WO2013018728A1 - 着色透光性ジルコニア焼結体及びその用途 - Google Patents

着色透光性ジルコニア焼結体及びその用途 Download PDF

Info

Publication number
WO2013018728A1
WO2013018728A1 PCT/JP2012/069232 JP2012069232W WO2013018728A1 WO 2013018728 A1 WO2013018728 A1 WO 2013018728A1 JP 2012069232 W JP2012069232 W JP 2012069232W WO 2013018728 A1 WO2013018728 A1 WO 2013018728A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
zirconia sintered
colored translucent
translucent zirconia
less
Prior art date
Application number
PCT/JP2012/069232
Other languages
English (en)
French (fr)
Inventor
浩之 藤崎
清隆 河村
紘平 今井
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47629251&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013018728(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to US14/235,716 priority Critical patent/US9249056B2/en
Priority to EP12820547.3A priority patent/EP2738147B1/en
Priority to EP21212172.7A priority patent/EP4011852A1/en
Priority to CN201280037982.0A priority patent/CN103732559A/zh
Priority to KR1020137030172A priority patent/KR101906628B1/ko
Publication of WO2013018728A1 publication Critical patent/WO2013018728A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/082Cosmetic aspects, e.g. inlays; Determination of the colour
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/083Porcelain or ceramic teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/12Brackets; Arch wires; Combinations thereof; Accessories therefor
    • A61C7/14Brackets; Fixing brackets to teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/81Materials characterised by the absence of phases other than the main phase, i.e. single phase materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Definitions

