JP2956399B2 - 加工性の優れた高珪素電磁鋼板 - Google Patents

加工性の優れた高珪素電磁鋼板

Info

Publication number
JP2956399B2
JP2956399B2 JP4351859A JP35185992A JP2956399B2 JP 2956399 B2 JP2956399 B2 JP 2956399B2 JP 4351859 A JP4351859 A JP 4351859A JP 35185992 A JP35185992 A JP 35185992A JP 2956399 B2 JP2956399 B2 JP 2956399B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
grain boundary
crystal grain
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4351859A
Other languages
English (en)
Other versions
JPH06172940A (ja
Inventor
靖 田中
多津彦 平谷
正広 阿部
勝司 笠井
和久 岡田
勝 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP4351859A priority Critical patent/JP2956399B2/ja
Priority to DE69312233T priority patent/DE69312233T2/de
Priority to EP93119720A priority patent/EP0601549B1/en
Priority to KR1019930026779A priority patent/KR960006447B1/ko
Priority to CN93120804A priority patent/CN1035889C/zh
Publication of JPH06172940A publication Critical patent/JPH06172940A/ja
Application granted granted Critical
Publication of JP2956399B2 publication Critical patent/JP2956399B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、トランスやモータの
鉄心材料等に使用される高珪素電磁鋼板に関する。
【従来の技術】モータやトランスの鉄心材料として広く
用いられている電磁鋼板には、通常、集合組織制御およ
び固有抵抗増大のために珪素が添加される。珪素が6.
5wt%含まれる鉄合金は、磁歪がほぼ零になるために
最も優れた軟磁性を示すが、珪素の添加量が多くなると
材料が脆くなるため、珪素を4wt%以上含む高珪素鋼
は通常の圧延法により薄鋼板とすることは不可能であ
る。これに対し、近年高珪素薄鋼板を得る方法として、
溶融状態から直接薄板に鋳造する融体急冷法(例えば、
特公昭60−32705号)、特殊な圧延法を適用する
方法(例えば、特公平3−80846号)、圧延により
得られた低Siの鋼板にSiを富化する所謂浸珪法(例
えば、特公平2−60041号)等が提案され、特に浸
珪法は工業的に実用化されている。
【0002】ところで、上記のような方法で製造される
高珪素鋼板を、実際にモータやトランスに使用するため
には、鋼板に打ち抜き、剪断、曲げといった加工を加え
る必要がある。しかし、高珪素鋼板は脆性であるため打
ち抜きや剪断端面で割れや欠損を生じたり、曲げ加工で
割れを生じやすいという問題がある。このような高珪素
鋼板の加工改善を目的として、従来いくつかの提案がな
されている。
【0003】例えば、特公昭61−15136号では、
結晶粒径が1〜100μmで且つ結晶粒が薄板表面に対
し垂直に成長した柱状晶からなり、規則格子が実質的に
存在しないことで加工性と磁気特性の優れた高珪素鋼帯
が得られるとしている。また、特開昭62−27072
3号では、圧延組織の状態で製品形状に加工成形し、そ
の後焼鈍することにより実質的に加工性の良好な高珪素
鋼板を製造できるとしている。さらに、特開平4−16
5050号では、Mnを固溶Sの悪影響を抑えるために
添加し、結晶粒の方位集積度を高めることにより加工性
の優れた高珪素方向性珪素鋼板を製造できるとしてい
る。
【0004】
【発明が解決しようとする課題】しかし、これらの提案
のうち特公昭61−15136号は、結晶粒径が100
μm以上ではその効果が得られず、しかも、高珪素鋼で
は規則相が実質的に存在しないようにするためには90
0℃以上から水焼き入れ等の急冷を施す必要があること
から、製造工程上困難を伴う技術である。また、特開昭
62−270723号の方法では、加工時に圧延組織を
有しているために加工後に高温の焼鈍が必要であり、現
状のトランス、モータの製造工程から考えると工程が一
つ追加されることになるため経済上好ましくない。ま
た、特開平4−165050号では方位集積が高いこと
が必要であるが、高い集積度を得ることはインヒビタを
用いた二次再結晶の安定性からみて困難であり、また、
この技術は無方向性珪素鋼板には適用できない欠点があ
る。
【0005】本発明はこのような従来技術の問題点に鑑
みなされたもので、打ち抜き、剪断、曲げ等の工程にお
いて必要とされる高珪素電磁鋼板の加工性を、材料面か
ら経済性を考慮して改善しようとするものであり、安価
でしかも加工性に優れた、すなわち、打ち抜きや剪断端
面における割れや欠損が少なく、或いは曲げ加工におい
て曲げ可能半径を小さくできる高珪素電磁鋼板を提供し
ようとするものである。
【0006】
【課題を解決するための手段】高珪素鋼板は母相が本来
的に脆いため、従来、加工性の改善はほとんど不可能で
あると考えられてきた。本発明者らは高珪素鋼板の加工
性向上を目指して種々の実験研究を行ってきたが、最終
の熱処理雰囲気中の露点および酸素濃度を変化させた種
々の高珪素鋼板の加工性を調査するうちに、同じ珪素量
でありながら加工性が他の鋼板に較べて比較的良好なも
のが存在することを発見した。図1にその際の試験結果
を示す。この試験では、焼鈍雰囲気中の露点、酸素濃度
を変えるために真空度を変化させた。同図の横軸にはこ
の真空度を、また、縦軸には加工性の指標として三点曲
げ試験(図5に示す方法で試料を押し込み、割れずに押
し込めるストローク距離を測定する試験)において試片
が破壊するまでの押し込み量を示している。焼鈍は各真
空度の下で1200℃×15分の条件で行った。この試
験結果から、真空度が良くなればなるほど加工性は良好
になることが判った。
【0007】これらの試料をもとに高珪素鋼の破壊のメ
カニズムを詳細に検討したところ、破面の形態が加工性
と強い相関があること、具体的には、加工性の劣ったも
のは結晶粒の粒界破面が多く現れ、一方、加工性の優れ
たものは劈開破面が多く現れるという事実が判明した。
さらに、加工性の優れた試料と劣った試料について粒界
破面の酸素濃度をオージェ電子分光で調査したところ、
加工性の優れた試料は結晶粒界での酸素濃度が低く、加
工性の劣った試料では結晶粒界での酸素濃度が高いこと
が判明した。
【0008】さらに、オージェスペクトルを詳細に検討
すると、結晶粒界の酸素濃度と加工性との相関だけでな
く、結晶粒界の炭素濃度と加工性との相関も存在するこ
とが明らかとなった。上記試験においては炭素量をコン
トロールするような条件は設定されていないことから、
このような粒界炭素の変化は粒界酸素の挙動との共同現
象であるとも考えられるが、詳細なメカニズムは不明で
ある。また、焼鈍温度を変化させることにより結晶粒径
をコントロールすることは容易であるが、上記試験にお
いても焼鈍温度を変化させると加工性も大きく変化する
ことが判った。このように本発明者らは、従来加工性が
基本的に劣ると考えられてきた高珪素鋼板の加工性が、
実は粒界の性質と極めて大きな相関を有しており、これ
を制御することにより加工性に優れた高珪素鋼板が得ら
れることを見出した。
【0009】本発明はかかる知見に基づきなされたもの
で、以下のような構成を有する。 (1) C:0.01wt%以下、Si:4〜10wt
%、Mn:0.5wt%以下、P:0.01wt%以
下、S:0.01wt%以下、Sol.Al:0.2w
t%以下、N:0.01wt%以下、O:0.02wt
%以下、残部Feおよび不可避不純物からなり、結晶粒
界におけるO濃度(結晶粒界に偏析する元素中のO濃
度)が30at%以下であることを特徴とする高珪素電
磁鋼板。 (2) C:0.01wt%以下、Si+Al:4〜1
0wt%、Mn:0.5wt%以下、P:0.01wt
%以下、S:0.01wt%以下、N:0.01wt%
以下、O:0.02wt%以下、残部Feおよび不可避
不純物からなり、結晶粒界におけるO濃度(結晶粒界に
偏析する元素中のO濃度)が30at%以下であること
を特徴とする高珪素電磁鋼板。 (3) 上記(1)または(2)の高珪素電磁鋼板にお
いて、結晶粒界におけるC濃度が0.5at%以上であ
ることを特徴とする高珪素電磁鋼板。
【0010】
【作用】以下、本発明の詳細をその限定理由とともに説
明する。Cは軟磁性に有害な元素であり、また、Cが
0.01wt%超えると経時的に軟磁性が劣化する所謂
時効劣化現象が生じる。このためCは0.01wt%以
下とする。Siは、添加量が略6.5%で磁歪が零とな
り最も優れた軟磁性を示す。Siが4wt%未満では高
珪素鋼板としての所望の磁気特性が得られず、また、鋼
板の加工性も特に問題とならない。一方、Siが10w
t%を超えると飽和磁束密度が著しく減少する。このた
め、Siは4〜10wt%とする。
【0011】また、Siはその一部をAlで置換するこ
とも可能であり、この場合にはSi+Al量を規定する
必要がある。Si+Alが4wt%未満では本発明が目
的とする磁気特性が得られず、また、鋼板の加工性は特
に問題とならない。一方、Siが10wt%を超えると
飽和磁束密度の著しく減少する。このため、Siの一部
をAlで置換する場合には、Si+Al:4〜10wt
%とする。MnはSと結合してMnSとなり、スラブ段
階での熱間加工性を改善する作用がある。しかし、Mn
が0.5wt%を超えると飽和磁束密度の減少が大きく
なるため適当でない。このためMnは0.5wt%以下
とする。
【0012】Pは軟磁気特性を劣化させる元素であり、
その含有量はできるだけ低いほうが好ましい。経済性お
よびPが0.01wt%以下であれば実質的にその悪影
響は無視できることから、Pは0.01wt%以下とす
る。Sは熱間圧延時の脆性を増大させる元素であるとと
もに、軟磁気特性も劣化させるため、その含有量はでき
るだけ低いほうが好ましい。経済性およびSが0.01
wt%以下であれば実質的にその悪影響は無視できるこ
とから、Sは0.01wt%以下とする。
【0013】Alは脱酸により鋼を清浄化する作用を有
するとともに、磁気特性上も電気抵抗を高める作用を有
する。Siを4〜10wt%添加する鋼では、Siによ
り磁気特性の改善を図り、Alは鋼の脱酸作用のみを果
たせばよいことから、Sol.Alは0.2wt%以下
とする。一方、Siの一部をAlで置換する場合には、
上述したようにSi+Alを4〜10wt%とする。N
は軟磁気特性を劣化させる元素であり、時効による磁気
特性の経時的変化も引き起こすため、その含有量はでき
るだけ低いほうが好ましい。経済性およびNが0.01
wt%以下であれば実質的にその悪影響は無視できるこ
とから、Nは0.01wt%以下とする。
【0014】Oは軟磁気特性を劣化させる元素であり、
その含有量はできるだけ低いほうが好ましい。後述する
ように本発明において最も重要な要件は粒界における酸
素濃度であるが、ここでいうO量は粒界および粒内を含
む全体のO量である。後述するように本発明は、鋼板中
に不可避的に含まれるOの粒界での濃度を規制すること
により優れた加工性を得るものであるが、鋼板中のO量
が0.02wt%を超えると、熱処理条件をいかに設定
しても酸素は粒内および粒界のいずれにも存在する状態
になり、粒界酸素濃度を30at%以下にすることが困
難となる。すなわち、鋼板中のO量が0.02wt%以
下の範囲においてのみ、酸素の存在する箇所(粒内また
は粒界)を選択的に制御することが可能となる。このた
め、Oは0.02wt%以下とする。一方、Oの下限に
特別な限定はなく、また、O量を単純に低減させても、
粒界酸素濃度の低減化には結び付かない。但し、Oを過
度に低減することはコスト高を招くため、経済性の観点
からは0.0005wt%未満まで低減化させることは
得策ではない。以上の成分以外に、鋼中の不可避不純物
としてCr、Ni、Cu、Sn、Mo等が含まれる場合
があり、これらがそれぞれ0.03wt%程度を限度に
含まれても本発明の効果は損なわれない。
【0015】本発明の鋼板は結晶粒界の酸素濃度(結晶
粒界に偏析した元素中のO濃度)が30at%(atomic
%)以下であることが必要であり、これが本発明にお
ける最も重要な要件である。ここで、結晶粒界の酸素濃
度とは、粒界に偏析している元素中の酸素含有量(at
%)である。通常、この酸素濃度の測定にはオージェ電
子分光装置が用いられる。この装置による測定では、真
空度1×(1/109)torr以下に保った真空容器
中において試料を破壊させ、大気に汚染されていない清
浄な粒界破面を観察しながらオージェ電子を分光するも
のであり、これにより清浄な粒界破面における元素の分
析が可能である。
【0016】一般にオージェ電子分光法により元素の定
量を行う場合、以下に述べるような方法がとられる
(「ユーザのための実用オージェ電子分光法」共立出版
社 1989参照)。すなわち、材料表面における元素の定
量を行う場合は、測定されたオージェ電子強度(エネル
ギーに対して微分されたもので、ピークの高さで示され
る)と各元素のオージェ電子の放出効率を示す指標であ
る相対感度を用いて、以下のように計算される。 [X](at%)={(X/x)/[(A/a)+(B
/b)+(C/c)+・・・・・+(X/x)+・・・・]}×
100 但し A,B,C,D,・・・・・ :各元素のオージェ電
子強度 a,b,c,d,・・・・・ :各元素の相対感度
【0017】このオージェ電子強度を測定するエネルギ
ー位置は元素によって決められており、例えば、Feは
3本あるLMM遷移のうち一番高エネルギー側のピー
ク、OはKLL遷移、CはKLL遷移、SはLVV遷移
を使用する。また、相対感度も各元素の遷移について既
にその値が得られており、上記文献にその値が記載され
ているが、ファイの装置ではFe:0.220,C:
0.140,O:0.400,S:0.750という値
が使われている。このようにオージェ電子分光結果から
元素の定量値を求めることは一般的に行われており、本
発明でもこの方法を採用して結晶粒界の元素の定量を行
った。先に述べたように、本発明者らはこのような方法
で加工性の優れた材料と加工性の劣った材料について粒
界面を探し、この粒界面における元素分析を行ったとこ
ろ、粒界における酸素量が加工性の優劣と極めて大きな
相関を有することを見出したものである。
【0018】一例として、表1に示す化学成分を有する
板厚0.1mmの高珪素鋼板について、引張り伸びとオ
ージェ電子分光により測定した結晶粒界の酸素濃度との
相関を調べた結果を図2に示す。同図によれば、明らか
に結晶粒界の酸素濃度が低いものほど引張り伸びが良好
である。この試験の試料中、引張り伸びが3%以上あっ
たものは塑性変形を起こしていた。さらに、破面の走査
電子顕微鏡観察を行ったところ、引張り伸びの優れたも
のほど粒界破壊よりも劈開破壊が多く、一方、引張り伸
びの劣るものほど粒界割れの傾向が強くなることが判っ
た。従来、このような高珪素鋼板は塑性変形を起こさな
いものと考えられてきたが、結晶粒界における酸素濃度
が30at%以下であれば塑性変形を起こすことが明ら
かとなった。以上のことから本発明では、結晶粒界にお
ける酸素濃度を30at%以下と限定する。また、図2
の結果から結晶粒界における酸素濃度を15at%以下
とすることで、より優れた加工性を得ることができる。
【0019】また、上記のような結晶粒界における酸素
濃度の影響のほかに、結晶粒界における炭素も加工性に
重要な役割を果たしていることが明らかとなった。すな
わち、結晶粒界における酸素濃度が30at%以下の範
囲においても、粒界における炭素濃度(結晶粒界に偏析
した元素中のC濃度)が0.5at%以上であると、引
張り伸びがさらに改善され、加工性の良好になることが
確認された。結晶粒界における炭素は粒界割れを抑制す
る効果があると考えられるが、詳細なメカニズムは明ら
かではない。
【0020】このように高珪素鋼板の加工性を得るため
には、結晶粒界の酸素の規制だけではなく、これと協動
した粒界の炭素の作用が重要であることが明らかとなっ
たが、この効果を確認するために結晶粒界に存在する酸
素と炭素から次式で示される粒界強度パラメータを作成
し、実際の三点曲げ試験結果との対応を考えた。 粒界強度パラメータ=[C(284)]/[O(53
1)] なお、上記式のC(284)、O(531)は、オージ
ェスペクトルをエネルギーで微分した信号強度を示して
おり、各括弧内の数字は炭素、酸素のピークが現れるエ
ネルギーを示している。
【0021】この粒界強度パラメータと三点曲げ特性と
の相関を図3に示す。これによれば、三点曲げ特性に示
される加工性は、上記の粒界強度パラメータと極めて相
関が強いことが判る。ここで、三点曲げ量が5mm以上
であれば従来材に対して加工性改善効果があると考えら
れるので、この点から(C/Fe)(O/Fe)(粒界
強度パラメータ)が0.5以上であれば加工性が向上し
ていると見ることができる。また、三点曲げ量が10m
m以上であれば加工性改善効果が顕著であると考えられ
るので、これを達成するためには、粒界強度パラメータ
は1.0以上とすることが好ましいことが判る。
【0022】結晶粒界の炭素濃度については、結晶粒界
の酸素濃度が30at%超の場合には加工性の改善には
効果はないが、粒界酸素濃度が30at%以下の場合に
は、粒界炭素濃度が0.5at%以上であると粒界の強
度を高め、加工性を向上させる働きがある。このため、
結晶粒界における炭素濃度は0.5at%以上とするこ
とが望ましい。また、加工性をより改善するためには粒
界炭素濃度は0.8at%以上とするのが望ましい。
【0023】さらに、このような結晶粒界における酸素
および炭素の効果のほかに、結晶粒径も加工性に影響を
及ぼし、板面からみた平均結晶粒径が2.0mm以下で
あれば、加工性がさらに向上することが明らかとなっ
た。この効果は、結晶粒界における酸素濃度、炭素濃度
を規制することにより粒界を強化すると、それだけ粒内
の強度が相対的に低下して粒内を貫通する割れが多くな
る傾向があるため、あまり結晶粒径が大きくなると加工
性が劣化するためであると考えられる。表1に示した化
学成分を有する高珪素鋼板(板厚:0.1mm)のなか
で、結晶粒界における酸素濃度が略5at%、結晶粒界
における炭素濃度が略1at%の高珪素鋼板について結
晶粒径を種々変化させ、板面からみた平均結晶粒径と三
点曲げ特性との関係を調べた。その結果を図4に示す。
これによれば、平均結晶粒径を2.0mm以下とするこ
とにより加工性が良好となることが判る。
【0024】上記の種々の実験に供した高珪素鋼板は熱
処理による結晶粒成長性が極めて良好で、粗大な粒を形
成しやすく、板厚方向に結晶粒が貫通するいわゆるバン
ブー構造をとりやすい。しかし、上述したように加工性
の観点からは鋼板の結晶粒径は2.0mm以下であるこ
とが好ましく、結晶粒が大きくなり過ぎないように熱処
理条件をコントロールする必要がある。本発明者らは、
高珪素鋼板の結晶組織がバンブー構造をとる場合、鋼板
の板厚のほぼ3〜4倍の結晶粒径で事実上の結晶粒成長
が停止することを見出した。したがって、結晶粒径を
2.0mm以下に保つためには板厚を0.5mm以下に
すればよく、この場合には熱処理上の配慮も必要がなく
なる。このような理由から、鋼板の板厚は0.5mm以
下とすることが好ましい。
【0025】なお、本発明の効果は珪素鋼板の結晶方位
分布に関係なく得られるものであり、したがって、本発
明の対象は方向性珪素鋼板であるか無方向性珪素鋼板で
あるかを問わない。また、通常電磁鋼板の表面には絶縁
を目的とした皮膜が形成されるが、本発明の効果は皮膜
の有無にも影響されない。また、本発明では薄板を得る
方法に特別な制約はなく、先に述べた特殊な圧延法や浸
珪法等、適宜な方法で製造された高珪素鋼板に適用でき
る。
【0026】
【実施例】
〔実施例1〕表1に示す成分を有する鋼を溶解後、熱間
圧延、温間圧延により板厚0.1mmまで圧延した。こ
れらの試料を5Torr〜1×(1/10)5torr
の範囲の異なる真空度の雰囲気において、1200℃×
15分の熱処理(最終焼鈍)を行った。この時の実験室
気温は27℃、湿度80%であった。このようにして得
られた試料を図5に示す三点曲げ試験に供し、割れずに
押し込めるストローク距離を測定した。さらに、各試料
の残材をオージェ電子分光装置に持込み、8×(1/1
0)10torrの真空中で破壊させ、その破面を観察し
て結晶粒界での組成分析を行った。なお、この組成分析
の結果、いずれの試料も粒界炭素濃度は0.5at%以
下であった。また、平均結晶粒径はいずれの試料もほぼ
0.19mmであった。図6に三点曲げ量に及ぼす結晶
粒界の酸素濃度の影響を示す。これによれば、結晶粒界
における酸素濃度が減少すると三点曲げ量が明らかに向
上しており、結晶粒界の酸素濃度が低いほうが加工性が
良好であることが判る。
【0027】〔実施例2〕実施例1と同様の素材を用
い、種々の雰囲気で同様の熱処理を行った。これらの試
料を三点曲げ試験に供し、また、各試料の残材からオー
ジェ分光用の試料を作成し、オージェ電子分光装置にお
いて真空中で破壊させて粒界破面の酸素、炭素の組成分
析を行った。これらの試料について粒界酸素濃度および
粒界炭素濃度と三点曲げ特性との相関を調査したとこ
ろ、粒界酸素濃度が30at%超の試料については粒界
酸素濃度、粒界炭素濃度と三点曲げ量との相関は見出せ
なかったが、粒界酸素濃度が30at%以下のものにつ
いては明瞭な相関が見出せた。図7に粒界酸素濃度がほ
ぼ10at%の試料(平均結晶粒径:0.19mm)に
ついて粒界炭素濃度と三点曲げ特性との関係を示す。こ
れによれば、粒界に炭素がある程度以上存在したものの
ほうが明らかに加工性が向上していることが判る。
【0028】〔実施例3〕実施例1および実施例2にお
いて試験した試料について、クリアランスが3μmの剪
断機を用いて剪断試験を行った。剪断面は倍率200倍
の顕微鏡で観察し、剪断長10cm当りの割れなどの欠
陥の個数を測定した。その結果を結晶粒界の酸素濃度と
の関係で図8に示すが、三点曲げの結果と同様の傾向が
得られており、結晶粒界の酸素濃度を規制することによ
る効果が明らかに認められる。
【0029】〔実施例4〕表2に示す成分を有する鋼を
溶解後、熱間圧延、温間圧延を経て板厚0.35mmま
で圧延した。これらの試料に対し露点を0℃〜−70℃
の範囲で変化させた窒素雰囲気中で1200℃×15分
の熱処理を施し、結晶粒界の酸素濃度が種々異なる鋼板
を作成し、これら試料を引張り試験(JIS5号試験片
による引張り試験)に供した。各鋼板の結晶粒界の酸素
濃度を実施例1に示した方法で測定し、引張り試験にお
ける伸びと結晶粒界の酸素濃度との関係を調べた。な
お、いずれの試料も粒界炭素濃度は0.2at%〜0.
8at%、平均結晶粒径は1.1mm〜1.4mmであ
った。その結果を図9に示す。これによれば、結晶粒界
の酸素濃度が低い鋼板の方が大きい引張り伸びが得られ
ていることが判る。
【0030】〔実施例5〕表3に示す成分を有する鋼を
溶解後、熱間圧延、温間圧延を経て種々の板厚まで圧延
した。これらの試料を真空度が1×(1/10)4to
rrの雰囲気において800℃〜1300℃の範囲の異
なる焼鈍温度で15分間の最終焼鈍を行ない、種々の板
厚および平均結晶粒径を有する試料を作製した。これら
の試料について三点曲げ試験を実施し、また、各試料の
残材からオージェ電子分光測定により結晶粒界の酸素濃
度と炭素濃度を測定した。オージェ電子分光測定の結果
では、総ての試料が結晶粒界の酸素濃度:5±2at
%、結晶粒界の炭素濃度:0.8〜2at%の範囲であ
った。各試料の平均結晶粒径および三点曲げ試験の結果
を表4に示す。これによれば、平均結晶粒径が大きくな
ると全体的に曲げ特性は劣化する傾向があり、特に平均
結晶粒径が2.0mmを超えると曲げ特性が著しく劣化
することが判る。また、板厚が0.5mmを超えるもの
は、平均結晶粒径が2.0mm以下であっても曲げ特性
に劣っていることが判る。
【0031】〔実施例6〕表5に示す化学成分を有する
板厚0.3mmの珪素鋼板を作製し、1200℃におい
て浸珪処理−拡散処理(Si拡散浸透処理)を行い、
6.5%珪素鋼板を製造した。上記浸珪処理は、キャリ
アガスとして高純度窒素ガス(露点−70℃)を混合し
た雰囲気ガスと、キャリアガスとして通常窒素ガス(露
点−30℃)を混合した雰囲気ガスの2種類の雰囲気ガ
スを使用して行った。これらの試料について三点曲げ試
験を行い、また、その残材からオージェ電子分光測定に
より結晶粒界の酸素濃度を測定した。なお、いずれの試
料も粒界炭素濃度は0.2at%〜1.2at%、平均
結晶粒径はほぼ0.89mmであった。その結果を図1
0に示す。これによれば、Si拡散浸透処理により得ら
れた高珪素鋼板についても、結晶粒界の酸素濃度の規制
が鋼板の加工性の向上に有効であることが判る。
【0032】
【表1】
【0033】
【表2】
【0034】
【表3】
【0035】
【表4】
【0036】
【表5】
【図面の簡単な説明】
【図1】本発明者らが行った試験において得られた高珪
素鋼板について、最終焼鈍雰囲気の真空度と鋼板の三点
曲げ特性との関係を示すグラフ
【図2】本発明者らが行った試験において得られた高珪
素鋼板について、結晶粒界の酸素濃度と鋼板の引張り伸
びとの関係を示すグラフ
【図3】粒界強度パラメータと三点曲げ特性との関係を
示すグラフ
【図4】結晶粒界の酸素濃度が略5at%、粒界の炭素
濃度が略1at%の高珪素鋼板について、板面からみた
平均結晶粒径と三点曲げ特性との関係を示すグラフ
【図5】鋼板の加工性を評価する三点曲げ試験方法を示
す説明図
【図6】実施例1の高珪素鋼板について、結晶粒界の酸
素濃度と鋼板の三点曲げ特性との関係を示すグラフ
【図7】実施例2の高珪素鋼板について、結晶粒界の酸
素濃度と鋼板の三点曲げ特性との関係を示すグラフ
【図8】実施例3において得られた結晶粒界の酸素濃度
と鋼板剪断面に発生した欠陥個数との関係を示すグラフ
【図9】実施例4の高珪素鋼板について、結晶粒界の酸
素濃度と鋼板の引張り伸びとの関係を示すグラフ
【図10】実施例6の高珪素鋼板について、結晶粒界の
酸素濃度と鋼板の三点曲げ特性との関係を示すグラフ
───────────────────────────────────────────────────── フロントページの続き (72)発明者 笠井 勝司 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 岡田 和久 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 石川 勝 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 平4−272160(JP,A) 特開 平4−165050(JP,A) 特開 平3−207815(JP,A) 特開 昭60−135522(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 - 38/60 H01F 1/16

Claims (3)

    (57)【特許請求の範囲】
  1. 【請求項1】 C:0.01wt%以下、Si:4〜1
    0wt%、Mn:0.5wt%以下、P:0.01wt
    %以下、S:0.01wt%以下、Sol.Al:0.
    2wt%以下、N:0.01wt%以下、O:0.02
    wt%以下、残部Feおよび不可避不純物からなり、結
    晶粒界におけるO濃度(結晶粒界に偏析する元素中のO
    濃度)が30at%以下であることを特徴とする高珪素
    電磁鋼板。
  2. 【請求項2】 C:0.01wt%以下、Si+Al:
    4〜10wt%、Mn:0.5wt%以下、P:0.0
    1wt%以下、S:0.01wt%以下、N:0.01
    wt%以下、O:0.02wt%以下、残部Feおよび
    不可避不純物からなり、結晶粒界におけるO濃度(結晶
    粒界に偏析する元素中のO濃度)が30at%以下であ
    ることを特徴とする高珪素電磁鋼板。
  3. 【請求項3】 結晶粒界におけるC濃度が0.5at%
    以上であることを特徴とする請求項1または請求項2に
    記載の高珪素電磁鋼板。
JP4351859A 1992-12-08 1992-12-08 加工性の優れた高珪素電磁鋼板 Expired - Fee Related JP2956399B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4351859A JP2956399B2 (ja) 1992-12-08 1992-12-08 加工性の優れた高珪素電磁鋼板
DE69312233T DE69312233T2 (de) 1992-12-08 1993-12-07 Elektroblech
EP93119720A EP0601549B1 (en) 1992-12-08 1993-12-07 Electrical steel sheet
KR1019930026779A KR960006447B1 (ko) 1992-12-08 1993-12-07 전기강판(Electrical steel sheet)
CN93120804A CN1035889C (zh) 1992-12-08 1993-12-08 电工钢薄板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4351859A JP2956399B2 (ja) 1992-12-08 1992-12-08 加工性の優れた高珪素電磁鋼板

Publications (2)

Publication Number Publication Date
JPH06172940A JPH06172940A (ja) 1994-06-21
JP2956399B2 true JP2956399B2 (ja) 1999-10-04

Family

ID=18420100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4351859A Expired - Fee Related JP2956399B2 (ja) 1992-12-08 1992-12-08 加工性の優れた高珪素電磁鋼板

Country Status (1)

Country Link
JP (1) JP2956399B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160319387A1 (en) * 2013-12-24 2016-11-03 Posco Soft high-silicon steel sheet and manufacturing method thereof
JP6233374B2 (ja) * 2014-11-19 2017-11-22 Jfeスチール株式会社 高けい素鋼板
JP6327181B2 (ja) * 2015-03-13 2018-05-23 Jfeスチール株式会社 高けい素鋼板
WO2017047049A1 (ja) * 2015-09-17 2017-03-23 Jfeスチール株式会社 高けい素鋼板およびその製造方法

Also Published As

Publication number Publication date
JPH06172940A (ja) 1994-06-21

Similar Documents

Publication Publication Date Title
US10760143B2 (en) High-silicon steel sheet and method of manufacturing the same
KR20210082516A (ko) 무방향성 전기 강판 및 그 제조 방법
EP3339459A1 (en) Vibration-damping ferritic stainless steel material, and production method
EP3594373A1 (en) Oriented magnetic steel sheet and method for manufacturing same
JP7222445B1 (ja) 無方向性電磁鋼板および無方向性電磁鋼板の製造方法
WO2015155920A1 (ja) フェライト系ステンレス箔およびその製造方法
CA3151160A1 (en) Non-oriented electrical steel sheet and method of producing same
JP2956406B2 (ja) 加工性の優れた高珪素電磁鋼板
JP2956399B2 (ja) 加工性の優れた高珪素電磁鋼板
JP6294028B2 (ja) Fe−Ni系パーマロイ合金の製造方法
JPH06316736A (ja) 磁気特性および製造性に優れたNi−Fe系磁性合金およびその製造方法
JP4276547B2 (ja) 高磁場鉄損と被膜特性に優れる超高磁束密度一方向性電磁鋼板
JP3275712B2 (ja) 加工性に優れた高珪素鋼板およびその製造方法
KR960006447B1 (ko) 전기강판(Electrical steel sheet)
JPH0581651B2 (ja)
JP2009164542A (ja) 一方向性電磁鋼板およびその製造方法
JP2803550B2 (ja) 磁気特性および製造性に優れたNi−Fe系磁性合金およびその製造方法
JP3252692B2 (ja) 磁気特性のすぐれた無方向性電磁鋼板およびその製造方法
JP2003013190A (ja) 高級無方向性電磁鋼板
JP2001098330A (ja) 二方向性電磁鋼板の製造方法
JP7396545B1 (ja) 方向性電磁鋼板
WO2022219742A1 (ja) 無方向性電磁鋼板用熱延鋼板及びその製造方法
EP4180543A1 (en) Soft magnetic member and intermediate thereof, methods respectively for producing said member and said intermediate, and alloy for soft magnetic member
EP4446442A1 (en) Ferritic stainless steel and method for manufacturing same
EP4239094A1 (en) Soft magnetic iron

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees