WO2015098765A1 - 透光性ジルコニア焼結体及びジルコニア粉末、並びにその用途 - Google Patents

透光性ジルコニア焼結体及びジルコニア粉末、並びにその用途 Download PDF

Info

Publication number
WO2015098765A1
WO2015098765A1 PCT/JP2014/083763 JP2014083763W WO2015098765A1 WO 2015098765 A1 WO2015098765 A1 WO 2015098765A1 JP 2014083763 W JP2014083763 W JP 2014083763W WO 2015098765 A1 WO2015098765 A1 WO 2015098765A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
sintered body
powder
mol
zirconia sintered
Prior art date
Application number
PCT/JP2014/083763
Other languages
English (en)
French (fr)
Inventor
浩之 藤崎
清隆 河村
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53478622&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015098765(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to CN201480069715.0A priority Critical patent/CN105829264B/zh
Priority to KR1020167010902A priority patent/KR102595006B1/ko
Priority to CN202110376123.5A priority patent/CN113185284B/zh
Priority to KR1020237029372A priority patent/KR20230129196A/ko
Priority to EP14874020.2A priority patent/EP3088373B1/en
Priority to US15/104,036 priority patent/US9737383B2/en
Publication of WO2015098765A1 publication Critical patent/WO2015098765A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/082Cosmetic aspects, e.g. inlays; Determination of the colour
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0022Blanks or green, unfinished dental restoration parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/083Porcelain or ceramic teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/12Brackets; Arch wires; Combinations thereof; Accessories therefor
    • A61C7/14Brackets; Fixing brackets to teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • A61K6/818Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C2201/00Material properties
    • A61C2201/002Material properties using colour effect, e.g. for identification purposes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Definitions