  • the present invention relates to a zirconia sintered body having not only high strength but also aesthetic properties very close to teeth.
  • the zirconia sintered body Since the zirconia sintered body has high strength, it is used as a dental material. When using a zirconia sintered body as a dental material, it is required to have not only high strength but also aesthetic properties similar to natural teeth. So far, in order to make the zirconia sintered body have the same aesthetics as natural teeth, other materials are laminated on the surface of the zirconia sintered body, and thereby a dental material in which the color tone is adjusted has been reported (for example, Patent Document 1). However, since the dental material is a composite material made of a glass material having a strength different from that of zirconia, the strength is not sufficient as the dental material.
  • a zirconia sintered body for dental materials that has improved aesthetics while maintaining strength without laminating other materials has been studied.
  • a zirconia sintered body having translucency similar to that of natural teeth by imparting translucency has been reported.
  • Patent Documents 2 and 3 disclose zirconia sintered bodies having high strength and high translucency because they are directly used as dental materials.
  • these zirconia sintered bodies have the same translucency as natural teeth, they exhibit a bright white tone inherent to zirconia that is different from natural teeth.
  • a zirconia sintered body having an aesthetic property equivalent to that of a natural tooth, in particular a color tone and translucency equivalent to that of a natural tooth, and having high strength has not been obtained.
  • the present inventors diligently studied the relationship between the strength and aesthetics of the zirconia sintered body. As a result, it has been found that a zirconia sintered body having a controlled composition, physical properties, and type of colorant has aesthetics and strength suitable for dental materials, and has completed the present invention.
  • the gist of the present invention is as follows. (1) It contains an iron compound and 2 to 4 mol% yttria, has a lightness L * in the L * a * b * color system of 51 to 80 and a relative density of 99.80% or more. Colored translucent zirconia sintered body. (2) The colored translucent zirconia sintered body according to (1) above, wherein the lightness L * in the L * a * b * color system is 51 or more and 70 or less. (3) The colored translucent zirconia sintered body according to (1) above, wherein the lightness L * in the L * a * b * color system is more than 70 and 80 or less.
  • the colored translucent zirconia sintered body of the present invention has the same color tone and translucency as natural teeth, and also has high strength. Therefore, the colored translucent zirconia sintered body of the present invention is a sintered body suitable for a dental material, and in particular, a sintered body suitable for a mill blank such as a denture material or an orthodontic bracket. .
  • FIG. 6 is a graph showing the relationship between lightness L * and near-infrared transmittance (total light transmittance for light having a wavelength of 850 nm) in Examples 1 to 15 and Comparative Examples 1 to 3. It is a figure which shows the measurement wavelength dependence of the total light transmittance of Example 4 and 6. FIG. It is a figure which shows the measurement wavelength dependence of the total light transmittance of Example 3, 7 and 9. FIG. It is a figure which shows the measurement wavelength dependence comparison of the total light transmittance of Example 2 and a reference example.
  • Example 6 is a graph showing lightness L * and total light transmittance (total light transmittance in a D65 light source) in Examples 16 to 25 and Comparative Examples 4 to 7. It is a figure which shows the lightness L * and the near-infrared transmittance (total light transmittance with respect to the light of wavelength 850nm) in Examples 16-25 and Comparative Examples 4-7. It is a figure which shows the measurement wavelength dependence of the total light transmittance in Example 17 and 19.
  • the present invention is a colored translucent zirconia sintered body. Therefore, the sintered body of the present invention is a zirconia polycrystal having a color tone other than colorless and having translucency. Therefore, the colored translucent zirconia sintered body of the present invention is different from an opaque zirconia sintered body (hereinafter, opaque zirconia sintered body) or a zirconia single crystal.
  • opaque zirconia sintered body here is, for example, a zirconia sintered body having a sample thickness of 1 mm and a total light transmittance of 10% or less in a D65 light source.
  • the colored translucent zirconia sintered body of the present invention contains an iron compound.
  • the iron compound functions as a colorant for coloring.
  • the content of the iron compound is preferably less than 2000 ppm (0.2% by weight) in terms of Fe 2 O 3 . If the content of the iron compound is less than 2000 ppm, the color tone of the sintered body becomes a pale yellow color and tends to be a color tone closer to natural teeth. Furthermore, light absorption in the visible wavelength region is suppressed, and the translucency is unlikely to decrease. In the colored translucent zirconia sintered compact of this invention, it becomes a color tone close
  • the colored translucent zirconia sintered body of the present invention contains an iron compound (that is, if the content of the iron compound exceeds 0 ppm in terms of Fe 2 O 3 ), the lower limit is There is no particular limitation. For example, if the content of the iron compound is 50 ppm (0.005% by weight) or more in terms of Fe 2 O 3 , the colored translucent zirconia sintered body of the present invention is naturally close to teeth with a relatively light color. It becomes a color tone.
  • the content of the iron compound is the total weight of ZrO 2 and Y 2 O 3 of the colored translucent zirconia sintered body (when the colored translucent zirconia sintered body contains alumina, the colored translucent zirconia sintered body is It is the ratio of the iron compound in terms of Fe 2 O 3 relative to the total weight of ZrO 2 , Y 2 O 3 and Al 2 O 3 of the body.
  • the colored translucent zirconia sintered body of the present invention may contain a compound that dissolves in zirconia in addition to the iron compound in order to finely adjust the color tone.
  • a compound that dissolves in zirconia include, for example, Group 3a (Group 3), Group 5a (Group 5), Group 6a (Group 6), Group 7a (Group 7), Group 8 (Group 8-10) and One or more oxides of Group 3b (Group 13) can be mentioned (in parentheses are display methods by the International Pure Applied Chemical Association (IUPAC)).
  • the colored translucent zirconia sintered body of the present invention contains 2 to 4 mol% yttria. If the yttria content is less than 2 mol%, the crystalline phase will contain monoclinic crystals, so that not only will the strength of the sintered body be reduced, but it will also be susceptible to hydrothermal degradation and when used for a long period of time. It becomes fragile. On the other hand, when the yttria content exceeds 4 mol%, the strength of the sintered body is lowered.
  • the colored translucent zirconia sintered body of the present invention preferably contains alumina.
  • the colored translucent zirconia sintered body contains alumina (that is, the content of alumina exceeds 0% by weight)
  • the hydrothermal deterioration becomes difficult.
  • the so-called “color loss” phenomenon is less likely to occur, and discoloration and decoloration are less likely to occur even after long-term use.
  • the content of alumina is preferably less than 0.25% by weight, and more preferably 0.15% by weight or less. If the content of alumina is less than 0.25% by weight, a colored translucent zirconia sintered body having high translucency can be obtained.
  • the alumina content is preferably 0.005% by weight or more, more preferably 0.01% by weight or more, and further preferably 0.025% by weight or more. When the alumina content is 0.005% by weight or more, discoloration or decoloration is less likely to occur in an accelerated test such as when treated with hot water, etc. Changes are less likely to occur.
  • the alumina content is the ratio of Al 2 O 3 to the total weight of ZrO 2 and Y 2 O 3 of the colored translucent zirconia sintered body.
  • the relative density of the colored translucent zirconia sintered body of the present invention is 99.80% or more, preferably 99.85% or more, and more preferably 99.90% or more.
  • the relative density is less than 99.80%, the translucency tends to be low, and the sintered body is inferior in aesthetics as a dental material.
  • the colored translucent zirconia sintered body of the present invention has a lightness L * (hereinafter, simply referred to as “lightness L *” or “L *”) in the L * a * b * color system having an iron compound content. If it is less than 2000 ppm, it is preferably 51 or more. Moreover, if content of an iron compound is less than 500 ppm, it is preferable that it is 70 and 80 or less.
  • the colored translucent zirconia sintered body of the present invention preferably has a lightness L * of 51 or more and 70 or less and an iron compound content of 500 ppm or more and less than 2000 ppm in terms of Fe 2 O 3 . Moreover, the colored translucent zirconia sintered body of the present invention preferably has a lightness L * of more than 70 and 80 or less, and an iron compound content of 50 ppm or more and less than 500 ppm in terms of Fe 2 O 3 .
  • the colored translucent zirconia sintered body of the present invention has aesthetics equivalent to natural teeth because the lightness L * is within this range.
  • the total light transmittance is likely to be lower as the value of the lightness L * is smaller.
  • the colored translucent zirconia sintered body of the present invention has a hue a * (hereinafter simply referred to as “hue a *” or “a *”) in the L * a * b * color system of ⁇ 5 to 10 Preferably, it is -4 or more and 9 or less, more preferably -3 or more and 8 or less. Further, the hue a * is within this range, and the hue b * (hereinafter simply referred to as “hue b *” or “b *”) in the L * a * b * color system is 0 to 30. It is preferably 0 or more and 29 or less, more preferably 0 or more and 28 or less.
  • the color tone of the colored translucent zirconia sintered body of the present invention is defined by lightness L *, hue a * and b *.
  • the color tone in the colored translucent zirconia sintered body of the present invention is a value measured by collecting light transmitted through the sintered body and light reflected from the sintered body. Therefore, when the thickness or translucency of the sintered body changes, the color tone also changes.
  • the color tone of the colored translucent zirconia sintered body of the present invention is the color tone of the opaque zirconia sintered body having no translucency, that is, the lightness L * obtained from only the reflected light on the surface of the sintered body, the hue a It is a value different from the value obtained by * and b *.
  • total light transmittance is a lightness L * of 51 or more and less than 70, It is preferably 20% or more, more preferably 23% or more, and further preferably 25% or more.
  • the total light transmittance is preferably 20% or more, more preferably 35% or more, and further preferably 40% or more.
  • the lightness L * is within the scope of the present invention, and when the total light transmittance is 20% or more, it is likely to be aesthetic that can be widely used as a dental material.
  • the total light transmittance need not be higher than necessary. For example, if the total light transmittance is 43% or less, the same degree of translucency as natural teeth can be obtained.
  • the colored translucent zirconia sintered body of the present invention preferably has a total light transmittance (hereinafter referred to as “near infrared transmittance”) of 35% or more with respect to light having a wavelength of 850 nm at a sample thickness of 1 mm. 35.5% or more, more preferably 36% or more. If the near-infrared transmittance is 35% or more, the material is suitable not only for dental materials that require aesthetic translucency but also for protective layers of energy conversion materials (for example, solar cells).
  • the colored translucent zirconia sintered body of the present invention has a high near infrared transmittance, and a sintered body having a near infrared transmittance of about 40% can be obtained.
  • the colored translucent zirconia sintered body of the present invention preferably includes a tetragonal crystal phase, and preferably a tetragonal single phase. Thereby, mechanical strength tends to be high.
  • the colored translucent zirconia sintered body of the present invention preferably has a three-point bending strength of 1000 MPa or more, more preferably 1100 MPa or more, and still more preferably 1200 MPa or more.
  • the colored translucent zirconia sintered body of the present invention preferably has a crystal grain size of 0.2 ⁇ m or more and 0.45 ⁇ m or less, and more preferably 0.3 ⁇ m or more and 0.45 ⁇ m or less.
  • the crystal grain size is 0.2 ⁇ m or more, pores hardly remain in the sintered body, and the relative density tends to increase.
  • the crystal grain size is 0.45 ⁇ m or less, the hydrothermal deterioration of the sintered body is easily suppressed, and the dental material can withstand long-term use.
  • the monoclinic phase transition depth after being immersed in hot water at 140 ° C. for 24 hours is preferably 20 ⁇ m or less, and preferably 10 ⁇ m or less. More preferred.
  • the transition depth of the monoclinic phase can be used as an indicator of deterioration of the zirconia sintered body in a hydrothermal environment. That is, the small transition depth of the monoclinic phase is an indicator that it is difficult to deteriorate even when used as a dental material for a long time.
  • the transition depth of the monoclinic phase is 20 ⁇ m or less, the hydrothermal deterioration of the sintered body is difficult to proceed, and the sintered body is not easily destroyed.
  • the transition depth of the monoclinic phase the cross section of the sintered body can be observed with a scanning electron microscope (SEM) or the like.
  • SEM scanning electron microscope
  • the monoclinic phase transition depth after being immersed in hot water at 140 ° C. for 72 hours is preferably 20 ⁇ m or less, and is preferably 10 ⁇ m or less. It is more preferable.
  • the colored translucent zirconia sintered body of the present invention preferably has a monoclinic phase ratio of 30% or less after being immersed in hot water at 140 ° C. for 24 hours, more preferably 15% or less. preferable. Further, the colored translucent zirconia sintered body of the present invention preferably has a monoclinic phase ratio of 80% or less after being immersed in hot water at 140 ° C. for 72 hours, and 60% or less. Is more preferable.
  • the monoclinic phase ratio (also referred to as the M phase ratio) means that XRD measurement is performed on the mirror surface portion of the sintered body, and the (111) and (11-1) faces of the monoclinic phase, The diffraction intensities of the (111) plane and the (111) plane of the cubic phase are obtained, and the values calculated by the following formula 1 are used.
  • the colored translucent zirconia sintered body of the present invention can be produced by molding and sintering a mixed powder of zirconia powder and iron compound.
  • the zirconia powder preferably has a BET specific surface area of 10 m 2 / g or more and 15 m 2 / g or less, and more preferably 11 m 2 / g or more and 14 m 2 / g or less.
  • the zirconia powder has a BET specific surface area of 10 m 2 / g or more, the powder is easily sintered even at a low temperature. Moreover, it becomes the powder by which aggregation between particle
  • the average particle size of the zirconia powder is preferably 0.4 ⁇ m or more and 0.7 ⁇ m or less, and more preferably 0.4 ⁇ m or more and 0.6 ⁇ m or less.
  • the average particle diameter of the zirconia powder is 0.4 ⁇ m or more, the number of fine particles that enhance the cohesiveness of the powder is reduced, and molding becomes easy.
  • the average particle size is 0.7 ⁇ m or less, coarse particles containing hard agglomerated particles are reduced and molding becomes easy.
  • the maximum particle size of the zirconia powder is preferably 2.0 ⁇ m or less, and preferably 1.5 ⁇ m or less. More preferred.
  • the zirconia powder has a sintering shrinkage rate ( ⁇ / ⁇ T: g / cm 3 ⁇ ° C.) of 70% to 90% relative density in atmospheric pressure sintering at a heating rate of 300 ° C./hour in the atmosphere (hereinafter, It is preferable that the “sintering shrinkage rate” is 0.012 or more and 0.016 or less. Sintering shrinkage speed is an index of sinterability of zirconia powder. When the sintering shrinkage rate is within this range, the zirconia powder is excellent in sinterability.
  • the sintering shrinkage rate is a measured value when the relative density is 70% or more.
  • the sintering shrinkage rate is not affected by the variation in the density of the molded body. Furthermore, the rate of sintering shrinkage at a relative density of 70% to 90% is constant. Thus, since the shrinkage speed is a linear function of temperature and relative density, an accurate shrinkage speed can be obtained without using a special approximate calculation process.
  • the zirconia powder is preferably a zirconia powder obtained by drying, calcining and pulverizing a hydrated zirconia sol obtained by hydrolysis of a zirconium salt aqueous solution.
  • zirconium salt used in the production of the hydrated zirconia sol examples include at least one of zirconium oxychloride, zirconium nitrate, zirconium chloride, zirconium sulfate, and a mixture of zirconium hydroxide and an acid. Further, an alkali metal hydroxide, an alkaline earth metal hydroxide or both of them (hereinafter referred to as “alkali metal hydroxide etc.”) may be added to the zirconium salt aqueous solution. Examples of the alkali metal hydroxide include one or more hydroxides of lithium, sodium, potassium, magnesium, or calcium.
  • the dried zirconia sol obtained above is dried and calcined to obtain a calcined zirconia powder.
  • the calcination temperature is preferably 1000 ° C. or more and 1200 ° C. or less, and preferably 1050 ° C. or more and 1150 ° C. or less.
  • zirconia powder can be obtained by pulverizing the zirconia calcined powder obtained above.
  • the pulverization is not limited as long as the average particle size is 0.4 ⁇ m or more and 0.7 ⁇ m or less. It is preferable to pulverize by wet pulverization using zirconia balls.
  • the colored translucent zirconia sintered body of the present invention is obtained by mixing a zirconia powder and an iron compound to obtain a mixed powder.
  • the iron compound include water-soluble compounds such as iron chloride and iron nitrate, and water-insoluble compounds such as iron oxide and iron oxide hydroxide.
  • water-soluble compounds such as iron chloride and iron nitrate
  • water-insoluble compounds such as iron oxide and iron oxide hydroxide.
  • the iron compound is 2000 ppm in terms of Fe 2 O 3 with respect to the total weight of ZrO 2 and Y 2 O 3 (when alumina is added, the total weight of ZrO 2 , Y 2 O 3 and Al 2 O 3 ). It is preferable to mix so that it may become less than 0.2 weight%), it is more preferable to mix so that it may become 1800 ppm (0.18 weight%) or less, and it may become 1600 ppm (0.16 weight%) or less More preferably, they are mixed.
  • the colored translucent zirconia sintered body of the present invention contains alumina
  • alumina source examples include one or more of alumina, hydrated alumina, alumina sol, aluminum hydroxide, aluminum chloride, aluminum nitrate, and aluminum sulfate.
  • the alumina source is preferably a water-insoluble alumina compound, and more preferably alumina.
  • a mixed powder is obtained by mixing zirconia powder, an iron compound and, if necessary, an alumina source.
  • the composition of mixed powder and the composition of the colored translucent zirconia sintered compact which uses this as a raw material become equivalent.
  • the zirconia powder or mixed powder it is preferable to use spray-granulated powder granules which are made into a slurry and then spray-dried. Thereby, the fluidity of the powder at the time of forming the molded body is increased, and pores are easily excluded from the molded body.
  • Spray granulation powder granules the particle size is 30 ⁇ m or 80 ⁇ m or less and a loosed bulk density (Untamped density) is less than 1.10 g / cm 3 or more 1.40 g / cm 3.
  • the colored translucent zirconia sintered body of the present invention can be manufactured by molding a mixed powder to obtain a molded body, and sintering the molded body.
  • the molding method is not limited as long as the relative density of the molded body is about 50 ⁇ 5%.
  • a method of performing cold isostatic pressing (hereinafter referred to as “CIP”) treatment after pressing the mixed powder as needed can be exemplified.
  • CIP cold isostatic pressing
  • the colored translucent zirconia sintered body of the present invention can be obtained by sintering the obtained molded body.
  • the sintering method is preferably a sintering method performed under normal pressure, so-called normal pressure sintering.
  • normal pressure sintering a sintering method performed under normal pressure
  • the zirconia powder obtained by the above method is used, colored zirconia having high strength and translucency only by atmospheric pressure sintering without performing a hot isostatic pressing (hereinafter referred to as “HIP”) treatment.
  • HIP hot isostatic pressing
  • the sintering temperature is preferably 1350 ° C. or higher and 1450 ° C. or lower, more preferably 1400 ° C. or higher and 1450 ° C. or lower.
  • the sintering temperature is 1350 ° C. or higher, the relative density tends to be as high as 99.80%.
  • the sintering temperature is 1450 ° C. or lower, hydrothermal deterioration hardly occurs, and a sintered body that can withstand long-term use as a dental material can be obtained.
  • the sintering atmosphere is preferably an atmosphere other than the reducing atmosphere, and is preferably an oxygen atmosphere or air. Since it is simple, it is preferable to sinter in the atmosphere.
  • the sintering shrinkage rate of the mixed powder was measured as follows. The mixed powder was put into a mold and press-molded, and then CIP-treated at a pressure of 2 t / cm 2 to obtain a molded body having a relative density of 50 ⁇ 5%. The obtained compact was sintered up to 1500 ° C. under atmospheric pressure in the air at a temperature rising rate of 300 ° C./hour, and the heat shrinkage behavior was measured.
  • a general-purpose thermal dilatometer manufactured by ULVAC-RIKO, model: DL9700 was used. From the obtained heat shrinkage behavior, the temperature at which the relative density changes from 70% to 90% was obtained, and the heat shrinkage rate was obtained.
  • the average particle diameter of the zirconia powder was measured using a Microtrac particle size distribution meter (manufactured by Honeywell, model: 9320-HRA). The median value of the cumulative curve of the particle size distribution expressed on a volume basis (median diameter; the particle size corresponding to 50% of the cumulative curve) was taken as the average particle size. Prior to the measurement, the powder was suspended in distilled water and pretreated by dispersing for 3 minutes using an ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho, model: US-150T).
  • Measured density Measurement of density of molded body and sintered body (hereinafter referred to as “measured density”) ⁇ )
  • the volume of the molded body was determined by measuring the size of the molded body with calipers, and the measured density of the molded body was determined from the obtained volume and the weight of the molded body.
  • the measured density of the sintered body was determined by the Archimedes method.
  • ⁇ 0 100 / [(X / ⁇ Al ) + (Y / ⁇ Fe ) + (100 ⁇ XY) / ⁇ Zr ] (2)
  • X Alumina content
  • wt% Y Fe 2 O 3 content
  • wt% ⁇ Al Theoretical density of alumina
  • 3.987 g / cm 3 ⁇ Zr Theoretical density of zirconia
  • 6.0956 g / cm 3 ⁇ Fe Theoretical density of Fe 2 O 3 ; 5.24 g / cm 3 It is.
  • the total light transmittance was measured according to JIS K7361 using a turbidimeter (Nippon Denshoku Industries Co., Ltd., model: NDH2000).
  • the light source D65 was used as the light source.
  • the sample used was a disk-shaped sample having a thickness of 1 mm obtained by polishing the sintered body on both sides.
  • the near-infrared transmittance (total light transmittance with respect to light having a wavelength of 850 nm) was measured using an ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation, model: V-650) with a 150 mm diameter integrating sphere unit (form: ILV-724) was attached and measured.
  • the sample used was a disk-shaped sample having a thickness of 1 mm obtained by polishing the sintered body on both sides.
  • a circle on a microscope image a circle such that the total number of particles N i spent in particle number n c and the circumference of the circle is 100 to 150, or In the case of an image of less than 100, a plurality of circles are drawn using images of a plurality of fields so that the total number of particles (n c + N i ) is 100 to 150, and crystallized by a planimetric method. The particle size was determined.
  • the hydrothermal deterioration characteristic is determined by polishing one side of the obtained sintered body until it becomes a mirror surface and immersing it in hot water at 140 ° C. for 24 hours or 72 hours to form a monoclinic phase ratio (monoclinic phase).
  • the phase ratio was evaluated by calculating.
  • the monoclinic phase ratio (M phase ratio) was measured by XRD on the mirror surface of the immersed sintered body, and the (111) and (11-1) planes of the monoclinic phase and the (111) plane of the tetragonal phase , The diffraction intensity of the (111) plane of the cubic phase, respectively, and the value calculated by the following formula 1.
  • the transition depth is obtained by cutting the immersed sintered body, observing the cross section with a scanning electron microscope (SEM), and observing the depth at which the crystal structure becomes rough from the mirror surface. It was.
  • Example 1 Hydrated zirconia sol was obtained by hydrolysis after adding yttrium chloride to the zirconium oxychloride aqueous solution to adjust the Y 2 O 3 concentration to 3 mol%.
  • the hydrated zirconia sol was dried and then calcined at 1100 ° C. for 2 hours to obtain a zirconia calcined powder containing 3 mol% yttria.
  • the obtained zirconia calcined powder was washed with water, and ⁇ -alumina was mixed so that the alumina content was 0.05 wt% with respect to the zirconia calcined powder.
  • iron oxide hydroxide FeOOH
  • distilled water was added to form a slurry having a zirconia concentration of 45% by weight.
  • the slurry was pulverized by a vibration mill using zirconia balls having a diameter of 3 mm for 24 hours to obtain a pulverized slurry.
  • a part of the pulverized slurry was dried to measure the BET specific surface area to obtain a mixed powder.
  • the average particle size of the particles in the pulverized slurry was 0.43 ⁇ m, the maximum particle size was 1.16 ⁇ m, and the BET specific surface area of the mixed powder was 12.5 m 2 / g. 3% by weight of an organic binder was added to the obtained pulverized slurry and spray-dried to obtain zirconia powder having an average granule diameter of 45 to 50 ⁇ m.
  • the obtained zirconia powder was uniaxially pressed at a pressure of 19.6 MPa and then CIP-treated at a pressure of 196 MPa to obtain a molded body.
  • the obtained molded body was heated to 1000 ° C.
  • Example 2 A colored translucent zirconia sintered body was obtained in the same manner as in Example 1 except that the sintering temperature was 1450 ° C. The results are shown in Table 1.
  • Example 2 The colored zirconia sintered body obtained in Example 2 was subjected to hot isostatic pressing (HIP) treatment at a treatment temperature of 1400 ° C. and a pressure of 150 MPa. There was almost no change in the relative density and L * value of the colored translucent zirconia sintered body before and after the HIP treatment. Thereby, it turned out that the colored translucent zirconia sintered compact of this invention is a sintered compact which has a characteristic equivalent to a HIP process, without performing a HIP process.
  • HIP hot isostatic pressing
  • Example 3 A colored translucent zirconia sintered body was obtained in the same manner as in Example 1 except that 1500 ppm of iron oxide hydroxide was added in terms of Fe 2 O 3 . The results are shown in Table 1.
  • Example 4 A colored translucent zirconia sintered body was obtained in the same manner as in Example 1 except that 1500 ppm of iron oxide hydroxide was added in terms of Fe 2 O 3 and the sintering temperature was 1450 ° C. The results are shown in Table 1.
  • Example 5 A colored translucent zirconia sintered body was obtained in the same manner as in Example 1 except that 750 ppm of iron oxide hydroxide was added in terms of Fe 2 O 3 . The results are shown in Table 1.
  • Example 6 A colored translucent zirconia sintered body was obtained in the same manner as in Example 1 except that 750 ppm of iron oxide hydroxide was added in terms of Fe 2 O 3 and the sintering temperature was 1450 ° C. The results are shown in Table 1.
  • Example 7 Example 1 except that 0.1% by weight of ⁇ -alumina was added in terms of alumina content, iron oxide hydroxide was added at 1500 ppm in terms of Fe 2 O 3 , and the sintering temperature was 1450 ° C.
  • a colored translucent zirconia sintered body was obtained in the same manner. The results are shown in Table 1.
  • Example 8 The colored translucent zirconia fired in the same manner as in Example 1 except that ⁇ -alumina was added in an amount of 0.1% by weight in terms of alumina content and iron oxide hydroxide was added in an amount of 750 ppm in terms of Fe 2 O 3. A ligature was obtained. The results are shown in Table 1.
  • Example 9 Colored translucent zirconia baked in the same manner as in Example 1 except that ⁇ -alumina was added in an alumina content of 0.15% by weight and iron oxide hydroxide was added in an amount of 1500 ppm in terms of Fe 2 O 3. A ligature was obtained. The results are shown in Table 1.
  • Example 10 Colored translucent zirconia baked in the same manner as in Example 1 except that ⁇ -alumina was added in an alumina content of 0.15 wt%, and iron oxide hydroxide was added in an amount of 750 ppm in terms of Fe 2 O 3. A ligature was obtained. The results are shown in Table 1.
  • Example 11 A colored translucent zirconia sintered body was obtained in the same manner as in Example 1 except that 500 ppm of iron oxide hydroxide was added in terms of Fe 2 O 3 . The results are shown in Table 1.
  • Example 12 A colored translucent zirconia sintered body was obtained in the same manner as in Example 1 except that 500 ppm of iron oxide hydroxide was added in terms of Fe 2 O 3 and the sintering temperature was 1450 ° C. The results are shown in Table 1.
  • Comparative Example 1 The colored translucent light is transmitted in the same manner as in Example 1 except that ⁇ -alumina is not added, iron oxide hydroxide is added in an amount of 1500 ppm in terms of Fe 2 O 3 , and the sintering temperature is 1450 ° C. A sintered zirconia sintered body was obtained. The results are shown in Table 1. Comparative Example 2 Colored translucent zirconia baked in the same manner as in Example 1 except that ⁇ -alumina was added in an amount of 0.25% by weight in terms of alumina content, and iron oxide hydroxide was added in an amount of 2000 ppm in terms of Fe 2 O 3. A ligature was obtained. The results are shown in Table 1.
  • Example 1 except that ⁇ -alumina was added at 0.25 wt% in terms of alumina content, iron oxide hydroxide was added at 2000 ppm in terms of Fe 2 O 3 , and the sintering temperature was 1450 ° C. A colored translucent zirconia sintered body was obtained in the same manner. The results are shown in Table 1.
  • Example 13 A mixed powder was obtained in the same manner as in Example 1 except that 1350 ppm of iron oxide hydroxide was added in terms of Fe 2 O 3 .
  • the obtained mixed powder was uniaxial press-molded at a pressure of 49.0 MPa, and then subjected to CIP treatment at a pressure of 196 MPa to obtain a molded body.
  • the obtained molded body was heated to 1000 ° C. in the atmosphere at 50 ° C./hour, held for 1 hour to remove the binder, and then sintered in the atmosphere at a sintering temperature of 1400 ° C., a temperature increase rate of 400 ° C./hour and firing.
  • a colored translucent zirconia sintered body was obtained by sintering at normal pressure with a holding time of 2 hours at the sintering temperature.
  • the crystal phase of the obtained colored translucent zirconia sintered body was a tetragonal single phase.
  • the results are shown in Table 1.
  • Example 14 A colored translucent zirconia sintered body was obtained in the same manner as in Example 13 except that 700 ppm of iron oxide hydroxide was added in terms of Fe 2 O 3 . The results are shown in Table 1.
  • Example 15 The mixed powder 41% obtained by adding 1700 ppm of iron oxide hydroxide in terms of Fe 2 O 3 obtained in Example 1 and the powder without adding iron oxide hydroxide in Example 1 (zirconia calcined powder + ⁇ Alumina) 59% was mixed in a plastic bottle to obtain a mixed powder of 700 ppm in terms of Fe 2 O 3 .
  • the obtained mixed powder was uniaxial press-molded at a pressure of 49.0 MPa, and then subjected to CIP treatment at a pressure of 196 MPa to obtain a molded body.
  • the obtained molded body was heated to 1000 ° C.
  • a colored translucent zirconia sintered body was obtained by sintering at normal pressure with a holding time of 2 hours at the sintering temperature.
  • the crystal phase of the obtained colored translucent zirconia sintered body was a tetragonal single phase. The results are shown in Table 1.
  • Example 16 Hydrated zirconia sol was obtained by hydrolysis after adding yttrium chloride to the zirconium oxychloride aqueous solution to adjust the Y 2 O 3 concentration to 3 mol%.
  • the hydrated zirconia sol was dried and then calcined at 1100 ° C. for 2 hours to obtain a zirconia calcined powder containing 3 mol% yttria.
  • the obtained zirconia calcined powder was washed with water, and ⁇ -alumina was mixed so that the alumina content was 0.05 wt% with respect to the zirconia calcined powder.
  • iron oxide hydroxide FeOOH
  • distilled water was added to form a slurry having a zirconia concentration of 45% by weight.
  • the slurry was pulverized by a vibration mill using zirconia balls having a diameter of 3 mm for 24 hours to obtain a pulverized slurry.
  • a part of the pulverized slurry was dried to measure the BET specific surface area to obtain a mixed powder.
  • the average particle size of the particles in the pulverized slurry was 0.44 ⁇ m, the maximum particle size was 1.38 ⁇ m, and the BET specific surface area of the mixed powder was 12.3 m 2 / g. 3% by weight of an organic binder was added to the obtained pulverized slurry and spray-dried to obtain zirconia powder having an average granule diameter of 45 to 50 ⁇ m.
  • the obtained zirconia powder was uniaxially pressed at a pressure of 19.6 MPa and then CIP-treated at a pressure of 196 MPa to obtain a molded body.
  • the obtained molded body was heated to 1000 ° C.
  • a colored translucent zirconia sintered body was obtained by sintering at normal pressure with a holding time of 2 hours at the sintering temperature.
  • the crystal phase of the obtained colored translucent zirconia sintered body was a tetragonal single phase. The results are shown in Table 1.
  • Example 17 A colored translucent zirconia sintered body was obtained in the same manner as in Example 16 except that the sintering temperature was 1450 ° C. The results are shown in Table 1.
  • Example 18 A colored translucent zirconia sintered body was obtained in the same manner as in Example 16 except that 80 ppm of iron oxide hydroxide was added in terms of Fe 2 O 3 . The results are shown in Table 1.
  • Example 19 A colored translucent zirconia sintered body was obtained in the same manner as in Example 16 except that 80 ppm of iron oxide hydroxide was added in terms of Fe 2 O 3 and the sintering temperature was 1450 ° C. The results are shown in Table 1.
  • Example 20 A colored translucent zirconia sintered body was obtained in the same manner as in Example 16, except that ⁇ -alumina was added in an alumina content of 0.1% by weight. The results are shown in Table 1.
  • Example 21 A colored translucent zirconia sintered body was obtained in the same manner as in Example 16, except that ⁇ -alumina was added in an alumina content of 0.15% by weight. The results are shown in Table 1.
  • Example 22 A colored translucent zirconia sintered body was obtained in the same manner as in Example 16 except that ⁇ -alumina was not added and the sintering temperature was 1450 ° C. The results are shown in Table 1.
  • Comparative Example 4 Colored translucent zirconia baked in the same manner as in Example 16 except that ⁇ -alumina was added in an amount of 0.25 wt% in terms of alumina content, and iron oxide hydroxide was added in an amount of 1000 ppm in terms of Fe 2 O 3. A ligature was obtained. The results are shown in Table 1. Comparative Example 5 Colored translucent zirconia baked in the same manner as in Example 16 except that ⁇ -alumina was added in an amount of 0.25% by weight in terms of alumina content, and iron oxide hydroxide was added in an amount of 500 ppm in terms of Fe 2 O 3. A ligature was obtained. The results are shown in Table 1.
  • Comparative Example 6 Example 16 except that ⁇ -alumina was added at 0.25 wt% in terms of alumina content, iron oxide hydroxide was added at 1000 ppm in terms of Fe 2 O 3 , and the sintering temperature was 1450 ° C. A colored translucent zirconia sintered body was obtained in the same manner. The results are shown in Table 1. Comparative Example 7 Example 16 except that ⁇ -alumina was added in an amount of 0.25 wt% in terms of alumina content, iron oxide hydroxide was added in an amount of 500 ppm in terms of Fe 2 O 3 , and the sintering temperature was 1450 ° C. A colored translucent zirconia sintered body was obtained in the same manner. The results are shown in Table 1.
  • Example 23 A mixed powder was obtained in the same manner as in Example 16. The obtained mixed powder was uniaxial press-molded at a pressure of 49.0 MPa, and then subjected to CIP treatment at a pressure of 196 MPa to obtain a molded body. The obtained molded body was heated to 1000 ° C. in the atmosphere at 50 ° C./hour, held for 1 hour to remove the binder, and then sintered in the atmosphere at a sintering temperature of 1400 ° C., a temperature increase rate of 400 ° C./hour and firing. A colored translucent zirconia sintered body was obtained by sintering at normal pressure with a holding time of 2 hours at the sintering temperature.
  • Example 24 A colored translucent zirconia sintered body was obtained in the same manner as in Example 23 except that 80 ppm of iron oxide hydroxide was added in terms of Fe 2 O 3 . The results are shown in Table 1.
  • Example 25 12% of mixed powder obtained by adding 1700 ppm of iron oxide hydroxide obtained in Example 1 in terms of Fe 2 O 3 and powder not containing iron oxide hydroxide in Example 1 (zirconia calcined powder + ⁇ -alumina) ) 88% was mixed in a plastic bottle to obtain a mixed powder of 200 ppm in terms of Fe 2 O 3 .
  • the obtained mixed powder was uniaxial press-molded at a pressure of 49.0 MPa, and then subjected to CIP treatment at a pressure of 196 MPa to obtain a molded body.
  • the obtained molded body was heated to 1000 ° C.
  • a colored translucent zirconia sintered body was obtained by sintering at normal pressure with a holding time of 2 hours at the sintering temperature.
  • the crystal phase of the obtained colored translucent zirconia sintered body was a tetragonal single phase. The results are shown in Table 1.
  • the colored translucent zirconia sintered body obtained in the examples has high relative density and total light transmittance. It is an excellent colored translucent zirconia sintered body and can be used as a dental material for mill blanks, orthodontic brackets and the like.
  • the colored translucent zirconia sintered body of the present invention has high strength and has aesthetics very close to the color of the teeth. In particular, it has the same translucency and color tone as natural teeth. Therefore, it is particularly suitable for zirconia sintered bodies used in dental applications, mill blanks such as denture materials, and orthodontic brackets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Composite Materials (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Transplantation (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Dental Prosthetics (AREA)

Abstract

 これまでは、自然な歯と同等の審美性、特に自然な歯と同等な色調及び透光性を有し、なおかつ、高い強度を有するジルコニア焼結体は得られていなかった。本発明では、強度が高いだけではなく、審美性にも優れるジルコニア焼結体を提供することを目的とする。 鉄化合物及び2~4mol%のイットリアを含み、L*a*b*表色系における明度L*が51以上80以下であり、相対密度が99.80%以上であることを特徴とする着色透光性ジルコニア焼結体を提供する。着色ジルコニア焼結体は試料厚さ1mm、D65光源における全光線透過率が20%以上であることが好ましい。本発明の着色透光性ジルコニア焼結体は、特に歯科用途で使用されるジルコニア焼結体、さらには義歯材料等のミルブランク、歯列矯正ブラケットに適している。

Description

着色透光性ジルコニア焼結体及びその用途
 本発明は高い強度を有するだけでなく、歯に極めて近い審美性を有するジルコニア焼結体に関する。
 ジルコニア焼結体は強度が高いため、歯科材料に用いられている。ジルコニア焼結体を歯科材料として使用する場合、高い強度だけでなく、自然の歯と同様な審美性を有することが必要とされる。
 これまで、ジルコニア焼結体を自然な歯と同様な審美性とするため、ジルコニア焼結体の表面に他の材料を積層し、これにより色調を調整した歯科材料が報告されている(例えば、特許文献1参照)。しかしながら、当該歯科材料では、ジルコニアと強度の異なるガラス材料からなる複合材料であるため、歯科材料としては強度が十分ではなかった。
 そのため、他材料を積層せずに、強度を維持したまま審美性を向上させた歯科材料用のジルコニア焼結体が検討されている。
 例えば、透光性を付与することで、自然の歯と同様な透光性を有するジルコニア焼結体が報告されている。特許文献2及び3では、そのまま歯科材料で使用するため、高い強度及び高い透光性を有するジルコニア焼結体が開示されている。しかしながら、これらのジルコニア焼結体は自然な歯と同様な透光性を有するものの、自然な歯とは異なるジルコニア本来の明るい白色の色調を呈するものであった。
 さらに、着色剤として酸化物を含有させた歯科材料用の着色ジルコニア焼結体が報告されている(例えば、特許文献4参照)。しかしながら、当該着色ジルコニア焼結体は、含有される着色成分によって可視波長が吸収されてしまう。これに加えて、着色成分が焼結の進行を阻害するために焼結体の透光性が低かった。これにより、当該着色ジルコニア焼結体は自然の歯と透光性及び色調が異なるだけでなく、強度も低いものであった。
日本特開2009-207743号公報 日本特開2008-50247号公報 WO2009/125793号 日本特表2010-501465号公報
 これまでは、自然な歯と同等の審美性、特に自然な歯と同等な色調及び透光性を有し、なおかつ、高い強度を有するジルコニア焼結体は得られていなかった。
 本発明では、上記の課題を解消し、強度が高いだけではなく、審美性にも優れるジルコニア焼結体を提供することを目的とする。
 上記の課題に鑑み、本発明者らはジルコニア焼結体の強度と審美性の関係について鋭意検討した。その結果、組成、物性及び着色剤の種類が制御されたジルコニア焼結体が、歯科材料に適した審美性及び強度を有することを見出し、本発明を完成するに到った。
 本発明は以下の構成を要旨とするものである。
(1)鉄化合物及び2~4mol%のイットリアを含み、L*a*b*表色系における明度L*が51以上80以下であり、相対密度が99.80%以上であることを特徴とする着色透光性ジルコニア焼結体。
(2)L*a*b*表色系における明度L*が51以上70以下であることを特徴とする上記(1)に記載の着色透光性ジルコニア焼結体。
(3)L*a*b*表色系における明度L*が70を超え80以下であることを特徴とする上記(1)に記載の着色透光性ジルコニア焼結体。
(4)試料厚さ1mm、D65光源における全光線透過率が20%以上であることを特徴とする上記(1)乃至(3)のいずれかに記載の着色透光性ジルコニア焼結体。
(5)鉄化合物の含有量がFe換算で2000ppm未満であることを特徴とする上記(1)乃至(4)のいずれかに記載の着色透光性ジルコニア焼結体。
(6)鉄化合物の含有量がFe換算で500ppm以上であることを特徴とする上記(1)乃至(5)のいずれかに記載の着色透光性ジルコニア焼結体。
(7)鉄化合物の含有量がFe換算で500ppm未満であることを特徴とする上記(1)乃至(5)のいずれかに記載の着色透光性ジルコニア焼結体。
(8)着色透光性ジルコニア焼結体が、更にアルミナを含むことを特徴とする上記(1)乃至(7)のいずれかに記載の着色透光性ジルコニア焼結体。
(9)アルミナの含有量が0.25重量%未満であることを特徴とする上記(8)に記載の着色透光性ジルコニア焼結体。
(10)140℃熱水中に24時間浸漬させた後の単斜晶相の転移深さが10μm以下であることを特徴とする上記(9)に記載の着色透光性ジルコニア焼結体。
(11)140℃熱水中に72時間浸漬させた後の単斜晶相の転移深さが10μm以下であることを特徴とする上記(10)に記載の着色透光性ジルコニア焼結体。
(12)上記(1)乃至(11)のいずれかに記載の着色透光性ジルコニア焼結体を用いてなる歯科材料。
(13)歯列矯正ブラケットである上記(12)に記載の歯科材料。
(14)義歯、義歯ミルブランク又はその両者である上記(12)に記載の歯科材料。
 本発明の着色透光性ジルコニア焼結体は、自然な歯と同等の色調及び透光性を有し、なおかつ、高い強度を有する。そのため、本発明の着色透光性ジルコニア焼結体は、歯科材料に適した焼結体であり、特に、義歯材料等のミルブランク、歯列矯正ブラケットに適した焼結体とすることができる。
実施例1~15及び比較例1~3における明度L*と全光線透過率(D65光源における全光線透過率)との関係を示す図である。 実施例1~15及び比較例1~3における明度L*と近赤外透過率(波長850nmの光に対する全光線透過率)との関係を示す図である。 実施例4及び6の全光線透過率の測定波長依存性を示す図である。 実施例3,7及び9の全光線透過率の測定波長依存性を示す図である。 実施例2及び参考例の全光線透過率の測定波長依存性比較を示す図である。 実施例16~25及び比較例4~7における明度L*と全光線透過率(D65光源における全光線透過率)を示す図である。 実施例16~25及び比較例4~7における明度L*と近赤外透過率(波長850nmの光に対する全光線透過率)を示す図である。 実施例17及び19における全光線透過率の測定波長依存性を示す図である。
 以下、本発明の着色透光性ジルコニア焼結体について説明する。
 本発明は着色透光性ジルコニア焼結体である。そのため、本発明の焼結体は、無色以外の色調を有し、かつ、透光性を有するジルコニア多結晶体である。従って、本発明の着色透光性ジルコニア焼結体は、不透明のジルコニア焼結体(以下、不透明ジルコニア焼結体)、又はジルコニア単結晶とは異なる。なお、ここでいう不透明ジルコニア焼結体とは、例えば、D65光源において試料厚さ1mmの全光線透過率が10%以下のジルコニア焼結体である。
 本発明の着色透光性ジルコニア焼結体は鉄化合物を含有する。鉄化合物は呈色するための着色剤として機能する。鉄化合物の含有量は、Fe換算で2000ppm(0.2重量%)未満であることが好ましい。鉄化合物の含有量が2000ppm未満であれば、焼結体の色調が薄い黄色の着色となり、より自然の歯と近い色調をとなりやすい。さらには、可視波長領域での光の吸収が抑制され透光性が低下しにくい。本発明の着色透光性ジルコニア焼結体では、鉄化合物を含有することで自然な歯と近い色調となる。そのため、本発明の着色透光性ジルコニア焼結体は、鉄化合物を含有していれば(すなわち、鉄化合物の含有量がFe換算で0ppmを超えていれば)、その下限値は特に限定されない。例えば、鉄化合物の含有量がFe換算で50ppm(0.005重量%)以上であれば、本発明の着色透光性ジルコニア焼結体が比較的色調が薄めの歯に近い自然な色調となる。
 なお、鉄化合物の含有量は着色透光性ジルコニア焼結体のZrO及びYの合計重量(着色透光性ジルコニア焼結体がアルミナを含む場合は、着色透光性ジルコニア焼結体のZrO、Y及びAlの合計重量)に対するFe換算とした鉄化合物の割合である。
 本発明の着色透光性ジルコニア焼結体は、色調の微細な調整をするため、鉄化合物に加えて、ジルコニアに固溶する化合物を含有してもよい。ジルコニアに固溶する化合物としては、例えば、周期表3a族(3族)、5a族(5族)、6a族(6族)、7a族(7族)、8族(8~10族)及び3b族(13族)のいずれか一種以上の酸化物を挙げることができる(カッコ内は、国際純正応用化学連合(IUPAC)による表示方法)。
 本発明の着色透光性ジルコニア焼結体は2~4mol%のイットリアを含む。イットリア含有量が2mol%未満であると、結晶相が単斜晶(monoclinic)を含むようになるため、焼結体の強度が低下するだけでなく、水熱劣化しやすく、長期間使用した際に壊れやすくなる。一方、イットリア含有量が4mol%を超えると焼結体の強度が低くなる。
 本発明の着色透光性ジルコニア焼結体は、アルミナを含むことが好ましい。着色透光性ジルコニア焼結体がアルミナを含むこと(すなわち、アルミナの含有量が0重量%を超えること)で、水熱劣化しにくくなる。これにより、いわゆる“色抜け”現象が生じにくくなり、長期間使用しても変色や脱色が起こりにくくなる。
 本発明の着色透光性ジルコニア焼結体がアルミナを含有する場合、アルミナの含有量は0.25重量%未満であることが好ましく、0.15重量%以下であることがより好ましい。アルミナの含有量が0.25重量%未満であれば高い透光性を有する着色透光性ジルコニア焼結体とすることができる。一方、アルミナ含有量は0.005重量%以上であることが好ましく、0.01重量%以上であることがより好ましく、0.025重量%以上であることが更に好ましい。アルミナ含有量が0.005重量%以上であることで、例えば熱水で処理した場合などの加速試験等において、変色又は脱色がより生じにくくなるため、歯科材料として長期間使用する場合に色調の変化が生じにくくなる。
 なお、アルミナ含有量は着色透光性ジルコニア焼結体のZrO及びYの合計重量に対するAlの割合である。
 本発明の着色透光性ジルコニア焼結体は、相対密度が99.80%以上であり、99.85%以上であることが好ましく、99.90%以上であることがより好ましい。相対密度が99.80%未満では透光性が低くなりやすく、歯科材料としての審美性に劣った焼結体となる。
 本発明の着色透光性ジルコニア焼結体は、L*a*b*表色系おける明度L*(以下、単に「明度L*」又は「L*」とする)が鉄化合物の含有量が2000ppm未満であれば、51以上であることが好ましい。また、鉄化合物の含有量が500ppm未満であれば、70を超え80以下であることが好ましい。
 本発明の着色透光性ジルコニア焼結体は、明度L*が51以上70以下であり、鉄化合物の含有量がFe換算で500ppm以上2000ppm未満であることが好ましい。また、本発明の着色透光性ジルコニア焼結体は、明度L*が70を超え80以下であり、鉄化合物の含有量がFe換算で50ppm以上500ppm未満であることが好ましい。
 透光性を有するだけでなく、明度L*がこの範囲であることで、本発明の着色透光性ジルコニア焼結体が自然な歯と同等の審美性を有する。なお、明度L*の値が小さいほど全光線透過率も低くなりやすい。
 本発明の着色透光性ジルコニア焼結体は、L*a*b*表色系おける色相a*(以下、単に「色相a*」又は「a*」とする)が-5以上10以下であることが好ましく、-4以上9以下であることがより好ましく、-3以上8以下であることが更に好ましい。さらに、色相a*がこの範囲であり、なおかつ、L*a*b*表色系おける色相b*(以下、単に「色相b*」又は「b*」とする)が0以上30以下であることが好ましく、0以上29以下であることがより好ましく、0以上28以下であることが更に好ましい。
 本発明の着色透光性ジルコニア焼結体の色調は明度L*、色相a*及びb*で規定される。ここで、明度L*値が大きくなると色調は明るくなり、反対にL*値が小さくなると色調は暗くなる。さらに、本発明の着色透光性ジルコニア焼結体における色調は、焼結体を透過した光と焼結体を反射した光とを集光して測定される値である。そのため、焼結体の厚さや透光性が変化すると、色調も変化する。したがって、本発明の着色透光性ジルコニア焼結体の色調は透光性を有さない不透明ジルコニア焼結体の色調、すなわち、焼結体表面の反射光のみから求められる明度L*、色相a*及びb*により求められる値とは異なる値である。
 本発明の着色透光性ジルコニア焼結体は、試料厚さ1mm、D65光源における全光線透過率(以下、単に「全光線透過率」とする)が明度L*が51以上70未満の場合、20%以上であることが好ましく、23%以上であることがより好ましく、25%以上であることが更に好ましい。また、明度L*が70を超え80以下の場合、全光線透過率は20%以上であることが好ましく、35%以上であることがより好ましく、40%以上であることが更に好ましい。明度L*が本発明の範囲であり、なおかつ、全光線透過率が20%以上であることで歯科材料として広く使用できる審美性となりやすい。一方、透光性が自然な歯と同程度であれば、全光線透過率は必要以上に高くする必要はない。例えば、全光線透過率が43%以下であれば自然な歯と同程度の透光性が得られる。
 本発明の着色透光性ジルコニア焼結体は、試料厚さ1mmでの波長850nmの光に対する全光線透過率(以下、「近赤外透過率」とする)が35%以上であることが好ましく、35.5%以上であることがより好ましく、36%以上であることが更に好ましい。近赤外透過率35%以上であれば、審美的な透光性を要求される歯科材料だけでなく、エネルギー変換材料(例えば太陽電池等)の保護層等にも適した材料となる。本発明の着色透光性ジルコニア焼結体の近赤外透過率は高く、近赤外透過率が40%程度の焼結体とすることができる。
 本発明の着色透光性ジルコニア焼結体は、その結晶相が正方晶(Tetragonal)を含むことが好ましく、正方晶の単相であることが好ましい。これにより、機械的強度が高くなりやすい。本発明の着色透光性ジルコニア焼結体は、3点曲げ強度が1000MPa以上であることが好ましく、1100MPa以上であることがより好ましく、1200MPa以上であることが更に好ましい。
 本発明の着色透光性ジルコニア焼結体はさらに結晶粒径が0.2μm以上0.45μm以下であることが好ましく、0.3μm以上0.45μm以下であることがより好ましい。結晶粒径が0.2μm以上であると、焼結体中に気孔が残留しにくく、相対密度が高くなりやすい。また、結晶粒径が0.45μm以下であると、焼結体の水熱劣化が抑制されやすく、歯科材料としても長期間の使用に耐えることができる。
 本発明の着色透光性ジルコニア焼結体は、140℃の熱水中に24時間浸漬させた後の単斜晶相の転移深さが20μm以下であることが好ましく、10μm以下であることがより好ましい。単斜晶相の転移深さは、水熱環境下におけるジルコニア焼結体の劣化の指標とすることができる。すなわち、単斜晶相の転移深さが小さいことで、歯科材料として長期間使用しても劣化しにくいことへの指標となる。単斜晶相の転移深さが20μm以下であることで焼結体の水熱劣化が進行しにくく、焼結体が破壊されにくくなる。単斜晶相の転移深さは、焼結体の断面を走査型電子顕微鏡(SEM)などで観察することができる。
 さらに、本発明の着色透光性ジルコニア焼結体は、140℃の熱水中に72時間浸漬させた後の単斜晶相の転移深さが20μm以下であることが好ましく、10μm以下であることがより好ましい。
 本発明の着色透光性ジルコニア焼結体は、140℃の熱水中に24時間浸漬させた後の単斜晶相率が30%以下であることが好ましく、15%以下であることがより好ましい。
 さらに、本発明の着色透光性ジルコニア焼結体は、140℃の熱水中に72時間浸漬させた後の単斜晶相率が80%以下であることが好ましく、60%以下であることがより好ましい。
 ここで、単斜晶相率(M相率ともいう)とは、焼結体の鏡面部分についてXRD測定を行い、単斜晶相の(111)及び(11-1)面,正方晶相の(111)面,立方晶相の(111)面の回折強度をそれぞれ求めて、以下の数式1により算出された値をいう。
Figure JPOXMLDOC01-appb-M000001
 次に、本発明の着色透光性ジルコニア焼結体の製造方法を説明する。
 本発明の着色透光性ジルコニア焼結体は、ジルコニア粉末及び鉄化合物の混合粉末を成形、焼結することで製造することができる。
 ジルコニア粉末は、BET比表面積が10m/g以上15m/g以下であることが好ましく、11m/g以上14m/g以下であることがより好ましい。ジルコニア粉末のBET比表面積が10m/g以上であることで、低い温度でも焼結しやすい粉末となる。また、15m/g以下であることで粒子間の凝集が抑制された粉末となる。
 ジルコニア粉末は、平均粒径が0.4μm以上0.7μm以下であることが好ましく、0.4μm以上0.6μm以下であることがより好ましい。ジルコニア粉末の平均粒径が0.4μm以上であると、粉末の凝集性を高める微小粒子が少なくなり、成形しやすくなる。一方、平均粒径が0.7μm以下であると硬い凝集粒子を含む粗粒が少なくなり、成形しやすくなる。さらに、粗粒が焼結の緻密化を阻害するために焼結性の悪いものとなるので、ジルコニア粉末の最大粒径が2.0μm以下であることが好ましく、1.5μm以下であることがより好ましい。
 ジルコニア粉末は、大気中、昇温速度300℃/時の常圧焼結における相対密度70%から90%までの焼結収縮速度(△ρ/△T:g/cm・℃)(以下、単に「焼結収縮速度」とする)が0.012以上0.016以下であることが好ましい。焼結収縮速度はジルコニア粉末の焼結性の指標である。焼結収縮速度がこの範囲であることで、焼結性に優れたジルコニア粉末となる。なお、焼結収縮速度は相対密度が70%以上での測定値である。そのため、焼結収縮速度は成形体の密度のばらつきによる影響を受けない。さらに、相対密度70%から90%における焼結収縮は、その速度が一定である。このように、収縮速度が温度と相対密度の一次関数となるため、特別な近似計算処理を用いることなくても正確な収縮速度を求めることができる。
 ジルコニア粉末は、ジルコニウム塩水溶液の加水分解で得られる水和ジルコニアゾルを、乾燥,仮焼,粉砕して得られたジルコニア粉末であることが好ましい。
 水和ジルコニアゾルの製造に用いるジルコニウム塩としては、オキシ塩化ジルコニウム、硝酸ジルコニル、塩化ジルコニウム、硫酸ジルコニウム並びに水酸化ジルコニウムと酸との混合物の少なくとも一種以上を挙げることができる。また、ジルコニウム塩水溶液にアルカリ金属水酸化物、アルカリ土類金属水酸化物又はその両者(以下、「アルカリ金属水酸化物等」)を添加してもよい。アルカリ金属水酸化物等としては、リチウム、ナトリウム、カリウム、マグネシウム又はカルシウムのいずれか一種以上の水酸化物を例示することができる。
 上記で得られた水和ジルコニアゾルを乾燥させ、これを仮焼することでジルコニア仮焼粉末を得ることができる。仮焼温度は1000℃以上1200℃以下であることが好ましく、1050℃以上1150℃以下であることが好ましい。この範囲の温度で仮焼することにより、ジルコニア仮焼粉末の凝集性が緩和されやすくなるだけでなく、凝集粒子を含む粗粒が少なくなりやすい。これにより、粉砕後のジルコニア粉末の平均粒径が0.4μm以上0.7μm以下となりやすい。
 次いで、上記で得られたジルコニア仮焼粉末を粉砕することでジルコニア粉末を得ることができる。粉砕は、平均粒径が0.4μm以上0.7μm以下となるように行えば、その方法は限定されない。ジルコニアボールを用いた湿式粉砕により粉砕することが好ましい。
 本発明の着色透光性ジルコニア焼結体は、ジルコニア粉末と鉄化合物とを混合して混合粉末を得る。
 鉄化合物の種類は、塩化鉄、硝酸鉄のような水に可溶性の化合物や酸化鉄、酸化水酸化鉄のような水に不溶性の化合物を例示できる。
 水に不溶性の化合物を使用する場合、平均粒径が1μm以下の鉄化合物をジルコニア仮焼粉末の粉砕時に混合することが好ましい。これにより、水に不溶性の鉄化合物の凝集物がなくなり、得られる焼結体の色調が均一となりやすい。
 鉄化合物は、ZrO及びYの合計重量(アルミナを添加する場合は、ZrO、Y及びAlの合計重量)に対して、Fe換算で2000ppm(0.2重量%)未満となるように混合することが好ましく、1800ppm(0.18重量%)以下となるように混合することがより好ましく、1600ppm(0.16重量%)以下となるように混合することが更に好ましい。
