司 侧立磁场电机及应用其的散热风扇

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2985889A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117614186A (zh) * 2023-12-05 2024-02-27 江苏微特利电机股份有限公司 一种纯电物流车用的永磁电机系统及其安装方法
CN117614186B (zh) * 2023-12-05 2024-05-14 江苏微特利电机股份有限公司 一种纯电物流车用的永磁电机系统及其安装方法

Also Published As

Publication number Publication date
CN103746471B (zh) 2017-10-17
CN103746471A (zh) 2014-04-23
EP2985889B1 (en) 2017-12-20
EP2985889A1 (en) 2016-02-17
BR112016015445A2 (pt) 2017-08-08
US20160111939A1 (en) 2016-04-21
EP2985889A4 (en) 2016-06-08
BR112016015445A8 (pt) 2020-06-09
US10079527B2 (en) 2018-09-18

Similar Documents

Publication Publication Date Title
WO2015101005A1 (zh) 侧立磁场电机及应用其的散热风扇
JP5924164B2 (ja) 半導体装置
JP2021097590A (ja) ワイヤレス充電装置
JP6371001B2 (ja) 電力変換装置
EP4007149B1 (en) Inverter
JP2007012721A (ja) パワー半導体モジュール
JP4636354B2 (ja) リニアモータおよびそれを備えたテーブル送り装置
JP6048481B2 (ja) 電子機器
JP2019134669A (ja) インバータ
JP6458131B2 (ja) エアコンディショナ室外機
WO2017190658A1 (zh) 直流电机
US11121606B2 (en) Motor, circuit board, and engine cooling module including the motor
JP6327646B2 (ja) モータ
JP2015230914A (ja) トランス
CN214068517U (zh) 平面变压器
JP5730700B2 (ja) パワーコンディショナ装置および太陽光発電システム
CN103747395B (zh) 超薄扬声器式散热器及减震超薄散热器
CN203590431U (zh) 超薄扬声器式散热器及减震超薄散热器
JP2016101071A (ja) 半導体装置
TWM408187U (en) Linear motor rotor having heat-dissipation device
JP2010232391A (ja) 電気回路装置
JP2012244006A (ja) 回路基板、及び電子機器
TWI439012B (zh) 馬達磁極組件及其應用於馬達製造方法
CN209803724U (zh) 一种mimi-pc主机中的大核散热模组
CN217283363U (zh) 具有降温功能的扬声器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875931

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014875931

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201605023

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016015445

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016015445

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160630