WO2015099217A1 - 연질 고규소 강판 및 그 제조방법 - Google Patents

연질 고규소 강판 및 그 제조방법 Download PDF

Info

Publication number
WO2015099217A1
WO2015099217A1 PCT/KR2013/012147 KR2013012147W WO2015099217A1 WO 2015099217 A1 WO2015099217 A1 WO 2015099217A1 KR 2013012147 W KR2013012147 W KR 2013012147W WO 2015099217 A1 WO2015099217 A1 WO 2015099217A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
silicon steel
high silicon
rolling
Prior art date
Application number
PCT/KR2013/012147
Other languages
English (en)
French (fr)
Other versions
WO2015099217A8 (ko
Inventor
김동균
홍병득
최석환
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201380081868.2A priority Critical patent/CN105849299B/zh
Priority to US15/107,810 priority patent/US20160319387A1/en
Priority to PCT/KR2013/012147 priority patent/WO2015099217A1/ko
Priority to JP2016542773A priority patent/JP6404356B2/ja
Publication of WO2015099217A1 publication Critical patent/WO2015099217A1/ko
Publication of WO2015099217A8 publication Critical patent/WO2015099217A8/ko
Priority to US16/565,759 priority patent/US11505845B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a soft high silicon steel sheet, and more particularly, it is a high silicon steel sheet having a silicon content of more than 4%. It relates to a soft high silicon steel sheet.
  • High silicon steel sheet is a steel sheet used as a core material for transformers, electric motors, generators, and other electronic devices, and is also commonly referred to as an electric steel sheet.
  • Representative properties required for the high silicon steel sheet include high magnetic flux density and low iron loss.
  • the magnetic flux density represents the number of magnetic fluxes per unit area. The higher the magnetic flux density under the same use conditions, the smaller the amount of iron cores, and thus the electric apparatus can be miniaturized.
  • iron loss refers to energy loss that occurs when the iron core is placed in a magnetic field that changes in time, and consists of eddy current loss and hysteresis loss. Among them, the eddy current loss is caused by the eddy current generated when the iron core is induced magnetic field.
  • Silicon is an effective element for reducing this eddy current loss, and is added as an essential element to electrical steel sheets.
  • the addition of up to 6.5% of silicon can reduce the magnetostriction, which causes noise, to almost zero and maximize the permeability.
  • the high silicon content has the advantage that it is possible to reduce the iron loss and maximize the use efficiency when used at high frequency (for example, 50Hz or more, preferably 400Hz or 1000Hz, etc.). Therefore, the high silicon steel sheet can be advantageously used for high value-added electrical equipment such as inverters and reactors, generator induction heaters for gas turbines, and reactors for uninterruptible power supplies.
  • silicon is added in a large amount, the workability is deteriorated.
  • silicon is added in an amount of 3.5% by weight or more, cold rolling is very difficult by the conventional method.
  • Japanese Patent Laid-Open No. 56-3625 proposes a method of quenching and solidifying a melt on a rotating body.
  • Japanese Patent Application Laid-open No. Hei 5-171281 has a method of manufacturing by rolling a steel material in which high silicon steel is put inside and clad with low silicon steel around.
  • these technologies are not yet industrially practical.
  • CVD chemical vapor deposition
  • JP 38-26263, JP 45-21181, and JP 62-227078 is exemplified.
  • This is a method of manufacturing a steel sheet containing about 3% of silicon, and then infiltrating and diffusing annealing the silicon using SiCl 4 on the steel sheet.
  • the method is a technique of increasing the silicon content to a desired level by diffusion after processing while maintaining the workability by lowering the silicon content of the steel sheet.
  • this method requires the use of toxic SiCl 4 , and it takes a long time to diffuse annealing, which leads to a problem of low productivity.
  • Japanese Patent Application Laid-Open No. H-299702 et al. Has a laboratory attempt to produce a thin steel sheet by hot rolling a high silicon steel sheet and then cold rolling, for example, without hot rolling.
  • increasing the rolling temperature is not sufficient to secure the workability of the steel sheet. That is, when the slab is manufactured by continuous casting in a conventional manner, it is necessary to reheat the slab in order to secure the hot rolling temperature. In this case, cracks are generated due to the temperature difference between the slab and the surface portion and the center part. Even when hot-rolled after extraction at, the fracture is likely to occur.
  • FIG. 1 is a photograph showing a shape in which a plate is broken when a high silicon steel sheet containing 6.5% of silicon is hot rolled after heating for 1 hour and 30 minutes in an argon gas atmosphere at 1100 ° C.
  • FIG. As can be seen from the figure, high silicon steel sheet is not only cold rolled, but also has a high risk of breakage during hot rolling. Therefore, it is difficult to control the workability of a steel plate only by adjusting rolling temperature.
  • the present invention is to solve the above problems of the prior art, according to one aspect of the present invention is a manufacturing method that does not deviate significantly from the method of manufacturing an electrical steel sheet having a relatively low silicon content of 4% or less, preferably 3.5% or less.
  • a soft high silicon steel sheet that can be manufactured with.
  • a soft high silicon steel sheet having a high magnetic flux density and low iron loss may be provided.
  • the soft high silicon steel sheet of the present invention may have a composition including, by weight, Si: more than 4% to 7%, Cr: 1 to 20%, and B: 0.01 to 0.05%.
  • the high silicon steel sheet may further include 0.1 to 3% by weight of Total Al, and Si + Total Al, which is a sum of Si and Total Al, may have a range of 4.1% to 7% or less.
  • the soft high silicon steel sheet according to another aspect of the present invention may have a composition including, by weight%, Si + Total Al: 5 to 7%, Cr: 1 to 20%, and B: 0.01 to 0.05%.
  • these steel sheets may further comprise one or two or more selected from Mo: 0.1% or less, Ni: 0.01% or less, P: 0.05% or less, and Cu, 0.01% or less, and as impurities, C and N
  • the content may be limited to C: 0.05% or less and N: 0.05% or less, respectively.
  • a method of manufacturing soft high strength steel comprising: preparing a steel having a composition including Si: more than 4% and 7% or less and Cr: 1-20%; Hot rolling the steel at a temperature of 800 ° C. or higher to obtain a hot rolled sheet; And cold rolling the hot rolled plate at a temperature of 150 ⁇ 300 °C; may be a process comprising a.
  • the steel may have a composition further comprising 0.1 to 3% by weight of total Al.
  • the steel material as an impurity may be included to limit the content of C and N to C: 0.05% or less and N: 0.05% or less, respectively.
  • the steel material may further include one or two or more selected from Mo: 0.1% or less, Ni: 0.01% or less, P: 0.05% or less, and Cu, 0.01% or less.
  • the steel may be manufactured by continuous casting or strip casting.
  • the hot rolled sheet has a grain size of 150 ⁇ 250 ⁇ m of the internal structure is very excellent workability.
  • the step of obtaining the hot rolled sheet further comprises the step of cooling the temperature section of 800 ⁇ 100 °C after hot rolling at a cooling rate of 30 °C / sec or more It is preferable.
  • step of obtaining the hot rolled sheet after the heat treatment of the hot rolled sheet to a temperature of 800 ⁇ 1200 °C further comprising the step of cooling the temperature section of 800 ⁇ 100 °C at a cooling rate of 30 °C / sec or more It may be.
  • the present invention can provide a soft high silicon steel sheet of more than 4% of silicon (Si), which can be manufactured even by a conventional electrical steel sheet manufacturing process by appropriately controlling its composition.
  • the present invention can prevent the deterioration of workability at the time of steel sheet production by controlling the ratio of the regular phase present inside the steel sheet, thereby producing a high silicon steel sheet without a method such as immersion treatment.
  • FIG. 2 is a Fe-Si binary state diagram for explaining that a regular phase that causes brittleness of steel is generated in high silicon steel.
  • FIG. 3 is a graph illustrating the results of observing uniform elongation at 400 ° C. and 200 ° C. according to Cr addition amount of a 5% Si ⁇ 1% Al steel sheet, wherein the left side is 400 ° C. and the right side is 200 ° C.
  • the present invention is directed to more than 4% high silicon steel sheet by weight of silicon (Si) (hereinafter, the content of the additive element is based on the weight unless otherwise specified).
  • Si silicon
  • the content of the additive element is based on the weight unless otherwise specified.
  • the silicon content is excessively high, the workability is significantly degraded, so the upper limit of the content is set to 7%. Therefore, the high silicon steel plate of this invention means the steel plate containing more than 4%-7% of silicon.
  • the inventors of the present invention have studied in various aspects to solve the problems of the present invention described above, when the addition element and the composition of the steel sheet is controlled in an appropriate range, it is possible to soften the high silicon steel sheet to greatly improve the workability I could confirm that.
  • the inventors of the present invention have found that it is effective to add 1 to 20% by weight of chromium (Cr) as an additive element of the steel sheet, and have come to the present invention.
  • Cr chromium
  • it is very useful for solving the problems of the present invention for the following reasons. This is because chromium can not only suppress the formation of a regular phase inside the steel sheet, but also prevent the generation of a starting point of crack generation of the steel sheet.
  • the B2 and DO 3 phases are formed inside the steel sheet. They cause brittleness in the steel sheet and are very disadvantageous in workability. It is expected to increase the brittleness of the steel sheet for one or more of the following two reasons compared to the irregular phase (A2 phase as shown in FIG. 2).
  • the regular lattice potential that moves within the rule is difficult to cross-slip, and as a result, it is easy to concentrate stress and grain boundary at the grain boundary.
  • the grain boundary structure of the regular alloy is unusual, and the energy of crack propagating along the grain boundary is lower than that in the grain. It may be easy to break the boundary. Therefore, in order to alleviate the brittleness of the high silicon steel sheet, it is good to suppress the regular phase from being produced.
  • the addition of chromium is advantageous for the improvement of the magnetic properties because it prevents not only dislocation but also movement of the magnetic domain.
  • Figure 3 shows a change in the uniform elongation according to the change in the chromium content of the steel sheet containing 5% silicon, 1% aluminum, as can be seen, when the chromium content is 0% uniform elongation (U-El ) Is only 10 ⁇ 15% at 400 ° C and 10% at 200 ° C, but the uniform elongation increases with increasing chromium content in either case.
  • U-El uniform elongation
  • high silicon steel containing chromium can have an effect of controlling the grain size after hot rolling to be small, and is excellent in hot rolling and cold rolling (or hot rolling).
  • 4 shows the microstructure after hot rolling (hot rolling finished at 1100 ° C., hot rolled sheet thickness of 2.5 mm) of a high silicon steel sheet containing 5.1% silicon and 1% aluminum without chromium, and FIG. 5. It shows the microstructure after hot rolling of steel with 8% chromium added to the same silicon and aluminum content as steel sheet. The slab thickness, hot rolling temperature and final steel sheet thickness in both cases were the same.
  • the grains of the chromium-added steel of FIG. 5 were controlled more finely than the chromium-free steel of FIG. 4. Therefore, the addition of more than 1% chromium in the present invention is very important for securing the workability of the high silicon steel sheet.
  • the ⁇ 100 ⁇ ⁇ 001> which is called a cube texture
  • magnetic properties are improved.
  • the fraction of the cube texture may be increased. Can be.
  • the chromium is preferably added at 20% or less, and more preferably at 16% or less. desirable.
  • the soft high silicon steel sheet according to one aspect of the present invention may have a composition including Si: over 4% to 7%, Cr: 1 to 20%, and B: 0.01 to 0.05% by weight.
  • the soft high silicon steel sheet may further comprise 0.1 to 3% of aluminum (Total Al).
  • the aluminum (Total. Al) is effective in improving the rolling property when added to 0.1% or more. However, when excessively added, the rolling property is deteriorated, so it is advantageous to add 3% or less.
  • the sum of the addition amounts of silicon and aluminum may be 4% or more, and according to another aspect, may be more than 4.1%, and according to another aspect, 5% It is more preferable that it is above.
  • Si + Total Al exceeds 7%, the rolling property may decrease, so the upper limit of the Si + Total Al is set to 7%.
  • the soft high silicon steel sheet according to another aspect of the present invention controls the sum of silicon and aluminum content (Si + Total Al) to 5 to 7%, Cr: 1 to 20%, and B: 0.01 to 0.05% It is characterized by having a composition for adding.
  • Mo may be further included one or two or more selected from 0.1% or less, Ni: 0.01% or less, P: 0.05% or less and Cu, 0.01% or less.
  • these elements are added, the magnetic properties, brittleness, etc. of the steel sheet can be improved.
  • hydrogen embrittlement may occur, but when 0.1% or less of Mo is added, hydrogen embrittlement can be effectively suppressed.
  • the remaining components of the high silicon steel of the present invention are impurities which are inevitably incorporated in Fe and other manufacturing processes.
  • this invention does not exclude in particular that it contains the additional element contained in the steel plate used for iron core material unless it contradicts the paper of this invention.
  • Non-limiting examples of the impurity that the steel sheet of the present invention can contain include C: 0.05% or less and N: 0.05% or less. If the content of these elements is high, the brittleness of the steel may be deteriorated and the rolling property may be deteriorated, so it is preferable to allow only up to 0.05% of each addition.
  • the ratio of the cube texture may be about 13 to 25% based on the area. This can be achieved by the addition of high silicon and chromium. In view of the fact that the cube texture ratio of the conventional steel sheet is 12% or less, the high silicon steel sheet of the present invention exhibits excellent magnetic properties. It can be seen that.
  • Advantageous soft high silicon steel sheet of the present invention described above can be produced by a process including hot rolling and cold rolling or hot rolling and low temperature warm rolling. If manufactured by such a process, the detailed conditions thereof are not particularly limited, and those skilled in the art to which the present invention pertains, the high silicon of the present invention with reference to the advantageous conditions of the high silicon steel sheet of the present invention There will be no particular difficulty in obtaining a grater.
  • Hot rolling not only serves to primarily adjust the thickness of the steel sheet, but also has an effect of finely improving the structure of the steel sheet, thereby facilitating subsequent cold rolling or warm rolling.
  • the upper limit of the hot rolling temperature is not particularly limited as long as it is a normal hot rolling temperature range of a high silicon steel sheet. However, one non-limiting example is to set the hot rolling temperature to 1200 ° C or lower for uniform slab heating and surface quality control. have.
  • the above-mentioned hot rolling may be carried out immediately without reheating before the slab is cooled after casting, or may be carried out by reheating the cooled slab, but in order to prevent the production of filarite by reheating, It is more preferable to carry out the slab immediately.
  • reheating a slab it is not necessarily limited to this, but it is preferable to reheat when the surface temperature of the slab after solidification does not fall below 700 degreeC.
  • a method of hot rolling may be employed by casting a thin steel sheet through strip casting followed by a hot rolling process directly connected after the casting step.
  • Strip casting is a technique in which molten steel is injected into a thin sheet by injecting molten steel between a pair of rolls rotating in opposite directions (twin roll method) or a single roll surface (single roll method).
  • twin roll method twin roll method
  • single roll method single roll surface
  • the hot rolling temperature is preferably limited to 800 ° C. or higher.
  • the thickness of the steel plate (hot rolled sheet) obtained by the said hot rolling is 3 mm or less.
  • the thickness of the hot rolled sheet is not particularly limited in implementing the present invention, the lower limit of the thickness of the hot rolled sheet is not particularly determined.
  • the thickness of the hot rolled sheet is excessively thin, problems such as fracture or cracking of the hot rolled sheet may occur due to the increased rolling load, but the lower limit of the thickness of the hot rolled sheet may be set to 2 mm.
  • the lower limit of the steel sheet thickness can be reduced to 1.0mm.
  • the lower limit of the thickness of the hot rolled sheet may be further reduced. Therefore, it is necessary to note that the thickness of the hot rolled sheet is not necessarily limited to the above range.
  • the hot rolled steel sheet manufactured by the above-described process has a grain size of 150 to 250 ⁇ m, and has excellent workability as compared with a general hot rolled steel sheet, so that it can be rolled with good workability during subsequent cold rolling.
  • the conventional high silicon hot rolled steel sheet has a grain size of 500 ⁇ m or more, it can be seen that the hot rolled steel sheet of the present invention has grains of very fine size.
  • the steel sheet composition of the present invention can improve the workability of the steel sheet as compared with the prior art, the steel sheet can be produced with a rolling temperature after hot rolling at 300 ° C. or lower, preferably 250 ° C. or lower. However, if the rolling temperature is too low, breakage of the steel sheet may occur, so the lower limit of the temperature is set at 150 ° C.
  • Steel sheet manufactured by cold rolling may have a thickness of 0.1 ⁇ 0.5mm according to the characteristics of the final product required.
  • the method for producing a flexible high silicon steel sheet of the present invention comprises the steps of preparing a slab of the above-mentioned composition; Hot rolling the slab at a temperature of 800 ° C. or higher to obtain a hot rolled plate; And cold rolling the hot rolled sheet to obtain a steel sheet having a final thickness.
  • the cold rolling may be performed immediately after hot rolling, but it is more preferable to perform the cold rolling after heat treatment in order to further develop workability by developing an aggregate structure that is advantageous for magnetic properties, controlling grain size, and reducing the ratio of regularity. . Therefore, according to one advantageous aspect of the present invention, a heat treatment process may be further included between the hot rolling and cold rolling.
  • Heat treatment temperature 800 ⁇ 1200 °C
  • the hot rolled steel sheet has a large amount of regular phases formed therein, and as such, when cold rolled or cold rolled at low temperature, plate breakage may occur and rollability may deteriorate. Therefore, in one preferred embodiment of the present invention may include the step of heat treatment to a temperature of 800 °C or more before cold rolling or warm rolling.
  • the heat treatment temperature of 800 ° C. or higher is for removing the regular phase present inside the steel sheet by phase transformation.
  • the upper limit of the temperature is set to 1200 ° C. More preferable heat processing temperature is 900-1200 degreeC.
  • the scale is generated on the surface of the steel sheet during the heat treatment may be deteriorated rollability, it is preferable to perform the heat treatment in a non-oxidizing atmosphere where the scale does not occur. Therefore, as the atmosphere gas during the heat treatment, an inert gas consisting of nitrogen, argon or a mixed gas of nitrogen and argon, or a reducing gas containing less than 35 volume fraction (%) of hydrogen gas in the gas may be used.
  • Cooling after heat treatment Cools the temperature section including the section from 800 °C to 100 °C with cooling rate over 30 °C / sec.
  • the regular phase is removed from the inside of the high temperature steel sheet heated to the above-described temperature, since the regular phase may be formed again when slow cooling after heat treatment, it is necessary to cool at a cooling rate of 30 ° C./sec or more to suppress the formation of the regular phase. have.
  • the higher the cooling rate, the better, and therefore the upper limit of the cooling rate is not particularly determined.
  • the steel sheet may be quenched and cooled.
  • the cooling section is to include a section from 800 °C to 100 °C. desirable.
  • the present cooling condition is to improve the workability (rollability) of the steel sheet, and is not essential in all composition ranges of the steel sheet corresponding to the composition range of the present invention, and a substantial part of the steel sheet having the composition of the present invention is Cr
  • Significantly improved workability by addition may result in rolling in subsequent cold rolling processes even when cooled at relatively low cooling rates such as air cooling.
  • the heat treatment and cooling process is a process included to suppress regular phase generation before cold rolling or warm rolling. If the above heat treatment process is not performed, the process of quenching at a cooling rate of 30 ° C./sec or more from the temperature of 800 ° C. or higher to 100 ° C. or lower may be performed instead of the hot rolling.
  • the upper limit of the cooling rate is not particularly limited as in the cooling after heat treatment. However, in order to effectively control the structure of the steel sheet, heat treatment is more advantageous.
  • the steel sheet may be finally annealed by a conventional method. It is preferable to perform final annealing in the temperature range of 900-1200 degreeC. That is, in order to increase the ratio of the cube texture, the final annealing is preferably carried out at a temperature of 900 °C or more. However, since the effect is saturated when the temperature exceeds 1200 °C, the energy cost also increases, the upper limit of the final annealing temperature can be set to 1200 °C.
  • Manufacturing conditions not specifically described herein may be applied in accordance with the conventional manufacturing conditions, it is necessary to note that a commonly used process may be newly added.
  • the steel sheet cast was cast in the composition shown in Table 1 below. Among the impurities not listed in the table, the main components were C and N, which were controlled at 0.005% and 0.0033% levels, respectively. Thereafter, the cast steel was heated at 1100 ° C. for 1 hour, and then hot rolling was started at a temperature of 1050 ° C., and finished at 850 ° C. By hot rolling, a cast steel having a thickness of 30 mm was rolled into a 2.5 mm hot rolled sheet. The hot rolled silicon steel sheet was heat-treated in an atmosphere of 20 vol% hydrogen and 80 vol% nitrogen at 1000 ° C. for 5 minutes, and then air cooled to room temperature to obtain a heat-treated hot rolled sheet. The hot rolled plate was then pickled to remove the surface oxide layer. The hot rolled sheet was cold (warm) rolled to a final thickness of 0.2 mm at temperatures of 400 ° C. and 150 ° C., respectively.
  • Comparative Example 3 when the Si content is excessively added as in Comparative Example 2, even though Cr and B were added at a certain level, plate breaking occurred at both 400 °C and 150 °C rolling.
  • Comparative Example 3 when the Cr content was less than the range defined by the present invention, the result of not sufficiently preventing the formation of the regular phase also showed poor rolling property.
  • Comparative Example 4 was a case where the Cr content was excessive, and also exhibited poor rollability.
  • Comparative Example 5 is a case where Al is added beyond the range specified in the present invention, which also acted as a cause of rupture.
  • Comparative Example 6 when the B content was insufficient, the rolling property at 400 ° C. was normal, but it was found to be poor at 150 ° C. Therefore, it was confirmed that B is also an element necessary for securing rollability. However, when it is excessive with B (Comparative Example 7), the rolling property deteriorates, and it is judged to be poor even at 400 ° C.
  • Comparative Example 8 having a low Si content can be seen that the iron loss is very high compared to the invention example.
  • all the invention examples which satisfy the composition conditions of this invention showed the outstanding iron loss.
  • the invention example according to the conditions of the present invention shows a low iron loss even at a high frequency of 1000 Hz, it was confirmed that it is suitable for use as a high frequency iron core material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 연질 고규소 강판에 관한 것으로서, 보다 상세하게는 실리콘 함량이 4%를 초과하는 고규소 강판임에도 연성의 성질을 보유하여 추가적인 침규과정 없이 압연 만에 의해 높은 실리콘 함량을 가진 강판으로 제조가능한 연질 고규소 강판에 관한 것이다. 본 발명의 연질 고규소 강판은 중량%로, Si: 4% 초과 ~ 7% 이하, Cr: 1~20%를 포함하는 조성 또는 중량%로, Si+Al: 5~7%, Cr: 1~20%를 포함하는 조성을 가질 수 있다.

Description

연질 고규소 강판 및 그 제조방법
본 발명은 연질 고규소 강판에 관한 것으로서, 보다 상세하게는 실리콘 함량이 4%를 초과하는 고규소 강판임에도 연성의 성질을 보유하여 추가적인 침규과정 없이 압연 만에 의해 높은 실리콘 함량을 가진 강판으로 제조가능한 연질 고규소 강판에 관한 것이다.
고규소 강판은 변압기, 전동기, 발전기 및 기타 전자기기 등의 철심재료로 사용되는 강판으로서, 통상 전기강판으로도 불리고 있다. 상기 고규소 강판에 요구되는 대표적인 성질로서 높은 자속밀도와 낮은 철손을 들 수 있다.
자속밀도는 단위면적당의 자속의 수를 나타내는 것으로서, 동일한 사용 조건에서 자속밀도가 높을수록 철심의 양이 적으므로 전기기기의 소형화가 가능하다. 또한, 철손은 철심이 시간적으로 변화하는 자기장 내에 놓였을 때, 발생하는 에너지 손실을 의미하는 것으로서, 와전류 손실과 히스테리시스 손실로 이루어진다. 그 중, 와전류 손실은 철심이 자장이 유도될 때, 발생하는 와전류(eddy current)에 의하여 발생한다.
실리콘은 이러한 와전류 손실을 감소시키는데 효과적인 원소로서, 전기강판에는 핵심적인 원소로서 첨가된다. 특히, 실리콘이 6.5%까지 첨가되면 소음의 원인이 되는 자왜(magnetostriction)가 거의 0으로 줄어들고 투자율이 최대로 높아질 수 있다. 또한, 높은 실리콘 함량은 고주파(예를 들면, 50Hz 이상, 바람직하게는 400Hz 또는 1000Hz 등)에서 사용될 때 철손을 감소시키고 사용효율을 극대화 시킬 수 있다는 장점이 있다. 따라서, 고규소 강판은 그 성질을 고려할 때 인버터와 리액터, 가스터빈용 발전기 유도가열장치, 무정전 전원장치의 리액터 등 고부가가치 전기기기용으로 유리하게 사용할 수 있다.
이러한 이유로, 강판의 특성 면에서 볼 때에는 실리콘은 가급적 많이 첨가하는 것이 유리하다. 그러나, 실리콘이 다량 첨가되면 가공성이 열화되기 때문에 통상 실리콘이 3.5중량% 이상 첨가될 경우에는 통상적인 방법으로는 냉간압연이 매우 곤란하게 된다.
일본 특개소 56-3625에서는 이러한 문제를 극복하기 위하여 회전체에 용융체를 분출시켜서 급냉응고시키는 방법을 제안하고 있다. 또한가지 방법으로서, 일본 특개 평5-171281호는 내부에 고규소강을 넣고 주위를 저규소강으로 클래드한 강재를 압연하여 제조하는 방법이 있다. 그러나, 이러한 기술들은 아직 공업적으로 실용화되지는 못하고 있는 실정이다.
다른 한가지 방법으로서, 대한민국 등록특허공고 10-0374292호 등에서는 분말야금법을 이용하여 고규소 강판 대신 분말로 이루어진 분말로 이루어진 고규소강 블록을 만들어 고규소 강판의 대체재로 사용하고 있다. 상기 문헌에서는 순철 분말 코아, 고규소강 분말 코아, 샌더스트 분말코아를 복합하여 사용하고 있으나, 분말이 가진 한계로 인하여 연자성 특성은 고규소 강판보다 열위하다.
강판의 양산기술로서 현재 이용되는 기술로는 일본 특공소 38-26263호, 일본 특공소 45-21181호, 일본 특개소 62-227078호에 기재된 바와 같은 화학기상증착법(CVD, Chemical Vapor Depostion)을 들 수 있는데, 이는 약 3%의 실리콘을 포함하는 강판을 제조한 후, 그 강판에 SiCl4를 이용하여 실리콘을 침투 및 확산소둔 시키는 방법이다. 상기 방법은 강판의 실리콘 함량을 낮게 하여 가공성을 유지한 채로 가공한 후, 확산에 의하여 실리콘 함량을 원하는 수준까지 높이는 기술이다. 그러나, 이러한 방법은 독성이 있는 SiCl4를 이용해야 하고, 확산소둔에 많은 시간이 소요되어 생산성이 떨어진다는 문제가 있다.
그외, 일본 특개평-299702 등에는 고규소 강판을 열간압연 한 후에, 냉간압연하지 않고, 예를 들면 350℃ 이상의 온도에서 온간압연함으로써 박강판을 제조하고자 하는 실험실적 시도가 있었다. 그러나, 냉간압연 뿐만 아니라 열간압연 공정에도 가공성의 문제가 있을 수 있는 만큼, 압연온도를 올리는 것 만으로는 강판의 가공성 확보에 충분하지 않다. 즉, 통상의 방법으로 연속주조하여 슬라브를 제조하면 열간압연 온도를 확보하기 위하여 슬라브를 재가열하여야 할 필요가 있는데, 이러한 경우에는 슬라브와 표면부와 중심부의 온도차이로 인하여 크랙이 발생하고, 재가열로에서 추출 후 열간압연할 때에도 파단이 발생하기 쉽다. 도 1은 실리콘을 6.5% 함유한 고규소 강판을 1100℃의 아르곤 가스 분위기에서 1시간 30분 가열한 후 열간압연하였을 때, 판이 파단되는 형상을 나타낸 사진이다. 도면에서 볼 수 있듯이, 고규소 강판은 냉간압연 뿐만 아니라, 열간압연시에도 판파단의 우려가 크다. 따라서, 단순히 압연 온도를 조절하는 것만으로는 강판의 가공성을 제어하는 것이 곤란하다.
본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로서, 본 발명의 한가지 측면에 따르면 4% 이하, 바람직하게는 3.5% 이하의 비교적 낮은 실리콘 함량을 가지는 전기강판의 제조방법에서 크게 벗어나지 않는 제조방법으로 제조할 수 있는 연질 고규소 강판이 제공된다.
본 발명의 또다른 측면에 의하면, 자속밀도가 높고 철손이 낮은 연질 고규소 강판이 제공될 수 있다.
본 발명의 과제는 상술한 내용에 한정되지 않는다. 본 발명이 속하는 기술분야에서 통상의 기술을 가지는 자라면, 명세서의 전반적인 내용으로부터 여기에 기재되어 있지 않은 본 발명의 추가적인 과제를 충분히 이해할 수 있을 것이다.
본 발명의 연질 고규소 강판은 중량%로, Si: 4% 초과 ~ 7% 이하, Cr: 1~20% 및 B: 0.01~0.05%를 포함하는 조성을 가질 수 있다.
또한, 상기 고규소 강판은 Total Al: 0.1~3중량%를 더 포함할 수 있으며, Si와 Total Al 조성의 합인 Si+Total Al가 4.1%초과~7% 이하의 범위를 가질 수 있다.
본 발명의 또한가지 측면에 따른 연질 고규소 강판은 중량%로, Si+Total Al: 5~7%, Cr: 1~20% 및 B: 0.01~0.05%를 포함하는 조성을 가질 수 있다.
이때 이들 강판은, Mo: 0.1% 이하, Ni: 0.01% 이하, P: 0.05% 이하 및 Cu, 0.01% 이하 중에서 선택된 1종 또는 2종 이상을 더 포함할 수 있으며, 불순물로서, C와 N의 함량을 각각 C: 0.05% 이하 및 N: 0.05% 이하로 제한하여 포함할 수 있다.
본 발명의 또한가지 측면에 따른 연질 고강도 강의 제조방법은, 중량%로, Si: 4% 초과 ~ 7% 이하, Cr: 1~20%를 포함하는 조성을 가지는 강재를 준비하는 단계; 상기 강재를 800℃ 이상의 온도에서 열간압연하여 열연판을 얻는 단계; 및 상기 열연판을 150~300℃의 온도에서 냉간압연하는 단계;를 포함하는 과정일 수 있다.
이때, 상기 강재가 Total Al: 0.1~3중량%를 더 포함하는 조성을 가질 수 있다.
이때, 상기 강재는 불순물로서, C와 N의 함량을 각각 C: 0.05% 이하 및 N: 0.05% 이하로 제한하여 포함할 수 있다.
또한, 상기 강재는, Mo: 0.1% 이하, Ni: 0.01% 이하, P: 0.05% 이하 및 Cu, 0.01% 이하 중에서 선택된 1종 또는 2종 이상을 더 포함할 수 있다.
이때, 상기 강재는 연속주조 또는 스트립 캐스팅에 의하여 제조된 것일 수 있다.
또한, 상기 열연판은 내부 조직의 결정립 크기가 150~250㎛으로서 가공성이 매우 우수하다.
강판 내부에 존재하는 규칙상을 감소시켜 가공성을 더욱 향상시키기 위해서는, 상기 열연판을 얻는 단계가 열간압연후 800~100℃의 온도구간을 30℃/초 이상의 냉각속도로 냉각하는 과정을 더 포함하는 것이 바람직하다.
또한 이에 대한 대안으로서, 상기 열연판을 얻는 단계 이후 열연판을 800~1200℃의 온도로 열처리 한 후, 800~100℃의 온도구간을 30℃/초 이상의 냉각속도로 냉각하는 과정을 더 포함할 수도 있다.
상술한 바와 같이, 본 발명은 그 조성을 적절히 제어함으로써, 통상적인 전기강판 제조과정에 의해서도 제조가능한 실리콘(Si) 4% 초과의 연질 고규소 강판을 제공할 수 있다.
또한, 본 발명은 강판 내부에 존재하는 규칙상의 비율을 제어함으로써 강판 제조시 가공성의 열화를 방지할 수 있어, 침규 처리와 같은 방법 없이도 고규소 강판을 제조할 수 있다.
도 1은 고규소강을 열간압연하였을 때 판이 파단되는 현상을 관찰한 사진이다.
도 2는 고규소 강에서 강의 취성을 유발하는 규칙상이 생성되는 것을 설명하기 위한 Fe-Si 2원계 상태도이다.
도 3은 5% Si - 1% Al 강판의 Cr 첨가량에 따른 400℃와 200℃에서의 균일연신율을 관찰한 결과를 나타낸 그래프로서, 좌측이 400℃, 우측이 200℃의 결과에 대한 그래프이다.
도 4는 크롬을 첨가하지 않은 고규소 강판의 열간압연 후 결정립 크기와 집합조직을 관찰한 결과이다. 그리고,
도 5는 크롬을 첨가한 고규소 강판의 열간압연 후 결정립 크기와 집합조직을 관찰한 결과이다.
이하, 본 발명을 상세히 설명한다.
본 발명은 실리콘(Si) 중량 기준(이하, 첨가원소의 함량은 별도로 정하지 않는 한 중량을 기준으로 한다)으로 4% 초과의 고규소 강판을 대상으로 한다. 상술한 바와 같이 실리콘이 4%를 상회할 경우에는 강판의 자속밀도와 철손이 비약적으로 향상될 뿐만 아니라, 고주파 철심재와 같은 용도로 사용하기에 매우 적합하게 된다. 다만, 실리콘 함량이 과다하게 높을 경우에는 가공성이 현저하게 열화되므로 그 함량의 상한은 7%로 정한다. 따라서, 본 발명의 고규소 강판은 실리콘을 4% 초과 ~ 7% 이하로 함유하는 강판을 의미한다.
본 발명의 발명자들은 상술한 본 발명의 과제를 해결하기 위하여 여러가지 측면에서 검토한 결과, 강판의 첨가원소와 그 조성을 적절한 범위로 제어할 경우에는 고규소 강판을 연질화하여 가공성을 크게 향상시킬 수 있다는 것을 확인할 수 있었다.
강판에 첨가가능한 제3의 원소들로 니켈(Ni), 망간(Mn) 등을 사용하는 결과에 대한 보고가 일부 있었다.
예를 들면, 시.에이.클라크 등은 “Effect of nickel on the properties of grain-oriented silicon-iron alloys”, Proceedings of the Institution of Electrical Engineers, Volume 113, Issue 2, February 1966, 345-351 페이지에서 니켈 첨가로 얻어지는 효과를 보고한 바 있으며, 케이. 나리타 등은 “Effect of ordering on magnetic properties of 6.5-percent silicon-iron alloy”, IEEE Transactions, 1979에서 망간의 첨가로 얻어지는 효과를 보고했다. 그러나, 이들 문헌에 기재된 추가 원소는 냉간압연에 의해 강판을 제조할 수 있을 정도로 강판의 가공성을 개선하지는 못하므로 여전히 냉간압연에 의해 강판을 제조하기는 곤란하다는 문제점이 존재한다.
본 발명의 발명자들은 강판의 첨가원소로서 크롬(Cr)을 1~20중량% 첨가하는 것이 효과적이라는 것을 발견하고 본 발명에 이르게 되었다. 크롬은 1중량% 이상 첨가될 경우 다음과 같은 이유로 본 발명의 과제해결에 매우 유용하다. 이는 크롬이 강판 내부에서 규칙상이 형성되는 것을 억제할 수 있을 뿐 아니라, 그외 강판의 크랙 발생의 기점의 생성을 방지할 수 있기 때문이다.
즉, 도 2의 Fe-Si 2원 상태도를 참고하면, 본 발명에서 대상으로 하는 바와 같이 실리콘이 4%를 초과하여 첨가되면 강판 내부에는 규칙상이라 불리는 B2, DO3 상이 형성되게 되는데, 규칙상들은 강판에 취성을 야기하여 가공성에 매우 불리하다. 불규칙상(도 2에 도시된 바와 같이 A2상)에 비하여 다음의 두 가지 이유 중 한가지 이상의 이유에 의하여 강판의 취성을 증가시키는 것으로 예상된다.
규칙상 내에서 이동하는 규칙격자 전위는 교차슬립하기 어렵고 그 결과 결정립계에 응력집중, 입계파괴하기 쉽거나, ② 규칙합금의 입계구조는 특이하여 입내에 비해서 입계를 따라 전파하는 크랙의 에너지가 낮으므로 입계파괴되기 쉬울 수 있다. 따라서, 고규소 강판의 취성을 완화시키기 위해서는 규칙상이 생성되지 않도록 억제하는 것이 좋은데, 이를 위해서는 크롬을 1중량% 이상 첨가하는 것이 유리하다. 1중량% 이상의 크롬을 첨가할 경우에는 상온에서 불규칙상인 A2상의 비율이 증가하게 되어 강판의 취성을 감소시킬 수 있다. 규칙상은 전위 뿐만 아니라 자구의 이동에도 방해가 되기 때문에 크롬을 첨가하면 자기적 특성의 향상에도 유리하다.
그러나, 크롬을 첨가하였을 때에는 균일연신율은 크게 증가하는 것을 알 수 있다. 즉, 도 3은 실리콘 5%, 알루미늄 1%를 함유하는 강판의 크롬 함량의 변화에 따른 균일연신율 변화를 나타낸 것인데, 도면에서 볼 수 있듯이, 크롬 함량이 0%인 경우에는 균일 연신율(U-El)이 400℃에서는 10~15%, 200℃에서는 10% 내외에 불과하였으나, 어느 경우에서든 크롬 함량이 증가하면서 균일연신율이 증가된다는 것을 보여준다.
또한, 크롬을 첨가한 고규소강은 열간압연후의 결정립 크기를 작게 제어하는 효과를 가질 수 있어, 열간압연성과 냉간압연(또는 온간압연)성이 우수하다. 도 4는 크롬을 함유하지 않은 실리콘 5.1%, 알루미늄 1%를 함유하는 고규소 강판의 열간압연(1100℃에서 열간압연 종료, 열연판 두께 2.5mm) 후의 미세조직을 나타낸 것이며, 도 5는 도 4의 강판과 동일한 실리콘, 알루미늄 함량에 크롬을 8% 첨가한 강의 열간압연 후의 미세조직을 나타낸 것이다. 두 경우의 슬라브 두께, 열간압연 온도 및 최종 강판 두께는 동일하게 하였다. 도면에서 확인할 수 있듯이, 도 4의 크롬 미첨가강에 비하여 도 5의 크롬 첨가강의 결정립이 훨씬 더 미세하게 제어되고 있었다. 따라서, 본 발명에서 1% 이상의 크롬 첨가는 고규소 강판의 가공성 확보에 매우 중요하다.
또한, 열간압연하기 위하여 주조된 슬라브를 재가열할 경우에는 재가열온도에서 파이야라이트(Fe2SiO4)라고 불리는 저융점 산화물이 형성되는데 이러한 산화물은 슬라브의 표면과 측면을 침식하여 크랙 발생의 기점을 형성시키기 쉽다. 그런데, 크롬을 본 발명에서 제한하는 범위로 첨가할 경우에는 파이야라이트 형성을 억제하여 크랙 발생의 기점을 대폭 감소시킬 수 있다. 따라서, 크롬 첨가하지 않는 경우에 비하여 크랙 발생이나 판 파단 없이 열간압연하여 예를 들면 1~3mm 두께의 판을 제조할 수 있으며, 스트립 캐스팅 장치와 열간압연 장치를 직결하여 제조할 경우에는 0.1mm 두께까지의 고규소 박강판을 높은 생산성을 유지하면서 제조할 수 있다.
또한, 고규소 강판은 내부에 큐브 집합조직(cube texture)이라고 불리는 {100}<001>이 많이 형성될 수록 자기적 특성이 향상되는데, 크롬을 첨가할 경우에는 상기 큐브 집합조직의 분율이 증가될 수 있다.
다만, 크롬 함량이 과다할 경우에는 열간 압연시 에지 크랙(edge crack)이 다수 발생하여 압연성이 나빠질 수있으므로, 상기 크롬은 20% 이하로 첨가되는 것이 바람직하며, 16% 이하로 첨가되는 것이 보다 바람직하다.
이에 덧붙여, 압연성을 더욱 향상시키기 위하여 보론을 0.01~0.05%, 바람직하게는 0.01~0.03% 첨가하는 경우 낮은 온도에서 냉간압연시 소재의 가공성을 추가로 확보하여 상업적인 생산이 가능한 수준의 수율을 확보할 수 있다. 즉, 압연성을 확보하기 위해서는 B를 첨가하되 적절한 수준으로 첨가하는 것이 유리한데, 본 발명과 같이 Si 함량과 Cr 함량을 제어할 경우에는 상기 B의 적정 함량은 0.01~0.05%, 바람직하게는 0.01~0.03% 이다. 이는, 아래와 같이 Si+Al 함량을 적정 범위로 제어하는 경우에도 마찬가지이다.
따라서, 본 발명의 한가지 측면에 따른 연질 고규소 강판은 중량비율로 Si: 4% 초과 ~ 7% 이하, Cr: 1~20% 및 B: 0.01~0.05%를 포함하는 조성을 가질 수 있다.
본 발명의 또 한가지 유리한 측면에 따르면, 상기 연질 고규소 강판은 0.1~3%의 알루미늄(Total Al)을 더 포함할 수 있다. 상기 알루미늄(Total. Al)은 0.1% 이상 첨가될 경우 압연성 개선에 효과적이다. 다만, 과다하게 첨가될 경우에는 오히려 압연성이 열화되므로 3% 이하로 첨가하는 것이 유리하다.
또한, 알루미늄은 실리콘과 함께 첨가될 경우에는 실리콘 첨가에 의한 자속밀도 향상과 철손 감소 등 자기적 특성 개선 효과를 분담할 수 있어, 실리콘 첨가량을 감소시킬 수 있다. 이러한 이유로 본 발명의 한가지 측면에 따르면 상기 실리콘과 알루미늄의 첨가량의 합(Si+Total Al)은 4% 이상일 수 있으며, 다른 한가지 측면에 따르면 4.1% 초과일 수 있으며, 또다른 한가지 측면에 따르면 5% 이상인 것이 보다 바람직하다. 다만, 상기 Si+Total Al이 7%를 초과할 경우에는 압연성이 감소할 수 있으므로, 상기 Si+Total Al의 상한은 7%로 정한다.
이러한 효과는 상술한 바와 같이 크롬을 1~20%, 바람직하게는 1~16%로 첨가하는 경우에 더욱 발휘될 수 있다. 따라서, 본 발명의 또다른 한가지 측면에 따른 연질 고규소 강판은 실리콘과 알루미늄 함량의 합(Si+Total Al)을 5~7%으로 제어하고, Cr: 1~20%, B: 0.01~0.05%를 첨가하는 조성을 가지는 것을 특징으로 한다.
또한, 강판의 자성을 향상시키기 위하여 Mo: 0.1%이하, Ni: 0.01% 이하, P: 0.05% 이하 및 Cu, 0.01% 이하 중에서 선택된 1종 또는 2종 이상을 더 포함할 수 있다. 이들 원소를 추가할 경우에는 강판의 자기적 특성이나, 취성 등이 개선될 수 있다. 특히, 고규소 전기강판의 경우 수소취성이 발생되는 경우가 있을 수 있으나, 0.1% 이하의 Mo를 첨가하면 수소취성의 발생을 효과적으로 억제할 수 있다는 장점이 있다.
본 발명의 고규소강의 나머지 성분은 Fe와 기타 제조과정에서 불가피하게 혼입되는 불순물이다. 또한, 본 발명은 본 발명의 본지에 어긋나지 않는 한 철심재 용도로 사용되는 강판에 포함되는 첨가원소를 추가 포함하는 것을 특별히 제외하지 않는다.
본 발명의 강판이 포함가능한 불순물의 비제한적인 예를 든다면, C: 0.05% 이하와 N: 0.05% 이하를 들 수 있다. 이들 원소의 함량이 높아지면 강재의 취성이 나빠져서 압연성이 열화될 수 있으므로 각각 0.05%까지의 첨가만 허용하는 것이 바람직하다.
본 발명의 고규소 강판은 큐브 집합조직의 비율이 면적기준으로 13~25% 정도일 수 있다. 이는 높은 실리콘 및 크롬 첨가 등에 의해 달성될 수 있는 것으로서, 종래의 강판의 큐브 집합조직 비율이 12% 또는 그 이하라는 점에 비추어 볼 때, 본 발명의 고규소 강판이 매우 우수한 자기적 특성을 나타낸다는 것을 알 수 있다.
상술한 본 발명의 유리한 연질 고규소 강판은 열간압연 및 냉간압연 또는 열간압연 및 저온 온간압연을 포함하는 공정에 의하여 제조될 수 있다. 이와 같은 공정에 의하여 제조되는 경우라면 그 상세한 조건은 특별히 제한하지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면, 본 발명의 고규소 강판의 유리한 조건을 참고하여 본 발명의 고규소 강판을 얻는데 특별한 어려움이 없을것이다.
다만, 본 발명의 발명자에 의해 도출된 한가지 유리한 제조조건을 설명하면 다음과 같다.
슬라브 열간압연 온도: 800℃ 이상
열간압연은 강판의 두께를 1차 조정하는 역할을 할 뿐만 아니라, 강판의 조직을 미세하게 개선하는 효과가 있어 후속하는 냉간압연이나 온간압연을 용이하게 할 수 있다. 이때, 슬라브 열간압연 온도는 800℃ 이상으로 설정하는 것이 바람직하다. 이는 그보다 낮은 온도에서는 규칙상이 생성되기 쉽기 때문에, 800℃ 미만의 온도에서 압연을 할 경우에는 강판의 취성이 강해져서 파괴가 일어날 우려가 있다. 열간압연 온도의 상한은 고규소 강판의 통상적인 열간압연 온도 범위라면 특별히 제한하지 않으나, 한가지 비제한적인 예를 든다면 균일한 슬라브 가열과 표면 품질 제어를 위하여 열간압연 온도를 1200℃ 이하로 정할 수 있다.
상술한 열간압연은 주조후 슬라브가 냉각되기 전에 재가열 없이 바로 실시할 수도 있으며, 냉각된 슬라브를 재가열하여 실시할 수도 있으나, 재가열에 의한 파이야라이트의 생성을 방지하기 위해서는 주조후 냉각되지 않은 열간의 슬라브에 대하여 바로 실시하는 것이 보다 바람직하다. 또한, 슬라브를 재가열하는 경우에는 반드시 이로 제한하는 것은 아니나, 응고후의 주편의 표면온도가 700℃ 미만으로 감소하지 않은 시점에서 재가열하는 것이 바람직하다. 또한, 한가지 바람직한 구현례에서는 주조에 의하여 슬라브를 제조하는 것이 아니라 스트립 캐스팅을 통하여 박강판을 주조한 후 주조단계 이후에 직결되는 열간압연 공정에 의하여 열간압연하는 방법을 채용할 수도 있다. 스트립 캐스팅은 상호 반대방향으로 회전하는 한쌍의 롤 사이(쌍롤법) 또는 회전하는 하나의 롤 표면(단롤법)에 용강을 주입하여 용강이 박강판으로 주조되도록 하는 기술(그 밖에도 단일 벨트법 등이 있음)로서 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 그 실시에 특별한 어려움이 없을 것이다. 단, 이러할 경우에도 상기 열간압연 온도는 800℃ 이상으로 제한하는 것이 바람직하다.
또한, 상기 열간압연에 의하여 얻어지는 강판(열연판)의 두께는 3mm 이하인 것이 바람직하다. 열연판의 두께가 너무 두꺼울 경우에는 후속하는 냉간압연 또는 온간압연시 강판의 압하량이 커져서 판파단 등의 문제가 발생할 수 있다. 열연판 두께가 얇아도 본 발명을 구현하는데는 특별한 문제가 없기 대문에 열연판 두께의 하한을 특별히 정하지는 않는다. 다만, 열연판의 두께를 과다하게 얇게 할 경우에는 압연 부하가 커져서 열연판의 파단이나 크랙 등의 문제가 발생할 수 있으므로 이로 한정하지는 않으나 상기 열연판 두께의 하한은 2mm로 정할 수도 있다. 특히, 스트립 캐스팅에 의하여 강판을 제조할 경우에는 강판 두께의 하한은 1.0mm까지 감소할 수 있다. 다만, 열간압연 기술이 개선될 경우에는 상기 열연판 두께의 하한은 더욱 감소할 수 있으므로, 반드시 상술한 범위로 열연판 두께를 제한하지 않는다는 점에 유의할 필요가 있다.
상술한 과정에 의해 제조된 열연강판은 결정립 크기가 150~250㎛로서, 통상의 열연강판에 비하여 우수한 가공성을 가지므로, 후속되는 냉간압연시 양호한 가공성으로 압연될 수 있는 것이다. 종래의 고규소 열연강판이 500㎛ 이상의 결정립 크기를 가진다는 것을 고려하면, 본 발명의 열연강판은 매우 미세한 크기의 결정립을 가진다는 것을 알 수 있다.
냉간압연: 150~300℃
본 발명의 강판 조성은 종래기술에 비하여 강판의 가공성을 향상시킬 수 있으므로, 열간압연 이후의 압연온도를 300℃ 이하, 바람직하게는 250℃ 이하로 하여 강판을 제조할 수 있다. 다만, 압연온도가 너무 낮을 경우에는 강판의 파단이 일어날 수 있으므로, 그 온도의 하한은 150℃으로 정한다.
상기 냉간압연에 의하여 제조되는 강판은 요구되는 최종 제품의 특성에 따라 0.1~0.5mm의 두께를 가질 수 있다.
따라서, 본 발명의 연질 고규소 강판 제조방법은 상술한 조성의 슬라브를 준비하는 단계; 상기 슬라브를 800℃ 이상의 온도에서 열간압연하여 열연판을 얻는 단계; 및 상기 열연판을 냉간압연하여 최종 두께의 강판을 얻는 단계를 포함한다.
이때, 상기 냉간압연은 열간압연 후 바로 실시될 수도 있으나, 자기적 특성에 유리한 집합조직을 발달시키고 결정립 크기를 제어하며 규칙상의 비율을 감소시켜서 가공성을 더욱 향상시키기 위해서는 열처리후 실시하는 것이 보다 바람직하다. 따라서, 본 발명의 한가지 유리한 측면에 따르면, 상기 열간압연과 냉간압연 사이에는 열처리 과정이 추가로 포함될 수 있다.
열처리 온도: 800~1200℃
열간압연된 강판은 내부에 규칙상이 다량 형성되어 있어 그대로 냉간압연 또는 저온 온간압연할 경우에는 판깨어짐 등이 발생하여 압연성이 매우 나빠질 수 있다. 따라서, 본 발명의 한가지 바람직한 구현례에서는 냉간압연 또는 온간압연 전에 800℃ 이상의 온도로 열처리하는 과정이 포함될 수 있다. 800℃ 이상의 열처리 온도는 상변태에 의하여 강판 내부에 존재하는 규칙상을 제거하기 위한 것이다. 다만, 열처리 온도가 너무 높을 경우에는 에너지 비용이 증가하고 강판 표면에 스케일이 증가하는 등의 문제가 있을 수 있으므로 그 온도의 상한을 1200℃로 정한다. 보다 바람직한 열처리 온도는 900~1200℃이다.
열처리시 분위기
상기 열처리시 강판의 표면에 스케일이 발생하면 압연성이 열화될 수 있으므로, 가급적 스케일이 발생하지 않는 비산화성 분위기에서 열처리를 실시하는 것이 바람직하다. 따라서, 상기 열처리시 분위기 가스로는 질소, 아르곤 또는 질소와 아르곤의 혼합 가스로 이루어진 불활성 가스 또는 상기 가스에 35체적 분율(%) 미만의 수소 가스를 포함하는 환원성 가스를 사용할 수 있다.
열처리 후 냉각: 800℃에서 100℃까지의 구간을 포함하는 온도구간을 30℃/초 이상의 냉각속도로 냉각함
상술한 온도로 가열된 고온의 강판 내부에는 규칙상이 제거되어 있지만, 열처리 이후 서냉할 경우에는 다시 규칙상이 형성될 수 있으므로, 규칙상의 형성을 억제하기 위하여 30℃/초 이상의 냉각속도로 냉각할 필요가 있다. 냉각속도가 높으면 높을 수록 좋으므로 냉각속도의 상한은 특별히 정하지 않으며, 예를 들면 강판을 켄칭(quenching)하여 냉각할 수도 있다. 다만 냉각이 800℃ 미만의 온도에서 개시되거나 100℃ 초과의 온도에서 중지될 경우에는 바람직하지 않은 정도로 규칙상이 다량 형성될 우려가 있으므로, 상기 냉각 구간은 800℃에서 100℃까지의 구간을 포함하는 것이 바람직하다. 다만, 본 냉각조건은 강판의 가공성(압연성)을 보다 개선하기 위한 것으로서, 본 발명의 조성 범위에 해당하는 강판의 모든 조성범위에서 반드시 필수적인 것은 아니며, 본 발명의 조성을 가지는 강판 중 상당 부분은 Cr 첨가에 의하여 가공성을 상당히 개선한 결과 공냉 등의 비교적 낮은 냉각속도로 냉각되어도 후속되는 냉간압연 공정에서 압연이 가능할 수도 있다.
상술한 바와 같이, 상기 열처리 및 냉각 과정은 냉간압연 또는 온간압연 전에 규칙상의 생성을 억제하기 위하여 포함되는 과정이다. 상술한 열처리 과정을 실시하지 않는다면, 열간압연을 종료하고 800℃ 이상의 온도에서 100℃ 이하의 온도까지 30℃/초 이상의 냉각속도로 급냉하는 과정을 대신 실시할 수도 있다. 냉각속도의 상한은 열처리 후 냉각과 마찬가지로 특별히 제한하지 않는다. 다만, 강판의 조직을 효과적으로 제어하기 위해서는 열처리하는 것이 보다 유리하다.
강판을 냉간압연 또는 온간압연한 이후에는 통상의 방법으로 최종 소둔할 수 있다. 최종 소둔은 900~1200℃ 의 온도 범위에서 실시하는 것이 바람직하다. 즉, 큐브 집합조직의 비율을 증가시키기 위해서는 상기 최종 소둔은 900℃ 이상의 온도에서 실시하는 것이 바람직하다. 다만, 온도가 1200℃를 넘어서면 그 효과가 포화되며, 에너지 비용도 증가하기 때문에 상기 최종 소둔 온도의 상한은 1200℃으로 정할 수 있다.
본 명세서에서 특별히 기재하지 않은 제조조건은 통상의 제조조건에 준하여 적용할 수 있으며, 통상 이용되는 과정이 새로이 추가될 수도 있음에 유의할 필요가 있다.
이하, 실시예를 통하여 본 발명을 구체적으로 설명한다. 다만, 후술하는 실시예는 본 발명을 예시하여 구체화하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.
(실시예)
실시예1
하기 표 1에 기재된 조성으로 전기강판 주편을 주조하였다. 표에 기재되지 않은 불순물 중 주요 성분은 C, N으로서 각각 0.005%, 0.0033% 수준으로 제어되었다. 이후, 상기 주편을 1100℃에서 1시간 가열한 후 1050℃의 온도에서 열간압연을 개시하여 850℃에서 종료하였다. 열간압연에 의하여 두께 30mm의 주편이 2.5mm의 열연판으로 압연되었다. 열간압연된 규소강판을 1000℃에서 5분간 수소 20체적%, 질소 80체적%의 분위기에서 열처리한 다음, 상온까지 공냉하여 열처리된 열연판을 얻었다. 이후 상기 열연판을 산세하여 표면 산화층을 제거하였다. 상기 열연판에 대하여 400℃와 150℃의 온도에서 각각 0.2mm의 최종두께로 냉간(온간) 압연을 실시하였다.
각 경우별로 압연시의 압연성을 평가하고, 표 1에 함께 기재하였다. 표에서 i) 최종 두께에 도달하지 못하고 판이 파단된 경우를 '파단', ii) 최종 두께에 도달하였으나 길이 1cm 이상의 크랙이 압연판에 발생한 경우를 '불량', iii) 1cm 미만의 미세 크랙이 발생한 경우를 '보통', iv) 최종 압연판에서 크랙이 발견되지 않는 경우를 '우수'로 구분하여 표기하였다.
표 1
성분계(중량%) 기계적 특성
Si Al Cr B 압연성[400℃] 압연성[150℃]
비교예1 3.8 0.1 1.2 0.011 우수 우수
비교예2 7.2 0.1 1.3 0.012 파단 파단
비교예3 5 0.9 0.8 0.011 불량 파단
비교예4 5.1 0.9 21.2 0.013 불량 파단
비교예5 4.1 3.3 1.1 0.011 파단 파단
비교예6 4.5 2 1.2 0.008 보통 불량
비교예7 4.5 1.9 1.2 0.052 불량 파단
발명예1 5.1 0.001 1.1 0.011 우수 보통
발명예2 5.2 0.003 19.7 0.012 우수 우수
발명예3 4 2.9 1.1 0.013 우수 우수
발명예4 4.5 1.9 1.1 0.011 우수 보통
발명예5 4.5 2.1 1.2 0.048 우수 우수
발명예6 5 0.9 1.2 0.014 우수 우수
발명예7 5.2 1 19.8 0.011 우수 우수
상기 표 1에서 확인할 수 있듯이, 비교예2와 같이 Si 함량이 과다하게 첨가될 경우에는 비록 Cr과 B를 일정 수준 이상 첨가하였음에도 불구하고 400℃와 150℃의 압연에서 모두 판파단이 일어났다. 또한, 비교예3은 Cr 함량이 본 발명에서 규정하는 범위에 미달하는 경우로서 규칙상의 생성을 충분히 방지하지 못한 결과 역시 양호하지 못한 압연성을 나타내고 있었다. 비교예4는 Cr 함량이 과다한 경우로서, 역시 불량한 압연성을 나타내고 있었다. 비교예5는 Al을 본 발명에서 규정하는 범위를 초과하여 첨가한 경우로서, 이 역시 판파단의 원인으로 작용하였다. 비교예6은 B 함량이 부족한 경우로서 400℃에서의 압연성은 보통이었으나, 150℃에서 불량함을 알 수 있었다. 따라서, B 역시 압연성 확보에 필요한 원소임을 확인할 수 있었다. 다만, B과 과다할 경우(비교예7) 오히려 압연성이 악화되어 400℃에서조차 불량인 것으로 판정되었다.
그러나, 본 발명의 조건을 충족하는 발명예의 경우는 400℃에서는 모두 우수한 압연성을 나타내고 있었으며, 본 발명의 한가지 구현례에 따른 냉간압연 온도인 150℃의 저온에서도 보통 이상의 압연성을 나타내고 있었다(대체로 크랙 크기는 0.2cm 이하이었음). 특히, 발명예1 및 2는 Al을 실질적으로 첨가하지 않은 경우를 나타낸다.
실시예2
실시예1과 동일한 방식으로 0.2mm 두께까지 압연에 성공한 경우의 강판에 대하여, 최종 자성 구현을 위해 1000℃에서 10분간, 수소 20체적%,질소 80체적%, 이슬점 -10℃의 건조분위기에서 소둔한 후 자성을 측정하고 그 결과를 하기 표 2에 나타내었다. 또한 주사전자현미경(SEM)의 EBSD 장비를 이용하여 열간압연판의 <100>{001} 집합조직(소위 큐브 조직)의 분율을 표 2에서 비교 분석하였다. 열간압연판(열연판)의 큐브 조직 비율은 최종판의 자기적 성질에 큰 영향을 미친다. 상기 <100>{001} 집합조직의 분율이 높아짐에 따라 자기적 특성이 향상될 수 있다.
표 2
성분계(중량%) 자기적 특성 열간압연판<100>{001}조직 부피분율[%]
Si Al Cr B W10/400[W/kg] W10/1000[W/kg]
비교예8 3.8 0.02 1.2 0.011 14.3 65 11.3
발명예8 4.1 0.9 4.1 0.012 6.5 23.2 15.7
발명예9 5.1 1 8.2 0.011 5.86 21.4 19.7
발명예10 6.7 0.01 16.3 0.013 5.65 19.7 20.1
상술한 바와 같이, Si 함량이 낮은 비교예8은 발명예에 비하여 철손이 매우 높은 것을 알 수 있다. 철손이 높을수록 에너지 손실이 크므로 전기강판으로 적합하지 않다. 이에 비하여, 본 발명의 조성 조건을 충족하는 발명예는 모두 우수한 철손치를 나타내고 있었다. 특히 본 발명의 조건에 따른 발명예는 1000Hz의 고주파에서도 낮은 철손치를 나타내고 있으며, 따라서 고주파 철심재로 사용하기에 적합하다는 것을 확인할 수 있었다.
실시예3
중량%로 Si: 5%, Al: 1%, Cr: 12%, C: 0.002%, N: 0.003%를 함유한 규소강 합금을 수직형 쌍롤 스트립 캐스터(strip caster)를 이용하여 두께 2.0mm로 주조하였다. 스트립 캐스트에 연결된 열가압연기를 이용하여 두께 2.0mm의 주조된 판을 1.0mm로 열간압연 하였다. 열간압연시 열간압연 개시온도는 1000℃ 이었으며, 종료온도는 850℃ 이었다. 열간압연된 고규소 강판을 1000℃에서 5분간 수소 20체적%, 질소80체적%의 분위기에서 가열한 다음, 냉각하였다. 냉각시 800~100℃ 구간의 냉각속도를 100℃/초와 10℃/초의 두가지로 하고, 냉각된 강판을 염산액으로 산세하여 표면의 산화층을 제거한 후, 150℃의 온도에서 온간압연하였다. 냉각속도에 관계 없이 두 경우 모두 0.1mm의 두께까지 압연 가능하였으나, 냉각속도가 100℃/초인 경우가 보다 압연성이 양호하였다. 이는 Cr 첨가에 의하여 규칙상을 억제함으로써 압연성을 근본적으로 개선하고, 냉각과정에서 규칙상의 발생을 최대한 억제한 결과이다.

Claims (14)

  1. 중량%로, Si: 4% 초과 ~ 7% 이하, Cr: 1~20% 및 B: 0.01~0.05%를 포함하는 조성을 가지는 연질 고규소 강판.
  2. 제 1 항에 있어서, Total Al: 0.1~3중량%를 더 포함하는 연질 고규소 강판.
  3. 제 2 항에 있어서, Si+Total Al: 4.1% 초과 ~ 7% 이하의 범위를 충족하는 연질 고규소 강판.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, Mo: 0.1% 이하, Ni: 0.01% 이하, P: 0.05% 이하 및 Cu, 0.01% 이하 중에서 선택된 1종 또는 2종 이상을 더 포함하는 연질 고규소 강판.
  5. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, C와 N의 함량을 각각 C: 0.05% 이하 및 N: 0.05% 이하로 제한하여 포함하는 연질 고규소 강판.
  6. 중량%로, Si: 4% 초과 ~ 7% 이하, Cr: 1~20%를 포함하는 조성을 가지는 강재를 준비하는 단계;
    상기 강재를 800℃ 이상의 온도에서 열간압연하여 열연판을 얻는 단계; 및
    상기 열연판을 150~300℃의 온도에서 냉간압연하는 단계;
    를 포함하는 연질 고규소 강판의 제조방법.
  7. 제 6 항에 있어서, 상기 강재가 Total Al: 0.1~3중량%를 더 포함하는 연질 고규소 강판의 제조방법.
  8. 제 7 항에 있어서, Si+Total Al: 4.1% 초과 ~ 7% 이하의 범위를 충족하는 연질 고규소 강판의 제조방법.
  9. 제 6 항 내지 제 8 항 중 어느 한 항에 있어서, 상기 강재가 C와 N의 함량을 각각 C: 0.05% 이하 및 N: 0.05% 이하로 제한하여 포함하는 연질 고규소 강판의 제조방법.
  10. 제 6 항 내지 제 8 항 중 어느 한 항에 있어서, 상기 강재는 Mo: 0.1% 이하, Ni: 0.01% 이하, P: 0.05% 이하 및 Cu, 0.01% 이하 중에서 선택된 1종 또는 2종 이상을 더 포함하는 연질 고규소 강판의 제조방법.
  11. 제 6 항 내지 제 8 항 중 어느 한 항에 있어서, 상기 강재는 연속주조 또는 스트립 캐스팅에 의하여 제조된 것인 연질 고규소 강판의 제조방법.
  12. 제 6 항 내지 제 8 항 중 어느 한 항에 있어서, 상기 열연판의 내부조직의 결정립 크기가 150~250㎛인 연질 고규소 강판의 제조방법.
  13. 제 6 항 내지 제 8 항 중 어느 한 항에 있어서, 상기 열연판을 얻는 단계는 열간압연후 800~100℃의 온도구간을 30℃/초 이상의 냉각속도로 냉각하는 과정을 더 포함하는 연질 고규소 강판의 제조방법.
  14. 제 6 항 내지 제 8 항 중 어느 한 항에 있어서, 상기 열연판을 얻는 단계 이후 열연판을 800~1200℃의 온도로 열처리 한 후, 800~100℃의 온도구간을 30℃/초 이상의 냉각속도로 냉각하는 과정을 더 포함하는 연질 고규소 강판의 제조방법.
PCT/KR2013/012147 2013-12-24 2013-12-24 연질 고규소 강판 및 그 제조방법 WO2015099217A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380081868.2A CN105849299B (zh) 2013-12-24 2013-12-24 软质高硅钢板及其制造方法
US15/107,810 US20160319387A1 (en) 2013-12-24 2013-12-24 Soft high-silicon steel sheet and manufacturing method thereof
PCT/KR2013/012147 WO2015099217A1 (ko) 2013-12-24 2013-12-24 연질 고규소 강판 및 그 제조방법
JP2016542773A JP6404356B2 (ja) 2013-12-24 2013-12-24 軟質高珪素鋼板及びその製造方法
US16/565,759 US11505845B2 (en) 2013-12-24 2019-09-10 Soft high-silicon steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/012147 WO2015099217A1 (ko) 2013-12-24 2013-12-24 연질 고규소 강판 및 그 제조방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/107,810 A-371-Of-International US20160319387A1 (en) 2013-12-24 2013-12-24 Soft high-silicon steel sheet and manufacturing method thereof
US16/565,759 Division US11505845B2 (en) 2013-12-24 2019-09-10 Soft high-silicon steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
WO2015099217A1 true WO2015099217A1 (ko) 2015-07-02
WO2015099217A8 WO2015099217A8 (ko) 2015-09-17

Family

ID=53479049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/012147 WO2015099217A1 (ko) 2013-12-24 2013-12-24 연질 고규소 강판 및 그 제조방법

Country Status (4)

Country Link
US (2) US20160319387A1 (ko)
JP (1) JP6404356B2 (ko)
CN (1) CN105849299B (ko)
WO (1) WO2015099217A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017160952A1 (en) * 2016-03-15 2017-09-21 Colorado State University Research Foundation Corrosion-resistant alloy and applications
WO2018009750A1 (en) * 2016-07-08 2018-01-11 The Nanosteel Company, Inc. High yield strength steel
US11560605B2 (en) 2019-02-13 2023-01-24 United States Steel Corporation High yield strength steel with mechanical properties maintained or enhanced via thermal treatment optionally provided during galvanization coating operations

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2992966C (en) * 2015-09-17 2020-04-28 Jfe Steel Corporation High-silicon steel sheet and method for manufacturing the same
MX2019013725A (es) * 2017-05-17 2020-01-15 Crs Holdings Inc Aleacion a base de fe-si y un metodo para fabricarla.
US20190217363A1 (en) * 2018-01-17 2019-07-18 The Nanosteel Company, Inc. Alloys And Methods To Develop Yield Strength Distributions During Formation Of Metal Parts
JP7423915B2 (ja) * 2019-06-18 2024-01-30 大同特殊鋼株式会社 圧粉磁心の製造方法
CN114293089B (zh) * 2021-12-31 2022-06-21 河北科技大学 一种软磁性高硅钢极薄带及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563625A (en) 1979-06-23 1981-01-14 Noboru Tsuya Thin sheet of high silicon steel nondirectional in (100) plane and very low in coercive force and its manufacture
JPS62227078A (ja) 1986-03-28 1987-10-06 Nippon Kokan Kk <Nkk> 連続ラインにおける高珪素鋼帯の製造方法
JPH01299702A (ja) 1988-05-25 1989-12-04 Hitachi Ltd 温間圧延方法、及びその装置
JPH05171281A (ja) 1991-12-17 1993-07-09 Sumitomo Metal Ind Ltd 高珪素鋼板の製造方法
JPH09176803A (ja) * 1997-01-27 1997-07-08 Nkk Corp Si拡散浸透処理法により製造される加工性の優れた高珪素鋼板
JPH11335794A (ja) * 1998-05-26 1999-12-07 Kawasaki Steel Corp 低履歴損失の方向性珪素鋼板およびその製造方法
JP2002194513A (ja) * 2000-12-28 2002-07-10 Kawasaki Steel Corp 加工変形特性に優れるシリコンクロム鋼板及びその製造方法
KR100374292B1 (ko) 2001-03-06 2003-03-03 (주)창성 대전류 직류중첩특성이 우수한 역률개선용 복합금속분말및 그 분말을 이용한 연자성 코아의 제조방법
KR20050084478A (ko) * 2002-12-24 2005-08-26 제이에프이 스틸 가부시키가이샤 Fe-Cr-Si 계 무방향성 전자강판 및 그 제조방법
JP2010501044A (ja) * 2006-08-17 2010-01-14 フェデラル−モーグル ブルシャイト ゲゼルシャフト ミット ベシュレンクテル ハフツング ピストンリングおよびシリンダライナの製造のための高珪素成分を含む鋼材

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616653A (en) * 1979-07-17 1981-02-17 Tohoku Tokushuko Kk Soft magnetic material having superior workability and machinability
JPS62133042A (ja) * 1985-12-04 1987-06-16 Daido Steel Co Ltd 電磁ステンレス鋼
JP2956399B2 (ja) * 1992-12-08 1999-10-04 日本鋼管株式会社 加工性の優れた高珪素電磁鋼板
EP0601549B1 (en) 1992-12-08 1997-07-16 Nkk Corporation Electrical steel sheet
JP3218921B2 (ja) 1995-05-10 2001-10-15 日本鋼管株式会社 低磁歪高珪素電磁鋼板
JP3870616B2 (ja) * 1999-07-22 2007-01-24 Jfeスチール株式会社 Fe−Cr−Si系合金及びその製造方法
EP1501951B2 (en) 2002-05-08 2013-08-28 Ak Steel Properties, Inc. Method of continuous casting non-oriented electrical steel strip
JP4306445B2 (ja) 2002-12-24 2009-08-05 Jfeスチール株式会社 高周波磁気特性に優れたFe−Cr−Si系無方向性電磁鋼板およびその製造方法
CN100476004C (zh) * 2003-05-06 2009-04-08 新日本制铁株式会社 铁损优良的无方向性电磁钢板及其制造方法
JP4724431B2 (ja) * 2005-02-08 2011-07-13 新日本製鐵株式会社 無方向性電磁鋼板
CN101441914B (zh) * 2008-09-17 2011-08-31 安泰科技股份有限公司 一种非晶软磁合金涂层及其制备方法
CN103060701B (zh) * 2013-01-09 2015-06-17 东北大学 一种无取向高硅电工钢薄带的制备方法
CN103276174A (zh) * 2013-05-31 2013-09-04 武汉科技大学 一种含铬高硅钢薄带及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563625A (en) 1979-06-23 1981-01-14 Noboru Tsuya Thin sheet of high silicon steel nondirectional in (100) plane and very low in coercive force and its manufacture
JPS62227078A (ja) 1986-03-28 1987-10-06 Nippon Kokan Kk <Nkk> 連続ラインにおける高珪素鋼帯の製造方法
JPH01299702A (ja) 1988-05-25 1989-12-04 Hitachi Ltd 温間圧延方法、及びその装置
JPH05171281A (ja) 1991-12-17 1993-07-09 Sumitomo Metal Ind Ltd 高珪素鋼板の製造方法
JPH09176803A (ja) * 1997-01-27 1997-07-08 Nkk Corp Si拡散浸透処理法により製造される加工性の優れた高珪素鋼板
JPH11335794A (ja) * 1998-05-26 1999-12-07 Kawasaki Steel Corp 低履歴損失の方向性珪素鋼板およびその製造方法
JP2002194513A (ja) * 2000-12-28 2002-07-10 Kawasaki Steel Corp 加工変形特性に優れるシリコンクロム鋼板及びその製造方法
KR100374292B1 (ko) 2001-03-06 2003-03-03 (주)창성 대전류 직류중첩특성이 우수한 역률개선용 복합금속분말및 그 분말을 이용한 연자성 코아의 제조방법
KR20050084478A (ko) * 2002-12-24 2005-08-26 제이에프이 스틸 가부시키가이샤 Fe-Cr-Si 계 무방향성 전자강판 및 그 제조방법
JP2010501044A (ja) * 2006-08-17 2010-01-14 フェデラル−モーグル ブルシャイト ゲゼルシャフト ミット ベシュレンクテル ハフツング ピストンリングおよびシリンダライナの製造のための高珪素成分を含む鋼材

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C.A. CLARK ET AL.: "Effect of nickel on the properties of grain-oriented silicon-iron alloys", PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS, vol. 113, no. 2, February 1966 (1966-02-01), pages 345 - 351, XP001274820
K. NARITA ET AL.: "Effect of ordering on magnetic properties of 6.5-percent silicon-iron alloy", IEEE TRANSACTIONS, 1979

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017160952A1 (en) * 2016-03-15 2017-09-21 Colorado State University Research Foundation Corrosion-resistant alloy and applications
CN109072385A (zh) * 2016-03-15 2018-12-21 科罗拉多州立大学研究基金会 耐腐蚀合金和应用
WO2018009750A1 (en) * 2016-07-08 2018-01-11 The Nanosteel Company, Inc. High yield strength steel
KR20190028481A (ko) * 2016-07-08 2019-03-18 더 나노스틸 컴퍼니, 인코포레이티드 고항복강도 강판
CN109563603A (zh) * 2016-07-08 2019-04-02 纳米钢公司 高屈服强度钢
EP3481972A4 (en) * 2016-07-08 2020-02-26 The Nanosteel Company, Inc. HIGH ELASTICITY STEEL
KR102195866B1 (ko) * 2016-07-08 2020-12-29 더 나노스틸 컴퍼니, 인코포레이티드 고항복강도 강판
CN109563603B (zh) * 2016-07-08 2021-11-05 纳米钢公司 高屈服强度钢
US11560605B2 (en) 2019-02-13 2023-01-24 United States Steel Corporation High yield strength steel with mechanical properties maintained or enhanced via thermal treatment optionally provided during galvanization coating operations

Also Published As

Publication number Publication date
JP6404356B2 (ja) 2018-10-10
US11505845B2 (en) 2022-11-22
CN105849299B (zh) 2018-07-27
WO2015099217A8 (ko) 2015-09-17
US20160319387A1 (en) 2016-11-03
US20200048729A1 (en) 2020-02-13
JP2017508878A (ja) 2017-03-30
CN105849299A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
WO2015099217A1 (ko) 연질 고규소 강판 및 그 제조방법
WO2013147407A1 (ko) 자성특성이 우수한 (100)〔0vw〕 무방향성 전기강판 및 그 제조방법
KR101449093B1 (ko) 생산성 및 자기적 성질이 우수한 고규소 강판 및 그 제조방법.
WO2011081386A2 (ko) 자성이 우수한 무방향성 전기강판 및 그 제조방법
WO2021125855A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2021125682A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2013100698A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2020067721A1 (ko) 이방향성 전기강판 및 그의 제조방법
WO2022139352A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2021125685A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2017082621A1 (ko) 방향성 전기강판 및 그 제조방법
WO2021125683A2 (ko) 무방향성 전기강판 및 그 제조방법
KR101536465B1 (ko) 연질 고규소 강판 및 그 제조방법
WO2022139337A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2022234901A1 (ko) (001) 집합조직으로 구성된 전기강판 및 그의 제조방법
WO2020111781A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2020122558A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2023121295A1 (ko) 무방향성 전기강판, 그 제조 방법 및 그를 포함하는 모터 코어
WO2019132425A1 (ko) 재질과 두께의 편차가 작은 무방향성 전기강판 및 그 제조방법
WO2024136171A1 (ko) 무방향성 전기강판, 그 제조방법 및 그를 포함하는 모터 코어
WO2023121294A1 (ko) 무방향성 전기강판 및 그를 포함하는 모터 코어
WO2021125686A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2022139354A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2021125857A1 (ko) 이방향성 전기강판 및 그의 제조방법
WO2022173159A1 (ko) 무방향성 전기강판의 제조방법 및 이에 의해 제조된 무방향성 전기강판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542773

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15107810

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013900502

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013900502

Country of ref document: EP