 本発明の着色透光性ジルコニア焼結体がアルミナを含有する場合、アルミナ源をZrO及びYの合計重量に対して0.25重量%未満となるように添加することが好ましく、0.15重量%以下となるように添加することがより好ましい。
 アルミナ源として、アルミナ、水和アルミナ、アルミナゾル、水酸化アルミニウム、塩化アルミニウム、硝酸アルミニウム又は硫酸アルミニウムのいずれか一種以上を使用することを例示することができる。アルミナ源は、水不溶性のアルミナ化合物であることが好ましく、アルミナであることがより好ましい。
 ジルコニア粉末、鉄化合物及び必要に応じてアルミナ源を混合し混合粉末を得る。これにより、混合粉末の組成と、これを原料とする着色透光性ジルコニア焼結体の組成とが同等になる。
 ジルコニア粉末又は混合粉末は、これをスラリーとした後に噴霧乾燥した噴霧造粒粉末顆粒を用いることが好ましい。これにより、成形体を形成する際の粉末の流動性が高くなり、成形体から気孔が排除されやすくなる。
 噴霧造粒粉末顆粒は、粒径は30μm以上80μm以下、軽装嵩密度(Untamped density)が1.10g/cm以上1.40g/cm以下であることが好ましい。
 本発明の着色透光性ジルコニア焼結体は、混合粉末を成形して成形体を得、当該成形体を焼結することで製造することができる。
 成形体は、その相対密度が50±5%程度となるようにすれば成形方法は限定されない。好ましい成形方法として混合粉末をプレス成形した後に、必要に応じて冷間静水圧プレス(以下、「CIP」とする)処理する方法を挙げることができる。
 得られた成形体を焼結することで本発明の着色透光性ジルコニア焼結体を得ることができる。
 焼結方法は常圧下で行う焼結方法、いわゆる常圧焼結であることが好ましい。特に上記の方法で得られたジルコニア粉末を使用した場合、熱間静水圧プレス(以下、「HIP」とする)処理をすることなく、常圧焼結のみで強度及び透光性の高い着色ジルコニア焼結体を得ることができる。
 焼結温度は1350℃以上1450℃以下であることが好ましく、1400℃以上1450℃以下であることがより好ましい。焼結温度が1350℃以上であると、相対密度が99.80%と高くなりやすい。一方、焼結温度が1450℃以下であれば、水熱劣化が起こりにくく、歯科材料として長期間の使用に耐える焼結体とすることができる。
 焼結雰囲気は、還元性雰囲気以外の雰囲気であることが好ましく、酸素雰囲気又は大気中であることが好ましい。簡便であるため、大気中で焼結することが好ましい。
 以下、実施例により本発明を具体的に説明する。しかしながら、本発明はこれらの実施例に限定されるものではない。
(焼結収縮速度の測定)
 混合粉末の焼結収縮速度は以下の様に測定した。混合粉末を金型に入れプレス成形した後、圧力2t/cmでCIP処理し、相対密度50±5%の成形体とした。得られた成形体を常圧下、大気中、昇温速度300℃/時、1500℃まで焼結することで熱収縮挙動を測定した。測定には、汎用的な熱膨張計(アルバック理工製、型式:DL9700)を用いた。
 得られた熱収縮挙動から、その相対密度が70%から90%に変化する温度を求め、熱収縮速度を求めた。
(平均粒径の測定)
 ジルコニア粉末の平均粒径は、マイクロトラック粒度分布計(Honeywell社製、型式:9320-HRA)を用いて測定した。体積基準で表される粒径分布の累積カーブの中央値(メディアン径;累積カーブの50%に対応する粒径)を平均粒径とした。
 測定に先立ち、粉末を蒸留水に懸濁させ、超音波ホモジナイザー(日本精機製作所製,型式:US-150T)を用いて3分間分散させて前処理を行った。
(成形体及び焼結体の密度(以下、「実測密度」とする)ρの測定)
 成形体のサイズをノギスで測定して体積を求め、得られた体積と成形体重量とから成形体の実測密度を求めた。また、焼結体の実測密度はアルキメデス法により求めた。
(相対密度の測定)
 相対密度は、理論密度ρ及び実測密度ρから以下の(1)式から求めた。
  相対密度(%)=(ρ/ρ)×100   ・・・(1)
 また、理論密度ρは以下の(2)式から求めた。
  ρ=100/[(X/ρAl)+(Y/ρFe)+(100-X-Y)/ρZr]                          ・・・(2)
 なお、
     X   :アルミナ含有量;重量%
     Y   :Fe含有量;重量%
     ρAl :アルミナの理論密度;3.987g/cm
     ρZr :ジルコニアの理論密度;6.0956g/cm
     ρFe :Feの理論密度;5.24g/cm
である。
(全光線透過率及び近赤外透過率の測定)
 全光線透過率は、濁度計(日本電色工業(株)製、型式:NDH2000)を用いて、JIS K7361に準拠して測定した。光源としては光源D65を使用した。試料は焼結体を両面研磨した試料厚さ1mmの円板形状のものを用いた。
 また、近赤外透過率(波長850nmの光に対する全光線透過率)は、紫外可視近赤外分光光度計(日本分光株式会社製、型式:V-650)に直径150mm積分球ユニット(形式:ILV-724)を取り付けて測定した。試料は焼結体を両面研磨した試料厚さ1mmの円板形状のものを用いた。
(色調の測定)
 JIS Z8729に準拠して明度L*、色相a*及びb*を測定した。色調の測定に際し、試料は試料厚さ2.8mmの円板形状とし、片面を鏡面研磨した。測定は鏡面研磨をした面について行った。
(焼結体強度の測定)
 焼結体強度をJIS R1601に準拠して、3点曲げ測定法で評価した。
(結晶粒径の測定)
 ジルコニア焼結体の結晶粒径は、鏡面研磨した焼結体を熱エッチング処理し、走査型電子顕微鏡(SEM)観察した写真から、プラニメトリック法を用いて算出した。具体的には、顕微鏡画像上に円を描いたとき、円内の粒子数nと円周にかかった粒子数Nの合計が100個~150個となるような円を描いて、または100個に満たない画像の場合には、粒子数の合計(n+N)が100個~150個となるように複数視野の画像を用いて複数の円を描き、プラニメトリック法により結晶粒径を求めた。
(水熱劣化特性)
 水熱劣化特性は、得られた焼結体の片面を鏡面になるまで研磨して、140℃の熱水中に24時間又は72時間浸漬させ、生成する単斜晶相の率(単斜晶相率)を求めることによって評価した。単斜相率(M相率)は、浸漬処理した焼結体の鏡面部分についてXRD測定を行い、単斜晶相の(111)及び(11-1)面,正方晶相の(111)面,立方晶相の(111)面の回折強度をそれぞれ求めて、以下の数式1により算出された値をいう。
Figure JPOXMLDOC01-appb-M000002
 また、転移深さとは浸漬処理した焼結体を切断し、その断面を走査型電子顕微鏡(SEM)で観察し、鏡面とした面から結晶組織が粗となった深さを観察することで求めた。
実施例1
 オキシ塩化ジルコニウム水溶液に塩化イットリウムを添加し、Y濃度を3mol%としてから加水分解によって水和ジルコニアゾル得た。当該水和ジルコニアゾルを乾燥させた後、1100℃で2時間焼成し、3mol%のイットリアを含むジルコニア仮焼粉末を得た。
 得られたジルコニア仮焼粉末を水洗した後、当該ジルコニア仮焼粉末に対してアルミナ含有量で0.05重量%となるように、α-アルミナを混合した。さらに、当該ジルコニア仮焼粉末及びα-アルミナの合計重量に対してFe換算で1700ppmとなるように酸化水酸化鉄(FeOOH)を混合した。
 これらの原料を混合後、蒸留水を添加してジルコニア濃度45重量%のスラリーにした。当該スラリーを直径3mmのジルコニアボールを用いた振動ミルで24時間粉砕して粉砕スラリーとした。又、粉砕スラリーの一部をBET比表面積の測定のために乾燥して混合粉末を得た。
 粉砕スラリー中の粒子の平均粒径は0.43μm、最大粒径は1.16μm、及び、混合粉末のBET比表面積は12.5m/gであった。
 得られた粉砕スラリーに有機バインダーを3重量%加えて、噴霧乾燥を行い平均顆粒径45~50μmのジルコニア粉末を得た。
 得られたジルコニア粉末を19.6MPaの圧力で一軸プレス後、196MPaの圧力でCIP処理して成形体を得た。
 得られた成形体を、大気中、1000℃まで50℃/時昇温し、1時間保持してバインダーを除去した後、大気中、焼結温度1400℃、昇温速度600℃/時及び焼結温度での保持時間2時間で常圧焼結して着色透光性ジルコニア焼結体を得た。得られた着色透光性ジルコニア焼結体の結晶相は正方晶の単相であった。結果を表1に示す。
実施例2
 焼結温度を1450℃としたこと以外は実施例1と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
参考例
 実施例2で得られた着色ジルコニア焼結体を処理温度1400℃、圧力150MPaで熱間静水圧プレス(HIP)処理した。
 HIP処理前後で着色透光性ジルコニア焼結体の相対密度及びL*値の変化はほとんどなかった。これにより、本発明の着色透光性ジルコニア焼結体は、HIP処理をすることなく、HIP処理と同等の特性を有する焼結体であることが分かった。
実施例3
 酸化水酸化鉄をFe換算で1500ppm添加したこと以外は実施例1と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
実施例4
 酸化水酸化鉄をFe換算で1500ppm添加したこと、及び、焼結温度を1450℃でしたこと以外は実施例1と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
実施例5
 酸化水酸化鉄をFe換算で750ppm添加したこと以外は実施例1と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
実施例6
 酸化水酸化鉄をFe換算で750ppm添加したこと、及び、焼結温度を1450℃でしたこと以外は実施例1と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
実施例7
 α-アルミナをアルミナ含有量で0.1重量%添加したこと、酸化水酸化鉄をFe換算で1500ppm添加したこと、及び、焼結温度を1450℃としたこと以外は実施例1と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
実施例8
 α-アルミナをアルミナ含有量で0.1重量%添加したこと、及び、酸化水酸化鉄をFe換算で750ppm添加したこと以外は実施例1と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
実施例9
 α-アルミナをアルミナ含有量で0.15重量%添加したこと、及び、酸化水酸化鉄をFe換算で1500ppm添加したこと以外は実施例1と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
実施例10
 α-アルミナをアルミナ含有量で0.15重量%添加したこと、及び、酸化水酸化鉄をFe換算で750ppm添加したこと以外は実施例1と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
実施例11
 酸化水酸化鉄をFe換算で500ppm添加したこと以外は実施例1と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
実施例12
 酸化水酸化鉄をFe換算で500ppm添加したこと、及び、焼結温度を1450℃としたこと以外は実施例1と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
比較例1
 α-アルミナを添加しなかったこと、酸化水酸化鉄をFe換算で1500ppm添加したこと、及び、焼結温度を1450℃としたこと以外は実施例1と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
比較例2
 α-アルミナをアルミナ含有量で0.25重量%添加したこと、及び、酸化水酸化鉄をFe換算で2000ppm添加したこと以外は実施例1と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
比較例3
 α-アルミナをアルミナ含有量で0.25重量%添加したこと、酸化水酸化鉄をFe換算で2000ppm添加したこと、及び、焼結温度を1450℃としたこと以外は実施例1と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
実施例13
 酸化水酸化鉄をFe換算で1350ppm添加したこと以外は実施例1と同様な方法で混合粉末を得た。得られた混合粉末を49.0MPaの圧力で一軸プレス成形後、196MPaの圧力でCIP処理して成形体を得た。
 得られた成形体を、大気中、1000℃まで50℃/時昇温し、1時間保持してバインダーを除去した後、大気中、焼結温度1400℃、昇温速度400℃/時及び焼結温度での保持時間2時間で常圧焼結して着色透光性ジルコニア焼結体を得た。得られた着色透光性ジルコニア焼結体の結晶相は正方晶の単相であった。結果を表1に示す。
実施例14
 酸化水酸化鉄をFe換算で700ppm添加したこと以外は実施例13と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
実施例15
 実施例1で得られた、酸化水酸化鉄をFe換算で1700ppm添加した混合粉末41%と、実施例1において、酸化水酸化鉄を添加していない粉末(ジルコニア仮焼粉末+α-アルミナ)59%をポリ瓶の中で混合してFe換算で700ppmの混合粉末を得た。
 得られた混合粉末を49.0MPaの圧力で一軸プレス成形後、196MPaの圧力でCIP処理して成形体を得た。
 得られた成形体を、大気中、1000℃まで50℃/時昇温し、1時間保持してバインダーを除去した後、大気中、焼結温度1400℃、昇温速度400℃/時及び焼結温度での保持時間2時間で常圧焼結して着色透光性ジルコニア焼結体を得た。得られた着色透光性ジルコニア焼結体の結晶相は正方晶の単相であった。結果を表1に示す。
実施例16
 オキシ塩化ジルコニウム水溶液に塩化イットリウムを添加し、Y濃度を3mol%としてから加水分解によって水和ジルコニアゾル得た。当該水和ジルコニアゾルを乾燥させた後、1100℃で2時間焼成し、3mol%のイットリアを含むジルコニア仮焼粉末を得た。
 得られたジルコニア仮焼粉末を水洗した後、当該ジルコニア仮焼粉末に対してアルミナ含有量で0.05重量%となるように、α-アルミナを混合した。さらに、当該ジルコニア仮焼粉末及びα-アルミナの合計重量に対してFe換算で200ppmとなるように酸化水酸化鉄(FeOOH)を混合した。
 これらの原料を混合後、蒸留水を添加してジルコニア濃度45重量%のスラリーにした。当該スラリーを直径3mmのジルコニアボールを用いた振動ミルで24時間粉砕して粉砕スラリーとした。又、粉砕スラリーの一部をBET比表面積の測定のために乾燥して混合粉末を得た。
 粉砕スラリー中の粒子の平均粒径は0.44μm、最大粒径は1.38μm、及び、混合粉末のBET比表面積は12.3m/gであった。
 得られた粉砕スラリーに有機バインダーを3重量%加えて、噴霧乾燥を行い平均顆粒径45~50μmのジルコニア粉末を得た。
 得られたジルコニア粉末を19.6MPaの圧力で一軸プレス後、196MPaの圧力でCIP処理して成形体を得た。
 得られた成形体を、大気中、1000℃まで50℃/時昇温し、1時間保持してバインダーを除去した後、大気中、焼結温度1400℃、昇温速度600℃/時及び焼結温度での保持時間2時間で常圧焼結して着色透光性ジルコニア焼結体を得た。得られた着色透光性ジルコニア焼結体の結晶相は正方晶の単相であった。結果を表1に示す。
実施例17
 焼結温度を1450℃としたこと以外は実施例16と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
実施例18
 酸化水酸化鉄をFe換算で80ppm添加したこと以外は実施例16と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
実施例19
 酸化水酸化鉄をFe換算で80ppm添加したこと、及び、焼結温度を1450℃でしたこと以外は実施例16と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
実施例20
 α-アルミナをアルミナ含有量で0.1重量%添加したこと以外は実施例16と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
実施例21
 α-アルミナをアルミナ含有量で0.15重量%添加したこと以外は実施例16と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
実施例22
 α-アルミナを添加しなかったこと、及び、焼結温度を1450℃としたこと以外は実施例16と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
比較例4
 α-アルミナをアルミナ含有量で0.25重量%添加したこと、及び、酸化水酸化鉄をFe換算で1000ppm添加したこと以外は実施例16と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
比較例5
 α-アルミナをアルミナ含有量で0.25重量%添加したこと、及び、酸化水酸化鉄をFe換算で500ppm添加したこと以外は実施例16と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
比較例6
 α-アルミナをアルミナ含有量で0.25重量%添加したこと、酸化水酸化鉄をFe換算で1000ppm添加したこと、及び、焼結温度を1450℃としたこと以外は実施例16と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
比較例7
 α-アルミナをアルミナ含有量で0.25重量%添加したこと、酸化水酸化鉄をFe換算で500ppm添加したこと、及び、焼結温度を1450℃としたこと以外は実施例16と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
実施例23
 実施例16と同様な方法で混合粉末を得た。
 得られた混合粉末を49.0MPaの圧力で一軸プレス成形後、196MPaの圧力でCIP処理して成形体を得た。
 得られた成形体を、大気中、1000℃まで50℃/時昇温し、1時間保持してバインダーを除去した後、大気中、焼結温度1400℃、昇温速度400℃/時及び焼結温度での保持時間2時間で常圧焼結して着色透光性ジルコニア焼結体を得た。得られた着色透光性ジルコニア焼結体の結晶相は正方晶の単相であった。結果を表1に示す。
実施例24
 酸化水酸化鉄をFe換算で80ppm添加したこと以外は実施例23と同様な方法で着色透光性ジルコニア焼結体を得た。結果を表1に示す。
実施例25
 実施例1で得られた酸化水酸化鉄をFe換算で1700ppm添加した混合粉末12%と、実施例1において、酸化水酸化鉄を添加していない粉末(ジルコニア仮焼粉末+α-アルミナ)88%をポリ瓶の中で混合してFe換算で200ppmの混合粉末を得た。
 得られた混合粉末を49.0MPaの圧力で一軸プレス成形後、196MPaの圧力でCIP処理して成形体を得た。
 得られた成形体を、大気中、1000℃まで50℃/時昇温し、1時間保持してバインダーを除去した後、大気中、焼結温度1400℃、昇温速度400℃/時及び焼結温度での保持時間2時間で常圧焼結して着色透光性ジルコニア焼結体を得た。得られた着色透光性ジルコニア焼結体の結晶相は正方晶の単相であった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例で得られた着色透光性ジルコニア焼結体は、相対密度及び全光線透過率が高い。非常に優れた着色透光性ジルコニア焼結体であり、ミルブランク、歯列矯正ブラケット等の歯科材料として利用できる。
 本発明の着色透光性ジルコニア焼結体は高い強度を有し、歯の色調に極めて近い審美性を有する。特に、自然の歯と同程度の透光性及び色調を有する。そのため、特に歯科用途で使用されるジルコニア焼結体、さらには義歯材料等のミルブランク、歯列矯正ブラケットに適している。
 なお、2011年7月29日に出願された日本特許出願2011-166358号、及び2011年7月29日に出願された日本特許出願2011-166359号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (14)

  1.  鉄化合物及び2~4mol%のイットリアを含み、L*a*b*表色系における明度L*が51以上80以下であり、相対密度が99.80%以上であることを特徴とする着色透光性ジルコニア焼結体。
  2.  L*a*b*表色系における明度L*が51以上70以下であることを特徴とする請求項1に記載の着色透光性ジルコニア焼結体。
  3.  L*a*b*表色系における明度L*が70を超え80以下であることを特徴とする請求項1に記載の着色透光性ジルコニア焼結体。
  4.  試料厚さ1mm、D65光源における全光線透過率が20%以上であることを特徴とする請求項1乃至3のいずれかに記載の着色透光性ジルコニア焼結体。
  5.  鉄化合物の含有量がFe換算で2000ppm未満であることを特徴とする請求項1乃至4のいずれかに記載の着色透光性ジルコニア焼結体。
  6.  鉄化合物の含有量がFe換算で500ppm以上であることを特徴とする請求項1乃至5のいずれかに記載の着色透光性ジルコニア焼結体。
  7.  鉄化合物の含有量がFe換算で500ppm未満であることを特徴とする請求項1乃至5のいずれかに記載の着色透光性ジルコニア焼結体。
  8.  着色透光性ジルコニア焼結体が、更にアルミナを含むことを特徴とする請求項1乃至7のいずれかに記載の着色透光性ジルコニア焼結体。
  9.  アルミナの含有量が0.25重量%未満であることを特徴とする請求項8に記載の着色透光性ジルコニア焼結体。
  10.  140℃熱水中に24時間浸漬させた後の単斜晶相の転移深さが10μm以下であることを特徴とする請求項9に記載の着色透光性ジルコニア焼結体。
  11.  140℃熱水中に72時間浸漬させた後の単斜晶相の転移深さが10μm以下であることを特徴とする請求項10に記載の着色透光性ジルコニア焼結体。
  12.  請求項1乃至11のいずれかに記載の着色透光性ジルコニア焼結体を用いてなる歯科材料。
  13.  歯列矯正ブラケットである請求項12に記載の歯科材料。
  14.  義歯、義歯ミルブランク又はその両者である請求項12に記載の歯科材料。
PCT/JP2012/069232 2011-07-29 2012-07-27 着色透光性ジルコニア焼結体及びその用途 WO2013018728A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/235,716 US9249056B2 (en) 2011-07-29 2012-07-27 Colored translucent zirconia sintered body and its use
EP12820547.3A EP2738147B1 (en) 2011-07-29 2012-07-27 Colored and light-transmitting sintered zirconia compact and use of same
EP21212172.7A EP4011852A1 (en) 2011-07-29 2012-07-27 Mixed powder, spray-granulation powder granules and green body for use in production of colored translucent zirconia sintered body
CN201280037982.0A CN103732559A (zh) 2011-07-29 2012-07-27 着色透光性氧化锆烧结体及其用途
KR1020137030172A KR101906628B1 (ko) 2011-07-29 2012-07-27 착색 투광성 지르코니아 소결체 및 그의 용도

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011166358 2011-07-29
JP2011-166359 2011-07-29
JP2011166359 2011-07-29
JP2011-166358 2011-07-29

Publications (1)

Publication Number Publication Date
WO2013018728A1 true WO2013018728A1 (ja) 2013-02-07

Family

ID=47629251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069232 WO2013018728A1 (ja) 2011-07-29 2012-07-27 着色透光性ジルコニア焼結体及びその用途

Country Status (6)

Country Link
US (1) US9249056B2 (ja)
EP (2) EP4011852A1 (ja)
JP (1) JP6079028B2 (ja)
KR (1) KR101906628B1 (ja)
CN (1) CN103732559A (ja)
WO (1) WO2013018728A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104236A1 (ja) 2012-12-28 2014-07-03 東ソー株式会社 着色透光性ジルコニア焼結体及びその用途
JP2015143178A (ja) * 2013-12-24 2015-08-06 東ソー株式会社 透光性ジルコニア焼結体及びジルコニア粉末、並びにその用途
CN105026337A (zh) * 2013-03-11 2015-11-04 可乐丽则武齿科株式会社 氧化锆烧结体、以及氧化锆的组合物和预烧体
WO2015199018A1 (ja) * 2014-06-23 2015-12-30 東ソー株式会社 着色透光性ジルコニア焼結体と粉末、及びその用途
US20160081777A1 (en) * 2013-05-10 2016-03-24 Kuraray Noritake Dental Inc. Zirconia sintered body, zirconia composition, zirconia pre-sintered body and dental prosthesis

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8936848B2 (en) 2012-02-23 2015-01-20 B&D Dental Corp Non-pre-colored multi-layer zirconia dental blank that has a gradual change in translucency through a thickness after sintering
WO2014021343A1 (ja) * 2012-07-31 2014-02-06 クラレノリタケデンタル株式会社 歯科用ミルブランクの製造方法
JP6352593B2 (ja) * 2013-05-02 2018-07-04 クラレノリタケデンタル株式会社 ジルコニア焼結体、ジルコニア組成物及びジルコニア仮焼体、並びに歯科用補綴物
JP6189627B2 (ja) * 2013-05-10 2017-08-30 クラレノリタケデンタル株式会社 ジルコニア焼結体、ジルコニア組成物及びジルコニア仮焼体、並びに歯科用補綴物
JP6449729B2 (ja) * 2014-06-26 2019-01-09 京セラ株式会社 カラーセラミックス
KR101601948B1 (ko) * 2014-09-16 2016-03-10 주식회사 하스 강도, 투광성,색상 구배를 지닌 치과용 지르코니아 블록 및 이의 제조방법
CN105565806B (zh) * 2014-12-08 2017-04-05 比亚迪股份有限公司 一种陶瓷及其制备方法
CN106073920A (zh) * 2016-06-08 2016-11-09 佛山市德艺会牙科技术有限公司 一种全氧化锆高仿真义齿
CN106109037A (zh) * 2016-06-08 2016-11-16 佛山市德艺会牙科技术有限公司 一种全氧化锆仿真义齿制造方法
WO2018038295A1 (ko) * 2016-08-26 2018-03-01 군산대학교 산학협력단 환원소성을 이용한 지르코니아 소결체 및 그 제조방법
DE102018103906A1 (de) * 2017-02-22 2018-08-23 James R. Glidewell Dental Ceramics, Inc. Hochfeste und transluzente Dentalkeramikmaterialien, -einrichtungen und -verfahren
WO2019026810A1 (ja) * 2017-07-31 2019-02-07 クラレノリタケデンタル株式会社 ジルコニア粒子および蛍光剤を含む粉末の製造方法
JP6346360B2 (ja) * 2017-08-03 2018-06-20 クラレノリタケデンタル株式会社 ジルコニア焼結体、ジルコニア組成物及びジルコニア仮焼体、並びに歯科用補綴物
CN107746275B (zh) * 2017-10-18 2020-08-11 深圳市商德先进陶瓷股份有限公司 黑色氧化锆陶瓷及其制备方法、手机背板和手机
US11939272B2 (en) * 2018-03-19 2024-03-26 Jensen Industries Inc. Composition and method for generating a shade gradient in zirconia dental restoration
EP4371548A2 (en) * 2018-03-30 2024-05-22 Shofu Inc. Opaque imparting liquid for zirconia
US11161789B2 (en) 2018-08-22 2021-11-02 James R. Glidewell Dental Ceramics, Inc. Highly translucent zirconia material, device, methods of making the same, and use thereof
JP2020117495A (ja) * 2019-01-21 2020-08-06 株式会社松風 高速焼結対応高透過ジルコニアブランク
US20220089500A1 (en) * 2019-03-25 2022-03-24 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Zirconia powder, method for producing zirconia powder, method for producing zirconia sintered body, and zirconia sintered body
JP6628345B1 (ja) * 2019-04-09 2020-01-08 株式会社キャスティングイン ジルコニア成形体
CN110104681B (zh) * 2019-05-05 2022-02-22 西南科技大学 一种不受烧结影响的高韧氧化钇稳定四方氧化锆材料及其制备方法
WO2021075564A1 (ja) * 2019-10-17 2021-04-22 クラレノリタケデンタル株式会社 歯科用に好適なジルコニア成形体
JP6818112B2 (ja) * 2019-11-05 2021-01-20 クラレノリタケデンタル株式会社 ジルコニア仮焼体及びジルコニア焼結体並びに積層体
CN110790572A (zh) * 2019-12-11 2020-02-14 深圳市家鸿口腔医疗股份有限公司 氧化锆牙冠及其制备方法和应用
US11672632B2 (en) 2020-10-05 2023-06-13 Pritidenta Gmbh Multi-layered zirconia dental blank with reverse layers, process for its preparation and uses thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259571A (ja) * 1985-09-06 1987-03-16 東レ株式会社 着色ジルコニア焼結体とその製造方法
JP2006298711A (ja) * 2005-04-22 2006-11-02 Toray Ind Inc ZrO2質焼結体およびその製造方法、粉砕機用部材、粉砕機
JP2008050246A (ja) * 2006-07-26 2008-03-06 Tosoh Corp 着色ジルコニア焼結体用ジルコニア粉末及び焼結体
JP2008050247A (ja) 2006-07-25 2008-03-06 Tosoh Corp 高強度ジルコニア焼結体および製造方法
JP2009207743A (ja) 2008-03-05 2009-09-17 Shofu Inc アルミノシリケートガラスおよびセラミックス系歯冠陶材用の色調調整組成物
WO2009125793A1 (ja) 2008-04-09 2009-10-15 東ソー株式会社 透光性ジルコニア焼結体及びその製造方法並びにその用途
JP2010501465A (ja) 2006-08-25 2010-01-21 セラムテック アクチエンゲゼルシャフト 特に歯科医学的に適用するための着色セラミックス焼結体の製造法
JP2011020876A (ja) * 2009-07-14 2011-02-03 Tosoh Corp 茶色ジルコニア焼結体
JP2012116745A (ja) * 2010-11-11 2012-06-21 Tosoh Corp 着色透光性ジルコニア焼結体及びその製造方法並びにその用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5263858A (en) * 1991-03-06 1993-11-23 Hoya Corporation Ivory-colored zirconia sintered body, process for its production and its use
JPH06259571A (ja) * 1993-03-04 1994-09-16 Matsushita Electric Ind Co Ltd 画像合成装置
JP4853103B2 (ja) 2006-05-18 2012-01-11 東ソー株式会社 黒色ジルコニア焼結体用粉末及びその焼結体並びに着色剤
EP2353542B1 (de) * 2006-05-23 2016-05-11 Ivoclar Vivadent AG Verfahren zur Herstellung von gefärbten Rohlingen und dentalen Formteilen
US8785008B2 (en) 2006-07-25 2014-07-22 Tosoh Corporation Zirconia sintered bodies with high total light transmission and high strength, uses of the same, and process for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259571A (ja) * 1985-09-06 1987-03-16 東レ株式会社 着色ジルコニア焼結体とその製造方法
JP2006298711A (ja) * 2005-04-22 2006-11-02 Toray Ind Inc ZrO2質焼結体およびその製造方法、粉砕機用部材、粉砕機
JP2008050247A (ja) 2006-07-25 2008-03-06 Tosoh Corp 高強度ジルコニア焼結体および製造方法
JP2008050246A (ja) * 2006-07-26 2008-03-06 Tosoh Corp 着色ジルコニア焼結体用ジルコニア粉末及び焼結体
JP2010501465A (ja) 2006-08-25 2010-01-21 セラムテック アクチエンゲゼルシャフト 特に歯科医学的に適用するための着色セラミックス焼結体の製造法
JP2009207743A (ja) 2008-03-05 2009-09-17 Shofu Inc アルミノシリケートガラスおよびセラミックス系歯冠陶材用の色調調整組成物
WO2009125793A1 (ja) 2008-04-09 2009-10-15 東ソー株式会社 透光性ジルコニア焼結体及びその製造方法並びにその用途
JP2011020876A (ja) * 2009-07-14 2011-02-03 Tosoh Corp 茶色ジルコニア焼結体
JP2012116745A (ja) * 2010-11-11 2012-06-21 Tosoh Corp 着色透光性ジルコニア焼結体及びその製造方法並びにその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HITOSHI NAGAYAMA: "Color Zirconia Shoketsutai no Kaihatsu", TOSOH RESEARCH & TECHNOLOGY REVIEW, vol. 53, 2009, pages 53 - 56, XP008172575 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150099708A (ko) 2012-12-28 2015-09-01 토소가부시키가이샤 착색 투광성 지르코니아 소결체 및 그 용도
EP3838248A1 (en) 2012-12-28 2021-06-23 Tosoh Corporation Colored translucent zirconia sintered body and its use
US9428422B2 (en) 2012-12-28 2016-08-30 Tosoh Corporation Colored translucent zirconia sintered body and its use
WO2014104236A1 (ja) 2012-12-28 2014-07-03 東ソー株式会社 着色透光性ジルコニア焼結体及びその用途
US9776926B2 (en) 2013-03-11 2017-10-03 Kuraray Noritake Dental Inc. Zirconia sintered body, and zirconia composition and calcined body
CN105026337A (zh) * 2013-03-11 2015-11-04 可乐丽则武齿科株式会社 氧化锆烧结体、以及氧化锆的组合物和预烧体
CN105026337B (zh) * 2013-03-11 2019-04-05 可乐丽则武齿科株式会社 氧化锆烧结体、以及氧化锆的组合物和预烧体
US11045292B2 (en) * 2013-05-10 2021-06-29 Kuraray Noritake Dental Inc. Zirconia sintered body, zirconia composition, zirconia pre-sintered body and dental prosthesis
US10758326B2 (en) * 2013-05-10 2020-09-01 Kuraray Noritake Dental Inc. Zirconia sintered body, zirconia composition, zirconia pre-sintered body and dental prosthesis
US20160081777A1 (en) * 2013-05-10 2016-03-24 Kuraray Noritake Dental Inc. Zirconia sintered body, zirconia composition, zirconia pre-sintered body and dental prosthesis
JP2019189524A (ja) * 2013-12-24 2019-10-31 東ソー株式会社 透光性ジルコニア焼結体及びジルコニア粉末、並びにその用途
US9737383B2 (en) 2013-12-24 2017-08-22 Tosoh Corporation Translucent zirconia sintered body and zirconia powder, and use therefor
EP3088373A4 (en) * 2013-12-24 2017-08-02 Tosoh Corporation Translucent zirconia sintered body and zirconia powder, and use therefor
EP3088373A1 (en) 2013-12-24 2016-11-02 Tosoh Corporation Translucent zirconia sintered body and zirconia powder, and use therefor
JP2015143178A (ja) * 2013-12-24 2015-08-06 東ソー株式会社 透光性ジルコニア焼結体及びジルコニア粉末、並びにその用途
US9962247B2 (en) 2014-06-23 2018-05-08 Tosoh Corporation Colored translucent zirconia sintered body and powder, and application thereof
KR20170021240A (ko) 2014-06-23 2017-02-27 토소가부시키가이샤 착색 투광성 지르코니아 소결체와 분말 및 그 용도
US10555795B2 (en) 2014-06-23 2020-02-11 Tosoh Corporation Colored translucent zirconia sintered body and powder, and use thereof
JP2016026986A (ja) * 2014-06-23 2016-02-18 東ソー株式会社 着色透光性ジルコニア焼結体と粉末、及びその用途
WO2015199018A1 (ja) * 2014-06-23 2015-12-30 東ソー株式会社 着色透光性ジルコニア焼結体と粉末、及びその用途
KR102374786B1 (ko) 2014-06-23 2022-03-15 토소가부시키가이샤 착색 투광성 지르코니아 소결체와 분말 및 그 용도

Also Published As

Publication number Publication date
KR101906628B1 (ko) 2018-10-10
EP4011852A1 (en) 2022-06-15
EP2738147B1 (en) 2021-12-29
EP2738147A1 (en) 2014-06-04
US9249056B2 (en) 2016-02-02
US20140227654A1 (en) 2014-08-14
KR20140056168A (ko) 2014-05-09
CN103732559A (zh) 2014-04-16
EP2738147A4 (en) 2015-01-28
JP2013049616A (ja) 2013-03-14
JP6079028B2 (ja) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6079028B2 (ja) 着色透光性ジルコニア焼結体及びその用途
JP6760443B2 (ja) 透光性ジルコニア焼結体及びジルコニア粉末、並びにその用途
US10555795B2 (en) Colored translucent zirconia sintered body and powder, and use thereof
EP2939993B1 (en) Colored translucent zirconia sintered body and use thereof
JP5817859B2 (ja) 透光性ジルコニア焼結体及びその製造方法並びに用途
WO2009125793A1 (ja) 透光性ジルコニア焼結体及びその製造方法並びにその用途
JP6443513B2 (ja) 着色透光性ジルコニア焼結体及びその用途
JP5608976B2 (ja) 透光性ジルコニア焼結体及びその製造方法並びに用途
JP5707667B2 (ja) 透光性ジルコニア焼結体及びその製造方法及びその用途
JP5748012B2 (ja) 透光性ジルコニア焼結体及びその製造方法及びその用途
JP5804144B2 (ja) 透光性ジルコニア焼結体及びその用途
JP7168026B2 (ja) オレンジ色ジルコニア焼結体及びその製造方法
JP5741735B2 (ja) 透光性ジルコニア焼結体用粉末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137030172

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012820547

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14235716

Country of ref document: US