  • the present invention relates to a zirconia sintered body having a high density and strength of a sintered body and a translucency very close to natural teeth.
  • This highly light-transmitting zirconia sintered body is used for dental use, particularly for anterior teeth, and further suitable for use as a mill blank such as a denture material or an orthodontic bracket.
  • a zirconia sintered body (hereinafter referred to as “partially stabilized zirconia sintered body”) in which a small amount of Y 2 O 3 is dissolved as a stabilizer has high strength and high toughness. Therefore, the partially stabilized zirconia sintered body is used as a material for mechanical structures such as a cutting tool, a die, a nozzle, or a bearing. In addition to mechanical structural materials, they are used as biomaterials such as dental materials. When using a partially stabilized zirconia sintered body as a dental material, not only from the viewpoint of mechanical properties such as high strength and high toughness, but also from optical aspects such as translucency and color tone are required.
  • a zirconia single crystal (cubic zirconia) containing about 10 mol% of yttria has been conventionally used for jewelry as translucent zirconia.
  • the zirconia single crystal has a problem that its strength is extremely low.
  • a zirconia sintered body which is a polycrystal of zirconia does not have translucency. As this cause, it is known that pores existing between crystal grains and in crystal grains cause light scattering. Therefore, studies have been made so far to impart translucency to a polycrystalline zirconia sintered body by reducing pores, that is, increasing the density of the sintered body.
  • Patent Document 1 discloses a zirconia sintered body containing 2 to 4 mol% of yttria, an alumina content of 0.2 wt% or less, and a 1 mm-thick total light transmittance of 35% or more.
  • the sintered body disclosed in the example had a total light transmittance of 41%, which was 36% as a total light transmittance for light having a wavelength of 600 nm at a thickness of 1.0 mm.
  • the sintered body was a sintered body having sufficient translucency and strength when used as a denture for a back tooth.
  • the sintered body has a problem that the translucency is insufficient to be used as a denture for anterior teeth.
  • Patent Document 2 discloses a zirconia sintered body containing 1.5 to 5 mol% of yttria and having a porosity of 0.6% or less.
  • the sintered body is a zirconia sintered body obtained by pressure sintering using a hot isostatic press (hereinafter referred to as “HIP”), and the zirconia sintered body obtained by atmospheric pressure sintering. In the knot, sufficient translucency was not obtained.
  • HIP hot isostatic press
  • Patent Document 3 discloses a zirconia sintered body containing yttria exceeding 4 mol% and not more than 7 mol% and having a total light transmittance of 40% or more at a wavelength of 600 nm at a thickness of 1 mm. ing.
  • the sintered body is also a zirconia sintered body obtained by pressure sintering using HIP, and sufficient translucency was not obtained in the zirconia sintered body obtained by atmospheric pressure sintering.
  • Non-Patent Document 1 discloses transparent zirconia firing obtained by subjecting zirconia powder containing 3 mol% yttria and 8 mol% yttria to Spark Plasma Sintering (hereinafter referred to as “SPS”). A ligation is disclosed. However, when the zirconia sintered body disclosed in Patent Document 3 and Non-Patent Document 1 is used as a denture for anterior teeth, the transparency is too high, which is unnatural.
  • a method in which a pre-sintered molded body is cut into a denture shape and then sintered.
  • a compact is produced by subjecting zirconia powder to ordinary press molding, and then the compact is pre-sintered at a temperature of 700 to 1000 ° C. to produce a mill blank.
  • the produced mill blank is cut into a denture shape by CAD / CAM, and then sintered.
  • a mill blank having the shape of a carved denture is sintered using a process program in which the heating rate is 600 ° C./hr, the temperature is raised to the sintering temperature, and the holding time at the sintering temperature is 2 hours.
  • zirconia is sintered in a short time of about 7 hours.
  • the sintered compact after eliminating the above-mentioned drawbacks of the conventional method, the sintered compact has a high density and excellent translucency, and particularly has translucency and strength suitable as a denture for an anterior tooth.
  • An object of the present invention is to provide a zirconia sintered body that is also used, and to provide a zirconia powder that can be produced with a simple process by atmospheric pressure sintering of the zirconia sintered body.
  • the present inventors examined a zirconia sintered body suitable as an anterior denture. As a result, it has been found that a zirconia sintered body having a controlled composition and physical properties has aesthetics comparable to natural anterior teeth. Furthermore, the present inventors examined in detail the relationship between the yttria concentration and the alumina concentration in the zirconia powder, the sintered body density, and the total light transmittance of the sintered body.
  • the gist of the present invention is as follows.
  • [1] Light having a wavelength of 600 nm at a thickness of 1.0 mm, containing 4.0 mol% to 6.5 mol% yttria and less than 0.1 wt% alumina, having a relative density of 99.82% or more.
  • a translucent zirconia sintered body characterized by having a total light transmittance of 37% to less than 40% and a bending strength of 500 MPa or more.
  • [4] A method for producing a light-transmitting zirconia sintered body according to any one of [1] to [3] above, wherein 4.0 mol% to 6.5 mol% yttria and less than 0.1 wt% [1] to [1] to [3], which have a molding step of molding a zirconia powder containing alumina to obtain a molded body, and a sintering step of sintering the molded body at a sintering temperature of 1350 ° C. to 1500 ° C. under normal pressure.
  • [3] The production method according to any one of [3].
  • [5] The production method according to the above [4], wherein the density of the molded body is more than 3.2 g / cm 3 .
  • the zirconia powder according to [6] wherein the crystallite diameter is 320 to 380 mm.
  • the zirconia powder according to the above [6] or [7] which has an average particle size of 0.40 to 0.50 ⁇ m.
  • a dental material comprising the translucent zirconia sintered body according to any one of [1] to [3].
  • the dental material according to [13] which is a denture, a denture mill blank, an anterior denture, an anterior denture mill blank, or an orthodontic bracket.
  • the zirconia sintered compact which has the translucency and intensity
  • the translucent zirconia sintered body of the present invention is excellent in translucency, and can be used as a zirconia sintered body used in dental applications, in particular, in an anterior denture. Moreover, it can also be used as a zirconia sintered body used as a mill blank such as a denture material or an orthodontic bracket. Further, according to the zirconia powder of the present invention, a zirconia sintered body having translucency can be produced by atmospheric pressure sintering without using a large pressure sintering apparatus such as HIP.
  • the “stabilizer concentration” of the zirconia powder in the present invention refers to a value expressed as mol% of the ratio of stabilizer / (ZrO 2 + stabilizer).
  • “Additive content” refers to a value expressed as a weight% ratio of additive / (ZrO 2 + stabilizer + additive).
  • the “relative density” is a ratio (%) of the actually measured density ( ⁇ ; g / cm 3 ) to the theoretical density ( ⁇ 0 ; g / cm 3 ), and is a value obtained by the following formula.
  • Relative density (%) ( ⁇ / ⁇ 0 ) ⁇ 100
  • the actual density ( ⁇ ) is a value measured by the Archimedes method.
  • the theoretical density ( ⁇ 0 ) is a value obtained by the following equation (1).
  • ⁇ 0 100 / [(A / 3.987) + (100 ⁇ A) / ⁇ X ] (1)
  • ⁇ 0 is the theoretical density (g / cm 3 )
  • 3.987 is the theoretical density (g / cm 3 ) of alumina
  • ⁇ X is a zirconia sintered body containing Xmol% yttria.
  • A is the alumina content (% by weight), which is the weight ratio of alumina to the zirconia sintered body containing Xmol% yttria.
  • ⁇ X in the formula (1) shows different values due to the different yttria content or alumina content in the zirconia sintered body.
  • the theoretical density ( ⁇ X ) of a zirconia sintered body having a yttria content of the following mol% was set to the following value.
  • ⁇ X in yttria-containing zirconia sintered bodies other than the above is “Lattice Parameters and Density for Y 2 O 3 -Stabilized ZrO 2 ” Am. Ceram. Soc. 69 [4] 325-32 (1986), a value obtained by calculation can be used.
  • is the half width of the main XRD peak
  • is the Bragg angle of the main XRD peak.
  • the peak is an XRD peak in which a tetragonal (111) plane and a cubic (111) plane overlap.
  • the main XRD peak is subjected to waveform processing without performing tetragonal and cubic peak separation, and the Bragg angle ( ⁇ ) and the mechanical spread width of the main XRD peak after waveform processing are calculated.
  • the half width ( ⁇ ) of the corrected main XRD peak may be obtained.
  • the “average particle size” of the zirconia powder is a sphere having the same volume as a particle having a median value (median diameter; particle size corresponding to 50% of the cumulative curve) of the cumulative curve of the particle size distribution expressed on a volume basis. Diameter.
  • the said average particle diameter is the value measured with the particle size distribution measuring apparatus by a laser diffraction method.
  • the zirconia sintered body of the present invention contains yttria and alumina, the yttria content is more than 4.0 mol% and not more than 6.5 mol%, the alumina content is less than 0.1 wt%, The relative density of the aggregate is 99.82% or more, the bending strength is 500 MPa or more, and the total light transmittance for light having a wavelength of 600 nm is 37% or more and less than 40% when the sample thickness is 1.0 mm. is there.
  • the translucent zirconia sintered body of the present invention functions as a stabilizer and exceeds 4.0 mol% to 6.5 mol% or less, preferably 4.1 mol% to 6.0 mol%, more preferably 4.5 mol% % Or more and 6.0 mol% or less of yttria.
  • the yttria content is 4.0 mol% or less, the translucency of the zirconia sintered body decreases.
  • 6.5 mol% is exceeded, translucency will become high too much. Therefore, when used as a denture for anterior teeth, a transparent feeling appears in the sintered body, resulting in an anterior denture having unnatural aesthetics.
  • the yttria content in the present invention can be determined as the stabilizer concentration.
  • the translucent zirconia sintered body of the present invention has an alumina content of less than 0.1 wt%, further 0.08 wt% or less, and further 0.06 wt% or less.
  • Alumina is contained as an additive in the translucent zirconia sintered body of the present invention.
  • the translucent zirconia sintered body of the present invention has high strength by containing alumina.
  • the alumina content is 0.1 wt% or more, the translucency is lowered, and therefore, it becomes unnatural aesthetics as an anterior denture.
  • the alumina content is preferably 0.05 wt% or less.
  • content of the alumina in this invention can be calculated
  • the content of alumina may be 0 wt% or more and less than 0.1 wt%, and further 0 wt% or more and 0.05 wt% or less.
  • the translucent zirconia sintered body of the present invention has a relative density of 99.82% or more, and further 99.85% or more. When the relative density is less than 99.82%, the translucency of the zirconia sintered body is lowered.
  • the translucent zirconia sintered body of the present invention preferably has a relative density of 99.90% or more, and more preferably 99.95% or more.
  • the theoretical density used when determining the relative density has different values depending on the difference in the yttria content or the alumina content. The following values can be exemplified as the theoretical density of the translucent zirconia sintered body of the present invention.
  • the translucent zirconia sintered body of the present invention is obtained by atmospheric pressure sintering without using pressure sintering such as HIP. Furthermore, by satisfying the above composition and having a relative density of 99.82% or more, the total light transmittance for light having a wavelength of 600 nm at a sample thickness of 1.0 mm (hereinafter simply referred to as “total light transmittance”). Also satisfies 37% or more and less than 40%.
  • the translucent zirconia sintered body of the present invention has a total light transmittance of 37% or more and less than 40%, further 37% or more and 39.9% or less, and further 37.1% or more and 39.5% or less. . When the total light transmittance is 40% or more, it becomes a sintered body having transparency in addition to translucency. Since such a sintered body transmits light too much, it cannot be used as a front tooth denture.
  • the translucent zirconia sintered body of the present invention can be used alone as a front denture without requiring a coating such as a glass coating. More preferable total light transmittance as an anterior denture that does not require coating is 37.3% or more and 39.2% or less, further 37.3% or more and 39.0% or less, and further 37.5% or more. It is 38.6% or less.
  • the translucent zirconia sintered body of the present invention has a ratio of total light transmittance (hereinafter referred to as “D65 transmittance”) to D65 light with a sample thickness of 1.0 mm (hereinafter referred to as “D65 transmittance”) to the total light transmittance.
  • D65 transmittance total light transmittance
  • Transmissivity ratio is preferably 1.16 or more, more preferably 1.18 or more.
  • the transmissivity ratio of the translucent zirconia sintered body of the present invention is 1.4 or less, and further 1.35 or less.
  • the transmittance ratio is 1.16 or more and 1.4 or less, further 1.16 or more and 1.35 or less, and further 1.18 or more. It is preferably 1.35 or less, more preferably 1.2 or more and 1.35 or less, and even more preferably 1.25 or more and 1.35 or less.
  • the translucent zirconia sintered body of the present invention has aesthetics closer to natural front teeth.
  • permeability of the translucent zirconia sintered compact of this invention should just be a value which has said transmittance
  • the D65 transmittance of the translucent zirconia sintered body of the present invention is, for example, preferably 42% to 56%, more preferably 42% to 54%, and even more preferably 44% to 52%.
  • the translucent zirconia sintered body of the present invention has a bending strength of 500 MPa or more, and more preferably 550 MPa or more. Although the translucent zirconia sintered body of the present invention has moderate translucency and high relative density, the bending strength is not too high. If bending strength is 500 Mpa or more, it will become intensity
  • the bending strength is preferably 600 MPa or more, more preferably 650 MPa or more, further 670 MPa or more, and even more preferably 700 MPa or more in order to obtain a strength suitable for an artificial tooth for anterior teeth.
  • the bending strength of the translucent zirconia sintered body of the present invention is usually preferably 1070 MPa or less, more preferably 1020 MPa or less, further less than 1000 MPa, further 950 MPa or less, and further 900 MPa or less.
  • the bending strength is preferably 500 MPa or more and 1070 MPa or less, more preferably 500 MPa or more and less than 1000 MPa, further 550 MPa or more and less than 1000 MPa, and even more preferably 550 MPa or more and 950 MPa or less.
  • the said bending strength means three-point bending strength.
  • the crystal grain size of the translucent zirconia sintered body of the present invention is excellent in relative density and bending strength, it is 0.3 to 1.0 ⁇ m, further 0.3 to 0.9 ⁇ m, and further 0.4 ⁇ m. It is preferably from 0.8 to 0.86 m, more preferably from 0.4 to 0.81 ⁇ m, and even more preferably from 0.4 to 0.8 ⁇ m.
  • the translucent zirconia sintered body of the present invention has the yttria content, alumina content, relative density, total light transmittance, D65 transmittance, transmittance ratio, bending strength, and crystal grain size values and ranges described above. Any combination of the values shown in FIG.
  • a method for producing a light-transmitting zirconia sintered body of the present invention a molded body is obtained by molding zirconia powder containing more than 4.0 mol% and 6.5 mol% yttria and less than 0.1 wt% alumina.
  • the method which has a shaping
  • a zirconia powder containing more than 4.0 mol% and 6.5 mol% yttria and less than 0.1 wt% alumina is formed to obtain a formed body. If a molded body having a desired shape is obtained, the molding method is arbitrary. Examples of the molding method include at least one of press molding by uniaxial pressing and CIP. Density of the molded body, it is 3.2 g / cm 3 greater, and further preferably not larger than 3.2 g / cm 3 Ultra 3.3 g / cm 3.
  • the zirconia powder used for the forming step is a zirconia powder containing more than 4.0 mol% and 6.5 mol% yttria and less than 0.1 wt% alumina.
  • Examples of preferable zirconia powder to be subjected to the forming step include the following zirconia powder. .
  • the zirconia sintered body of the present invention can be obtained even if the sintering in the sintering step is only atmospheric pressure sintering.
  • translucent zirconia sintering that has both translucency and strength suitable as an artificial tooth for front teeth without using special sintering methods such as pressure sintering such as HIP and SPS.
  • pressure sintering such as HIP and SPS.
  • the zirconia powder of the present invention is a zirconia powder containing 4.0 to 6.5 mol% yttria as a stabilizer and having an alumina content of less than 0.1 wt%.
  • the zirconia powder of the present invention contains yttria exceeding 4.0 mol% and not more than 6.5 mol%, preferably not less than 4.1 mol% and not more than 6.0 mol%, more preferably not less than 4.5 mol% and not more than 6.0 mol%.
  • Yttria functions as a stabilizer.
  • the stabilizer is 4.0 mol% or less, the translucency of the obtained zirconia sintered body becomes too low.
  • the stabilizer exceeds 6.5 mol%, a highly translucent zirconia sintered body having a translucent property higher than that required for anterior denture is obtained. Therefore, when it is used as a denture for anterior teeth, a sense of transparency appears, resulting in an unnatural denture. In addition, since the strength is too low, it cannot be used as a front denture.
  • the zirconia powder of the present invention preferably has an alumina content of less than 0.1 wt%, more preferably 0.08 wt% or less, and even more preferably 0.06 wt% or less.
  • alumina content is obtained when the zirconia powder of the present invention contains alumina.
  • the alumina content is 0.1 wt% or more, the translucency of the obtained zirconia sintered body is lowered, so that the zirconia sintered body has unnatural aesthetics as a front denture.
  • the content of alumina is preferably 0.05 wt% or less.
  • the alumina content of the zirconia powder of the present invention is 0 wt% or more and less than 0.01 wt%, and more preferably 0 wt% or more and 0.05 wt% or less.
  • the crystallite diameter of the zirconia powder of the present invention is 320 to 380 mm, more preferably 330 to 370 mm, or even 340 to 360 mm, or even 350 to 360 mm, because the density of the obtained zirconia sintered body becomes high. It is preferable.
  • the zirconia powder of the present invention preferably has a BET specific surface area of 8 to 15 m 2 / g, more preferably 10 to 15 m 2 / g. When the BET specific surface area is 8 m 2 / g or more, the zirconia powder becomes a powder that can be easily sintered at a lower temperature.
  • the BET specific surface area is 15 m 2 / g or less, and further 14 m 2 / g or less, the density of the obtained sintered body is unlikely to be low, and a translucent zirconia sintered body is easily obtained.
  • the BET specific surface area is 9 m 2 / g to 15 m 2 / g, further 10 m 2 / g to 14 m. 2 / g or less is preferable.
  • the zirconia powder of the present invention can provide a zirconia sintered body more suitable as a denture for anterior teeth by combining only the above-mentioned crystallite diameter and BET specific surface area by sintering under normal pressure sintering. .
  • the zirconia powder having both the crystallite diameter and the BET specific surface area as described above is subjected to a coating treatment or the like only by normal pressure sintering without using a sintering method such as HIP or SPS. Therefore, it becomes easy to obtain a light-transmitting zirconia sintered body suitable as a denture for anterior teeth by itself.
  • the total ratio of tetragonal crystal and cubic crystal (hereinafter also referred to as “(T + C) phase ratio”) contained in the crystal is 80% or more, and further 85%.
  • the above is preferable.
  • the (T + C) phase ratio has such a value, a sintered body having both translucency and bending strength suitable as a denture for anterior teeth can be obtained even when sintering is performed only at normal pressure sintering.
  • a preferable (T + C) phase ratio is 90% or more, more than 90%, and further 95% or more.
  • the (T + C) phase ratio is the total ratio of tetragonal crystals and cubic crystals to the total of monoclinic crystals, tetragonal crystals, and cubic crystals of zirconia, and can be determined from the following equation.
  • (T + C) phase ratio (%) 100 ⁇ fm
  • fm is a monoclinic crystal ratio (%)
  • fm is an XRD peak intensity corresponding to the monoclinic phase (111) plane (hereinafter referred to as “Im (111)”), and an XRD peak intensity corresponding to the monoclinic phase (11-1) plane (hereinafter referred to as “Im (111)”).
  • the average particle size of the zirconia powder of the present invention is 0.40 to 0.50 ⁇ m, more preferably 0.40 to 0.45 ⁇ m, and even more preferably 0.00. It is preferably 40 to 0.43 ⁇ m.
  • the zirconia powder of the present invention is preferably spray-molded powder granules (hereinafter also simply referred to as “granules”).
  • the zirconia powder of the present invention is preferably spray granulated granules containing an organic binder in addition to yttria as a stabilizer and alumina as an additive.
  • the granules have high fluidity when forming a molded body, and can form a molded body having excellent shape retention after press molding.
  • the average particle size of the granule is preferably 30 to 80 ⁇ m, and the light bulk density is preferably 1.10 to 1.40 g / cm 3 .
  • the light bulk density is a density (Bulk Density) measured by a method according to JIS R1628.
  • the organic binder examples include one or more selected from the group consisting of polyvinyl alcohol, polyvinyl butyrate, wax, and acrylic resin.
  • an acrylic resin having a carboxyl group or a derivative thereof (for example, a salt, particularly an ammonium salt) in the molecule is preferable.
  • the acrylic resin examples include one or more selected from the group consisting of polyacrylic acid, polymethacrylic acid, acrylic acid copolymer, methacrylic acid copolymer, and derivatives thereof.
  • the amount of the organic binder added is preferably 0.5 to 10% by weight, particularly 1 to 5% by weight, based on the zirconia powder in the zirconia powder slurry.
  • a zirconia sintered body having translucency suitable as an artificial tooth for anterior teeth can be obtained by sintering only under normal pressure sintering. That is, the zirconia powder of the present invention can provide a zirconia sintered body having high translucency suitable as a denture for anterior teeth without using pressure sintering such as HIP treatment.
  • Density of the molded article obtained by molding the zirconia powder of the present invention may be a 3.2 g / cm 3 greater, 3.2 g / ccm 3 Super 3.3 g / cm 3 or less, more 3.2 g / cm 3 is preferably less ultra 3.27 g / cm 3.
  • the density of the molded body is over 3.2 g / cm 3 , the translucent property of the obtained sintered body tends to be more suitable for anterior denture.
  • the density of a molded object is 3.3 g / cm ⁇ 3 > or less, a sintered compact will not easily have the defect etc. which cause the strength fall.
  • the molded body preferably has a (T + C) phase ratio of 90% or more and a molded body density of more than 3.2 g / cm 3 and not more than 3.25 g / cm 3 .
  • the zirconia powder of the present invention includes, for example, a raw material step for obtaining a hydrated zirconia sol by hydrolysis of an aqueous zirconium salt solution, a calcining step for drying and calcining the hydrated zirconia sol to obtain a calcined powder, It is preferable to manufacture by the manufacturing method which has the grinding
  • a hydrated zirconia sol is obtained by hydrolyzing the zirconium salt aqueous solution.
  • the zirconium salt aqueous solution used for producing the hydrated zirconia sol include an aqueous solution containing at least one selected from the group consisting of a mixture of zirconium hydroxide and an acid, zirconium oxychloride, zirconyl nitrate, zirconium chloride and zirconium sulfate. .
  • the addition amount of the yttria source may be the same as the yttria content in the zirconia powder.
  • the yttria source may be any one that dissolves in an aqueous hydrated zirconium salt solution, and is at least one selected from the group consisting of yttrium chloride, yttrium oxide, yttrium nitrate and yttrium hydroxide, or at least yttrium chloride or yttrium oxide. One of them.
  • the obtained hydrated zirconia sol is dried to obtain a dry powder, and then the calcined powder is obtained by calcining the dry powder. Drying in the calcination step can be performed by any method as long as moisture in the hydrated zirconia sol and residual moisture attached to the hydrated zirconia sol can be removed. An example of the drying temperature is 160 to 200 ° C.
  • the calcined powder is obtained by calcining the dried powder of the hydrated zirconia sol obtained above.
  • the calcination temperature is preferably 1050 to 1250 ° C, more preferably 1100 to 1200 ° C. When the calcination temperature is within this range, not only the zirconia aggregation is suppressed, but also the particle size of the obtained calcination powder tends to be uniform.
  • the obtained calcined powder is pulverized.
  • the zirconia powder of this invention is obtained.
  • the calcination powder obtained above is pulverized until the average particle size becomes 0.40 to 0.50 ⁇ m.
  • the pulverization method is arbitrary as long as the calcined powder has the above average particle size. Examples of the pulverization method include wet pulverization and / or dry pulverization, and wet pulverization.
  • a particularly preferable grinding method includes wet grinding using zirconia balls, and the zirconia balls preferably have a diameter of 3 mm or less.
  • the pulverization is preferably performed after the alumina source is added to the calcined powder. Thereby, zirconia and alumina are mixed more uniformly.
  • the alumina source used as the additive may be an aluminum compound, for example, at least one selected from the group consisting of alumina, hydrated alumina, alumina sol, aluminum hydroxide, aluminum chloride, aluminum nitrate, and aluminum sulfate, preferably Can include at least one selected from the group consisting of alumina, hydrated alumina and alumina sol.
  • alumina source can be added, pulverized, and dispersed and mixed.
  • the method for producing zirconia powder of the present invention preferably further includes a granulation step.
  • the zirconia powder of the present invention can be made into granules.
  • zirconia powder may be made into a slurry and spray dried. Examples of spray drying include dropping the slurry into hot air at 160 to 200 ° C.
  • the sintering step the compact obtained in the molding step is sintered at a sintering temperature of 1350 to 1500 ° C. under normal pressure. Thereby, the translucent zirconia sintered compact of this invention is obtained.
  • the sintering temperature in the sintering step is preferably 1400 ° C. or higher and 1490 ° C. or lower, more preferably 1400 ° C. or higher and 1450 ° C. or lower.
  • the heating rate in the sintering process is 800 ° C./hour or less, and further 600 ° C./hour or less.
  • the holding time at the sintering temperature (hereinafter also simply referred to as “holding time”) varies depending on the sintering temperature. Examples of the holding time in the sintering step include 5 hours or less, 3 hours or less, and 2 hours or less.
  • the translucent zirconia sintered body of the present invention is obtained by pressureless sintering.
  • normal pressure sintering is a method of sintering by simply heating without applying an external force to the compact.
  • a specific example of normal pressure sintering is sintering under atmospheric pressure.
  • the sintering atmosphere may be a reducing atmosphere, that is, an atmosphere other than the reducing atmosphere may be used.
  • the sintering atmosphere may be an oxygen atmosphere, and sintering in the air is preferable.
  • sintering is performed under atmospheric pressure at a heating rate of 600 ° C./hour or less and a sintering temperature of 1400 ° C. or more and 1490 ° C. or less.
  • the sintering process is performed only by atmospheric pressure sintering.
  • a special sintering method such as HIP or other pressure sintering or SPS after atmospheric pressure sintering.
  • pressure sintering and special sintering methods not only complicate the manufacturing process but also increase the manufacturing cost.
  • a translucent zirconia sintered body having sufficient translucency and strength as an artificial tooth for anterior teeth even if only atmospheric pressure sintering is used. Can be obtained.
  • the average particle size of the zirconia powder was measured using a Microtrac particle size distribution meter (manufactured by Honeywell, model: 9320-HRA). As pretreatment conditions for the sample, the pulverized slurry was suspended in distilled water and dispersed for 3 minutes using an ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho, model: US-150T). (Average particle size of granules) The average particle diameter of the zirconia granules was determined by a screening test method according to JIS Z8801.
  • Crystallite diameter The powder sample was subjected to XRD measurement in the same manner as the identification of the crystal phase to obtain an XRD pattern. From the obtained XRD pattern, the half width of the peak (main XRD peak) corresponding to the tetragonal (111) plane and the cubic (111) plane was calculated. The crystallite diameter was calculated from the following formula using the half width. Using an X-ray diffractometer, the half width was obtained from the results of performing peak fitting after removing the measurement results from the background.
  • Crystal grain size The crystal grain size of the zirconia sintered body is calculated by a planimetric method from an SEM observation figure obtained using a field emission scanning electron microscope (FESEM) (manufactured by JEOL Ltd., model: JSM-T220). Average particle diameter. As the measurement sample, a mirror-polished zirconia sintered body obtained by thermal etching was used.
  • FESEM field emission scanning electron microscope
  • the sintered body density was measured by Archimedes method.
  • Total light transmittance The total light transmittance of the zirconia sintered body was measured using a spectrophotometer (manufactured by JASCO Corporation, model: V-650). The sample used was a 1 mm-thick disk-shaped product obtained by polishing both sides of a zirconia sintered body, transmitted light having a wavelength of 220 to 850 nm, and measured light collected by an integrating sphere.
  • Example 1 (Preparation of zirconia powder) A hydrous zirconia sol was obtained by hydrolyzing the zirconium oxychloride aqueous solution. After adding yttrium chloride to the hydrated zirconia sol so that the yttria concentration was 4.1 mol%, it was dried at 180 ° C. The dried zirconia sol was calcined at 1120 ° C. for 2 hours. As a result, a zirconia calcined powder containing 4.1 mol% yttria was obtained. The obtained calcined powder was washed with distilled water and dried at 110 ° C. to obtain a zirconia washed powder. ⁇ -alumina was added to the zirconia water-washed powder so that the alumina content was 0.05% by weight to obtain a mixed powder.
  • Distilled water was added so that the solid content concentration of the mixed powder was 45% by weight to obtain a slurry.
  • the slurry was pulverized by a ball mill for 14 hours with a ball mill having a diameter of 2 mm so that the average particle size was 0.40 to 0.50 ⁇ m to obtain a pulverized slurry.
  • the average particle size of the obtained pulverized slurry was measured and used as the average particle size of the zirconia powder.
  • zirconia powder obtained by drying a part of the pulverized slurry at 110 ° C. was evaluated. The evaluation results are shown in Table 2.
  • the obtained zirconia granules had an average particle size of 50 ⁇ m and a light bulk density of 1.25 g / cm 3 .
  • Example 2 (Preparation of zirconia powder) A hydrous zirconia sol was obtained by hydrolyzing the zirconium oxychloride aqueous solution. After adding yttrium chloride to the hydrated zirconia gel so that the yttria concentration was 5.0 mol%, it was dried at 180 ° C. The dried zirconia gel was baked at 1120 ° C. for 2 hours. Thereby, a zirconia calcined powder containing 5.0 mol% yttria was obtained. The obtained calcined powder was washed with distilled water and dried at 110 ° C. to obtain a zirconia washed powder. ⁇ -alumina was added to the zirconia water-washed powder so that the alumina content was 0.05% by weight to obtain a mixed powder.
  • Distilled water was added to obtain a slurry so that the solid content concentration of these mixed powders was 45% by weight.
  • the slurry was pulverized by a ball mill for 17 hours with a ball mill having a diameter of 2 mm so that the average particle size was 0.40 to 0.50 ⁇ m to obtain a pulverized slurry.
  • the average particle size of the obtained pulverized slurry was measured and used as the average particle size of the zirconia powder.
  • zirconia powder obtained by drying a part of the pulverized slurry at 110 ° C. was evaluated. The evaluation results are shown in Table 2.
  • the obtained zirconia granules had an average particle size of 48 ⁇ m and a light bulk density of 1.27 g / cm 3 .
  • Example 3 (Preparation of zirconia powder) A hydrous zirconia sol was obtained by hydrolyzing the zirconium oxychloride aqueous solution. After adding yttrium chloride to the hydrated zirconia sol so that the yttria concentration was 6.0 mol%, it was dried at 180 ° C. The dried zirconia sol was calcined at 1120 ° C. for 2 hours. As a result, a zirconia calcined powder containing 6.0 mol% yttria was obtained. The obtained calcined powder was washed with distilled water and dried at 110 ° C. to obtain a zirconia washed powder. ⁇ -alumina was added to the zirconia water-washed powder so that the alumina content was 0.05% by weight to obtain a mixed powder.
  • Distilled water was added to obtain a slurry so that the solid content concentration of these mixed powders was 45% by weight.
  • the slurry was pulverized by a ball mill for 17 hours with a ball mill having a diameter of 2 mm so that the average particle size was 0.40 to 0.50 ⁇ m to obtain a pulverized slurry.
  • the average particle size of the obtained pulverized slurry was measured and used as the average particle size of the zirconia powder.
  • zirconia powder obtained by drying a part of the pulverized slurry at 110 ° C. was evaluated. The evaluation results are shown in Table 2.
  • the obtained zirconia granules had an average particle diameter of 48 ⁇ m and a light bulk density of 1.26 g / cm 3 .
  • Example 4 (Preparation of zirconia powder) A hydrous zirconia sol was obtained by hydrolyzing the zirconium oxychloride aqueous solution. After adding yttrium chloride to the hydrated zirconia gel so that the yttria concentration was 5.0 mol%, it was dried at 180 ° C. The dried zirconia gel was baked at 1160 ° C. for 2 hours. Thereby, a zirconia calcined powder containing 5.0 mol% yttria was obtained. The obtained calcined powder was washed with distilled water and dried at 110 ° C. to obtain a zirconia washed powder.
  • Distilled water was added to obtain a slurry so that the solid content concentration of the washing powder was 45% by weight.
  • the slurry was pulverized for 25 hours with a ball mill having a diameter of 2 mm so that the average particle size was 0.40 to 0.50 ⁇ m to obtain a pulverized slurry.
  • the average particle size of the obtained pulverized slurry was measured and used as the average particle size of the zirconia powder.
  • zirconia powder obtained by drying a part of the pulverized slurry at 110 ° C. was evaluated. The evaluation results are shown in Table 2.
  • 3% by weight of a polyacrylic acid organic binder was added to the pulverized slurry, and this was dropped into hot air at 180 ° C. to carry out spray drying to obtain zirconia granules of this example.
  • the obtained zirconia granules had an average particle size of 50 ⁇ m and a light bulk density of 1.28 g / cm 3
  • Example 5 (Preparation of zirconia powder) A hydrous zirconia sol was obtained by hydrolyzing the zirconium oxychloride aqueous solution. After adding yttrium chloride to the hydrated zirconia gel so that the yttria concentration was 5.5 mol%, it was dried at 180 ° C. The dried zirconia gel was baked at 1160 ° C. for 2 hours. As a result, a zirconia calcined powder containing 5.5 mol% of yttria was obtained. The obtained calcined powder was washed with distilled water and dried at 110 ° C. to obtain a zirconia washed powder.
  • Distilled water was added to obtain a slurry so that the solid content concentration of the washing powder was 45% by weight.
  • the slurry was pulverized with a ball mill having a diameter of 2 mm so that the average particle size was 0.40 to 0.50 ⁇ m for 22 hours to obtain a pulverized slurry.
  • the average particle diameter of the obtained pulverized slurry was measured and used as the average particle diameter of the zirconia powder.
  • the zirconia powder obtained by drying a part of ground slurry at 110 degreeC was evaluated. The evaluation results are shown in Table 2.
  • 3% by weight of a polyacrylic acid organic binder was added to the pulverized slurry, and this was dropped into hot air at 180 ° C. to carry out spray drying to obtain zirconia granules of this example.
  • the obtained zirconia granules had an average particle size of 48 ⁇ m and a light bulk density of 1.24 g / cm 3 .
  • Example 6 Preparation of zirconia powder
  • a hydrous zirconia sol was obtained by hydrolyzing the zirconium oxychloride aqueous solution. After adding yttrium chloride to the hydrated zirconia gel so that the yttria concentration was 5.5 mol%, it was dried at 180 ° C. The dried zirconia gel was baked at 1160 ° C. for 2 hours. As a result, a zirconia calcined powder containing 5.5 mol% of yttria was obtained. ⁇ -alumina was added to the zirconia water-washed powder so that the alumina content was 0.05% by weight to obtain a mixed powder.
  • Distilled water was added to obtain a slurry so that the solid content concentration of the washing powder was 45% by weight.
  • the slurry was pulverized with a ball mill having a diameter of 2 mm so that the average particle size was 0.40 to 0.50 ⁇ m for 22 hours to obtain a pulverized slurry.
  • the average particle diameter of the obtained pulverized slurry was measured and used as the average particle diameter of the zirconia powder.
  • the zirconia powder obtained by drying a part of ground slurry at 110 degreeC was evaluated. The evaluation results are shown in Table 2.
  • 3% by weight of a polyacrylic acid organic binder was added to the pulverized slurry, and this was dropped into hot air at 180 ° C. to carry out spray drying to obtain zirconia granules of this example.
  • the obtained zirconia granules had an average particle size of 43 ⁇ m and a light bulk density of 1.26 g / cm 3 .
  • Example 7 (Preparation of zirconia powder) A hydrous zirconia sol was obtained by hydrolyzing the zirconium oxychloride aqueous solution. After adding yttrium chloride to the hydrated zirconia gel so that the yttria concentration was 5.5 mol%, it was dried at 180 ° C. The dried zirconia gel was baked at 1120 ° C. for 2 hours. As a result, a zirconia calcined powder containing 5.5 mol% of yttria was obtained. ⁇ -alumina was added to the zirconia water-washed powder so that the alumina content was 0.05% by weight to obtain a mixed powder.
  • Distilled water was added to obtain a slurry so that the solid content concentration of the washing powder was 45% by weight.
  • the slurry was pulverized with a ball mill having a diameter of 2 mm so that the average particle size was 0.40 to 0.50 ⁇ m for 12 hours to obtain a pulverized slurry.
  • the average particle diameter of the obtained pulverized slurry was measured and used as the average particle diameter of the zirconia powder.
  • the zirconia powder obtained by drying a part of ground slurry at 110 degreeC was evaluated. The evaluation results are shown in Table 2.
  • 3% by weight of a polyacrylic acid organic binder was added to the pulverized slurry, and this was dropped into hot air at 180 ° C. to carry out spray drying to obtain zirconia granules of this example.
  • the obtained zirconia granules had an average particle size of 48 ⁇ m and a light bulk density of 1.24 g / cm 3 .
  • Comparative Example 1 (Zirconia powder) A zirconia sintered body was prepared using zirconia powder (trade name: Zpex (registered trademark), manufactured by Tosoh Corporation) stabilized with 3.0 mol% of yttria and containing 0.05 wt% of Al 2 O 3 . The evaluation results of the zirconia powder are shown in Table 2.
  • the zirconia powder was put in a metal mold having a diameter of 25 mm, and press molded at a molding pressure of 19.6 MPa to obtain a primary molded body.
  • the obtained primary molded body was CIP molded at a pressure of 196 MPa to obtain a molded body.
  • the compact was sintered under the conditions of 1450 ° C., a heating rate of 600 ° C./hr, and a holding time of 2 hours to obtain a zirconia sintered body of this comparative example.
  • the evaluation results of the obtained zirconia sintered body are shown in Table 3.
  • the zirconia sintered body of this comparative example had a total light transmittance of 35.8% and a strength of 1200 MPa.
  • the zirconia sintered compact of this comparative example has the intensity
  • Comparative Example 2 (Preparation of zirconia powder) A hydrous zirconia sol was obtained by hydrolyzing the zirconium oxychloride aqueous solution. After adding yttrium chloride to the hydrated zirconia sol so that the yttria concentration was 7.4 mol%, it was dried at 180 ° C. The dried hydrated zirconia sol was calcined at 1120 ° C. for 2 hours. As a result, a zirconia calcined powder containing 7.4 mol% yttria was obtained. The obtained calcined powder was washed with distilled water and dried at 110 ° C. to obtain a zirconia water-washed powder.
  • Distilled water was added to obtain a slurry so that the solid content concentration of the washing powder was 45% by weight.
  • the slurry was pulverized by a ball mill with a ball mill having a diameter of 2 mm so that the average particle size was 0.40 to 0.50 ⁇ m for 18 hours to obtain a pulverized slurry.
  • the average particle size of the obtained pulverized slurry was measured and used as the average particle size of the zirconia powder.
  • zirconia powder obtained by drying a part of the pulverized slurry at 110 ° C. was evaluated. The evaluation results are shown in Table 2.
  • the obtained zirconia granules had an average particle diameter of 45 ⁇ m and a light bulk density of 1.24 g / cm 3 .
  • the zirconia sintered body of this comparative example had a total light transmittance of 36.7%.
  • the zirconia sintered body of this comparative example had a low total light transmittance, and was inferior in translucency as an anterior denture.
  • Comparative Example 3 (Zirconia powder) A zirconia sintered body was prepared using zirconia powder (trade name: TZ-4YS, manufactured by Tosoh Corporation) stabilized with 4.0 mol% yttria. The evaluation results of the zirconia powder are shown in Table 2. (Production of sintered body) The zirconia powder was put into a mold having a diameter of 25 mm and press-molded at a molding pressure of 19.6 MPa to obtain a primary molded body. The obtained primary molded body was CIPed at a pressure of 196 MPa to obtain a molded body. The resulting molded body density is shown in Table 2.
  • the obtained molded body was sintered under the conditions of 1550 ° C., a heating rate of 600 ° C./hr, and a holding time of 2 hours to obtain a sintered body of this comparative example.
  • the evaluation results of the obtained zirconia sintered body are shown in Table 3.
  • the zirconia sintered body of this comparative example had a total light transmittance of 36.0%.
  • the zirconia sintered body of this comparative example had a low total light transmittance, and was inferior in translucency as an anterior denture.
  • Comparative Example 4 (Zirconia powder) A zirconia sintered body was produced using zirconia powder (trade name: TZ-5YS, manufactured by Tosoh Corporation) stabilized with 5.0 mol% yttria. The evaluation results of the zirconia powder are shown in Table 2.
  • the zirconia powder was put into a mold having a diameter of 25 mm and press-molded at a molding pressure of 19.6 MPa to obtain a primary molded body.
  • the obtained primary molded body was CIPed at a pressure of 196 MPa to obtain a molded body.
  • the resulting molded body density is shown in Table 2.
  • the obtained molded body was sintered under the conditions of 1550 ° C., a heating rate of 600 ° C./hr, and a holding time of 2 hours to obtain a sintered body of this comparative example.
  • the evaluation results of the obtained zirconia sintered body are shown in Table 3.
  • the zirconia sintered body of this comparative example had a total light transmittance of 36.0%.
  • the zirconia sintered body of this comparative example had a low total light transmittance, and was inferior in translucency as an anterior denture.
  • Comparative Example 5 (Zirconia powder) A zirconia sintered body was produced using zirconia powder (trade name: TZ-6YS, manufactured by Tosoh Corporation) stabilized with 6.0 mol% yttria. The evaluation results of the zirconia powder are shown in Table 2. (Production of sintered body) The zirconia powder was put into a mold having a diameter of 25 mm and press-molded at a molding pressure of 19.6 MPa to obtain a primary molded body. The obtained primary molded body was CIPed at a pressure of 196 MPa to obtain a molded body. The resulting molded body density is shown in Table 2.
  • the obtained molded body was sintered under the conditions of 1500 ° C., a temperature rising rate of 600 ° C./hr, and a holding time of 2 hours to obtain a sintered body of this comparative example.
  • the evaluation results of the obtained zirconia sintered body are shown in Table 3.
  • the zirconia sintered body of this comparative example had a total light transmittance of 25.3%.
  • the zirconia sintered body of this comparative example has a low total light transmittance, is inferior in translucency as an anterior denture, and is not suitable for an anterior denture.
  • the zirconia powder used in this comparative example could not obtain a highly translucent zirconia sintered body only by atmospheric pressure sintering.
  • Comparative Example 6 A compact was obtained by molding the same zirconia powder as in Comparative Example 5 in the same manner as in Comparative Example 5.
  • the obtained molded body was sintered under the conditions of 1550 ° C., a heating rate of 600 ° C./hr, and a holding time of 2 hours to obtain a sintered body of this comparative example.
  • the evaluation results of the obtained zirconia sintered body are shown in Table 3.
  • the zirconia sintered body of this comparative example had a total light transmittance of 24.5%.
  • the zirconia sintered body of this comparative example had a low total light transmittance, and was inferior in translucency as an anterior denture.
  • the zirconia powder used in this comparative example could not obtain a highly translucent zirconia sintered body only by atmospheric pressure sintering.
  • the translucent zirconia sintered body of the present invention can be used as a denture including an anterior denture. Furthermore, it can be used as a dental material such as a denture mill blank or an orthodontic bracket. It should be noted that the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2013-265322 filed on December 24, 2013 is cited here as the disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dentistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Dental Prosthetics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

 優れた透光性及び曲げ強度を兼備したジルコニア焼結体、特に前歯用義歯として適した透光性及び強度を兼備したジルコニア焼結体を提供すること、及びその製造方法を提供する。 4.0mol%を超え6.5mol%以下のイットリアと、0.1wt%未満のアルミナを含有し、相対密度が99.82%以上であり、厚さ1.0mmにおける600nm波長の光に対する全光線透過率が37%以上40%未満であり、曲げ強度が500MPa以上である透光性ジルコニア焼結体、及びその製造方法。

Description

透光性ジルコニア焼結体及びジルコニア粉末、並びにその用途
 本発明は焼結体密度及び強度が高く、自然歯に極めて近い透光性を有したジルコニア焼結体に関する。この高透光性ジルコニア焼結体は、歯科用途、特には前歯用に使用され、さらには義歯材料等のミルブランク、歯列矯正ブラケットとして用いるのに適する。
 安定化剤として、Yを少量固溶させたジルコニア焼結体(以下、「部分安定化ジルコニア焼結体」という。)は、高強度、高靭性を有する。そのため、部分安定化ジルコニア焼結体は、切断工具、ダイス、ノズル、又はベアリングなどの機械構造用材料に利用されている。さらに、機械構造用材料以外にも、歯科材料等の生体材料として利用されている。歯科材料として部分安定化ジルコニア焼結体を使用する場合、高強度及び高靱性という機械的特性の観点からのみならず、審美的観点からは、透光性、色調等の光学的特性も要求される。
 審美性の観点からは、透光性を有するジルコニアとして、従来からイットリアを約10mol%含有する、ジルコニア単結晶(キュービックジルコニア)が宝飾品等に利用されている。しかしながら、ジルコニア単結晶は強度が極めて低いという問題があった。
 一方、ジルコニアの多結晶体であるジルコニア焼結体は透光性がない。この原因として、結晶粒間及び結晶粒内に存在する気孔が光散乱を起こすことが知られている。そのため、気孔を減少させること、つまり焼結体密度を増加させることによって、多結晶のジルコニア焼結体に透光性を付与しようとする検討がこれまでなされている。
 例えば、特許文献1には、2~4mol%のイットリアを含み、アルミナ含有量が0.2wt%以下で、1mm厚さの全光線透過率が35%以上であるジルコニア焼結体が開示されている。しかし、実施例に開示されている焼結体は全光線透過率41%であり、これは厚さ1.0mmにおける600nm波長の光に対する全光線透過率としては36%であった。当該焼結体は、奥歯用義歯として使用する際には十分な透光性と強度を持つ焼結体であった。その一方で、当該焼結体は前歯用義歯として使用するには透光性が不足しているという問題があった。
 特許文献2には、イットリアを1.5~5mol%含み、気孔率が0.6%以下のジルコニア焼結体が開示されている。しかし、当該焼結体は熱間静水圧プレス(以下、「HIP」とする。)を用いた加圧焼結により得られたジルコニア焼結体であり、常圧焼結により得られたジルコニア焼結体では、十分な透光性が得られていなかった。
 また、特許文献3には、4mol%を超え7mol%以下のイットリアを含有するジルコニア焼結体で、1mm厚さにおける波長600nmの全光線透過率が40%以上であるジルコニア焼結体が開示されている。当該焼結体もHIPを用いた加圧焼結により得られたジルコニア焼結体であり、常圧焼結により得られたジルコニア焼結体では、十分な透光性が得られていなかった。
 非特許文献1には、3mol%のイットリアと8mol%のイットリアとを含有するジルコニア粉末を、Spark Plasma Sintering(以下、「SPS」とする。)することにより得られた、透明性のあるジルコニア焼結体が開示されている。
 しかし、特許文献3や非特許文献1に開示されたジルコニア焼結体を前歯用義歯として使用するには、透明感が高すぎるため不自然であった。
 また、透光性のあるジルコニア焼結体から義歯を作製するには、仮焼結した成形体を義歯形状に切削した後に、これを焼結する方法が知られている。このような方法では、例えば、ジルコニア粉末を通常のプレス成形することにより成形体を作製し、その後、700~1000℃の温度で成形体を仮焼結して、ミルブランクを作製する。次いで、CAD/CAMにより、作製したミルブランクを義歯の形状に削り出し、その後、これを焼結する。例えば、昇温速度を600℃/hrとして焼結温度まで昇温し、焼結温度での保持時間を2時間とした工程プログラムを用いて、削り出した義歯の形状を有するミルブランクを焼結させることにより、7時間程度の短時間でジルコニアを焼結させることが行われている。
 他方、HIPによる焼結では、このような焼結を一次焼結として行い、その後で、さらにもう一度加圧下での焼結(二次焼結)としてHIPを行う必要があること、また、SPSでは短時間かつ低い温度での焼結が行える。その一方で、SPSは、黒鉛製の型の使用するため、型の材質により着色した焼結体を焼き戻して無色にするための熱処理が必要とする。さらには、硬いジルコニア焼結体を義歯の形状に削る必要があることなどから、これらの方法は行われていない。そのため、短時間の常圧焼結で密度の高いジルコニア焼結体が作製可能なジルコニア粉末の提供が望まれている。
WO2009/125793号 日本国特開昭62-153163号公報 日本国特開2008-222450号公報
 本発明では、従来方法の上記のような欠点を解消した上で、焼結体密度が高く、優れた透光性を有するジルコニア焼結体、特に前歯用義歯として適した透光性及び強度を兼備したジルコニア焼結体を提供すること、及び該ジルコニア焼結体を、常圧焼結による簡易なプロエスで製造できるジルコニア粉末を提供することを目的とする。
 本発明者らは、前歯用義歯として適したジルコニア焼結体について検討した。その結果、組成及び物性が制御されたジルコニア焼結体が、天然の前歯と同程度の審美性を有することを見出した。
 さらに、本発明者らは、ジルコニア粉末中のイットリア濃度及びアルミナ濃度と、焼結体密度及び焼結体の全光線透過率との関係について詳細に検討した。その結果、常圧焼結で前歯用義歯として適した高透光性ジルコニア焼結体を得るためには、全光線透過率だけを改善することだけではなく、ジルコニア粉末の組成や物性、さらにはこれらの関係性を制御することが必要であることを見出し、本発明を完成するに到った。
 本発明の要旨は以下のとおりである。
[1] 4.0mol%を超え6.5mol%以下のイットリアと、0.1wt%未満のアルミナを含有し、相対密度が99.82%以上であり、厚さ1.0mmにおける600nm波長の光に対する全光線透過率が37%以上40%未満であり、曲げ強度が500MPa以上であることを特徴とする透光性ジルコニア焼結体。
[2] 結晶粒径が0.3~1.0μmである、上記[1]に記載の透光性ジルコニア焼結体。
[3] 試料厚さ1.0mmにおける600nm波長の光に対する全光線透過率に対する、試料厚さ1.0mmにおけるD65光線に対する全光線透過率の割合が、1.16以上である、上記[1]又は[2]に記載の透光性ジルコニア焼結体。
[4] 上記[1]乃至[3]のいずれかに記載の透光性ジルコニア焼結体の製造方法であり、4.0mol%を超え6.5mol%のイットリアと、0.1wt%未満のアルミナを含有するジルコニア粉末を成形して成形体を得る成形工程、及び該成形体を、常圧下、焼結温度1350℃以上1500℃以下で焼結する焼結工程、を有する上記[1]乃至[3]のいずれかに記載の製造方法。
[5] 前記成形体の密度が3.2g/cm超である、上記[4]に記載の製造方法。
[6] 4.0mol%を超え6.5mol%以下のイットリアと、0.1wt%未満のアルミナを含有し、BET比表面積が8~15m/gであることを特徴とするジルコニア粉末。
[7] 結晶子径が320~380Åである、上記[6]に記載のジルコニア粉末。
[8] 平均粒径が0.40~0.50μmである、上記[6]又は[7]に記載のジルコニア粉末。
[9] 結晶中に含まれる正方晶及び立方晶の合計割合が80%以上である、上記[6]乃至[8]のいずれかに記載のジルコニア粉末。
[10] さらに、有機バインダーを含む、上記[6]乃至[9]のいずれかに記載のジルコニア粉末。
[11] 噴霧成形粉末顆粒である、上記[6]乃至[10]のいずれかに記載のジルコニア粉末。
[12] 上記[6]乃至[11]のいずれかに記載のジルコニア粉末を使用することを特徴とするジルコニア焼結体の製造方法。
[13] 上記[1]乃至[3]のいずれかに記載の透光性ジルコニア焼結体を含むことを特徴とする歯科材料。
[14] 義歯、義歯ミルブランク、前歯用義歯、前歯用義歯ミルブランク、又は歯列矯正ブラケットである、上記[13]に記載の歯科材料。
 本発明によれば、前歯用義歯として適した透光性及び強度を兼備したジルコニア焼結体が提供される。本発明の透光性ジルコニア焼結体は、透光性に優れており、歯科用途として、特に前歯用義歯で使用されるジルコニア焼結体として使用できる。また、義歯材料等のミルブランク、歯列矯正ブラケットとして用いるジルコニア焼結体としても使用することもできる。
 また、本発明のジルコニア粉末によれば、HIP等の大掛かりな加圧焼結装置を用いないで、常圧焼結で透光性を有するジルコニア焼結体を製造できる。
 本発明におけるジルコニア粉末の「安定化剤濃度」とは、安定化剤/(ZrO+安定化剤)の比率をmol%として表した値をいう。
 「添加物含有量」とは、添加物/(ZrO+安定化剤+添加物)の比率を重量%として表した値をいう。
 「相対密度」とは、理論密度(ρ;g/cm)に対する実測密度(ρ;g/cm)の割合(%)であり、以下の式により求まる値である。
     相対密度(%)=(ρ/ρ)×100
 ここで、実測密度(ρ)はアルキメデス法により測定される値である。また、理論密度(ρ)は以下の(1)式によって求まる値である。
 ρ=100/[(A/3.987)+(100-A)/ρ]  (1)
 (1)式において、ρは理論密度(g/cm)であり、3.987はアルミナの理論密度(g/cm)であり、ρはXmol%イットリアを含有するジルコニア焼結体の理論密度(g/cm)である。また、Aはアルミナ含有量(重量%)であり、Xmol%イットリアを含有するジルコニア焼結体に対するアルミナの重量割合である。
 さらに、ジルコニア焼結体中のイットリア含有量、あるいはアルミナ含有量が異なることにより、(1)式におけるρは異なる値を示す。本発明において、イットリアの含有量が下記のmol%であるジルコニア焼結体の理論密度(ρ)は以下の値とした。
    イットリア含有量 3.0mol% :ρ=6.095g/cm
    イットリア含有量 3.5mol% :ρ=6.086g/cm
    イットリア含有量 4.0mol% :ρ=6.080g/cm
    イットリア含有量 4.1mol% :ρ=6.080g/cm
    イットリア含有量 4.5mol% :ρ=6.072g/cm
    イットリア含有量 5.0mol% :ρ=6.062g/cm
    イットリア含有量 5.5mol% :ρ=6.052g/cm
    イットリア含有量 6.0mol% :ρ=6.043g/cm
    イットリア含有量 6.5mol% :ρ=6.033g/cm
    イットリア含有量 7.4mol% :ρ=6.019g/cm
 また、上記以外のイットリア含有量のジルコニア焼結体におけるρは、“Lattice Parameters and Density for Y-Stabilized ZrO” J. Am. Ceram. Soc.,69[4]325-32(1986)から、計算で求めた値を用いることができる。
 「結晶子径」とは、粉末X線回折(以下、「XRD」とする。)測定における正方晶(111)面及び立方晶(111)面のXRDピーク(以下、「メインXRDピーク」ともいう。)から、以下の(2)式により求められる値である。
    結晶子径=κλ/βcosθ     (2)
 (2)式において、κはシェーラー定数(κ=1)、λは測定X線の波長(CuKα線を線源とした場合のλ=1.541862Å)、βはメインXRDピークの半値幅、及びθはメインXRDピークのブラッグ角である。
 なお、メインXRDピークは、CuKα線を線源として、2θ=30.1~30.2°付近に現れるXRDピークである。当該ピークは正方晶の(111)面と立方晶の(111)面の重なり合ったXRDピークである。結晶子径を算出するには、正方晶及び立方晶のピーク分離を行わずに、メインXRDピークを波形処理し、波形処理後のメインXRDピークのブラッグ角(θ)と、機械的広がり幅を補正したメインXRDピークの半価幅(β)を求めればよい。
 ジルコニア粉末の「平均粒径」とは、体積基準で表される粒径分布の累積カーブの中央値(メディアン径;累積カーブの50%に対応する粒径)となる粒子と同じ体積の球の直径である。当該平均粒径は、レーザー回折法による粒径分布測定装置によって測定した値である。
 本発明のジルコニア焼結体は、イットリア及びアルミナを含有し、イットリアの含有量が4.0mol%を超え6.5mol%以下であり、アルミナの含有量が0.1wt%未満であり、ジルコニア焼結体の相対密度は99.82%以上であり、曲げ強度は500MPa以上であり、試料厚さを1.0mmとした場合の波長600nmの光に対する全光線透過率は37%以上40%未満である。
 本発明の透光性ジルコニア焼結体は、安定化剤として機能する、4.0mol%を超え6.5mol%以下、好ましくは4.1mol%以上6.0mol%以下、より好ましくは4.5mol%以上6.0mol%以下のイットリアを含むものである。イットリアの含有量が4.0mol%以下では、ジルコニア焼結体の透光性が低下する。また、6.5mol%を超えた場合、透光性が高くなりすぎる。そのため、前歯用義歯として使用する場合、焼結体に透明感が現れ、不自然な審美性を有する前歯用義歯となる。さらに、強度が低下しすぎるため、前歯用義歯としての使用に耐えられなくなる。なお、本発明におけるイットリアの含有量は、安定化剤濃度として求めることができる。
 本発明の透光性ジルコニア焼結体は、アルミナの含有量が0.1wt%未満、更には0.08wt%以下、また更には0.06wt%以下である。アルミナは添加剤として本発明の透光性ジルコニア焼結体に含まれる。本発明の透光性ジルコニア焼結体は、アルミナを含有することにより、強度が高くなる。その一方で、アルミナ含有量が0.1wt%以上では透光性が低下するため、前歯用義歯として不自然な審美性となる。前歯用義歯として適した審美性を有するためには、アルミナの含有量は0.05wt%以下であることが好ましい。なお、本発明におけるアルミナの含有量は、添加物含有量として求めることができる。アルミナの含有量は0wt%以上0.1wt%未満、更には0wt%以上0.05wt%以下であればよい。
 本発明の透光性ジルコニア焼結体は、相対密度が99.82%以上、更には99.85%以上である。相対密度が99.82%未満では、ジルコニア焼結体の透光性が低下する。本発明の透光性ジルコニア焼結体は、相対密度が99.90%以上であることが好ましく、99.95%以上であることがより好ましい。
 なお、上記の様に、本発明において、相対密度を求める場合に使用する理論密度は、イットリア含有量、あるいはアルミナ含有量の違いにより異なる値を有する。本発明の透光性ジルコニア焼結体の理論密度として、以下の値が例示できる。
Figure JPOXMLDOC01-appb-T000001
 本発明の透光性ジルコニア焼結体は、HIP等の加圧焼結を用いず、常圧焼結で得られる。さらには、上記の組成を満足し、なおかつ、相対密度が99.82%以上であることによって、試料厚さ1.0mmにおける600nm波長の光に対する全光線透過率(以下、単に「全光線透過率」ともいう。)が37%以上40%未満を満足する。
 本発明の透光性ジルコニア焼結体は、全光線透過率が37%以上40%未満、更には37%以上39.9%以下、また更には37.1%以上39.5%以下である。全光線透過率が40%以上の場合、透光性(Translucency)に加え、透明性(Transparency)を有する焼結体となる。このような焼結体は、光を透過し過ぎるため、前歯用義歯として使用することができなくなる。
 一方、全光線透過率が37%未満の場合、焼結体の呈色が強くなりすぎる。このような焼結体を前歯用義歯として使用すると、不自然な色調を呈する前歯となる。全光線透過率が上記の範囲であることで、本発明の透光性ジルコニア焼結体は、ガラスコーティングなどのコーティングを必須とすることなく、単体で前歯用義歯として使用することができる。コーティングを必要としない前歯用義歯としての、より好ましい全光線透過率は37.3%以上39.2%以下、更には37.3%以上39.0%以下、また更には37.5%以上38.6%以下である。
 本発明の透光性ジルコニア焼結体は、全光線透過率に対する、試料厚さ1.0mmにおけるD65光線に対する全光線透過率(以下、「D65透過率」とする。)の割合(以下、「透過率比」とする。)が1.16以上、更には1.18以上であることが好ましい。透過率比が高くなることで、本発明の透光性ジルコニア焼結体の審美性は、太陽光、蛍光灯、白熱灯、LED電球などの複数の波長を含む異なる照明の光に照らされた場合であっても、自然な前歯により近いものとなる。通常、本発明の透光性ジルコニア焼結体の透過率比は1.4以下、更には1.35以下であることが挙げられる。より天然の前歯に近い審美性を有する焼結体とするためには、透過率比は1.16以上1.4以下、更には1.16以上1.35以下、また更には1.18以上1.35以下、また更には1.2以上1.35以下、また更には1.25以上1.35以下であることが好ましい。
 上記の全光線透過率及び透過率比を兼備することで、本発明の透光性ジルコニア焼結体は、自然の前歯により近い審美性を有する。
 本発明の透光性ジルコニア焼結体のD65透過率は、上記の透過率比を有する値であればよい。本発明の透光性ジルコニア焼結体のD65透過率としては、例えば、42%以上56%以下、更には42以上54%以下、また更には44%以上52%以下が好ましい。
 本発明の透光性ジルコニア焼結体は、曲げ強度が500MPa以上であり、さらには550MPa以上が好ましい。本発明の透光性ジルコニア焼結体は、適度な透光性及び高い相対密度を有しているにもかかわらず、曲げ強度が高すぎることがない。曲げ強度が500MPa以上であれば、前歯用義歯としての用途に十分な強度となる。前歯用義歯として適した強度とするため、曲げ強度は600MPa以上、更には650MPa以上、また更には670MPa以上、また更には700MPa以上が好ましい。
 本発明の透光性ジルコニア焼結体の曲げ強度は、通常、1070MPa以下、更には1020MPa以下、また更には1000MPa未満、また更には950MPa以下、また更には900MPa以下が好ましい。
 前歯用義歯としては、例えば、曲げ強度が500MPa以上1070MPa以下、更には500MPa以上1000MPa未満、また更には550MPa以上1000MPa未満、また更には550MPa以上950MPa以下であることが好ましい。なお、上記曲げ強度は、三点曲げ強度を意味するものである。
 本発明の透光性ジルコニア焼結体の結晶粒径は、相対密度及び曲げ強度に優れることから、0.3~1.0μm、更には0.3~0.9μm、また更には0.4μm~0.86m、また更には0.4μm~0.81μm、また更には0.4μm~0.8μmであることが好ましい。
 本発明の透光性ジルコニア焼結体は、イットリア含有量、アルミナ含有量、相対密度、全光線透過率、D65透過率、透過率比、曲げ強度、及び結晶粒径の値や範囲が、上記に示した各値のいかなる組合せであってもよい。
 本発明の透光性ジルコニア焼結体の製造方法としては、4.0mol%を超え6.5mol%のイットリア、及び0.1wt%未満のアルミナを含有するジルコニア粉末を成形して成形体を得る成形工程、及び該成形体を、常圧下、焼結温度1350℃以上1500℃以下で焼結する焼結工程、を有する方法が挙げられる。
 成形工程では、4.0mol%を超え6.5mol%のイットリア、及び0.1wt%未満のアルミナを含有するジルコニア粉末を成形して成形体を得る。所望の形状の成形体が得られれば、その成形方法は任意である。成形方法としては、一軸加圧によるプレス成形又はCIPの少なくともいずれかを挙げることができる。
 成形体の密度は、3.2g/cm超であること、更には3.2g/cm超3.3g/cm以下であることが好ましい。
 成形工程に供するジルコニア粉末は、4.0mol%を超え6.5mol%のイットリア、及び0.1wt%未満のアルミナを含有するジルコニア粉末である。成形工程に供する好ましいジルコニア粉末(以下、「本発明の透光性ジルコニア焼結体用のジルコニア粉末」又は「本発明のジルコニア粉末」ともいう。)としては、以下のジルコニア粉末を挙げることができる。
 本発明のジルコニア粉末を使用することで、焼結工程における焼結が、常圧焼結のみであっても、本発明のジルコニア焼結体を得ることができる。これにより、焼結工程において、HIPなどの加圧焼結やSPSなどの特殊な焼結方法を使用せずに、前歯用義歯として適した透光性及び強度を兼備した透光性ジルコニア焼結体を得ることができる。
 本発明のジルコニア粉末は、安定化剤として4.0mol%を超え6.5mol%以下のイットリアを含み、アルミナの含有量が0.1wt%未満であるジルコニア粉末である。
 本発明のジルコニア粉末は、4.0mol%を超え6.5mol%以下、好ましくは4.1mol%以上6.0mol%以下、より好ましくは4.5mol%以上6.0mol%以下のイットリアを含む。イットリアは安定化剤として機能する。安定化剤が4.0mol%以下では、得られるジルコニア焼結体の透光性が低くなりすぎる。
 一方、安定化剤が6.5mol%を超えると、前歯用義歯として必要とされる透光性以上の高透光性のジルコニア焼結体が得られる。そのため、前歯用義歯として使用する場合、透明感が現れ、不自然な義歯となる。これに加え、強度が低下しすぎるため、前歯用義歯として使用できない。
 本発明のジルコニア粉末は、アルミナの含有量が0.1wt%未満、更には0.08wt%以下、また更には0.06wt%以下が好ましい。本発明のジルコニア粉末がアルミナを含有することにより、前歯用義歯としての使用に適した強度の透光性ジルコニア焼結体が得られる。
 一方で、アルミナ含有量が0.1wt%以上では、得られるジルコニア焼結体の透光性が低下するため、前歯用義歯として不自然な審美性を有するジルコニア焼結体となる。前歯用義歯として適した審美性を有する透光性ジルコニア焼結体を得るためには、アルミナの含有量は0.05wt%以下であることが好ましい。本発明のジルコニア粉末のアルミナ含有量としては、0wt%以上0.01wt%未満であり、更には0wt%以上0.05wt%以下が好ましい。
 本発明のジルコニア粉末の結晶子径は、得られるジルコニア焼結体の密度が高くなることから、320~380Å、さらには330~370Å、また更には340~360Å、また更には350~360Åであることが好ましい。
 本発明のジルコニア粉末は、BET比表面積が8~15m/gであること、さらには10~15m/gであることが好ましい。BET比表面積が8m/g以上であることで、ジルコニア粉末がより低温で焼結しやすい粉末となる。一方、BET比表面積が15m/g以下、更には14m/g以下であれば、得られる焼結体の密度が低くなりにくく、透光性を有するジルコニア焼結体が得られやすくなる。前歯用義歯として適した透光性及び密度を有する透光性ジルコニア焼結体が得られやすくするため、BET比表面積は9m/g以上15m/g以下、更には10m/g以上14m/g以下であることが好ましい。
 本発明のジルコニア粉末は、上記の結晶子径、及びBET比表面積を兼備することで、常圧焼結のみの焼結によって、前歯用義歯としてより適したジルコニア焼結体を提供することができる。すなわち、上記のような結晶子径、及びBET比表面積を兼備するジルコニア粉末を、HIPやSPS等の焼結方法を利用することなく、常圧焼結するだけで、特にコーティング処理等を施すこともなく、単体で前歯用義歯として適した透光性ジルコニア焼結体が得られやすくなる。
 本発明のジルコニア粉末は、その結晶中に含まれる正方晶(Tetragonal)及び立方晶(Cubic)の合計割合(以下、「(T+C)相率」ともいう。)が80%以上、更には85%以上であることが好ましい。(T+C)相率がこの様な値を有することで、常圧焼結のみの焼結であっても、前歯用義歯として適した透光性及び曲げ強度を兼備した焼結体が得られる。好ましい(T+C)相率としては、90%以上、更には90%を超えること、また更には95%以上を挙げることができる。
 本発明において、(T+C)相率は、ジルコニアの単斜晶、正方晶及び立方晶の合計に対する、正方晶及び立方晶の合計割合であり、以下の式より求めることができる。
    (T+C)相率(%) = 100 - fm
 上記式において、fmは単斜晶率(%)である。fmは、単斜晶相(111)面に相当するXRDピーク強度(以下、「Im(111)」とする。)、単斜晶相(11-1)面に相当するXRDピーク強度(以下、「Im(11-1)」とする。)、並びに、正方晶(111)面に相当するXRDピークと立方晶の(111)面に相当するXRDピークの強度(以下、「It+c(111)」とする。)から、以下の式により求めることができる。
 fm(%)=[Im(111)+Im(11-1)]
   ÷[Im(111)+Im(11-1)It+c(111)]×100
 なお、正方晶(111)面に相当するXRDピークと立方晶の(111)面に相当するXRDピークとは重複したピークである。It+c(111)は、これらを分離せずにひとつのピークとみなして求めた強度である。
 粉砕時間、成形性及び焼結性の観点から、本発明のジルコニア粉末の平均粒径は、0.40~0.50μmであること、さらには0.40~0.45μm、また更には0.40~0.43μmであることが好ましい。
 さらに、本発明のジルコニア粉末は、噴霧成形粉末顆粒(以下、単に「顆粒」ともいう。)であることが好ましい。
 本発明のジルコニア粉末は、特に安定化剤としてイットリア、及び添加剤としてアルミナの他に、有機バインダーを含む噴霧造粒顆粒であることが好ましい。該顆粒は、成形体を形成する際の流動性が高くなり、プレス成形後の保形性に優れた成形体の形成が可能である。顆粒の平均粒径は30~80μm、軽装嵩密度は1.10~1.40g/cmであることが好ましい。なお、軽装嵩密度とは、JIS R1628に準じた方法により測定される密度(Bulk Density)である。
 有機バインダーとしては、ポリビニルアルコール、ポリビニルブチラート、ワックス、及びアクリル系樹脂からなる群から選ばれる1種以上を挙げることができる。これらの有機バインダーの中でも、分子中にカルボキシル基又はその誘導体(例えば、塩、特にアンモニウム塩など)を有するアクリル系樹脂が好ましい。アクリル系樹脂として、例えば、ポリアクリル酸、ポリメタクリル酸、アクリル酸共重合体、メタクリル酸共重合体、及びこれらの誘導体からなる群から選ばれる1種以上を挙げることができる。
 有機バインダーの添加量は、ジルコニア粉末スラリー中のジルコニア粉末に対し、0.5~10重量%が好ましく、特に1~5重量%が好ましい。
 このように、本発明のジルコニア粉末からは、常圧焼結のみによる焼結によって、前歯用義歯として適した透光性を有するジルコニア焼結体が得られる。すなわち、本発明のジルコニア粉末は、HIP処理等の加圧焼結を用いなくても、前歯用義歯として適した高い透光性を有するジルコニア焼結体が得られる。
 本発明のジルコニア粉末を成形して得られる成形体の密度は、3.2g/cm超であればよく、3.2g/ccm超3.3g/cm以下、更には3.2g/cm超3.27g/cm以下であることが好ましい。成形体の密度が3.2g/cm超であれば、得られる焼結体の透光性が前歯用義歯により適したものとなりやすい。また、成形体の密度が3.3g/cm以下であれば、焼結体がその強度低下の原因となる欠陥等を有さなくなりやすい。さらに、上記の(T+C)相率を有する本発明のジルコニア粉末の成形体としては、該成形体を焼結することで適度な焼結収縮が進行する。これにより、前歯用義歯として適したジルコニア焼結体が得られやすくなる。成形体は、(T+C)相率が90%以上であり、かつ、成形体密度が3.2g/cm超3.25g/cm以下であることが好ましい。
 本発明のジルコニア粉末は、例えば、ジルコニウム塩水溶液の加水分解で水和ジルコニアゾルを得る原料工程、該水和ジルコニアゾルを乾燥及び仮焼して仮焼粉末を得る仮焼工程、及び、該仮焼粉末を粉砕して粉砕粉を得る粉砕工程、を有する製造方法により製造することが好ましい。
 原料工程においては、ジルコニウム塩水溶液を加水分解することで水和ジルコニアゾルを得る。水和ジルコニアゾルの製造に用いるジルコニウム塩水溶液としては、水酸化ジルコニウムと酸との混合物、オキシ塩化ジルコニウム、硝酸ジルコニル、塩化ジルコニウム及び硫酸ジルコニウムからなる群から選ばれる少なくとも1種を含む水溶液が挙げられる。
 水和ジルコニアゾルを得るにあたり、加水分解前又は加水分解中にイットリア源をジルコニウム塩水溶液に添加することが好ましい。イットリア源の添加量は、ジルコニア粉末におけるイットリア含有量と同程度の量であればよい。イットリア源としては、水和ジルコニウム塩水溶液中で溶解するものであればよく、塩化イットリウム、酸化イットリウム、硝酸イットリウム及び水酸化イットリウムからなる群から選ばれる少なくとも1種か、塩化イットリウム又は酸化イットリウムの少なくともいずれかであることが挙げられる。
 仮焼工程では、得られた水和ジルコニアゾルを乾燥して乾燥粉末を得た後、該乾燥粉末を仮焼することによって仮焼粉末を得る。
 仮焼工程における乾燥は、水和ジルコニアゾル中の水分、及び、水和ジルコニアゾル中に付着した残留水分を除去できれば任意の方法で乾燥することができる。乾燥温度は、160~200℃であることが例示できる。
 仮焼工程では、上記で得られた水和ジルコニアゾルの乾燥粉末を仮焼することで、仮焼粉末を得る。仮焼温度は1050~1250℃が好ましく、1100~1200℃であることがより好ましい。仮焼温度がこの範囲であることで、ジルコニアの凝集が抑制されるだけでなく、得られる仮焼粉の粒径が均一になりやすい。
 粉砕工程では、得られた仮焼粉末を粉砕する。これにより、本発明のジルコニア粉末が得られる。粉砕工程は、上記で得られた仮焼粉末の平均粒径が0.40~0.50μmになるまで粉砕する。仮焼粉末が上記の平均粒径となる方法であれば、粉砕方法は任意である。粉砕方法としては、湿式粉砕又は乾式粉砕の少なくともいずれか、更には湿式粉砕を挙げることができる。特に好ましい粉砕方法としては、ジルコニアボールを使用した湿式粉砕を挙げることができ、ジルコニアボールは直径3mm以下であることが好ましい。
 また、粉砕はアルミナ源を仮焼粉末に添加した後に行うことが好ましい。これにより、ジルコニア及びアルミナがより均一に混合される。
 添加物として用いるアルミナ源は、アルミニウムの化合物であればよく、例えば、アルミナ、水和アルミナ、アルミナゾル、水酸化アルミニウム、塩化アルミニウム、硝酸アルミニウム、及び硫酸アルミニウムからなる群から選ばれる少なくとも1種、好ましくはアルミナ、水和アルミナ及びアルミナゾルからなる群から選ばれる少なくとも1種を挙げることができる。ジルコニア粉末の粉砕時に必要量のアルミナ源を添加し、粉砕して、分散混合することができる。
 本発明のジルコニア粉末の製造方法は、さらに顆粒化工程を含むことが好ましい。これにより、本発明のジルコニア粉末を顆粒とすることができる。顆粒化工程は、ジルコニア粉末をスラリーにして噴霧乾燥すればよい。噴霧乾燥として、たとえば、160~200℃の熱風に当該スラリーを滴下することが挙げられる。焼結工程では、成形工程で得られた成形体を、常圧下にて、焼結温度1350~1500℃で焼結する。これにより、本発明の透光性ジルコニア焼結体が得られる。焼結工程における焼結温度は1400℃以上1490℃以下、更には1400℃以上1450℃以下であることが好ましい。
 焼結工程における昇温速度は、800℃/時間以下、さらには600℃/時間以下である。焼結温度における保持時間(以下、単に「保持時間」ともいう。)は、焼結温度により異なる。焼結工程における保持時間として5時間以下、更には3時間以下、また更には2時間以下を例示することができる。
 本発明の透光性ジルコニア焼結体は常圧焼結で得られる。ここで、常圧焼結とは成形体に対して外的な力を加えずに単に加熱することにより焼結する方法である。具体的な常圧焼結として、大気圧下での焼結を挙げることができる。
 焼結雰囲気は還元性雰囲気でなければよく、すなわち、還元性雰囲気以外の雰囲気であればよい。焼結雰囲気は酸素雰囲気であればよく、大気中での焼結が好ましい。特に好ましい焼結工程として、大気圧下、昇温速度600℃/時間以下、焼結温度1400℃以上1490℃以下で焼結することが挙げられる。
 焼結工程は、常圧焼結のみで焼結することが好ましい。一般に、透光性を向上させる手段として、常圧焼結後に、HIPその他の加圧焼結やSPSなどの特殊な焼結方法を使用することが挙げられる。しかしながら、加圧焼結や特殊な焼結方法は製造プロセスを煩雑にするだけではなく、製造コストの上昇をもたらす。本発明の製造方法、特に本発明のジルコニア粉末を用いた場合においては、常圧焼結のみであっても、前歯用義歯として十分な透光性及び強度を兼備した透光性ジルコニア焼結体を得ることができる。
 以下、実施例により本発明を具体的に説明する。しかしながら、本発明はこれらの実施例に限定されるものではない。
 (粉末の平均粒径)
 ジルコニア粉末の平均粒径は、マイクロトラック粒度分布計(Honeywell社製,型式:9320-HRA)を用いて測定した。試料の前処理条件としては、粉砕スラリーを蒸留水に懸濁させ、超音波ホモジナイザー(日本精機製作所社製,型式:US-150T)を用いて3分間分散させた。
 (顆粒の平均粒径)
 ジルコニア顆粒の平均粒径は、JIS Z 8801に準じた、ふるい分け試験方法によって求めた。
(BET比表面積)
 粉末試料のBET比表面積は、BET1点法の窒素吸着により測定した。測定装置には一般的なガス吸着式比表面積測定装置(装置名:トライスター3000、マイクロメリティックス社製)を用いた。測定に先立ち、250℃で60分間加熱の脱気処理を行うことにより、粉末試料を前処理した。
    結晶子径(Å)=κλ/(βcosθ)
 上記式において、κはシェーラー定数(=1)、λはCuKα線を線源とした場合のλであり、1.541862Åである。また、θはメインXRDピークのθ値であり、30.1~30.2°である。
(結晶相の同定)
 一般的なX線回折装置(商品名:MXP-3、マックサイエンス社製)を使用し、試料の粉末X線回折測定による結晶相を測定した。測定条件は以下のとおりとした。
    線源    : CuKα線(λ=1.541862Å)
    測定モード : ステップスキャン
    スキャン条件: 毎秒0.04°
    発散スリット: 1.00deg
    散乱スリット: 1.00deg
    受光スリット: 0.30mm
    計測時間  : 3.0秒
    測定範囲  : 2θ=26°~33°
 上記XRD測定により得られたXRDパターンから、以下の式より(T+C)相率を求めた。
   (T+C)相率(%) = 100 - fm
 上記式において、fmは単斜晶率(%)であり、以下の式により求めた。
 fm(%)=[Im(111)+Im(11-1)]
   ÷[Im(111)+Im(11-1)It+c(111)]×100
(結晶子径)
 粉末試料について、結晶相の同定と同様な方法でXRD測定し、XRDパターンを得た。得られたXRDパターンから正方晶の(111)面及び立方晶の(111)面に相当するピーク(メインXRDピーク)の半値幅を算出した。当該半値幅を用い以下の式より結晶子径を算出した。X線回折装置を用い、半価幅は測定結果をバックグランド除去した後、ピークフィッティング処理を行った結果から求めた。
(結晶粒径)
 ジルコニア焼結体の結晶粒径は、電解放出形走査型電子顕微鏡(FESEM)(日本電子社製、型式:JSM-T220)を用いて得られた、SEM観察図から、プラニメトリック法により算出した平均粒径である。測定試料には、鏡面研磨したジルコニア焼結体を熱エッチング処理したものを使用した。
(焼結体密度)
 焼結体密度は、アルキメデス法で測定した。
(全光線透過率)
 ジルコニア焼結体の全光線透過率は、分光光度計(日本分光(株)製、型式:V-650)を用いて測定した。試料はジルコニア焼結体を両面研磨した厚み1mmの円盤形状のものを用いて、波長220~850nmの光を透過させて、積分球で集光した光を測定した。
(D65透過率)
 濁度計(日本電色(株)製、型式:NDH2000)を用いて、JIS K 7361に準拠してD65光源での全光線透過率を測定した。測定には全光線透過率の測定で使用した試料同一の試料を使用した。
(三点曲げ強度)
 ジルコニア焼結体の強度は、JIS R 1601に記載されている方法に基づいて、3点曲げ測定法で評価した。
 実施例1
(ジルコニア粉末の調製)
 オキシ塩化ジルコニウム水溶液を加水分解反応して水和ジルコニアゾルを得た。イットリア濃度が4.1mol%になるように、塩化イットリウムを当該水和ジルコニアゾルに添加した後に、これを180℃で乾燥した。乾燥後のジルコニアゾルを1120℃で2時間焼成した。これにより、4.1mol%のイットリアを含むジルコニア仮焼粉末を得た。
 得られた仮焼粉末を蒸留水で水洗し、110℃で乾燥してジルコニア水洗粉末とした。アルミナ含有量が0.05重量%となるように、当該ジルコニア水洗粉末にα-アルミナを添加して混合粉末を得た。
 この混合粉末の固形分濃度が45重量%となるように蒸留水を加えてスラリーを得た。当該スラリーを直径2mmのボールミルで平均粒子径が0.40~0.50μmとなるようにボールミルで14時間粉砕して粉砕スラリーとした。得られた粉砕スラリーの平均粒径を測定し、ジルコニア粉末の平均粒径とした。また、粉砕スラリーの一部を110℃で乾燥して得られたジルコニア粉末の評価を行った。評価結果を表2に示した。
 上記粉砕スラリーにポリアクリル酸系有機バインダーを3重量%添加して、これを180℃の熱風に滴下することで噴霧乾燥を実施し、本実施例のジルコニア顆粒を得た。得られたジルコニア顆粒は平均粒径が50μm、軽装嵩密度が1.25g/cmであった。
(焼結体の作製)
 得られたジルコニア顆粒5gを直径25mmの金型に入れ、19.6MPaの成形圧力でプレス成形して一次成形体を得た。得られた一次成形体を、196MPaの成形圧力でCIPして成形体を得た。得られた成形体密度を表2に示した。
 得られた成形体を1450℃、昇温速度600℃/hr、及び保持時間2時間の条件で焼結し、本実施例のジルコニア焼結体を得た。得られたジルコニア焼結体の評価結果を表3に示した。得られたジルコニア焼結体は、全光線透過率は37.3%であった。全光線透過率が37%以上40%未満であることから、前歯用義歯に好適である。
 実施例2
(ジルコニア粉末の調製)
 オキシ塩化ジルコニウム水溶液を加水分解反応して水和ジルコニアゾルを得た。イットリア濃度が5.0mol%になるように、塩化イットリウムを当該水和ジルコニアゲルに添加した後に、これを180℃で乾燥した。乾燥後のジルコニアゲルを1120℃で2時間焼成した。これにより、5.0mol%のイットリアを含むジルコニア仮焼粉末を得た。
 得られた仮焼粉末を蒸留水で水洗し、110℃で乾燥してジルコニア水洗粉末とした。アルミナ含有量が0.05重量%となるように、当該ジルコニア水洗粉末にα-アルミナを添加して混合粉末を得た。
 これらの混合粉末の固形分濃度が45重量%となるように蒸留水を加えてスラリーを得た。当該スラリーを直径2mmのボールミルで平均粒子径が0.40~0.50μmとなるようにボールミルで17時間粉砕して粉砕スラリーとした。得られた粉砕スラリーの平均粒径を測定し、ジルコニア粉末の平均粒径とした。また、粉砕スラリーの一部を110℃で乾燥して得られたジルコニア粉末の評価を行った。評価結果を表2に示した。
 上記粉砕スラリーにポリアクリル酸系有機バインダーを3重量%添加して、これを180℃の熱風に滴下することで噴霧乾燥を実施し、本実施例のジルコニア顆粒を得た。得られたジルコニア顆粒は平均粒径が48μm、軽装嵩密度が1.27g/cmであった。
(焼結体の作製)
 得られたジルコニア顆粒5gを直径25mmの金型に入れ、19.6MPaの成形圧力でプレス成形して一次成形体を得た。得られた一次成形体を、196MPaの成形圧力でCIPして成形体を得た。得られた成形体密度を表2に示した。
 得られた成形体を1450℃、昇温速度600℃/hr、及び保持時間2時間の条件で焼結し、本実施例のジルコニア焼結体を得た。得られたジルコニア焼結体の評価結果を表3に示した。得られたジルコニア焼結体は、全光線透過率は37.6%であった。全光線透過率が37%以上40%未満であることから、前歯用義歯に好適である。
 実施例3
(ジルコニア粉末の調製)
 オキシ塩化ジルコニウム水溶液を加水分解反応して水和ジルコニアゾルを得た。イットリア濃度が6.0mol%になるように、塩化イットリウムを当該水和ジルコニアゾルに添加した後に、これを180℃で乾燥した。乾燥後のジルコニアゾルを1120℃で2時間焼成した。これにより、6.0mol%のイットリアを含むジルコニア仮焼粉末を得た。
 得られた仮焼粉末を蒸留水で水洗し、110℃で乾燥してジルコニア水洗粉末とした。アルミナ含有量が0.05重量%となるように、当該ジルコニア水洗粉末にα-アルミナを添加して混合粉末を得た。
 これらの混合粉末の固形分濃度が45重量%となるように蒸留水を加えてスラリーを得た。当該スラリーを直径2mmのボールミルで平均粒子径が0.40~0.50μmとなるようにボールミルで17時間粉砕して粉砕スラリーとした。得られた粉砕スラリーの平均粒径を測定し、ジルコニア粉末の平均粒径とした。また、粉砕スラリーの一部を110℃で乾燥して得られたジルコニア粉末の評価を行った。評価結果を表2に示した。
 上記粉砕スラリーにポリアクリル酸系有機バインダーを3重量%添加して、これを180℃の熱風に滴下することで噴霧乾燥を実施し、本実施例のジルコニア顆粒を得た。得られたジルコニア顆粒は平均粒径が48μm、軽装嵩密度が1.26g/cmであった。
(焼結体の作製)
 得られたジルコニア顆粒5gを直径25mmの金型に入れ、19.6MPaの成形圧力でプレス成形して一次成形体を得た。得られた一次成形体を、196MPaの成形圧力でCIPして成形体を得た。得られた成形体密度を表2に示した。
 得られた成形体を1450℃、昇温速度600℃/hr、及び保持時間2時間の条件で焼結し、本実施例のジルコニア焼結体を得た。得られたジルコニア焼結体の評価結果を表3に示した。得られたジルコニア焼結体は、全光線透過率は38.5%であった。全光線透過率が37%以上40%未満であることから、前歯用義歯に好適である。
 実施例4
(ジルコニア粉末の調製)
 オキシ塩化ジルコニウム水溶液を加水分解反応して水和ジルコニアゾルを得た。イットリア濃度が5.0mol%になるように、塩化イットリウムを当該水和ジルコニアゲルに添加した後に、これを180℃で乾燥した。乾燥後のジルコニアゲルを1160℃で2時間焼成した。これにより、5.0mol%のイットリアを含むジルコニア仮焼粉末を得た。得られた仮焼粉末を蒸留水で水洗し、110℃で乾燥してジルコニア水洗粉末とした。
 この水洗粉末の固形分濃度が45重量%となるように蒸留水を加えてスラリーを得た。当該スラリーを直径2mmのボールミルで平均粒子径が0.40~0.50μmとなるようにボールミルで25時間粉砕して粉砕スラリーとした。得られた粉砕スラリーの平均粒径を測定し、ジルコニア粉末の平均粒径とした。また、粉砕スラリーの一部を110℃で乾燥して得られたジルコニア粉末の評価を行った。評価結果を表2に示した。
 上記粉砕スラリーにポリアクリル酸系有機バインダーを3重量%添加して、これを180℃の熱風に滴下することで噴霧乾燥を実施し、本実施例のジルコニア顆粒を得た。得られたジルコニア顆粒は平均粒径が50μm、軽装嵩密度が1.28g/cmであった。
(焼結体の作製)
 得られたジルコニア顆粒5gを直径25mmの金型に入れ、19.6MPaの成形圧力でプレス成形して一次成形体を得た。得られた一次成形体を、196MPaの成形圧力でCIPして成形体を得た。得られた成形体密度を表2に示した。
 得られた成形体を1450℃、昇温速度600℃/hr、及び保持時間2時間の条件で焼結し、本実施例のジルコニア焼結体を得た。得られたジルコニア焼結体の評価結果を表3に示した。得られたジルコニア焼結体は、全光線透過率は37.5%であった。全光線透過率が37%以上40%未満であることから、前歯用義歯に好適である。
 実施例5
(ジルコニア粉末の調製)
 オキシ塩化ジルコニウム水溶液を加水分解反応して水和ジルコニアゾルを得た。イットリア濃度が5.5mol%になるように、塩化イットリウムを当該水和ジルコニアゲルに添加した後に、これを180℃で乾燥した。乾燥後のジルコニアゲルを1160℃で2時間焼成した。これにより、5.5mol%のイットリアを含むジルコニア仮焼粉末を得た。得られた仮焼粉末を蒸留水で水洗し、110℃で乾燥してジルコニア水洗粉末とした。
 この水洗粉末の固形分濃度が45重量%となるように蒸留水を加えてスラリーを得た。当該スラリーを直径2mmのボールミルで平均粒子径が0.40~0.50μmとなるようにボールミルで22時間粉砕して粉砕スラリーとした。得られた粉砕スラリーの平均粒径を測定し、ジルコニア粉末の平均粒子径とした。また、粉砕スラリーの一部を110℃で乾燥して得られたジルコニア粉末を評価した。評価結果を表2に示した。
 上記粉砕スラリーにポリアクリル酸系有機バインダーを3重量%添加して、これを180℃の熱風に滴下することで噴霧乾燥を実施し、本実施例のジルコニア顆粒を得た。得られたジルコニア顆粒は平均粒径が48μm、軽装嵩密度が1.24g/cmであった。
(焼結体の作製)
 得られたジルコニア顆粒5gを直径25mmの金型に入れ、19.6MPaの成形圧力でプレス成形して一次成形体を得た。得られた一次成形体を、196MPaの成形圧力でCIPして成形体を得た。得られた成形体密度を表2に示した。
 得られた成形体を1450℃、昇温速度600℃/hr、及び保持時間2時間の条件で焼結し、本実施例のジルコニア焼結体を得た。得られたジルコニア焼結体の評価結果を表3に示した。得られたジルコニア焼結体は、全光線透過率は39.2%であった。全光線透過率が37%以上40%未満であることから、前歯用義歯に好適である。
 実施例6
(ジルコニア粉末の調製)
 オキシ塩化ジルコニウム水溶液を加水分解反応して水和ジルコニアゾルを得た。イットリア濃度が5.5mol%になるように、塩化イットリウムを当該水和ジルコニアゲルに添加した後に、これを180℃で乾燥した。乾燥後のジルコニアゲルを1160℃で2時間焼成した。これにより、5.5mol%のイットリアを含むジルコニア仮焼粉末を得た。アルミナ含有量が0.05重量%となるように、当該ジルコニア水洗粉末にα-アルミナを添加して混合粉末を得た。
 この水洗粉末の固形分濃度が45重量%となるように蒸留水を加えてスラリーを得た。当該スラリーを直径2mmのボールミルで平均粒子径が0.40~0.50μmとなるようにボールミルで22時間粉砕して粉砕スラリーとした。得られた粉砕スラリーの平均粒径を測定し、ジルコニア粉末の平均粒子径とした。また、粉砕スラリーの一部を110℃で乾燥して得られたジルコニア粉末を評価した。評価結果を表2に示した。
 上記粉砕スラリーにポリアクリル酸系有機バインダーを3重量%添加して、これを180℃の熱風に滴下することで噴霧乾燥を実施し、本実施例のジルコニア顆粒を得た。得られたジルコニア顆粒は平均粒径が43μm、軽装嵩密度が1.26g/cmであった。
(焼結体の作製)
 得られたジルコニア顆粒5gを直径25mmの金型に入れ、19.6MPaの成形圧力でプレス成形して一次成形体を得た。得られた一次成形体を、196MPaの成形圧力でCIPして成形体を得た。得られた成形体密度を表2に示した。得られた成形体を1450℃、昇温速度600℃/hr、及び保持時間2時間の条件で焼結し、本実施例のジルコニア焼結体を得た。得られたジルコニア焼結体の評価結果を表3に示した。得られたジルコニア焼結体は、全光線透過率は37.5%であった。全光線透過率が37%以上40%未満であることから、前歯用義歯に好適である。
実施例7
(ジルコニア粉末の調製)
 オキシ塩化ジルコニウム水溶液を加水分解反応して水和ジルコニアゾルを得た。イットリア濃度が5.5mol%になるように、塩化イットリウムを当該水和ジルコニアゲルに添加した後に、これを180℃で乾燥した。乾燥後のジルコニアゲルを1120℃で2時間焼成した。これにより、5.5mol%のイットリアを含むジルコニア仮焼粉末を得た。アルミナ含有量が0.05重量%となるように、当該ジルコニア水洗粉末にα-アルミナを添加して混合粉末を得た。
 この水洗粉末の固形分濃度が45重量%となるように蒸留水を加えてスラリーを得た。当該スラリーを直径2mmのボールミルで平均粒子径が0.40~0.50μmとなるようにボールミルで12時間粉砕して粉砕スラリーとした。得られた粉砕スラリーの平均粒径を測定し、ジルコニア粉末の平均粒子径とした。また、粉砕スラリーの一部を110℃で乾燥して得られたジルコニア粉末を評価した。評価結果を表2に示した。
 上記粉砕スラリーにポリアクリル酸系有機バインダーを3重量%添加して、これを180℃の熱風に滴下することで噴霧乾燥を実施し、本実施例のジルコニア顆粒を得た。得られたジルコニア顆粒は平均粒径が48μm、軽装嵩密度が1.24g/cmであった。
(焼結体の作製)
 得られたジルコニア顆粒5gを直径25mmの金型に入れ、19.6MPaの成形圧力でプレス成形して一次成形体を得た。得られた一次成形体を、196MPaの成形圧力でCIPして成形体を得た。得られた成形体密度を表2に示した。得られた成形体を1450℃、昇温速度600℃/hr、及び、保持時間2時間の条件で焼結し、本実施例のジルコニア焼結体を得た。得られたジルコニア焼結体の評価結果を表3に示した。得られたジルコニア焼結体は、全光線透過率は37.5%であった。全光線透過率が37%以上40%未満であることから、前歯用義歯に好適である。
 比較例1
(ジルコニア粉末)
 3.0mol%のイットリアで安定化され、Alを0.05wt%含むジルコニア粉末(商品名:Zpex(登録商標)、東ソー社製)を使用して、ジルコニア焼結体を作製した。当該ジルコニア粉末の評価結果を表2に示した。
(焼結体の作製)
 当該ジルコニア粉末を、直径25mmの金型に入れ、19.6MPaの成形圧力でプレス成形して一次成形体を得た。得られた一次成形体は、圧力196MPaでCIP成形し、成形体を得た。
 次にその成形体を1450℃、昇温速度600℃/hr、及び保持時間2時間の条件で焼結して、本比較例のジルコニア焼結体を得た。得られたジルコニア焼結体の評価結果を表3に示した。
 本比較例のジルコニア焼結体は、全光線透過率は35.8%及び強度が1200MPaであった。このように、本比較例のジルコニア焼結体は奥歯用義歯として適した強度を有している一方、前歯用義歯としての透光性に劣るものであった。
 比較例2
(ジルコニア粉末の調製)
 オキシ塩化ジルコニウム水溶液を加水分解反応して水和ジルコニアゾルを得た。イットリア濃度が7.4mol%になるように塩化イットリウムを当該水和ジルコニアゾルに添加した後に、これを180℃で乾燥した。乾燥後の水和ジルコニアゾルを1120℃で2時間焼成した。これにより、7.4mol%のイットリアを含むジルコニア仮焼粉末を得た。得られた仮焼粉末を蒸留水で水洗し、110℃で乾燥したてジルコニア水洗粉末を得た。
 この水洗粉末の固形分濃度が45重量%となるように蒸留水を加えてスラリーを得た。当該スラリーを直径2mmのボールミルで平均粒子径が0.40~0.50μmとなるようにボールミルで18時間粉砕して粉砕スラリーとした。得られた粉砕スラリーの平均粒径を測定し、ジルコニア粉末の平均粒径とした。また、粉砕スラリーの一部を110℃で乾燥して得られたジルコニア粉末の評価を行った。評価結果を表2に示した。
 上記粉砕スラリーにポリアクリル酸系有機バインダーを3重量%添加して、これを180℃の熱風に滴下することで噴霧乾燥を実施し、本実施例のジルコニア顆粒を得た。得られたジルコニア顆粒は平均粒径が45μm、軽装嵩密度が1.24g/cmであった。
(焼結体の作製)
 得られたジルコニア顆粒5gを直径25mmの金型に入れ、19.6MPaの成形圧力でプレス成形して一次成形体を得た。得られた一次成形体を圧力196MPaでCIPして成形体を得た。得られた成形体密度を表2に示した。
 得られた成形体を1450℃、昇温速度600℃/hr、及び、保持時間2時間の条件で焼結して、本比較例のジルコニア焼結体を得た。得られたジルコニア焼結体の評価結果を表3に示した。本比較例のジルコニア焼結体は、全光線透過率は36.7%であった。このように、本比較例のジルコニア焼結体は全光線透過率が低く、前歯用義歯としての透光性に劣るものであった。
 比較例3
(ジルコニア粉末)
 4.0mol%のイットリアで安定化されたジルコニア粉末(商品名:TZ-4YS、東ソー社製)を使用してジルコニア焼結体を作製した。
 当該ジルコニア粉末の評価結果を表2に示した。
(焼結体の作製)
 当該ジルコニア粉末を直径25mmの金型に入れ、19.6MPaの成形圧力でプレス成形して一次成形体を得た。得られた一次成形体を圧力196MPaでCIPして成形体を得た。得られた成形体密度を表2に示した。
 得られた成形体を1550℃、昇温速度600℃/hr、及び保持時間2時間の条件で焼結して本比較例の焼結体を得た。得られたジルコニア焼結体の評価結果を表3に示した。
 本比較例のジルコニア焼結体は、全光線透過率は36.0%であった。このように、本比較例のジルコニア焼結体は全光線透過率が低く、前歯用義歯としての透光性に劣るものであった。
 比較例4
(ジルコニア粉末)
 5.0mol%のイットリアで安定化されたジルコニア粉末(商品名:TZ-5YS、東ソー社製)を使用してジルコニア焼結体を作製した。
 当該ジルコニア粉末の評価結果を表2に示した。
(焼結体の作製)
 当該ジルコニア粉末を直径25mmの金型に入れ、19.6MPaの成形圧力でプレス成形して一次成形体を得た。得られた一次成形体を圧力196MPaでCIPして成形体を得た。得られた成形体密度を表2に示した。
 得られた成形体を1550℃、昇温速度600℃/hr、及び保持時間2時間の条件で焼結して本比較例の焼結体を得た。得られたジルコニア焼結体の評価結果を表3に示した。
 本比較例のジルコニア焼結体は、全光線透過率は36.0%であった。このように、本比較例のジルコニア焼結体は全光線透過率が低く、前歯用義歯としての透光性に劣るものであった。
 比較例5
(ジルコニア粉末)
 6.0mol%のイットリアで安定化されたジルコニア粉末(商品名:TZ-6YS、東ソー社製)を使用してジルコニア焼結体を作製した。
 当該ジルコニア粉末の評価結果を表2に示した。
(焼結体の作製)
 当該ジルコニア粉末を直径25mmの金型に入れ、19.6MPaの成形圧力でプレス成形して一次成形体を得た。得られた一次成形体を圧力196MPaでCIPして成形体を得た。得られた成形体密度を表2に示した。得られた成形体を1500℃、昇温速度600℃/hr、及び、保持時間2時間の条件で焼結して本比較例の焼結体を得た。得られたジルコニア焼結体の評価結果を表3に示した。
 本比較例のジルコニア焼結体は、全光線透過率は25.3%であった。このように、本比較例のジルコニア焼結体は全光線透過率が低く、前歯用義歯としての透光性に劣るものであり、前歯用義歯に好適ではない。
 本比較例で使用したジルコニア粉末は、常圧焼結のみでは透光性の高いジルコニア焼結体が得られなかった。
 比較例6
 比較例5と同じジルコニア粉末を比較例5と同じ方法で成形を行うことにより、成形体を得た。得られた成形体を、1550℃、昇温速度600℃/hr、及び保持時間2時間の条件で焼結して本比較例の焼結体を得た。得られたジルコニア焼結体の評価結果を表3に示した。
 本比較例のジルコニア焼結体は、全光線透過率は24.5%であった。このように、本比較例のジルコニア焼結体は全光線透過率が低く、前歯用義歯としての透光性に劣るものであった。
 本比較例で使用したジルコニア粉末は、常圧焼結のみでは透光性の高いジルコニア焼結体が得られなかった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明の透光性ジルコニア焼結体は、前歯用義歯をはじめとする義歯として使用することができる。更には、義歯ミルブランクや、歯列矯正ブラケットなどの歯科材料として使用することができる。
 なお、2013年12月24日に出願された日本特許出願2013-265322号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (14)

  1.  4.0mol%を超え6.5mol%以下のイットリアと、0.1wt%未満のアルミナを含有し、相対密度が99.82%以上であり、厚さ1.0mmにおける600nm波長の光に対する全光線透過率が37%以上40%未満であり、かつ曲げ強度が500MPa以上であることを特徴とする透光性ジルコニア焼結体。
  2.  結晶粒径が0.3~1.0μmであることを特徴とする請求項1に記載の透光性ジルコニア焼結体。
  3.  試料厚さ1.0mmにおける600nm波長の光に対する全光線透過率に対する、試料厚さ1.0mmにおけるD65光線に対する全光線透過率の割合が、1.16以上であることを特徴とする請求項1又は2に記載の透光性ジルコニア焼結体。
  4.  請求項1乃至3のいずれか一項に記載の透光性ジルコニア焼結体の製造方法であり、
    4.0mol%を超え6.5mol%のイットリアと、0.1wt%未満のアルミナを含有するジルコニア粉末を成形して成形体を得る成形工程、及び該成形体を、常圧下、焼結温度1350℃以上1500℃以下で焼結する焼結工程、を有することを特徴とする製造方法。
  5.  前記成形体の密度が3.2g/cm超であることを特徴とする請求項4に記載の製造方法。
  6.  4.0mol%を超え6.5mol%以下のイットリアと、0.1wt%未満のアルミナを含有し、BET比表面積が8~15m/gであることを特徴とするジルコニア粉末。
  7.  結晶子径が320~380Åであることを特徴とする請求項6に記載のジルコニア粉末。
  8.  平均粒径が0.40~0.50μmであることを特徴とする請求項6又は7に記載のジルコニア粉末。
  9.  結晶中に含まれる正方晶及び立方晶の合計割合が80%以上であることを特徴とする請求項6乃至8のいずれか一項に記載のジルコニア粉末。
  10.  さらに、有機バインダーを含むことを特徴とする請求項6乃至9のいずれか一項に記載のジルコニア粉末。
  11.  噴霧成形粉末顆粒であることを特徴とする請求項6乃至10のいずれか一項に記載のジルコニア粉末。
  12.  請求項6乃至11のいずれか一項に記載のジルコニア粉末を使用することを特徴とするジルコニア焼結体の製造方法。
  13.  請求項1乃至3のいずれか一項に記載の透光性ジルコニア焼結体を含むことを特徴とする歯科材料。
  14.  義歯、義歯ミルブランク、前歯用義歯、前歯用義歯ミルブランク、又は歯列矯正ブラケットである請求項13に記載の歯科材料。
PCT/JP2014/083763 2013-12-24 2014-12-19 透光性ジルコニア焼結体及びジルコニア粉末、並びにその用途 WO2015098765A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480069715.0A CN105829264B (zh) 2013-12-24 2014-12-19 透光性氧化锆烧结体和氧化锆粉末、及其用途
KR1020167010902A KR102595006B1 (ko) 2013-12-24 2014-12-19 투광성 지르코니아 소결체 및 지르코니아 분말, 그리고 그의 용도
CN202110376123.5A CN113185284B (zh) 2013-12-24 2014-12-19 透光性氧化锆烧结体和氧化锆粉末、及其用途
KR1020237029372A KR20230129196A (ko) 2013-12-24 2014-12-19 투광성 지르코니아 소결체 및 지르코니아 분말, 그리고 그의 용도
EP14874020.2A EP3088373B1 (en) 2013-12-24 2014-12-19 Translucent zirconia sintered body and zirconia powder, and use therefor
US15/104,036 US9737383B2 (en) 2013-12-24 2014-12-19 Translucent zirconia sintered body and zirconia powder, and use therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013265322 2013-12-24
JP2013-265322 2013-12-24

Publications (1)

Publication Number Publication Date
WO2015098765A1 true WO2015098765A1 (ja) 2015-07-02

Family

ID=53478622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083763 WO2015098765A1 (ja) 2013-12-24 2014-12-19 透光性ジルコニア焼結体及びジルコニア粉末、並びにその用途

Country Status (6)

Country Link
US (1) US9737383B2 (ja)
EP (1) EP3088373B1 (ja)
JP (2) JP6543926B2 (ja)
KR (2) KR102595006B1 (ja)
CN (2) CN113185284B (ja)
WO (1) WO2015098765A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105997275A (zh) * 2016-06-26 2016-10-12 江苏思麦尔生命科技有限公司 一种便于拆卸的透明氧化锆牙齿托槽及其制备方法
EP3088373A1 (en) 2013-12-24 2016-11-02 Tosoh Corporation Translucent zirconia sintered body and zirconia powder, and use therefor
JP2018052806A (ja) * 2016-09-21 2018-04-05 東ソー株式会社 ジルコニア焼結体及びその製造方法
WO2019026809A1 (ja) 2017-07-31 2019-02-07 クラレノリタケデンタル株式会社 蛍光剤を含むジルコニア焼結体
KR20190047701A (ko) 2016-09-20 2019-05-08 쿠라레 노리타케 덴탈 가부시키가이샤 지르코니아 조성물, 가소체 및 소결체, 그리고 그들의 제조 방법
WO2019180766A1 (ja) * 2018-03-19 2019-09-26 東ソー株式会社 ジルコニア焼結体及びその製造方法
JP2020001973A (ja) * 2018-06-28 2020-01-09 クラレノリタケデンタル株式会社 ジルコニア成形体の製造方法
KR20200022348A (ko) 2018-08-22 2020-03-03 소후 인코포레이티드 치과 절삭 가공용 지르코니아 피절삭체 및 그 제조 방법
KR20200090640A (ko) 2019-01-21 2020-07-29 소후 인코포레이티드 고속 소결 대응 고투과 지르코니아 블랭크
WO2022168734A1 (ja) * 2021-02-03 2022-08-11 国立大学法人 東京大学 カバー部材

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2045222B1 (en) 2006-07-25 2015-09-23 Tosoh Corporation Sintered zirconia having high light transmission and high strength, use of the same and process for production thereof
JP6416247B2 (ja) 2013-06-27 2018-10-31 イフォクレール ビバデント, インコーポレイテッド ナノ結晶ジルコニアおよびその加工方法
US9962247B2 (en) 2014-06-23 2018-05-08 Tosoh Corporation Colored translucent zirconia sintered body and powder, and application thereof
EP3108849B1 (en) 2016-04-25 2019-04-24 3M Innovative Properties Company Multi-layered zirconia dental mill blank and process of production
JP6962657B2 (ja) * 2016-11-07 2021-11-05 株式会社松風 高い相対密度を有する多層の歯科用ジルコニアブランク
KR20240025068A (ko) * 2017-02-21 2024-02-26 소후 인코포레이티드 치과 절삭 가공용 지르코니아 피절삭체와 그 제조 방법 및 치과 절삭 가공용 지르코니아 피절삭체용 투명성 향상액과 그 사용 방법
DE102018103906A1 (de) 2017-02-22 2018-08-23 James R. Glidewell Dental Ceramics, Inc. Hochfeste und transluzente Dentalkeramikmaterialien, -einrichtungen und -verfahren
WO2018168666A1 (ja) * 2017-03-13 2018-09-20 Agc株式会社 透光性セラミックス焼結体とその製造方法
US11802237B2 (en) 2017-07-31 2023-10-31 Kuraray Noritake Dental Inc. Method for producing powder containing zirconia particles and fluorescent agent
EP3663264A4 (en) * 2017-07-31 2021-04-21 Kuraray Noritake Dental Inc. PROCESS FOR MANUFACTURING POWDER CONTAINING ZIRCONIA PARTICLES
WO2019166938A1 (en) * 2018-02-28 2019-09-06 3M Innovative Properties Company Process for producing a dental zirconia article with a fast sintering process
JP2019163246A (ja) 2018-03-20 2019-09-26 株式会社松風 イットリア含有量の異なる多層構造ジルコニア
US11161789B2 (en) * 2018-08-22 2021-11-02 James R. Glidewell Dental Ceramics, Inc. Highly translucent zirconia material, device, methods of making the same, and use thereof
JP7336507B2 (ja) * 2019-03-06 2023-08-31 クラレノリタケデンタル株式会社 短時間で焼成可能なジルコニア成形体および仮焼体
US20220259063A1 (en) * 2019-05-22 2022-08-18 Nippon Shokubai Co., Ltd. Zirconium oxide nanoparticles, dispersion liquid and resin composition
CN110240491B (zh) * 2019-07-09 2021-11-23 成都贝施美生物科技有限公司 一种高韧性的氧化锆瓷块
CN112624761B (zh) 2019-10-08 2024-04-30 东曹株式会社 氧化锆烧结体及其制造方法
JPWO2021075564A1 (ja) * 2019-10-17 2021-04-22
FR3103190B1 (fr) 2019-11-14 2021-12-03 Saint Gobain Ct Recherches Article dentaire, poudre pour article dentaire et procede de fabrication d’un tel article
WO2021100876A1 (ja) * 2019-11-22 2021-05-27 クラレノリタケデンタル株式会社 ジルコニア組成物、ジルコニア仮焼体及びジルコニア焼結体、並びにそれらの製造方法
JPWO2022138760A1 (ja) 2020-12-22 2022-06-30
EP4269354A1 (en) * 2020-12-24 2023-11-01 Kuraray Noritake Dental Inc. Zirconia pre-sintered body
WO2023042893A1 (ja) 2021-09-16 2023-03-23 東ソー株式会社 粉末組成物、仮焼体、焼結体及びその製造方法
WO2023127793A1 (ja) * 2021-12-27 2023-07-06 クラレノリタケデンタル株式会社 ジルコニア焼結体及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153163A (ja) 1985-09-06 1987-07-08 東レ株式会社 ジルコニア焼結体
WO2008013099A1 (fr) * 2006-07-25 2008-01-31 Tosoh Corporation Zircone frittée ayant une transmission de lumière élevée et une résistance élevée, son utilisation et son procédé de fabrication
JP2008081325A (ja) * 2006-09-25 2008-04-10 Tosoh Corp ジルコニア微粉末及びその製造方法
JP2008222450A (ja) 2007-03-08 2008-09-25 Tosoh Corp 透光性イットリア含有ジルコニア焼結体及びその製造方法並びにその用途
WO2009125793A1 (ja) 2008-04-09 2009-10-15 東ソー株式会社 透光性ジルコニア焼結体及びその製造方法並びにその用途

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432314A (en) * 1966-08-02 1969-03-11 Us Air Force Transparent zirconia composition and process for making same
EP0218853B1 (en) * 1985-09-06 1994-11-09 Toray Industries, Inc. Method for manufacturing a sintered zirconia material
JPH01113038A (ja) * 1987-07-02 1989-05-01 Tosoh Corp 歯列矯正ブラケット
JP2571646B2 (ja) 1991-03-06 1997-01-16 ホーヤ株式会社 象牙色ジルコニア焼結体及びその用途
US5326518A (en) * 1991-10-08 1994-07-05 Nissan Chemical Industries, Ltd. Preparation of sintered zirconia body
US6087285A (en) * 1997-10-13 2000-07-11 Tosoh Corporation Zirconia sintered body, process for production thereof, and application thereof
US7655586B1 (en) * 2003-05-29 2010-02-02 Pentron Ceramics, Inc. Dental restorations using nanocrystalline materials and methods of manufacture
JP5277541B2 (ja) * 2006-07-25 2013-08-28 東ソー株式会社 高強度ジルコニア焼結体および製造方法
JP5018142B2 (ja) 2007-03-07 2012-09-05 東ソー株式会社 透光性ジルコニア焼結体及びその製造方法
JP5608976B2 (ja) * 2008-12-24 2014-10-22 東ソー株式会社 透光性ジルコニア焼結体及びその製造方法並びに用途
EP2463257B1 (en) * 2009-08-07 2018-06-06 Tosoh Corporation Transparent zirconia sintered body and method for producing same
JP2011073907A (ja) * 2009-09-29 2011-04-14 World Lab:Kk ジルコニア焼結体及びその製造方法
JP5861397B2 (ja) * 2010-11-11 2016-02-16 東ソー株式会社 着色透光性ジルコニア焼結体及びその製造方法並びにその用途
EP2500009A1 (en) 2011-03-17 2012-09-19 3M Innovative Properties Company Dental ceramic article, process of production and use thereof
WO2013018728A1 (ja) * 2011-07-29 2013-02-07 東ソー株式会社 着色透光性ジルコニア焼結体及びその用途
CN102875147B (zh) * 2012-10-17 2013-11-20 安泰科技股份有限公司 氧化锆陶瓷材料及其制备方法
KR102595006B1 (ko) 2013-12-24 2023-10-27 토소가부시키가이샤 투광성 지르코니아 소결체 및 지르코니아 분말, 그리고 그의 용도
US9962247B2 (en) 2014-06-23 2018-05-08 Tosoh Corporation Colored translucent zirconia sintered body and powder, and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153163A (ja) 1985-09-06 1987-07-08 東レ株式会社 ジルコニア焼結体
WO2008013099A1 (fr) * 2006-07-25 2008-01-31 Tosoh Corporation Zircone frittée ayant une transmission de lumière élevée et une résistance élevée, son utilisation et son procédé de fabrication
JP2008081325A (ja) * 2006-09-25 2008-04-10 Tosoh Corp ジルコニア微粉末及びその製造方法
JP2008222450A (ja) 2007-03-08 2008-09-25 Tosoh Corp 透光性イットリア含有ジルコニア焼結体及びその製造方法並びにその用途
WO2009125793A1 (ja) 2008-04-09 2009-10-15 東ソー株式会社 透光性ジルコニア焼結体及びその製造方法並びにその用途

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Lattice Parameters and Density for Y 0 -Stabilized Zr0", J. AM. CERAM. SOC., vol. 69, no. 4, 1986, pages 325 - 32
"Trabsparent Nanometric Cubic and Tetragonal Zirconia Obtained by High-Pressure Electric Current Sintering", ADV. FUNCT. MATER., vol. 17, 2007, pages 3267 - 3273
CHOJIRO MASUDA: "Understanding Zirconia and Comprehensively Applying It to a Wide Dental Practice -Zairyo o Ikani Ikashite Hotetsu Sochi o Tsukuriageruka", ANNALS OF JAPAN PROSTHODONTIC SOCIETY, vol. 4, no. 2, April 2012 (2012-04-01), pages 148 - 154, XP055355419 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3088373A1 (en) 2013-12-24 2016-11-02 Tosoh Corporation Translucent zirconia sintered body and zirconia powder, and use therefor
CN105997275B (zh) * 2016-06-26 2019-05-14 江苏思麦尔生命科技有限公司 一种透明氧化锆托槽的制备方法
CN105997275A (zh) * 2016-06-26 2016-10-12 江苏思麦尔生命科技有限公司 一种便于拆卸的透明氧化锆牙齿托槽及其制备方法
US11535564B2 (en) 2016-09-20 2022-12-27 Kuraray Noritake Dental Inc. Zirconia composition, pre-sintered body and sintered body, and method of producing the same
KR20190047701A (ko) 2016-09-20 2019-05-08 쿠라레 노리타케 덴탈 가부시키가이샤 지르코니아 조성물, 가소체 및 소결체, 그리고 그들의 제조 방법
US11884595B2 (en) 2016-09-20 2024-01-30 Kuraray Noritake Dental Inc. Zirconia composition, pre-sintered body and sintered body, and method of producing the same
US11873254B2 (en) 2016-09-20 2024-01-16 Kuraray Noritake Dental Inc. Zirconia composition, pre-sintered body and sintered body, and method of producing the same
KR20220150438A (ko) 2016-09-20 2022-11-10 쿠라레 노리타케 덴탈 가부시키가이샤 지르코니아 조성물, 가소체 및 소결체, 그리고 그들의 제조 방법
JP2018052806A (ja) * 2016-09-21 2018-04-05 東ソー株式会社 ジルコニア焼結体及びその製造方法
JP7077552B2 (ja) 2016-09-21 2022-05-31 東ソー株式会社 ジルコニア焼結体及びその製造方法
WO2019026809A1 (ja) 2017-07-31 2019-02-07 クラレノリタケデンタル株式会社 蛍光剤を含むジルコニア焼結体
KR20200035277A (ko) 2017-07-31 2020-04-02 쿠라레 노리타케 덴탈 가부시키가이샤 형광제를 포함하는 지르코니아 소결체
US11401461B2 (en) 2017-07-31 2022-08-02 Kuraray Noritake Dental Inc. Zirconia sintered body containing fluorescent agent
WO2019180766A1 (ja) * 2018-03-19 2019-09-26 東ソー株式会社 ジルコニア焼結体及びその製造方法
US11021401B2 (en) 2018-03-19 2021-06-01 Tosoh Corporation Zirconia sintered body and method for manufacturing the same
US11746054B2 (en) 2018-03-19 2023-09-05 Tosoh Corporation Zirconia sintered body and method for manufacturing the same
JP7061827B2 (ja) 2018-06-28 2022-05-02 クラレノリタケデンタル株式会社 ジルコニア成形体の製造方法
JP2020001973A (ja) * 2018-06-28 2020-01-09 クラレノリタケデンタル株式会社 ジルコニア成形体の製造方法
EP3636621A2 (en) 2018-08-22 2020-04-15 Shofu Inc. Zirconia mill blank for dental cutting and machining and preparing method thereof
KR20200022348A (ko) 2018-08-22 2020-03-03 소후 인코포레이티드 치과 절삭 가공용 지르코니아 피절삭체 및 그 제조 방법
US11986362B2 (en) 2018-08-22 2024-05-21 Shofu Inc. Zirconia mill blank for dental cutting and machining and preparing method thereof
EP3712121A1 (en) 2019-01-21 2020-09-23 Shofu Inc. High permeable zirconia blank capable of sintering at high speed
KR20200090640A (ko) 2019-01-21 2020-07-29 소후 인코포레이티드 고속 소결 대응 고투과 지르코니아 블랭크
WO2022168734A1 (ja) * 2021-02-03 2022-08-11 国立大学法人 東京大学 カバー部材

Also Published As

Publication number Publication date
CN113185284A (zh) 2021-07-30
JP6543926B2 (ja) 2019-07-17
KR20230129196A (ko) 2023-09-06
JP6760443B2 (ja) 2020-09-23
EP3088373A1 (en) 2016-11-02
CN113185284B (zh) 2022-09-23
JP2015143178A (ja) 2015-08-06
EP3088373B1 (en) 2019-11-27
CN105829264B (zh) 2021-04-23
KR20160100914A (ko) 2016-08-24
EP3088373A4 (en) 2017-08-02
KR102595006B1 (ko) 2023-10-27
US20160310245A1 (en) 2016-10-27
CN105829264A (zh) 2016-08-03
US9737383B2 (en) 2017-08-22
JP2019189524A (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
JP6760443B2 (ja) 透光性ジルコニア焼結体及びジルコニア粉末、並びにその用途
US10555795B2 (en) Colored translucent zirconia sintered body and powder, and use thereof
KR101906628B1 (ko) 착색 투광성 지르코니아 소결체 및 그의 용도
CA2719340C (en) Translucent zirconia sintered body, process for producing the same, and use of the same
JP5608976B2 (ja) 透光性ジルコニア焼結体及びその製造方法並びに用途
JP2023138969A (ja) ジルコニア焼結体及びその製造方法
JP2009269812A (ja) 透光性ジルコニア焼結体及びその製造方法並びに用途
JP5707667B2 (ja) 透光性ジルコニア焼結体及びその製造方法及びその用途
JP5748012B2 (ja) 透光性ジルコニア焼結体及びその製造方法及びその用途
JP5804144B2 (ja) 透光性ジルコニア焼結体及びその用途
JP2016500362A (ja) セラミック材料
JP5741735B2 (ja) 透光性ジルコニア焼結体用粉末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167010902

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15104036

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014874020

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014874020

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE