WO2015098992A1 - 酸化亜鉛粒子、それらの製造方法、紫外線遮蔽剤及び化粧料 - Google Patents

酸化亜鉛粒子、それらの製造方法、紫外線遮蔽剤及び化粧料 Download PDF

Info

Publication number
WO2015098992A1
WO2015098992A1 PCT/JP2014/084205 JP2014084205W WO2015098992A1 WO 2015098992 A1 WO2015098992 A1 WO 2015098992A1 JP 2014084205 W JP2014084205 W JP 2014084205W WO 2015098992 A1 WO2015098992 A1 WO 2015098992A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
oxide particles
particles
titanium
coated
Prior art date
Application number
PCT/JP2014/084205
Other languages
English (en)
French (fr)
Inventor
学 末田
橋本充央
和田瑞穂
Original Assignee
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺化学工業株式会社 filed Critical 堺化学工業株式会社
Priority to US15/107,805 priority Critical patent/US9789037B2/en
Priority to JP2015525341A priority patent/JP5854176B2/ja
Priority to EP14873873.5A priority patent/EP3088363B1/en
Priority to ES14873873T priority patent/ES2738725T3/es
Publication of WO2015098992A1 publication Critical patent/WO2015098992A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/27Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/0254Platelets; Flakes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/0254Platelets; Flakes
    • A61K8/0258Layered structure
    • A61K8/0262Characterized by the central layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/29Titanium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • C09C1/043Zinc oxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/61Surface treated
    • A61K2800/62Coated
    • A61K2800/621Coated by inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/22Particle morphology extending in two dimensions, e.g. plate-like with a polygonal circumferential shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other

Definitions

  • the present invention relates to zinc oxide particles containing at least part of a solid solution represented by Zn 2 TiO 4 and ZnFe 2 O 4 , a production method thereof, an ultraviolet shielding agent, and a cosmetic.
  • the ultraviolet rays contained in sunlight are classified according to wavelength into 400-320 nm UV-A waves, 320-290 nm UV-B waves, and 290-100 nm UV-C waves, and UV-A waves fall on the ground. It accounts for more than 97% of the amount, penetrates glass and clouds, penetrates to the dermis behind the skin, and causes photoaging that causes wrinkles and sagging.
  • UV-B waves which have a strong effect on sunburn, have been emphasized as countermeasures against ultraviolet rays.
  • research on photoaging has progressed, and consumer attention is also focused on UV-A waves. became.
  • UV-A waves In order to efficiently block UV-A waves, it is necessary to add a lot of organic compound-based UV absorbers and inorganic compound-based UV screeners to the product.
  • organic compound-based ultraviolet absorbers are materials whose safety has been sufficiently recognized, some specific ultraviolet absorbers have a limited amount of cosmetics. From the above, it is required that UV-A waves be sufficiently shielded only by an inorganic compound-based ultraviolet shielding agent.
  • Inorganic compound UV screening agents such as zinc oxide and titanium oxide used in sunscreen products have UV protection capabilities due to the effect of UV light scattering on the powder surface and UV light absorption by powder particles.
  • the scattering effect is derived from the refractive index and particle size of the particles, and the absorption effect is derived from the band gap energy (Eg) of the powder particles.
  • Eg of zinc oxide is 3.2 eV and electronic excitation is a direct transition, light having a wavelength of 388 nm or less corresponding to the value of Eg can be effectively absorbed.
  • Eg of rutile-type titanium oxide widely used for cosmetics is 3.0 eV.
  • the electronic excitation of titanium oxide is an indirect transition, 413 nm substantially corresponding to the original Eg value. The wavelength of light from about 320 nm or less on the shorter wavelength side is efficiently absorbed.
  • Eg of iron oxide (hematite) is 2.2 eV, and the wavelength corresponding to the value is 564 nm. For this reason, it is conceivable to absorb not only UV-A waves but also light having a wavelength of 400 to 564 nm, which is visible light.
  • Patent Document 1 hexagonal plate-like zinc oxide particles
  • Patent Document 1 hexagonal plate-like zinc oxide particles described in Patent Document 1 have good slipperiness, soft focus effect, ultraviolet shielding property, and visible light transparency, and are suitably used as an ultraviolet shielding agent for cosmetics. It can be done.
  • these zinc oxide particles have a better ultraviolet shielding performance than conventional zinc oxide particles, and can be used as an ultraviolet shielding component of cosmetics. However, it is more preferable if more excellent ultraviolet shielding performance can be imparted.
  • Patent Documents 2 to 5 describe an ultraviolet protective agent composed of dizinc titanate fine particles and an ultraviolet shielding agent in which iron is contained in zinc oxide particles. However, since these have a particle shape that does not have a hexagonal plate-like shape, it is possible to obtain zinc oxide particles having various performances obtained in the particles having the shape of the hexagonal plate-like zinc oxide particles described above. Can not.
  • the hexagonal plate-like zinc oxide particles having suitable performance derived from the shape thereof further improve the shielding rate of ultraviolet light having a wavelength of 400 nm or less without significantly impairing the direct transition property of electronic excitation of zinc oxide. It is an object of the present invention to provide zinc oxide particles having significantly improved UV-B wave and UV-A wave shielding rates.
  • the present invention is a zinc oxide particle characterized in that it contains a solid solution composed of Ti element and / or Fe element and Zn element in at least a part and has a hexagonal plate shape.
  • the solid solution composed of the Ti element and / or the Fe element and the Zn element is preferably a film covering the surface of the zinc oxide particles serving as the base material.
  • the zinc oxide particles are zinc oxide particles containing Zn 2 TiO 4 and / or ZnFe 2 O 4 , and the primary particle diameter is preferably 0.01 ⁇ m or more.
  • an aqueous solution of titanium salt and / or iron salt and an aqueous alkaline solution are added to an aqueous slurry of raw material zinc oxide particles having a hexagonal plate shape while maintaining a pH of 9 ⁇ 3 within a temperature range of 10 ° C to 90 ° C.
  • Step (1-1), and Step (1-2) of calcining the coated zinc oxide particles obtained by the step (1-1) It is also the manufacturing method of the zinc oxide particle
  • the raw material zinc oxide particles are added to a zinc salt aqueous solution in which a titanium salt and / or an iron salt is dissolved, and the step of heat aging (2-1) Step (2-2) of firing the titanium hydroxide and / or iron hydroxide-containing hexagonal plate-like zinc oxide particles obtained by the step (2-1) It is also the manufacturing method of the zinc oxide particle
  • the present invention is also zinc oxide particles obtained by the production method described above.
  • the present invention is also an ultraviolet shielding agent containing the zinc oxide particles.
  • the present invention is also a cosmetic containing the zinc oxide particles.
  • the zinc oxide particles of the present invention further improve the UV-B wave shielding rate without impairing the direct transition property of electronic excitation of hexagonal plate-like zinc oxide, and thereby prevent ultraviolet rays having a wavelength of 400 nm or less. , The UV shielding rate against UV-A waves is remarkably improved.
  • FIG. 1 is a transmission electron micrograph of Zn 2 TiO 4 -coated zinc oxide particles of Example 1.
  • FIG. FIG. 2 is a diagram showing an X-ray diffraction spectrum of Zn 2 TiO 4 -coated zinc oxide particles of Example 1.
  • 3 is a transmission electron micrograph of ZnFe 2 O 4 -coated zinc oxide particles of Example 2.
  • FIG. 4 is a diagram showing an X-ray diffraction spectrum of ZnFe 2 O 4 -coated zinc oxide particles of Example 2.
  • FIG. FIG. 5 is a transmission electron micrograph of Zn 2 TiO 4 + ZnFe 2 O 4 -coated zinc oxide particles of Example 3.
  • FIG. 6 is a diagram showing an X-ray diffraction spectrum of Zn 2 TiO 4 + ZnFe 2 O 4 -coated zinc oxide particles of Example 3.
  • FIG. 7 is a transmission electron micrograph of the ZnFe 2 O 4 -containing zinc oxide particles of Example 4.
  • FIG. 8 is a diagram showing an X-ray diffraction spectrum of ZnFe 2 O 4 -containing zinc oxide particles of Example 4.
  • FIG. 9 is a view showing a transmission electron micrograph of hexagonal plate-like zinc oxide particles serving as a base of Comparative Example 1.
  • FIG. 10 is a view showing a transmission electron micrograph of amorphous zinc oxide particles serving as a base of Comparative Example 2.
  • FIG. 11 is a transmission electron micrograph of Zn 2 TiO 4 -coated zinc oxide particles of Comparative Example 3.
  • 12 is a diagram showing an X-ray diffraction spectrum of Zn 2 TiO 4 -coated zinc oxide particles of Comparative Example 3.
  • FIG. 13 is a view showing a transmission electron micrograph of ZnFe 2 O 4 -coated zinc oxide particles of Comparative Example 4.
  • FIG. 14 is a diagram showing an X-ray diffraction spectrum of ZnFe 2 O 4 -coated zinc oxide particles of Comparative Example 4.
  • FIG. 15 shows the ultraviolet shielding rate of the coating film containing Zn 2 TiO 4 -coated zinc oxide particles of Example 1, the ultraviolet shielding rate of the coating film containing ZnFe 2 O 4 -coated zinc oxide particles of Example 2, and a comparison.
  • FIG. 3 is a diagram showing a total light transmittance curve in an ultraviolet wavelength region of a wavelength of 300 to 400 nm, in which ultraviolet shielding rates of a coating film containing zinc oxide particles of Example 1 are compared.
  • FIG. 16 is a schematic view illustrating a method for measuring the primary particle diameter of zinc oxide particles of Examples and Comparative Examples.
  • FIG. 17 is a schematic view illustrating a method for measuring the aspect ratio of hexagonal plate-like zinc oxide particles.
  • FIG. 18 is a schematic diagram illustrating a method for measuring the aspect ratio of amorphous zinc oxide particles.
  • FIG. 19 is an explanatory diagram of the ultraviolet shielding rate 1 (%) and the ultraviolet shielding rate 2 (%).
  • the present invention is zinc oxide particles containing a solid solution composed of Ti element and / or Fe element and Zn element in at least a part and having a hexagonal plate shape. That is, in the zinc oxide particles having the excellent performance having the characteristics as described in Patent Document 1, the solid solution composed of Ti element and / or Fe element and Zn element is contained at least in part. Thus, zinc oxide particles having improved ultraviolet shielding performance are obtained.
  • Zinc oxide particles that cover or contain the solid solution of the present invention are zinc oxide particles that have both the nature of direct transition of electronic excitation of zinc oxide and the ultraviolet shielding performance of Zn 2 TiO 4 or ZnFe 2 O 4. Particles.
  • the zinc oxide particles of the present invention at least partially contain a solid solution composed of Ti element and / or Fe element and Zn element. That is, it has a part of Zn 2 TiO 4 and / or ZnFe 2 O 4, and a coating with these compounds may be formed on the surface of the zinc oxide particles, or it may be partially in the zinc oxide particles. Further, a portion made of Zn 2 TiO 4 and / or ZnFe 2 O 4 may be present. Since the surface of zinc oxide particles coated with Zn 2 TiO 4 and / or ZnFe 2 O 4 has high visible light transmittance, it is more preferable from the viewpoint of higher transparency when blended in cosmetics.
  • the zinc oxide particles of the present invention may be in a state containing both the Ti element and the Fe element.
  • the content of Ti element and / or Fe element is preferably 5% by weight or more and 30% by weight or less in terms of TiO 2 and / or Fe 2 O 3 with respect to 100% by weight of zinc oxide particles, and 7% by weight or more. 25% by weight or less is more preferable. If it is less than 5% by weight, it is not preferable in that the above-described improvement in the absorption ability of ultraviolet rays having a wavelength of 400 nm or less cannot be obtained sufficiently. If it exceeds 30% by weight, it is not preferable in that the property of direct transition of electronic excitation possessed by zinc oxide particles is lost.
  • the content in terms of TiO 2 and / or Fe 2 O 3 with respect to the zinc oxide particles is a value measured by a fluorescent X-ray analyzer ZSX Primus II (manufactured by Rigaku Corporation), and the applied software is EZ scan (SQX). is there.
  • Ti element and / or Fe element forms a solid solution with Zn element. More preferably, it exists in the zinc oxide particle or on the surface in a state represented by the general formula of Zn 2 TiO 4 or ZnFe 2 O 4 .
  • Zn 2 TiO 4 and / or ZnFe 2 O 4 can be confirmed by X-ray diffraction.
  • X-ray diffraction was measured by an X-ray diffractometer Ultima III (manufactured by Rigaku Corporation) having a copper tube.
  • the raw material zinc oxide as the base material
  • the ultraviolet shielding rate is higher than that of the particles.
  • Ultraviolet rays include UV-A waves and UV-B waves, and either or both of them preferably have a higher ultraviolet shielding rate than the raw material zinc oxide particles.
  • the value of the ratio of (ultraviolet shielding rate of coated zinc oxide particles (%)) / (ultraviolet shielding rate of raw material zinc oxide particles (%) as a base of coated zinc oxide particles) described later is 1.1. It is preferable to be above.
  • the ultraviolet shielding rate is a value calculated based on the total light transmittance measured for the coating film prepared by the method described in the examples.
  • Total light transmittance 1 (Total light transmittance 1, Total light transmittance 2)
  • total light transmittance 2 (%) described in detail in the examples were measured with a spectrophotometer V-570 (manufactured by JASCO Corporation). Value.
  • the value of total light transmittance 1 (%) is the value of total light transmittance at a wavelength of 300 nm
  • the value of total light transmittance 2 (%) is the value of total light transmittance at a wavelength of 360 nm. It means that the smaller the value of total light transmittance 1 (%), the higher the UV shielding effect against UV-B wavelength ultraviolet light, and the smaller the value of total light transmittance 2 (%), the more UV-A. It means that the ultraviolet-ray shielding effect with respect to the ultraviolet-ray of a wavelength is high.
  • UV shielding rate 1 100% -total light transmittance 1 (%)
  • UV shielding factor 2 (%) 100% -total light transmittance 2 (%)
  • the value of the ultraviolet shielding factor 1 (%) means the shielding factor against ultraviolet rays at a wavelength of 300 nm, and the larger this value, the higher the ultraviolet shielding property against UV-B waves.
  • the value of the ultraviolet shielding factor 2 (%) means the shielding factor against ultraviolet rays at a wavelength of 360 nm, and the larger the value, the higher the ultraviolet shielding property against UV-A waves.
  • the total light transmittance 1 (%), the total light transmittance 2 (%), the ultraviolet shielding rate 1 (%), and the ultraviolet shielding rate 2 (%) are explanatory diagrams for easier understanding of the respective relationships. Is attached to FIG.
  • the zinc oxide particles of the present invention form a solid solution represented by Zn 2 TiO 4 and ZnFe 2 O 4 by coating
  • the ratio of (UV shielding rate 1 (%)) / (UV shielding rate 1 (%) of coating film containing raw material zinc oxide particles as a base of coated zinc oxide particles) is preferably 1.1 or more.
  • the zinc oxide particles of the present invention form a solid solution represented by Zn 2 TiO 4 or ZnFe 2 O 4 by coating
  • the ratio of (UV shielding rate 2 (%)) / (UV shielding rate 2 (%) of coating film containing raw material zinc oxide particles as a base of coated zinc oxide particles) is preferably 1.1 or more.
  • the zinc oxide particles of the present invention have a hexagonal plate shape.
  • the zinc oxide particles having such a shape have excellent ultraviolet shielding performance and have a physical effect derived from having a specific particle shape. As an excellent function. More specifically, the particles have a smooth feel derived from a hexagonal plate shape and are excellent in soft focusability.
  • the zinc oxide particles of the present invention are more excellent in ultraviolet absorption ability in a region of 400 nm or less.
  • the zinc oxide particles having the hexagonal plate shape are not particularly limited, but are preferably those described in detail below.
  • the zinc oxide particles of the present invention preferably have a primary particle size of 0.01 ⁇ m or more.
  • the primary particle diameter is more preferably 0.02 ⁇ m or more, and further preferably 0.03 ⁇ m or more.
  • the upper limit of the said primary particle diameter is not specifically limited, For example, it is preferable that it is 100 micrometers or less, It is more preferable that it is 50 micrometers or less, It is still more preferable that it is 25 micrometers or less.
  • the primary particle diameter is a constant direction diameter (interval between two parallel lines in a fixed direction sandwiching the particles) in a field of view of 2000 to 50000 times that of a transmission electron microscope JEM-2100 (manufactured by JEOL Ltd.).
  • the particle size ( ⁇ m) defined by the particle size of any shape on the image (measured in a certain direction) was measured and the cumulative distribution of 250 primary particles in the TEM photograph was measured. Is an average value.
  • FIG. 16 was attached.
  • the hexagonal plate-like zinc oxide particles of the present invention preferably have an aspect ratio of 2.5 or more. That is, it is zinc oxide particles having a hexagonal plate shape, and with such a shape, particularly when used in cosmetics, slipping is good and an excellent feeling of use can be obtained.
  • the aspect ratio of the hexagonal plate-like zinc oxide particles in the present invention is such that the hexagonal surface of the hexagonal plate-like zinc oxide particles is at the front in the field of view of 2000 to 50000 times that of a transmission electron microscope JEM-2100 (manufactured by JEOL Ltd.).
  • a particle that is facing it is defined by its fixed direction diameter (interval between two parallel lines in a certain direction across the particle; measured in a certain direction for a particle whose hexagonal surface on the image is facing forward)
  • the average value of the particle diameter ( ⁇ m) measured for 250 particles is L
  • the thickness ( ⁇ m) of the hexagonal plate-like zinc oxide particles whose side faces are in front (rectangular particles) (the shorter rectangle) Is the ratio of these values; L / T.
  • FIG. 17 was attached.
  • the aspect ratio is more preferably 2.7 or more, and still more preferably 3.0 or more.
  • the aspect ratio of the irregularly shaped particles in the comparative example of the present specification is that the irregularly shaped particles 250 in the field of view of 2000 to 50000 times the transmission electron microscope JEM-2100 (manufactured by JEOL Ltd.) photograph. For each particle, the major axis of the particle and the minor axis passing through the center of the major axis are measured, the ratio of the major axis to the minor axis length; the major axis / minor axis is obtained, and the average value of the cumulative distribution is obtained as the aspect ratio. .
  • FIG. 18 shows a method for measuring the aspect ratio of irregularly shaped particles.
  • the production method of the zinc oxide particles of the present invention is not particularly limited.
  • the raw material zinc oxide particles obtained by the method described in Patent Document 1 are treated with a compound containing Fe and Ti.
  • the presence of iron ions and titanium ions in a method for producing hexagonal plate-like zinc oxide particles described in Patent Document 1 (a method for producing zinc oxide including a step of aging fine zinc oxide in an aqueous zinc salt solution)
  • the method of reacting under can be mentioned.
  • a manufacturing method (manufacturing method 1) comprising a step (1-2) of firing the coated zinc oxide particles obtained by the step (1-1).
  • Step (2-1) in which zinc oxide particles are added to a zinc salt aqueous solution in which a titanium salt and / or an iron salt are dissolved, and heat aging is performed, and the hydroxide obtained by the step (2-1)
  • a production method (production method 2) comprising a step (2-2) of firing the hexagonal plate-like zinc oxide particles contained; It is particularly preferred that Hereinafter, these production methods will be described in detail.
  • the production method described above includes adding raw material zinc oxide particles having a hexagonal plate shape to a liquid medium to form an aqueous slurry, and depositing a titanium salt and / or an iron salt on the surface of the raw material zinc oxide particles in the aqueous slurry.
  • This is a manufacturing method in which a surface coating is formed and then fired to form a coating.
  • the coated zinc oxide particles obtained by such a production method were analyzed by X-ray diffraction, and were not coated with titanium oxide or iron oxide, but coated with a solid solution comprising Ti element and / or Fe element and Zn element. It became clear that was formed.
  • the hexagonal plate-like zinc oxide particles as the raw material zinc oxide particles used in the step those obtained by the production method described in Patent Document 1 can be suitably used.
  • the method for producing zinc oxide particles described in Patent Document 1 is a reaction in a slurry, but after performing this reaction, it may be used as it is in the production method of the present invention, or may be filtered, washed with water, After carrying out steps such as drying and firing, an aqueous slurry may be obtained by dispersing it again in an aqueous medium.
  • the raw material zinc oxide particles having a hexagonal plate shape have a concentration of 10 to 500 g / l.
  • the liquid medium constituting the slurry is preferably water or a mixed liquid of water and a water-soluble organic solvent, and most preferably water.
  • a solvent that can be mixed with water such as lower alcohols such as methanol and ethanol; water such as acetone, can be used as the water-soluble organic solvent.
  • the amount of the water-soluble organic solvent used is preferably 1 to 30% by weight based on the total amount of the mixed solvent.
  • a dispersant may be used as necessary.
  • the titanium salt is not particularly limited, and examples thereof include titanium tetraalkoxide such as titanium sulfate and titanium tetraisopropoxide, and titanium tetrachloride.
  • the iron salt is not particularly limited. For example, ferrous acetate, iron triacetate, ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, ferrous nitrate, ferric nitrate Iron etc. can be mentioned.
  • the titanium salt and / or iron salt aqueous solution preferably has a titanium salt and / or iron salt concentration of 50 to 300 g / l.
  • the use of an aqueous solution within the above range is preferable in that a coating layer can be uniformly formed on the surface of the raw material zinc oxide particles without lowering the productivity.
  • the aqueous solution of the titanium salt and / or iron salt does not require components other than the titanium salt and / or iron salt and water, but other components are blended within a range not impairing the effects of the present invention. It does not prevent it.
  • alkaline compound in the said aqueous alkali solution, Sodium hydroxide, potassium hydroxide, ammonia, etc. can be used.
  • concentration of the alkaline aqueous solution is not particularly limited, but may be, for example, 5 to 30% by weight.
  • an aqueous solution of titanium salt and / or iron salt and an aqueous alkaline solution are added while maintaining the pH and temperature conditions.
  • the purpose can be suitably achieved by uniformly depositing titanium and / or iron.
  • the reaction time is not particularly limited, and can be performed, for example, in 10 to 360 minutes.
  • the addition of the aqueous solution of the titanium salt and / or iron salt and the aqueous alkaline solution is preferably a method in which the aqueous solutions are added simultaneously at different positions on the liquid surface of the slurry to be added.
  • a coating of titanium hydroxide particles having a uniform shape and particle diameter and / or iron hydroxide particles having a uniform shape and particle diameter can be formed on the surface of the zinc oxide particles as a base.
  • Such a method of addition is not particularly limited, and examples thereof include a method of continuously adding a constant amount with a pump.
  • the amount of the aqueous solution added is preferably set in accordance with the amounts of titanium and iron in the target zinc oxide particles.
  • the slurry is preferably stirred. Thereby, uniform titanium hydroxide particles and / or iron hydroxide particles can be formed on the surface of the zinc oxide particles. Stirring of the slurry can be performed by a normal stirring method using a stirrer or the like.
  • Hydroxide-coated zinc oxide particles can be obtained by filtering the slurry that has been subjected to the above step (1-1), followed by washing and drying as necessary.
  • the hydroxide-coated zinc oxide particles thus obtained are fired in step (1-2).
  • a solid solution composed of Ti element and / or Fe element and Zn element is formed.
  • the firing temperature is preferably 400 to 900 ° C. If it is 500 degreeC or more, crystallinity is high and it is preferable at the point from which the ultraviolet-ray shielding effect becomes high.
  • the firing atmosphere in the step (1-2) is not particularly limited, and examples thereof include air, oxygen, nitrogen, carbon dioxide, hydrogen, argon, and methane.
  • the firing time is preferably 1 to 50 hours, depending on the firing temperature.
  • the production method 2 includes a step (2-1) of heating and aging the raw material zinc oxide particles in a zinc salt aqueous solution in which a titanium salt and / or an iron salt is dissolved.
  • a titanium salt and / or an iron salt examples include those described above.
  • the zinc salt is not particularly limited, and examples thereof include zinc sulfate, zinc nitrate, zinc acetate, zinc chloride, and zinc formate.
  • the concentration of zinc salt in the aqueous zinc salt solution is preferably 0.005 to 4.0 mol / l.
  • the concentration of titanium salt and / or iron salt in the zinc salt aqueous solution is preferably 50 to 300 g / l.
  • the liquid medium constituting the zinc salt aqueous solution is preferably water or a mixed liquid of water and a water-soluble organic solvent, and most preferably water.
  • a mixed liquid of water and a water-soluble organic solvent a solvent that can be mixed with water, such as lower alcohols such as methanol and ethanol; water such as acetone, can be used as the water-soluble organic solvent.
  • the amount of the water-soluble organic solvent used is preferably 1 to 30% by weight based on the total amount of the mixed solvent.
  • a dispersant may be used as necessary.
  • the raw material zinc oxide particles in the production method 2 are not limited to those having a hexagonal plate shape, and zinc oxide particles having an arbitrary shape can be used.
  • the raw material zinc oxide particles can be added to a zinc salt aqueous solution, stirred and dispersed to form a slurry, and the reaction can be carried out in the slurry.
  • the raw material zinc oxide particles have a concentration of 10 to 500 g / l with respect to the total amount of the slurry.
  • the reaction temperature is preferably 10 to 110 ° C., and the reaction time is preferably 0.5 to 24 hours.
  • the pH of the slurry for performing the above step (2-1) is preferably 5.5 to 13.5.
  • Hydroxide-containing zinc oxide particles can be obtained by filtering the slurry subjected to the above step (2-1) and then washing and drying as necessary.
  • the hydroxide-containing zinc oxide particles thus obtained are fired in step (2-2).
  • a solid solution composed of Ti element and / or Fe element and Zn element is formed.
  • the firing temperature is preferably 400 to 900 ° C. If it is 500 degreeC or more, crystallinity is high and it is preferable at the point from which the ultraviolet-ray shielding effect becomes high.
  • the firing atmosphere in the step (2-2) is not particularly limited, and examples thereof include air, oxygen, nitrogen, carbon dioxide, hydrogen, argon, and methane.
  • the firing time depends on the firing temperature, it is preferably 1 to 5 hours.
  • the zinc oxide particles of the present invention may be further subjected to a surface treatment.
  • the surface treatment is not particularly limited, and the surface on which a film is formed with at least one compound selected from the group consisting of silicon oxide, hydrated silicon oxide, aluminum oxide, and aluminum hydroxide. Examples thereof include surface treatment with a water repellent organic compound, surface treatment with a coupling agent such as a silane coupling agent and a titanium coupling agent. A combination of these two or more surface treatments may be used.
  • the formation of the film with at least one compound selected from the group consisting of silicon oxide, silicon oxide hydrate, aluminum oxide, and aluminum hydroxide is performed by using a Si source compound and / or an Al source compound. Can be performed by a method such as precipitation on the powder surface by hydrolysis, thermal decomposition, or the like.
  • a Si source compound and / or a Al source compound tetraalkoxysilane or its hydrolytic condensate, sodium silicate, potassium silicate, aluminum alkoxide or its hydrolytic condensate, sodium aluminate and the like, readily SiO 2 Ya A compound that converts to Al (OH) 3 or Al 2 O 3 can be used.
  • the method using acids such as a sulfuric acid, hydrochloric acid, acetic acid, nitric acid, is mentioned.
  • the neutralization method in this silica treatment method using an aqueous dispersion is a method in which an acid is added to the dispersion and then an Si source compound and / or an Al source compound is added. An Si source compound and / or an Al source is added to the dispersion. Either a method of adding an acid after adding the compound, or a method of simultaneously adding an Si source compound and / or an Al source compound and an acid to the dispersion may be used.
  • the treatment with the water repellent organic compound is not particularly limited, and examples thereof include silicone oil, alkyl silane, alkyl titanate, alkyl aluminate, polyolefin, polyester, metal soap, amino acid, amino acid salt and the like. Of these, silicone oil is preferred because of its chemical stability.
  • this silicone oil examples include dimethylpolysiloxane (for example, KF-96A-100cs manufactured by Shin-Etsu Chemical Co., Ltd., DM10 manufactured by Asahi Kasei Wacker Silicone), methyl hydrogen polysiloxane (for example, KF-99P manufactured by Shin-Etsu Chemical Co., Ltd., Toray Industries, Inc.) SH1107C manufactured by Dow Corning), (dimethicone / methicone) copolymer (for example, KF-9901 manufactured by Shin-Etsu Chemical), methylphenyl silicone (for example, KF-50-100cs manufactured by Shin-Etsu Chemical), amino-modified silicone (for example, Shin-Etsu Chemical) KF-8015 manufactured by Toray Dow Corning, JP-8500 Conditioning Agent, ADM 6060 manufactured by Asahi Kasei Wacker Silicone, triethoxysilylethyl polydimethylsiloxyethyl dimethicone
  • Examples of the treatment with the silane coupling agent include vinyltris (2-methoxyethoxy) silane, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 3-glycol.
  • the treatment with the titanium coupling agent includes tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate, tetramethyl titanate, titanium acetylacetonate, titanium tetraacetylacetonate, titanium ethylacetoacetate. , Titanium octanediolate, titanium lactate, titanium triethanolamate, and polyhydroxytitanium stearate.
  • the surface treatment is preferably performed at a ratio of 1 to 10% by weight with respect to the total amount of the powder after the treatment. By setting it within the range, it is preferable in terms of improving slipperiness, improving moisture resistance, and improving dispersibility in the resin.
  • the zinc oxide particles of the present invention can be mixed with other components and blended in cosmetics, inks, paints, plastics and the like.
  • cosmetics inks, paints, plastics and the like.
  • it since it has the above-mentioned characteristics, it is preferable in that a cosmetic having excellent stability and ultraviolet shielding effect can be obtained.
  • the cosmetic is not particularly limited, and by mixing a cosmetic raw material with such a composite powder as necessary, an ultraviolet protective cosmetic such as a sunscreen agent; a base makeup cosmetic such as a foundation; a lipstick Point makeup cosmetics and the like can be obtained. Moreover, since it has the characteristic of ultraviolet-ray shielding ability, it has the performance outstanding when used for cosmetics.
  • the cosmetics can be in any form of oily cosmetics, aqueous cosmetics, O / W cosmetics, and W / O cosmetics.
  • the cosmetic may be used in combination with any aqueous component or oily component that can be used in the cosmetic field.
  • the aqueous component and the oil component are not particularly limited, and examples thereof include oil agents, surfactants, humectants, higher alcohols, sequestering agents, natural and synthetic polymers, water-soluble and oil-soluble polymers, UV shielding agents, Various extracts, colorants such as organic dyes, preservatives, antioxidants, pigments, thickeners, pH adjusters, fragrances, cooling agents, antiperspirants, fungicides, skin activators, various powders, etc. It may contain a component.
  • the oil agent is not particularly limited.
  • natural animal and vegetable oils and fats for example, olive oil, mink oil, castor oil, palm oil, beef tallow, evening primrose oil, coconut oil, castor oil, cacao oil, macadamia nut oil, etc.
  • wax for example, Jojoba oil, beeswax, lanolin, carnauba wax, candelilla wax, etc.
  • higher alcohols eg, lauryl alcohol, stearyl alcohol, cetyl alcohol, oleyl alcohol, etc.
  • higher fatty acids eg, lauric acid, palmitic acid, stearic acid, olein
  • Acids behenic acid, lanolin fatty acids, etc .
  • higher aliphatic hydrocarbons such as liquid paraffin, solid paraffin, squalane, petrolatum, ceresin, microcrystalline wax, etc .
  • synthetic ester oils eg, butyl stearate, hexyl laurate, diiso
  • the surfactant examples include a lipophilic nonionic surfactant and a hydrophilic nonionic surfactant.
  • the lipophilic nonionic surfactant is not particularly limited. For example, sorbitan monooleate, sorbitan monoisostearate, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan sesquioleate, sorbitan trioleate.
  • sorbitan fatty acid esters such as diglycerol sorbitan penta-2-ethylhexylate, diglycerol sorbitan tetra-2-ethylhexylate, mono-cotton oil fatty acid glycerin, glyceryl monoerucate, glyceryl sesquioleate, glyceryl monostearate, ⁇ , ⁇ '-Glycerol polyglycerin fatty acids such as pyroglutamate glyceryl oleate, glyceryl monostearate malate, propylene glycol monostearate Glycol fatty acid esters, hardened castor oil derivatives, glycerin alkyl ethers and the like.
  • sorbitan fatty acid esters such as diglycerol sorbitan penta-2-ethylhexylate, diglycerol sorbitan tetra-2-ethylhexylate, mono-cotton
  • the hydrophilic nonionic surfactant is not particularly limited.
  • POE sorbitan fatty acid esters such as POE sorbitan monooleate, POE sorbitan monostearate, POE sorbitan tetraoleate, POE sorbite monolaurate, and POE sorbite mono POE sorbite fatty acid esters such as oleate, POE sorbite pentaoleate, POE sorbite monostearate, POE glycerin fatty acid esters such as POE glycerol monostearate, POE glycerol monoisostearate, POE glycerol triisostearate, POE POE fatty acid esters such as monooleate, POE distearate, POE monodiolate, ethylene glycol stearate, POE lauryl ether, POE POE alkyl ethers such as yl ether, POE stearyl ether,
  • surfactants examples include anionic surfactants such as fatty acid soaps, higher alkyl sulfates, POE lauryl sulfate triethanolamine, alkyl ether sulfates, alkyltrimethylammonium salts, alkylpyridinium salts, alkyl quaternary salts. Stabilizes cationic surfactants such as ammonium salts, alkyldimethylbenzylammonium salts, POE alkylamines, alkylamine salts, polyamine fatty acid derivatives, and amphoteric surfactants such as imidazoline-based amphoteric surfactants and betaine-based surfactants. And you may mix
  • anionic surfactants such as fatty acid soaps, higher alkyl sulfates, POE lauryl sulfate triethanolamine, alkyl ether sulfates, alkyltrimethylammonium salts, al
  • the humectant is not particularly limited, and examples thereof include xylitol, sorbitol, maltitol, chondroitin sulfate, hyaluronic acid, mucoitin sulfate, caronic acid, atelocollagen, cholesteryl-12-hydroxystearate, sodium lactate, bile salt, dl- Examples include pyrrolidone carboxylate, short-chain soluble collagen, diglycerin (EO) PO adduct, Isaiyobara extract, yarrow extract, and merirot extract.
  • EO diglycerin
  • the higher alcohol is not particularly limited, and examples thereof include linear alcohols such as lauryl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol, myristyl alcohol, oleyl alcohol, cetostearyl alcohol, monostearyl glycerin ether (batyl alcohol), 2-decyl.
  • linear alcohols such as lauryl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol, myristyl alcohol, oleyl alcohol, cetostearyl alcohol, monostearyl glycerin ether (batyl alcohol), 2-decyl.
  • branched chain alcohols such as tetradecinol, lanolin alcohol, cholesterol, phytosterol, hexyldodecanol, isostearyl alcohol, octyldodecanol, and the like.
  • the sequestering agent is not particularly limited.
  • examples thereof include sodium, gluconic acid, phosphoric acid, citric acid, ascorbic acid, succinic acid, edetic acid and the like.
  • the natural water-soluble polymer is not particularly limited.
  • the semi-synthetic water-soluble polymer is not particularly limited.
  • starch-based polymers such as carboxymethyl starch and methylhydroxypropyl starch, methylcellulose, nitrocellulose, ethylcellulose, methylhydroxypropylcellulose, hydroxyethylcellulose, sodium cellulose sulfate, Examples thereof include cellulose polymers such as hydroxypropylcellulose, sodium carboxymethylcellulose (CMC), crystalline cellulose, and cellulose powder, and alginic acid polymers such as sodium alginate and propylene glycol alginate.
  • CMC carboxymethylcellulose
  • crystalline cellulose cellulose powder
  • alginic acid polymers such as sodium alginate and propylene glycol alginate.
  • the synthetic water-soluble polymer is not particularly limited, and examples thereof include vinyl polymers such as polyvinyl alcohol, polyvinyl methyl ether, and polyvinyl pyrrolidone, and polyoxyethylene polymers such as polyethylene glycol 20,000, 40,000, and 60,000.
  • Polymer polyoxyethylene polyoxypropylene copolymer copolymer polymer, acrylic polymer such as sodium polyacrylate, polyethyl acrylate, polyacrylamide, polyglycerin, polyethyleneimine, cationic polymer, carboxyvinyl polymer, alkyl Modified carboxyvinyl polymer, (hydroxyethyl acrylate / acryloyl dimethyl taurine Na) copolymer, (Na acrylate / acryloyl dimethyl taurine Na) copolymer, (acryloyl dimethyl tantalum) Phosphorus ammonium / vinylpyrrolidone) copolymer, and (ammonium acryloyldimethyltaurate methacrylate Beheneth-25) cross-polymer.
  • acrylic polymer such as sodium polyacrylate, polyethyl acrylate, polyacrylamide, polyglycerin, polyethyleneimine, cationic polymer, carboxyvinyl polymer, alkyl Modified carboxy
  • the inorganic water-soluble polymer is not particularly limited, and examples thereof include bentonite, silicate AlMg (beegum), laponite, hectorite, and silicic anhydride.
  • the UV screening agent is not particularly limited.
  • paraaminobenzoic acid hereinafter abbreviated as PABA
  • PABA paraaminobenzoic acid
  • PABA monoglycerin ester N, N-dipropoxy PABA ethyl ester, N, N-diethoxy PABA ethyl ester, N, N-dimethyl
  • Benzoic acid UV screening agents such as PABA ethyl ester and N, N-dimethyl PABA butyl ester
  • Anthranilic acid UV screening agents such as homomenthyl-N-acetylanthranylate
  • Amyl salicylate Menthyl salicylate, Homomentil salicylate, Octyl salicylate
  • Salicylic acid UV screening agents such as phenyl salicylate, benzyl salicylate, p-isopropanol phenyl salicylate; octylcinnamate, ethyl-4-isoprop
  • Other drug components are not particularly limited and include, for example, vitamin A oil, retinol, retinol palmitate, inosit, pyridoxine hydrochloride, benzyl nicotinate, nicotinamide, nicotinic acid DL- ⁇ -tocopherol, magnesium ascorbate phosphate, 2 Vitamins such as -O- ⁇ -D-glucopyranosyl-L-ascorbic acid, vitamin D2 (ergocaciferol), dl- ⁇ -tocopherol, dl- ⁇ -tocopherol acetate, pantothenic acid, biotin; estradiol, ethinylestradiol, etc.
  • Hormones such as arginine, aspartic acid, cystine, cysteine, methionine, serine, leucine and tryptophan; anti-inflammatory agents such as allantoin and azulene; whitening agents such as arbutin; astringents such as tannic acid; L Menthol, cooling agents and sulfur camphor such as, lysozyme chloride, can be mentioned pyridoxine chloride, and the like.
  • Examples of the various powders include bengara, yellow iron oxide, black iron oxide, titanium mica, iron oxide-coated mica titanium, titanium oxide-coated glass flakes and other bright colored pigments, mica, talc, kaolin, sericite, titanium dioxide,
  • examples thereof include inorganic powders such as silica and organic powders such as polyethylene powder, nylon powder, crosslinked polystyrene, cellulose powder, and silicone powder.
  • a part or all of the powder component is hydrophobized by a known method with a substance such as silicones, fluorine compounds, metal soaps, oils, acyl glutamates in order to improve sensory characteristics and cosmetic durability. Used. Moreover, you may mix and use the other composite powder which does not correspond to this invention.
  • colored pigments such as titanium oxide, bengara, antimony red, cadmium yellow, cobalt blue, bitumen, ultramarine, carbon black, graphite, and calcium carbonate
  • extender pigments include kaolin, clay, barium sulfate, aluminum hydroxide, and talc.
  • organic pigments pigment components such as soluble azo pigments, insoluble azo pigments, azo lake pigments, condensed azo pigments, copper phthalocyanine pigments, condensed polycyclic pigments; shellac resins, acrylic resins, styrene-acrylic resins, styrene-maleic acid resins It can be used in combination with a binder resin such as a binder resin such as a styrene-acrylic-maleic acid resin, a polyurethane resin, a polyester resin, or a polyamide resin; and a water-miscible organic solvent.
  • a binder resin such as a binder resin such as a styrene-acrylic-maleic acid resin, a polyurethane resin, a polyester resin, or a polyamide resin
  • a water-miscible organic solvent water-miscible organic solvent.
  • coating resins such as acrylic resins, polyester resins, and epoxy resins; various pigments such as colored pigments, extender pigments, and bright pigments; It can be used in combination with a catalyst, a surface conditioner, an antifoaming agent, a pigment dispersant, a plasticizer, a film-forming aid, an ultraviolet absorber, an antioxidant and the like.
  • the resin in the paint may be curable or non-curable.
  • Example 1 150 g of hexagonal plate-shaped zinc oxide (XZ-1000F, manufactured by Sakai Chemical Industry Co., Ltd.) having a primary particle size of 1.05 ⁇ m was added to 723.21 g of water and sufficiently stirred to obtain an aqueous slurry having a ZnO concentration of 200 g / l. . Subsequently, the temperature of the slurry was raised to 40 ° C. while stirring, and the pH of the slurry was adjusted to 10 by adding a 5 wt% NaOH aqueous solution while maintaining this temperature.
  • XZ-1000F manufactured by Sakai Chemical Industry Co., Ltd.
  • titanium hydroxide-coated zinc oxide particles were obtained. Subsequently, the obtained titanium hydroxide-coated zinc oxide particles were fired in an electric furnace at 700 ° C. for 2 hours to obtain Zn 2 TiO 4 -coated hexagonal plate-like zinc oxide particles having a primary particle diameter of 1.07 ⁇ m. The size and morphology of the obtained particles were observed with a transmission electron microscope JEM-2100 (manufactured by JEOL Ltd.). The obtained electron micrograph is shown in FIG. The obtained particles were analyzed with an X-ray diffractometer Ultima III (manufactured by Rigaku Corporation). The obtained X-ray diffraction spectrum is shown in FIG.
  • Table 1 shows the physical properties of the obtained particles and the physical properties of the coating film. Ratio of (UV shielding rate 1 (%) of coating film containing coated zinc oxide particles) / (UV shielding rate 1 (%) of coating film containing raw material zinc oxide particles as a base of coated zinc oxide particles) The value is 1.6, (UV shielding rate 2 (%) of coating film containing coated zinc oxide particles) / (UV shielding rate 2 of coating film containing raw material zinc oxide particles as a base of the coated zinc oxide particles ( %)) Ratio is 1.2, and the obtained zinc oxide particles are improved in both UV-B wave and UV-A wave ultraviolet shielding properties with respect to the raw material zinc oxide particles. confirmed.
  • Example 2 150 g of hexagonal plate-shaped zinc oxide (XZ-1000F, manufactured by Sakai Chemical Industry Co., Ltd.) having a primary particle size of 1.05 ⁇ m was added to 723.21 g of water and sufficiently stirred to obtain an aqueous slurry having a ZnO concentration of 200 g / l. . Subsequently, the temperature of the slurry was raised to 30 ° C. while stirring, and the pH of the slurry was adjusted to 10 by adding a 5 wt% NaOH aqueous solution while maintaining this temperature.
  • XZ-1000F hexagonal plate-shaped zinc oxide having a primary particle size of 1.05 ⁇ m
  • the surface of the hexagonal plate-like zinc oxide particles having a primary particle diameter of 1.05 ⁇ m is coated with iron hydroxide.
  • the obtained iron hydroxide-coated zinc oxide particles were obtained.
  • the obtained iron hydroxide-coated zinc oxide particles were fired in an electric furnace at 600 ° C. for 2 hours to obtain ZnFe 2 O 4 -coated hexagonal plate-like zinc oxide particles having a primary particle diameter of 1.06 ⁇ m.
  • the size and morphology of the obtained particles were observed with a transmission electron microscope JEM-2100 (manufactured by JEOL Ltd.). The obtained electron micrograph is shown in FIG.
  • the obtained particles were analyzed with an X-ray diffractometer Ultima III (manufactured by Rigaku Corporation). The obtained X-ray diffraction spectrum is shown in FIG. In addition, Table 1 shows the physical properties of the obtained particles and the physical properties of the coating film.
  • Ratio of (UV shielding rate 1 (%) of coating film containing coated zinc oxide particles) / (UV shielding rate 1 (%) of coating film containing raw material zinc oxide particles as a base of coated zinc oxide particles) The value is 1.7, (UV shielding rate 2 (%) of coating film containing coated zinc oxide particles) / (UV shielding rate 2 of coating film containing raw material zinc oxide particles as a base of the coated zinc oxide particles ( %))
  • Ratio is 1.3, and the obtained zinc oxide particles are improved in both UV-B wave and UV-A wave ultraviolet shielding properties with respect to the raw material zinc oxide particles. confirmed.
  • Example 3 150 g of hexagonal plate-shaped zinc oxide (XZ-1000F, manufactured by Sakai Chemical Industry Co., Ltd.) having a primary particle size of 1.05 ⁇ m was added to 723.21 g of water and sufficiently stirred to obtain an aqueous slurry having a ZnO concentration of 200 g / l. . Subsequently, the temperature of the slurry was raised to 40 ° C. while stirring, and the pH of the slurry was adjusted to 10 by adding a 5 wt% NaOH aqueous solution while maintaining this temperature.
  • XZ-1000F manufactured by Sakai Chemical Industry Co., Ltd.
  • Titanium hydroxide and iron hydroxide-coated zinc oxide particles coated with iron oxide were obtained. Subsequently, the obtained titanium hydroxide and iron hydroxide-coated zinc oxide particles were baked in an electric furnace at 700 ° C. for 2 hours to form a Zn 2 TiO 4 + ZnFe 2 O 4 -coated hexagonal plate having a primary particle diameter of 1.07 ⁇ m. Zinc oxide particles were obtained. The size and morphology of the obtained particles were observed with a transmission electron microscope JEM-2100 (manufactured by JEOL Ltd.). The obtained electron micrograph is shown in FIG. The obtained particles were analyzed with an X-ray diffractometer Ultima III (manufactured by Rigaku Corporation).
  • the obtained X-ray diffraction spectrum is shown in FIG.
  • Table 1 shows the physical properties of the obtained particles and the physical properties of the coating film. Ratio of (UV shielding rate 1 (%) of coating film containing coated zinc oxide particles) / (UV shielding rate 1 (%) of coating film containing raw material zinc oxide particles as a base of coated zinc oxide particles) The value is 1.6, (UV shielding rate 2 (%) of coating film containing coated zinc oxide particles) / (UV shielding rate 2 of coating film containing raw material zinc oxide particles as a base of the coated zinc oxide particles ( %)) Ratio is 1.2, and the obtained zinc oxide particles are improved in both UV-B wave and UV-A wave ultraviolet shielding properties with respect to the raw material zinc oxide particles. confirmed.
  • Example 4 Prepared 1200 ml of zinc acetate aqueous solution prepared by dissolving 66.51 g of zinc acetate dihydrate (Zinc acetate manufactured by Hosoi Chemical Co., Ltd.) in water to a concentration of 0.5 mol / l as zinc acetate dihydrate. did. Subsequently, 9.68 g of iron (II) acetate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to 1200 ml of the aqueous zinc acetate solution and completely dissolved.
  • the mixture was filtered, washed with water, and dried at 110 ° C. for 12 hours to obtain iron hydroxide-containing hexagonal plate-like zinc oxide particles containing iron hydroxide.
  • the obtained iron hydroxide-containing zinc oxide particles were baked in an electric furnace at 600 ° C. for 2 hours to obtain ZnFe 2 O 4 -containing zinc oxide particles having a primary particle diameter of 0.07 ⁇ m.
  • the size and morphology of the obtained particles were observed with a transmission electron microscope JEM-2100 (manufactured by JEOL Ltd.).
  • the obtained electron micrograph is shown in FIG.
  • the obtained particles were analyzed with an X-ray diffractometer Ultima III (manufactured by Rigaku Corporation).
  • the obtained X-ray diffraction spectrum is shown in FIG.
  • Table 1 shows the physical properties of the obtained particles and the physical properties of the coating film.
  • Comparative Example 2 By calcining 50 g of zinc oxide (FINEX-50, manufactured by Sakai Chemical Industry Co., Ltd.) having a primary particle size of 0.02 ⁇ m in an electric furnace at 550 ° C. for 2 hours, amorphous zinc oxide particles having a primary particle size of 0.11 ⁇ m are obtained. Prepared and used as a UV screening agent for comparison. A transmission electron micrograph of the particles is shown in FIG. In addition, Table 1 shows the physical properties of the obtained particles and the physical properties of the coating film. In addition, the said particle
  • Comparative Example 3 30 g of amorphous zinc oxide particles having a primary particle diameter of 0.11 ⁇ m, which is the zinc oxide particles obtained in Comparative Example 2, were added to 144.64 g of water, and stirred sufficiently to form an aqueous slurry having a ZnO concentration of 200 g / l. Obtained. Subsequently, the temperature of the slurry was raised to 40 ° C. while stirring, and the pH of the slurry was adjusted to 10 by adding a 5 wt% NaOH aqueous solution while maintaining this temperature.
  • the obtained titanium hydroxide-coated zinc oxide particles were baked in an electric furnace at 700 ° C. for 2 hours to obtain Zn 2 TiO 4 -coated zinc oxide particles having a primary particle diameter of 0.12 ⁇ m.
  • the size and morphology of the obtained particles were observed with a transmission electron microscope JEM-2100 (manufactured by JEOL Ltd.).
  • the obtained electron micrograph is shown in FIG.
  • the obtained particles were analyzed with an X-ray diffractometer Ultima III (manufactured by Rigaku Corporation).
  • the obtained X-ray diffraction spectrum is shown in FIG.
  • Table 1 shows the physical properties of the obtained particles and the physical properties of the coating film.
  • Ratio of (UV shielding rate 1 (%) of coating film containing coated zinc oxide particles) / (UV shielding rate 1 (%) of coating film containing raw material zinc oxide particles as a base of coated zinc oxide particles) The value is 1.0, (UV shielding rate 2 (%) of coating film containing coated zinc oxide particles) / (UV shielding rate 2 of coating film containing raw material zinc oxide particles as a base of the coated zinc oxide particles ( %)) Ratio is 0.9, and the obtained zinc oxide particles are not improved in UV-B wave and UV-A wave ultraviolet shielding properties with respect to the raw material zinc oxide particles. Was confirmed.
  • Comparative Example 4 30 g of amorphous zinc oxide particles having a primary particle diameter of 0.11 ⁇ m, which is the zinc oxide particles of Comparative Example 2, were added to 144.64 g of water, and sufficiently stirred to obtain an aqueous slurry having a ZnO concentration of 200 g / l. Subsequently, the temperature of the slurry was raised to 30 ° C. while stirring, and the pH of the slurry was adjusted to 10 by adding a 5 wt% NaOH aqueous solution while maintaining this temperature.
  • Amount) and a 5 wt% NaOH aqueous solution for neutralizing the aqueous iron sulfate solution were added simultaneously over 180 minutes while maintaining the slurry temperature of 30 ° C. and pH of 10. After completion of neutralization, after aging for 30 minutes, filtering, washing with water, and drying at 120 ° C.
  • the surface of the amorphous zinc oxide particles having a primary particle diameter of 0.11 ⁇ m as a base is coated with iron hydroxide.
  • Iron hydroxide-coated zinc oxide particles were obtained.
  • the obtained iron hydroxide-coated zinc oxide particles were fired in an electric furnace at 600 ° C. for 2 hours to obtain ZnFe 2 O 4 -coated zinc oxide particles having a primary particle diameter of 0.11 ⁇ m.
  • the size and morphology of the obtained particles were observed with a transmission electron microscope JEM-2100 (manufactured by JEOL Ltd.).
  • the obtained electron micrograph is shown in FIG.
  • the obtained particles were analyzed with an X-ray diffractometer Ultima III (manufactured by Rigaku Corporation).
  • the obtained X-ray diffraction spectrum is shown in FIG.
  • Table 1 shows the physical properties of the obtained particles and the physical properties of the coating film.
  • Ratio of (UV shielding rate 1 (%) of coating film containing coated zinc oxide particles) / (UV shielding rate 1 (%) of coating film containing raw material zinc oxide particles as a base of coated zinc oxide particles) The value is 1.0, (UV shielding rate 2 (%) of coating film containing coated zinc oxide particles) / (UV shielding rate 2 of coating film containing raw material zinc oxide particles as a base of the coated zinc oxide particles ( %))
  • Ratio value is 1.0, and the obtained zinc oxide particles are not improved in UV-B wave and UV-A wave ultraviolet shielding properties with respect to the raw material zinc oxide particles. Was confirmed.
  • a coating film was prepared by Yasuda Seiki Seisakusho. The prepared coating film was dried at 20 ° C. for 12 hours and then used for measurement.
  • FIG. 15 shows the result of comparison of the total light transmittance curves in the ultraviolet wavelength region of the light wavelength of 300 to 400 nm, which was measured with the spectrophotometer V-570 (manufactured by JASCO Corporation). Although the total light transmittance varies depending on the particle diameter, it can be seen from Table 1 that the primary particle diameters of the particles of Example 1, the particles of Example 2, and the particles of Comparative Example 1 are substantially equal. From the results of FIG. 15, it is clear that the zinc oxide particles of the present invention have an ultraviolet shielding performance superior to conventional hexagonal plate-like zinc oxide particles.
  • the coating of the present invention significantly increases the ultraviolet rays. It is also clear that the shielding performance has been improved.
  • the zinc oxide particles of Comparative Example 1 have good slipperiness due to their shape and particle size, but the UV shielding rate is low as shown in Table 1, and the coated zinc oxide particles of Comparative Examples 3 and 4 have a small particle size, so they are UV shielding. Although the rate is high, suitable slipperiness cannot be obtained. Since the coated zinc oxide particles of Examples 1, 2 and 3 have a hexagonal plate shape and a particle diameter of about 1 ⁇ m, the coated zinc oxide particles have high slipperiness, and the same particle diameter and shape as in Comparative Example 1 in the ultraviolet shielding rate. Is also expensive.
  • the coated zinc oxide particles of Examples 1, 2, and 3 have a high ultraviolet shielding rate and suitable slipperiness.
  • the zinc oxide particles in the present invention are excellent zinc oxide particles having high slipperiness, soft focus effect, and high ultraviolet shielding rate at the same time.
  • the zinc oxide particles of the present invention can be blended in cosmetics, inks, paints and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

【課題】六角板状の酸化亜鉛粒子において、酸化亜鉛の電子励起の直接遷移の性質を損なうことなく400nm以下の波長の紫外線の遮蔽率をより向上させUV-B波、UV-A波遮蔽率が著しく向上した酸化亜鉛粒子を提供する。 【解決手段】Ti元素及び/又はFe元素並びにZn元素から成る固溶体を少なくとも一部に含有し、形状が六角板状であることを特徴とする酸化亜鉛粒子。

Description

酸化亜鉛粒子、それらの製造方法、紫外線遮蔽剤及び化粧料
本発明は、ZnTiO、ZnFeで表される固溶体を少なくとも一部に含有する酸化亜鉛粒子、それらの製造方法、紫外線遮蔽剤、化粧料に関する。
太陽光に含まれる紫外線は波長別に400~320nmのUV-A波、320~290nmのUV-B波、290~100nmのUV-C波に分類され、UV-A波は地上に降り注ぐ全太陽紫外線量の97%強を占めており、ガラスや雲を透過して、肌の奥の真皮まで浸透し、しわやたるみを引き起こす光老化の原因となる。
従来、紫外線対策は日焼けに強い影響を及ぼすUV-B波の対策が重視されていたが、近年、光老化についての研究が進み、UV-A波の対策にも消費者の注目が集まるようになった。
UV-A波を効率良く遮蔽する為には、有機化合物系の紫外線吸収剤や、無機化合物系の紫外線遮蔽剤を多く製品に配合する必要がある。一方、有機化合物系の紫外線吸収剤は十分に安全性が認められた素材ではあるものの、特定の紫外線吸収剤においては、化粧料への配合量が限定されているものもある。以上のことから、無機化合物系の紫外線遮蔽剤のみでUV-A波を十分に遮蔽することが求められている。
日焼け止め製品に使用される酸化亜鉛や酸化チタンに代表される無機化合物系紫外線遮蔽剤は紫外線が粉体表面で散乱する効果、紫外線が粉体粒子に吸収される効果により、その紫外線防御能が発現する。散乱効果は粒子の屈折率や粒子サイズに由来し、吸収効果は粉体粒子の持つバンドギャップエネルギー(Eg)に由来する。酸化亜鉛のEgは3.2eVであり、電子励起が直接遷移である為、実質的にEgの値に対応する388nm以下の波長の光を効率よく吸収する事ができる。一方で、化粧品用途として広く使用されているルチル型酸化チタンのEgは3.0eVであるが、酸化チタンの電子励起は間接遷移である為、実質的には本来のEgの値に対応する413nmより短波長側のおよそ320nm以下からの光の波長を効率よく吸収することになる。
また、酸化鉄(ヘマタイト)のEgは2.2eVでありその値に対応する波長は564nmである。このため、UV-A波だけでなく可視光である400-564nmの波長の光も吸収することが考えられる。
また、本発明者らは、六角板状の酸化亜鉛粒子(特許文献1)及びその製造方法を完成させている。特許文献1に記載された六角板状の酸化亜鉛粒子は、良好な滑り性、ソフトフォーカス効果、紫外線遮蔽性、可視光透明性を有するものであり、化粧料用の紫外線遮蔽剤として好適に使用できるものである。また、これらの酸化亜鉛粒子は、従来の酸化亜鉛粒子よりも好適な紫外線遮蔽性能を有するものであり、化粧料の紫外線遮蔽成分として使用することができる。しかしながら、より優れた紫外線遮蔽性能を付与することができれば、更に好ましいものである。
チタン酸二亜鉛微粒子からなる紫外線防御剤や、酸化亜鉛粒子中に鉄を含有させた紫外線遮蔽剤が特許文献2~5に記載されている。しかし、これらは、六角板状形状を有さない粒子形状となることから、上述した六角板状の酸化亜鉛粒子という形状を有する粒子において得られる、各種の性能を有する酸化亜鉛粒子とすることはできない。
国際公開2012/147886号 特開昭63-265819号公報 特開平9-188517号公報 特開平5-222317号公報 特開昭62-275182号公報
本発明は、その形状に由来する好適な性能を有する六角板状の酸化亜鉛粒子において、酸化亜鉛の電子励起の直接遷移の性質を著しく損なうことなく400nm以下の波長の紫外線の遮蔽率をより向上させUV-B波、UV-A波遮蔽率が著しく向上した酸化亜鉛粒子を提供することを目的とするものである。
本発明は、Ti元素及び/又はFe元素並びにZn元素から成る固溶体を少なくとも一部に含有し、形状が六角板状であることを特徴とする酸化亜鉛粒子である。
上記Ti元素及び/又はFe元素並びにZn元素から成る固溶体は、基材となる酸化亜鉛粒子の表面を被覆する被膜であることが好ましい。
上記酸化亜鉛粒子は、ZnTiO及び/又はZnFeを含有する酸化亜鉛粒子であり、一次粒子径が0.01μm以上であることが好ましい。
上記酸化亜鉛粒子は、Ti元素及び/又はFe元素の含有量は、TiO換算及び/又はFe換算で酸化亜鉛粒子100重量%に対し、5重量%以上30重量%以下であることが好ましい。
本発明は、六角板状である原料酸化亜鉛粒子の水性スラリーに、チタン塩及び/又は鉄塩の水溶液とアルカリ水溶液とを温度10℃以上90℃以下の範囲でpH9±3を保ちながら添加する工程(1-1)、及び、
前記工程(1-1)によって得られた被覆酸化亜鉛粒子を焼成する工程(1-2)
を有することを特徴とする上述した酸化亜鉛粒子の製造方法でもある。
本発明は、原料酸化亜鉛粒子を、チタン塩及び/又は鉄塩を溶解した亜鉛塩水溶液中に添加し、加熱熟成する工程(2-1)
前記工程(2-1)によって得られる水酸化チタン及び/又は水酸化鉄含有六角板状酸化亜鉛粒子を焼成する工程(2-2)
を有することを特徴とする上述した酸化亜鉛粒子の製造方法でもある。
本発明は、上述した製造方法によって得られる酸化亜鉛粒子でもある。
本発明は、上記酸化亜鉛粒子を含有することを特徴とする紫外線遮蔽剤でもある。
本発明は、上記酸化亜鉛粒子を含有することを特徴とする化粧料でもある。
本発明の酸化亜鉛粒子は、六角板状の酸化亜鉛の電子励起の直接遷移の性質を損なうことなく400nm以下の波長の紫外線の遮蔽率をより向上させたものであり、これによってUV-B波、UV-A波に対する紫外線遮蔽率が著しく向上したものである。
図1は、実施例1のZnTiO被覆酸化亜鉛粒子の透過型電子顕微鏡写真を示す図である。 図2は、実施例1のZnTiO被覆酸化亜鉛粒子のX線回折のスペクトルを示す図である。 図3は、実施例2のZnFe被覆酸化亜鉛粒子の透過型電子顕微鏡写真を示す図である。 図4は、実施例2のZnFe被覆酸化亜鉛粒子のX線回折のスペクトルを示す図である。 図5は、実施例3のZnTiO+ZnFe被覆酸化亜鉛粒子の透過型電子顕微鏡写真を示す図である。 図6は、実施例3のZnTiO+ZnFe被覆酸化亜鉛粒子のX線回折のスペクトルを示す図である。 図7は、実施例4のZnFe含有酸化亜鉛粒子の透過型電子顕微鏡写真を示す図である。 図8は、実施例4のZnFe含有酸化亜鉛粒子のX線回折のスペクトルを示す図である。 図9は、比較例1の母体となる六角板状酸化亜鉛粒子の透過型電子顕微鏡写真を示す図である。 図10は、比較例2の母体となる不定形酸化亜鉛粒子の透過型電子顕微鏡写真を示す図である。 図11は、比較例3のZnTiO被覆酸化亜鉛粒子の透過型電子顕微鏡写真を示す図である。 図12は、比較例3のZnTiO被覆酸化亜鉛粒子のX線回折のスペクトルを示す図である。 図13は、比較例4のZnFe被覆酸化亜鉛粒子の透過型電子顕微鏡写真を示す図である。 図14は、比較例4のZnFe被覆酸化亜鉛粒子のX線回折のスペクトルを示す図である。 図15は、実施例1のZnTiO被覆酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率、実施例2のZnFe被覆酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率、及び比較例1の酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率を比較した波長300~400nmの紫外線波長領域における全光線透過率曲線を示した図である。 図16は、実施例及び比較例の酸化亜鉛粒子の一次粒子径の計測方法を図示する模式図である。 図17は、六角板状酸化亜鉛粒子のアスペクト比の計測方法を図示する模式図である。 図18は、不定形の酸化亜鉛粒子のアスペクト比の計測方法を図示する模式図である。 図19は、紫外線遮蔽率1(%)、紫外線遮蔽率2(%)についての説明図である。
以下、本発明を詳細に説明する。
本発明は、Ti元素及び/又はFe元素並びにZn元素から成る固溶体を少なくとも一部に含有し、形状が六角板状である酸化亜鉛粒子である。すなわち、特許文献1に記載したような特徴を有する優れた性能を有する酸化亜鉛粒子において、Ti元素及び/又はFe元素並びにZn元素から成る固溶体を少なくとも一部に含有するものとすることで、紫外線の吸収特性を変化させ、更に、紫外線遮蔽性能を向上させた酸化亜鉛粒子を得るものである。
本発明の固溶体を被覆又は含有する酸化亜鉛粒子は、酸化亜鉛の電子励起の直接遷移の性質と、ZnTiO、又はZnFeの紫外線遮蔽性能とを併せ持つ、従来にはない酸化亜鉛粒子である。
(Ti元素及び/又はFe元素並びにZn元素から成る固溶体)
本発明の酸化亜鉛粒子は、Ti元素及び/又はFe元素並びにZn元素から成る固溶体を少なくとも一部に含有する。すなわち、一部にZnTiO及び/又はZnFeを有するものであり、これらの化合物による被覆を酸化亜鉛粒子表面に形成したものであってもよいし、酸化亜鉛粒子内に部分的にZnTiO及び/又はZnFeからなる部分を存在させたものであってもよい。酸化亜鉛粒子表面をZnTiO及び/又はZnFeによって被覆したものが、可視光透過率が高くなるため、化粧品に配合した際により透明性が高い等の観点からみてより好ましい。
本発明の酸化亜鉛粒子は、上記Ti元素、Fe元素の両方を含有する状態としてもよい。また、Ti元素及び/又はFe元素の含有量は、酸化亜鉛粒子100重量%に対し、TiO換算及び/又はFe換算で5重量%以上30重量%以下が好ましく、7重量%以上25重量%以下がより好ましい。5重量%未満であると、上述した波長400nm以下の紫外線の吸収能向上が充分に得られない点で好ましくない。30重量%を超えると、酸化亜鉛粒子の持つ電子励起の直接遷移の性質が失われるという点で好ましくない。上記酸化亜鉛粒子に対するTiO換算及び/又はFe換算の含有量は、蛍光X線分析装置ZSX PrimusII(リガク社製)により測定した値であり、適用したソフトウェアはEZスキャン(SQX)である。
本発明においては、Ti元素及び/又はFe元素はZn元素との固溶体を形成するものである。より好ましくは、ZnTiO、又はZnFeの一般式で表される状態で酸化亜鉛粒子中又は表面に存在することが好ましい。
このようなZnTiO及び/又はZnFeが形成されていることは、X線回折によって確認することができる。実施例においても詳述したように、本発明の酸化亜鉛粒子について、X線回折の測定を行ったところ、ZnO並びにZnTiO及び/又はZnFeの回折のスペクトルを観察することができ、これによって、上述した固溶体の状態でTi元素及び/又はFe元素が存在することが確認できる。X線回折は銅管球をもつX線回折装置UltimaIII(リガク社製)により測定した。
本発明の酸化亜鉛粒子は、母体となる六角板状の原料酸化亜鉛粒子に対して、被覆によってZnTiO、ZnFeで表される固溶体を形成した場合、母体となる原料酸化亜鉛粒子より紫外線遮蔽率が高いものであることが好ましい。紫外線には、UV-A波とUV-B波とがあるが、そのいずれか又は両方において、母体となる原料酸化亜鉛粒子よりも紫外線遮蔽率が高いことが好ましい。具体的には、後述する(被覆酸化亜鉛粒子の紫外線遮蔽率(%))/(被覆酸化亜鉛粒子の母体となる原料酸化亜鉛粒子の紫外線遮蔽率(%))の比の値が1.1以上になることが好ましい。
本明細書において紫外線遮蔽率は、実施例に記載した方法で作成した塗膜について測定した全光線透過率を元に算出した値である。
(全光線透過率1、全光線透過率2)
本明細書において、実施例で詳述した全光線透過率1(%)、全光線透過率2(%)は、作成した塗膜を分光光度計V-570(日本分光社製)で測定した値である。なお、全光線透過率1(%)の値は波長300nmにおける全光線透過率の値、全光線透過率2(%)の値は波長360nmにおける全光線透過率の値である。全光線透過率1(%)の値が小さい程、UV-Bの波長の紫外線に対する紫外線遮蔽効果が高いことを意味し、全光線透過率2(%)の値が小さい程、UV-Aの波長の紫外線に対する紫外線遮蔽効果が高いことを意味する。
(紫外線遮蔽率1、紫外線遮蔽率2)
本明細書において紫外線遮蔽率を上記の全光線透過率を元に以下の式により算出した。
紫外線遮蔽率1(%)=100%-全光線透過率1(%)
紫外線遮蔽率2(%)=100%-全光線透過率2(%)
つまり、紫外線遮蔽率1(%)の値は波長300nmにおける紫外線に対する遮蔽率を意味し、この値が大きい程UV-B波に対する紫外線遮蔽性が高いことを意味する。
また、紫外線遮蔽率2(%)の値は波長360nmにおける紫外線に対する遮蔽率を意味し、この値が大きい程UV-A波に対する紫外線遮蔽性が高いことを意味する。
全光線透過率1(%)、全光線透過率2(%)、紫外線遮蔽率1(%)、紫外線遮蔽率2(%)については、各々の関係性についてより理解し易くするため、説明図を図19に添付した。
((被覆酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率1(%))/(被覆酸化亜鉛粒子の母体となる原料酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率1(%))の比)
本発明の酸化亜鉛粒子は本明細書において、被覆によってZnTiO、ZnFeで表される固溶体を形成した場合、UV-B波における((被覆酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率1(%))/(被覆酸化亜鉛粒子の母体となる原料酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率1(%))の比)が1.1以上となることが好ましい。
((被覆酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率2(%))/(被覆酸化亜鉛粒子の母体となる原料酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率2(%))の比)
本発明の酸化亜鉛粒子は本明細書において、被覆によってZnTiO、ZnFeで表される固溶体を形成した場合、UV-A波における((被覆酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率2(%))/(被覆酸化亜鉛粒子の母体となる原料酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率2(%))の比)が1.1以上となることが好ましい。
(酸化亜鉛粒子の形状)
本発明の酸化亜鉛粒子は、六角板状の形状を有するものである。このような形状の酸化亜鉛粒子は、特許文献1においても記載したとおり、優れた紫外線遮蔽性能を有しており、かつ、特定の粒子形状を有することに由来する物理的効果によって、化粧料素材として優れた機能を発揮する。より具体的には、六角板状の形状に由来する滑らかな感触が得られ、またソフトフォーカス性においても優れる粒子である。本発明の酸化亜鉛粒子は、このような優れた効果を有する、六角板状酸化亜鉛粒子において、400nm以下の領域における紫外線吸収能をより優れたものとするものである。
上記六角板状形状を有する酸化亜鉛粒子は、特に限定されるものではないが、以下に詳述するようなものであることが好ましい。
本発明の酸化亜鉛粒子は、一次粒子径が0.01μm以上であることが好ましい。酸化亜鉛粒子の一次粒子径を適宜コントロールすることにより、良好な滑り性、ソフトフォーカス効果、紫外線遮蔽性、可視光透明性などの様々な性能を選択的に付与することができる。上記一次粒子径は、0.02μm以上であることがより好ましく、0.03μm以上であることが更に好ましい。
上記一次粒子径の上限は特に限定されるものではないが、例えば、100μm以下であることが好ましく、50μm以下であることがより好ましく、25μm以下であることが更に好ましい。
本明細書における一次粒子径は、透過型電子顕微鏡JEM-2100(日本電子社製)写真の2000~50000倍の視野での定方向径(粒子を挟む一定方向の二本の平行線の間隔;画像上のどのような形状の粒子についても、一定方向で測定した)で定義される粒子径(μm)であって、TEM写真内の一次粒子250個の定方向径を計測し、その累積分布の平均値を求めたものである。上記一次粒子径の測定方法については、図16を添付した。
更に、本発明の六角板状酸化亜鉛粒子は、アスペクト比が2.5以上であることが好ましい。すなわち、六角板状の形状を有する酸化亜鉛粒子であり、このような形状によって、特に化粧料に使用した場合に、滑りがよく、優れた使用感を得ることができる。本発明における六角板状酸化亜鉛粒子のアスペクト比は、透過型電子顕微鏡JEM-2100(日本電子社製)写真の2000~50000倍の視野において、六角板状酸化亜鉛粒子の六角形状面が手前を向いている粒子についてはその定方向径(粒子を挟む一定方向の二本の平行線の間隔;画像上の六角形状面が手前を向いている粒子について、一定方向で測定した)で定義される粒子径(μm)を粒子250個分計測した平均値をL、六角板状酸化亜鉛粒子の側面が手前を向いている粒子(長方形に見える粒子)についてはその厚み(μm)(長方形の短い方の辺の長さ)を粒子250個分計測した平均値をTとしたとき、それらの値の比;L/Tとして求めた値である。上記アスペクト比の測定方法については、図17を添付した。上記アスペクト比は、2.7以上であることがより好ましく、3.0以上であることが更に好ましい。
なお、本明細書の比較例における粒子形状が不定形の粒子のアスペクト比については、透過型電子顕微鏡JEM-2100(日本電子社製)写真の2000~50000倍の視野において、不定形の粒子250個について粒子の長径と、長径の中心を通る短径を計測し、長径と短径の長さの比;長径/短径を求め、その累積分布の平均値をアスペクト比として求めたものである。不定形の粒子のアスペクト比の計測方法について図18に示した。
(製造方法)
本発明の酸化亜鉛粒子は、製造方法を特に限定されるものではないが、例えば、特許文献1に記載された方法によって得られた原料酸化亜鉛粒子に対してFe、Tiを含有する化合物によって処理を施す方法、特許文献1に記載された六角板状酸化亜鉛粒子の製造方法(微粒子酸化亜鉛を亜鉛塩水溶液中で熟成する工程を含む酸化亜鉛の製造方法)において、鉄イオン、チタンイオンの存在下で反応を行う方法等を挙げることができる。
より具体的には、六角板状である原料酸化亜鉛粒子の水性スラリーに、チタン塩及び/又は鉄塩の水溶液とアルカリ水溶液とをpH、温度の条件を保ちながら添加する工程(1-1)、及び、前記工程(1-1)によって得られた被覆酸化亜鉛粒子を焼成する工程(1-2)を有することを特徴とする製造方法(製造方法1)、
酸化亜鉛粒子を、チタン塩、及び/又は鉄塩を溶解した亜鉛塩水溶液中に添加し、加熱熟成する工程(2-1)、及び、前記工程(2-1)によって得られた水酸化物含有六角板状酸化亜鉛粒子を焼成する工程(2-2)を有することを特徴とする製造方法(製造方法2);
のいずれかであることが特に好ましい。
以下、これらの製造方法について、詳述する。
(製造方法1)
上記製造方法は、六角板状である原料酸化亜鉛粒子を液体媒体に添加して水性スラリーとし、その水性スラリー中で、チタン塩及び/又は鉄塩を原料酸化亜鉛粒子の表面に析出させることによって表面被覆を形成させ、これを焼成して、被覆を形成する製造方法である。このような製造方法によって得られた被覆酸化亜鉛粒子について、X線回折による分析を行ったところ、酸化チタン、酸化鉄による被覆ではなく、Ti元素及び/又はFe元素並びにZn元素から成る固溶体による被覆が形成されていることが明らかとなった。
当該工程において使用される原料酸化亜鉛粒子としての六角板状酸化亜鉛粒子は、特許文献1に記載された製造方法によって得られたものを好適に使用することができる。
特許文献1に記載された酸化亜鉛粒子の製造方法は、スラリー中の反応であるが、この反応を行った後、そのまま本発明の製造方法に供するものであってもよいし、濾過・水洗・乾燥・焼成等の工程を行った後、再度、水性媒体中に分散させることによって水性スラリーとしてもよい。
上記スラリーにおいて、上記六角板状である原料酸化亜鉛粒子は、10~500g/lの濃度とすることが好ましい。
スラリーを構成する液体媒体は、水又は水と水溶性有機溶媒の混合液体であることが好ましく、水であることが最も好ましい。水と水溶性有機溶媒の混合液体を使用する場合は、水溶性有機溶媒として、メタノール、エタノール等の低級アルコール;アセトン等の水と任意の割合で混合させることができる溶媒を使用することができ、水溶性有機溶媒の使用量は、混合溶媒全量に対して1~30重量%であることが好ましい。
スラリーの調製に際しては、必要に応じて分散剤を使用するものであってもよい。
上記チタン塩としては、特に限定されず、例えば、硫酸チタン、チタンテトライソプロボキシドのようなチタンテトラアルコキシド、四塩化チタン等を挙げることができる。
上記鉄塩としては、特に限定されず、例えば、酢酸第一鉄、三酢酸鉄、塩化第一鉄、塩化第二鉄、硫酸第一鉄、硫酸第二鉄、硝酸第一鉄、硝酸第二鉄等を挙げることができる。
上記チタン塩及び/又は鉄塩の水溶液は、チタン塩及び/又は鉄塩の濃度が、50~300g/lであることが好ましい。上記範囲内の水溶液を使用することによって、生産性を低下させることなく、かつ母体となる原料酸化亜鉛粒子表面に均一に被覆層を形成させることができるという点で好ましいものである。
上記チタン塩及び/又は鉄塩の水溶液は、チタン塩及び/又は鉄塩と水以外の成分を必要とするものではないが、本発明の効果を損なわない範囲でその他の成分を配合することを妨げるものではない。
上記アルカリ水溶液中のアルカリ性化合物としては特に限定されず、水酸化ナトリウム、水酸化カリウム、アンモニア等を使用することができる。上記アルカリ水溶液の濃度は特に限定されないが、例えば、5~30重量%とすることができる。
上述した工程(1-1)においては、pH及び温度の条件を保ちながら、チタン塩及び/又は鉄塩の水溶液とアルカリ水溶液とを添加する。これによって、均一にチタン及び/又は鉄が析出することによって、好適に目的を達成することができる。
上記pHと温度の条件としては、pHを9±3で温度10℃以上90℃以下の条件を維持しながら、上記チタン塩及び/又は鉄塩の水溶液と上記アルカリ水溶液とを添加することが好ましい。反応時間は特に限定されず、例えば、10~360分で行うことができる。
上記チタン塩及び/又は鉄塩の水溶液と上記アルカリ水溶液の添加は、各々の水溶液を添加対象となる上記スラリーの液面の異なる位置に同時に添加する方法が好ましい。同時に添加することによって、母体となる酸化亜鉛粒子の表面に、形状・粒子径が均一な水酸化チタン粒子及び/又は形状・粒子径が均一な水酸化鉄粒子の被覆を形成させることができる。このような添加の方法としては特に限定されず、例えば、ポンプによって一定量を連続的に添加する方法等を挙げることができる。上記水溶液の添加量は、目的とする酸化亜鉛粒子中のチタン、鉄の量に応じた量とすることが好ましい。上記スラリーに上記チタン塩及び/又は鉄塩の水溶液とアルカリ水溶液とを同時に添加する際は、上記スラリーは撹拌しておくことが好ましい。これによって、酸化亜鉛粒子表面に均一な水酸化チタン粒子及び/又は水酸化鉄粒子を形成させることができる。上記スラリーの撹拌は、撹拌機等を用いた通常の撹拌方法で行うことができる。
上記工程(1-1)を行ったスラリーに対して、その後、濾過を行い、必要に応じて水洗、乾燥を行うことで、水酸化物被覆酸化亜鉛粒子を得ることができる。このようにして得られた水酸化物被覆酸化亜鉛粒子に対して工程(1-2)において焼成を行う。これによって、Ti元素及び/又はFe元素並びにZn元素から成る固溶体が形成される。
上記工程(1-2)において、焼成温度は400~900℃であることが好ましい。500℃以上であれば結晶性が高く、紫外線遮蔽効果が高くなる点で好ましい。工程(1-2)における焼成雰囲気は特に限定されず、大気、酸素、窒素、二酸化炭素、水素、アルゴン、メタンなどが挙げられる。焼成時間は、焼成温度にもよるが、1~50時間であることが好ましい。
(製造方法2)
上記製造方法2は、チタン塩及び/又は鉄塩を溶解した亜鉛塩水溶液中で、原料酸化亜鉛粒子を加熱熟成する工程(2-1)を有する。
上記工程(2-1)において、使用することができるチタン塩、鉄塩としては上述したものをそれぞれ挙げることができる。
亜鉛塩としては特に限定されず、硫酸亜鉛、硝酸亜鉛、酢酸亜鉛、塩化亜鉛、蟻酸亜鉛等を挙げることができる。
上記亜鉛塩水溶液における亜鉛塩の濃度は、0.005~4.0mol/lであることが好ましい。上記亜鉛塩水溶液におけるチタン塩及び/又は鉄塩の濃度は、50~300g/lであることが好ましい。
上記亜鉛塩水溶液を構成する液体媒体は、水又は水と水溶性有機溶媒の混合液体であることが好ましく、水であることが最も好ましい。水と水溶性有機溶媒の混合液体を使用する場合は、水溶性有機溶媒として、メタノール、エタノール等の低級アルコール;アセトン等の水と任意の割合で混合させることができる溶媒を使用することができ、水溶性有機溶媒の使用量は、混合溶媒全量に対して1~30重量%であることが好ましい。
スラリーの調製に際しては、必要に応じて分散剤を使用するものであってもよい。
製造方法2における原料酸化亜鉛粒子としては、六角板状のものに限定されるわけではなく、任意の形状の酸化亜鉛粒子を使用することができる。
上記原料酸化亜鉛粒子を亜鉛塩水溶液中に添加し、撹拌・分散させることによりスラリー状にし、当該スラリー中で反応を行うことができる。
上記原料酸化亜鉛粒子は、スラリー全量に対して10~500g/lの濃度とすることが好ましい。反応温度は、10~110℃であることが好ましく、反応時間は0.5~24時間であることが好ましい。上記工程(2-1)を行うスラリーのpHは5.5~13.5であることが好ましい。
上記工程(2-1)を行ったスラリーに対して、その後、濾過を行い、必要に応じて水洗、乾燥を行うことで、水酸化物含有酸化亜鉛粒子を得ることができる。このようにして得られた水酸化物含有酸化亜鉛粒子に対して工程(2-2)において焼成を行う。これによって、Ti元素及び/又はFe元素並びにZn元素から成る固溶体が形成される。
上記工程(2-2)において、焼成温度は400~900℃であることが好ましい。500℃以上であれば結晶性が高く、紫外線遮蔽効果が高くなる点で好ましい。工程(2-2)における焼成雰囲気は特に限定されず、大気、酸素、窒素、二酸化炭素、水素、アルゴン、メタンなどが挙げられる。焼成時間は、焼成温度にもよるが、1~5時間であることが好ましい。
(表面処理)
本発明の酸化亜鉛粒子は、更に表面処理を施したものであってもよい。上記表面処理としては特に限定されず、ケイ素酸化物、ケイ素酸化物の水和物、アルミニウムの酸化物及びアルミニウムの水酸化物からなる群から選択される少なくとも1種の化合物による皮膜を形成させる表面処理、撥水性有機化合物による表面処理、シランカップリング剤、チタンカップリング剤等のカップリング剤による表面処理等を挙げることができる。これらの2種以上の表面処理を組み合わせて行うものであってもよい。
上記ケイ素酸化物、ケイ素酸化物の水和物、アルミニウムの酸化物及びアルミニウムの水酸化物からなる群から選択される少なくとも1種の化合物による皮膜の形成は、Si源化合物及び/又はAl源化合物を、加水分解や加熱分解などにより粉体表面に析出させる等の方法で行うことができる。上記Si源化合物及び/又はAl源化合物としては、テトラアルコキシシランやその加水分解縮合物、ケイ酸ナトリウム、ケイ酸カリウム、アルミニウムアルコキシドやその加水分解縮合物、アルミン酸ナトリウム等、容易にSiOやAl(OH)、Alに変換する化合物等を使用することができる。
上記加水分解としては特に限定されないが、硫酸、塩酸、酢酸、硝酸などの酸を使用した方法が挙げられる。この水分散体を用いたシリカの処理方法における中和方法は、分散体に酸を入れてからSi源化合物及び/又はAl源化合物を添加する方法、分散体にSi源化合物及び/又はAl源化合物を入れてから酸を添加する方法、分散体にSi源化合物及び/又はAl源化合物と酸を同時に添加する方法のいずれでも良い。
上記撥水性有機化合物による処理としては、特に限定されるものではないが、例えば、シリコーンオイル、アルキルシラン、アルキルチタネート、アルキルアルミネート、ポリオレフィン、ポリエステル、金属石鹸、アミノ酸、アミノ酸塩などが挙げられる。なかでも、化学的な安定性からシリコーンオイルが好ましい。このシリコーンオイルの具体例としては、ジメチルポリシロキサン(例えば、信越化学工業製KF-96A-100cs、旭化成ワッカーシリコーン製DM10)、メチルハイドロジェンポリシロキサン(例えば、信越化学工業製KF-99P、東レ・ダウコーニング製SH1107C)、(ジメチコン/メチコン)コポリマー(例えば、信越化学工業製KF-9901)、メチルフェニルシリコーン(例えば、信越化学工業製KF-50-100cs)、アミノ変性シリコーン(例えば、信越化学工業製KF-8015、東レ・ダウコーニング製JP-8500 Conditioning Agent、旭化成ワッカーシリコーン製ADM6060)、トリエトキシシリルエチルポリジメチルシロキシエチルジメチコン(例えば、信越化学工業製KF-9908)、トリエトキシシリルエチルポリジメチルシロキシエチルヘキシルジメチコン(例えば、信越化学工業製KF-9909)による処理等を挙げることができる。
上記シランカップリング剤による処理としては、ビニルトリス(2-メトキシエトキシ)シラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、ヘキサメチルジシラザン、ヘキシルトリメトキシシラン、デシルトリメトキシシランを挙げることができる。
上記チタンカップリング剤による処理としては、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラ(2-エチルヘキシル)チタネート、テトラメチルチタネート、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタンエチルアセトアセテート、チタンオクタンジオレート、チタンラクテート、チタントリエタノールアミネート、ポリヒドロキシチタンステアレートを挙げることができる。
上記表面処理を行う場合は、表面処理は、処理後の粉体の全量に対して1~10重量%となる割合で行うことが好ましい。当該範囲内のものとすることで、滑り性が向上し、かつ耐湿性が向上し、樹脂への分散性が向上するという点で好ましい。
(用途)
本発明の酸化亜鉛粒子は、その他の成分と混合して、化粧料、インキ、塗料、プラスチック等に配合することもできる。特に、上述の特性を有しているため、安定性及び紫外線遮蔽効果に優れた化粧料を得ることができる点で好ましいものである。
(化粧料分野での使用)
上記化粧料としては特に限定されず、このような複合粉体に、必要に応じて化粧品原料を混合することによって、サンスクリーン剤等の紫外線防御用化粧料;ファンデーション等のベースメイク化粧料;口紅等のポイントメイク化粧料等を得ることができる。また、紫外線遮蔽能という特徴を有するものであることから、化粧品に使用した場合に優れた性能を有するものである。
上記化粧料は、油性化粧料、水性化粧料、O/W型化粧料、W/O型化粧料の任意の形態とすることができる。
上記化粧料は、化粧品分野において使用することができる任意の水性成分、油性成分を併用するものであってもよい。上記水性成分及び油性成分としては特に限定されず、例えば、油剤、界面活性剤、保湿剤、高級アルコール、金属イオン封鎖剤、天然及び合成高分子、水溶性及び油溶性高分子、紫外線遮蔽剤、各種抽出液、有機染料等の色剤、防腐剤、酸化防止剤、色素、増粘剤、pH調整剤、香料、冷感剤、制汗剤、殺菌剤、皮膚賦活剤、各種粉体等の成分を含有するものであってもよい。
上記油剤は特に限定はないが、例えば、天然動植物油脂(例えば、オリーブ油、ミンク油、ヒマシ油、パーム油、牛脂、月見草油、ヤシ油、ヒマシ油、カカオ油、マカデミアナッツ油等);蝋(例えば、ホホバ油、ミツロウ、ラノリン、カルナウバロウ、キャンデリラロウ等);高級アルコール(例えば、ラウリルアルコール、ステアリルアルコール、セチルアルコール、オレイルアルコール等);高級脂肪酸(例えば、ラウリン酸、パルミチン酸、ステアリン酸、オレイン酸、ベヘニン酸、ラノリン脂肪酸等;高級脂肪族炭化水素例えば、流動パラフィン、固形パラフィン、スクワラン、ワセリン、セレシン、マイクロクリスタリンワックス等);合成エステル油(例えば、ブチルステアレート、ヘキシルラウレート、ジイソプロピルアジペート、ジイソプロピルセバケート、ミリスチン酸オクチルドデシル、イソプロピルミリステート、イソプロピルパルミテートイソプロピルミリステート、セチルイソオクタノエート、ジカプリン酸ネオペンチルグリコール);シリコーン誘導体(例えば、メチルシリコーン、メチルフェニルシリコーン等のシリコーン油)などが例示できる。さらに、油溶性のビタミン、防腐剤、美白剤などを配合することもできる。
上記界面活性剤としては、親油性非イオン界面活性剤、親水性非イオン界面活性剤等を挙げることができる。上記親油性非イオン界面活性剤としては特に限定されず、例えば、ソルビタンモノオレエート、ソルビタンモノイソステアレート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンセスキオレエート、ソルビタントリオレエート、ペンタ-2-エチルヘキシル酸ジグリセロールソルビタン、テトラ-2-エチルヘキシル酸ジグリセロールソルビタン等のソルビタン脂肪酸エステル類、モノ綿実油脂肪酸グリセリン、モノエルカ酸グリセリン、セスキオレイン酸グリセリン、モノステアリン酸グリセリン、α,α’-オレイン酸ピログルタミン酸グリセリン、モノステアリン酸グリセリンリンゴ酸等のグリセリンポリグリセリン脂肪酸類、モノステアリン酸プロピレングリコール等のプロピレングリコール脂肪酸エステル類、硬化ヒマシ油誘導体、グリセリンアルキルエーテル等を挙げることができる。
親水性非イオン界面活性剤としては特に限定されず、例えば、POEソルビタンモノオレエート、POEソルビタンモノステアレート、POEソルビタンテトラオレエート等のPOEソルビタン脂肪酸エステル類、POEソルビットモノラウレート、POEソルビットモノオレエート、POEソルビットペンタオレエート、POEソルビットモノステアレート等のPOEソルビット脂肪酸エステル類、POEグリセリンモノステアレート、POEグリセリンモノイソステアレート、POEグリセリントリイソステアレート等のPOEグリセリン脂肪酸エステル類、POEモノオレエート、POEジステアレート、POEモノジオレエート、システアリン酸エチレングリコール等のPOE脂肪酸エステル類、POEラウリルエーテル、POEオレイルエーテル、POEステアリルエーテル、POEベヘニルエーテル、POE2-オクチルドデシルエーテル、POEコレスタノールエーテル等のPOEアルキルエーテル類、POEオクチルフェニルエーテル、POEノニルフェニルエーテル、POEジノニルフェニルエーテル等のPOEアルキルフェニルエーテル類、ブルロニック等のプルアロニック型類、POE・POPセチルエーテル、POE・POP2-デシルテトラデシルエーテル、POE・POPモノブチルエーテル、POE・POP水添ラノリン、POE・POPグリセリンエーテル等のPOE・POPアルキルエーテル類、テトロニック等のテトラPOE・テトラPOPエチレンジアミン縮合物類、POEヒマシ油、POE硬化ヒマシ油、POE硬化ヒマシ油モノイソステアレート、POE硬化ヒマシ油トリイソステアレート、POE硬化ヒマシ油モノピログルタミン酸モノイソステアリン酸ジエステル、POE硬化ヒマシ油マレイン酸等のPOEヒマシ油硬化ヒマシ油誘導体、POEソルビットミツロウ等のPOEミツロウ・ラノリン誘導体、ヤシ油脂肪酸ジエタノールアミド、ラウリン酸モノエタノールアミド、脂肪酸イソプロパノールアミド等のアルカノールアミド、POEプロピレングリコール脂肪酸エステル、POEアルキルアミン、POE脂肪酸アミド、ショ糖脂肪酸エステル、POEノニルフェニルホルムアルデヒド縮合物、アルキルエトキシジメチルアミンオキシド、トリオレイルリン酸等を挙げることができる。
その他の界面活性剤としては、例えば、脂肪酸セッケン、高級アルキル硫酸エステル塩、POEラウリル硫酸トリエタノールアミン、アルキルエーテル硫酸エステル塩等のアニオン界面活性剤、アルキルトリメチルアンモニウム塩、アルキルピリジニウム塩、アルキル四級アンモニウム塩、アルキルジメチルベンジルアンモニウム塩、POEアルキルアミン、アルキルアミン塩、ポリアミン脂肪酸誘導体等のカチオン界面活性剤、及び、イミダゾリン系両性界面活性剤、ベタイン系界面活性剤等の両性界面活性剤を安定性及び皮膚刺激性に問題のない範囲で配合してもよい。
上記保湿剤としては特に限定されず、例えば、キシリトール、ソルビトール、マルチトール、コンドロイチン硫酸、ヒアルロン酸、ムコイチン硫酸、カロニン酸、アテロコラーゲン、コレステリル-12-ヒドロキシステアレート、乳酸ナトリウム、胆汁酸塩、dl-ピロリドンカルボン酸塩、短鎖可溶性コラーゲン、ジグリセリン(EO)PO付加物、イサイヨバラ抽出物、セイヨウノコギリソウ抽出物、メリロート抽出物等を挙げることができる。
上記高級アルコールとしては特に限定されず、例えば、ラウリルアルコール、セチルアルコール、ステアリルアルコール、ベヘニルアルコール、ミリスチルアルコール、オレイルアルコール、セトステアリルアルコール等の直鎖アルコール、モノステアリルグリセリンエーテル(バチルアルコール)、2-デシルテトラデシノール、ラノリンアルコール、コレステロール、フィトステロール、ヘキシルドデカノール、イソステアリルアルコール、オクチルドデカノール等の分枝鎖アルコール等を挙げることができる。
金属イオン封鎖剤としては特に限定されず、例えば、1-ヒドロキシエタン-1,1- ジフォスホン酸、1-ヒドロキシエタン-1,1-ジフォスホン酸四ナトリウム塩、クエン酸ナトリウム、ポリリン酸ナトリウム、メタリン酸ナトリウム、グルコン酸、リン酸、クエン酸、アスコルビン酸、コハク酸、エデト酸等を挙げることができる。
上記天然の水溶性高分子としては特に限定されず、例えば、アラアビアガム、トラガカントガム、ガラクタン、グアガム、キャロブガム、カラヤガム、カラギーナン、ペクチン、カンテン、クインスシード(マルメロ)、アルゲコロイド(カッソウエキス)、デンプン(コメ、トウモロコシ、バレイショ、コムギ)、グリチルリチン酸等の植物系高分子、キサンタンガム、デキストラン、サクシノグルカン、プルラン等の微生物系高分子、コラーゲン、カゼイン、アルブミン、ゼラチン等の動物系高分子を挙げることができる。
半合成の水溶性高分子としては特に限定されず、例えば、カルボキシメチルデンプン、メチルヒドロキシプロピルデンプン等のデンプン系高分子、メチルセルロース、ニトロセルロース、エチルセルロース、メチルヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、セルロース硫酸ナトリウム、ヒドロキシプロピルセルロース、カルボキシメチルセルロースナトリウム(CMC)、結晶セルロース、セルロース末等のセルロース系高分子、アルギン酸ナトリウム、アルギン酸プロピレングリコールエステル等のアルギン酸系高分子等を挙げることができる。
合成の水溶性高分子としては特に限定されず、例えば、ポリビニルアルコール、ポリビニルメチルエーテル、ポリビニルピロリドン等のビニル系高分子、ポリエチレングリコール20,000、40,000、60,000等のポリオキシエチレン系高分子、ポリオキシエチレンポリオキシプロピレン共重合体共重合系高分子、ポリアクリル酸ナトリウム、ポリエチルアクリレート、ポリアクリルアミド等のアクリル系高分子、ポリグリセリン、ポリエチレンイミン、カチオンポリマー、カルボキシビニルポリマー、アルキル変性カルボキシビニルポリマー、(アクリル酸ヒドロキシエチル/アクリロイルジメチルタウリンNa)コポリマー、(アクリル酸Na/アクリロイルジメチルタウリンNa)コポリマー、(アクリロイルジメチルタウリンアンモニウム/ビニルピロリドン)コポリマー、(アクリロイルジメチルタウリンアンモニウムメタクリル酸ベヘネス-25)クロスポリマー等を挙げることができる。
無機の水溶性高分子としては特に限定されず、例えば、ベントナイト、ケイ酸AlMg(ビーガム)、ラポナイト、ヘクトライト、無水ケイ酸等を挙げることができる。
紫外線遮蔽剤としては特に限定されず、例えば、パラアミノ安息香酸(以下PABAと略す)、PABAモノグリセリンエステル、N,N-ジプロポキシPABAエチルエステル、N,N-ジエトキシPABAエチルエステル、N,N-ジメチルPABAエチルエステル、N,N-ジメチルPABAブチルエステル等の安息香酸系紫外線遮蔽剤;ホモメンチル-N-アセチルアントラニレート等のアントラニル酸系紫外線遮蔽剤;アミルサリシレート、メンチルサリシレート、ホモメンチルサリシレート、オクチルサリシレート、フェニルサリシレート、ベンジルサリシレート、p-イソプロパノールフェニルサリシレート等のサリチル酸系紫外線遮蔽剤;オクチルシンナメート、エチル-4-イソプロピルシンナメート、メチル-2,5-ジイソプロピルシンナメート、エチル-2,4-ジイソプロピルシンナメート、メチル-2,4-ジイソプロピルシンナメート、プロピル-p-メトキシシンナメート、イソプロピル-p-メトキシシンナメート、イソアミル-p-メトキシシンナメート、2-エトキシエチル-p-メトキシシンナメート、シクロヘキシル-p-メトキシシンナメート、エチル-α-シアノ-β-フェニルシンナメート、2-エチルヘキシル-α-シアノ-β-フェニルシンナメート、グリセリルモノ-2-エチルヘキサノイル-ジパラメトキシシンナメート等のケイ皮酸系紫外線遮蔽剤;2,4-ジヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-4’-メチルベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸塩、4-フェニルベンゾフェノン、2-エチルヘキシル-4’-フェニル-ベンゾフェノン-2-カルボキシレート、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、4-ヒドロキシ-3- カルボキシベンゾフェノン等のベンゾフェノン系紫外線遮蔽剤;3-(4’-メチルベンジリデン)-d,l-カンファー、3-ベンジリデン-d,l-カンファー、ウロカニン酸、ウロカニン酸エチルエステル、2-フェニル-5-メチルベンゾキサゾール、2,2’-ヒドロキシ-5-メチルフェニルベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニルベンゾトリアゾール、ジベンザラジン、ジアニソイルメタン、4-メトキシ-4’-t-ブチルジベンゾイルメタン、5-(3,3-ジメチル-2-ノルボルニリデン)-3-ペンタン-2-オン等を挙げることができる。
その他薬剤成分としては特に限定されず、例えば、ビタミンA油、レチノール、パルミチン酸レチノール、イノシット、塩酸ピリドキシン、ニコチン酸ベンジル、ニコチン酸アミド、ニコチン酸DL-α-トコフェロール、アルコルビン酸リン酸マグネシウム、2-O-α-D-グルコピラノシル-L-アスコルビン酸、ビタミンD2(エルゴカシフェロール)、dl-α-トコフェロール、酢酸dl-α-トコフェロール、パントテン酸、ビオチン等のビタミン類;エストラジオール、エチニルエストラジオール等のホルモン;アルギニン、アスパラギン酸、シスチン、システイン、メチオニン、セリン、ロイシン、トリプトファン等のアミノ酸;アラントイン、アズレン等の抗炎症剤、アルブチン等の美白剤、;タンニン酸等の収斂剤;L-メントール、カンフル等の清涼剤やイオウ、塩化リゾチーム、塩化ピリドキシン等を挙げることができる。
各種の抽出液としては特に限定されず、例えば、ドクダミエキス、オウバクエキス、メリロートエキス、オドリコソウエキス、カンゾウエキス、シャクヤクエキス、サボンソウエキス、ヘチマエキス、キナエキス、ユキノシタエキス、クララエキス、コウホネエキス、ウイキョウエキス、サクラソウエキス、バラエキス、ジオウエキス、レモンエキス、シコンエキス、アロエエキス、ショウブ根エキス、ユーカリエキス、スギナエキス、セージエキス、タイムエキス、茶エキス、海藻エキス、キューカンバーエキス、チョウジエキス、キイチゴエキス、メリッサエキス、ニンジンエキス、マロニエエキス、モモエキス、桃葉エキス、クワエキス、ヤグルマギクエキス、ハマメリスエキス、プラセンタエキス、胸腺抽出物、シルク抽出液、甘草エキス等を挙げることができる。
上記各種粉体としては、ベンガラ、黄酸化鉄、黒酸化鉄、雲母チタン、酸化鉄被覆雲母チタン、酸化チタン被覆ガラスフレーク等の光輝性着色顔料、マイカ、タルク、カオリン、セリサイト、二酸化チタン、シリカ等の無機粉末やポリエチレン末、ナイロン末、架橋ポリスチレン、セルロースパウダー、シリコーン末等の有機粉末等を挙げることができる。好ましくは、官能特性向上、化粧持続性向上のため、粉末成分の一部又は全部をシリコーン類、フッ素化合物、金属石鹸、油剤、アシルグルタミン酸塩等の物質にて、公知の方法で疎水化処理して使用される。また、本発明に該当しない他の複合粉体を混合して使用するものであってもよい。
(インキ分野での使用)
本発明の酸化亜鉛粉末をインキへの添加成分として使用する場合は、酸化チタン、ベンガラ、アンチモンレッド、カドミウムイエロー、コバルトブルー、紺青、群青、カーボンブラック、黒鉛などの有色顔料、及び、炭酸カルシウム、カオリン、クレー、硫酸バリウム、水酸化アルミニウム、タルク等の体質顔料を挙げることができる。さらに有機顔料としては、溶性アゾ顔料、不溶性アゾ顔料、アゾレーキ顔料、縮合アゾ顔料、銅フタロシアニン顔料、縮合多環顔料等の顔料成分;シェラック樹脂、アクリル樹脂、スチレン-アクリル樹脂、スチレン-マレイン酸樹脂、スチレン-アクリル-マレイン酸樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂等のバインダー樹脂等のバインダー樹脂;水混和性有機溶剤等と併用して使用することができる。
(塗料分野での使用)
本発明の酸化亜鉛粉末を塗料組成物への添加成分として使用する場合は、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂等の塗膜形成樹脂;着色顔料、体質顔料、光輝性顔料等の各種顔料;硬化触媒、表面調整剤、消泡剤、顔料分散剤、可塑剤、造膜助剤、紫外線吸収剤、酸化防止剤等と併用して使用することができる。また、塗料中の樹脂は、硬化性を有するものであっても、硬化性を有さないものであってもよい。
以下、本発明を実施例に基づいて更に詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。
(実施例1)
一次粒子径1.05μmの六角板状酸化亜鉛 (XZ-1000F、堺化学工業社製)150gを水723.21gに添加し、充分に撹拌することによりZnO濃度200g/lの水性スラリーを得た。続いて、スラリーを撹拌しながら40℃に昇温した後、この温度を維持しながら、5重量%のNaOH水溶液を添加することでスラリーのpHを10に調整した。前述のスラリーに対し、TiO換算濃度が45.5g/lの硫酸チタン水溶液330ml(母体ZnOに対しTiO換算で10重量部に相当する量)と、該硫酸チタン水溶液を中和する為の5重量%のNaOH水溶液とを、スラリーの温度40℃、pH10の条件を保ちながら180分間かけて同時に添加した。
中和完了後、30分間熟成した後、濾過、水洗を行い、120℃で12時間乾燥することにより、母体となる一次粒子径1.05μmの六角板状酸化亜鉛粒子表面が水酸化チタンによって被覆された水酸化チタン被覆酸化亜鉛粒子を得た。続いて、得られた水酸化チタン被覆酸化亜鉛粒子を電気炉で700℃、2時間焼成することにより、一次粒子径1.07μmのZnTiO被覆六角板状酸化亜鉛粒子を得た。得られた粒子のサイズ・形態を透過型電子顕微鏡JEM-2100(日本電子社製)で観察した。得られた電子顕微鏡写真を図1に示した。また、得られた粒子をX線回折装置UltimaIII(リガク社製)で分析した。得られたX線回折のスペクトルを図2に示した。また、得られた粒子の物性及び塗膜の物性を表1に示した。(被覆酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率1(%))/(被覆酸化亜鉛粒子の母体となる原料酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率1(%))の比の値は1.6、(被覆酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率2(%))/(被覆酸化亜鉛粒子の母体となる原料酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率2(%))の比の値は1.2となり、得られた酸化亜鉛粒子が母体の原料酸化亜鉛粒子に対し、UV-B波、UV-A波に対する紫外線遮蔽性がともに向上していることが確認された。
(実施例2)
一次粒子径1.05μmの六角板状酸化亜鉛 (XZ-1000F、堺化学工業社製)150gを水723.21gに添加し、充分に撹拌することによりZnO濃度200g/lの水性スラリーを得た。続いて、スラリーを撹拌しながら30℃に昇温した後、この温度を維持しながら、5重量%のNaOH水溶液を添加することでスラリーのpHを10に調整した。前述のスラリーに対し、Fe換算濃度が38.8g/lの硫酸鉄(硫酸第一鉄7水塩)水溶液387ml(母体ZnOに対しFe換算で10重量部に相当する量)と、該硫酸鉄水溶液を中和する為の5重量%のNaOH水溶液とを、スラリーの温度30℃、pH10の条件を保ちながら180分間かけて同時に添加した。中和完了後、30分間熟成した後、濾過、水洗を行い、120℃で12時間乾燥することにより、母体となる一次粒子径1.05μmの六角板状酸化亜鉛粒子表面が水酸化鉄によって被覆された水酸化鉄被覆酸化亜鉛粒子を得た。続いて、得られた水酸化鉄被覆酸化亜鉛粒子を電気炉で600℃、2時間焼成することにより、一次粒子径1.06μmのZnFe被覆六角板状酸化亜鉛粒子を得た。得られた粒子のサイズ・形態を透過型電子顕微鏡JEM-2100(日本電子社製)で観察した。得られた電子顕微鏡写真を図3に示した。また、得られた粒子をX線回折装置UltimaIII(リガク社製)で分析した。得られたX線回折のスペクトルを図4に示した。また、得られた粒子の物性及び塗膜の物性を表1に示した。(被覆酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率1(%))/(被覆酸化亜鉛粒子の母体となる原料酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率1(%))の比の値は1.7、(被覆酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率2(%))/(被覆酸化亜鉛粒子の母体となる原料酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率2(%))の比の値は1.3となり、得られた酸化亜鉛粒子が母体の原料酸化亜鉛粒子に対し、UV-B波、UV-A波に対する紫外線遮蔽性がともに向上していることが確認された。
(実施例3)
一次粒子径1.05μmの六角板状酸化亜鉛 (XZ-1000F、堺化学工業社製)150gを水723.21gに添加し、充分に撹拌することによりZnO濃度200g/lの水性スラリーを得た。続いて、スラリーを撹拌しながら40℃に昇温した後、この温度を維持しながら、5重量%のNaOH水溶液を添加することでスラリーのpHを10に調整した。前述のスラリーに対し、TiO換算濃度が45.5g/lである硫酸チタン水溶液165ml(母体ZnOに対しTiO換算で5重量部に相当する量)と、Fe換算濃度が38.8g/lの硫酸鉄(硫酸第一鉄7水塩)水溶液194ml(母体ZnOに対しFe換算で5重量部に相当する量)と、該硫酸チタン水溶液及び該硫酸鉄水溶液を中和する為の5重量%のNaOH水溶液とを、スラリーの温度40℃、pH10の条件を保ちながら180分間かけて同時に添加した。
中和完了後、30分間熟成した後、濾過、水洗を行い、120℃で12時間乾燥することにより、母体となる一次粒子径1.05μmの六角板状酸化亜鉛粒子表面が水酸化チタン及び水酸化鉄によって被覆された水酸化チタン及び水酸化鉄被覆酸化亜鉛粒子を得た。続いて、得られた水酸化チタン及び水酸化鉄被覆酸化亜鉛粒子を電気炉で700℃、2時間焼成することにより、一次粒子径1.07μmのZnTiO+ZnFe被覆六角板状酸化亜鉛粒子を得た。得られた粒子のサイズ・形態を透過型電子顕微鏡JEM-2100(日本電子社製)で観察した。得られた電子顕微鏡写真を図5に示した。また、得られた粒子をX線回折装置UltimaIII(リガク社製)で分析した。得られたX線回折のスペクトルを図6に示した。また、得られた粒子の物性及び塗膜の物性を表1に示した。(被覆酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率1(%))/(被覆酸化亜鉛粒子の母体となる原料酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率1(%))の比の値は1.6、(被覆酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率2(%))/(被覆酸化亜鉛粒子の母体となる原料酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率2(%))の比の値は1.2となり、得られた酸化亜鉛粒子が母体の原料酸化亜鉛粒子に対し、UV-B波、UV-A波に対する紫外線遮蔽性がともに向上していることが確認された。
(実施例4)
酢酸亜鉛二水和物(細井化学工業社製 酢酸亜鉛)66.51gを水に溶解して酢酸亜鉛二水和物としての濃度が0.5mol/lとなるよう調製した酢酸亜鉛水溶液1200mlを調製した。続いて、酢酸亜鉛水溶液1200mlに対し、酢酸鉄(II)(和光純薬工業社製)9.68gを添加し、完全に溶解させた。続いて、前述の水溶液に対し、一次粒子径0.02μmの酸化亜鉛(FINEX-50、堺化学工業社製)40gをリパルプすることでスラリーとした。続いて、そのスラリーを攪拌しながら65分間で95℃に昇温し、攪拌しながら95℃で1時間熟成した。熟成後、ろ過、水洗した。続いて、得られた固形物を水3リットルにリパルプしてスラリーとし、攪拌しながら95℃に昇温し、攪拌しながら95℃で30分間加熱洗浄した。加熱洗浄後、ろ過、水洗し、110℃で12時間乾燥することにより、水酸化鉄を含有した水酸化鉄含有六角板状酸化亜鉛粒子を得た。続いて、得られた水酸化鉄含有酸化亜鉛粒子を電気炉で600℃、2時間焼成することにより、一次粒子径0.07μmのZnFe含有酸化亜鉛粒子を得た。得られた粒子のサイズ・形態を透過型電子顕微鏡JEM-2100(日本電子社製)で観察した。得られた電子顕微鏡写真を図7に示した。また、得られた粒子をX線回折装置UltimaIII(リガク社製)で分析した。得られたX線回折のスペクトルを図8に示した。また、得られた粒子の物性及び塗膜の物性を表1に示した。
(比較例1)
一次粒子径1.05μmの六角板状酸化亜鉛(XZ-1000F、堺化学工業社製)を比較対象の紫外線遮蔽剤とした。粒子の透過型電子顕微鏡写真を図9に示した。また、粒子の物性及び塗膜の物性を表1に示した。なお、当該粒子は実施例1、2及び3で得られた被覆酸化亜鉛粒子の母体となる原料酸化亜鉛粒子でもある。
(比較例2)
一次粒子径0.02μmである酸化亜鉛(FINEX-50、堺化学工業社製)50gを電気炉で550℃、2時間焼成することにより、一次粒子径0.11μmの不定形の酸化亜鉛粒子を調製し、比較対象の紫外線遮蔽剤とした。粒子の透過型電子顕微鏡写真を図10に示した。また、得られた粒子の物性及び塗膜の物性を表1に示した。なお、当該粒子は比較例3及び4で得られた被覆酸化亜鉛粒子の母体となる原料酸化亜鉛粒子でもある。
(比較例3)
比較例2で得られた酸化亜鉛粒子である一次粒子径0.11μmの不定形の酸化亜鉛粒子30gを水144.64gに添加し、充分に撹拌することによりZnO濃度200g/lの水性スラリーを得た。続いて、スラリーを撹拌しながら40℃に昇温した後、この温度を維持しながら、5重量%のNaOH水溶液を添加することでスラリーのpHを10に調整した。前述のスラリーに対し、TiO換算濃度が45.5g/lである硫酸チタン水溶液132ml(母体ZnOに対しTiO換算で20重量部に相当する量)と、該硫酸チタン水溶液を中和する為の5重量%のNaOH水溶液とを、スラリーの温度40℃、pH10の条件を保ちながら180分間かけて同時に添加した。中和完了後、30分間熟成した後、濾過、水洗を行い、120℃で12時間乾燥することにより、母体となる一次粒子径0.11μmの不定形酸化亜鉛粒子表面が水酸化チタンによって被覆された水酸化チタン被覆酸化亜鉛粒子を得た。続いて、得られた水酸化チタン被覆酸化亜鉛粒子を電気炉で700℃、2時間焼成することにより、一次粒子径0.12μmのZnTiO被覆酸化亜鉛粒子を得た。得られた粒子のサイズ・形態を透過型電子顕微鏡JEM-2100(日本電子社製)で観察した。得られた電子顕微鏡写真を図11に示した。また、得られた粒子をX線回折装置UltimaIII(リガク社製)で分析した。得られたX線回折のスペクトルを図12に示した。また、得られた粒子の物性及び塗膜の物性を表1に示した。(被覆酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率1(%))/(被覆酸化亜鉛粒子の母体となる原料酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率1(%))の比の値は1.0、(被覆酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率2(%))/(被覆酸化亜鉛粒子の母体となる原料酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率2(%))の比の値は0.9となり、得られた酸化亜鉛粒子が母体の原料酸化亜鉛粒子に対し、UV-B波、UV-A波に対する紫外線遮蔽性がいずれも向上していないことが確認された。
(比較例4)
比較例2の酸化亜鉛粒子である一次粒子径0.11μmの不定形の酸化亜鉛粒子30gを水144.64gに添加し、充分に撹拌することによりZnO濃度200g/lの水性スラリーを得た。続いて、スラリーを撹拌しながら30℃に昇温した後、この温度を維持しながら、5重量%のNaOH水溶液を添加することでスラリーのpHを10に調整した。
前述のスラリーに対し、Fe換算濃度が38.8g/lである硫酸鉄(硫酸第一鉄7水塩)水溶液154ml(母体ZnOに対しFe換算で20重量部に相当する量)と、該硫酸鉄水溶液を中和する為の5重量%のNaOH水溶液とを、スラリーの温度30℃、pH10の条件を保ちながら180分間かけて同時に添加した。中和完了後、30分間熟成した後、濾過、水洗を行い、120℃で12時間乾燥することにより、母体となる一次粒子径0.11μmの不定形酸化亜鉛粒子表面が水酸化鉄によって被覆された水酸化鉄被覆酸化亜鉛粒子を得た。続いて、得られた水酸化鉄被覆酸化亜鉛粒子を電気炉で600℃、2時間焼成することにより、一次粒子径0.11μmのZnFe被覆酸化亜鉛粒子を得た。得られた粒子のサイズ・形態を透過型電子顕微鏡JEM-2100(日本電子社製)で観察した。得られた電子顕微鏡写真を図13に示した。また、得られた粒子をX線回折装置UltimaIII(リガク社製)で分析した。得られたX線回折のスペクトルを図14に示した。また、得られた粒子の物性及び塗膜の物性を表1に示した。(被覆酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率1(%))/(被覆酸化亜鉛粒子の母体となる原料酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率1(%))の比の値は1.0、(被覆酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率2(%))/(被覆酸化亜鉛粒子の母体となる原料酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率2(%))の比の値は1.0となり、得られた酸化亜鉛粒子が母体の原料酸化亜鉛粒子に対し、UV-B波、UV-A波に対する紫外線遮蔽性がいずれも向上していないことが確認された。
Figure JPOXMLDOC01-appb-T000001
(評価方法)
(得られた粒子の組成)
図2、4、6、8、12、14に示すX線回折のスペクトル、及び表1における得られた粒子の組成は、銅管球をもつX線回折装置UltimaIII(リガク社製)により分析した結果を示したものである。
(紫外線遮蔽率の測定方法)
(塗膜の作成)
実施例又は比較例の粒子2g、ワニス10g(アクリディック A-801-P DIC社製)、酢酸ブチル5g(試薬特級 和光純薬工業社製)、キシレン5g(純正特級 純正化学社製)、ガラスビーズ38g(1.5mm ポッターズ・バロティーニ社製)を容積75mlのマヨネーズ瓶に入れ、良くかき混ぜた後、ペイントコンディショナー5410型(RED DEVIL社製)に固定し、90分間振動を与えて分散処理することにより塗料を作成した。次に、作成した塗料をスライドガラス(縦・横・厚み=76mm・26mm・0.8~1.0mm 松浪硝子工業社製)の上に少量滴下し、バーコーター(No.579 ROD No.6 安田精機製作所社製)で塗膜を作成した。作成した塗膜を20℃で12時間乾燥した後、測定に用いた。
実施例1のZnTiO被覆酸化亜鉛粒子、実施例2のZnFe被覆酸化亜鉛粒子、及び比較例1の酸化亜鉛粒子を用いて、上記配合によりそれぞれ塗膜を作成し、各々の塗膜を分光光度計V-570(日本分光社製)により測定した、光の波長300~400nmの紫外線波長領域における全光線透過率曲線を比較した結果を図15に示す。なお、粒子径によっても全光線透過率は異なるが、実施例1の粒子、実施例2の粒子及び比較例1の粒子の一次粒子径は、表1よりほぼ等しいことがわかる。
図15の結果から、本発明の酸化亜鉛粒子は、従来の六角板状酸化亜鉛粒子よりも優れた紫外線遮蔽性能を有するものであることが明らかである。
また、表1の(被覆酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率(%))/(被覆酸化亜鉛粒子の母体となる原料酸化亜鉛粒子を含有する塗膜の紫外線遮蔽率(%))の比より、六角板状酸化亜鉛粒子を原料酸化亜鉛粒子として用いた実施例1、2及び3の被覆酸化亜鉛粒子は、原料酸化亜鉛粒子よりも紫外線遮蔽性が優れたものとなることが明らかである。
また、上記の比は比較例3及び4では紫外線遮蔽率1および2共に1.0以下であり、ZnTiOやZnFeの被覆によって必ずしも紫外線遮蔽率が向上するものではないことが明らかである。その上で、実施例1、2及び3の被覆酸化亜鉛粒子の上記の比は1.2以上、特に紫外線遮蔽率1においては1.6以上であることから、本発明の被覆により大幅な紫外線遮蔽能の向上が実現されていることも明らかである。
さらに、粒子径が小さいほど紫外線遮蔽率は高くなるが、滑り性は悪くなるため特に化粧品材料としては好ましくない。比較例1の酸化亜鉛粒子は形状と粒子径に由来して滑り性は良いが、表1の通り紫外線遮蔽率は低く、比較例3及び4の被覆酸化亜鉛粒子は粒子径が小さいため紫外線遮蔽率は高くなるが、好適な滑り性は得られない。
実施例1、2及び3の被覆酸化亜鉛粒子は六角板状形状で、かつ1μm程度の粒子径であるため高い滑り性を有し、紫外線遮蔽率においても粒子径、形状が同じ比較例1よりも高い。つまり、実施例1、2及び3の被覆酸化亜鉛粒子は、高い紫外線遮蔽率と好適な滑り性を持ち合わせていることが明らかである。上記の通り、本発明における酸化亜鉛粒子は、高い滑り性、ソフトフォーカス効果と、高い紫外線遮蔽率を同時に持ち合わせた優れた酸化亜鉛粒子である。
本発明の酸化亜鉛粒子は、化粧料、インキ、塗料等に配合することができる。

Claims (9)

  1. Ti元素及び/又はFe元素並びにZn元素から成る固溶体を少なくとも一部に含有し、形状が六角板状であることを特徴とする酸化亜鉛粒子。
  2. Ti元素及び/又はFe元素並びにZn元素から成る固溶体は、基材となる酸化亜鉛粒子の表面を被覆する被膜である請求項1記載の酸化亜鉛粒子。
  3. ZnTiO又はZnFeを含有する酸化亜鉛粒子であり、一次粒子径が0.01μm以上であることを特徴とする請求項1または2に記載の酸化亜鉛粒子。
  4. Ti元素及び/又はFe元素の含有量は、TiO換算及び/又はFe換算で酸化亜鉛粒子100重量%に対し、5重量%以上30重量%以下であることを特徴とする請求項1、2または3に記載の酸化亜鉛粒子。
  5. 六角板状である原料酸化亜鉛粒子の水性スラリーに、チタン塩及び/又は鉄塩の水溶液とアルカリ水溶液とを温度10℃以上90℃以下の範囲でpH9±3を保ちながら添加する工程(1-1)、及び、
    前記工程(1-1)によって得られた被覆酸化亜鉛粒子を焼成する工程(1-2)
    を有することを特徴とする請求項1、2、3または4に記載の酸化亜鉛粒子の製造方法。
  6. 原料酸化亜鉛粒子を、チタン塩及び/又は鉄塩を溶解した亜鉛塩水溶液中に添加し、加熱熟成する工程(2-1)
    前記工程(2-1)によって得られる水酸化チタン及び/又は水酸化鉄含有酸化亜鉛粒子を焼成する工程(2-2)
    を有することを特徴とする請求項1、2、3または4に記載の酸化亜鉛粒子の製造方法。
  7. 請求項5または6に記載の製造方法によって得られる請求項1、2、3または4に記載の酸化亜鉛粒子。
  8. 請求項1、2、3、4又は7に記載の酸化亜鉛粒子を含有することを特徴とする紫外線遮蔽剤。
  9. 請求項1、2、3、4、7又は8に記載の酸化亜鉛粒子を含有することを特徴とする化粧料。
PCT/JP2014/084205 2013-12-27 2014-12-25 酸化亜鉛粒子、それらの製造方法、紫外線遮蔽剤及び化粧料 WO2015098992A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/107,805 US9789037B2 (en) 2013-12-27 2014-12-25 Zinc oxide particle, method for producing the same, ultraviolet shielding agent, and cosmetic
JP2015525341A JP5854176B2 (ja) 2013-12-27 2014-12-25 酸化亜鉛粒子、それらの製造方法、紫外線遮蔽剤及び化粧料
EP14873873.5A EP3088363B1 (en) 2013-12-27 2014-12-25 Zinc oxide particles, production method for same, ultraviolet ray shielding agent, and cosmetic material
ES14873873T ES2738725T3 (es) 2013-12-27 2014-12-25 Partículas de óxido de zinc, procedimiento de producción de las mismas, agente de protección ultravioleta y material cosmético

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013271568 2013-12-27
JP2013-271568 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015098992A1 true WO2015098992A1 (ja) 2015-07-02

Family

ID=53478839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084205 WO2015098992A1 (ja) 2013-12-27 2014-12-25 酸化亜鉛粒子、それらの製造方法、紫外線遮蔽剤及び化粧料

Country Status (6)

Country Link
US (1) US9789037B2 (ja)
EP (1) EP3088363B1 (ja)
JP (1) JP5854176B2 (ja)
ES (1) ES2738725T3 (ja)
TW (1) TWI641557B (ja)
WO (1) WO2015098992A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230472A1 (ja) * 2017-06-12 2018-12-20 堺化学工業株式会社 六角板状酸化亜鉛の製造方法
WO2018230473A1 (ja) * 2017-06-12 2018-12-20 堺化学工業株式会社 3価金属ドープ六角板状酸化亜鉛及びその製造方法
AU2018264055B2 (en) * 2016-05-05 2019-08-15 Landa Labs (2012) Ltd Uv protective compositions and their use
WO2019167669A1 (ja) * 2018-02-28 2019-09-06 東ソー・ファインケム株式会社 酸化亜鉛薄膜形成用組成物及び酸化亜鉛薄膜の製造方法
US10617610B2 (en) 2015-05-05 2020-04-14 Landa Labs (2012) Ltd. UV-protective compositions

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7225717B2 (ja) 2018-11-13 2023-02-21 株式会社アイシン 車両ドアの開閉体アッセンブリ、開閉体駆動装置及びドアフレームアッセンブリ
CN113026136B (zh) * 2021-03-20 2021-10-26 浙江佳轩汽车用品有限公司 用于汽车防晒保护套的聚乙烯纤维及其制备方法
CN113336264B (zh) * 2021-05-11 2023-08-29 苏州锦艺新材料科技有限公司 一种正钛酸锌粉体的制备方法
CN114132957B (zh) * 2021-11-29 2023-09-29 东北大学秦皇岛分校 一种双相偏钛酸锌负极材料的制备方法
CN114605754B (zh) * 2022-03-24 2023-12-22 广东盛科装饰材料有限公司 一种高透光率防紫外老化聚氯乙烯膜的制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275182A (ja) 1986-01-23 1987-11-30 Sumitomo Chem Co Ltd 紫外線遮蔽剤
JPS63265819A (ja) 1987-04-20 1988-11-02 Titan Kogyo Kk 紫外線防護用チタン酸二亜鉛微細粒子粉末の製造方法
JPH0222317A (ja) 1988-07-11 1990-01-25 Japan Atom Energy Res Inst ポリオレフィン連続気泡体の改質方法
JPH0426514A (ja) * 1990-05-18 1992-01-29 Lion Corp 板状導電性酸化亜鉛の製造方法
JPH0570123A (ja) * 1991-09-13 1993-03-23 Kao Corp 金属酸化物複合微粒子の製造方法及びその装置
JPH09188517A (ja) 1996-01-04 1997-07-22 Sakai Chem Ind Co Ltd 鉄含有超微細酸化亜鉛、並びにその製造方法及び用途
JP2000144095A (ja) * 1998-11-13 2000-05-26 Kaisui Kagaku Kenkyusho:Kk 紫外線吸収剤及び樹脂組成物
JP2002226826A (ja) * 2001-02-02 2002-08-14 Kaisui Kagaku Kenkyusho:Kk 紫外線吸収剤およびその使用
WO2003022954A1 (en) * 2001-09-10 2003-03-20 Japan Represented By President Of Tokyo Institute Of Technology Method for producing ultraviolet absorbing material
JP2006306641A (ja) * 2005-04-26 2006-11-09 Hosokawa Funtai Gijutsu Kenkyusho:Kk 紫外線遮蔽用の複合粒子
WO2012147886A1 (ja) 2011-04-28 2012-11-01 堺化学工業株式会社 六角板状酸化亜鉛粒子、その製造方法、それを配合した化粧料、放熱性フィラー、放熱性樹脂組成物、放熱性グリース及び放熱性塗料組成物
JP2013189369A (ja) * 2012-02-17 2013-09-26 Sumitomo Chemical Co Ltd 酸化亜鉛系粉末、酸化亜鉛系焼結体の製造方法およびそれらを用いたターゲット

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222317A (ja) 1991-09-18 1993-08-31 Mitsui Mining & Smelting Co Ltd 紫外線遮蔽用複合酸化物およびその製造方法
EP1112964B1 (en) * 1999-05-12 2017-02-22 Sakai Chemical Industry Co., Ltd. Zinc oxide particles having suppressed surface activity and production and use thereof
CN1884095A (zh) * 2006-07-05 2006-12-27 四川大学 一种屏蔽紫外线纳米正钛酸锌粉体及制备方法
CA2834233C (en) * 2011-04-28 2019-02-26 Sakai Chemical Industry Co., Ltd. Hexagonal prism-shaped zinc oxide particles and method for production of the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275182A (ja) 1986-01-23 1987-11-30 Sumitomo Chem Co Ltd 紫外線遮蔽剤
JPS63265819A (ja) 1987-04-20 1988-11-02 Titan Kogyo Kk 紫外線防護用チタン酸二亜鉛微細粒子粉末の製造方法
JPH0222317A (ja) 1988-07-11 1990-01-25 Japan Atom Energy Res Inst ポリオレフィン連続気泡体の改質方法
JPH0426514A (ja) * 1990-05-18 1992-01-29 Lion Corp 板状導電性酸化亜鉛の製造方法
JPH0570123A (ja) * 1991-09-13 1993-03-23 Kao Corp 金属酸化物複合微粒子の製造方法及びその装置
JPH09188517A (ja) 1996-01-04 1997-07-22 Sakai Chem Ind Co Ltd 鉄含有超微細酸化亜鉛、並びにその製造方法及び用途
JP2000144095A (ja) * 1998-11-13 2000-05-26 Kaisui Kagaku Kenkyusho:Kk 紫外線吸収剤及び樹脂組成物
JP2002226826A (ja) * 2001-02-02 2002-08-14 Kaisui Kagaku Kenkyusho:Kk 紫外線吸収剤およびその使用
WO2003022954A1 (en) * 2001-09-10 2003-03-20 Japan Represented By President Of Tokyo Institute Of Technology Method for producing ultraviolet absorbing material
JP2006306641A (ja) * 2005-04-26 2006-11-09 Hosokawa Funtai Gijutsu Kenkyusho:Kk 紫外線遮蔽用の複合粒子
WO2012147886A1 (ja) 2011-04-28 2012-11-01 堺化学工業株式会社 六角板状酸化亜鉛粒子、その製造方法、それを配合した化粧料、放熱性フィラー、放熱性樹脂組成物、放熱性グリース及び放熱性塗料組成物
JP2013189369A (ja) * 2012-02-17 2013-09-26 Sumitomo Chemical Co Ltd 酸化亜鉛系粉末、酸化亜鉛系焼結体の製造方法およびそれらを用いたターゲット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
X.XING ET AL.: "Facile Preparation of ZnTiO3 Ceramic Powders in Sodium/Potassium Chloride Melts", J.AM.CERAM.SOC., vol. 89, no. 3, 2006, pages 1150 - 1152, XP055354176 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10617610B2 (en) 2015-05-05 2020-04-14 Landa Labs (2012) Ltd. UV-protective compositions
AU2018264055B2 (en) * 2016-05-05 2019-08-15 Landa Labs (2012) Ltd Uv protective compositions and their use
WO2018230472A1 (ja) * 2017-06-12 2018-12-20 堺化学工業株式会社 六角板状酸化亜鉛の製造方法
WO2018230473A1 (ja) * 2017-06-12 2018-12-20 堺化学工業株式会社 3価金属ドープ六角板状酸化亜鉛及びその製造方法
JP6451913B1 (ja) * 2017-06-12 2019-01-16 堺化学工業株式会社 3価金属ドープ六角板状酸化亜鉛及びその製造方法
JP6451912B1 (ja) * 2017-06-12 2019-01-16 堺化学工業株式会社 六角板状酸化亜鉛の製造方法
US11203530B2 (en) 2017-06-12 2021-12-21 Sakai Chemical Industry Co., Ltd. Method for producing hexagonal plate-shaped zinc oxide
US11446221B2 (en) 2017-06-12 2022-09-20 Sakai Chemical Industry Co., Ltd. Trivalent metal-doped hexagonal plate-shaped zinc oxide and method for producing same
WO2019167669A1 (ja) * 2018-02-28 2019-09-06 東ソー・ファインケム株式会社 酸化亜鉛薄膜形成用組成物及び酸化亜鉛薄膜の製造方法
JP2019152702A (ja) * 2018-02-28 2019-09-12 東ソー・ファインケム株式会社 酸化亜鉛薄膜形成用組成物及び酸化亜鉛薄膜の製造方法
CN111758053A (zh) * 2018-02-28 2020-10-09 东曹精细化工株式会社 氧化锌薄膜形成用组合物和氧化锌薄膜的制造方法
JP7060406B2 (ja) 2018-02-28 2022-04-26 東ソー・ファインケム株式会社 酸化亜鉛薄膜形成用組成物及び酸化亜鉛薄膜の製造方法

Also Published As

Publication number Publication date
US20160324742A1 (en) 2016-11-10
EP3088363A1 (en) 2016-11-02
JP5854176B2 (ja) 2016-02-09
TWI641557B (zh) 2018-11-21
JPWO2015098992A1 (ja) 2017-03-23
EP3088363A4 (en) 2017-05-31
ES2738725T3 (es) 2020-01-24
EP3088363B1 (en) 2019-06-26
US9789037B2 (en) 2017-10-17
TW201536686A (zh) 2015-10-01

Similar Documents

Publication Publication Date Title
JP5854176B2 (ja) 酸化亜鉛粒子、それらの製造方法、紫外線遮蔽剤及び化粧料
JP6493227B2 (ja) 六角板状酸化亜鉛粒子、その製造方法、化粧料、フィラー、樹脂組成物、赤外線反射材及び塗料組成物
JP5910632B2 (ja) 複合粉体及びその製造方法
JP6314955B2 (ja) 四角板状酸化亜鉛粒子の製造方法
US20180127591A1 (en) Cerium oxide-coated zinc oxide particle, method for producing the same, ultraviolet shielding agent, and cosmetic
JP5854175B2 (ja) 酸化亜鉛粒子、それらの製造方法、紫外線遮蔽剤及び化粧料
US11179303B2 (en) Granular composite containing keratin and hexagonal plate-like zinc oxide
JP6538144B2 (ja) ケラチン及び六角板状酸化亜鉛含有粒状複合体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015525341

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873873

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014873873

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014873873

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15107805

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE