WO2011081386A2 - 자성이 우수한 무방향성 전기강판 및 그 제조방법 - Google Patents

자성이 우수한 무방향성 전기강판 및 그 제조방법 Download PDF

Info

Publication number
WO2011081386A2
WO2011081386A2 PCT/KR2010/009380 KR2010009380W WO2011081386A2 WO 2011081386 A2 WO2011081386 A2 WO 2011081386A2 KR 2010009380 W KR2010009380 W KR 2010009380W WO 2011081386 A2 WO2011081386 A2 WO 2011081386A2
Authority
WO
WIPO (PCT)
Prior art keywords
oriented electrical
steel sheet
electrical steel
condition
inclusions
Prior art date
Application number
PCT/KR2010/009380
Other languages
English (en)
French (fr)
Other versions
WO2011081386A3 (ko
Inventor
김재훈
김재관
김용수
봉원석
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090131990A external-priority patent/KR101286243B1/ko
Priority claimed from KR1020090131992A external-priority patent/KR101296114B1/ko
Priority claimed from KR1020100135003A external-priority patent/KR101296116B1/ko
Priority claimed from KR1020100135004A external-priority patent/KR101296117B1/ko
Priority claimed from KR1020100135943A external-priority patent/KR101296124B1/ko
Priority to JP2012545866A priority Critical patent/JP5642195B2/ja
Priority to EP10841218.0A priority patent/EP2520681B1/en
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US13/514,342 priority patent/US20120267015A1/en
Priority to CN201080059853.2A priority patent/CN102906289B/zh
Publication of WO2011081386A2 publication Critical patent/WO2011081386A2/ko
Publication of WO2011081386A3 publication Critical patent/WO2011081386A3/ko
Priority to US15/947,340 priority patent/US20180223400A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to the manufacture of non-oriented electrical steel sheet, by setting the additive components of the steel to the optimum setting to increase the distribution density of coarse inclusions in the steel, improve the growth of the grain and the mobility of the magnetic wall to improve the magnetism, ensuring low hardness
  • the present invention relates to a high-quality non-oriented electrical steel sheet and a method of manufacturing the same that improves product productivity and punchability.
  • the present invention relates to the production of non-oriented electrical steel sheet used as the iron core material of the rotating machine, the non-oriented electrical steel sheet is an important component for converting electrical energy into mechanical energy, the magnetic properties are very important.
  • Mainly mentioned as magnetic properties are iron loss and magnetic flux density. Iron loss is energy that disappears as heat during the energy conversion process, the lower the better, the higher the magnetic flux density is the power source of the rotor, the higher the better the energy efficiency.
  • non-oriented electrical steel sheet adds Si as a main element to reduce iron loss.
  • Si As the content of Si increases, the magnetic flux density decreases, and when the content of Si increases excessively, workability decreases, making cold rolling difficult.
  • the die life is reduced when the customer punches. Therefore, attempts have been made to improve the magnetic and mechanical properties by reducing the content of Si and increasing the content of Al, but are not yet commercialized due to the difficulty of the high-quality non-oriented electrical steel sheet and the difficulty in mass production process. .
  • Impurities not removed in the steelmaking stage exist in the form of nitrides or sulfides in the slab during continuous casting, and inclusions such as nitrides or sulfides are redissolved as the slab is reheated to a temperature above 1,100 ° C for hot rolling. At the end of rolling, fine precipitates again.
  • the inclusions MnS and AlN, which are precipitated in general non-oriented electrical steel sheets, are observed to have a fine average size of about 50 nm, and the fine inclusions thus produced not only increase the hysteresis loss by inhibiting the growth of grains during annealing, but also magnetization. This reduces the permeability by preventing the city wall from moving.
  • the present invention was created in order to solve all the problems of the prior art as described above, by managing the component ratios of Al, Si, Mn, which are alloy elements of steel, and N and S, which are impurity elements, under optimum conditions.
  • By increasing the distribution density of inclusions and reducing the frequency of occurrence of fine inclusions it aims to provide the highest quality non-oriented electrical steel sheet with excellent productivity and resilience due to its low hardness characteristics while improving the growth of grains and mobility of magnetic walls. It is.
  • the non-oriented electrical steel sheet having excellent magnetic properties of the present invention for solving the above problems by weight Al: 0.7-3.0%, Si: 0.2-3.5%, Mn: 0.2-2.0%, N: 0.001-0.004%, S : 0.0005 to 0.004%, remainder Fe and other inevitable impurities, and at least any one of the following conditions (1), (2) and (3) is characterized.
  • Condition (2) 1.0 ⁇ [Al] ⁇ 3.0, 0.5 ⁇ [Si] ⁇ 2.5, 0.5 ⁇ [Mn] ⁇ 2.0, ⁇ [Al] + [Mn] ⁇ ⁇ 3.5, 0.002 ⁇ ⁇ [N] + [S ] ⁇ ⁇ 0.006, 300 ⁇ ⁇ ([Al] + [Mn]) / ([N] + [S]) ⁇ ⁇ 1,400
  • [Al], [Si], [Mn], [N], and [S] mean Al, Si, Mn, N, and S content (% by weight), respectively.
  • the non-oriented electrical steel sheet of the present invention that satisfies the condition (1), the content of Al, Si, Mn satisfies the following formula (1) and formula (2), the cross-sectional Vickers hardness (Hv1) is characterized in that less than 140 It is done.
  • the content of Al, Si, and Mn satisfies Equation (2) and Equation (3) and Equation (4) below, and has a cross-sectional Vickers hardness (Hv1). ) Is less than 190.
  • Equation (4) 0.6 ⁇ [Al] / [Si] ⁇ 4.0
  • the content of Al, Si, and Mn satisfies Equation (2) and Equation (5) below, and the cross-sectional Vickers hardness (Hv1) is 225 or less. It features.
  • Equation (5) 3.0 ⁇ ⁇ [Al] + [Si] + [Mn] / 2 ⁇ ⁇ 6.5
  • the inclusion density of nitride and sulfide alone or a combination thereof is formed in the steel sheet, and the distribution density of inclusions having an average size of 300 nm or more. Is 0.02 pieces / mm 2 or more.
  • non-oriented electrical steel sheet of the present invention is characterized in that it further contains less than 0.2%.
  • non-oriented electrical steel sheet of the present invention is characterized in that it contains at least one or more of 0.005 ⁇ 0.2% Sn and 0.005 ⁇ 0.1% Sb.
  • Method for producing a non-oriented electrical steel sheet having excellent magnetic properties of the present invention for solving the above problems by weight Al: 0.7 ⁇ 3.0%, Si: 0.2 ⁇ 3.5%, Mn: 0.2 ⁇ 2.0%, N: 0.001 ⁇ 0.004 %, S: 0.0005% to 0.004%, remainder Fe and other unavoidably mixed impurities, and heating the slab that satisfies at least one of the conditions (1), (2) and (3) above After rolling and cold rolling, the final annealing is carried out at a temperature of 750 to 1100 ° C.
  • the inclusion of a nitride or a sulfide alone or a combination thereof is formed on the final annealed steel sheet, characterized in that the distribution density of the inclusion having an average size of 300nm or more to 0.02 pieces / mm 2 or more It is done.
  • the manufacturing method of the non-oriented electrical steel sheet of the present invention is added to 0.3 ⁇ 0.5% Al to be deoxidized, and then the remaining alloy element is added, the temperature is maintained at 1,500 ⁇ 1,600 °C after the addition of the remaining alloy element It is characterized by producing a slab.
  • the non-oriented electrical steel slab of the present invention for solving the above problems in weight%, Al: 0.7-3.0%, Si: 0.2-3.5%, Mn: 0.2-2.0%, N: 0.001-0.004%, S: 0.0005 It consists of -0.004%, remainder Fe, and other inevitable mixing impurity, It is characterized by satisfy
  • the non-oriented electrical steel slab of the present invention that satisfies at least one of the conditions (1) to (3) is further characterized by containing 0.2% or less of P.
  • non-oriented electrical steel sheet slab of the present invention is characterized in that it contains at least one or more of 0.005 ⁇ 0.2% Sn and 0.005 ⁇ 0.1% Sb.
  • Method for producing a non-oriented electrical steel slab of the present invention for solving the above problems is to add deoxidation by adding 0.3 ⁇ 0.5% Al to the molten steel, and then put the remaining Al and Si and Mn, the temperature is 1,500 By maintaining at ⁇ 1,600 ° C, in weight%, Al: 0.7-3.0%, Si: 0.2-3.5%, Mn: 0.2-2.0%, N: 0.001-0.004%, S: 0.0005-0.004%, balance Fe And other inevitably mixed impurities, characterized by producing a slab that satisfies at least one of the conditions (1), (2), and (3).
  • the present invention by appropriately managing the component ratios of the alloying elements of Al, Si, and Mn and the impurity elements of N and S to increase the distribution density of coarse inclusions, the growth of crystal grains and the mobility of magnetic walls are improved, and the magnetic properties are excellent. High quality non-oriented electrical steel sheets having very low hardness can be stably manufactured. In addition, the customer's processability and productivity is excellent, and the cost is reduced by lowering the production cost of the product.
  • FIG. 1 is a view showing a composite inclusion present in the non-oriented electrical steel sheet of the present invention.
  • FIG. 2 shows a huge composite inclusion having an average size of 300 nm or more with [N] + [S] as the horizontal axis and [Al] + [Mn] as the vertical axis in the non-oriented electrical steel sheet containing 0.5 to 2.5% of Si.
  • Graph showing the distribution density based on whether 0.02 pcs / mm 2 or more.
  • FIG. 3 shows a large composite inclusion having an average size of 300 nm or more with [N] + [S] as the horizontal axis and [Al] + [Mn] as the vertical axis in the non-oriented electrical steel sheet containing 0.2 to 1.0% of Si.
  • Graph showing the distribution density based on whether 0.02 pcs / mm 2 or more.
  • FIG. 4 shows a large composite inclusion having an average size of 300 nm or more with [N] + [S] as the horizontal axis and [Al] + [Mn] as the vertical axis in the non-oriented electrical steel sheet containing 2.3 to 3.5% of Si.
  • Graph showing the distribution density based on whether 0.02 pcs / mm 2 or more.
  • the present inventors have investigated the effects of alloying elements, impurity elements, and the relationship between the elements on the formation of inclusions, and the effects on magnetic properties and workability, respectively.
  • the alloying elements Al, Si, Mn and the impurity elements N and S content are appropriately controlled, and Al / Si and Al / Mn, Al + Si + Mn / 2, Al + Mn, N + S, (Al + Mn By optimally managing the ratio of) / (N + S), it is possible to reduce the hardness of the steel sheet and to increase the distribution density of the large composite inclusions having an average size of 300 nm or more in the steel sheet, thereby greatly improving magnetic properties,
  • the present invention has been completed by paying attention to the fact that punchability is improved.
  • the present invention is by weight, Al: 0.7-3.0%, Si: 0.2-3.5%, Mn: 0.2-2.0%, N: 0.001-0.004%, S: 0.0005-0.004%, balance Fe and other unavoidably incorporated
  • nitride and sulfide are complexed by containing Al, Si, Mn, N, S components so as to satisfy at least one of the following conditions (1), (2) and (3):
  • the distribution density of the enormous inclusions of 300 nm or more is increased to 0.02 pieces / mm 2 or more, and accordingly, a high-quality non-oriented electrical steel sheet having low hardness with excellent magnetic properties is provided.
  • [Al], [Si], [Mn], [N], and [S] mean Al, Si, Mn, N, and S content (% by weight), respectively.
  • 0.3 to 0.5% of Al is first added to molten steel in the steelmaking step so that deoxidation is performed, and then the remaining alloy elements are added, and the temperature of the molten steel is increased after the addition of the remaining alloy elements.
  • a slab having a composition of components satisfying at least one of the conditions (1), (2) and (3) above is maintained at 1,600 ° C., and the slab is heated to a temperature of 1,100 to 1,250 ° C., followed by hot rolling.
  • hot finish rolling is carried out at a temperature of 800 ° C. or higher, and after cold rolling, the cold-rolled cold rolled sheet is finally annealed at a temperature of 750 to 1,100 ° C. to produce non-oriented electrical steel sheets having excellent magnetic properties and workability. There is a characteristic.
  • the alloying elements are elements added to lower iron loss of electrical steel sheet, but as the added content thereof increases, the magnetic flux density decreases and the workability of the material is deteriorated. In addition, it is necessary to improve the magnetic flux density as well as the iron loss by appropriately setting the alloying components and to maintain the hardness below an appropriate level.
  • Al and Mn combine with N and S, which are impurity elements, to form inclusions such as nitride and sulfide. Since such inclusions have a great effect on the magnetism, there is a need to increase the frequency of inclusions to minimize magnetic deterioration.
  • the inventors first discovered that a large composite inclusion composed of nitrides or sulfides is formed when the Al, Mn, Si, N, and S contents are contained to satisfy specific conditions, and the distribution density of such composite inclusions is formed.
  • the magnetism is significantly improved despite containing only a minimum amount of alloying elements deteriorating workability by securing a predetermined level or more to propose the present invention.
  • Al is added because it increases the resistivity of the material, lowers iron loss and forms nitride, and is contained in the range of 0.7 to 3.0% to form coarse nitride. If the Al content is less than 0.7%, the inclusions cannot be grown sufficiently. If the Al content is more than 3.0%, the workability is deteriorated and problems occur in all processes such as steelmaking and continuous casting, and thus cannot be produced in the usual process.
  • Si serves to lower the iron loss by increasing the specific resistance of the material, it is difficult to expect the effect of reducing iron loss when contained less than 0.2%, productivity and punchability is inferior due to the increase in the hardness of the material when contained more than 3.5%.
  • Mn contains 0.2% or more because it increases the specific resistance of the material to improve iron loss and form sulfides, and when it contains more than 2.0%, it promotes the formation of [111] aggregates, which is disadvantageous to magnetism, so that Mn content is 0.5. Preferably limited to ⁇ 2.0%.
  • Sn preferentially segregates at the surface and grain boundaries and reduces the accumulated strain energy during hot rolling and cold rolling to increase the strength of the ⁇ 100 ⁇ orientation favorable to magnetism, while reducing the strength of the ⁇ 111 ⁇ orientation adverse to magnetism, thereby improving the texture. Therefore, it is added in the range of 0.2% or less.
  • Sn is first formed on the surface during welding to suppress surface oxidation and enhance the characteristics of the welded portion, thereby improving the productivity of the continuous line, and improving the magnetism by inhibiting the formation of Al-based oxides and nitrides on the surface or the lower layer during the heat treatment. When punching out, the increase in hardness due to the nitride of the lower surface layer is suppressed to improve the punchability.
  • Sn 0.005% or more.
  • Sn is added in excess of 0.2%, the effect of improving the magnetic properties according to the additional input is insignificant, and the effect of worsening the magnetism by forming fine inclusions and precipitates in the steel rather than the effect of first segregating on the surface and grain boundaries.
  • cold rolling and punching properties are deteriorated, and the Ericsson value, which shows weld characteristics, becomes 5 mm or less, so that welding between the same types is impossible. Therefore, a low grade material having a total content of Si and Al of less than 2 should be used as a connecting material for continuous line work.
  • Sn is preferably added in the range of 0.005 ⁇ 0.2%.
  • Sb preferentially segregates at the surface and grain boundaries and increases the strength of the ⁇ 100 ⁇ azimuth which is favorable for magnetism by reducing the accumulation strain energy during hot rolling and cold rolling, while reducing the strength of the ⁇ 111 ⁇ azimuth which is unfavorable for magnetism, improving the texture. Therefore, it is added in the range of 0.1% or less.
  • Sb is first formed on the surface during welding to suppress surface oxidation and enhance the characteristics of the welded portion, thereby improving the productivity of the continuous line, and improving the magnetic properties by suppressing the formation of Al-based oxides and nitrides on the surface or the lower layer during the heat treatment. When punching out, the increase in hardness due to the nitride of the lower surface layer is suppressed to improve the punchability.
  • Sb is preferably added at least 0.005%.
  • Sb is added in excess of 0.1%, the effect of improving the magnetic properties according to the additional input is insignificant, and the effect of deteriorating the magnetism by forming fine inclusions and precipitates in steel rather than the effect of first segregating on the surface and grain boundaries.
  • cold rolling and punching properties are deteriorated, and the Ericsson value, which shows weld characteristics, becomes 5 mm or less, so that welding between the same types is impossible. Therefore, a low grade material having a total content of Si and Al of less than 2 should be used as a connecting material for continuous line work.
  • Sb is preferably added in the range of 0.005 to 0.1%.
  • N is an impurity element, in which fine nitride is formed during the manufacturing process to suppress grain growth and inferior iron loss. Therefore, it is necessary to suppress the formation of nitride, but this requires additional cost and processing time, so it is not economical. Therefore, as described below, it is necessary to actively grow an inclusion to coarse grain growth by using an element having a high affinity for N as an impurity element. It is more desirable to reduce the impact. In order to grow the inclusions in this way, it is essential to control N in the range of 0.001% to 0.004%. If N exceeds 0.004%, coarsening of inclusions is not achieved and iron loss is increased, and more preferably, N is contained at 0.003% or less.
  • S is an impurity element, which forms fine sulfides during the manufacturing process, inhibits grain growth, and infers iron loss. Therefore, the formation of sulfides should be suppressed, but this requires additional cost and processing time, and thus it is not economical. Therefore, as described below, the inclusions are coarsely grown by using an element having a high affinity for S as an impurity element to crystal grain growth. It is more desirable to reduce the impact. In order to grow the inclusions in this way, it is essential to control the S in the range 0.0005 to 0.004%. If S exceeds 0.004%, coarsening of inclusions is not achieved, and iron loss is increased. More preferably, S is contained at 0.003% or less.
  • impurities that are inevitably mixed such as C and Ti may be included. Since C causes self aging, the C content should be limited to 0.004% or less, preferably 0.003% or less. Ti promotes the growth of the [111] aggregate structure, which is an undesirable crystal orientation in the non-oriented electrical steel sheet, and therefore it is preferably limited to 0.004% or less, more preferably 0.002% or less.
  • the total amount of Al and Mn content (% by weight) ([Al] + [Mn]) is limited to 2.0% or less, which is 0.7 to 2.7% of Al and 0.2 This is because, in steels containing -1.0% Si and 0.2-1.7% Mn, when the total amount of Al and Mn exceeds 2.0%, the fraction of the [111] aggregate structure, which is detrimental to magnetism, increases, causing the magnetism to deteriorate.
  • non-oriented electrical steel sheet that satisfies condition (1), when the total amount of Al and Mn is less than 0.9%, nitride, sulfide, or two complex inclusions are not formed coarsely, so that the magnetism is heat.
  • Al is contained in an amount of 0.7% or more
  • Mn is contained in an amount of 0.2% or more so that the total amount of Al and Mn content is 0.9% or more, thereby preventing magnetic deterioration.
  • the total amount of [Al] and [Mn] ([Al] + [Mn]) of Al and Mn content (wt%) is limited to 3.5% or less, which is 1.0 to 3.0%.
  • the fraction of the [111] aggregate structure, which is unfavorable to magnetism, increases, causing the magnetic heat. For losing.
  • non-oriented electrical steel sheet that satisfies condition (2) or condition (3), if the total amount of Al and Mn is less than 1.5%, nitride, sulfide or two complex inclusions are not coarse to form magnetic heat.
  • Al is contained at 1.0% or more
  • Mn is contained at 0.5% or more
  • the total amount of Al and Mn content is at least 1.5%. Is prevented.
  • the total amount of N and S content ([N] + [S]) is limited to 0.002 to 0.006%, because the inclusions grow coarse in this range.
  • the total amount of N and S exceeds 0.006%, the fraction of fine inclusions increases and the magnetism deteriorates.
  • the ratio of the total amount ([Al] + [Mn]) of the Al and Mn content (% by weight) to the total amount (N] + [S] of the N and S content (% by weight) is an important factor.
  • FIG. 1 is a view showing a composite inclusion present in the non-oriented electrical steel sheet of the present invention.
  • inclusions grow more than several times compared to conventional materials, resulting in a high frequency of formation of coarse composite inclusions having an average size of 300 nm or more, resulting in an average of about 50 nm.
  • the fine inclusions having a size are reduced so that the magnetism is improved.
  • the magnetic density of the non-oriented electrical steel sheet was significantly improved when the distribution density of the large composite inclusions shown in FIG. 1 was 0.02 pieces / mm 2 or more.
  • Al-based oxides and nitrides are formed by deoxidation during the initial introduction of Al in the steelmaking stage.
  • Al-based oxide / nitride is grown in the component system satisfying the component ratio of Al, Mn, Si, N, and S as defined in the present invention during the addition and bubbling of an alloy element, and at the same time, Mn-based sulfide is deposited thereon. It is thought to be due.
  • FIG. 2 shows a huge composite inclusion having an average size of 300 nm or more with [N] + [S] as the horizontal axis and [Al] + [Mn] as the vertical axis in the non-oriented electrical steel sheet containing 0.5 to 2.5% of Si.
  • the density distribution is a graph showing, separated by whether or not the dog 0.02 / mm 2 or more.
  • the above condition (2) that is, [Al] + [Mn], which is the total amount of Al and Mn content (% by weight), is 3.5% or less, and the total amount of N and S content (% by weight) is [N] + [S] is 0.002 to 0.006 and ([Al] + [Mn]) / ([N] + [S] which is the ratio of the total amount of Al and Mn contents to the total amount of N and S contents.
  • the distribution density of the coarse inclusions and the coarse composite inclusions having an average size of 300 nm or more is higher than 0.02 pieces / mm 2 and excellent in magnetic properties.
  • FIG. 3 shows a large composite inclusion having an average size of 300 nm or more with [N] + [S] as the horizontal axis and [Al] + [Mn] as the vertical axis in the non-oriented electrical steel sheet containing 0.2 to 1.0% of Si.
  • the density distribution is a graph showing, separated by whether or not the dog 0.02 / mm 2 or more.
  • the above condition (1) that is, [Al] + [Mn], which is the total amount of Al and Mn content (% by weight), is 2.0% or less, and the total amount of N and S content (% by weight) is [N] + [S] is 0.002 to 0.006 and ([Al] + [Mn]) / ([N] + [S] which is the ratio of the total amount of Al and Mn contents to the total amount of N and S contents.
  • the distribution density of the coarse inclusions and the coarse composite inclusions having an average size of 300 nm or more is higher than 0.02 pieces / mm 2 and excellent in magnetic properties.
  • FIG. 4 shows a large composite inclusion having an average size of 300 nm or more with [N] + [S] as the horizontal axis and [Al] + [Mn] as the vertical axis in the non-oriented electrical steel sheet containing 2.3 to 3.5% of Si.
  • the density distribution is a graph showing, separated by whether or not the dog 0.02 / mm 2 or more.
  • the above condition (3) that is, [Al] + [Mn], which is the total amount of Al and Mn content (% by weight), is 3.5% or less, and is the total amount of N and S content (% by weight).
  • [N] + [S] is 0.002 to 0.006 and ([Al] + [Mn]) / ([N] + [S] which is the ratio of the total amount of Al and Mn contents to the total amount of N and S contents.
  • the distribution density of the coarse inclusions and the coarse composite inclusions having an average size of 300 nm or more is higher than 0.02 pieces / mm 2 and excellent in magnetic properties.
  • Coarse inclusions have been observed to have an average size of 300 nm or more mainly due to the compounding of nitrides and sulfides, but also includes several nitrides or several sulfides having an average size of 300 nm or more, and nitrides or sulfides alone It can be included also grown to 300nm or more.
  • the average size of the inclusions was obtained by measuring the longest length and the shortest length of the inclusions in the cross section of the steel sheet and averaging them.
  • the ratio of Al content ([Al] / [Si]) to Si content in the non-oriented electrical steel sheet of the present invention satisfying the above condition (2) is limited to 0.6 to 4.0, which is Al content to Si content.
  • the ratio of 0.6 to 4.0 is because the growth of the grain is excellent and the hardness of the material is lowered, thereby improving productivity and punchability. If [Al] / [Si] is less than 0.6, the inclusions do not grow significantly, resulting in poor growth of the crystal grains and deterioration of magnetism, and an increase in the content of Si increases the hardness. If [Al] / [Si] exceeds 4.0, the texture of the material will deteriorate, causing the magnetic flux density to heat up.
  • [Al] / [Mn] which is a ratio of Al content to Mn content in the present invention is preferably limited to 1-8. This is because when the ratio of Al content to Mn content is 1 to 8, the inclusion loss is excellent, and the iron loss characteristics are excellent. On the contrary, when the Al content is out of this range, the inclusion growth is decreased and the fraction of the aggregate that is beneficial to magnetism is reduced. .
  • the relationship between the alloying element content and the resistivity of the non-oriented electrical steel sheet can be expressed by the following empirical formula.
  • [Al] + [Si] + [Mn] / 2 is limited to 3.0 or more so as to ensure a specific resistance of 47 or more.
  • [Al] + [Si] + [Mn] / 2 is limited to 1.7 or more so as to secure a specific resistance of 32 or more.
  • 5.5% of [Al] + [Si] + [Mn] / 2 is maintained to have a Vickers hardness (Hv1) of 190 or less by maintaining a specific resistance (intrinsic resistance) at a level of 75 or less.
  • the demand for high magnetic flux density products to achieve high efficiency in motors is increasing rapidly. Accordingly, the demand for non-oriented electrical steel sheets having low specific resistance and improving magnetic flux density is increasing. If the magnetic flux density characteristics are important in this way, the specific resistance (intrinsic resistance) should be lowered to 36 or lower to increase the magnetic flux density, and the specific resistance should be managed to at least 25 to cope with high-speed rotation.
  • [Al] + [Si] + [Mn] / 2 is 1.0 so as to have a specific resistance of 25 to 36 ( ⁇ m) and a very low Vickers hardness (Hv1) of 140 or less. Manage at ⁇ 2.0%.
  • a method of manufacturing a non-oriented electrical steel sheet according to the present invention it is preferable to first add 0.3 to 0.5% of the total amount of Al in the steelmaking step, and then add residual alloy elements to sufficiently deoxidize the steel. After the alloying element is added to maintain the temperature of the molten steel to 1,500 ⁇ 1,600 °C to make the inclusions in the steel enough to grow and solidify it in a continuous casting process to produce a slab.
  • the slab is charged to a heating furnace and reheated to a temperature of 1,100 ° C or more and 1,250 ° C or less.
  • a temperature of 1,100 ° C or more and 1,250 ° C or less When the slab is heated to a temperature exceeding 1,250 °C, the precipitates that spoil the magnetic can be re-dissolved and finely precipitated after hot rolling, so the slab is heated to a temperature below 1,250 °C.
  • Hot rolled hot rolled sheet is annealed at a temperature of 850 ⁇ 1,100 °C. If the hot-rolled sheet annealing temperature is less than 850 °C, the structure does not grow or grow fine, the magnetic flux density is less synergistic effect, if the hot-rolled sheet annealing temperature exceeds 1,100 °C magnetic properties rather deteriorate, rolling due to the deformation of the plate shape Because workability may worsen, the temperature range is limited to 850 ⁇ 1,100 °C.
  • the annealing temperature of a more preferable hot rolled sheet is 950-1,100 degreeC. Hot-rolled sheet annealing is performed in order to increase the crystal orientation favorable to magnetic as needed, but it is also possible to omit hot-rolled sheet annealing.
  • the hot rolled sheet is pickled, and then cold rolled at a reduction ratio of 70 to 95% to form a predetermined sheet thickness.
  • the addition amount of Si, Mn, Al alloy elements affecting the cold rolling is appropriately adjusted, and thus the cold rolling is excellent. Therefore, high rolling reduction can be applied.
  • only one cold rolling can be used as a thin plate having a thickness of about 0.15 mm. Manufacturing is possible.
  • two cold rolling including intermediate annealing may be performed, or two annealing may be applied.
  • Cold rolled cold rolled plates are subjected to final annealing. If the final annealing temperature is less than 750 °C recrystallization does not occur sufficiently, if the final annealing temperature exceeds 1,100 °C because the surface layer of the oxide layer is deeply formed and the magnetic is lowered, the final annealing is preferably carried out at a temperature of 750 ⁇ 1,100 °C.
  • the final annealed steel sheet is shipped to the customer after insulation coating treatment in the usual way.
  • insulation coating it is possible to apply a conventional coating material, and any of chromium-based (Cr-type) or chromium-free (Cr-free type) can be used without limitation.
  • Vacuum dissolution in a laboratory produced a steel ingot of the same component as shown in Table 1 below.
  • the contents of impurities C, S, N, and Ti of the material were controlled to 0.002%, respectively, and 0.3 to 0.5% of Al was added to the molten steel to promote the formation of inclusions, and then the remaining Al, Si, and Mn were added to the steel ingot.
  • Each material was heated to 1,150 ° C. and hot-rolled at 850 ° C. to produce a hot rolled sheet having a plate thickness of 2.0 mm.
  • the hot rolled hot rolled sheet was annealed at 1,050 ° C. for 4 minutes and then pickled. Thereafter, cold rolling was performed to make the plate thickness 0.35 mm, followed by final annealing for 38 seconds at 1,050 ° C.
  • Inclusion size and inclusion distribution density, iron loss, magnetic flux density and hardness for each are shown in Table 2 below.
  • Sample preparation for observation of inclusions was performed using a replica method, which is a common method for steel materials, and a transmission electron microscope was used as a device. At this time, the acceleration voltage was applied to 200kV.
  • steel grades A3, A5, A6, A9, A10, A12, and A14 are examples of inventions satisfying condition (2).
  • Coarse composite inclusions of 300 nm or more in size are observed and their distribution density is 0.02 ( 1 / mm 2 ) was superior to the magnetic properties, Vickers hardness (Hv1) was less than 190 was excellent productivity and customer punchability.
  • steel type A1 inclusions having a size of 300 nm or more were not observed because the ratio of Al / Si and Al + Mn did not satisfy the condition (2) of the present invention, and iron loss and magnetic flux density were inferior.
  • Steel grades A2 and A15 did not meet the condition (2) of the present invention so that inclusions having a size of 300 nm or more were not observed, and iron loss and magnetic flux density were inferior.
  • steel grades A4, A8, A11, and A13 Al + Mn did not satisfy the condition (2) of the present invention, and no inclusions having a size of 300 nm or more were observed, and iron loss and magnetic flux density were inferior.
  • steel type A7 the inclusions having a size of 300 nm or more were not observed because the ratio of Al / Si and the ratio of Al / Mn did not satisfy the condition (2) of the present invention, and the iron loss and magnetic flux density were inferior.
  • Vacuum dissolution in the lab produced a steel ingot as shown in Table 3 below.
  • the ingredients were adjusted while varying the content of impurities N and S of the material, and the Al was added to the molten steel by 0.3-0.5% to promote inclusion formation. Then, the remaining Al, Si, and Mn were added to prepare the steel ingot. .
  • Each material was heated to 1,150 ° C. and hot-rolled at 850 ° C. to produce a hot rolled sheet having a thickness of 2.0 mm.
  • the hot rolled hot rolled sheet was annealed at 1,050 ° C. for 4 minutes and then pickled. Thereafter, cold rolling was performed to make the plate thickness 0.35 mm, followed by final annealing for 38 seconds at 1,050 ° C.
  • Inclusion size and inclusion distribution density, iron loss, magnetic flux density, and hardness for each are shown in Table 4 below.
  • Sample preparation for observation of inclusions was performed using a replica method, which is a common method for steel materials, and a transmission electron microscope was used as a device. At this time, the acceleration voltage was applied to 200kV.
  • steel grades B1, B4, B5, B7, B9, B10, B13, and B14 are examples of inventions satisfying the condition (2). Coarse inclusions of 300 nm or more in size are observed and their distribution density is 0.02. Higher than (1 / mm 2 ), excellent magnetic properties, low hardness, excellent productivity and customer punchability.
  • steel grades B3, B6, B11, and B15 inclusions having a size of 300 nm or more beyond the condition of the present invention (2) were not observed, and iron loss and magnetic flux density were inferior.
  • Steel grade B8 has Al + Mn deviating from the condition (2) of the present invention
  • steel grades B2, B12 have coarse having (Al + Mn) / (N + S) deviating from the condition (2) of the present invention with a size of 300 nm or more. No inclusions were observed, and iron loss and magnetic flux density were inferior.
  • Vacuum dissolution in the lab produced a steel ingot as shown in Table 5 below.
  • 0.3 to 0.5% of Al was added to the molten steel to promote formation of inclusions, and then Al, Si, Mn, and P were added to prepare a steel ingot.
  • Each material was heated to 1,150 ° C. and hot-rolled at 850 ° C. to produce a hot rolled sheet having a thickness of 2.0 mm.
  • the hot rolled hot rolled sheet was annealed at 1,050 ° C. for 4 minutes and then pickled. Thereafter, cold rolling was performed to form various plate thicknesses of 0.15 to 0.35 mm, followed by final annealing for 38 seconds at 1,050 ° C.
  • Iron loss and magnetic flux density of each plate were measured and shown in Table 6 below.
  • Sample preparation for observation of inclusions was performed using a replica method, which is a common method for steel materials, and a transmission electron microscope was used as a device. At this time, the acceleration voltage was applied to 200kV.
  • steel grades C2 to C7 are examples of inventions satisfying condition (2), and have high magnetic flux density and low iron loss. This is considered to be because the inclusions grow coarsely in the component system of the present invention, the distribution density of the huge composite inclusions is formed higher than 0.02 (1 / mm 2 ), and the aggregate structure is stabilized.
  • the high frequency iron loss (W10 / 400) has a clear correlation with the thickness of the steel sheet, so that the thinner the thickness, the better the characteristics, and the steel loss of 0.15mm thickness compared to 0.35mm thickness, the iron loss is improved by nearly 50%.
  • Al + Mn and Al / Si did not satisfy the condition (2) of the present invention, and the iron loss (W10 / 400) and the magnetic flux density (B50) were inferior.
  • Vacuum dissolution in the laboratory produced a steel ingot of the components shown in Table 7 below.
  • 0.3 to 0.5% of Al was added to the molten steel to promote the formation of inclusions, and the remaining Al, Si, Mn, and P were added to prepare a steel ingot.
  • Each material was heated to 1,150 ° C. and hot-rolled at 850 ° C. to produce a hot rolled sheet having a thickness of 2.0 mm.
  • the hot rolled hot plate was annealed at 1,050 ° C. for 4 minutes and then pickled. Thereafter, cold rolling was performed to make the plate thickness 0.35 mm, followed by final annealing for 38 seconds at 1,050 ° C.
  • Inclusion size and inclusion distribution density, iron loss, magnetic flux density, Ericsson value and hardness for each are shown in Table 8 below.
  • Sample preparation for observation of inclusions was performed using a replica method, which is a common method for steel materials, and a transmission electron microscope was used as a device. At this time, the acceleration voltage was applied to 200kV.
  • the Ericsson value was measured by raising the hot-rolled sheet welded to a steel ball with a diameter of 20 mm at room temperature before breaking occurred. In general, when the Ericsson value is 5mm or more, it is possible to produce continuous lines by welding the same type.
  • steel grades D2-6, D8-12, D14, D15, and D17 satisfy the condition (2), and 0.005 to 0.2% Sn or 0.005 to 0.1% Sb is added as an example of the invention.
  • the distribution density of coarse inclusions with a size of 300 nm or more is higher than 0.02 (1 / mm 2 ), and the oxide layer and nitride layer on the surface are reduced during final annealing, thereby improving iron loss and magnetic flux density. Low weldability, productivity and customer punchability were excellent.
  • Vacuum dissolution in the laboratory produced a steel ingot as shown in Table 9 below.
  • 0.3 to 0.5% of Al was added to the molten steel to promote formation of inclusions, and the remaining Al, Si, and Mn were added to prepare a steel ingot.
  • Each material was heated to 1,150 ° C. and hot-rolled at 850 ° C. to produce a hot rolled sheet having a plate thickness of 2.3 mm.
  • the hot rolled hot rolled sheet was annealed at 1,050 ° C. for 4 minutes and then pickled. After cold rolling, the sheet thickness was 0.50 mm and final annealing was performed at 900 ° C. for 30 seconds.
  • Inclusion size and inclusion distribution density, iron loss, magnetic flux density and hardness for each are shown in Table 10 below.
  • Sample preparation for observation of inclusions was performed using a replica method, which is a common method for steel materials, and a transmission electron microscope was used as a device. At this time, the acceleration voltage was applied to 200kV.
  • steel grades E1 to E3, E6, E10, E12, E13, E16, E20, and E21 are examples of inventions satisfying condition (1), and coarse inclusions of 300 nm or more in size are observed and their distribution density. It is higher than 0.02 (1 / mm 2 ), excellent in magnetic properties, Vickers hardness (Hv1) of 140 or less, excellent in productivity and customer punchability.
  • steel grades E4, E9, and E14 did not observe inclusions having a size of 300 nm or more because Al / Mn ratio and Al + Mn content did not satisfy the condition (1) of the present invention, and iron loss and magnetic flux density were inferior.
  • steel grades E17 and E18 inclusions having a size of 300 nm or more were not observed because Al + Mn did not satisfy the condition (1) of the present invention, and iron loss and magnetic flux density were inferior.
  • steel type E19 inclusions having a size of 300 nm or more were not observed because Al / Mn did not satisfy the condition (1) of the present invention, and iron loss and magnetic flux density were inferior.
  • Steel grades E4, E5, E9, and E14 had a high hardness because Al + Si + Mn / 2 did not satisfy the condition (1) of the present invention, which resulted in inferior productivity and punchability.
  • Vacuum dissolution in the laboratory produced a steel ingot as shown in Table 11 below.
  • 0.3 to 0.5% of Al was added to the molten steel to promote the formation of inclusions, and the remaining Al, Si, and Mn were added to prepare a steel ingot.
  • Each material was heated to 1,150 ° C. and hot-rolled at 850 ° C. to produce a hot rolled sheet having a plate thickness of 2.3 mm.
  • the hot rolled hot rolled sheet was annealed at 1,050 ° C. for 4 minutes and then pickled. After cold rolling, the sheet thickness was 0.50 mm and final annealing was performed at 900 ° C. for 30 seconds.
  • Inclusion size and inclusion distribution density, iron loss, magnetic flux density, and hardness for each are shown in Table 12 below.
  • Sample preparation for observation of inclusions was performed using a replica method, which is a common method for steel materials, and a transmission electron microscope was used as a device. At this time, the acceleration voltage was applied to 200kV.
  • steel grades F1, F3, F4, F6, F8, F9, F11, and F12 are examples of inventions satisfying the condition (1), and coarse inclusions of 300 nm or more in size are observed and their distribution density is 0.02. Higher than (1 / mm 2 ), excellent magnetic properties, low hardness, excellent productivity and customer punchability.
  • steel grades F5, F10, and F13 did not observe inclusions having a size of 300 nm or more because N + S did not satisfy the condition (1) of the present invention, and iron loss and magnetic flux density were inferior.
  • steel F7 Al + Mn did not satisfy the condition (1) of the present invention, and no inclusions having a size of 300 nm or more were observed, and iron loss and magnetic flux density were inferior.
  • Vacuum dissolution in the lab produced a steel ingot as shown in Table 13 below.
  • 0.3 to 0.5% of Al was added to the molten steel to promote the formation of inclusions, and the remaining Al, Si, and Mn were added to prepare a steel ingot.
  • Each material was heated to 1,150 ° C. and hot-rolled at 850 ° C. to produce a hot rolled sheet having a plate thickness of 2.0 mm.
  • the hot rolled hot rolled sheet was annealed at 1,050 ° C. for 4 minutes and then pickled. Thereafter, cold rolling was performed to make the plate thickness 0.35 mm, followed by final annealing for 38 seconds at 1,050 ° C.
  • Inclusion size and inclusion distribution density, iron loss, magnetic flux density, and hardness for each are shown in Table 14 below.
  • Sample preparation for observation of inclusions was performed using a replica method, which is a common method for steel materials, and a transmission electron microscope was used as a device. At this time, the acceleration voltage was applied to 200kV.
  • steel grades G3 to G6, G9, G10, G12, G14, and G15 are examples of inventions satisfying condition (3). Coarse inclusions of 300 nm or more in size are observed and their distribution density is 0.02 (1 / mm 2 ), the magnetic properties were excellent, Vickers hardness (Hv1) was lower than 225 or less.
  • steel grades G1, G8, G11, and G13 did not observe inclusions having a size of 300 nm or more because Al + Mn did not satisfy the condition (3) of the present invention, and iron loss and magnetic flux density were inferior.
  • steel grade G2 inclusions having a size of 300 nm or more were not observed because the Al / Si ratio did not satisfy the condition (3) of the present invention, and iron loss and magnetic flux density were inferior.
  • steel grade G7 inclusions having a size of 300 nm or more were not observed because Al / Si, Al / Mn, and Al + Mn contents did not satisfy the condition (3) of the present invention, and iron loss and magnetic flux density were inferior.
  • Al + Si + Mn / 2 did not satisfy the condition (3) of the present invention and had high hardness, thereby inferior in productivity and punchability.
  • Vacuum dissolution in the laboratory produced a steel ingot as shown in Table 15 below.
  • 0.3 to 0.5% of Al was added to the molten steel to promote the formation of inclusions, and the remaining Al, Si, and Mn were added to prepare a steel ingot.
  • Each material was heated to 1,150 ° C. and hot-rolled at 850 ° C. to produce a hot rolled sheet having a thickness of 2.0 mm.
  • the hot rolled hot rolled sheet was annealed at 1,050 ° C. for 4 minutes and then pickled. Thereafter, cold rolling was performed to make the plate thickness 0.35 mm, followed by final annealing for 38 seconds at 1,050 ° C.
  • Inclusion size and inclusion distribution density, iron loss, magnetic flux density, and hardness for each are shown in Table 16 below.
  • Sample preparation for observation of inclusions was performed using a replica method, which is a common method for steel materials, and a transmission electron microscope was used as a device. At this time, the acceleration voltage was applied to 200kV.
  • steel grades H1, H3, H4, H6, H8, H9, H11, and H12 are examples of inventions satisfying condition (3). Coarse inclusions of 300 nm or more in size are observed and their distribution density is 0.02. It was higher than (1 / mm 2 ) and was excellent in magnetic.
  • steel grades H5, H10, and H13 did not observe inclusions having a size of 300 nm or more because N + S did not satisfy the condition (3) of the present invention, and iron loss and magnetic flux density were inferior.
  • Al + Mn did not satisfy the condition (3) of the present invention, and no inclusions having a size of 300 nm or more were observed, and iron loss and magnetic flux density were inferior.
  • steel grades H2, H5, and H13 (Al + Mn) / (N + S) did not satisfy the condition (3) of the present invention, and no inclusions having a size of 300 nm or more were observed, and iron loss and magnetic flux density were inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

본 발명은 무방향성 전기강판에 관한 것으로, 중량%로 Al: 1.0~3.0%, Si: 0.5~2.5%, Mn: 0.5~2.0%, N: 0.001~0.004%, S: 0.0005~0.004%, 잔부 Fe 및 기타 불가피하게 혼입되는 불순물로 구성되고, 상기 Al, Mn, N, S는 {[Al]+[Mn]}≤3.5, 0.002≤{[N]+[S]}≤0.006, 300≤{([Al]+[Mn])/([N]+[S])}≤1,400 의 조성식을 만족하도록 함유되는 자성이 우수한 무방향성 전기강판 및 그 제조방법을 제공한다. 이에 따라 Al, Si, Mn, N, S의 첨가성분을 최적화하여 조대한 개재물을 분포밀도를 높임으로써 결정립 성장성과 자벽의 이동성을 향상시켜 자성이 우수하고, 경도가 낮아 고객사 가공성과 생산성이 우수한 최고급 무방향성 전기강판을 제조할 수 있다.

Description

자성이 우수한 무방향성 전기강판 및 그 제조방법
본 발명은 무방향성 전기강판의 제조에 관한 것으로, 강의 첨가성분을 최적으로 설정하여 강중에 조대한 개재물의 분포밀도를 높이고 결정립의 성장성과 자벽의 이동성을 향상시킴으로써 자성이 향상되고, 낮은 경도의 확보에 의하여 제품 생산성 및 타발성을 개선시킨 최고급 무방향성 전기강판 및 그 제조방법에 관한 것이다.
본 발명은 회전기기의 철심재료로서 사용되는 무방향성 전기강판의 제조에 관한 것으로, 무방향성 전기강판은 전기적 에너지를 기계적 에너지로 변환하는 중요한 부품으로 자기적 특성이 매우 중요하다. 자기적 특성으로 주로 언급되는 것이 철손과 자속밀도이다. 철손은 에너지 변환과정에서 열로 사라지는 에너지이므로 낮을수록 좋으며, 자속밀도는 회전체의 동력원이라 할 수 있으므로 높을수록 에너지 효율에 유리하다.
통상적으로 무방향성 전기강판은 철손을 낮추기 위해서 Si을 주원소로 첨가한다. Si의 함량이 증가하면 자속밀도가 감소하며, Si의 함량이 과도하게 증가되면 가공성이 저하되어 냉간압연이 곤란해진다. 아울러 고객사에서 타발시 금형의 수명도 줄어든다. 따라서 Si의 함량을 저감하고 Al의 함량을 증가시켜 자기적 성질 및 기계적 성질을 개선하려는 시도가 이루어지고 있으나, 최고급 무방향성 전기강판으로서의 자성에는 미치지 못하고 있고 대량 생산 공정상의 어려움 때문에 아직 실용화되지 못하고 있다.
한편, 무방향성 전기강판에서 좋은 자성을 얻기 위해서는 강중에 존재하는 미세한 개재물과 같은 C, S, N, Ti 등의 불순물을 극저로 제어하여 결정립의 성장성을 향상시킬 필요가 있다. 그러나 통상의 전기강판의 제조공정에서 불순물을 극저로 관리하는 것은 쉽지 않은 일이며, 제강단계에서 비용의 증가가 발생하는 단점이 있다.
제강단계에서 제거되지 못한 불순물은 연속주조시에 슬라브내에 질화물이나 황화물의 형태로 존재하게 되고, 열간압연을 위하여 슬라브를 1,100℃ 이상의 온도로 재가열함에 따라 질화물이나 황화물과 같은 개재물은 재용해되었다가 열간압연 종료시에 다시 미세하게 석출되게 된다.
일반적인 무방향성 전기강판에서 석출되는 개재물인 MnS, AlN은 약 50nm 정도의 미세한 평균크기를 갖는 것으로 관찰되며, 이와 같이 생성된 미세한 개재물은 소둔시 결정립의 성장을 방해하여 히스테리시스 손실을 증가시킬 뿐만 아니라 자화시 자벽의 이동을 방해하여 투자율을 감소시킨다.
그러므로 무방향성 전기강판의 제조공정에서는 이러한 미세한 개재물이 존재하지 못하도록 제강 단계에서부터 불순물을 적절히 제어하고, 남아있는 개재물들이 열간압연시에 재고용되어 더욱 미세하게 석출되는 것을 억제하도록 하는 것이 중요하다.
본 발명은 상술한 바와 같은 종래기술이 갖는 제반 문제점을 해결하고자 창출된 것으로, 강의 합금원소인 Al, Si, Mn과 불순물 원소인 N와 S의 성분비율을 최적의 조건으로 관리하여 강중에 조대한 개재물의 분포밀도를 높이고 미세한 개재물의 발생빈도는 낮춤으로써 결정립의 성장성과 자벽의 이동성을 향상시켜 우수한 자성을 나타내면서도 낮은 경도 특성으로 인하여 생산성 및 타발성이 우수한 최고급 무방향성 전기강판을 제공함을 목적으로 하는 것이다.
상기 과제를 해결하기 위한 본 발명의 자성이 우수한 무방향성 전기강판은 중량%로, Al: 0.7~3.0%, Si: 0.2~3.5%, Mn: 0.2~2.0%, N: 0.001~0.004%, S: 0.0005~0.004%, 잔부 Fe 및 기타 불가피하게 혼입되는 불순물로 이루어지고, 하기의 조건(1), 조건(2), 조건(3)중의 적어도 어느 하나를 만족하는 것을 특징으로 한다.
조건(1) : 0.7≤[Al]≤2.7, 0.2≤[Si]≤1.0, 0.2≤[Mn]≤1.7, {[Al]+[Mn]}≤2.0, 0.002≤{[N]+[S]}≤0.006, 230≤{([Al]+[Mn])/([N]+[S])}≤1,000
조건(2) : 1.0≤[Al]≤3.0, 0.5≤[Si]≤2.5, 0.5≤[Mn]≤2.0, {[Al]+[Mn]}≤3.5, 0.002≤{[N]+[S]}≤0.006, 300≤{([Al]+[Mn])/([N]+[S])}≤1,400
조건(3) : 1.0≤[Al]≤3.0, 2.3≤[Si]≤3.5, 0.5≤[Mn]≤2.0, {[Al]+[Mn]}≤3.5, 0.002≤{[N]+[S]}≤0.006, 300≤{([Al]+[Mn])/([N]+[S])}≤1,400
상기 [Al], [Si], [Mn], [N], [S]는 각각 Al, Si, Mn, N, S의 함량(중량%)을 의미한다.
상기 조건(1)을 만족하는 본 발명의 무방향성 전기강판은 Al, Si, Mn의 함량이 하기의 식(1)과 식(2)를 만족하며, 단면 비커스 경도(Hv1)가 140이하인 것을 특징으로 한다.
식(1) : 1.0≤{[Al]+[Si]+[Mn]/2}≤2.0
식(2) : 1≤[Al]/[Mn]≤8
상기 조건(2)를 만족하는 본 발명의 무방향성 전기강판은 Al, Si, Mn의 함량이 상기 식(2)와 하기의 식(3) 및 식(4)를 만족하며, 단면 비커스 경도(Hv1)가 190이하인 것을 특징으로 한다.
식(3) : 1.7≤{[Al]+[Si]+[Mn]/2}≤5.5
식(4) : 0.6≤[Al]/[Si]≤4.0
상기 조건(3)을 만족하는 본 발명의 무방향성 전기강판은 Al, Si, Mn의 함량이 상기 식(2)와 하기의 식(5)를 만족하며, 단면 비커스 경도(Hv1)가 225이하인 것을 특징으로 한다.
식(5) : 3.0≤{[Al]+[Si]+[Mn]/2}≤6.5
상기 조건(1)내지 조건(3)중의 적어도 어느 하나를 만족하는 본 발명의 무방향성 전기강판은 강판 중에 질화물과 황화물의 단독 혹은 이들이 복합된 개재물이 형성되며, 평균크기가 300nm 이상인 개재물의 분포밀도는 0.02개/mm2 이상인 것을 특징으로 한다.
또한 본 발명의 무방향성 전기강판은 추가로 0.2%이하의 P가 함유되는 것을 특징으로 한다.
또한 본 발명의 무방향성 전기강판은 추가로 0.005~0.2%의 Sn과 0.005~0.1%의 Sb 중의 적어도 하나 이상이 함유되는 것을 특징으로 한다.
상기 과제를 해결하기 위한 본 발명의 자성이 우수한 무방향성 전기강판의 제조방법은 중량%로, Al: 0.7~3.0%, Si: 0.2~3.5%, Mn: 0.2~2.0%, N: 0.001~0.004%, S: 0.0005~0.004%, 잔부 Fe 및 기타 불가피하게 혼입되는 불순물로 이루어지고, 상기의 조건(1), 조건(2), 조건(3)중의 적어도 어느 하나를 만족하는 슬라브를 가열하여 열간압연하고, 냉간압연한 후, 750~1100℃의 온도로 최종소둔하는 것을 특징으로 한다.
본 발명의 무방향성 전기강판의 제조방법은 최종소둔된 강판에 질화물과 황화물의 단독 혹은 이들이 복합된 개재물이 형성되며, 평균크기가 300nm 이상인 개재물의 분포밀도를 0.02개/mm2 이상으로 하는 것을 특징으로 한다.
또한 본 발명의 무방향성 전기강판의 제조방법은 0.3~0.5%의 Al을 첨가하여 탈산이 이루어지도록 한 다음, 잔여 합금원소를 투입하며, 잔여 합금원소 투입 후에 온도를 1,500~1,600℃로 유지하여 상기 슬라브를 제조하는 것을 특징으로 한다.
상기 과제를 해결하기 위한 본 발명의 무방향성 전기강판 슬라브는 중량%로, Al: 0.7~3.0%, Si: 0.2~3.5%, Mn: 0.2~2.0%, N: 0.001~0.004%, S: 0.0005~0.004%, 잔부 Fe 및 기타 불가피하게 혼입되는 불순물로 이루어지고, 상기의 조건(1), 조건(2), 조건(3)중의 적어도 어느 하나를 만족하는 것을 특징으로 한다.
상기 조건(1)내지 조건(3)중의 적어도 어느 하나를 만족하는 본 발명의 무방향성 전기강판 슬라브는 추가로 0.2%이하의 P가 함유되는 것을 특징으로 한다.
또한 본 발명의 무방향성 전기강판 슬라브는 추가로 0.005~0.2%의 Sn과 0.005~0.1%의 Sb 중의 적어도 하나 이상이 함유되는 것을 특징으로 한다.
상기 과제를 해결하기 위한 본 발명의 무방향성 전기강판 슬라브의 제조방법은 용강에 0.3~0.5%의 Al을 첨가하여 탈산이 이루어지도록 한 다음, 잔여 Al과 Si 및 Mn을 투입한 후, 온도를 1,500~1,600℃로 유지시킴에 의하여, 중량%로, Al: 0.7~3.0%, Si: 0.2~3.5%, Mn: 0.2~2.0%, N: 0.001~0.004%, S: 0.0005~0.004%, 잔부 Fe 및 기타 불가피하게 혼입되는 불순물로 이루어지고, 상기 조건(1), 조건(2), 조건(3)중의 적어도 어느 하나를 만족하는 슬라브를 제조하는 것을 특징으로 한다.
본 발명에 의하면 Al, Si, Mn의 합금원소와 N와 S의 불순물 원소의 성분비율을 적절히 관리하여 조대한 개재물의 분포밀도를 높임으로써 결정립의 성장성과 자벽의 이동성이 향상되어 자성이 우수하고, 매우 낮은 경도를 갖는 최고급 무방향성 전기강판을 안정적으로 제조할 수 있다. 또한 고객사 가공성과 생산성이 우수하며, 제품의 생산단가를 낮추어 원가를 절감하는 효과를 얻게 된다.
도 1은 본 발명의 무방향성 전기강판에 존재하는 복합개재물을 나타낸 그림.
도 2는 0.5~2.5%의 Si를 함유하는 무방향성 전기강판에 있어서 [N]+[S]를 가로축으로 하고, [Al]+[Mn]을 세로축으로 하여 평균크기가 300nm 이상인 거대한 복합개재물의 분포밀도가 0.02개/mm2 이상인지 여부를 기준으로 구분하여 나타낸 그래프.
도 3은 0.2~1.0%의 Si를 함유하는 무방향성 전기강판에 있어서 [N]+[S]를 가로축으로 하고, [Al]+[Mn]을 세로축으로 하여 평균크기가 300nm 이상인 거대한 복합개재물의 분포밀도가 0.02개/mm2 이상인지 여부를 기준으로 구분하여 나타낸 그래프.
도 4는 2.3~3.5%의 Si를 함유하는 무방향성 전기강판에 있어서 [N]+[S]를 가로축으로 하고, [Al]+[Mn]을 세로축으로 하여 평균크기가 300nm 이상인 거대한 복합개재물의 분포밀도가 0.02개/mm2 이상인지 여부를 기준으로 구분하여 나타낸 그래프.
상기의 기술적인 문제점을 해결하기 위하여 본 발명자는 강의 합금원소, 불순물 원소 및 각 원소간의 관계가 개재물의 형성에 미치는 종류별 영향과 이에 따라 자성과 가공성에 미치는 영향에 대하여 각각 조사한 결과, 강에 첨가되는 합금원소중에서 Al, Si, Mn과, 불순물 원소인 N와 S의 함량을 적절히 조절하고 Al/Si와 Al/Mn, Al+Si+Mn/2, Al+Mn, N+S, (Al+Mn)/(N+S)의 비율을 최적으로 관리함으로써 강판의 경도를 저하시키고 강판 중에 평균크기 300nm 이상의 거대한 복합 개재물의 분포밀도를 높일 수 있으며, 이에 의하여 자기적 특성이 월등히 향상되고 제품의 생산성 및 타발성이 개선되는 사실에 주목하여 본 발명을 완성하였다.
본 발명은 중량%로, Al: 0.7~3.0%, Si: 0.2~3.5%, Mn: 0.2~2.0%, N: 0.001~0.004%, S: 0.0005~0.004%, 잔부 Fe 및 기타 불가피하게 혼입되는 불순물로 이루어지는 성분계에서 하기의 조건(1), 조건(2), 조건(3)중의 적어도 어느 하나를 만족하도록 Al, Si, Mn, N, S의 성분원소들을 함유시킴에 의하여 질화물과 황화물이 복합된 300nm 이상의 거대한 개재물의 분포밀도를 0.02개/mm2 이상으로 높이고, 이에 따라 우수한 자성과 함께 낮은 경도를 갖는 최고급 무방향성 전기강판을 제조하는 것을 요지로 하는 것이다.
① 조건(1) : 0.7≤[Al]≤2.7, 0.2≤[Si]≤1.0, 0.2≤[Mn]≤1.7, {[Al]+[Mn]}≤2.0, 0.002≤{[N]+[S]}≤0.006, 230≤{([Al]+[Mn])/([N]+[S])}≤1,000
② 조건(2) : 1.0≤[Al]≤3.0, 0.5≤[Si]≤2.5, 0.5≤[Mn]≤2.0, {[Al]+[Mn]}≤3.5, 0.002≤{[N]+[S]}≤0.006, 300≤{([Al]+[Mn])/([N]+[S])}≤1,400
③ 조건(3) : 1.0≤[Al]≤3.0, 2.3≤[Si]≤3.5, 0.5≤[Mn]≤2.0, {[Al]+[Mn]}≤3.5, 0.002≤{[N]+[S]}≤0.006, 300≤{([Al]+[Mn])/([N]+[S])}≤1,400
상기 [Al], [Si], [Mn], [N], [S]는 각각 Al, Si, Mn, N, S의 함량(중량%)을 의미한다.
상기의 지견과 함께, 본 발명은 제강단계에서 용강에 0.3~0.5%의 Al을 먼저 첨가하여 탈산이 이루어지도록 한 다음, 잔여 합금원소들을 투입하고, 잔여 합금원소의 투입 후에 용강의 온도를 1,500~1,600℃로 유지하여 상기의 조건(1), 조건(2), 조건(3)중의 적어도 어느 하나를 만족하는 성분조성을 갖는 슬라브를 제조하고, 슬라브를 1,100~1,250℃의 온도로 가열한 다음 열간압연하되 열간마무리 압연은 800℃ 이상의 온도에서 실시하고, 냉간압연한 후, 냉간압연된 냉연판을 750~1,100℃의 온도로 최종소둔함으로서 자성과 가공성이 모두 우수한 무방향성 전기강판을 제조하는 것에도 그 특징이 있는 것이다.
강의 합금원소인 Al과 Si 및 Mn에 대하여 설명하면 상기 합금원소들은 전기강판의 철손을 낮추기 위하여 첨가되는 원소이나, 그 첨가되는 함량이 증가함에 따라 자속밀도는 감소하게 되며 재료의 가공성이 열위해지므로, 이러한 합금성분들을 적절히 설정하여 철손은 물론 자속밀도를 개선시키고 경도 역시 적정 수준 이하로 유지시킬 필요가 있다.
아울러, Al과 Mn은 불순물 원소인 N 및 S와 결합하여 질화물이나 황화물 등의 개재물을 형성하게 된다. 이러한 개재물은 자성에 큰 영향을 미치게 되므로 자성의 열화를 최소화하는 개재물의 형성 빈도를 높여야 할 필요성이 있다.
본 발명자는 Al, Mn, Si, N, S의 함량이 특정 조건을 만족하도록 함유되는 경우에 있어서 질화물이나 황화물 등이 복합되어 이루어진 거대한 복합 개재물이 형성되는 것을 최초로 발견하였으며, 이러한 복합 개재물의 분포밀도를 일정 수준이상으로 확보함으로써 가공성을 열화시키는 합금원소들을 최소량만으로 함유시킴에도 불구하고 자성이 월등히 향상된다는 사실에 착안하여 본 발명에 대하여 제안하게 된 것이다.
먼저, 본 발명을 구성하는 성분원소의 범위와 그 성분원소간의 함량비율을 한정한 이유에 대하여 설명한다.
[Al: 0.7~3.0중량%]
Al은 재료의 비저항을 높여 철손을 낮추며 질화물을 형성하는 역할을 하므로 첨가되며, 조대한 질화물이 형성될 수 있도록 0.7~3.0%로 함유된다. Al이 0.7%미만으로 함유되면 개재물을 충분히 성장시킬 수 없으며, 3.0%를 초과하여 함유되면 가공성이 열화되고 제강과 연속주조 등의 모든 공정상에 문제를 발생시켜 통상의 공정으로 생산할 수 없게 된다.
[Si: 0.2~3.5중량%]
Si는 재료의 비저항을 높여 철손을 낮추어주는 역할을 하며, 0.2% 미만으로 함유시 철손 저감 효과를 기대하기 어렵고, 3.5%를 초과하여 함유시 재료의 경도 상승으로 인해 생산성 및 타발성이 열위해진다.
[Mn: 0.2~2.0중량%]
Mn은 재료의 비저항을 높여 철손을 개선하고 황화물을 형성시키는 역할을 하므로 0.2% 이상으로 함유하며, 2.0%를 초과하여 함유시 자성에 불리한 [111]집합조직의 형성을 조장하므로 Mn의 함량은 0.5~2.0%로 제한함이 바람직하다.
[Sn: 0.2중량%이하]
Sn은 표면 및 결정립계에 우선적으로 편석하며 열간압연과 냉간압연시 축적변형에너지를 줄여 자성에 유리한 {100}방위의 강도를 증가시키는 한편 자성에 불리한 {111} 방위의 강도를 감소시켜 집합조직을 개선하기 때문에 0.2%이하의 범위로 첨가된다. 또한 Sn은 용접중 표면에 우선 형성되어 표면 산화를 억제시키며 용접부 특성을 강화시켜 연속라인의 생산성을 향상시키며, 열처리중 표면이나 표면 하층부에 Al계 산화물 및 질화물의 형성을 억제시켜 자성을 향상시키고, 고개사 타발시 표면 하층부의 질화물에 의한 경도상승을 억제하여 타발성을 좋게 하여준다.
그러므로 Sn은 0.005% 이상 첨가함이 바람직하다. 반대로 Sn이 0.2%를 초과하여 첨가되면 추가 투입분에 따른 자성 향상의 효과가 미미하고, 표면 및 결정립계에 우선 편석하는 효과보다 강중에 미세한 개재물과 석출물을 형성하여 자성을 악화시키는 영향이 커진다. 또한 냉간압연성과 펀칭성이 나빠지고 용접부 특성을 나타내는 에릭슨 값이 5mm 이하가 되어 동종간 용접이 불가능하여 연속라인 작업을 위해서는 Si와 Al 함량의 합계량이 2 미만인 저급재를 연결재로 사용하여야 하는 문제가 따른다. 따라서 Sn은 0.005~0.2%의 범위로 첨가됨이 바람직하다.
[Sb: 0.1중량%이하]
Sb는 표면 및 결정립계에 우선적으로 편석하며 열간압연과 냉간압연시 축적변형에너지를 줄여 자성에 유리한 {100}방위의 강도를 증가시키는 한편 자성에 불리한 {111} 방위의 강도를 감소시켜 집합조직을 개선하기 때문에 0.1%이하의 범위로 첨가된다. 또한 Sb는 용접중 표면에 우선 형성되어 표면 산화를 억제시키며 용접부 특성을 강화시켜 연속라인의 생산성을 향상시키며, 열처리중 표면이나 표면 하층부에 Al계 산화물 및 질화물의 형성을 억제시켜 자성을 향상시키고, 고개사 타발시 표면 하층부의 질화물에 의한 경도상승을 억제하여 타발성을 좋게 하여준다.
그러므로 Sb는 0.005% 이상 첨가함이 바람직하다. 반대로 Sb가 0.1%를 초과하여 첨가되면 추가 투입분에 따른 자성 향상의 효과가 미미하고, 표면 및 결정립계에 우선 편석하는 효과보다 강중에 미세한 개재물과 석출물을 형성하여 자성을 악화시키는 영향이 커진다. 또한 냉간압연성과 펀칭성이 나빠지고 용접부 특성을 나타내는 에릭슨 값이 5mm 이하가 되어 동종간 용접이 불가능하여 연속라인 작업을 위해서는 Si와 Al 함량의 합계량이 2 미만인 저급재를 연결재로 사용하여야 하는 문제가 따른다. 따라서 Sb는 0.005~0.1%의 범위로 첨가됨이 바람직하다.
[P: 0.2중량% 이하]
P는 0.2% 이하로 첨가되면 자성에 유리한 집합조직을 형성하며, 면내 이방성을 개선하고 가공성을 향상시킨다. 다만, 0.2%를 초과하여 첨가되면 냉간압연성을 떨어뜨리고 가공성이 나빠지므로 0.2% 이하로 한정한다.
[N: 0.001~0.004중량%]
N은 불순물 원소로서, 제조공정중에 미세한 질화물을 형성하여 결정립 성장을 억제하여 철손을 열위시킨다. 따라서 질화물의 형성을 억제시켜야 하나 이를 위해서는 추가적으로 많은 비용과 공정시간을 필요로 하여 경제적이지 않으므로 후술되는 바와 같이 불순물 원소인 N와의 친화력이 큰 원소를 적극 이용하여 개재물을 조대하게 성장시켜 결정립 성장에 미치는 영향을 줄이는 방법이 보다 바람직하다.이와 같이 개재물을 조대하게 성장시키기 위해서는 N를 0.001~0.004%범위로 제어하는 것이 필수이다. N이 0.004%를 초과하면 개재물의 조대화가 이루어지지 않아 철손이 증가되며, 보다 바람직하게는 N은 0.003% 이하로 함유되도록 한다.
[S: 0.0005~0.004중량%]
S는 불순물 원소로서, 제조공정중에 미세한 황화물을 형성하여 결정립 성장을 억제하여 철손을 열위시킨다. 따라서 황화물의 형성을 억제시켜야 하나 이를 위해서는 추가적으로 많은 비용과 공정시간을 필요로 하여 경제적이지 않으므로 후술되는 바와 같이 불순물 원소인 S와의 친화력이 큰 원소를 적극 이용하여 개재물을 조대하게 성장시켜 결정립 성장에 미치는 영향을 줄이는 방법이 보다 바람직하다. 이와 같이 개재물을 조대하게 성장시키기 위해서는 S를 0.0005~0.004%범위로 제어하는 것이 필수이다. S가 0.004%를 초과하면 개재물의 조대화가 이루어지지 않아 철손이 증가되며, 보다 바람직하게는 S는 0.003%이하로 함유되도록 한다.
상기의 불순물 원소 외에도 C, Ti과 같은 불가피하게 혼입되는 불순물들이 포함될 수 있다. C는 자기시효를 일으키므로 0.004% 이하, 바람직하게는 0.003%이하로 제한하는 것이 좋다. Ti는 무방향성 전기강판에 있어서 바람직하지 않은 결정방위인 [111]집합조직의 성장을 촉진하므로 0.004% 이하, 보다 바람직하게는 0.002% 이하로 제한하는 것이 좋다.
상기 조건(1)을 만족하는 무방향성 전기강판에서 Al과 Mn 함량(중량%)의 합계량([Al]+[Mn])은 2.0% 이하로 한정되는데, 이는 0.7~2.7%의 Al과, 0.2~1.0%의 Si와 0.2~1.7%의 Mn을 함유한 강에서 Al과 Mn의 합계량이 2.0%를 초과하면 자성에 불리한 [111]집합조직의 분율이 증가하여 자성이 열위해지기 때문이다. 조건(1)을 만족하는 무방향성 전기강판의 경우 Al과 Mn의 합계량이 0.9% 미만이 되면 질화물, 황화물 혹은 이 두가지의 복합개재물이 조대하게 형성되지 않아 자성이 열위해지나, 조건(1)을 만족하는 무방향성 전기강판에서 Al은 0.7% 이상으로 함유되고, Mn은 0.2% 이상으로 함유되어 Al과 Mn 함량의 합계량은 0.9% 이상이 되므로 자성의 열화가 방지된다.
상기 조건(2) 혹은 조건(3)을 만족하는 무방향성 전기강판에서 Al과 Mn 함량(중량%)의 합계량([Al]+[Mn])은 3.5% 이하로 한정되는데, 이는 1.0~3.0%의 Al과, 0.5~3.5%의 Si와 0.5~2.0%의 Mn을 함유한 강에서 Al과 Mn의 합계량이 3.5%를 초과하면 자성에 불리한 [111]집합조직의 분율이 증가하여 자성이 열위해지기 때문이다. 조건(2) 혹은 조건(3)을 만족하는 무방향성 전기강판의 경우 Al과 Mn의 합계량이 1.5% 미만이 되면 질화물, 황화물 혹은 이 두가지의 복합개재물이 조대하게 형성되지 않아 자성이 열위해지나, 조건(2) 혹은 조건(3)을 만족하는 무방향성 전기강판에서 Al은 1.0% 이상으로 함유되고, Mn은 0.5% 이상으로 함유되어 Al과 Mn 함량의 합계량은 1.5% 이상이 되므로 자성의 열화가 방지된다.
본 발명에서 N과 S 함량의 합계량([N]+[S])은 0.002~0.006%로 한정되는데, 이는 이 범위에서 개재물이 조대하게 성장되기 때문이다. N과 S의 합계량이 0.006%를 초과하면 미세한 개재물의 분율이 증가되어 자성이 열화된다.
또한 본 발명에서는 N과 S 함량(중량%)의 합계량([N]+[S])에 대한 Al과 Mn 함량(중량%)의 합계량([Al]+[Mn])의 비가 중요한 요소이다.
본 발명자의 연구에 의하면 질화물과 황화물이 복합된 300nm 이상의 거대한 복합개재물의 분포밀도를 0.02개/mm2 이상으로 높이기 위해서는 ([Al]+[Mn])/([N]+[S])를 적절히 조절해야 하며, Si, Al, Mn의 함량에 따라 ([Al]+[Mn])/([N]+[S])의 적정 범위를 달리 설정하여야 하는 것으로 조사되었다.
먼저 상기 조건(1)에서와 같이 Al, Si, Mn의 함량이 다소 낮게 주어지는 성분계에서는 ([Al]+[Mn])/ ([N]+[S])가 230~1000의 다소 낮은 범위를 갖는 것이 복합개재물의 형성빈도를 높이는데 유효한 것으로 조사되었다. 이 범위내에서는 개재물이 조대화되어 거대한 복합개재물의 분포밀도가 증가됨에 의하여 철손이 향상되나, 이 범위를 벗어나게 되면 개재물의 조대화가 되지 않고 거대한 복합개재물의 형성빈도가 낮으며 자성에 불리한 집합조직이 형성된다.
이와 달리, Al, Si, Mn의 함량이 상기 조건(2) 혹은 조건(3)에서와 같이 주어지는 성분계에서는 ([Al]+[Mn])/([N]+[S])가 300~1400의 범위를 갖는 것이 복합개재물의 형성빈도를 높이는데 유효한 것으로 조사되었다. 즉, 조건(2) 혹은 조건(3)의 성분계에서는 ([Al]+[Mn])/([N]+[S])가 300~1400을 만족하는 범위내에서 개재물이 조대화되어 거대한 복합개재물의 분포밀도가 증가되며, 이 범위를 벗어나게 되면 개재물의 조대화가 되지 않고 거대한 복합개재물의 형성빈도가 낮으며 자성에 불리한 집합조직이 형성된다.
도 1은 본 발명의 무방향성 전기강판에 존재하는 복합개재물을 나타낸 그림이다. Al, Mn, N, S의 함량이 최적으로 관리되는 범위에서 개재물은 통상재와 대비하여 수배이상 성장하여 300nm 이상의 평균크기를 갖는 조대한 복합개재물의 형성빈도가 높아지고, 그 결과 약 50nm 정도의 평균크기를 갖는 미세한 개재물이 줄어들게 되어 자성이 개선된다. 본 발명자의 연구에 의하면 도 1에 도시한 바와 같은 거대한 복합개재물의 분포밀도가 0.02개/mm2 이상인 경우 무방향성 전기강판의 자성이 월등히 향상되는 것으로 조사되었다.
이러한 조대한 복합개재물이 형성되는 정확한 메커니즘은 아직 분명히 밝혀진 것은 아니나, 제강단계에서 이루어지는 것으로 추정되며, 제강단계에서 초기 Al의 투입시 탈산작용에 의하여 Al계 산화물과 질화물이 형성되고, 추가적인 Al 및 Mn 등의 합금원소 첨가와 버블링시 본 발명에서 규명한 Al, Mn, Si, N, S의 성분비율을 만족하는 성분계에서는 Al계 산화물/질화물이 성장되고 이와 동시에 Mn계 황화물이 그 위에 석출되는 것에 기인하는 것으로 생각된다.
도 2는 0.5~2.5%의 Si를 함유하는 무방향성 전기강판에 있어서 [N]+[S]를 가로축으로 하고, [Al]+[Mn]을 세로축으로 하여 평균크기가 300nm 이상인 거대한 복합개재물의 분포밀도가 0.02개/mm2 이상인지 여부를 기준으로 구분하여 나타낸 그래프이다.
도 2에 도시한 바와 같이, 상기 조건(2), 즉 Al과 Mn 함량(중량%)의 합계량인 [Al]+[Mn]이 3.5% 이하이고, N와 S 함량(중량%)의 합계량인 [N]+[S]가 0.002~0.006임과 동시에, N와 S 함량의 합계량에 대한 Al과 Mn 함량의 합계량의 비율인 ([Al]+[Mn])/([N]+[S])가 300~1,400를 만족하는 본 발명의 범위(굵은 선 내부)에서는 개재물이 조대화되고 평균크기가 300nm 이상인 거대한 복합개재물의 분포밀도가 0.02개/mm2 보다 높아 자성이 우수한 반면, 본 발명을 벗어나는 범위(굵은 선 외부)에서는 조대한 개재물이 형성되지 않고 평균크기가 300nm 이상인 거대한 복합개재물의 분포밀도가 0.02개/mm2 보다 낮으며 집합조직이 열위하여 자성이 저하된다.
도 3은 0.2~1.0%의 Si를 함유하는 무방향성 전기강판에 있어서 [N]+[S]를 가로축으로 하고, [Al]+[Mn]을 세로축으로 하여 평균크기가 300nm 이상인 거대한 복합개재물의 분포밀도가 0.02개/mm2 이상인지 여부를 기준으로 구분하여 나타낸 그래프이다.
도 3에 도시한 바와 같이, 상기 조건(1), 즉 Al과 Mn 함량(중량%)의 합계량인 [Al]+[Mn]이 2.0% 이하이고, N와 S 함량(중량%)의 합계량인 [N]+[S]가 0.002~0.006임과 동시에, N와 S 함량의 합계량에 대한 Al과 Mn 함량의 합계량의 비율인 ([Al]+[Mn])/([N]+[S])가 230~1,000 을 만족하는 본 발명의 범위(굵은 선 내부)에서는 개재물이 조대화되고 평균크기가 300nm 이상인 거대한 복합개재물의 분포밀도가 0.02개/mm2 보다 높아 자성이 우수한 반면, 본 발명을 벗어나는 범위(굵은 선 외부)에서는 조대한 개재물이 형성되지 않고 평균크기가 300nm 이상인 거대한 복합개재물의 분포밀도가 0.02개/mm2 보다 낮으며 집합조직이 열위하여 자성이 저하된다.
도 4는 2.3~3.5%의 Si를 함유하는 무방향성 전기강판에 있어서 [N]+[S]를 가로축으로 하고, [Al]+[Mn]을 세로축으로 하여 평균크기가 300nm 이상인 거대한 복합개재물의 분포밀도가 0.02개/mm2 이상인지 여부를 기준으로 구분하여 나타낸 그래프이다.
도 4에 도시한 바와 같이, 상기 조건(3), 즉 Al과 Mn 함량(중량%)의 합계량인 [Al]+[Mn]이 3.5% 이하이고, N와 S 함량(중량%)의 합계량인 [N]+[S]가 0.002~0.006임과 동시에, N와 S 함량의 합계량에 대한 Al과 Mn 함량의 합계량의 비율인 ([Al]+[Mn])/([N]+[S])가 300~1,400을 만족하는 본 발명의 범위(굵은 선 내부)에서는 개재물이 조대화되고 평균크기가 300nm 이상인 거대한 복합개재물의 분포밀도가 0.02개/mm2 보다 높아 자성이 우수한 반면, 본 발명을 벗어나는 범위(굵은 선 외부)에서는 조대한 개재물이 형성되지 않고 평균크기가 300nm 이상인 거대한 복합개재물의 분포밀도가 0.02개/mm2 보다 낮으며 집합조직이 열위하여 자성이 저하된다.
조대한 개재물은 주로 질화물과 황화물이 복합되어 300nm 이상의 평균크기를 갖는 것으로 관찰되었으나, 여러개의 질화물들이 복합되거나 여러개의 황화물들이 복합되어 300nm 이상의 평균크기를 갖는 것도 이에 포함되며, 질화물이나 황화물이 단독으로 이루어져 300nm 이상으로 성장된 것도 이에 포함될 수 있다. 여기서 개재물의 평균크기는 강판 단면에서의 개재물의 최장길이와 최단길이를 측정하고 이를 평균하여 구한 값으로 하였다.
또한 상기의 조건(2)를 만족하는 본 발명의 무방향성 전기강판에서 Si 함량에 대한 Al 함량의 비율([Al]/[Si])은 0.6~4.0로 한정되는데, 이는 Si 함량에 대한 Al 함량의 비율이 0.6~4.0인 경우 결정립의 성장성이 우수하고 재료의 경도가 낮아져 생산성 및 타발성이 향상되기 때문이다. [Al]/[Si]이 0.6 미만에서는 개재물이 크게 성장되지 않아 결정립의 성장성이 나빠져 자성이 열위해지며, Si의 함량이 증가되어 경도가 상승하게 된다. [Al]/[Si]이 4.0을 초과하면 재료의 집합조직이 나빠져 자속밀도가 열위해지게 된다.
본 발명에서 Mn 함량에 대한 Al 함량의 비율인 [Al]/[Mn]은 1~8로 한정함이 바람직하다. 이는 Mn 함량에 대한 Al 함량의 비율이 1~8인 경우에 개재물의 성장성이 뛰어나 철손 특성이 우수하며, 반대로 이 범위에서 벗어나는 경우 개재물의 성장성이 떨어지고 자성에 유리한 집합조직의 분율이 감소되기 때문이다.
다음으로 비저항과 관련되는 합금성분의 비율한정에 대하여 설명한다. 최근 친환경 자동차의 수요가 급격히 증가함에 따라 고속으로 회전가능한 모터에 사용될 수 있는 무방향성 전기강판의 수요도 증가되고 있다. 이러한 친환경 자동차에 사용되는 모터는 회전수를 크게 증가시켜야 하는데, 모터의 회전수가 증가하면 내부 철심에서의 손실중 와전류 손실의 분율이 급격히 증가하므로, 이 와전류 손실을 줄이기 위해서 비저항을 늘려주어야 한다.
무방향성 전기강판의 합금원소의 함량과 고유저항의 관계는 다음의 실험식으로 나타낼 수 있다.
ρ = 13.25+11.3([Al]+[Si]+[Mn]/2) (ρ: 고유저항, Ω·m)
상기 조건(3)을 만족하는 본 발명에서는 47 이상의 비저항을 확보할 수 있도록 [Al]+[Si]+[Mn]/2를 3.0 이상으로 한정한다.
아울러 최근 냉연기술의 발전에도 불구하고 비저항(고유저항)이 87을 초과할 경우 합금원소의 함량이 증가되어 가공성이 불량해지고 통상적인 냉간압연으로는 생산이 불가능하므로 비저항은 87 이하가 되도록 한다.
따라서 조건(3)을 만족하는 본 발명에서는 47~87(Ω·m)의 비저항과 225 이하 수준의 비커스 경도(Hv1)를 갖도록 [Al]+[Si]+[Mn]/2를 3.0~6.5%로 관리한다.
상기 조건(2)을 만족하는 본 발명에서는 32 이상의 비저항을 확보할 수 있도록 [Al]+[Si]+[Mn]/2를 1.7 이상으로 한정한다. 아울러 조건(2)를 만족하는 본 발명에서는 비저항(고유저항)을 75 이하의 수준으로 유지하여 190 이하의 비커스 경도(Hv1)를 갖도록 [Al]+[Si]+[Mn]/2를 5.5% 이하로 관리한다.
또한 최근 모터에서 고효율 달성을 위한 고자속밀도 제품에 대한 수요가 급격히 증가하고 있으며, 이에 따라 비저항을 낮추어 자속밀도를 향상시킨 무방향성 전기강판에 대한 수요가 증가되고 있다. 이와 같이 자속밀도 특성이 중요시되는 경우에는 비저항(고유저항)을 36 이하로 낮추어 자속밀도를 상향시켜야 하며, 아울러 고속회전에도 대응하기 위하여 비저항을 적어도 25 이상으로 관리하여야 한다.
따라서 조건(1)을 만족하는 본 발명에서는 25~36(Ω·m)의 비저항과 140 이하 수준의 매우 낮은 비커스 경도(Hv1)를 갖도록 [Al]+[Si]+[Mn]/2를 1.0~2.0%로 관리한다.
이하에서는 본 발명에 따른 무방향성 전기강판의 제조방법에 대하여 설명한다. 본 발명에 따른 무방향성 전기강판의 제조방법은 우선 제강단계에서 전체 Al의 투입량 중에서 0.3~0.5%를 먼저 첨가하고, 강중의 탈산이 충분히 일어나도록 한 후에 잔여 합금원소들을 투입하는 것이 바람직하다. 합금원소 투입 후에는 용강의 온도를 1,500~1,600℃로 유지시켜 강중의 개재물이 충분히 성장되도록 하여 제조한 후 이를 연속주조 공정에서 응고시켜 슬라브를 제조한다.
이어서 슬라브를 가열로에 장입하여 1,100℃이상 1,250℃이하의 온도로 재가열한다. 슬라브를 1,250℃를 초과하는 온도로 가열하게 되면 자성을 해치는 석출물이 재용해되어 열간압연후 미세하게 석출될 수 있으므로 1,250℃이하의 온도로 슬라브를 가열한다.
슬라브가 가열되면, 이어서 열간압연을 수행한다. 열간압연시 열간마무리 압연은 800℃ 이상의 온도에서 실시하는 것이 바람직하다. 열간압연된 열연판은 850~1,100℃의 온도에서 열연판 소둔한다. 열연판 소둔 온도가 850℃ 미만이면 조직이 성장하지 않거나 미세하게 성장하여 자속밀도의 상승 효과가 적으며, 열연판 소둔 온도가 1,100℃를 초과하면 자기특성이 오히려 열화되고, 판형상의 변형으로 인해 압연작업성이 나빠질 수 있으므로, 그 온도범위는 850~1,100℃로 제한한다. 보다 바람직한 열연판의 소둔 온도는 950~1,100℃이다. 열연판 소둔은 필요에 따라 자성에 유리한 결정방위를 증가시키기 위하여 수행되는 것이나, 열연판 소둔을 생략하는 것도 가능하다.
상기와 같이 열연판 소둔하거나 혹은 이를 생략하고, 이어서 열연판을 산세한 후, 70~95%의 압하율로 냉간압연하여 소정의 판두께로 형성한다.
본 발명은 냉간압연성에 영향을 미치는 Si, Mn, Al 합금원소의 첨가량이 적절히 조절되어 냉간압연성이 우수하므로 높은 압하율의 적용이 가능하며, 따라서 1회의 냉간압연만으로 두께 0.15mm 정도의 박판으로 제조가 가능하다. 냉간압연시 필요에 따라 중간소둔을 포함한 2회의 냉간압연을 수행하거나, 2회의 소둔을 적용하는 방법도 가능하다.
냉간압연된 냉연판은 최종소둔을 실시한다. 최종소둔 온도가 750℃ 미만이면 재결정이 충분히 발생하지 못하고, 최종소둔 온도가 1,100℃를 초과하게 되면 표층부 산화층이 깊게 형성되어 자성이 저하되므로 최종소둔은 750~1,100℃의 온도로 수행함이 바람직하다.
최종소둔된 강판은 통상의 방법으로 절연피막 처리후 고객사로 출하된다. 절연피막 코팅시 통상적인 코팅재의 적용이 가능하며, 크롬계(Cr-type)나 무크롬계(Cr-free type)중 어느 것이든 제한되지 않고 사용가능하다.
이하, 실시예를 참조하여 본 발명을 구체적으로 설명한다. 이하의 실시예에서 특별히 언급되지 않은 한 성분함량은 중량%로 나타낸 것이다.
[실시예 1]
실험실에서 진공용해하여 하기의 표 1에 나타낸 것과 같은 성분의 강괴를 제조하였다. 소재의 불순물 C, S, N, Ti의 함유량은 각각 0.002%로 제어하였으며, 용강에 Al을 0.3~0.5% 첨가하여 개재물의 형성을 조장한 후, 나머지의 Al과 Si, Mn을 투입하여 강괴를 제조하였다. 각 소재는 1,150℃로 가열하고 850℃에서 열간마무리 압연하여 판두께 2.0mm의 열연판을 제작하였다. 열간압연된 열연판은 1,050℃에서 4분간 소둔한 다음 산세하였다. 그 뒤 냉간압연하여 판두께를 0.35mm로 한 후 1,050℃에서 38초간 최종소둔을 행하였다.
각각에 대한 개재물 크기와 개재물 분포밀도, 철손, 자속밀도 및 경도를 측정하여 하기 표 2에 나타내었다. 개재물의 관찰을 위한 샘플 제작은 철강재료에서 일반적인 방법인 레플리카법을 이용하였으며, 장치로는 투과전자현미경을 사용하였다. 이때 가속전압은 200kV를 인가하였다.
표 1
강종 Al Si Mn C S N Ti
A1 3.0 0.5 1.0 0.002 0.002 0.002 0.002
A2 2.5 0.5 1.0 0.002 0.002 0.002 0.002
A3 1.0 0.5 1.0 0.002 0.002 0.002 0.002
A4 3.0 1.0 1.0 0.002 0.002 0.002 0.002
A5 2.0 1.0 1.0 0.002 0.002 0.002 0.002
A6 1.0 1.0 1.0 0.002 0.002 0.002 0.002
A7 0.5 1.0 1.0 0.002 0.002 0.002 0.002
A8 3.5 1.5 1.0 0.002 0.002 0.002 0.002
A9 2.5 1.5 1.0 0.002 0.002 0.002 0.002
A10 1.5 1.5 1.0 0.002 0.002 0.002 0.002
A11 3.0 2.0 1.0 0.002 0.002 0.002 0.002
A12 1.5 2.0 1.0 0.002 0.002 0.002 0.002
A13 3.0 2.5 1.0 0.002 0.002 0.002 0.002
A14 2.5 2.5 1.0 0.002 0.002 0.002 0.002
A15 1.0 2.5 1.0 0.002 0.002 0.002 0.002
표 2
강종 Al/Si Al/Mn Al+Mn N+S (Al+Mn)/(N+S) Al+Si+Mn/2 개재물크기(㎚) 개재물분포밀도(1/mm2) 철손(W15/50) 자속밀도(B50) 경도 비고
A1 6.0 3.0 4.0 0.0040 1000 4.0 250 0 2.2 1.62 165 비교예
A2 5.0 2.5 3.5 0.0040 875 3.5 200 0 2.3 1.62 160 비교예
A3 2.0 1.0 2.0 0.0040 500 2.0 300 0.02 2.5 1.72 140 발명예
A4 3.0 3.0 4.0 0.0040 1000 4.5 250 0 2.4 1.62 157 비교예
A5 2.0 2.0 3.0 0.0040 750 3.5 500 0.07 2.0 1.67 155 발명예
A6 1.0 1.0 2.0 0.0040 500 2.5 450 0.05 2.1 1.68 150 발명예
A7 0.5 0.5 1.5 0.0040 375 2.0 50 0 2.5 1.66 145 비교예
A8 2.3 3.5 4.5 0.0040 1125 5.5 75 0 2.5 1.64 190 비교예
A9 1.7 2.5 3.5 0.0040 875 4.5 400 0.05 2.0 1.67 185 발명예
A10 1.0 1.5 2.5 0.0040 625 3.5 600 0.08 2.0 1.68 170 발명예
A11 1.5 3.0 4.0 0.0040 1000 5.5 250 0 2.3 1.62 195 비교예
A12 0.8 1.5 2.5 0.0040 625 4.0 400 0.04 2.0 1.68 183 발명예
A13 1.2 3.0 4.0 0.0040 1000 6.0 75 0 2.0 1.61 210 비교예
A14 1.0 2.5 3.5 0.0040 875 5.5 400 0.03 1.9 1.65 190 발명예
A15 0.4 1.0 2.0 0.0040 500 4.0 60 0 2.4 1.67 195 비교예
상기 표 2에 나타난 바와 같이, 강종A3,A5,A6,A9,A10,A12,A14는 조건(2)를 만족하는 발명예로서, 크기 300nm 이상의 조대한 복합개재물이 관찰되고 그 분포밀도가 0.02(1/mm2)보다 높아 자성이 우수하였으며, 비커스 경도(Hv1)가 190 이하로 낮아 생산성 및 고객사 타발성이 우수하였다.
반면, 강종A1은 Al/Si의 비율과 Al+Mn이 본 발명의 조건(2)를 만족하지 않아 300nm 이상의 크기를 갖는 개재물이 관찰되지 않았으며, 철손과 자속밀도가 열위하였다. 강종A2,A15은 Al/Si의 비율이 본 발명의 조건(2)를 만족하지 않아 300nm 이상의 크기를 갖는 개재물이 관찰되지 않았으며, 철손과 자속밀도가 열위하였다. 강종A4,A8,A11,A13은 Al+Mn이 본 발명의 조건(2)를 만족하지 않아 300nm 이상의 크기를 갖는 개재물이 관찰되지 않았으며, 철손과 자속밀도가 열위하였다. 강종A7은 Al/Si의 비율과 Al/Mn의 비율이 본 발명의 조건(2)를 만족하지 않아 300nm 이상의 크기를 갖는 개재물이 관찰되지 않았으며, 철손과 자속밀도가 열위하였다.
[실시예 2]
실험실에서 진공용해하여 하기의 표 3에 나타낸 것과 같은 성분의 강괴를 제조하였다. 소재의 불순물 N, S의 함량을 다양하게 하면서 성분을 조절하였으며, 용강에 Al을 0.3~0.5% 첨가하여 개재물의 형성을 조장한 후, 나머지의 Al과, Si, Mn을 투입하여 강괴를 제조하였다. 각 소재는 1,150℃로 가열하고 850℃에서 열간마무리 압연하여 판두께 2.0mm의 열연판을 제작하였다. 열간압연된 열연판은 1,050℃에서 4분간 소둔한 다음 산세하였다. 그 뒤 냉간압연하여 판두께를 0.35mm로 한 후 1,050℃에서 38초간 최종소둔을 행하였다.
각각에 대한 개재물 크기와 개재물 분포밀도, 철손, 자속밀도 및 경도를 측정하여 하기 표 4에 나타내었다. 개재물의 관찰을 위한 샘플 제작은 철강재료에서 일반적인 방법인 레플리카법을 이용하였으며, 장치로는 투과전자현미경을 사용하였다. 이때 가속전압은 200kV를 인가하였다.
표 3
강종 Al Si Mn C S N Ti
B1 1.0 0.5 0.5 0.002 0.001 0.001 0.002
B2 1.0 0.5 0.5 0.002 0.003 0.003 0.002
B3 1.0 0.5 0.5 0.002 0.0005 0.001 0.002
B4 1.0 0.5 1.0 0.002 0.002 0.003 0.002
B5 1.2 0.5 1.2 0.002 0.0015 0.002 0.002
B6 1.2 0.5 1.0 0.002 0.0005 0.0005 0.002
B7 1.2 0.5 1.0 0.002 0.003 0.003 0.002
B8 2.0 0.5 2.0 0.002 0.001 0.003 0.002
B9 2.0 0.5 1.5 0.002 0.001 0.0015 0.002
B10 2.0 0.5 1.5 0.002 0.001 0.003 0.002
B11 2.0 0.5 1.0 0.002 0.003 0.004 0.002
B12 2.0 1.0 1.5 0.002 0.0005 0.0015 0.002
B13 2.0 1.0 1.5 0.002 0.002 0.004 0.002
B14 1.5 1.0 1.5 0.002 0.002 0.0025 0.002
B15 2.5 1.0 1.0 0.002 0.0005 0.0005 0.002
표 4
강종 Al/Si Al/Mn Al+Mn N+S (Al+Mn)/(N+S) Al+Si+Mn/2 개재물크기(㎚) 개재물분포밀도(1/mm2) 철손(W15/50) 자속밀도(B50) 경도 비고
B1 2.0 2.0 1.5 0.0020 750 1.8 350 0.03 2.6 1.74 135 발명예
B2 2.0 2.0 1.5 0.0060 250 1.8 75 0 3.2 1.72 135 비교예
B3 2.0 2.0 1.5 0.0015 1000 1.8 120 0 2.9 1.71 135 비교예
B4 2.0 1.0 2 0.0050 400 2.0 400 0.04 2.6 1.70 140 발명예
B5 2.4 1.0 2.4 0.0035 686 2.3 450 0.03 2.2 1.69 150 발명예
B6 2.4 1.2 2.2 0.0010 2200 2.2 50 0 2.4 1.67 150 비교예
B7 2.4 1.2 2.2 0.0060 367 2.2 350 0.02 2.3 1.70 165 발명예
B8 4.0 1.0 4.0 0.0040 1000 3.5 250 0 2.3 1.62 185 비교예
B9 4.0 1.3 3.5 0.0025 1400 3.3 450 0.05 2 1.67 170 발명예
B10 4.0 1.3 3.5 0.0040 875 3.3 550 0.08 2 1.68 170 발명예
B11 4.0 2.0 3 0.0070 429 3.0 250 0 2.2 1.65 170 비교예
B12 2.0 1.3 3.5 0.0020 1750 3.8 80 0 2.3 1.65 165 비교예
B13 2.0 1.3 3.5 0.0060 583 3.8 500 0.07 2 1.68 175 발명예
B14 1.5 1.0 3 0.0045 667 3.3 600 0.07 2 1.68 170 발명예
B15 2.5 2.5 3.5 0.0010 3500 4.0 50 0 2.2 1.65 165 비교예
상기 표 4에 나타난 바와 같이, 강종B1, B4, B5, B7, B9, B10, B13, B14는 조건(2)를 만족하는 발명예로서, 크기 300nm 이상의 조대한 개재물이 관찰되고 그 분포밀도가 0.02(1/mm2)보다 높아 자성이 우수하였으며, 경도가 낮아 생산성 및 고객사 타발성이 우수하였다.
반면, 강종B3, B6, B11, B15은 N+S 가 본 발명의 조건(2)에서 벗어나 300nm 이상의 크기를 갖는 개재물이 관찰되지 않았으며, 철손과 자속밀도가 열위하였다. 강종B8은 Al+Mn 이 본 발명의 조건(2)에서 벗어나고, 강종B2, B12는 (Al+Mn)/(N+S) 가 본 발명의 조건(2)에서 벗어나 300nm 이상의 크기를 갖는 조대한 개재물이 관찰되지 않았으며, 철손과 자속밀도가 열위하였다.
[실시예 3]
실험실에서 진공용해하여 하기의 표 5에 나타낸 것과 같은 성분의 강괴를 제조하였다. 이때 용강에 Al을 0.3~0.5% 첨가하여 개재물의 형성을 조장한 후, 나머지 Al, Si, Mn, P를 투입하여 강괴를 제조하였다. 각 소재는 1,150℃로 가열하고 850℃에서 열간마무리 압연하여 판두께 2.0mm의 열연판을 제작하였다. 열간압연된 열연판은 1,050℃에서 4분간 소둔한 다음 산세하였다. 그 뒤 냉간압연하여 0.15~0.35mm의 여러가지 판두께로 형성한 후 1,050℃에서 38초간 최종소둔을 행하였다. 각각의 판두께에 대하여 철손과, 자속밀도를 측정하여 하기 표 6에 나타내었다. 개재물의 관찰을 위한 샘플 제작은 철강재료에서 일반적인 방법인 레플리카법을 이용하였으며, 장치로는 투과전자현미경을 사용하였다. 이때 가속전압은 200kV를 인가하였다.
표 5
강종 Al Si Mn P C S N Ti
C1 1  3  0.2 0.03 0.002 0.002 0.002 0.002
C2 2.2  1  0.8  0.05 0.002 0.002 0.002 0.002
C3 2 1.5 1.5 0.05 0.002 0.002 0.002 0.002
C4 1.8 1.3 1.2 0.05 0.002 0.002 0.002 0.002
C5 1.3 1.8 0.6 0.08 0.002 0.002 0.002 0.002
C6 2.2 1.5 0.6 0.1 0.002 0.002 0.002 0.002
C7 1.8 1.2 1.2 0.1 0.002 0.002 0.002 0.002
표 6
강종 Al/Si Al/Mn Al+Mn N+S (Al+Mn)/(N+S) Al+Si+Mn/2 자성측정항목 두께(mm) 비고
0.35 0.3 0.25 0.2 0.15
C1 0.3 5.0   1.2 0.004  300  4.1 B50 1.65 1.64 1.63 1.62 1.61 비교예
W10/400 20.2 17.8 15.7 13.4 12.3
C2 2.2  2.8  3.0   0.004  750  3.6  B50 1.67 1.66 1.65 1.64 1.63 발명예
W10/400 18.2 15.6 13.4 11.2 9.7
C3 1.3 1.3 3.5  0.004  875  4.25  B50 1.68 1.68 1.65 1.64 1.64 발명예
W10/400 18.0 15 13.6 11.5 10.1
C4 1.4 1.5 3.0 0.004 750 3.7 B50 1.68 1.65 1.66 1.65 1.63 발명예
W10/400 17.8 15.3 13.3 11.1 9.4
C5 0.7 2.2 1.9 0.004 475 3.4 B50 1.67 1.66 1.65 1.64 1.63 발명예
W10/400 18.1 15.5 13.4 11.2 9.6
C6 1.5 3.7 2.8 0.004 700 4 B50 1.67 1.66 1.65 1.64 1.64 발명예
W10/400 18.2 15.6 13.5 11.4 9.8
C7 1.5 1.5 3.0 0.004 750 3.6 B50 1.68 1.68 1.67 1.66 1.65 발명예
W10/400 19.3 16.5 14.1 11.7 10
상기 표 6에 나타난 바와 같이, 강종C2~C7은 조건(2)를 만족하는 발명예로서, 자속밀도가 높고 철손은 낮다. 이는 본 발명의 성분계에서 개재물이 조대하게 성장되고 거대한 복합개재물의 분포밀도가 0.02(1/mm2)보다 높게 형성되고, 집합조직이 안정화되기 때문으로 생각된다. 고주파 철손(W10/400)은 강판 두께와의 상관도가 명확하여 두께가 얇아짐에 따라 특성이 향상되며, 0.35mm 두께와 대비하여 0.15mm 두께의 강판은 철손이 50% 가까이 개선된다. 강종C1은 Al+Mn과 Al/Si가 본 발명의 조건(2)를 만족하지 않아 철손(W10/400)과 자속밀도(B50)가 열위하였다.
[실시예 4]
실험실에서 진공용해하여 하기의 표 7에 나타낸 성분의 강괴를 제조하였다. 이때, 용강에 Al을 0.3~0.5%첨가하여 개재물의 형성을 조장한 후, 나머지의 Al과 Si, Mn, P를 투입하여 강괴를 제조하였다. 각 소재는 1,150℃로 가열하고 850℃에서 열간마무리 압연하여 판두께 2.0mm의 열연판을 제작하였다. 열간압연된 열연판은 1,050℃에서 4분간 소둔한 다음 산세하였다. 그 뒤 냉간압연하여 판두께를 0.35mm로 한 후 1,050℃에서 38초간 최종소둔을 행하였다.
각각에 대한 개재물 크기와 개재물 분포밀도, 철손, 자속밀도, 에릭슨값과 경도를 측정하여 하기 표 8에 나타내었다. 개재물의 관찰을 위한 샘플 제작은 철강재료에서 일반적인 방법인 레플리카법을 이용하였으며, 장치로는 투과전자현미경을 사용하였다. 이때 가속전압은 200kV를 인가하였다.
에릭슨값은 상온에서 열연판 용접부를 직경 20mm의 steel ball로 밀어올려 파단이 발생하기 전까지의 높이를 측정한 값으로 하였다. 통상 에릭슨값이 5mm 이상인 경우 동종간을 용접하여 연속라인의 생산이 가능하다.
표 7
강종 Al Si Mn P Sn Sb C S N Ti
D1 1.0 2.5 0.5 0.01 - - 0.002 0.002 0.002 0.002
D2 2.5 0.8 0.8 0.11 0.03 - 0.002 0.002 0.002 0.002
D3 2.0 1.3 0.8 0.08 - 0.005 0.002 0.002 0.002 0.002
D4 2.0 1.3 0.8 0.08 - 0.03 0.002 0.002 0.002 0.002
D5 2.0 1.3 0.8 0.08 - 0.07 0.002 0.002 0.002 0.002
D6 2.0 1.3 0.8 0.08 - 0.1 0.002 0.002 0.002 0.002
D7 2.0 1.3 0.8 0.08 - 0.15 0.002 0.002 0.002 0.002
D8 1.7 1.6 0.8 0.08 0.005 - 0.002 0.002 0.002 0.002
D9 1.7 1.6 0.8 0.08 0.03 - 0.002 0.002 0.002 0.002
D10 1.7 1.6 0.8 0.08 0.07 - 0.002 0.002 0.002 0.002
D11 1.7 1.6 0.8 0.08 0.15 - 0.002 0.002 0.002 0.002
D12 1.7 1.6 0.8 0.08 0.18 - 0.002 0.002 0.002 0.002
D13 1.7 1.6 0.8 0.08 0.25 - 0.002 0.002 0.002 0.002
D14 1.3 2.0 0.8 0.08 0.03 - 0.002 0.002 0.002 0.002
D15 2.2 1.6 0.6 0.05 - 0.03 0.002 0.002 0.002 0.002
D16 2.2 1.6 0.6 0.05 0.23 - 0.002 0.002 0.002 0.002
D17 1.5 1.0 1.2 0.19 0.05 - 0.002 0.002 0.002 0.002
D18 1.5 1.0 1.2 0.19 - 0.2 0.002 0.002 0.002 0.002
표 8
강종 Al/Si Al/Mn Al+Mn N+S (Al+Mn)/(N+S) Al+Si+Mn/2 개재물크기(㎚) 개재물분포밀도(1/mm2) 철손(W15/50) 자속밀도(B50) 에릭슨(mm) 경도 비고
D1 0.4 2 1.5 0.004 375 3.75 50 0 2.2 1.66 3 204 비교예
D2 3.1 3.1 3.3 0.004 825 3.7 600 0.06 2.1 1.67 7 163 본발명
D3 1.5 2.5 2.8 0.004 700 3.7 500 0.04 1.9 1.68 7 171 본발명
D4 1.5 2.5 2.8 0.004 700 3.7 540 0.04 1.9 1.68 9 168 본발명
D5 1.5 2.5 2.8 0.004 700 3.7 600 0.07 1.9 1.68 11 175 본발명
D6 1.5 2.5 2.8 0.004 700 3.7 650 0.09 1.9 1.68 8 172 본발명
D7 1.5 2.5 2.8 0.004 700 3.7 450 0.03 2.1 1.66 4 180 비교예
D8 1.1 2.1 2.5 0.004 625 3.7 650 0.06 2.1 1.68 8 174 본발명
D9 1.1 2.1 2.5 0.004 625 3.7 500 0.05 2.0 1.68 10 175 본발명
D10 1.1 2.1 2.5 0.004 625 3.7 600 0.08 1.9 1.68 11 177 본발명
D11 1.1 2.1 2.5 0.004 625 3.7 700 0.05 2.0 1.68 9 174 본발명
D12 1.1 2.1 2.5 0.004 625 3.7 650 0.04 2.0 1.68 7 179 본발명
D13 1.1 2.1 2.5 0.004 625 3.7 300 0.02 2.2 1.68 3 180 비교예
D14 0.7 1.6 2.1 0.004 525 3.7 400 0.03 2.0 1.68 8 183 본발명
D15 1.4 3.7 2.8 0.004 700 4.1 800 0.12 2.1 1.66 9 178 본발명
D16 1.4 3.7 2.8 0.004 700 4.1 350 0.03 2.2 1.67 4 185 비교예
D17 1.5 1.3 2.7 0.004 675 3.1 550 0.07 2.1 1.69 12 165 본발명
D18 1.5 1.3 2.7 0.004 675 3.1 300 0.02 2.2 1.68 4 170 비교예
상기 표 8에 나타난 바와 같이, 강종D2~6, D8~12, D14, D15, D17은 조건(2)를 만족하고, 0.005~0.2%의 Sn 혹은 0.005~0.1%의 Sb가 첨가된 발명예로서, 크기 300nm 이상인 조대한 개재물의 분포밀도가 0.02(1/mm2)보다 높고 최종소둔시 표면의 산화층 및 질화층이 감소하여 철손과 자속밀도가 향상되었으며, 에릭슨값이 높고 비커스 경도(Hv1)가 낮아 용접성과 생산성 및 고객사 타발성이 우수하였다.
반면, 강종D1은 Al/Si의 비가 본 발명의 조건(2)에서 벗어나 300nm 이상의 크기를 갖는 개재물이 관찰되지 않았으며, 철손과 자속밀도가 열위하였다. 또한 Sn과 Sb가 첨가되지 않아 에릭슨값이 낮아 용접성이 떨어지고 경도가 높아 가공성이 열위하였다. 강종D7, D18은 Sb가 0.1%를 초과하고, 강종D13, D16은 Sn이 0.2%를 초과하여 에릭슨값이 낮고 경도가 높아 용접성이 떨어지고 생산성 및 고객사 타발성이 불량하였으며 자성도 열위하였다.
[실시예 5]
실험실에서 진공용해하여 하기의 표 9에 나타낸 것과 같은 성분의 강괴를 제조하였다. 이때, 용강에 Al을 0.3~0.5% 첨가하여 개재물의 형성을 조장한 후, 나머지 Al과 Si, Mn을 투입하여 강괴를 제조하였다. 각 소재는 1,150℃로 가열하고 850℃에서 열간마무리 압연하여 판두께 2.3mm의 열연판을 제작하였다. 열간압연된 열연판은 1,050℃에서 4분간 소둔한 다음 산세하였다. 그 뒤 냉간압연하여 판두께를 0.50mm로 한 후 900℃에서 30초간 최종소둔을 행하였다.
각각에 대한 개재물 크기와 개재물 분포밀도, 철손, 자속밀도 및 경도를 측정하여 하기 표 10에 나타내었다. 개재물의 관찰을 위한 샘플 제작은 철강재료에서 일반적인 방법인 레플리카법을 이용하였으며, 장치로는 투과전자현미경을 사용하였다. 이때 가속전압은 200kV를 인가하였다.
표 9
강종 Al Si Mn C S N Ti
E1 1.5 0.2 0.2 0.002 0.002 0.002 0.002
E2 1.5 0.2 0.5 0.002 0.002 0.002 0.002
E3 0.7 0.2 0.5 0.002 0.002 0.002 0.002
E4 2.7 0.5 0.3 0.002 0.002 0.002 0.002
E5 1.7 0.5 0.3 0.002 0.002 0.002 0.002
E6 0.7 0.5 0.3 0.002 0.002 0.002 0.002
E7 0.5 0.5 0.5 0.002 0.002 0.002 0.002
E8 0.5 0.5 0.5 0.002 0.002 0.002 0.002
E9 2.2 0.5 0.2 0.002 0.002 0.002 0.002
E10 1.2 0.5 0.2 0.002 0.002 0.002 0.002
E11 1.0 0.1 0.2 0.002 0.002 0.002 0.002
E12 1.2 0.2 0.2 0.002 0.002 0.002 0.002
E13 1.0 0.2 0.2 0.002 0.002 0.002 0.002
E14 2.2 0.7 0.2 0.002 0.002 0.002 0.002
E15 0.7 0.7 0.2 0.002 0.002 0.002 0.002
E16 1.3 0.2 0.7 0.002 0.002 0.002 0.002
E17 1.5 0.2 1.0 0.002 0.002 0.002 0.002
E18 1.2 0.2 1.0 0.002 0.002 0.002 0.002
E19 0.9 0.5 1.0 0.002 0.002 0.002 0.002
E20 0.9 0.7 0.8 0.002 0.002 0.002 0.002
E21 1.0 0.5 0.8 0.002 0.002 0.002 0.002
표 10
강종 Al/Si Al/Mn Al+Mn N+S (Al+Mn)/(N+S) Al+Si+Mn/2 개재물크기(㎚) 개재물분포밀도(1/mm2) 철손(W15/50) 자속밀도(B50) 경도 비고
E1 7.5 7.5 1.7 0.0040 425 1.8 450 0.40 3.2 1.73 140 발명예
E2 7.5 3.0 2.0 0.0040 500 2.0 500 0.35 3.0 1.73 140 발명예
E3 3.5 1.4 1.2 0.0040 300 1.2 300 0.30 4.0 1.74 110 발명예
E4 5.4 9.0 3.0 0.0040 750 3.4 250 0.01 3.0 1.68 157 비교예
E5 3.4 5.7 2.0 0.0040 500 2.4 250 0.01 2.9 1.69 145 비교예
E6 1.4 2.3 1.0 0.0040 250 1.4 450 0.05 3.5 1.74 115 발명예
E7 1.0 1.0 1.0 0.0040 250 1.3 50 0.01 4.5 1.74 110 비교예
E8 1.0 1.0 1.0 0.0040 250 1.3 75 0.01 4.5 1.74 110 비교예
E9 4.4 11.0 2.4 0.0040 600 2.8 400 0.01 2.8 1.68 150 비교예
E10 2.4 6.0 1.4 0.0040 350 1.8 600 0.15 3.2 1.73 130 발명예
E11 10 5.0 1.2 0.0040 300 1.2 250 0.01 4.5 1.74 105 비교예
E12 6.0 6.0 1.4 0.0040 350 1.5 400 0.20 3.5 1.74 105 발명예
E13 5.0 5.0 1.2 0.0040 300 1.3 300 0.18 3.6 1.74 110 발명예
E14 3.1 11.0 2.4 0.0040 600 3.0 400 0.01 2.8 1.69 160 비교예
E15 1.0 3.5 0.9 0.0040 225 1.5 150 0.01 3.9 1.74 130 비교예
E16 6.5 1.9 2.0 0.0040 500 1.9 350 0.25 2.9 1.72 130 발명예
E17 7.5 1.5 2.5 0.0040 625 2.2 250 0.01 2.8 1.69 140 비교예
E18 6.0 1.2 2.2 0.0040 550 1.9 250 0.01 2.9 1.70 130 비교예
E19 1.8 0.9 1.9 0.0040 475 1.9 200 0.01 3.2 1.70 135 비교예
E20 1.3 1.1 1.7 0.0040 425 2.0 350 0.05 3.5 1.73 140 발명예
E21 2.0 1.3 1.8 0.0040 450 1.9 400 0.05 3.3 1.73 140 발명예
상기 표 10에 나타난 바와 같이, 강종 E1~E3, E6, E10, E12, E13, E16, E20, E21은 조건(1)을 만족하는 발명예로서, 크기 300nm 이상의 조대한 개재물이 관찰되고 그 분포밀도가 0.02(1/mm2)보다 높아 자성이 우수하고, 비커스 경도(Hv1)가 140 이하로서 생산성 및 고객사 타발성이 우수하였다.
반면, 강종E4, E9, E14는 Al/Mn 비와 Al+Mn 함량이 본 발명의 조건(1)을 만족하지 않아 300nm 이상의 크기를 갖는 개재물이 관찰되지 않았으며, 철손과 자속밀도가 열위하였다. 강종E17, E18은 Al+Mn이 본 발명의 조건(1)을 만족하지 않아 300nm 이상의 크기를 갖는 개재물이 관찰되지 않았으며, 철손과 자속밀도가 열위하였다. 강종E19는 Al/Mn 이 본 발명의 조건(1)을 만족하지 않아 300nm 이상의 크기를 갖는 개재물이 관찰되지 않았으며, 철손과 자속밀도가 열위하였다. 강종 E4, E5, E9, E14는 Al+Si+Mn/2이 본 발명의 조건(1)을 만족하지 않아 경도가 높았으며 이로 인해 생산성 및 타발성이 열위하였다.
[실시예 6]
실험실에서 진공용해하여 하기의 표 11에 나타낸 것과 같은 성분의 강괴를 제조하였다. 이때, 용강에 Al을 0.3~0.5% 첨가하여 개재물의 형성을 조장한 후, 나머지의 Al과 Si, Mn을 투입하여 강괴를 제조하였다. 각 소재는 1,150℃로 가열하고 850℃에서 열간마무리 압연하여 판두께 2.3mm의 열연판을 제작하였다. 열간압연된 열연판은 1,050℃에서 4분간 소둔한 다음 산세하였다. 그 뒤 냉간압연하여 판두께를 0.50mm로 한 후 900℃에서 30초간 최종소둔을 행하였다.
각각에 대한 개재물 크기와 개재물 분포밀도, 철손, 자속밀도 및 경도를 측정하여 하기 표 12에 나타내었다. 개재물의 관찰을 위한 샘플 제작은 철강재료에서 일반적인 방법인 레플리카법을 이용하였으며, 장치로는 투과전자현미경을 사용하였다. 이때 가속전압은 200kV를 인가하였다.
표 11
강종 Al Si Mn C S N Ti
F1 1.0 0.5 0.3 0.0030 0.0010 0.0010 0.0020
F2 0.7 0.3 0.2 0.0030 0.0030 0.0030 0.0020
F3 0.7 0.3 0.5 0.0030 0.0020 0.0030 0.0020
F4 0.7 0.5 0.3 0.0030 0.0010 0.0025 0.0020
F5 1.0 0.3 0.7 0.0030 0.0005 0.0005 0.0020
F6 1.0 0.3 0.7 0.0030 0.0040 0.0020 0.0020
F7 1.2 0.5 1.0 0.0030 0.0020 0.0020 0.0020
F8 1.2 0.2 0.3 0.0030 0.0015 0.0010 0.0020
F9 0.9 0.5 0.8 0.0030 0.0020 0.0020 0.0020
F10 0.9 0.5 0.8 0.0030 0.0040 0.0030 0.0020
F11 0.9 0.5 0.5 0.0030 0.0030 0.0030 0.0020
F12 0.9 0.5 0.5 0.0030 0.0020 0.0025 0.0020
F13 0.9 0.5 0.5 0.0030 0.0005 0.0005 0.0020
표 12
강종 Al/Si Al/Mn Al+Mn N+S (Al+Mn)/(N+S) Al+Si+Mn/2 개재물크기(㎚) 개재물분포밀도(1/mm2) 철손(W15/50) 자속밀도(B50) 경도 비고
F1 2.0 3.3 1.3 0.0020 650 1.7 350 0.150 3.2 1.73 135 발명예
F2 2.3 3.5 0.9 0.0060 150 1.1 200 0.010 4.2 1.71 130 비교예
F3 2.3 1.4 1.2 0.0050 240 1.3 300 0.200 3.5 1.74 130 발명예
F4 1.4 2.3 1 0.0035 286 1.4 450 0.050 3.4 1.73 130 발명예
F5 3.3 1.4 1.7 0.0010 1700 1.7 50 0.010 3.5 1.69 140 비교예
F6 3.3 1.4 1.7 0.0060 283 1.7 350 0.200 3.2 1.74 140 발명예
F7 2.4 1.2 2.2 0.0040 550 2.2 250 0.010 2.9 1.68 140 비교예
F8 6.0 4.0 1.5 0.0025 600 1.6 450 0.070 3.3 1.74 140 발명예
F9 1.8 1.1 1.7 0.0040 425 1.8 550 0.080 3.1 1.73 135 발명예
F10 1.8 1.1 1.7 0.0070 243 1.8 250 0.010 3.5 1.69 135 비교예
F11 1.8 1.8 1.4 0.0060 233 1.7 500 0.150 3.2 1.73 135 발명예
F12 1.8 1.8 1.4 0.0045 311 1.7 600 0.180 3.2 1.74 135 발명예
F13 1.8 1.8 1.4 0.0010 1400 1.7 50 0.018 3.7 1.72 135 비교예
상기 표 12에 나타난 바와 같이, 강종F1, F3, F4, F6, F8, F9, F11, F12는 조건(1)을 만족하는 발명예로서, 크기 300nm 이상의 조대한 개재물이 관찰되고 그 분포밀도가 0.02(1/mm2)보다 높아 자성이 우수하고, 경도가 낮아 생산성 및 고객사 타발성이 우수하였다.
반면, 강종F5, F10, F13는 N+S가 본 발명의 조건(1)을 만족하지 않아 300nm 이상의 크기를 갖는 개재물이 관찰되지 않았으며, 철손과 자속밀도가 열위하였다. 강종F7은 Al+Mn이 본 발명의 조건(1)을 만족하지 않아 300nm 이상의 크기를 갖는 개재물이 관찰되지 않았으며, 철손과 자속밀도가 열위하였다.
[실시예 7]
실험실에서 진공용해하여 하기의 표 13에 나타낸 것과 같은 성분의 강괴를 제조하였다. 이때 용강에 Al을 0.3~0.5% 첨가하여 개재물의 형성을 조장한 후, 나머지의 Al과 Si, Mn을 투입하여 강괴를 제조하였다. 각 소재는 1,150℃로 가열하고 850℃에서 열간마무리 압연하여 판두께 2.0mm의 열연판을 제작하였다. 열간압연된 열연판은 1,050℃에서 4분간 소둔한 다음 산세하였다. 그 뒤 냉간압연하여 판두께를 0.35mm로 한 후 1,050℃에서 38초간 최종소둔을 행하였다.
각각에 대한 개재물 크기와 개재물 분포밀도, 철손, 자속밀도 및 경도를 측정하여 하기 표 14에 나타내었다. 개재물의 관찰을 위한 샘플 제작은 철강재료에서 일반적인 방법인 레플리카법을 이용하였으며, 장치로는 투과전자현미경을 사용하였다. 이때 가속전압은 200kV를 인가하였다.
표 13
강종 Al Si Mn C S N Ti
G1 3.0 2.3 1.0 0.002 0.002 0.002 0.002
G2 2.5 1.7 1.0 0.002 0.002 0.002 0.002
G3 1.0 2.3 1.0 0.002 0.002 0.002 0.002
G4 1.5 2.3 0.8 0.002 0.002 0.002 0.002
G5 2.0 2.7 0.8 0.002 0.002 0.002 0.002
G6 1.0 2.7 0.8 0.002 0.002 0.002 0.002
G7 0.5 2.7 0.8 0.002 0.002 0.002 0.002
G8 3.5 3.0 0.8 0.002 0.002 0.002 0.002
G9 2.5 3.0 0.8 0.002 0.002 0.002 0.002
G10 1.5 3.0 1.0 0.002 0.002 0.002 0.002
G11 3.0 3.2 1.0 0.002 0.002 0.002 0.002
G12 1.5 3.2 1.0 0.002 0.002 0.002 0.002
G13 3.0 2.5 1.0 0.002 0.002 0.002 0.002
G14 2.5 2.5 1.0 0.002 0.002 0.002 0.002
G15 1.0 2.5 1.0 0.002 0.002 0.002 0.002
표 14
강종 Al/Si Al/Mn Al+Mn N+S (Al+Mn)/(N+S) Al+Si+Mn/2 개재물크기(㎚) 개재물분포밀도(1/mm2) 철손(W15/50) 자속밀도(B50) 경도 비고
G1 1.3 3.0 4.0 0.0040 1000 5.8 250 0.01 2.0 1.62 225 비교예
G2 1.5 2.5 3.5 0.0040 875 4.7 200 0.01 2.3 1.63 195 비교예
G3 0.4 1.0 2 0.0040 500 3.8 300 0.10 2.2 1.67 200 발명예
G4 0.7 1.9 2.3 0.0040 575 4.2 400 0.20 2.2 1.66 205 발명예
G5 0.7 2.5 2.8 0.0040 700 5.1 500 0.15 2.0 1.67 200 발명예
G6 0.4 1.3 1.8 0.0040 450 4.1 450 0.09 2.1 1.66 195 발명예
G7 0.2 0.6 1.3 0.0040 325 3.6 50 0.01 2.5 1.66 190 비교예
G8 1.2 4.4 4.3 0.0040 1075 6.9 75 0.01 2.0 1.62 230 비교예
G9 0.8 3.1 3.3 0.0040 825 5.9 400 0.25 2.1 1.66 220 발명예
G10 0.5 1.5 2.5 0.0040 625 5.0 600 0.10 2.1 1.67 225 발명예
G11 0.9 3.0 4.0 0.0040 1000 6.7 250 0.005 2.3 1.62 230 비교예
G12 0.5 1.5 2.5 0.0040 625 5.2 400 0.15 2.0 1.66 220 발명예
G13 1.2 3.0 4.0 0.0040 1000 6.0 75 0.01 2.0 1.62 220 비교예
G14 1.0 2.5 3.5 0.0040 875 5.5 400 0.10 2.1 1.64 225 발명예
G15 0.4 1.0 2.0 0.0040 500 4.0 350 0.15 2.1 1.67 210 발명예
상기 표 14에 나타난 바와 같이, 강종 G3~G6, G9, G10, G12, G14, G15는 조건(3)을 만족하는 발명예로서, 크기 300nm 이상의 조대한 개재물이 관찰되고 그 분포밀도가 0.02(1/mm2)보다 높아 자성이 우수하고, 비커스 경도(Hv1)가 225 이하로 낮았다.
반면, 강종G1, G8, G11, G13은 Al+Mn 이 본 발명의 조건(3)을 만족하지 않아 300nm 이상의 크기를 갖는 개재물이 관찰되지 않았으며, 철손과 자속밀도가 열위하였다. 강종G2는 Al/Si 비가 본 발명의 조건(3)을 만족하지 않아 300nm 이상의 크기를 갖는 개재물이 관찰되지 않았으며, 철손과 자속밀도가 열위하였다. 강종G7은 Al/Si, Al/Mn, 및 Al+Mn 함량이 본 발명의 조건(3)을 만족하지 않아 300nm 이상의 크기를 갖는 개재물이 관찰되지 않았으며, 철손과 자속밀도가 열위하였다. 강종 G8, G11은 Al+Si+Mn/2 이 본 발명의 조건(3)을 만족하지 않아 경도가 높고, 이로 인해 생산성 및 타발성이 열위하였다.
[실시예 8]
실험실에서 진공용해하여 하기의 표 15에 나타낸 것과 같은 성분의 강괴를 제조하였다. 이때 용강에 Al을 0.3~0.5% 첨가하여 개재물의 형성을 조장한 후, 나머지의 Al과 Si, Mn을 투입하여 강괴를 제조하였다. 각 소재는 1,150℃로 가열하고 850℃에서 열간마무리 압연하여 판두께 2.0mm의 열연판을 제작하였다. 열간압연된 열연판은 1,050℃에서 4분간 소둔한 다음 산세하였다. 그 뒤 냉간압연하여 판두께를 0.35mm로 한 후 1,050℃에서 38초간 최종소둔을 행하였다.
각각에 대한 개재물 크기와 개재물 분포밀도, 철손, 자속밀도 및 경도를 측정하여 하기 표 16에 나타내었다. 개재물의 관찰을 위한 샘플 제작은 철강재료에서 일반적인 방법인 레플리카법을 이용하였으며, 장치로는 투과전자현미경을 사용하였다. 이때 가속전압은 200kV를 인가하였다.
표 15
강종 Al Si Mn C S N Ti
H1 1.0 2.3 0.5 0.0030 0.0010 0.0010 0.0020
H2 1.0 2.3 0.5 0.0030 0.0030 0.0030 0.0020
H3 1.0 2.5 1.0 0.0030 0.0020 0.0030 0.0020
H4 1.2 2.5 1.2 0.0030 0.0015 0.0020 0.0020
H5 1.2 2.7 1.0 0.0030 0.0005 0.0005 0.0020
H6 1.2 2.7 1.0 0.0030 0.0020 0.0040 0.0020
H7 2.0 2.7 2.0 0.0030 0.0020 0.0020 0.0020
H8 2.0 3.2 1.5 0.0030 0.0010 0.0015 0.0020
H9 2.0 3.2 1.5 0.0030 0.0020 0.0020 0.0020
H10 2.0 3.2 1.0 0.0030 0.0030 0.0040 0.0020
H11 2.0 3.2 1.5 0.0030 0.0030 0.0030 0.0020
H12 1.5 3.5 1.5 0.0030 0.0020 0.0025 0.0020
H13 2.5 3.5 1.0 0.0030 0.0005 0.0005 0.0020
표 16
강종 Al/Si Al/Mn Al+Mn N+S (Al+Mn)/(N+S) Al+Si+Mn/2 개재물크기(㎚) 개재물분포밀도(1/mm2) 철손(W15/50) 자속밀도(B50) 경도 비고
H1 0.4 2.0 1.5 0.0020 750 3.6 350 0.15 2.2 1.67 190 발명예
H2 0.4 2.0 1.5 0.0060 250 3.6 75 0.01 2.3 1.65 190 비교예
H3 0.4 1.0 2 0.0050 400 4.0 400 0.20 2.1 1.67 190 발명예
H4 0.5 1.0 2.4 0.0035 686 4.3 450 0.08 2.1 1.67 195 발명예
H5 0.4 1.2 2.2 0.0010 2200 4.4 50 0.01 2.3 1.65 200 비교예
H6 0.4 1.2 2.2 0.0060 367 4.4 350 0.20 2.2 1.67 200 발명예
H7 0.7 1.0 4.0 0.0040 1000 5.7 250 0.01 2.1 1.63 220 비교예
H8 0.6 1.3 3.5 0.0025 1400 6.0 450 0.12 2.0 1.65 225 발명예
H9 0.6 1.3 3.5 0.0040 875 6.0 550 0.09 2.0 1.65 225 발명예
H10 0.6 2.0 3.0 0.0070 429 5.7 250 0.01 2.2 1.63 220 비교예
H11 0.6 1.3 3.5 0.0060 583 6.0 500 0.15 2.0 1.65 225 발명예
H12 0.4 1.0 3 0.0045 667 5.8 600 0.20 2.1 1.65 225 발명예
H13 0.7 2.5 3.5 0.0010 3500 6.5 50 0.01 2.1 1.62 225 비교예
상기 표 16에 나타난 바와 같이, 강종H1, H3, H4, H6, H8, H9, H11, H12는 조건(3)을 만족하는 발명예로서, 크기 300nm 이상의 조대한 개재물이 관찰되고 그 분포밀도가 0.02(1/mm2)보다 높아 자성이 우수하였다.
반면, 강종H5, H10, H13는 N+S가 본 발명의 조건(3)을 만족하지 않아 300nm 이상의 크기를 갖는 개재물이 관찰되지 않았으며, 철손과 자속밀도가 열위하였다. 강종H7은 Al+Mn이 본 발명의 조건(3)을 만족하지 않아 300nm 이상의 크기를 갖는 개재물이 관찰되지 않았으며, 철손과 자속밀도가 열위하였다. 강종H2, H5, H13은 (Al+Mn)/(N+S)가 본 발명의 조건(3)을 만족하지 않아 300nm 이상의 크기를 갖는 개재물이 관찰되지 않았으며, 철손과 자속밀도가 열위하였다.

Claims (41)

  1. 중량%로, Al: 0.7~3.0%, Si: 0.2~3.5%, Mn: 0.2~2.0%, N: 0.001~0.004%, S: 0.0005~0.004%, 잔부 Fe 및 기타 불가피하게 혼입되는 불순물로 이루어지고, 하기의 조건(1), 조건(2), 조건(3)중의 적어도 어느 하나를 만족하는 자성이 우수한 무방향성 전기강판.
    조건(1) : 0.7≤[Al]≤2.7, 0.2≤[Si]≤1.0, 0.2≤[Mn]≤1.7, {[Al]+[Mn]}≤2.0, 0.002≤{[N]+[S]}≤0.006, 230≤{([Al]+[Mn])/([N]+[S])}≤1,000
    조건(2) : 1.0≤[Al]≤3.0, 0.5≤[Si]≤2.5, 0.5≤[Mn]≤2.0, {[Al]+[Mn]}≤3.5, 0.002≤{[N]+[S]}≤0.006, 300≤{([Al]+[Mn])/([N]+[S])}≤1,400
    조건(3) : 1.0≤[Al]≤3.0, 2.3≤[Si]≤3.5, 0.5≤[Mn]≤2.0, {[Al]+[Mn]}≤3.5, 0.002≤{[N]+[S]}≤0.006, 300≤{([Al]+[Mn])/([N]+[S])}≤1,400
    상기 [Al], [Si], [Mn], [N], [S]는 각각 Al, Si, Mn, N, S의 함량(중량%)을 의미한다.
  2. 청구항 1에 있어서,
    상기 조건(1)을 만족하고, 상기 Al, Si, Mn의 함량은 하기의 식(1)을 만족하는 자성이 우수한 무방향성 전기강판.
    식(1) : 1.0≤{[Al]+[Si]+[Mn]/2}≤2.0
  3. 청구항 1에 있어서,
    상기 Al, Mn의 함량은 하기의 식(2)를 만족하는 자성이 우수한 무방향성 전기강판.
    식(2) : 1≤[Al]/[Mn]≤8
  4. 청구항 2에 있어서,
    단면 비커스 경도(Hv1)가 140이하인 자성이 우수한 무방향성 전기강판.
  5. 청구항 1에 있어서,
    상기 조건(2)를 만족하고, 상기 Al, Si, Mn의 함량은 하기의 식(3)을 만족하는 자성이 우수한 무방향성 전기강판.
    식(3) : 1.7≤{[Al]+[Si]+[Mn]/2}≤5.5
  6. 청구항 1에 있어서,
    상기 조건(2)를 만족하고, 상기 Al, Si의 함량은 하기의 식(4)를 만족하는 자성이 우수한 무방향성 전기강판.
    식(4) : 0.6≤[Al]/[Si]≤4.0
  7. 청구항 5에 있어서,
    단면 비커스 경도(Hv1)가 190이하인 자성이 우수한 무방향성 전기강판.
  8. 청구항 1에 있어서,
    상기 조건(3)을 만족하고, 상기 Al, Si, Mn의 함량은 하기의 식(5)를 만족하는 자성이 우수한 무방향성 전기강판.
    식(5) : 3.0≤{[Al]+[Si]+[Mn]/2}≤6.5
  9. 청구항 8에 있어서,
    단면 비커스 경도(Hv1)가 225이하인 자성이 우수한 무방향성 전기강판.
  10. 청구항 1 내지 청구항 9중 어느 한 항에 있어서,
    강판 중에 질화물과 황화물의 단독 혹은 이들이 복합된 개재물이 형성되며, 평균크기가 300nm 이상인 개재물의 분포밀도는 0.02개/mm2 이상인 자성이 우수한 무방향성 전기강판.
  11. 청구항 1 내지 청구항 9중 어느 한 항에 있어서,
    추가로 0.2%이하의 P가 함유되는 자성이 우수한 무방향성 전기강판.
  12. 청구항 11에 있어서,
    강판 중에 질화물과 황화물의 단독 혹은 이들이 복합된 개재물이 형성되며, 평균크기가 300nm 이상인 개재물의 분포밀도는 0.02개/mm2 이상인 자성이 우수한 무방향성 전기강판.
  13. 청구항 1 내지 청구항 9중 어느 한 항에 있어서,
    추가로 0.005~0.2%의 Sn과 0.005~0.1%의 Sb 중의 적어도 하나 이상이 함유되는 자성이 우수한 무방향성 전기강판.
  14. 청구항 13에 있어서,
    강판 중에 질화물과 황화물의 단독 혹은 이들이 복합된 개재물이 형성되며, 평균크기가 300nm 이상인 개재물의 분포밀도는 0.02개/mm2 이상인 자성이 우수한 무방향성 전기강판.
  15. 중량%로, Al: 0.7~3.0%, Si: 0.2~3.5%, Mn: 0.2~2.0%, N: 0.001~0.004%, S: 0.0005~0.004%, 잔부 Fe 및 기타 불가피하게 혼입되는 불순물로 이루어지고, 강판 중에 질화물과 황화물 단독 혹은 이들이 복합된 개재물이 형성되며, 평균크기가 300nm 이상인 개재물의 분포밀도가 0.02개/mm2 이상인 자성이 우수한 무방향성 전기강판.
  16. 청구항 15에 있어서,
    추가로 0.2%이하의 P가 함유되는 자성이 우수한 무방향성 전기강판.
  17. 청구항 15 또는 청구항 16에 있어서,
    추가로 0.005~0.2%의 Sn과 0.005~0.1%의 Sb 중의 적어도 하나 이상이 함유되는 자성이 우수한 무방향성 전기강판.
  18. 중량%로, Al: 0.7~3.0%, Si: 0.2~3.5%, Mn: 0.2~2.0%, N: 0.001~0.004%, S: 0.0005~0.004%, 잔부 Fe 및 기타 불가피하게 혼입되는 불순물로 이루어지고, 하기의 조건(1), 조건(2), 조건(3)중의 적어도 어느 하나를 만족하는 슬라브를 가열하여 열간압연하고, 냉간압연한 후, 750~1100℃의 온도로 최종소둔하는 자성이 우수한 무방향성 전기강판의 제조방법.
    조건(1) : 0.7≤[Al]≤2.7, 0.2≤[Si]≤1.0, 0.2≤[Mn]≤1.7, {[Al]+[Mn]}≤2.0, 0.002≤{[N]+[S]}≤0.006, 230≤{([Al]+[Mn])/([N]+[S])}≤1,000
    조건(2) : 1.0≤[Al]≤3.0, 0.5≤[Si]≤2.5, 0.5≤[Mn]≤2.0, {[Al]+[Mn]}≤3.5, 0.002≤{[N]+[S]}≤0.006, 300≤{([Al]+[Mn])/([N]+[S])}≤1,400
    조건(3) : 1.0≤[Al]≤3.0, 2.3≤[Si]≤3.5, 0.5≤[Mn]≤2.0, {[Al]+[Mn]}≤3.5, 0.002≤{[N]+[S]}≤0.006, 300≤{([Al]+[Mn])/([N]+[S])}≤1,400
    상기 [Al], [Si], [Mn], [N], [S]는 각각 Al, Si, Mn, N, S의 함량(중량%)을 의미한다.
  19. 청구항 18에 있어서,
    상기 슬라브는 조건(1)을 만족하고, Al, Si, Mn의 함량이 하기의 식(1)을 만족하는 자성이 우수한 무방향성 전기강판의 제조방법.
    식(1) : 1.0≤{[Al]+[Si]+[Mn]/2}≤2.0
  20. 청구항 18에 있어서,
    Al, Mn의 함량이 하기의 식(2)를 만족하는 자성이 우수한 무방향성 전기강판의 제조방법.
    식(2) : 1≤[Al]/[Mn]≤8
  21. 청구항 18에 있어서,
    상기 슬라브는 조건(2)를 만족하고, Al, Si, Mn의 함량이 하기의 식(3)을 만족하는 자성이 우수한 무방향성 전기강판의 제조방법.
    식(3) : 1.7≤{[Al]+[Si]+[Mn]/2}≤5.5
  22. 청구항 18에 있어서,
    상기 슬라브는 조건(2)를 만족하고, Al, Si의 함량이 하기의 식(4)를 만족하는 자성이 우수한 무방향성 전기강판의 제조방법.
    식(4) : 0.6≤[Al]/[Si]≤4.0
  23. 청구항 18에 있어서,
    상기 슬라브는 조건(3)을 만족하고, Al, Si, Mn의 함량이 하기의 식(5)을 만족하는 자성이 우수한 무방향성 전기강판의 제조방법.
    식(5) : 3.0≤{[Al]+[Si]+[Mn]/2}≤6.5
  24. 청구항 18 내지 청구항 23중 어느 한 항에 있어서,
    최종소둔된 강판에 질화물과 황화물의 단독 혹은 이들이 복합된 개재물이 형성되며, 평균크기가 300nm 이상인 개재물의 분포밀도를 0.02개/mm2 이상으로 하는 자성이 우수한 무방향성 전기강판의 제조방법.
  25. 청구항 18 내지 청구항 23중 어느 한 항에 있어서,
    0.3~0.5%의 Al을 첨가하여 탈산이 이루어지도록 한 다음, 잔여 합금원소를 투입하며, 잔여 합금원소 투입 후에 온도를 1,500~1,600℃로 유지하여 슬라브를 제조하는 자성이 우수한 무방향성 전기강판의 제조방법.
  26. 청구항 18 내지 청구항 23중 어느 한 항에 있어서,
    열간압연 후, 냉간압연 전에 열연판 소둔을 실시하는 자성이 우수한 무방향성 전기강판의 제조방법.
  27. 청구항 18 내지 청구항 23중 어느 한 항에 있어서,
    슬라브에 추가로 0.2%이하의 P가 함유되는 자성이 우수한 무방향성 전기강판의 제조방법.
  28. 청구항 27에 있어서,
    강판 중에 질화물과 황화물의 단독 혹은 이들이 복합된 개재물이 형성되며, 평균크기가 300nm 이상인 개재물의 분포밀도를 0.02개/mm2 이상으로 하는 자성이 우수한 무방향성 전기강판의 제조방법.
  29. 청구항 18 내지 청구항 23중 어느 한 항에 있어서,
    슬라브에 추가로 0.005~0.2%의 Sn과 0.005~0.1%의 Sb 중의 적어도 하나 이상이 함유되는 자성이 우수한 무방향성 전기강판의 제조방법.
  30. 청구항 29에 있어서,
    강판 중에 질화물과 황화물의 단독 혹은 이들이 복합된 개재물이 형성되며, 평균크기가 300nm 이상인 개재물의 분포밀도를 0.02개/mm2 이상으로 하는 자성이 우수한 무방향성 전기강판의 제조방법.
  31. 중량%로, Al: 0.7~3.0%, Si: 0.2~3.5%, Mn: 0.2~2.0%, N: 0.001~0.004%, S: 0.0005~0.004%, 잔부 Fe 및 기타 불가피하게 혼입되는 불순물로 이루어지고, 하기의 조건(1), 조건(2), 조건(3)중의 적어도 어느 하나를 만족하는 무방향성 전기강판 슬라브.
    조건(1) : 0.7≤[Al]≤2.7, 0.2≤[Si]≤1.0, 0.2≤[Mn]≤1.7, {[Al]+[Mn]}≤2.0, 0.002≤{[N]+[S]}≤0.006, 230≤{([Al]+[Mn])/([N]+[S])}≤1,000
    조건(2) : 1.0≤[Al]≤3.0, 0.5≤[Si]≤2.5, 0.5≤[Mn]≤2.0, {[Al]+[Mn]}≤3.5, 0.002≤{[N]+[S]}≤0.006, 300≤{([Al]+[Mn])/([N]+[S])}≤1,400
    조건(3) : 1.0≤[Al]≤3.0, 2.3≤[Si]≤3.5, 0.5≤[Mn]≤2.0, {[Al]+[Mn]}≤3.5, 0.002≤{[N]+[S]}≤0.006, 300≤{([Al]+[Mn])/([N]+[S])}≤1,400
    상기 [Al], [Si], [Mn], [N], [S]는 각각 Al, Si, Mn, N, S의 함량(중량%)을 의미한다.
  32. 청구항 31에 있어서,
    상기 조건(1)을 만족하고, 상기 Al, Si, Mn의 함량은 하기의 식(1)을 만족하는 무방향성 전기강판 슬라브.
    식(1) : 1.0≤{[Al]+[Si]+[Mn]/2}≤2.0
  33. 청구항 31에 있어서,
    상기 Al, Mn의 함량은 하기의 식(2)를 만족하는 무방향성 전기강판 슬라브.
    식(2) : 1≤[Al]/[Mn]≤8
  34. 청구항 31에 있어서,
    상기 조건(2)를 만족하고, 상기 Al, Si, Mn의 함량은 하기의 식(3)을 만족하는 무방향성 전기강판 슬라브.
    식(3) : 1.7≤{[Al]+[Si]+[Mn]/2}≤5.5
  35. 청구항 31에 있어서,
    상기 조건(2)를 만족하고, 상기 Al, Si의 함량은 하기의 식(4)를 만족하는 무방향성 전기강판 슬라브.
    식(4) : 0.6≤[Al]/[Si]≤4.0
  36. 청구항 31에 있어서,
    상기 조건(3)을 만족하고, 상기 Al, Si, Mn의 함량은 하기의 식(5)를 만족하는 무방향성 전기강판 슬라브.
    식(5) : 3.0≤{[Al]+[Si]+[Mn]/2}≤6.5
  37. 청구항 31 내지 청구항 36중 어느 한 항에 있어서,
    추가로 0.2%이하의 P가 함유되는 자성이 우수한 무방향성 전기강판 슬라브.
  38. 청구항 31 내지 청구항 36중 어느 한 항에 있어서,
    추가로 0.005~0.2%의 Sn과 0.005~0.1%의 Sb 중의 적어도 하나 이상이 함유되는 자성이 우수한 무방향성 전기강판 슬라브.
  39. 용강에 0.3~0.5%의 Al을 첨가하여 탈산이 이루어지도록 한 다음, 잔여 Al과 Si 및 Mn을 투입한 후, 온도를 1,500~1,600℃로 유지시킴에 의하여, 중량%로, Al: 0.7~3.0%, Si: 0.2~3.5%, Mn: 0.2~2.0%, N: 0.001~0.004%, S: 0.0005~0.004%, 잔부 Fe 및 기타 불가피하게 혼입되는 불순물로 이루어지고, 하기의 조건(1), 조건(2), 조건(3)중의 적어도 어느 하나를 만족하는 슬라브를 제조하는 무방향성 전기강판 슬라브의 제조방법.
    조건(1) : 0.7≤[Al]≤2.7, 0.2≤[Si]≤1.0, 0.2≤[Mn]≤1.7, {[Al]+[Mn]}≤2.0, 0.002≤{[N]+[S]}≤0.006, 230≤{([Al]+[Mn])/([N]+[S])}≤1,000
    조건(2) : 1.0≤[Al]≤3.0, 0.5≤[Si]≤2.5, 0.5≤[Mn]≤2.0, {[Al]+[Mn]}≤3.5, 0.002≤{[N]+[S]}≤0.006, 300≤{([Al]+[Mn])/([N]+[S])}≤1,400
    조건(3) : 1.0≤[Al]≤3.0, 2.3≤[Si]≤3.5, 0.5≤[Mn]≤2.0, {[Al]+[Mn]}≤3.5, 0.002≤{[N]+[S]}≤0.006, 300≤{([Al]+[Mn])/([N]+[S])}≤1,400
    상기 [Al], [Si], [Mn], [N], [S]는 각각 Al, Si, Mn, N, S의 함량(중량%)을 의미한다.
  40. 청구항 39에 있어서,
    슬라브에 추가로 0.2%이하의 P가 함유되는 무방향성 전기강판 슬라브의 제조방법.
  41. 청구항 39 또는 청구항 40에 있어서,
    슬라브에 추가로 0.005~0.2%의 Sn과 0.005~0.1%의 Sb 중의 적어도 하나 이상이 함유되는 무방향성 전기강판 슬라브의 제조방법.
PCT/KR2010/009380 2009-12-28 2010-12-28 자성이 우수한 무방향성 전기강판 및 그 제조방법 WO2011081386A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080059853.2A CN102906289B (zh) 2009-12-28 2010-12-28 具有优良磁性的无取向电工钢板及其制备方法
US13/514,342 US20120267015A1 (en) 2009-12-28 2010-12-28 Non-Oriented Electrical Steel Sheet Having Superior Magnetic Properties and a Production Method Therefor
JP2012545866A JP5642195B2 (ja) 2009-12-28 2010-12-28 磁性に優れた無方向性電気鋼板及びその製造方法
EP10841218.0A EP2520681B1 (en) 2009-12-28 2010-12-28 Non-oriented electrical steel sheet having superior magnetic properties and a production method therefor
US15/947,340 US20180223400A1 (en) 2009-12-28 2018-04-06 Non-Oriented Electrical Steel Sheet Having Superior Magnetic Properties and a Production Method Therefor

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR1020090131990A KR101286243B1 (ko) 2009-12-28 2009-12-28 자성이 우수한 무방향성 전기강판 및 그 제조방법
KR10-2009-0131992 2009-12-28
KR10-2009-0131990 2009-12-28
KR1020090131992A KR101296114B1 (ko) 2009-12-28 2009-12-28 자성이 우수한 무방향성 전기강판 및 그 제조방법
KR1020100135004A KR101296117B1 (ko) 2010-12-24 2010-12-24 자성이 우수한 무방향성 전기강판 및 그 제조방법
KR10-2010-0135003 2010-12-24
KR1020100135003A KR101296116B1 (ko) 2010-12-24 2010-12-24 자성이 우수하고 경도가 낮은 무방향성 전기강판 및 그 제조방법
KR10-2010-0135004 2010-12-24
KR10-2010-0135943 2010-12-27
KR1020100135943A KR101296124B1 (ko) 2010-12-27 2010-12-27 자성이 우수한 무방향성 전기강판 및 그 제조방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/514,342 A-371-Of-International US20120267015A1 (en) 2009-12-28 2010-12-28 Non-Oriented Electrical Steel Sheet Having Superior Magnetic Properties and a Production Method Therefor
US15/947,340 Continuation-In-Part US20180223400A1 (en) 2009-12-28 2018-04-06 Non-Oriented Electrical Steel Sheet Having Superior Magnetic Properties and a Production Method Therefor

Publications (2)

Publication Number Publication Date
WO2011081386A2 true WO2011081386A2 (ko) 2011-07-07
WO2011081386A3 WO2011081386A3 (ko) 2011-12-01

Family

ID=44226997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009380 WO2011081386A2 (ko) 2009-12-28 2010-12-28 자성이 우수한 무방향성 전기강판 및 그 제조방법

Country Status (5)

Country Link
US (1) US20120267015A1 (ko)
EP (1) EP2520681B1 (ko)
JP (1) JP5642195B2 (ko)
CN (1) CN102906289B (ko)
WO (1) WO2011081386A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015518086A (ja) * 2012-03-26 2015-06-25 バオシャン アイアン アンド スティール カンパニー リミテッド 無方向性ケイ素鋼及びその製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180223400A1 (en) * 2009-12-28 2018-08-09 Posco Non-Oriented Electrical Steel Sheet Having Superior Magnetic Properties and a Production Method Therefor
KR20150073719A (ko) * 2013-12-23 2015-07-01 주식회사 포스코 무방향성 전기강판 및 그의 제조방법
JP6310813B2 (ja) 2014-08-22 2018-04-11 パナソニック株式会社 通信システム、制御局及びリソース制御方法
CR20170156A (es) 2014-10-20 2017-09-22 Arcelormittal Método de producción de hojalata conteniendo una lámina de acero de silicio de grano no orientado, lámina de acero obtenida y uso de esta.
KR101650406B1 (ko) 2014-12-24 2016-08-23 주식회사 포스코 무방향성 전기강판 및 그 제조방법
JP6515323B2 (ja) * 2015-02-06 2019-05-22 日本製鉄株式会社 無方向性電磁鋼板
EP3272894B1 (en) * 2015-03-17 2019-06-19 Nippon Steel & Sumitomo Metal Corporation Non-oriented electromagnetic steel sheet and method for manufacturing same
KR101904309B1 (ko) 2016-12-19 2018-10-04 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR101901313B1 (ko) * 2016-12-19 2018-09-21 주식회사 포스코 무방향성 전기강판 및 그 제조방법
CN112143962A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种高磁感低铁损的无取向电工钢板及其制造方法
JP7389323B2 (ja) * 2019-08-21 2023-11-30 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
CN112430775A (zh) * 2019-08-26 2021-03-02 宝山钢铁股份有限公司 一种磁性能优良的高强度无取向电工钢板及其制造方法
CN111961958B (zh) * 2020-07-13 2021-11-23 湖南华菱涟钢特种新材料有限公司 低硬度50w800电工钢以及生产方法
CN113249547B (zh) * 2021-07-09 2021-11-05 北京科技大学 一种h13热作模具钢中细化夹杂物的冶炼方法
CN115449595A (zh) * 2022-08-30 2022-12-09 山东钢铁集团日照有限公司 一种提高h13热作模具钢退火组织均匀性的方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817248B2 (ja) * 1978-06-30 1983-04-06 新日本製鐵株式会社 低鉄損無方向性電磁鋼板
JP3331402B2 (ja) * 1993-03-31 2002-10-07 新日本製鐵株式会社 全周磁気特性の優れたセミプロセス無方向性電磁鋼板の製造方法
KR100316896B1 (ko) * 1993-09-29 2002-02-19 에모또 간지 철손이낮은무방향성규소강판및그제조방법
JP2970423B2 (ja) * 1994-09-19 1999-11-02 住友金属工業株式会社 無方向性電磁鋼板の製造方法
JPH10183311A (ja) * 1996-12-20 1998-07-14 Kawasaki Steel Corp 打抜き加工性および磁気特性に優れた無方向性電磁鋼板
JP4258859B2 (ja) * 1998-07-24 2009-04-30 住友金属工業株式会社 切削性が良好で鉄損の少ない無方向性電磁鋼板
JP2000160306A (ja) * 1998-11-30 2000-06-13 Sumitomo Metal Ind Ltd 加工性に優れた無方向性電磁鋼板およびその製造方法
KR100544417B1 (ko) * 1998-12-16 2006-04-06 주식회사 포스코 자기적 성질이 우수한 무방향성 전기강판의 제조방법
US6290783B1 (en) * 1999-02-01 2001-09-18 Kawasaki Steel Corporation Non-oriented electromagnetic steel sheet having excellent magnetic properties after stress relief annealing
JP2001081536A (ja) * 1999-09-14 2001-03-27 Nkk Corp 低磁場特性に優れた無方向性電磁鋼板
JP2001192788A (ja) * 2000-01-12 2001-07-17 Sumitomo Metal Ind Ltd 加工性の優れた無方向性電磁鋼板とその製造方法
JP3835216B2 (ja) * 2001-08-09 2006-10-18 住友金属工業株式会社 無方向性電磁鋼板およびその製造方法
JP3988427B2 (ja) * 2001-10-05 2007-10-10 Jfeスチール株式会社 電圧:42v以上のバッテリーを有する車両のモータ用鉄心材料として用いる無方向性電磁鋼板およびその製造方法
JP3815336B2 (ja) * 2002-01-23 2006-08-30 住友金属工業株式会社 無方向性電磁鋼板
JP4023172B2 (ja) * 2002-02-06 2007-12-19 住友金属工業株式会社 無方向性電磁鋼板とその製造方法
JP4023183B2 (ja) * 2002-02-26 2007-12-19 住友金属工業株式会社 回転機用無方向性電磁鋼板とその製造方法
JP4258164B2 (ja) * 2002-04-02 2009-04-30 Jfeスチール株式会社 歪取焼鈍後の磁気特性および耐食性に優れた無方向性電磁鋼板
DE10221793C1 (de) * 2002-05-15 2003-12-04 Thyssenkrupp Electrical Steel Ebg Gmbh Nichtkornorientiertes Elektroband oder -blech und Verfahren zu seiner Herstellung
DE602004031219D1 (de) * 2003-05-06 2011-03-10 Nippon Steel Corp As bezüglich eisenverlusten hervorragend ist, und herstellungsverfahren dafür
JP4546713B2 (ja) * 2003-10-06 2010-09-15 新日本製鐵株式会社 磁気特性に優れた高強度電磁鋼板の最終製品とその使用方法および製造方法
JP4599843B2 (ja) * 2004-01-19 2010-12-15 住友金属工業株式会社 無方向性電磁鋼板の製造方法
JP4533036B2 (ja) * 2004-08-04 2010-08-25 新日本製鐵株式会社 圧延方向から45°方向の磁気特性が優れた無方向性電磁鋼板およびその製造方法
WO2006048989A1 (ja) * 2004-11-04 2006-05-11 Nippon Steel Corporation 鉄損に優れた無方向性電磁鋼板
KR101130725B1 (ko) * 2004-12-21 2012-03-28 주식회사 포스코 자기적 특성이 우수한 무방향성 전기강판 및 그 제조방법
JP4804478B2 (ja) * 2004-12-21 2011-11-02 ポスコ 磁束密度を向上させた無方向性電磁鋼板の製造方法
CN101218362B (zh) * 2005-07-07 2010-05-12 住友金属工业株式会社 无方向性电磁钢板及其制造方法
KR101010627B1 (ko) * 2008-05-23 2011-01-24 주식회사 포스코 무방향성 전기강판
JP6043808B2 (ja) * 2011-12-28 2016-12-14 ポスコPosco 無方向性電磁鋼板およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2520681A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015518086A (ja) * 2012-03-26 2015-06-25 バオシャン アイアン アンド スティール カンパニー リミテッド 無方向性ケイ素鋼及びその製造方法

Also Published As

Publication number Publication date
EP2520681B1 (en) 2018-10-24
JP5642195B2 (ja) 2014-12-17
CN102906289A (zh) 2013-01-30
EP2520681A2 (en) 2012-11-07
WO2011081386A3 (ko) 2011-12-01
CN102906289B (zh) 2016-03-23
US20120267015A1 (en) 2012-10-25
JP2013515170A (ja) 2013-05-02
EP2520681A4 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
WO2011081386A2 (ko) 자성이 우수한 무방향성 전기강판 및 그 제조방법
WO2013100698A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2021125682A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2021125685A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2021125683A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2022139337A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2015099217A1 (ko) 연질 고규소 강판 및 그 제조방법
WO2022139359A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2023018195A1 (ko) 무방향성 전기강판 및 그 제조 방법
KR101329716B1 (ko) 자성이 우수한 무방향성 전기강판 및 그 제조방법
KR101329709B1 (ko) 자성이 우수한 무방향성 전기강판 및 그 제조방법
WO2024136171A1 (ko) 무방향성 전기강판, 그 제조방법 및 그를 포함하는 모터 코어
WO2024136022A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2024136176A1 (ko) 무방향성 전기강판 및 그 제조방법
KR20130001531A (ko) 자성이 우수한 무방향성 전기강판 및 그 제조방법
WO2023121295A1 (ko) 무방향성 전기강판, 그 제조 방법 및 그를 포함하는 모터 코어
WO2024136290A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2024136026A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2024135950A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2022139335A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2024136178A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2024136289A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2024136179A1 (ko) 무방향성 전기강판, sra 열처리된 무방향성 전기강판 및 이들의 제조방법
WO2024136170A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2023121308A1 (ko) 무방향성 전기강판, 그 제조방법 및 그를 포함하는 모터 코어

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059853.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841218

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3933/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010841218

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13514342

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012545866

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE