WO2015098574A1 - 熱電変換素子および熱電変換素子の製造方法 - Google Patents

熱電変換素子および熱電変換素子の製造方法 Download PDF

Info

Publication number
WO2015098574A1
WO2015098574A1 PCT/JP2014/082973 JP2014082973W WO2015098574A1 WO 2015098574 A1 WO2015098574 A1 WO 2015098574A1 JP 2014082973 W JP2014082973 W JP 2014082973W WO 2015098574 A1 WO2015098574 A1 WO 2015098574A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
substrate
conversion layer
conversion element
layer
Prior art date
Application number
PCT/JP2014/082973
Other languages
English (en)
French (fr)
Inventor
修 米倉
林 直之
加納 丈嘉
青合 利明
寛記 杉浦
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2015554743A priority Critical patent/JP6181206B2/ja
Priority to CN201480070902.0A priority patent/CN105874621B/zh
Publication of WO2015098574A1 publication Critical patent/WO2015098574A1/ja
Priority to US15/156,938 priority patent/US20160260883A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/82Connection of interconnections
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Definitions

  • the present invention relates to a thermoelectric conversion element. Specifically, the present invention relates to a thermoelectric conversion element having a thermoelectric conversion layer made of an organic material and capable of generating power efficiently, and a method for manufacturing the thermoelectric conversion element.
  • thermoelectric conversion materials that can mutually convert thermal energy and electrical energy are used in thermoelectric conversion elements such as power generation elements and Peltier elements that generate electricity by heat.
  • the thermoelectric conversion element can convert heat energy directly into electric power, and has an advantage that a movable part is not required. For this reason, a thermoelectric conversion module (power generation device) formed by connecting a plurality of thermoelectric conversion elements is provided in a portion where heat is exhausted, such as an incinerator or various facilities in a factory, so that it is not necessary to incur operation costs and is simple. Can get power.
  • thermoelectric conversion element generally has an electrode on a plate-like substrate, a thermoelectric conversion layer (power generation layer) on the electrode, and a plate-like electrode on the thermoelectric conversion layer.
  • thermoelectric conversion layer power generation layer
  • plate-like electrode on the thermoelectric conversion layer.
  • uni leg type thermoelectric conversion element That is, in a normal thermoelectric conversion element, a thermoelectric conversion layer is sandwiched between electrodes in the thickness direction, a temperature difference is generated in the thickness direction of the thermoelectric conversion layer, and heat energy is converted into electric energy.
  • thermoelectric conversion element that converts to.
  • a flexible film substrate composed of two types of materials having different thermal conductivities is provided on both surfaces of a thermoelectric conversion layer formed of a P-type material and an N-type material.
  • a thermoelectric conversion element is described in which materials having different thermal conductivities are arranged on the outer surface of the substrate and at positions opposite to the energizing direction.
  • Patent Document 2 a sheet-like first insulating part, a sheet-like second insulating part, a first end part for taking out a thermoelectromotive force accommodated between both insulating parts, and a second one are disclosed.
  • the 1st insulating part which covers the 1st insulating part side of the plate-shaped thermoelectric conversion layer which has an edge part, and the 1st edge part arrange
  • An element having a second high thermal conductivity part having a higher thermal conductivity than the insulating part is described.
  • thermoelectric conversion element generates a temperature difference in the surface direction of the thermoelectric conversion layer by a high heat conduction portion provided on the substrate, and converts heat energy into electric energy. Therefore, even with a thin thermoelectric conversion layer, the distance at which the temperature difference occurs can be lengthened and efficient power generation can be performed. Furthermore, since the thermoelectric conversion layer can be formed into a sheet, a thermoelectric conversion module that is excellent in flexibility and easy to install on a curved surface or the like can be obtained.
  • thermoelectric conversion elements described in Patent Document 1 and Patent Document 2 basically use an inorganic material as the thermoelectric conversion layer.
  • Patent Document 3 describes a thermoelectric conversion element using an organic material for the thermoelectric conversion layer in the same thermoelectric conversion element. Specifically, Patent Document 3 includes a temperature difference forming layer that causes a temperature difference in the horizontal direction, a thermoelectric conversion layer formed on the temperature difference forming layer, and a wiring that connects the thermoelectric conversion layers.
  • thermoelectric conversion layer In the temperature difference forming layer, the main surface on the thermoelectric conversion layer side is alternately formed in the horizontal direction with a high heat conductor having a smaller area than the other main surface and a low heat conductor filled in the gap, A thermoelectric conversion element is described in which the thermoelectric conversion layer is formed so as to cover at least a part of the high thermal conductor and extend to a low thermal conductor adjacent to the high thermal conductor.
  • thermoelectric conversion element As is well known, organic materials have a lower thermal conductivity than inorganic materials. Therefore, in a thermoelectric conversion element using an organic material, as shown in Patent Document 3, a higher temperature generation efficiency is obtained by generating a temperature difference in the surface direction of the thermoelectric conversion layer and converting the heat energy into electric energy. It is conceivable that a thermoelectric conversion element can be realized. Moreover, a thermoelectric conversion element with higher flexibility can be obtained by using an organic material for the thermoelectric conversion layer of the thermoelectric conversion element.
  • thermoelectric conversion element that converts a thermal energy into an electric energy by causing a temperature difference in the surface direction of the thermoelectric conversion layer by the high thermal conductivity portion of the substrate, and a thermoelectric made of an organic material.
  • thermoelectric conversion layer in order to obtain high thermoelectric conversion efficiency, it turned out that the electrical conductivity of a thermoelectric conversion layer is important.
  • An object of the present invention is to solve such problems of the prior art, and a thermoelectric device that converts a thermal energy into an electrical energy by causing a temperature difference in the surface direction of the thermoelectric conversion layer by a high thermal conduction portion of the substrate.
  • An object of the present invention is to provide a thermoelectric conversion element having a thermoelectric conversion layer made of an organic material and having higher thermoelectric conversion efficiency.
  • the thermoelectric conversion element of the present invention includes a first substrate having a high thermal conductivity portion having a thermal conductivity higher than that of other regions in at least a part of the surface direction, A thermoelectric conversion layer formed on the first substrate, made of an organic material, and having a higher conductivity in the plane direction than in the thickness direction; A high thermal conductivity portion having a higher thermal conductivity than other regions is formed in at least a part of the surface direction, which is formed on the thermoelectric conversion layer, and the high thermal conductivity portion of the first substrate has a high heat conductivity in the plane direction.
  • a thermoelectric conversion element comprising a pair of electrodes connected to a thermoelectric conversion layer so as to sandwich the thermoelectric conversion layer in a plane direction is provided.
  • thermoelectric conversion element of the present invention it is preferable that the ratio of the electrical conductivity between the surface direction and the thickness direction of the thermoelectric conversion layer is plane direction: thickness direction> 10: 1. Moreover, it is preferable that the ratio of the electrical conductivity between the surface direction and the thickness direction of the thermoelectric conversion layer is surface direction: thickness direction> 100: 1. Moreover, it is preferable that a thermoelectric conversion layer contains a carbon nanotube.
  • the thermoelectric conversion layer is preferably formed by dispersing carbon nanotubes in a resin material.
  • a thermoelectric conversion layer contains a carbon nanotube and surfactant.
  • the carbon nanotubes are preferably single-walled carbon nanotubes and have a length of 1 ⁇ m or more.
  • thermoelectric conversion layer contains a conductive polymer.
  • the conductive polymer is preferably poly (3,4-ethylenedioxythiophene).
  • the high thermal conductivity portion of the first substrate and the high thermal conductivity portion of the second substrate are provided at different positions in the plane direction in the electrode separation direction.
  • substrate are located in an outer surface with respect to the lamination direction.
  • each electrode of the electrode pair is preferably formed so as to reach the upper surface from the end surface in the surface direction of the thermoelectric conversion layer.
  • the material for forming the electrode pair is gold, and a buffer layer is provided between at least one electrode of the electrode pair and the thermoelectric conversion layer.
  • thermoelectric conversion element of the present invention comprises a CNT coating solution obtained by treating a solution containing at least carbon nanotubes and a dispersion medium by a high-speed rotating thin film dispersion method, and dispersing the carbon nanotubes in the dispersion medium.
  • the step of preparing A step of forming a thermoelectric conversion layer by applying and drying a CNT coating liquid on a first substrate having a high thermal conductivity portion having a higher thermal conductivity than other regions in at least a part of the surface direction; Connecting the electrode pair to the thermoelectric conversion layer so as to be sandwiched in the surface direction, Further, on the thermoelectric conversion layer, at least part of the surface direction has a high heat conduction part having a higher heat conductivity than other regions, and the high heat conduction part in the surface direction is the first substrate. And a step of laminating the second substrate so as not to completely overlap with the high thermal conductivity portion.
  • the dispersion medium contained in the CNT coating liquid is preferably a resin material. Moreover, it is preferable that the dispersion medium contained in the CNT coating liquid is water, and the CNT coating liquid contains a surfactant. Furthermore, in the step of forming the thermoelectric conversion layer, it is preferable to apply the CNT coating liquid to the first substrate by printing.
  • thermoelectric conversion element that converts a thermal energy into an electric energy by causing a temperature difference in the surface direction of the thermoelectric conversion layer by a high thermal conduction portion provided on the substrate
  • the thermoelectric conversion element is made of an organic material and is conductive. Since the thermoelectric conversion layer has an anisotropy in which the rate is higher in the plane direction than in the thickness direction, the direction in which the temperature difference occurs coincides with the energization direction, and a thermoelectric conversion element with higher power generation efficiency is obtained.
  • thermoelectric conversion element of the present invention is a top view conceptually showing an example of the thermoelectric conversion element of the present invention
  • FIG. 1B is a front view thereof
  • FIG. 1C is a bottom view thereof
  • 2A is a top view conceptually showing another example of the thermoelectric conversion element of the present invention
  • FIG. 2B is a front view thereof
  • FIG. 2C is a bottom view thereof
  • 3 (A) and 3 (B) are diagrams conceptually showing another example of the thermoelectric conversion layer of the thermoelectric conversion element of the present invention.
  • 4A to 4D are conceptual diagrams for explaining an example of a thermoelectric conversion module using the thermoelectric conversion element of the present invention.
  • FIG. 5 is a conceptual diagram for explaining a thermoelectric conversion module using a conventional thermoelectric conversion element manufactured in an example of the present invention.
  • thermoelectric conversion element and the method for manufacturing the thermoelectric conversion element of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
  • FIG. 1 (A) to FIG. 1 (C) conceptually show an example of the thermoelectric conversion element of the present invention.
  • 1A is a top view (a view of FIG. 1B viewed from above)
  • FIG. 1B is a front view (a view of a substrate or the like described later)
  • FIG. C) is a bottom view (a view of FIG. 1B viewed from the lower side of the drawing).
  • thermoelectric conversion element 10 shown in FIGS. 1A to 1C basically includes a first substrate 12, a thermoelectric conversion layer 14, a second substrate 16, an electrode 20 and an electrode 24. Configured. Specifically, the thermoelectric conversion layer 14 is provided on the first substrate 12, the second substrate 16 is provided on the thermoelectric conversion layer 14, and the thermoelectric conversion is performed between the first substrate 12 and the second substrate 16. The electrode 20 and the electrode 24 (electrode pair) are connected to the thermoelectric conversion layer 14 so as to sandwich the conversion layer 14 in the plane direction.
  • the first substrate 12 has a low heat conductive portion 12a and a high heat conductive portion 12b.
  • substrate 16 also has the low heat conduction part 16a and the high heat conduction part 16b.
  • the two substrates are arranged such that their high thermal conductivity portions are at different positions in the connection direction of the electrode 20 and the electrode 24.
  • the connection direction of the electrode 20 and the electrode 24 is an energization direction.
  • the surface direction is the direction of the substrate surface.
  • the first substrate 12 (second substrate 16) is a half of one surface of a rectangular plate-like material (sheet-like material) that becomes the low heat conduction portion 12 a (low heat conduction portion 16 a). A recess is formed in this area, and the high heat conduction portion 12b (high heat conduction portion 16b) is incorporated in the recess so that the surface is uniform. Accordingly, on one surface of the first substrate 12, a half region in the surface direction is the low heat conduction portion 12a, and the other half region is the high heat conduction portion 12b.
  • the low heat conduction part 12a is made of various materials as long as it has insulating properties and sufficient heat resistance to the formation of the thermoelectric conversion layer 14 and the electrode 20, such as a glass plate, a ceramic plate, and a plastic film. A thing consisting of can be used.
  • a plastic film is used for the low thermal conductive portion 12a. By using a plastic film for the low heat conducting portion 12a, it is possible to reduce the weight and reduce the cost and to form the flexible thermoelectric conversion element 10, which is preferable.
  • the film (sheet-like material / plate-like material) consisting of is exemplified.
  • a film made of polyimide, polyethylene terephthalate, polyethylene naphthalate, or the like is suitably used in terms of thermal conductivity, heat resistance, solvent resistance, availability, economy, and the like.
  • films made of various materials are exemplified.
  • various metals such as gold, silver, copper, and aluminum are exemplified in terms of thermal conductivity and the like.
  • copper and aluminum are preferably used in terms of thermal conductivity, economy, and the like.
  • the thickness of the first substrate 12 (the low heat conduction portion 12a in the region where there is no high heat conduction portion 12b), the thickness of the low heat conduction portion 12a, and the like are the material for forming the high heat conduction portion 12b and the low heat conduction portion 12a, and the thermoelectricity. What is necessary is just to set suitably according to the magnitude
  • FIG. The size of the first substrate 12 in the surface direction (when viewed from the direction orthogonal to the substrate surface), the area ratio of the substrate 12 in the surface direction of the high heat conduction portion 12b, and the like are also formed in the low heat conduction portion 12a and the high heat conduction portion 12b. What is necessary is just to set suitably according to a material, the magnitude
  • the position of the first substrate 12 in the surface direction of the high thermal conductivity portion 12b is not limited to the illustrated example, and various positions can be used.
  • the high thermal conductivity portion 12b may be included in the low thermal conductivity portion 12a in the plane direction, and a part of the high thermal conductivity portion 12b is positioned at the end portion in the plane direction and the other region is included (in the plane direction). A part of the outer periphery may be in contact with the low thermal conductive portion 12a).
  • the first substrate 12 may have a plurality of high heat conduction portions 12b in the surface direction.
  • the first substrate 12 and the second substrate 16 both have high thermal conductivity.
  • the part 12b and the high heat conduction part 16b are located outside in the stacking direction.
  • the present invention may have a configuration in which the first substrate 12 and the second substrate 16 both have the high heat conduction portion 12b and the high heat conduction portion 16b located inside in the stacking direction.
  • the first substrate 12 may be configured such that the high heat conductive portion 12b is positioned outside in the stacking direction, and the second substrate 16 is positioned such that the high heat conductive portion 16b is positioned inside in the stacking direction.
  • the high thermal conductivity portion is formed of a conductive material such as metal and disposed inside the stacking direction, it is possible to ensure insulation from the thermoelectric conversion layer 14, the electrode 20, and the electrode 24. In addition, an insulating layer or the like needs to be formed between them.
  • thermoelectric conversion layer 14 heat generation layer
  • a second substrate 16 is provided on the thermoelectric conversion layer 14. Note that, as described above, both the substrates have the high thermal conductivity portion located outside in the stacking direction. Accordingly, the thermoelectric conversion layer 14 is formed on the non-exposed surface of the high thermal conductive portion 12b of the first substrate 12, and the second substrate 16 is laminated with the non-exposed surface of the high thermal conductive portion 16b facing the thermoelectric conversion layer 14. Is done. In the illustrated example, the thermoelectric conversion layer is provided so that the center in the plane direction coincides with the boundary between the low thermal conductivity portion and the high thermal conductivity portion of both substrates. The thermoelectric conversion layer 14 is connected to an electrode pair including the electrode 20 and the electrode 24 so as to be sandwiched in the surface direction.
  • thermoelectric conversion element for example, a temperature difference is generated due to heating due to contact with a heat source, etc., and accordingly, in the thermoelectric conversion layer 14, a difference occurs in the carrier density in this direction, and electric power is generated.
  • a heat source is provided on the first substrate 12 side, and a temperature difference is generated between the first substrate 12 (particularly, the high thermal conduction unit 12b) and the second substrate 16 (particularly, the high thermal conduction unit 16b).
  • electricity Further, by connecting wiring to the electrode 20 and the electrode 24, electric power (electric energy) generated by heating or the like is taken out.
  • thermoelectric conversion layer 14 is basically made of an organic material and has a conductivity anisotropy having a high surface direction and a low thickness direction, which will be described later.
  • Various configurations using known thermoelectric conversion materials are all available. Specifically, an organic material such as a conductive polymer or a conductive nanocarbon material can be used as the thermoelectric conversion material.
  • Examples of the conductive polymer include a polymer compound having a conjugated molecular structure (conjugated polymer).
  • the polymer having a conjugated molecular structure is a polymer having a structure in which a single bond and a double bond are alternately connected in a carbon-carbon bond on the main chain of the polymer.
  • the conductive polymer used in the present invention is not necessarily a high molecular weight compound, and may be an oligomer compound.
  • conjugated polymer examples include thiophene compounds, pyrrole compounds, aniline compounds, acetylene compounds, p-phenylene compounds, p-phenylene vinylene compounds, p-phenylene ethynylene compounds, p -Fluorenylene vinylene compound, polyacene compound, polyphenanthrene compound, metal phthalocyanine compound, p-xylylene compound, vinylene sulfide compound, m-phenylene compound, naphthalene vinylene compound, p-phenylene oxide compound And phenylene sulfide compounds, furan compounds, selenophene compounds, azo compounds, metal complex compounds, and the like.
  • a conjugated polymer having a repeating unit derived from this monomer using a derivative having a substituent introduced into these compounds as a monomer can also be used. These may be used alone or in combination of two or more.
  • thiophene compounds can be suitably used.
  • PDOT poly (3,4-ethylenedioxythiophene)
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • the conductive nanocarbon material include carbon nanotubes (hereinafter also referred to as CNT), carbon nanofibers, graphite, graphene, and carbon nanoparticles. These may be used alone or in combination of two or more. Among these, CNT is preferably used for the reason that the thermoelectric characteristics are better.
  • a CNT is a single-walled CNT in which a single carbon film (graphene sheet) is wound in a cylindrical shape, a double-walled CNT in which two graphene sheets are wound in a concentric shape, and a plurality of graphene sheets in a concentric circle There are multi-walled CNTs wound in a shape.
  • single-walled CNTs, double-walled CNTs, and multilayered CNTs may be used alone, or two or more kinds may be used in combination.
  • Single-walled CNTs may be semiconducting or metallic, and both may be used in combination. When both semiconducting CNT and metallic CNT are used, the content ratio of both in the composition can be appropriately adjusted according to the use of the composition.
  • the CNT may contain a metal or the like, or may contain a molecule such as fullerene.
  • the average length of the CNTs used in the present invention is not particularly limited, and can be appropriately selected according to the use of the composition. Specifically, although it depends on the distance between the electrodes, the average length of the CNT is preferably 0.01 to 2000 ⁇ m, more preferably 0.1 to 1000 ⁇ m from the viewpoints of manufacturability, film formability, conductivity, and the like. 1 to 1000 ⁇ m is particularly preferable.
  • the diameter of the CNT used in the present invention is not particularly limited, but is preferably 0.4 to 100 nm, more preferably 50 nm or less, and particularly preferably 15 nm or less from the viewpoint of durability, transparency, film formability, conductivity and the like.
  • 0.5 to 2.2 nm is preferable, 1.0 to 2.2 nm is more preferable, and 1.5 to 2.0 nm is particularly preferable.
  • CNTs contained in the obtained conductive composition may contain defective CNTs. It is preferable to reduce the defects of CNT in order to reduce the conductivity of the composition.
  • the amount of CNT defects in the composition can be estimated by the ratio G / D of the G-band and D-band of the Raman spectrum. It can be estimated that the higher the G / D ratio, the less the amount of defects, the CNT material.
  • the G / D ratio of the composition is preferably 10 or more, and more preferably 30 or more.
  • CNT modified or treated with CNT can also be used.
  • Modification or treatment methods include a method of encapsulating a ferrocene derivative or nitrogen-substituted fullerene (azafullerene), a method of doping an alkali metal (such as potassium) or a metal element (such as indium) into the CNT by an ion doping method, or CNT in a vacuum. The method etc. which heat this are illustrated.
  • nanocarbon such as carbon nanohorn, carbon nanocoil, carbon nanobead, graphite, graphene, and amorphous carbon may be contained in addition to single-walled CNT and multilayered CNT.
  • CNT When using CNT for the thermoelectric conversion layer 14, it is preferable to contain a dopant.
  • Various known dopants can be used. Specifically, alkali metal, hydrazine derivative, metal hydride (sodium borohydride, tetrabutylammonium borohydride, lithium aluminum hydride, etc.), polyethyleneimine, halogen (iodine, bromine, etc.), Lewis acid (PF 5 , AsF 5 etc.), protonic acid (hydrochloric acid, sulfuric acid etc.), transition metal halide (FeCl 3 , SnCl 4 etc.), organic electron accepting substance (tetracyanoquinodimethane (TCNQ) derivative, 2,3-dichloro) Preferred examples include -5,6-dicyano-p-benzoquinone (DDQ) derivatives and the like.
  • DDQ -5,6-dicyano-p-benzoquinone
  • organic electron accepting substances such as polyethyleneimine, TCNQ derivatives, and DDQ derivatives are preferably exemplified in terms of material stability, compatibility with CNTs, and the like.
  • thermoelectric conversion layer 14 in which the above-described thermoelectric conversion material is dispersed in a resin material (binder) is preferably used.
  • distributing a conductive nano carbon material to a resin material is illustrated more suitably.
  • thermoelectric conversion layer 14 in which CNT is dispersed in a resin material is particularly preferably exemplified in that high conductivity is obtained.
  • Non-conductive resin materials can be used as the resin material.
  • various known resin materials such as vinyl compounds, (meth) acrylate compounds, carbonate compounds, ester compounds, epoxy compounds, siloxane compounds, and gelatin can be used.
  • examples of the vinyl compound include polystyrene, polyvinyl naphthalene, polyvinyl acetate, polyvinyl phenol, and polyvinyl butyral.
  • examples of the (meth) acrylate compound include polymethyl (meth) acrylate, polyethyl (meth) acrylate, polyphenoxy (poly) ethylene glycol (meth) acrylate, polybenzyl (meth) acrylate and the like.
  • Examples of the carbonate compound include bisphenol Z-type polycarbonate and bisphenol C-type polycarbonate.
  • As the ester compound amorphous polyester is exemplified. Preferred examples include polystyrene, polyvinyl butyral, (meth) acrylate compounds, carbonate compounds, and ester compounds, and more preferred are polyvinyl butyral, polyphenoxy (poly) ethylene glycol (meth) acrylate, polybenzyl (meth) acrylate, and amorphous.
  • An example is a reactive polyester.
  • thermoelectric conversion layer 14 in which the thermoelectric conversion material is dispersed in the resin material, the amount ratio of the resin material and the thermoelectric conversion material in the thermoelectric conversion layer 14 is determined based on the material used, the required thermoelectric conversion efficiency, and the solution that affects printing. What is necessary is just to set suitably according to a viscosity, solid content concentration, etc.
  • thermoelectric conversion layer 14 As another configuration of the thermoelectric conversion layer 14, a thermoelectric conversion layer mainly composed of CNT and a surfactant is also preferably used.
  • the thermoelectric conversion layer 14 By forming the thermoelectric conversion layer 14 with CNT and a surfactant, the thermoelectric conversion layer 14 can be formed using a coating composition to which a surfactant is added. Therefore, the thermoelectric conversion layer 14 can be formed with a coating composition in which CNTs are reasonably dispersed. As a result, good thermoelectric conversion performance can be obtained by the thermoelectric conversion layer 14 containing many CNTs that are long and have few defects.
  • the surfactant a known surfactant can be used as long as it has a function of dispersing CNTs.
  • various surfactants can be used as long as they have a group that dissolves in water, a polar solvent, a mixture of water and a polar solvent, and adsorbs CNTs.
  • the surfactant may be ionic or nonionic.
  • the ionic surfactant may be any of cationic, anionic and amphoteric.
  • anionic surfactant examples include alkylbenzene sulfonates such as dodecylbenzene sulfonic acid, aromatic sulfonic acid surfactants such as dodecyl phenyl ether sulfonate, monosoap anionic surfactants, ether sulfates Surfactants, phosphate surfactants and carboxylic acid surfactants such as sodium deoxycholate and sodium cholate, carboxymethylcellulose and salts thereof (sodium salt, ammonium salt, etc.), ammonium polystyrene sulfonate, Examples thereof include water-soluble polymers such as polystyrene sulfonate sodium salt.
  • Examples of the cationic surfactant include alkylamine salts and quaternary ammonium salts.
  • amphoteric surfactants include alkylbetaine surfactants and amine oxide surfactants.
  • Nonionic surfactants include sugar ester surfactants such as sorbitan fatty acid esters, fatty acid ester surfactants such as polyoxyethylene resin acid esters, and ether surfactants such as polyoxyethylene alkyl ethers. Is done. Among these, ionic surfactants are preferably used, and among them, cholate and deoxycholate are preferably used.
  • the surfactant / CNT mass ratio is preferably 5 or less, and more preferably 2 or less. Setting the mass ratio of surfactant / CNT to 5 or less is preferable in that higher thermoelectric conversion performance can be obtained.
  • thermoelectric conversion layer 14 mainly composed of CNTs and a surfactant may have an antifoaming agent, an anti-drying agent, an antifungal agent, or the like as necessary.
  • the thermoelectric conversion layer 14 contains things other than CNT and surfactant, it is preferable that the content is 20 mass% or less, and it is more preferable that it is 5 mass% or less.
  • the thickness of the thermoelectric conversion layer 14, the size in the surface direction, the area ratio in the surface direction with respect to the substrate, and the like depend on the forming material of the thermoelectric conversion layer 14, the size of the thermoelectric conversion element 10, etc. Accordingly, it may be set appropriately.
  • the electrode 20 and the electrode 24 are connected to the thermoelectric conversion layer 14 so as to be sandwiched in the surface direction.
  • the electrode 20 and the electrode 24 are in contact with the end face of the thermoelectric conversion layer 14 and are connected to the thermoelectric conversion layer 14.
  • the electrode 20 and the electrode 24 can be formed of various materials as long as they have necessary conductivity.
  • materials used as transparent electrodes in various devices such as metal materials such as copper, silver, gold, platinum, nickel, chromium, and copper alloys, and indium tin oxide (ITO) and zinc oxide (ZnO). Etc. are exemplified.
  • metal materials such as copper, silver, gold, platinum, nickel, chromium, and copper alloys, and indium tin oxide (ITO) and zinc oxide (ZnO).
  • ITO indium tin oxide
  • Etc. are exemplified.
  • money, platinum, nickel, a copper alloy etc. are illustrated preferably, Gold, platinum, nickel is illustrated more preferably.
  • the thickness and size of the electrode 20 and the electrode 24 may be appropriately set according to the thickness of the thermoelectric conversion layer 14 and the size of the thermoelectric conversion element 10.
  • the electrode 20 and the electrode 24 are gold, it is preferable to have a buffer layer made of an electron donating material or an electron accepting material between the electrode 20 and the electrode 24 and the thermoelectric conversion layer 14.
  • the buffer layer may be provided corresponding to only one of the electrode 20 and the electrode 24, but is preferably provided corresponding to both electrodes. Having such a buffer layer is preferable in that the resistance at the electrode interface is reduced and good thermoelectric conversion performance is obtained.
  • TPD N, N′-bis (3-methylphenyl)-(1,1′-biphenyl)
  • polymer material examples include polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, and derivatives thereof.
  • the buffer layer can be used as long as it is not an electron donating compound and has a sufficient hole transporting property.
  • the buffer layer can be used as long as it is not an electron donating compound and has a sufficient hole transporting property.
  • Electron-donating inorganic materials include calcium oxide, chromium oxide, chromium oxide copper, manganese oxide, cobalt oxide, nickel oxide, copper oxide, gallium copper oxide, strontium copper oxide, niobium oxide, molybdenum oxide, indium copper oxide, oxide Examples include indium silver and iridium oxide.
  • An electron-accepting organic material may be used for the buffer layer.
  • electron-accepting materials include oxadiazole derivatives such as 1,3-bis (4-tert-butylphenyl-1,3,4-oxadiazolyl) phenylene (OXD-7), and tetracyanoquinodimethane (TCNQ) derivatives.
  • OXD-7 1,3-bis (4-tert-butylphenyl-1,3,4-oxadiazolyl) phenylene
  • TCNQ tetracyanoquinodimethane
  • a porphyrin compound or a styryl compound such as DCM (4-dicyanomethylene-2-methyl-6- (4- (dimethylaminostyryl))-4H pyran) or a 4H pyran compound can be used.
  • Specific examples include compounds described in [0073] to [0078] of JP-A-2008-72090.
  • the thickness of the buffer layer may be set appropriately according to the material for forming the buffer layer. Specifically, the thickness of the buffer layer is preferably 0.05 to 100 nm, and more preferably 0.5 to 10 nm.
  • thermoelectric conversion layer 14 has anisotropy in conductivity in the plane direction and the thickness direction, and the conductivity in the plane direction is higher than that in the thickness direction.
  • the high heat conduction portion 12b of the first substrate 12 and the second substrate 16 do not completely overlap with the high heat conduction portion 16b in the plane direction (see from a direction orthogonal to the substrate surface). Do not overlap completely)
  • both the first substrate 12 and the second substrate 16 have a configuration in which half of one surface is a low heat conduction portion and the other half is a high heat conduction portion.
  • the high thermal conductivity portion 12b of the first substrate 12 and the second substrate are in contact with each other in the surface direction so as to face the energizing direction of the electrodes 20 and 24 (the separation direction of both electrodes). 16 is positioned with the high thermal conductivity portion 16b.
  • thermoelectric conversion element 10 of the present invention can generate power by thermoelectric conversion with high efficiency by having such a configuration.
  • thermoelectric conversion element generates a temperature difference due to heating due to contact with a heat source, etc., and accordingly, a difference occurs in the carrier density in the direction of the temperature difference in the thermoelectric conversion layer according to this temperature difference.
  • Power is generated.
  • power is generated by providing a heat source on the first substrate 12 side and generating a temperature difference.
  • the first substrate 12 has the high heat conduction part 12b
  • the second substrate 16 has the high heat conduction part 16b
  • the high heat conduction part 12b and the high heat conduction part 16b overlap. Without different positions in the surface direction. Therefore, for example, when a heat source is provided on the first substrate 12 side, as conceptually indicated by an arrow x in FIG. 1, between the high heat conduction portion 12b and the high heat conduction portion 16b, in the surface direction of the thermoelectric conversion layer 14. A temperature difference occurs (heat flows in the surface direction of the thermoelectric conversion layer 14).
  • the thermoelectric conversion layer 14 is formed of an organic material having low thermal conductivity, efficient power generation is possible due to a temperature difference over a long distance in the plane direction (in-plane).
  • thermoelectric conversion layer 14 in order to perform power generation by more efficient thermoelectric conversion, the thermoelectric conversion layer 14.
  • the conductivity characteristics of are important. That is, in the thermoelectric conversion element 10 that causes a temperature difference in the surface direction of the thermoelectric conversion layer 14, the temperature difference in the thermoelectric conversion layer 14 is increased by making the conductivity of the thermoelectric conversion layer 14 larger in the surface direction than in the thickness direction.
  • the direction in which the phenomenon occurs and the direction in which the electrical conductivity is high, that is, the direction in which the generated electricity is energized can be matched, and the power generation efficiency can be improved.
  • thermoelectric conversion element 10 of the present invention the thermoelectric conversion layer 14 made of an organic material and having a low thermal conductivity, the temperature difference over a long distance in the surface direction, and the direction of the temperature difference and the energization direction in the thermoelectric conversion layer 14. With the synergistic effect of coincidence with, it is possible to generate electricity by thermoelectric conversion with very high efficiency.
  • the conductivity anisotropy of the thermoelectric conversion layer 14 that is, the conductivity in the plane direction of the thermoelectric conversion layer 14 ( ⁇ // [S / cm]) and the conductivity in the thickness direction ( The larger the difference from ( ⁇ [S / cm]), the better.
  • the conductivity ratio is preferably plane direction: thickness direction ( ⁇ //: ⁇ )> 10: 1, and further plane direction: thickness direction> 100: 1. Is more preferable, and in particular, the plane direction: thickness direction> 1000: 1 is preferable.
  • thermoelectric conversion element 10 in the illustrated example has a high heat conduction portion 12b of the first substrate 12 and a high heat conduction portion 16b of the second substrate 16 so as to face and come into contact with the energization direction of the electrode 20 and the electrode 24.
  • the electrode 20 and the electrode 24 (electrode pair) are positioned at different positions in the plane direction in the direction of separation.
  • the thermoelectric conversion element of the present invention has a configuration in which the high thermal conductivity portion of the first substrate and the high thermal conductivity portion of the second substrate do not completely overlap in the plane direction (as viewed from the direction orthogonal to the substrate plane). Various configurations are available if they do not overlap completely).
  • the high heat conduction part 12b of the first substrate 12 is moved to the right side in the figure
  • the high heat conduction part 16b of the second substrate 16 is moved to the left side in the figure
  • the conductive portion may be separated in the separation direction between the electrode 20 and the electrode 24.
  • the high heat conduction part 12b of the first substrate 12 and the high heat conduction part 16b of the second substrate 16 are in the plane direction with respect to the size of the thermoelectric conversion layer 14 in the separation direction of the electrode 20 and the electrode 24.
  • the electrode 20 and the electrode 24 are preferably separated by 10 to 90%, more preferably 10 to 50%.
  • the high heat conduction portion 12b and / or the high heat conduction portion 16b may be provided with a convex portion directed to the other, so that the high heat conduction portions of both substrates overlap in the plane direction. Good.
  • the high heat conduction part 12b of the first substrate 12 is moved to the left side in the figure, and the high heat conduction part 16b of the second substrate 16 is moved to the right side in the figure,
  • the conductive portion may be overlapped in the plane direction.
  • various configurations can be used as long as the high thermal conductivity portion of the first substrate and the high thermal conductivity portion of the second substrate do not completely overlap in the plane direction.
  • a circular high heat conductive portion is formed on the first substrate
  • a square high heat conductive portion having a diameter and a side length matching the circle is formed on the second substrate, and the center of both high heat conductive portions is in the plane direction.
  • Both substrates may be arranged so as to match with each other.
  • thermoelectric conversion element Even in this configuration, although the distance is short, the positions of the end portions (peripheries) of both the high heat conducting portions are different in the surface direction, so that a temperature difference in the surface direction occurs in the thermoelectric conversion layer, and a temperature difference occurs in the thickness direction Efficient power generation is possible compared to the thermoelectric conversion element.
  • FIG. 2A to 2C conceptually show another example of the thermoelectric conversion element of the present invention. 1A to 1C described above, FIG. 2A is a top view, FIG. 1B is a front view, and FIG. 1C is a bottom view.
  • the thermoelectric conversion element 30 shown in FIGS. 2A to 2C basically includes a first substrate 32, an adhesion layer 34, a thermoelectric conversion layer 36, a gas barrier layer 38, an adhesive layer 40,
  • the second substrate 42 is configured to include an electrode 46 and an electrode 48.
  • the adhesive layer 34 is provided on the first substrate 32, the thermoelectric conversion layer 36, the electrode 46, and the electrode 48 are provided on the adhesive layer 34, and the thermoelectric conversion layer 36, the electrode 46, and the electrode 48 are provided.
  • a gas barrier layer 38 is covered, an adhesive layer 40 is provided on the gas barrier layer 38, and a second substrate 42 is provided on the adhesive layer 40.
  • the electrode 46 and the electrode 48 are provided so as to sandwich the thermoelectric conversion layer 36 in the plane direction.
  • thermoelectric conversion element 30 has an adhesion layer 34, a gas barrier layer 38, and an adhesive layer 40, and is basically the same as the thermoelectric conversion element 10 except that the shapes of the substrate and the electrodes are different. .
  • the first substrate 32 has a low heat conduction part 32a and a high heat conduction part 32b.
  • the second substrate 42 also has a low heat conduction portion 42a and a high heat conduction portion 42b. Since the first substrate 32 and the second substrate 42 also have the same configuration except for the arrangement position, orientation, and the like, the following description will be given with the first substrate 32 as a representative example.
  • the first substrate 12 described above has a configuration in which a concave portion is formed in a part of a rectangular plate-like low thermal conductive portion 12a, and the high thermal conductive portion 12b is incorporated in the concave portion.
  • the first substrate 32 (second substrate 42) of the thermoelectric conversion element 30 has high thermal conductivity on the surface of the low thermal conductive portion 32a so as to cover the half surface of the rectangular plate-like (sheet-like) low thermal conductive portion 32a.
  • the portion 32b is laminated.
  • the first substrate 32 is basically the same as the first substrate 12 except for the difference in shape.
  • An adhesion layer 34 is formed on the surface of the first substrate 32 on the side where the high thermal conductive portion 32b is not formed.
  • the adhesion layer 34 is provided mainly for obtaining adhesion between the first substrate 32 and the electrodes 46 and 48.
  • the adhesion layer 34 may be any of various materials as long as the adhesion between the two electrodes and the first substrate 32 can be ensured according to the material for forming the first substrate 32 (low heat conduction portion 32a), the electrode 46, and the electrode 48. Is available.
  • the adhesion layer 34 includes silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), A layer made of chromium, titanium or the like is exemplified.
  • an action as a gas barrier layer that protects the thermoelectric conversion layer 36 from moisture that has passed through the first substrate 32 can also be obtained.
  • the thickness of the adhesion layer 34 may be set as appropriate according to the material for forming the adhesion layer 34 and the like so as to obtain the desired adhesion force of the electrode 46 and the electrode 48. Specifically, 10 to 1000 nm is preferable, and 50 to 200 nm is more preferable. Setting the thickness of the adhesion layer 34 to 10 nm or more, particularly 50 nm or more is preferable in that good adhesion between the electrode 46 and the electrode 48 and the first substrate 32 can be obtained. By making the thickness of the adhesion layer 34 1000 nm or less, particularly 200 nm or less, it is possible to obtain a thermoelectric conversion element 30 with good flexibility that can reduce the thickness of the thermoelectric conversion element 30 (thermoelectric conversion module). This is preferable in that the heat flow to the conversion layer 36 increases and the thermoelectric conversion performance of the thermoelectric conversion element 30 can be improved.
  • thermoelectric conversion layer 36 On the adhesion layer 34, a thermoelectric conversion layer 36, an electrode 46, and an electrode 48 are formed.
  • the thermoelectric conversion layer 36 is the same as the thermoelectric conversion layer 14 described above.
  • the electrode 46 and the electrode 48 are basically the same as the electrode 20 and the electrode 24 described above except that the shapes are different.
  • the electrode 46 and the electrode 48 are provided so as to sandwich the thermoelectric conversion layer 36 in the surface direction.
  • the electrode 46 and the electrode 48 not only contact the end surface in the surface direction of the thermoelectric conversion layer 36, but continue from the end surface to the upper surface of the thermoelectric conversion layer 36, It is formed so as to cover the vicinity of the end. That is, the electrode 46 and the electrode 48 rise from the surface of the adhesion layer 34 and continue from the end surface of the thermoelectric conversion layer 36 to the upper surface of the thermoelectric conversion layer 36 until the vicinity of the end portion of the upper surface of the thermoelectric conversion layer 36 is covered. Formed.
  • thermoelectric conversion layer 36 has a higher conductivity in the plane direction than in the thickness direction. Therefore, it is difficult for the thermoelectric conversion layer 36 to receive a current from the end face and to remove it.
  • the electrode 46 and the electrode 48 are formed so as to extend from the end face of the thermoelectric conversion layer 36 to the vicinity of the end of the upper surface of the thermoelectric conversion layer 36, thereby By covering the whole area of the end face of the conversion layer 36 in the thickness direction, it is possible to easily input current to the end face and to easily take out from the end face, thereby improving the thermoelectric conversion performance.
  • thermoelectric conversion layer 36 since the contact area between the thermoelectric conversion layer 36 and the electrodes 46 and 48 can be increased, the resistance at the interface can be reduced, and the thermoelectric conversion performance can be improved in this respect as well. In addition, as long as there is no short circuit by electrodes, you may form an electrode so that the upper surface of the thermoelectric conversion layer 36 may be coat
  • the thermoelectric conversion element 30 has a gas barrier layer 38 so as to cover the thermoelectric conversion layer 36, the electrode 46 and the electrode 48.
  • a gas barrier layer 38 By having the gas barrier layer 38, it is possible to prevent the thermoelectric conversion layer 36, the electrode 46, and the electrode 48 from being deteriorated by moisture or the like that has passed through the second substrate 42.
  • the thermoelectric conversion layer 36, the electrode 46, and the electrode 48 can be pressed from above to achieve reliable adhesion, and the thermoelectric conversion when the thermoelectric conversion element 30 (thermoelectric conversion module) is bent. Damage to the layer 36, electrode 46, and electrode 48 can also be prevented.
  • the gas barrier layer 38 can be formed of various materials that exhibit gas barrier properties. Examples include metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride; metal carbides such as aluminum carbide; silicon oxide, oxynitride Silicon oxides such as silicon, silicon oxycarbide and silicon oxynitride carbide; silicon nitrides such as silicon nitride and silicon nitride carbide; silicon carbides such as silicon carbide; hydrides thereof; mixtures of two or more of these; and these
  • membrane which consists of inorganic compounds, such as these hydrogen containing materials, is illustrated suitably.
  • silicon oxide, silicon nitride, silicon oxynitride, and aluminum oxide are preferably used because they can exhibit excellent gas barrier properties.
  • the thickness of the gas barrier layer 38 may be set as appropriate according to the material for forming the gas barrier layer 38 and the like so as to obtain the target gas barrier performance. Specifically, 10 to 1000 nm is preferable, and 50 to 200 nm is more preferable.
  • the thickness of the gas barrier layer 38 is preferably 10 nm or more, particularly 50 nm or more, from the viewpoint of obtaining good gas barrier properties.
  • An adhesive layer 40 is formed on the gas barrier layer 38.
  • the adhesive layer 40 is provided to adhere the second substrate 42 with sufficient adhesion.
  • the material for forming the adhesive layer 18 is bonded to the gas barrier layer 38 (in the absence of the gas barrier layer 38, the electrode and the thermoelectric conversion layer 36) and the second substrate 42 (the low thermal conductive portion 20a).
  • Specific examples include acrylic resins, urethane resins, silicone resins, epoxy resins, rubber, EVA, ⁇ -olefin polyvinyl alcohol, polyvinyl butyral, polyvinyl pyrrolidone, gelatin, starch, and the like.
  • the thickness of the adhesive layer 40 is such that the gas barrier layer 38 and the second substrate 42 can be attached with sufficient adhesion depending on the forming material of the adhesive layer 40, the size of the step caused by the thermoelectric conversion layer 36, and the like. What is necessary is just to set suitably. Specifically, 5 to 100 ⁇ m is preferable, and 5 to 50 ⁇ m is more preferable. By setting the thickness of the adhesive layer 40 to 5 ⁇ m or more, it is preferable in that the level difference caused by the thermoelectric conversion layer 36 can be sufficiently filled, and good adhesion can be obtained.
  • thermoelectric conversion element 30 by making the thickness of the adhesive layer 40 100 ⁇ m or less, particularly 50 ⁇ m or less, it is possible to obtain a thermoelectric conversion element 30 with good flexibility that can reduce the thickness of the thermoelectric conversion element 30 (thermoelectric conversion module). The thermal resistance of the pressure-sensitive adhesive layer 40 can be reduced, and a better thermoelectric conversion performance can be obtained.
  • At least one of the interface between the gas barrier layer 38 and the adhesive layer 40 and the interface between the adhesive layer 40 and the second substrate 42, the surface of the surface forming the interface is used.
  • At least one surface may be subjected to a known surface treatment such as a plasma treatment, a UV ozone treatment, an electron beam irradiation treatment or the like to modify or clean the surface.
  • thermoelectric conversion element 30 is configured by adhering the second substrate 42 onto the adhesive layer 40 with the entire surface facing the low thermal conduction portion 20a.
  • thermoelectric conversion layer 14 and the thermoelectric conversion layer 14 are rectangular plate-shaped objects (cuboids).
  • various shapes can be used for the thermoelectric conversion layer.
  • a quadrangular pyramid-shaped thermoelectric conversion layer 14a may be used as conceptually illustrated in FIG.
  • the thermoelectric conversion layer may have a columnar shape, a prism shape other than a square shape, a truncated cone, a truncated pyramid, an indefinite shape, or the like.
  • thermoelectric conversion layer has a tapered end face in the surface direction, such as a quadrangular frustum shape shown in the thermoelectric conversion layer 14a shown in FIG. Is preferred. That is, it is preferable that the end surface in the surface direction of the thermoelectric conversion layer is inclined toward the center of the thermoelectric conversion layer.
  • thermoelectric conversion layer of the thermoelectric conversion element 10 of the present invention has higher conductivity in the plane direction than in the thickness direction. Therefore, the thermoelectric conversion layer is difficult to receive current from the end face and difficult to take out.
  • the contact area between the thermoelectric conversion layer 14a and the electrodes 20 and 24 can be increased by tapering the end face in the surface direction as in the thermoelectric conversion layer 14a shown in FIG. As a result, resistance at the interface can be reduced, current can easily enter the end face, and can be easily taken out from the end face, thereby improving the thermoelectric conversion performance.
  • the electrode covers a part of the upper surface of the thermoelectric conversion layer 14a as in the example shown in FIG. It is preferable to have.
  • thermoelectric conversion module power generation apparatus
  • a thermoelectric conversion module can be similarly produced using the thermoelectric conversion element 30 shown in FIGS. 2 (A) to 2 (C).
  • the first substrate 12A and the second substrate 16A are formed by forming grooves extending in the longitudinal direction in a rectangular plate-like low heat conductive material at equal intervals with the width of the grooves in a direction orthogonal to the extending direction.
  • the groove has a structure in which high heat conduction is incorporated. That is, both substrates have a configuration in which low thermal conductivity portions 12a and high thermal conductivity portions 12b extending in one direction are alternately formed on one surface at equal intervals in a direction orthogonal to the extending direction (see FIG. 4 (A), FIG. 4 (C) and FIG. 4 (D)).
  • thermoelectric conversion layer 14 has a rectangular surface shape, and the surface of the first substrate 12A on the side where the high thermal conductive portion 12b is not exposed (see FIG. 4B). 4 (D) is upside down in the figure), the boundary and the center of the low heat conduction portion 12a and the high heat conduction portion 12b are aligned in the plane direction, and 4 ⁇ 4 (16 pieces in total), etc. Formed at intervals.
  • the thermoelectric conversion layers 14 are connected in series by the electrode 20 (electrode 24) and the connection wiring 26. Specifically, as shown in FIG.
  • thermoelectric conversion layers 14 in the horizontal direction in the figure in the arrangement of the thermoelectric conversion layers 14 in the horizontal direction in the figure, the electrodes 20 are provided so as to sandwich the thermoelectric conversion layers 14 in the horizontal direction. Thereby, each thermoelectric conversion layer 14 is connected to the horizontal direction by the electrode 20.
  • the leftmost electrode 20 in the uppermost row and the rightmost electrode in the second row from the top are connected by the connection wiring 26, and the second row from the top is connected.
  • the leftmost electrode 20 and the rightmost electrode 20 in the third row from the top are connected by a connection wiring 26, and the leftmost electrode 20 in the third row from the top and the rightmost electrode 20 in the fourth row from the top are connected. They are connected by wiring 26.
  • the 16 thermoelectric conversion elements arranged in 4 ⁇ 4 are connected in series in the order in which the thermoelectric conversion elements extend in the horizontal direction in the figure.
  • the boundary between the low heat conduction portion 12a and the high heat conduction portion 12b is made to coincide with the first substrate 12A, and the second substrate 16A is laminated.
  • the low heat conduction portion 12a of the first substrate 12A and the high heat conduction portion 16b of the second substrate 16A are aligned in the plane direction and face each other, and the high heat conduction portion 12b of the first substrate 12A and the low heat conduction portion of the second substrate 16A are faced.
  • the thermoelectric conversion module formed by connecting the 16 thermoelectric conversion elements 10 of this invention in series is comprised.
  • thermoelectric conversion element of the present invention will be described in detail by explaining an example of the manufacturing method of the thermoelectric conversion element 10 shown in FIG. 1 (A) to FIG. 1 (C).
  • an organic material to be a resin material is added to a dispersion medium (organic solvent or water), and a coating composition to be a thermoelectric conversion layer 14 is prepared by further dispersing a thermoelectric conversion material such as CNT.
  • a coating composition in which CNT and a surfactant are added to water and dispersed (dissolved) is prepared. This dispersion and the preparation of the coating composition are preferably carried out using a high-speed rotating thin film dispersion method.
  • the high-speed swirling thin film dispersion method is a method in which a composition containing an object to be dispersed is rotated at a high speed in a state where the composition is pressed against the inner surface of the apparatus by centrifugal force, and the sliding contact caused by the centrifugal force and the speed difference from the inner surface of the apparatus.
  • This is a dispersion method in which a dispersion target is dispersed in a thin-film cylindrical composition by applying stress to the composition containing the dispersion target.
  • thermoelectric conversion material such as CNT and a resin material (dispersion medium (binder)
  • a CNT and a surfactant are added to water as a dispersion medium (dispersant) and premixed to prepare a premix.
  • the water is preferably pure water (ion exchange water) or ultrapure water.
  • You may add various components, such as a dispersing agent, a nonconjugated polymer, a dopant, and a thermal excitation assist agent, to this preliminary mixture as needed.
  • the preliminary mixing may be performed using a normal mixing apparatus.
  • thermoelectric conversion layer 14 in which a thermoelectric conversion material such as CNT is dispersed in a resin material.
  • a coating composition to be the thermoelectric conversion layer 14 is prepared by treating the preliminary mixture by a high-speed swirling thin film dispersion method to disperse (dissolve) CNT and a surfactant in water.
  • the high-speed swirling thin film dispersion method includes a tubular mantle having a circular cross section, a tubular stirring blade that is disposed in the tubular sheath so as to be rotatable concentrically with the tubular mantle, and an injection tube that opens below the stirring blade.
  • the stirring blade can be implemented using an apparatus having an outer peripheral surface facing the inner peripheral surface of the tubular mantle at a slight interval and a large number of through-holes penetrating the tubular wall of the stirring blade in the thickness direction.
  • a thin film swirl type high-speed mixer “Filmix” (registered trademark) series manufactured by Primics
  • thermoelectric conversion material such as CNT is rotated preliminarily at a high speed in a state where it is pressed against the inner surface of the device by centrifugal force in the form of a thin film, and the sliding contact caused by the centrifugal force and the speed difference with the inner surface of the device.
  • the thermoelectric conversion material can be dispersed in the thin film cylindrical premix and a coating composition to be the thermoelectric conversion layer 14 can be prepared.
  • the CNT can be dispersed in the resin material without cutting.
  • thermoelectric conversion layer 14 in which CNTs having a length of 1 ⁇ m or more are dispersed can be formed by forming the thermoelectric conversion layer 14 using the coating composition prepared by the high-speed swirling thin film dispersion method. Accordingly, the thermoelectric conversion layer has a conductivity ratio of plane direction: thickness direction> 10: 1, preferably plane direction: thickness direction> 100: 1, more preferably plane direction: thickness direction> 1000: 1. 14 can be formed.
  • a first substrate 12 (12A) having a low heat conduction part 12a and a high heat conduction part 12b, and a second substrate 16 (16A) having a low heat conduction part 16a and a high heat conduction part 16b are prepared.
  • Commercially available products may be used for the first substrate 12 and the second substrate 16.
  • the first substrate 32 (second substrate 42) as shown in FIGS. 2A to 2C is, as an example, a sheet-like (or belt-like) sheet-like material that becomes the low heat conduction portion 32a.
  • the first substrate 32 formed by laminating the high heat conduction part 32b on the low heat conduction part 32a may be produced.
  • a sheet-like material is prepared by forming a layer to be the high heat conduction portion 32b on the entire surface of the sheet material to be the low heat conduction portion 32a, and an unnecessary portion is removed by etching the layer to be the high heat conduction portion 32b. By doing so, you may produce the 1st board
  • the prepared coating composition to be the thermoelectric conversion layer 14 is patterned and applied according to the thermoelectric conversion layer 14 on the surface of the first substrate 12 on the side where the high thermal conductive portion 12b is not formed.
  • the coating composition may be applied by a known method such as a method using a mask or a printing method. Once the coating composition is applied, the thermoelectric conversion layer 14 is formed by drying and curing the coating composition by a method according to the resin material. In addition, after drying a coating composition as needed, you may cure the coating composition (resin material) by ultraviolet irradiation etc.
  • the coating composition to be the prepared thermoelectric conversion layer 14 is applied to the entire surface of the first substrate 12 on the side where the high thermal conductive portion 12b is not formed, and after drying, the thermoelectric conversion layer 14 is formed by etching or the like. A pattern may be formed.
  • thermoelectric conversion layer 14 it is preferable to pattern the thermoelectric conversion layer 14 by printing.
  • a thermoelectric conversion layer 14a having a tapered end face in the surface direction as shown in FIG. 3A can be easily and suitably formed.
  • various known printing methods such as screen printing, metal mask printing, and stencil printing can be used.
  • the electrode 20 and the electrode 24 are formed so as to sandwich the thermoelectric conversion layer 14 in the plane direction. Formation of the electrode 20 and the electrode 24 may be performed by a known method in accordance with the material for forming the electrode 20 and the electrode 24.
  • the prepared second substrate 16 is attached to the thermoelectric conversion layer 14 so that the side on which the high heat conductive portion 16b is not formed is formed, and the thermoelectric conversion element 10 is manufactured.
  • substrate 12 after forming the electrode 20 and the electrode 24 in the semi-hardened state, and also laminating
  • the thermoelectric conversion element 10 may be produced by completely curing.
  • the electrode 20 and the electrode 24 are formed after the thermoelectric conversion layer 14 is formed.
  • the formation order of the thermoelectric conversion layer 14 and the electrodes 20 and 24 may be reversed.
  • a configuration in which the ends of the thermoelectric conversion layer cover the ends of the electrode 20 and the electrode 24 may be used as in the thermoelectric conversion layer 14 b conceptually shown in FIG.
  • the high heat conduction portion 32b of the first substrate 32 is first formed prior to the formation of the thermoelectric conversion layer 36.
  • the adhesion layer 34 is formed on the non-side surface (the surface of only the low heat conduction portion 32a).
  • the adhesion layer 34 may be formed by a known method according to the material for forming the adhesion layer 34.
  • the adhesion layer 34 may be formed by EB (Electron Beam) vapor deposition or sputtering.
  • the gas barrier layer 38 is formed.
  • the gas barrier layer 38 may also be formed by a known method.
  • the gas barrier layer 38 may be formed by EB vapor deposition or sputtering, as before.
  • the adhesive layer 40 is formed on the gas barrier layer 38.
  • the adhesive layer 40 may also be formed by a known method such as a coating method depending on the material for forming the adhesive layer. Or you may form the adhesion layer 40 using a double-sided adhesive tape.
  • the second substrate 42 is attached to the adhesive layer 40 with the entire surface facing the adhesive layer 40 with the surface on the low thermal conduction portion 42a side, and the thermoelectric conversion element 30 (thermoelectric conversion module) is obtained.
  • thermoelectric conversion element 30 thermoelectric conversion module
  • a thermoelectric adhesive sheet and / or a radiation fin may be used in combination.
  • a heat conductive adhesive sheet used sticking on the heating side or cooling side of a module
  • the commercially available heat dissipation sheet can be used. Examples include TC-50TX2 manufactured by Shin-Etsu Chemical Co., Ltd., Hypersoft heat dissipation material 5580H manufactured by Sumitomo 3M, BFG20A manufactured by Denki Kagaku Kogyo, and TR5912F manufactured by Nitto Denko.
  • the heat conductive adhesive sheet which consists of silicone type adhesives from a heat resistant viewpoint is preferable.
  • the heat conductive adhesive sheet which consists of silicone type adhesives from a heat resistant viewpoint.
  • the adhesion to the heat source is improved, the surface temperature on the heating side of the module is increased, (2) the cooling efficiency is improved, and the surface temperature on the cooling side of the module is lowered.
  • the power generation amount can be increased by the effect of being able to do so.
  • the radiation fin the low temperature side of the thermoelectric conversion element can be more suitably cooled, which is preferable in that the temperature difference is increased and the thermoelectric efficiency is further improved.
  • thermoelectric conversion element of the present invention can be used for various applications. Examples include various power generation applications such as hot spring thermal generators, solar thermal generators, waste heat generators, and other devices (devices) such as wristwatch power supplies, semiconductor drive power supplies, and small sensor power supplies.
  • power generation applications such as hot spring thermal generators, solar thermal generators, waste heat generators, and other devices (devices) such as wristwatch power supplies, semiconductor drive power supplies, and small sensor power supplies.
  • sensor element uses such as a thermal sensor and a thermocouple, are illustrated besides a power generation use.
  • thermoelectric conversion element As described above, the thermoelectric conversion element and the method for manufacturing the thermoelectric conversion element of the present invention have been described in detail. However, the present invention is not limited to the above-described examples, and various improvements and modifications can be made without departing from the gist of the present invention. Of course, you can go.
  • thermoelectric conversion element of the present invention will be described in more detail with reference to specific examples of the present invention.
  • present invention is not limited to the following examples.
  • Preparation of coating composition >> Single-walled CNT (manufactured by KH Chemical Co., HP, average length of CNT of 5 ⁇ m or more) and the synthesized resin were mixed with 20 ml of oji so that the mass ratio was 25/75 in the ratio of CNT / resin component. Adjusted in addition to chlorobenzene. This solution was mixed for 15 minutes at 20 ° C. using a mechanical homogenizer (manufactured by SMT Co., Ltd., HIGH-FLEX HOMOGENIZER HF93) to obtain a preliminary mixture.
  • a mechanical homogenizer manufactured by SMT Co., Ltd., HIGH-FLEX HOMOGENIZER HF93
  • thermoelectric conversion layer 14 was prepared by carrying out dispersion treatment.
  • thermoelectric conversion layer having a thickness of 100 ⁇ m.
  • SEM scanning electron microscope
  • the single-walled CNT included in the thermoelectric conversion layer was sufficiently longer than 1 ⁇ m.
  • thermoelectric conversion element As shown conceptually in FIGS. 4A, 4C, and 4D, it has a low thermal conductive portion (12a, 16a) made of polyimide and a high thermal conductive portion (12b, 16b) made of copper.
  • Two substrates (12A, 16A) were prepared. The thickness of the substrate was 50 ⁇ m, the thickness of the high heat conduction part was 40 ⁇ m, and the widths of the low heat conduction part and the high heat conduction part in the single-hand direction on the exposed surface of the high heat conduction part were 5 mm.
  • thermoelectric conversion layer 14 A single substrate is used as the first substrate 12A, and the previously prepared coating composition to be the thermoelectric conversion layer is applied to the non-exposed surface of the high heat conducting portion 12b and dried to have a thickness of 100 ⁇ m and 5 ⁇ 5 mm. As shown conceptually in FIGS. 4B and 4C, 16 thermoelectric conversion layers 14 of 4 ⁇ 4 were produced. In addition, the thermoelectric conversion layer 14 was formed so that the center of a surface direction might correspond with the boundary of the low heat conduction part 12a and the high heat conduction part 12b.
  • thermoelectric conversion layers 14 were connected in series as conceptually shown in FIG. 4B by using gold as the electrode 20 and the connection wiring 26. Furthermore, another substrate was used as the second substrate 16A, and the non-exposed surface of the high thermal conductive portion 16b was directed to the thermoelectric conversion layer 14 and laminated as conceptually shown in FIG. The second substrate 16A was laminated so that the center in the surface direction of the thermoelectric conversion layer 14 coincided with the boundary between the low heat conduction part 16a and the high heat conduction part 16b. As a result, a thermoelectric conversion module conceptually shown in FIGS. 4A to 4D, comprising 16 thermoelectric conversion elements, was produced.
  • thermoelectric conversion module in which 16 conventional thermoelectric conversion elements (unileg-type thermoelectric conversion elements) shown in FIG. 3 are connected in series by connecting wires 60 using the same thermoelectric conversion layer. 50 was produced.
  • a polyimide film having a thickness of 25 ⁇ m was used. Copper was used for the electrodes 54 and 58 and the connection wiring 60.
  • the thermoelectric conversion layer 56 was a rectangular solid having a thickness of 100 ⁇ m and a size of 5 ⁇ 5 mm.
  • thermoelectric conversion modules of Example 1 and Comparative Example 1 were measured with a temperature difference of 10 ° C. above and below the sample.
  • the relative output of Example 1 when the output of the thermoelectric conversion module of Comparative Example 1 was normalized to 1 was 11.
  • Example 2 and Comparative Example 2 A coating composition to be a thermoelectric conversion layer was prepared in the same manner as in Example 1 except that the single-walled CNT was changed (CNTs manufactured by Meijo Nanocarbon Co., Ltd., CNT average length of 1 ⁇ m or more). About this coating composition, it carried out similarly to Example 1, and produced the 100-micrometer-thick thermoelectric conversion layer. When confirmed in the same manner as in Example 1, the length of the single-walled CNT included in the thermoelectric conversion layer sufficiently exceeded 1 ⁇ m. About the produced thermoelectric conversion layer, the electrical conductivity in the surface direction, the electrical conductivity in the thickness direction, and the Seebeck coefficient S were measured in the same manner as in Example 1. As a result, the electrical conductivity in the plane direction was 1990 [S / cm], the electrical conductivity in the thickness direction was 2 [S / cm], and the Seebeck coefficient was 56 [ ⁇ V / K].
  • thermoelectric conversion modules of Example 2 and Comparative Example 2 in which 16 thermoelectric conversion elements were connected in series were prepared in the same manner as in Example 1 and Comparative Example 1 except that this coating composition was used. The output was measured. As a result, the relative output of Example 2 when the output of the thermoelectric conversion module of Comparative Example 2 was normalized to 1 was 995.
  • thermoelectric conversion layer 3% by mass of ethylene glycol is added to a PEDOT / PSS solution (product name: Clevios PH1000, manufactured by Heraeus) in which PEDOT is dispersed in polystyrene sulfonate (Poly (styrenesulfonate) PSS) to form a thermoelectric conversion layer.
  • a coating composition was prepared. This coating composition was applied to a plastic film having a thickness of 25 ⁇ m and dried to prepare a thermoelectric conversion layer having a thickness of 50 nm.
  • the produced thermoelectric conversion layer it carried out similarly to Example 1, and measured the electrical conductivity of the surface direction, the electrical conductivity of the thickness direction, and Seebeck coefficient S. As a result, the surface conductivity was 900 [S / cm], the thickness conductivity was 2 [S / cm], and the Seebeck coefficient was 28 [ ⁇ V / K].
  • thermoelectric conversion modules of Example 3 and Comparative Example 3 in which 16 thermoelectric conversion elements were connected in series were prepared in the same manner as in Example 1 and Comparative Example 1 except that this coating composition was used. The output was measured. As a result, when the output of the thermoelectric conversion module of Comparative Example 3 was normalized to 1, the relative output of Example 3 was 450.
  • Example 4 An adhesive-free copper-clad polyimide substrate (FELIOS R-F775, manufactured by Panasonic Electric Works Co., Ltd.) was prepared.
  • the copper-clad polyimide substrate has a size of 80 ⁇ 80 mm, a polyimide layer thickness of 20 ⁇ m, and a copper layer thickness of 70 ⁇ m.
  • the copper layer of this copper-clad polyimide substrate was etched to form a copper stripe pattern with a width of 1 mm and a spacing of 1 mm.
  • the first substrate having the strip-like high thermal conductive portions having a thickness of 70 ⁇ m and a width of 1 mm arranged at intervals of 1 mm in a direction orthogonal to the extending direction of the strip. And the 2nd board
  • a silicon oxide layer having a thickness of 150 nm was formed as an adhesion layer on the entire surface of the first substrate which is a polyimide layer (planar surface) by EB vapor deposition.
  • a 1 ⁇ 1 mm coating composition similar to that of Example 1 is applied by screen printing at intervals of 1 mm in the extending direction of the belt-like high heat conduction portions and at intervals of 1 mm in the arrangement direction of the belt-like high heat conduction portions.
  • 885 product patterns were formed and dried. By performing this pattern formation and drying three times, 885 thermoelectric conversion layers having a thickness of 4.5 ⁇ m were produced.
  • the 1 ⁇ 1 mm pattern was prepared so that the center was located at the boundary between the belt-like high heat conduction portion and the low heat conduction portion.
  • an electrode made of gold (Au) having a thickness of 1000 nm and a connection wiring are formed by a vacuum evaporation method using a metal mask, and as shown in FIG. 4B, 885 thermoelectric conversion layers are connected in series. Connected.
  • a 150 nm thick silicon oxide layer was formed as a gas barrier layer by EB vapor deposition so as to cover the entire surface of the first substrate on which the thermoelectric conversion layer and the electrodes were formed.
  • a double-sided tape having a thickness of 25 ⁇ m (manufactured by Nitto Denko Corporation, double-sided tape No. 5603) was attached as an adhesive layer on the gas barrier layer.
  • substrate was affixed on the adhesion layer, the surface where the whole surface is a low heat conduction part was turned to the adhesion layer.
  • the second substrate has the high heat conduction portion extending in the same direction as the first substrate, the edges of the high heat conduction portion and the low heat conduction portion are coincident, and the high heat conduction portion and the low heat conduction portion are the first. It was attached to the adhesive layer so as to alternate with the substrate (see FIGS. 4A to 4C). As a result, a thermoelectric conversion module in which 885 thermoelectric conversion elements having the same layer configuration as the thermoelectric conversion elements shown in FIGS. 2A to 2C were connected in series was manufactured.
  • Example 5 A first substrate and a second substrate similar to those in Example 4 were prepared.
  • a chromium (Cr) layer having a thickness of 100 nm was formed as an adhesion layer on the surface of the first substrate, which is a low thermal conduction portion, by vacuum deposition using a metal mask.
  • electrodes and connection wirings made of gold (Au) having a thickness of 1000 nm were formed corresponding to the 885 thermoelectric conversion layers as in Example 4 by vacuum deposition using a metal mask.
  • 885 thermoelectric conversion layers were produced in the same manner as in Example 4.
  • thermoelectric conversion elements having the same layer structure as the thermoelectric conversion elements shown in FIGS. 2A to 2C are connected in series except that the gas barrier layer 38 is not provided. A thermoelectric conversion module was produced.
  • Example 6 A solution in which 50 mg of single-walled CNT (Meijo Nanocarbon Co., Ltd., CNT average length of 1 ⁇ m or more) and surfactant (Wako Pure Chemical Industries, Ltd., sodium dodecylbenzenesulfonate) 150 mg are added to 20 ml of ion-exchanged water. was prepared. This solution was mixed for 5 minutes (18000 rpm) at 20 ° C. using a mechanical homogenizer (manufactured by SMT Co., Ltd., HIGH-FLEX HOMOGENIZER HF93) to obtain a premix. The obtained preliminary mixture was cooled to 10 ° C.
  • a mechanical homogenizer manufactured by SMT Co., Ltd., HIGH-FLEX HOMOGENIZER HF93
  • thermoelectric conversion layer was prepared by dispersion treatment.
  • thermoelectric conversion layer About this coating composition, it carried out similarly to Example 1, and produced the 100-micrometer-thick thermoelectric conversion layer. When confirmed in the same manner as in Example 1, the length of the single-walled CNT included in the thermoelectric conversion layer sufficiently exceeded 1 ⁇ m.
  • the electrical conductivity in the surface direction, the electrical conductivity in the thickness direction, and the Seebeck coefficient S were measured in the same manner as in Example 1. As a result, the surface conductivity was 450 [S / cm], the thickness conductivity was 15 [S / cm], and the Seebeck coefficient was 52 [ ⁇ V / K].
  • thermoelectric conversion module was produced in the same manner as in Example 5 except that 885 thermoelectric conversion layers having a thickness of 8 ⁇ m were formed by one screen printing. As a result, 885 thermoelectric conversion elements having the same layer structure as the thermoelectric conversion elements shown in FIGS. 2A to 2C are connected in series except that the gas barrier layer 38 is not provided. A thermoelectric conversion module was produced.
  • thermoelectric conversion module In the first substrate and the second substrate, the width of the belt-like high heat conduction portion (copper stripe width) is 0.975 mm, the formation interval of the belt-like high heat conduction portion (copper stripe formation interval) is 1.025 mm, and A thermoelectric conversion module was produced in the same manner as in Example 6 except that the gas barrier layer was formed in the same manner as in Example 4.
  • the second substrate In this thermoelectric conversion module, the second substrate is attached without aligning the end sides of the belt-like high heat conducting portions of the first substrate and the second substrate, and the short sides are arranged in the arrangement direction of the high heat conducting portions (that is, energization). Direction) with an interval of 0.25 ⁇ m.
  • a thermoelectric conversion module in which 885 thermoelectric conversion elements having the same layer configuration as the thermoelectric conversion elements shown in FIGS. 2A to 2C were connected in series was manufactured.
  • thermoelectric conversion layer After forming the thermoelectric conversion layer, a 10 nm thick buffer layer (F4: TCNQ, manufactured by Kanto Chemical Co., Inc.) is formed on the electrode connection portion of the thermoelectric conversion layer by a vacuum vapor deposition method using a metal mask.
  • a thermoelectric conversion module was produced in the same manner as in Example 1 except that no layer was formed.
  • 885 thermoelectric conversion elements having the same layer configuration as the thermoelectric conversion elements shown in FIGS. 2A to 2C are connected in series except that the adhesion layer and the gas barrier layer are not provided.
  • a thermoelectric conversion module was prepared.
  • thermoelectric conversion modules of Examples 4 to 8 were subjected to a power generation amount, a bending test, and a heat resistance test.
  • ⁇ Power generation> The produced thermoelectric conversion module was sandwiched between a heated copper plate and a copper plate connected with a cold water circulation device, and the temperature of the heated copper plate was adjusted so that the temperature difference between both copper plates would be 10 ° C. . Further, the electrode of the most upstream thermoelectric conversion layer and the electrode of the most downstream thermoelectric conversion layer connected in series are connected to a source meter (source meter 2450, manufactured by Keithley), and the open circuit voltage and the short circuit current are measured.
  • thermoelectric conversion module After measuring the amount of power generation, a bending test of the thermoelectric conversion module was conducted according to JIS K 5600. A cylindrical mandrel having a diameter of 32 mm was used and bent 180 °. After performing the bending test, the power generation amount of the thermoelectric conversion module was measured in the same manner as described above, the power generation amount was compared, the change rate of the power generation amount was obtained, and the change rate was determined according to the following evaluation criteria. A: Change rate within 5% B: Change rate over 5% and within 20%
  • thermoelectric conversion module After the produced thermoelectric conversion module is left in a thermostatic bath at a temperature of 150 ° C. for 1000 hours, the power generation amount is measured in the same manner as described above, and the rate of change from the power generation amount before the heating test is obtained. Judgment was made according to the following evaluation criteria. A: Change rate within 5% B: Change rate over 5% and within 20% The results are shown in the table below.
  • Examples 4 to 7 having an adhesion layer have excellent results in the bending test.
  • Examples 4 and 7 having both the adhesion layer and the barrier layer excellent results were obtained in both the bending test and the heat resistance test.
  • Examples 6 and 7 having a thermoelectric conversion layer made of CNT and a surfactant have a good power generation amount, and in particular, Example 7 in which the high heat conduction part is separated in the energization direction between the first substrate and the second substrate. A good power generation amount has been obtained.
  • Example 8 having a buffer layer between the thermoelectric conversion layer and the electrode a better power generation amount is obtained compared to Example 4 using the same thermoelectric conversion layer. Note that both the bending test and the heat resistance test can be sufficiently used as a thermoelectric conversion module even if the evaluation is “B”.
  • thermoelectric conversion module produced by the same method as in Example 7 was adhered to a curved heating source having a surface temperature of 80 ° C. and a diameter of 120 mm using a heat conductive adhesive sheet (manufactured by Nitto Denko Corporation, TR5912F). . Further, a corrugated fin of 80 ⁇ 80 mm (manufactured by Mogami Inc., OA-5B2D75B) was bonded to the surface of the thermoelectric conversion module using the same heat conductive adhesive sheet as before.
  • thermoelectric conversion element of the present invention thermoelectric conversion module using the thermoelectric conversion element of the present invention

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Clocks (AREA)

Abstract

 有機材料からなる熱電変換層を有し、効率の良い発熱を行うことができる熱電変換素子、および、この熱電変換素子の製造方法を提供する。面方向に、他の領域よりも熱伝導率が高い高熱伝導部を有する第1基板、第1基板の上に形成される、有機材料からなり、かつ、厚さ方向より面方向の方が導電率が高い熱電変換層と、熱電変換層の上に形成される、面方向に、他の領域よりも熱伝導率が高い高熱伝導部を有し、かつ、面方向において高熱伝導部が第1基板の高熱伝導部と完全に重複しない第2基板とを有することにより、この課題を解決する。

Description

熱電変換素子および熱電変換素子の製造方法
 本発明は、熱電変換素子に関する。詳しくは、有機材料からなる熱電変換層を有し、効率の良い発電が可能な熱電変換素子、および、この熱電変換素子の製造方法に関する。
 熱エネルギーと電気エネルギーを相互に変換することができる熱電変換材料が、熱によって発電する発電素子やペルチェ素子のような熱電変換素子に用いられている。
 熱電変換素子は、熱エネルギーを直接電力に変換することができ、可動部を必要としない等の利点を有する。そのため、複数の熱電変換素子を接続してなる熱電変換モジュール(発電装置)は、例えば、焼却炉や工場の各種の設備など、排熱される部位に設けることで、動作コストを掛ける必要なく、簡易に電力を得ることができる。
 熱電変換素子は、一般的に、板状の基板の上に電極を有し、電極の上に熱電変換層(発電層)を有し、熱電変換層の上に板状の電極を有してなる構成を有する(いわゆる、uni leg型の熱電変換素子)。
 すなわち、通常の熱電変換素子は、電極で熱電変換層を厚さ方向に挟持し、熱電変換層の厚さ方向に温度差を生じさせて、熱エネルギーを電気エネルギーに変換させている。
 これに対し、特許文献1および2には、熱電変換層の厚さ方向ではなく、高熱伝導部を有する基板を用いて、熱電変換層の面方向に温度差を生じさせて熱エネルギーを電気エネルギーに変換する熱電変換素子が記載されている。
 具体的には、特許文献1には、P型材料およびN型材料で形成された熱電変換層の両面に、熱伝導率が異なる2種類の材料で構成された柔軟性を有するフィルム基板を設け、熱伝導率が異なる材料を、基板の外面で、かつ、通電方向の逆位置に位置するように構成した熱電変換素子が記載されている。
 特許文献2には、シート状の第1絶縁性部と、シート状の第2絶縁性部と、両絶縁性部の間に収容される熱起電力を取り出すための第1端部および第2端部を有する板状の熱電変換層と、熱電変換層と第1絶縁性部との間に配置される、第1端部の第1絶縁性部側を覆う、第1絶縁性部よりも熱伝導率が高い第1高熱伝導性部と、板状部材と第2絶縁性部との間に配置された、板状部材の第2端部の第2絶縁性部側を覆う、第2絶縁性部よりも熱伝導率が高い第2高熱伝導性部とを有する素子が記載されている。
 このような熱電変換素子は、基板に設けられる高熱伝導部によって熱電変換層の面方向に温度差を生じさせて、熱エネルギーを電気エネルギーに変換する。そのため、薄い熱電変換層でも、温度差が生じる距離を長くして、効率の良い発電ができる。さらに、熱電変換層をシート状にできるので、フレキシブル性にも優れ、曲面等への設置も容易な熱電変換モジュールが得られる。
 特許文献1および特許文献2に記載される熱電変換素子は、基本的に、熱電変換層として無機材料を利用している。これに対し、特許文献3には、同様の熱電変換素子において、熱電変換層に有機材料を利用する熱電変換素子が記載されている。
 具体的には、特許文献3には、水平方向に温度差を生じさせる温度差形成層と、温度差形成層の上に形成された熱電変換層と、熱電変換層間を接続する配線とを備え、温度差形成層は、熱電変換層側の主面が他方の主面よりも面積が小さい高熱伝導体と、この隙間に充填された低熱伝導体とが水平方向に交互に形成され、さらに、熱電変換層は、高熱伝導体の少なくとも一部を覆って、高熱伝導体に隣接する低熱伝導体まで延在するように形成される熱電変換素子が記載されている。
特許第3981738号公報 特開2011-35205号公報 国際公開第2013/121486号
 周知のように、有機材料は、無機材料に比して熱伝導率が低い。従って、有機材料を用いる熱電変換素子では、特許文献3に示されるように、熱電変換層の面方向に温度差を生じさせて熱エネルギーを電気エネルギーに変換することにより、より高い発電効率を得られる熱電変換素子を実現できることが考えられる。
 しかも、熱電変換素子の熱電変換層に有機材料を用いることにより、よりフレキシブル性が高い熱電変換素子を得ることができる。
 しかしながら、本発明者らの検討によれば、基板の高熱伝導部によって熱電変換層の面方向に温度差を生じさせて、熱エネルギーを電気エネルギーに変換する熱電変換素子に、有機材料からなる熱電変換層を利用する場合には、高い熱電変換効率を得るためには、熱電変換層の導電率が重要であることが分かった。
 本発明の目的は、このような従来技術の問題点を解決することにあり、基板の高熱伝導部によって熱電変換層の面方向に温度差を生じさせて、熱エネルギーを電気エネルギーに変換する熱電変換素子において、有機材料による熱電変換層を有し、より熱電変換効率が高い熱電変換素子を提供することにある。
 このような目的を達成するために、本発明の熱電変換素子は、面方向の少なくとも一部に他の領域よりも熱伝導率が高い高熱伝導部を有する第1基板と、
 第1基板の上に形成される、有機材料からなり、かつ、厚さ方向より面方向の方が導電率が高い熱電変換層と、
 熱電変換層の上に形成される、面方向の少なくとも一部に他の領域よりも熱伝導率が高い高熱伝導部を有し、かつ、面方向において自身の高熱伝導部が第1基板の高熱伝導部と完全に重複しない第2基板と、
 面方向に熱電変換層を挟むように、熱電変換層に接続される一対の電極とを有することを特徴とする熱電変換素子を提供する。
 このような本発明の熱電変換素子において、熱電変換層の面方向と厚さ方向との導電率の比が、面方向:厚さ方向>10:1であるのが好ましい。
 また、熱電変換層の面方向と厚さ方向との導電率の比が、面方向:厚さ方向>100:1であるのが好ましい。
 また、熱電変換層が、カーボンナノチューブを含むのが好ましい。
 また、熱電変換層が、樹脂材料にカーボンナノチューブを分散してなるものであるのが好ましい。
 また、熱電変換層が、カーボンナノチューブと界面活性剤とを含有するのが好ましい。
 また、カーボンナノチューブが単層カーボンナノチューブであり、長さが1μm以上であるのが好ましい。
 また、熱電変換層が、導電性高分子を含むのが好ましい。
 また、導電性高分子が、ポリ(3,4-エチレンジオキシチオフェン)であるのが好ましい。
 また、第1基板の高熱伝導部と第2基板の高熱伝導部とが、面方向において、電極の離間方向に異なる位置に設けられるのが好ましい。
 また、第1基板の高熱伝導部および第2基板の高熱伝導部が、積層方向に対して外面に位置するのが好ましい。
 また、第1基板と電極対との間に、密着層を有するのが好ましい。
 また、熱電変換層および電極対を覆って、ガスバリア層を有するのが好ましい。
 また、熱電変換層の面方向の端面がテーパ状であるのが好ましい。
 また、電極対の各電極が、熱電変換層の面方向の端面から上面に到るように形成されるのが好ましい。
 さらに、電極対の形成材料が金であり、電極対の少なくとも一方の電極と熱電変換層との間に、バッファ層を有するのが好ましい。
 また、本発明の熱電変換素子の製造方法は、少なくともカーボンナノチューブと分散媒とを含む溶液を、高速旋回薄膜分散法によって処理して、分散媒中にカーボンナノチューブを分散してなるCNT塗布液を調製する工程、
 面方向の少なくとも一部に他の領域よりも熱伝導率が高い高熱伝導部を有する第1基板に、CNT塗布液を塗布、乾燥して、熱電変換層を形成する工程、
 面方向に挟むようにして、熱電変換層に電極対を接続する工程、
 および、熱電変換層の上に、面方向の少なくとも一部に、他の領域よりも熱伝導率が高い高熱伝導部を有し、かつ、面方向おいて自身の高熱伝導部が第1基板の高熱伝導部と完全に重複しないように第2基板を積層する工程、とを有することを特徴とする熱電変換素子の製造方法を提供する。
 このような本発明の熱電変換素子の製造方法において、CNT塗布液に含まれる分散媒が、樹脂材料であるのが好ましい。
 また、CNT塗布液に含まれる分散媒が水であり、かつ、CNT塗布液が、界面活性剤を含有するのが好ましい。
 さらに、熱電変換層を形成する工程において、第1基板へのCNT塗布液を塗布を印刷によって行うのが好ましい。
 本発明によれば、基板に設けられた高熱伝導部によって熱電変換層の面方向に温度差を生じさせて、熱エネルギーを電気エネルギーに変換する熱電変換素子において、有機材料からなり、かつ、導電率が厚さ方向よりも面方向が高い異方性を有する熱電変換層を有するので、温度差が生じる方向と通電方向とを一致させて、より発電効率が高い熱電変換素子が得られる。
図1(A)は、本発明の熱電変換素子の一例を概念的に示す上面図、図1(B)は、同正面図、図1(C)は、同底面図である。 図2(A)は、本発明の熱電変換素子の別の例を概念的に示す上面図、図2(B)は、同正面図、図2(C)は、同底面図である。 図3(A)および図3(B)は、本発明の熱電変換素子の熱電変換層の別の例を概念的に示す図である。 図4(A)~図4(D)は、本発明の熱電変換素子を用いる熱電変換モジュールの一例を説明するための概念図である。 図5は、本発明の実施例で作製した、従来の熱電変換素子による熱電変換モジュールを説明するための概念図である。
 以下、本発明の熱電変換素子および熱電変換素子の製造方法について、添付の図面に示される好適実施例を基に詳細に説明する。
 図1(A)~図1(C)に、本発明の熱電変換素子の一例を概念的に示す。なお、図1(A)は上面図(図1(B)を紙面上方から見た図)、図1(B)は正面図(後述する基板等の面方向から見た図)、図1(C)は底面図(図1(B)を紙面下方から見た図)である。
 図1(A)~図1(C)に示す熱電変換素子10は、基本的に、第1基板12と、熱電変換層14と、第2基板16と、電極20および電極24とを有して構成される。
 具体的には、第1基板12の上に熱電変換層14を有し、熱電変換層14の上に第2基板16を有し、第1基板12と第2基板16との間において、熱電変換層14を面方向に挟むようにして、熱電変換層14に電極20および電極24(電極対)が接続される。
 図1(A)~図1(C)に示すように、第1基板12は、低熱伝導部12aおよび高熱伝導部12bを有する。同様に、第2基板16も、低熱伝導部16aおよび高熱伝導部16bを有する。図示例において、両基板は、互いの高熱伝導部が、電極20および電極24の接続方向に異なる位置となるように配置される。電極20および電極24の接続方向とは、すなわち通電方向である。
 なお、両基板は、配置位置、および、表裏や面方向の向きが異なるのみで、構成は同じであるので、第1基板12と第2基板16とを区別する必要が有る場合を除いて、説明は第1基板12を代表例として行う。面方向とは、基板面の方向である。
 図示例の熱電変換素子10において、第1基板12(第2基板16)は、低熱伝導部12a(低熱伝導部16a)となる矩形の板状物(シート状物)の、一方の面の半分の領域に凹部を形成して、この凹部に、表面が均一となるように高熱伝導部12b(高熱伝導部16b)を組み込んでなる構成を有する。
 従って、第1基板12の一面は、面方向の半分の領域が低熱伝導部12aで、残りの半分の領域は高熱伝導部12bとなる。
 低熱伝導部12aは、ガラス板、セラミックス板、プラスチックフィルムなど、絶縁性を有し、かつ、熱電変換層14や電極20等の形成等に対する十分な耐熱性を有するものであれば、各種の材料からなる物が利用可能である。
 好ましくは、低熱伝導部12aには、プラスチックフィルムが利用される。低熱伝導部12aにプラスチックフィルムを用いることにより、軽量化やコストの低下を計ると共に、可撓性を有する熱電変換素子10が形成可能となり、好ましい。
 低熱伝導部12aに利用可能なプラスチックフィルムとしては、具体的には、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)、ポリエチレン-2,6-フタレンジカルボキシレート等のポリエステル樹脂、ポリイミド、ポリカーボネート、ポリプロピレン、ポリエーテルスルホン、シクロオレフィンポリマー、ポリエーテルエーテルケトン(PEEK)、トリアセチルセルロース(TAC)等の樹脂、ガラスエポキシ、液晶性ポリエステル等からなるフィルム(シート状物/板状物)が例示される。
 中でも、熱伝導率、耐熱性、耐溶剤性、入手の容易性や経済性等の点で、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート等からなるフィルムは、好適に利用される。
 高熱伝導部12bは、低熱伝導部12aよりも熱伝導率が高いものであれば、各種の材料からなるフィルム(シート状物/板状物)が例示される。
 具体的には、熱伝導率等の点で、金、銀、銅、アルミニウム等の各種の金属が例示される。中でも、熱伝導率、経済性等の点で、銅およびアルミニウムは好適に利用される。
 本発明において、第1基板12(高熱伝導部12bが無い領域の低熱伝導部12a)の厚さ、低熱伝導部12aの厚さ等は、高熱伝導部12bおよび低熱伝導部12aの形成材料、熱電変換素子10の大きさ等に応じて、適宜、設定すればよい。
 第1基板12の面方向(基板面と直交する方向から見た際)の大きさ、基板12における高熱伝導部12bの面方向の面積率等も、低熱伝導部12aおよび高熱伝導部12bの形成材料、熱電変換素子10の大きさ等に応じて、適宜、設定すればよい。
 第1基板12における高熱伝導部12bの面方向の位置も、図示例に限定されず、各種の位置が利用可能である。
 例えば、第1基板12において、高熱伝導部12bは、面方向において低熱伝導部12aに内包されてもよく、面方向において一部を端部に位置してそれ以外の領域を内包(面方向で外周の一部が低熱伝導部12aと接触)されてもよい。さらに、第1基板12が面方向に複数の高熱伝導部12bを有してもよい。
 なお、図1に示す熱電変換素子10は、第1基板12と第2基板16との間での温度差を生じ易い好ましい態様として、第1基板12および第2基板16は、共に、高熱伝導部12bおよび高熱伝導部16bを積層方向の外側に位置している。
 しかしながら、本発明は、これ以外にも、第1基板12および第2基板16が、共に、高熱伝導部12bおよび高熱伝導部16bを積層方向の内側に位置する構成でもよい。あるいは、第1基板12が高熱伝導部12bを積層方向の外側に位置し、第2基板16が高熱伝導部16bを積層方向の内側に位置するような構成でも良い。
 なお、高熱伝導部が金属等の導電性を有する材料で形成され、かつ、積層方向の内側に配置される場合には、熱電変換層14、電極20および電極24との絶縁性を確保できるように、間に絶縁層等を形成する必要が有る。
 熱電変換素子10において、第1基板12の上には、熱電変換層(発熱層)14を有する。熱電変換層14の上には、第2基板16を有する。なお、前述のように、両基板は、積層方向において、高熱伝導部を外側に位置する。従って、熱電変換層14は、第1基板12の高熱伝導部12bの非露出面の上に形成され、第2基板16は、高熱伝導部16bの非露出面を熱電変換層14に向けて積層される。
 図示例において、熱電変換層は、面方向の中心を、両基板の低熱伝導部と高熱伝導部との境界に一致して設けられる。
 熱電変換層14には、面方向に挟むように、電極20および電極24とからなる電極対が接続される。
 熱電変換素子は、例えば、熱源との接触などによる加熱によって温度差が生じることにより、この温度差に応じて、熱電変換層14の内部において、この方向のキャリア密度に差が生じ、電力が発生する。図示例においては、例えば、第1基板12側に熱源を設け、第1基板12(特に高熱伝導部12b)と第2基板16(特に高熱伝導部16b)との間に温度差を生じさせることにより、発電する。また、電極20および電極24に配線を接続することにより、加熱等によって発生した電力(電気エネルギー)が取り出される。
 本発明の熱電変換素子10において、熱電変換層14は、基本的に有機材料からなり、かつ、後述する、面方向が高くて厚さ方向が低い導電率の異方性を有するものであれば、公知の熱電変換材料を用いる各種の構成が、全て、利用可能である。
 熱電変換材料としては、具体的には、導電性高分子や導電性ナノ炭素材料等の有機材料用いることができる。
 導電性高分子としては、共役系の分子構造を有する高分子化合物(共役系高分子)が例示される。共役系の分子構造を有する高分子とは、高分子の主鎖上の炭素-炭素結合において、一重結合と二重結合とが交互に連なる構造を有している高分子である。
 本発明で用いる導電性高分子は、必ずしも高分子量化合物である必要はなく、オリゴマー化合物であってもよい。
 共役系高分子としては、具体的には、チオフェン系化合物、ピロール系化合物、アニリン系化合物、アセチレン系化合物、p-フェニレン系化合物、p-フェニレンビニレン系化合物、p-フェニレンエチニレン系化合物、p-フルオレニレンビニレン系化合物、ポリアセン系化合物、ポリフェナントレン系化合物、金属フタロシアニン系化合物、p-キシリレン系化合物、ビニレンスルフィド系化合物、m-フェニレン系化合物、ナフタレンビニレン系化合物、p-フェニレンオキシド系化合物、フェニレンスルフィド系化合物、フラン系化合物、セレノフェン系化合物、アゾ系化合物、金属錯体系化合物等が例示される。また、これらの化合物に置換基を導入した誘導体などをモノマーとし、このモノマーから誘導される繰り返し単位を有する共役系高分子も利用可能である。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 中でも、チオフェン系化合物は好適に利用可能であり、特に、ポリ(3,4-エチレンジオキシチオフェン)(poly(3,4-ethylenedioxythiophene)(PEDOT))は、好適に例示される。
 導電性ナノ炭素材料としては、具体的には、カーボンナノチューブ(以下、CNTとも言う)、カーボンナノファイバー、グラファイト、グラフェン、カーボンナノ粒子等が例示される。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 中でも、熱電特性がより良好となる理由から、CNTが好ましく利用される。
 CNTには、1枚の炭素膜(グラフェン・シート)が円筒状に巻かれた単層CNT、2枚のグラフェン・シートが同心円状に巻かれた2層CNT、及び複数のグラフェン・シートが同心円状に巻かれた多層CNTがある。本発明においては、単層CNT、2層CNT、多層CNTを各々単独で用いてもよく、2種以上を併せて用いてもよい。特に、導電性及び半導体特性において優れた性質を持つ単層CNTおよび2層CNTを用いることが好ましく、単層CNTを用いることがより好ましい。
 単層CNTは、半導体性のものであっても、金属性のものであってもよく、両者を併せて用いてもよい。半導体性CNTと金属性CNTとを両方を用いる場合、組成物中の両者の含有比率は、組成物の用途に応じて適宜調整することができる。また、CNTには金属などが内包されていてもよく、フラーレン等の分子が内包されたものを用いてもよい。
 本発明で用いるCNTの平均長さは特に限定されず、組成物の用途に応じて適宜選択することができる。具体的には、電極間距離にもよるが、製造容易性、成膜性、導電性等の観点から、CNTの平均長さが0.01~2000μmが好ましく、0.1~1000μmがより好ましく、1~1000μmが特に好ましい。
 本発明で用いるCNTの直径は特に限定されないが、耐久性、透明性、成膜性、導電性等の観点から、0.4~100nmが好ましく、50nm以下がより好ましく、15nm以下が特に好ましい。
 特に、単層CNTを用いる場合には、0.5~2.2nmが好ましく、は1.0~2.2nmがより好ましく、1.5~2.0nmが特に好ましい。
 得られた導電性組成物中に含まれるCNTには、欠陥のあるCNTが含まれていることがある。CNTの欠陥は、組成物の導電性を低下させるため、低減化することが好ましい。組成物中のCNTの欠陥の量は、ラマンスペクトルのG-バンドとD-バンドの比率G/Dで見積もることができる。G/D比が高いほど欠陥の量が少ないCNT材料であると推定できる。本発明においては、組成物のG/D比が10以上であるのが好ましく、30以上であるのがより好ましい。
 本発明においては、CNTを修飾あるいは処理したCNTも利用可能である。修飾あるいは処理方法としては、フェロセン誘導体や窒素置換フラーレン(アザフラーレン)を内包する方法、イオンドーピング法によりアルカリ金属(カリウム等)や金属元素(インジウム等)をCNTにドープする方法、真空中でCNTを加熱する方法等が例示される。
 CNTを利用する場合には、単層CNTや多層CNTの他に、カーボンナノホーン、カーボンナノコイル、カーボンナノビーズ、グラファイト、グラフェン、アモルファスカーボン等のナノカーボンが含まれてもよい。
 熱電変換層14にCNTを利用する場合には、ドーパントを含むのが好ましい。
 ドーパントも公知の各種のものが利用可能である。具体的には、アルカリ金属、ヒドラジン誘導体、金属水素化物(水素化ホウ素ナトリウム、水素化ホウ素テトラブチルアンモニウム、水素化リチウムアルミニウム等)、ポリエチレンイミン、ハロゲン(ヨウ素、臭素等)、ルイス酸(PF5、AsF5等)、プロトン酸(塩酸、硫酸等)、遷移金属ハロゲン化物(FeCl3、SnCl4等)、有機の電子受容性物質(テトラシアノキノジメタン(TCNQ)誘導体、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)誘導体等)等が好適に例示される。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 中でも、材料の安定性、CNTとの相溶性等の点で、ポリエチレンイミン、TCNQ誘導体やDDQ誘導体などの有機の電子受容性物質は好適に例示される。
 本発明の熱電変換素子10においては、樹脂材料(バインダ)に、前述のような熱電変換材料を分散してなる熱電変換層14が好適に利用される。
 中でも、樹脂材料に導電性ナノ炭素材料を分散してなる熱電変換層14は、より好適に例示される。その中でも、高い導電性が得られる等の点で、樹脂材料にCNTを分散してなる熱電変換層14は、特に好適に例示される。
 樹脂材料は、公知の各種の非導電性の樹脂材料(ポリマー)が利用可能である。
 具体的には、ビニル化合物、(メタ)アクリレート化合物、カーボネート化合物、エステル化合物、エポキシ化合物、シロキサン化合物、ゼラチン等の公知の各種の樹脂材料が利用可能である。
 より具体的には、ビニル化合物としては、ポリスチレン、ポリビニルナフタレン、ポリ酢酸ビニル、ポリビニルフェノール、ポリビニルブチラール等が例示される。(メタ)アクリレート化合物としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリフェノキシ(ポリ)エチレングリコール(メタ)アクリレート、ポリベンジル(メタ)アクリレート等が例示される。カーボネート化合物としては、ビスフェノールZ型ポリカーボネート、ビスフェノールC型ポリカーボネート等が例示される。エステル化合物としては、非晶性ポリエステルが例示される。
 好ましくは、ポリスチレン、ポリビニルブチラール、(メタ)アクリレート化合物、カーボネート化合物、エステル化合物が例示され、より好ましくは、ポリビニルブチラール、ポリフェノキシ(ポリ)エチレングリコール(メタ)アクリレート、ポリベンジル(メタ)アクリレート、非晶性ポリエステルが例示される。
 樹脂材料に熱電変換材料を分散してなる熱電変換層14において、熱電変換層14における樹脂材料と熱電変換材料との量比は、用いる材料や要求される熱電変換効率、印刷に影響する溶液の粘度や固形分濃度等に応じて、適宜、設定すればよい。
 本発明の熱電変換素子10において、熱電変換層14の別の構成として、主にCNTと界面活性剤とからなる熱電変換層も好適に利用される。
 熱電変換層14がCNTと界面活性剤とで構成されることにより、熱電変換層14の形成を、界面活性剤を添加した塗布組成物を用いて行うことができる。そのため、熱電変換層14の形成を、CNTを無理なく分散した塗布組成物で行うことができる。その結果、長くて欠陥が少ないCNTを多く含む熱電変換層14によって、良好な熱電変換性能が得られる。
 界面活性剤は、CNTを分散させる機能を有するものであれば、公知の界面活性剤を使用することができる。具体的には、界面活性剤は、水、極性溶媒、水と極性溶媒との混合物に溶解し、CNTを吸着する基を有するものであれば、各種の界面活性剤が利用可能である。
 従って、界面活性剤は、イオン性でも非イオン性でもよい。イオン性の界面活性剤は、カチオン性、アニオン性および両性のいずれでもよい。
 一例として、アニオン性界面活性剤としては、ドデシルベンゼンスルホン酸等のアルキルベンゼンスルホン酸塩、ドデシルフェニルエーテルスルホン酸塩等の芳香族スルホン酸系界面活性剤、モノソープ系アニオン性界面活性剤、エーテルサルフェート系界面活性剤、フォスフェート系界面活性剤およびでデオキシコール酸ナトリウムやコール酸ナトリウム等のカルボン酸系界面活性剤、カルボキシメチルセルロースおよびその塩(ナトリウム塩、アンモニウム塩等)、ポリスチレンスルホン酸アンモニウム塩、ポリスチレンスルホン酸ナトリウム塩等の水溶性ポリマーなどが例示される。
 カチオン性界面活性剤としては、アルキルアミン塩、第四級アンモニウム塩などが例示される。両性界面活性剤としては、アルキルベタイン系界面活性剤、アミンオキサイド系界面活性剤などが例示される。
 非イオン性界面活性剤としては、ソルビタン脂肪酸エステルなどの糖エステル系界面活性剤、ポリオキシエチレン樹脂酸エステルどの脂肪酸エステル系界面活性剤、ポリオキシエチレンアルキルエーテルなどのエーテル系界面活性剤などが例示される。
 中でも、イオン性の界面活性剤は好適に利用され、その中でも、コール酸塩やデオキシコール酸塩は好適に利用される。
 主にCNTと界面活性剤とからなる熱電変換層14においては、界面活性剤/CNTの質量比が5以下であるのが好ましく、2以下であるのがより好ましい。
 界面活性剤/CNTの質量比を5以下とすることにより、より高い熱電変換性能が得られる等の点で好ましい。
 主にCNTと界面活性剤とからなる熱電変換層14は、必要に応じて、消泡剤、乾燥防止剤、防かび剤等を有してもよい。
 なお、熱電変換層14が、CNTおよび界面活性剤以外のものを含有する場合には、その含有量は20質量%以下であるのが好ましく、5質量%以下であるのがより好ましい。
 本発明の熱電変換素子10において、熱電変換層14の厚さ、面方向の大きさ、基板に対する面方向の面積率等は、熱電変換層14の形成材料、熱電変換素子10の大きさ等に応じて、適宜、設定すればよい。
 このような熱電変換層14には、面方向に挟持するように、電極20および電極24が接続される。熱電変換素子10において、電極20および電極24は、熱電変換層14の端面に当接して、熱電変換層14に接続される。
 電極20および電極24は、必要な導電性を有するものであれば、各種の材料で形成可能である。
 具体的には、銅、銀、金、白金、ニッケル、クロム、銅合金などの金属材料、酸化インジウムスズ(ITO)や酸化亜鉛(ZnO)等の各種のデバイスで透明電極として利用されている材料等が例示される。中でも、銅、金、白金、ニッケル、銅合金等は好ましく例示され、金、白金、ニッケルは、より好ましく例示される。
 電極20および電極24の厚さや大きさ等も、熱電変換層14の厚さや、熱電変換素子10の大きさ等に応じて、適宜、設定すればよい。
 電極20および電極24が金である場合には、電極20および電極24と、熱電変換層14との間に、電子供与性材料や電子受容性材料からなるバッファ層を有するのが好ましい。バッファ層は、電極20および電極24のいずれか一方のみに対応して設けてもよいが、両電極に対応して設けるのが好ましい。
 このようなバッファ層を有することにより、電極界面での抵抗が小さくなり、良好な熱電変換性能が得られる等の点で好ましい。
 バッファ層としては、各種の電子供与性有機材料が利用可能である。
 具体的には、低分子材料では、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)や4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)等の芳香族ジアミン化合物、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4’,4”トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(m-MTDATA)、ポルフィリン、テトラフェニルポルフィリン銅、フタロシアニン、銅フタロシアニン、チタニウムフタロシアニンオキサイド等のポルフィリン化合物、トリアゾール誘導体、オキサジザゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、シラザン誘導体等が例示される。
 また、高分子材料では、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、ジアセチレン等の重合体や、その誘導体が例示される。
 なお、バッファ層としては、電子供与性化合物でなくとも、十分なホール輸送性を有する化合物であれば用いることは可能である。
 具体的には、特開2008-72090号公報の[0083]~[0089]、特開2011-176259号公報の[0043]~[0063]、特開2011-228614号公報の[0121]~[0148]、特開2011-228615号公報の[0108]~[0156]に記載される化合物等が例示される。
 また、バッファ層としては、各種の電子供与性無機材料も利用可能である。
 電子供与性の無機材料としては、酸化カルシウム、酸化クロム、酸化クロム銅、酸化マンガン、酸化コバルト、酸化ニッケル、酸化銅、酸化ガリウム銅、酸化ストロンチウム銅、酸化ニオブ、酸化モリブデン、酸化インジウム銅、酸化インジウム銀、酸化イリジウム等が例示される。
 バッファ層には、電子受容性有機材料を用いてもよい。
 電子受容性材料としては、1,3-ビス(4-tert-ブチルフェニル-1,3,4-オキサジアゾリル)フェニレン(OXD-7)等のオキサジアゾール誘導体、テトラシアノキノジメタン(TCNQ)誘導体、アントラキノジメタン誘導体、ジフェニルキノン誘導体、バソクプロイン、バソフェナントロリン、及びこれらの誘導体、トリアゾール化合物、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、ビス(4-メチル-8-キノリナート)アルミニウム錯体、ジスチリルアリーレン誘導体、シロール化合物等が例示される。
 また、電子受容性有機材料でなくとも、十分な電子輸送性を有する材料ならば使用することは可能である。ポルフィリン系化合物や、DCM(4-ジシアノメチレン-2-メチル-6-(4-(ジメチルアミノスチリル))-4Hピラン)等のスチリル系化合物、4Hピラン系化合物を用いることができる。具体的には特開2008-72090号公報の[0073]~[0078]に記載される化合物等が例示される。
 バッファ層の厚さ(熱電変換層と電極との間の厚さ)は、バッファ層の形成材料に応じて、十分な効果を得られる厚さを、適宜、設定すればよい。具体的には、バッファ層の厚さは、0.05~100nmが好ましく、0.5~10nmがより好ましい。
 本発明の熱電変換素子10において、熱電変換層14は、面方向と厚さ方向とで導電率に異方性を有し、厚さ方向よりも、面方向の方が導電率が高い。
 また、本発明の熱電変換素子10において、第1基板12の高熱伝導部12bと、第2基板16が高熱伝導部16bとは、面方向において完全に重複しない(基板面と直交する方向から見た際に、完全に重複しない)。
 前述のように、第1基板12および第2基板16は、共に、一方の面の半分が低熱伝導部で、残りの半分が高熱伝導部となる構成を有する。図示例においては、面方向に、電極20と電極24とによる通電方向(両電極の離間方向)に対面して端部を当接するように、第1基板12の高熱伝導部12bと第2基板16が高熱伝導部16bとが位置される。
 本発明の熱電変換素子10は、このような構成を有することにより、高い効率で熱電変換による発電を行うことができる。
 周知のように、熱電変換素子は、熱源との接触などによる加熱によって温度差が生じることにより、この温度差に応じて、熱電変換層の内部で、温度差の方向のキャリア密度に差が生じ、電力が発生する。図示例においては、例えば、第1基板12側に熱源を設けて、温度差を生じさせることにより、発電する。
 本発明の熱電変換素子10は、第1基板12は高熱伝導部12bを、第2基板16は高熱伝導部16bを、それぞれ有し、かつ、高熱伝導部12bと高熱伝導部16bとは、重複せずに面方向に異なる位置にされる。従って、例えば、第1基板12側に熱源を設けると、図1に矢印xで概念的に示すように、高熱伝導部12bと高熱伝導部16bとの間で、熱電変換層14の面方向に温度差が生じる(熱電変換層14の面方向に熱が流れる)。
 本発明の熱電変換素子10は、熱電変換層14が熱伝導率が低い有機材料で形成されるため、面方向(面内)の長い距離の温度差によって、効率の良い発電が可能である。
 ここで、本発明者の検討によれば、熱電変換層14の面方向に温度差を生じさせる熱電変換素子10においては、より効率のよい熱電変換による発電を行うためには、熱電変換層14の導電率特性が重要である。
 すなわち、熱電変換層14の面方向に温度差を生じさせる熱電変換素子10においては、熱電変換層14の導電率を、厚さ方向より面方向を大きくすることにより、熱電変換層14において温度差が生じる方向と、導電率が高い方向すなわち発生した電気の通電方向とを、一致でき、発電効率を向上できる。
 従って、本発明の熱電変換素子10によれば、有機材料からなる熱伝導率の低い熱電変換層14、面方向の長い距離の温度差、および、熱電変換層14における温度差の方向と通電方向との一致の相乗効果によって、非常に効率がよい熱電変換による発電が可能である。
 本発明の熱電変換素子10において、熱電変換層14の導電率の異方性すなわち熱電変換層14の面方向の導電率(σ//[S/cm])と、厚さ方向の導電率(σ⊥[S/cm])との差は、大きいほうが好ましい。
 具体的には、導電率の比が、面方向:厚さ方向(σ//:σ⊥)>10:1であるのが好ましく、さらに、面方向:厚さ方向>100:1であるのがより好ましく、特に、面方向:厚さ方向>1000:1であるのが好ましい。
 熱電変換層14の導電率の異方性を上記範囲とすることにより、前述の温度差の方向と通電方向とを一致させることによる発電効率の向上効果を、より好適に得られる。
 図示例の熱電変換素子10は、電極20と電極24とによる通電方向に対面して当接するように、第1基板12の高熱伝導部12bと、第2基板16が高熱伝導部16bとが、電極20と電極24(電極対)との離間方向で、面方向の異なる位置に位置される。
 本発明の熱電変換素子は、これ以外にも、第1基板の高熱伝導部と、第2基板の高熱伝導部とが、面方向において完全に重複しなければ(基板面と直交する方向から見た際に、完全に重複しなければ)、各種の構成が利用可能である。
 例えば、図1に示す例において、第1基板12の高熱伝導部12bを図中右側に移動し、第2基板16の高熱伝導部16bを図中左側に移動して、面方向において、両高熱伝導部を、電極20と電極24との離間方向に離間させてもよい。具体的には、第1基板12の高熱伝導部12bと第2基板16の高熱伝導部16bとは、面方向において、電極20と電極24との離間方向における熱電変換層14の大きさに対して、電極20と電極24との離間方向に10~90%離間させるのが好ましく、10~50%離間させるのがより好ましい。
 あるいは、高熱伝導部が離間する構成において、高熱伝導部12bおよび/または高熱伝導部16bに、他方に向かう凸部を設け、面方向において、両基板の高熱伝導部一部重複するようにしてもよい。
 逆に、図1に示す例において、第1基板12の高熱伝導部12bを図中左側に移動し、第2基板16の高熱伝導部16bを図中右側に移動することによって、両基板の高熱伝導部を、面方向で重複させてもよい。
 また、本発明においては、これ以外にも、第1基板の高熱伝導部と、第2基板の高熱伝導部とが、面方向において完全に重複しなければ、各種の構成が利用可能である。
 例えば、第1基板に円形の高熱伝導部を形成し、第2基板に直径と一辺の長さとが前記円形と一致する正方形の高熱伝導部を形成して、両高熱伝導部の中心を面方向で一致させるように、両基板を配置してもよい。この構成でも、距離は短いが、両高熱伝導部は、端部(周辺)の位置が面方向で異なるので、熱電変換層には面方向の温度差が生じ、厚さ方向に温度差を生じさせる熱電変換素子に比して、効率の良い発電が可能である。
 図2(A)~図2(C)に、本発明の熱電変換素子の別の例を概念的に示す。
 なお、前述の図1(A)~図1(C)と同様、図2(A)は上面図、図1(B)は正面図、図1(C)は底面図である。
 図2(A)~図2(C)に示す熱電変換素子30は、基本的に、第1基板32と、密着層34と、熱電変換層36と、ガスバリア層38と、粘着層40と、第2基板42と、電極46および電極48とを有して構成される。
 具体的には、第1基板32の上に密着層34を有し、密着層34の上に熱電変換層36、電極46および電極48を有し、熱電変換層36、電極46および電極48を覆ってガスバリア層38を有し、ガスバリア層38の上に粘着層40を有し、粘着層40の上に第2基板42を有する。電極46および電極48(電極対)は、先の例と同様、面方向に熱電変換層36を挟むように設けられる。
 この熱電変換素子30は、密着層34、ガスバリア層38および粘着層40を有し、さらに、基板や電極の形状が異なる以外は、基本的に、前述の熱電変換素子10と同様のものである。
 熱電変換素子10と同様、第1基板32は、低熱伝導部32aおよび高熱伝導部32bを有する。また、第2基板42も、低熱伝導部42aおよび高熱伝導部42bを有する。第1基板32および第2基板42も、配置位置や向き等が異なる以外は、同じ構成を有するので、以下の説明は、第1基板32を代表例として行う。
 前述の第1基板12は、矩形の板状の低熱伝導部12aの一部に凹部を形成して、この凹部に高熱伝導部12bを組み込んだ構成を有する。
 これに対し、熱電変換素子30の第1基板32(第2基板42)は、矩形の板状(シート状)の低熱伝導部32aの半面を覆うように、低熱伝導部32aの表面に高熱伝導部32bを積層してなる構成を有する。第1基板32は、この形状の違い以外は、基本的に、前述の第1基板12と同様のものである。
 第1基板32の高熱伝導部32bを形成されていない側の表面には、密着層34が形成される。
 密着層34は、主に、第1基板32と、電極46および電極48との密着性を得るために設けられる。
 密着層34は、第1基板32(低熱伝導部32a)、電極46および電極48の形成材料に応じて、両電極と第1基板32との密着性を確保できるものであれば、各種のものが利用可能である。
 一例として、電極46および電極48が金、銀、銅等である場合には、密着層34としては、酸化珪素(SiO2)、酸化アルミニウム(Al23)、酸化チタン(TiO2)、クロム、チタン等からなる層が例示される。
 密着層34を酸化珪素等で形成した場合には、第1基板32を通過した水分から熱電変換層36を保護する、ガスバリア層としての作用も得ることができる。
 密着層34の厚さは、密着層34の形成材料等に応じて、目的とする電極46および電極48の密着力が得られる厚さを、適宜、設定すればよい。
 具体的には、10~1000nmが好ましく、50~200nmがより好ましい。
 密着層34の厚さを10nm以上、特に50nm以上とすることにより、良好な電極46および電極48と第1基板32との密着性を得られる等の点で好ましい。
 密着層34の厚さを1000nm以下、特に200nm以下とすることにより、熱電変換素子30(熱電変換モジュール)の薄膜化を計れる、可撓性の良好な熱電変換素子30を得ることができる、熱電変換層36への熱流が増加し、熱電変換素子30の熱電変換性能を高めることができる等の点で好ましい。
 密着層34の上には、熱電変換層36、電極46および電極48が形成される。
 熱電変換層36は、前述の熱電変換層14と同様のものである。電極46および電極48は、形状が異なる以外には、基本的に、前述の電極20および電極24と同様のものである。
 電極46および電極48は、熱電変換層36を面方向で挟むように設けられる。
 ここで、熱電変換素子30においては、電極46および電極48は、熱電変換層36の面方向の端面に当接するのみならず、端面から連続して、熱電変換層36の上面に至って、上面の端部近傍を覆うように形成される。すなわち、電極46および電極48は、密着層34の表面から立ち上がって、熱電変換層36の端面から、熱電変換層36の上面に至って、熱電変換層36の上面の端部近傍を覆うまで連続するように、形成される。
 本発明の熱電変換素子30において、熱電変換層36は、厚さ方向の導電率よりも面方向の導電率が高い。そのため、熱電変換層36は、端面からの電流が入り難く、かつ、取り出し難い。
 これに対して、図2(B)に示すように、電極46および電極48を、熱電変換層36の端面から熱電変換層36の上面の端部近傍に到るように形成することにより、熱電変換層36の端面の厚さ方向の全域を覆うようにして、端面に電流を入り易くし、かつ、端面から取り出し易くして、熱電変換性能を向上できる。また、熱電変換層36と電極46および電極48との接触面積も増やせるので、界面での抵抗を減らして、この点でも、熱電変換性能を向上できる。なお、電極同士による短絡が無ければ、熱電変換層36の上面を被覆するように電極を形成してもよい。
 熱電変換素子30は、熱電変換層36、電極46および電極48を覆って、ガスバリア層38を有する。
 このガスバリア層38を有することにより、第2基板42を通過した水分等によって、熱電変換層36や電極46および電極48が劣化することを防止できる。また、このガスバリア層38を有することにより、熱電変換層36、電極46および電極48を上から押さえ付けて確実な密着を図れると共に、熱電変換素子30(熱電変換モジュール)を折り曲げた際の熱電変換層36、電極46および電極48の損傷も防止できる。
 ガスバリア層38は、ガスバリア性を発現する各種の材料で形成可能である。
 一例として、酸化アルミニウム、酸化マグネシウム、酸化タンタル、酸化ジルコニウム、酸化チタン、酸化インジウムスズ(ITO)などの金属酸化物; 窒化アルミニウムなどの金属窒化物; 炭化アルミニウムなどの金属炭化物; 酸化珪素、酸化窒化珪素、酸炭化珪素、酸化窒化炭化珪素などの珪素酸化物; 窒化珪素、窒化炭化珪素などの珪素窒化物; 炭化珪素等の珪素炭化物; これらの水素化物; これら2種以上の混合物; および、これらの水素含有物等の、無機化合物からなる膜が、好適に例示される。
 特に、酸化珪素、窒化珪素、酸窒化珪素、酸化アルミニウムは、優れたガスバリア性を発現できる点で、好適に利用される。
 ガスバリア層38の厚さは、ガスバリア層38の形成材料等に応じて、目的とするガスバリア性能を得られる厚さを、適宜、設定すればよい。
 具体的には、10~1000nmが好ましく、50~200nmがより好ましい。
 ガスバリア層38の厚さを10nm以上、特に50nm以上とすることにより、良好なガスバリア性を得られる等の点で好ましい。
 ガスバリア層38の厚さを1000nm以下、特に200nm以下とすることにより、熱電変換素子30(熱電変換モジュール)の薄膜化を計れる、可撓性の良好な熱電変換素子30を得ることができる等の点で好ましい。
 ガスバリア層38の上には、粘着層40が形成される。粘着層40は、十分な密着力で第2基板42を貼着するために設けられる。
 粘着層18の形成材料は、ガスバリア層38(ガスバリア層38が無い場合には、電極および熱電変換層36)および第2基板42(低熱伝導部20a)の形成材料に応じて、両者を貼着可能なものが、各種、利用可能である。
 具体的には、アクリル樹脂、ウレタン樹脂、シリコーン樹脂、エポキシ樹脂、ゴム、EVA、α-オレフィンポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ゼラチン、デンプン等が例示される。また、粘着層40は、市販の両面テープや粘着フィルムを利用して形成してもよい。
 粘着層40の厚さは、粘着層40の形成材料、熱電変換層36に起因する段差の大きさ等に応じて、ガスバリア層38および第2基板42とを十分な密着力で貼着できる厚さを、適宜、設定すればよい。
 具体的には、5~100μmが好ましく、5~50μmがより好ましい。
 粘着層40の厚さを5μm以上とすることにより、熱電変換層36に起因する段差を十分に埋めることができる、良好な密着性が得られる等の点で好ましい。
 また、粘着層40の厚さを100μm以下、特に50μm以下とすることにより、熱電変換素子30(熱電変換モジュール)の薄膜化を計れる、可撓性の良好な熱電変換素子30を得ることができる、粘着層40の熱抵抗を小さくでき、より良好な熱電変換性能が得られる等の点で好ましい。
 なお、必要に応じて、密着性を向上するために、ガスバリア層38と粘着層40との界面、および、粘着層40と第2基板42との界面の1以上において、界面を形成する表面の少なくとも1面に、プラズマ処理、UVオゾン処理、電子線照射処理等の公知の表面処理を施して、表面の改質や清浄化を行ってもよい。
 粘着層40の上には、全面が低熱伝導部20aである面を向けて、第2基板42が貼着されて、熱電変換素子30が構成される。
 図1(A)~図1(C)、および、図2(A)~図2(C)に示す例においては、熱電変換層14および熱電変換層14は、矩形の板状物(直方体状)である。しかしながら、本発明の熱電変換素子において、熱電変換層は、各種の形状が利用可能である。
 例えば、図3(A)に熱電変換素子10を例にして概念的に示すように、四角錐台状の熱電変換層14aであってもよい。あるいは、熱電変換層は、円柱状、四角以外の角柱状、円錐台、角錐台、不定形状等であってもよい。
 本発明の熱電変換素子においては、熱電変換層は、図3(A)に示す熱電変換層14aに示す四角錐台状や、円錐台状のように、面方向の端面がテーパ状であるのが好ましい。すなわち、熱電変換層の面方向の端面は、熱電変換層の中心に向かって傾斜するのが好ましい。
 前述のように、本発明の熱電変換素子10の熱電変換層は、厚さ方向の導電率よりも面方向の導電率が高い。そのため、熱電変換層は、端面からの電流が入り難く、かつ、取り出し難い。
 これに対して、図3(A)に示す熱電変換層14aのように、面方向の端面をテーパ状にすることにより、熱電変換層14aと電極20および24との接触面積を多くできる。その結果、界面での抵抗を減らして、端面に電流を入り易くし、かつ、端面から取り出し易くして、熱電変換性能を向上できる。
 なお、このような面方向の端面がテーパ状の熱電変換層14aであっても、電極は、図2(B)に示される例と同様に、熱電変換層14aの上面の一部を覆う構成を有するのが好ましい。
 図4(A)~図4(D)に、図1(A)~図1(C)に示す熱電変換素子10を、複数、直列に接続してなる熱電変換モジュール(発電装置)の一例を示す。なお、図4(A)~図4(C)は上面図で、図4(D)は正面図である。
 なお、図2(A)~図2(C)に示す熱電変換素子30でも、同様にして、熱電変換モジュールを作製できる。
 本例において、第1基板12Aおよび第2基板16Aは、矩形板状の低熱伝導材料に、長手方向に延在する溝を、延在方向と直交する方向に溝の幅と等間隔で形成して、この溝に高熱伝導を組み込んでなる構成を有する。すなわち、両基板は、一方の面に、一方向に延在する低熱伝導部12aと高熱伝導部12bとが、延在方向と直交する方向に等間隔で交互に形成された構成を有する(図4(A)、図4(C)および図4(D)参照)。
 図4(B)および図4(C)に概念的に示すように、熱電変換層14は矩形の面形状を有し、この第1基板12Aの高熱伝導部12bが露出しない側の表面(図4(D)を図中上下方向に表裏反転した状態)に、低熱伝導部12aと高熱伝導部12bとの境界と中心とを面方向で一致させて、4×4(計16個)で等間隔に形成される。
 また、各熱電変換層14は、電極20(電極24)および接続配線26よって、直列に接続される。具体的には、図4(B)に示すように、図中横方向の熱電変換層14の配列において、電極20が、各熱電変換層14を横方向に挟むように設けられる。これにより、各熱電変換層14は、電極20によって横方向に接続される。加えて、図中横方向の熱電変換層14の配列において、最上段の列の左端の電極20と上から2列目の右端の電極とが接続配線26で接続され、上から2列目の左端の電極20と上から3列目の右端の電極20とが接続配線26で接続され、さらに、上から3列目の左端の電極20と上から4列目の右端の電極20とが接続配線26で接続される。
 これにより、4×4で配列された16個の熱電変換素子が、図中横方向に一方向に向かう順番で、直列に接続される。
 さらに、図4(A)に概念的に示すように、熱電変換層14および電極20の上に、高熱伝導部16bが露出しない側を下方にして(熱電変換層14に対面=図4(D)を面方向(横方向)に180°回転した状態)、かつ、低熱伝導部12aと高熱伝導部12bとの境界を第1基板12Aと一致させて、第2基板16Aが積層される。
 従って、第1基板12Aの低熱伝導部12aと第2基板16Aの高熱伝導部16bとが面方向に一致して対面し、第1基板12Aの高熱伝導部12bと第2基板16Aの低熱伝導部16aとが面方向に一致して対面する。
 これにより、本発明の熱電変換素子10を16個、直列に接続してなる、熱電変換モジュールが構成される。
 以下、図1(A)~図1(C)に示す熱電変換素子10の製造方法の一例を説明することにより、本発明の熱電変換素子の製造方法について詳細に説明する。
 まず、分散媒(有機溶媒もしくは水)に、樹脂材料となる有機材料を添加し、さらに、CNT等の熱電変換材料を分散してなる、熱電変換層14となる塗布組成物を調製する。もしくは、水に、CNTと界面活性剤とを添加して、分散(溶解)してなる塗布組成物を調製する。
 この分散および塗布組成物の調製は、高速旋回薄膜分散法を利用して行うのが好ましい。
 高速旋回薄膜分散法とは、分散対象物を含む組成物を遠心力により装置内面に薄膜円筒状に押し付けた状態で高速回転させて、遠心力および装置内面との速度差により発生する摺接の応力を分散対象物を含有する組成物に作用させることにより、薄膜円筒状の組成物内で分散対象物を分散させる分散方法である。
 具体的には、まず、CNT等の熱電変換材料と、樹脂材料(分散媒(バインダ))とを予備混合して、予備混合物を調製する。もしくは、分散媒(分散剤)としての水にCNTおよび界面活性剤を添加して、予備混合して、予備混合物を調製する。水は、純水(イオン交換水)もしくは超純水を用いるのが好ましい。
 この予備混合物には、必要に応じて、分散剤、非共役高分子、ドーパント、熱励起アシスト剤等の各種の成分を添加してもよい。
 予備混合は、通常の混合装置を用いて行えばよい。
 次いで、高速旋回薄膜分散法によって予備混合物を処理して、樹脂材料にCNT等の熱電変換材料を分散してなる、熱電変換層14となる塗布組成物を調製する。もしくは、高速旋回薄膜分散法によって予備混合物を処理して、水にCNTおよび界面活性剤を分散(溶解)してなる、熱電変換層14となる塗布組成物を調製する。
 高速旋回薄膜分散法は、一例として、断面が円形の管状外套と、管状外套内に管状外套と同心に回転可能に配置された管状の撹拌羽根と、撹拌羽根の下方に開口する注入管とを備え、撹拌羽根が、管状外套の内周面にわずかな間隔を開けて面する外周面と、撹拌羽根の管状壁に厚さ方向に貫通する多数の貫通孔を有する装置を用いて、実施できる。このような装置としては、例えば、薄膜旋回型高速ミキサー「フィルミックス」(登録商標)シリーズ(プライミクス社製)が好適に例示される。
 このような装置を用いることで、CNT等の熱電変換材料を遠心力により装置内面に薄膜円筒状に押し付けた状態で予備高速回転させて、遠心力および装置内面との速度差により発生する摺接の応力を予備混合物に作用させることにより、薄膜円筒状の予備混合物内で熱電変換材料を分散させて、熱電変換層14となる塗布組成物を調製できる。
 このような高速旋回薄膜分散法によれば、CNTを切断することなく、樹脂材料に分散できる。そのため、高速旋回薄膜分散法によって調製した塗布組成物を用いて、熱電変換層14を形成することにより、長さが1μm以上のCNTが分散された熱電変換層14を形成できる。これにより、導電率の比が、面方向:厚さ方向>10:1、好ましくは面方向:厚さ方向>100:1、より好ましくは面方向:厚さ方向>1000:1の熱電変換層14を形成できる。
 一方で、低熱伝導部12aおよび高熱伝導部12bを有する第1基板12(12A)、および、低熱伝導部16aおよび高熱伝導部16bを有する第2基板16(16A)を用意する。
 第1基板12および第2基板16は、市販品を利用すればよい。あるいは、フォトリソグラフィー、エッチング、成膜技術等を利用して、公知の方法で第1基板12および第2基板16を作製してもよい。
 なお、図2(A)~図2(C)に示されるような第1基板32(第2基板42)は、一例として、低熱伝導部32aとなるシート状物に、シート状(もしくは帯状)の高熱伝導部32bを貼着することで、低熱伝導部32aに高熱伝導部32bを積層してなる第1基板32を作製すればよい。あるいは、低熱伝導部32aとなるシート状物の全面に高熱伝導部32bとなる層を形成してなるシート状物を用意し、この高熱伝導部32bとなる層をエッチングして不要な部分を除去することにより、低熱伝導部32aに高熱伝導部32bを積層してなる第1基板32を作製してもよい。
 第1基板12の高熱伝導部12bが形成されていない側の表面に、調製した熱電変換層14となる塗布組成物を、熱電変換層14に応じてパターンニングして塗布する。塗布組成物の塗布は、マスクを使う方法、刷法等、公知の方法で行えばよい。
 塗布組成物を塗布したら、樹脂材料に応じた方法で塗布組成物を乾燥、硬化して、熱電変換層14を形成する。なお、必要に応じて、塗布組成物を乾燥した後に、紫外線照射等による塗布組成物(樹脂材料)の硬化を行ってもよい。
 あるいは、第1基板12の高熱伝導部12bが形成されていない側の表面全面に、調製した熱電変換層14となる塗布組成物を塗布し、乾燥した後、エッチング等によって、熱電変換層14をパターン形成してもよい。
 本発明においては、印刷によって、熱電変換層14をパターン形成するのが好ましい。
 印刷によって熱電変換層をパターン形成することにより、図3(A)に示すような、面方向の端面がテーパ状の熱電変換層14aを簡易かつ好適に形成できる。
 印刷方法は、スクリーン印刷、メタルマスク印刷、ステンシル印刷等、公知の各種の印刷法が利用可能である。
 次いで、熱電変換層14を面方向で挟むように、電極20および電極24を形成する。
 電極20および電極24の形成は、電極20および電極24の形成材料等に応じて、公知の方法で行えばよい。
 さらに、用意した第2基板16を、高熱伝導部16bが形成されていない側を向けて、熱電変換層14に貼着して、熱電変換素子10を作製する。
 なお、熱電変換層14となる塗布組成物を第1基板12に塗布した後、半硬化した状態で、電極20および電極24を形成し、さらに第2基板16を積層した後、塗布組成物を完全に硬化して、熱電変換素子10を作製してもよい。
 以上の例は、熱電変換層14を形成した後に、電極20および電極24を形成しているが、熱電変換層14と電極20および24との形成順は、逆であってもよい。
 この場合には、図3(B)に概念的に示す熱電変換層14bのように、熱電変換層の端部が、電極20および電極24の端部を覆うような構成でもよい。
 なお、図2(A)~図2(C)に示す熱電変換素子30を作製する場合には、熱電変換層36の形成に先立ち、まず、第1基板32の高熱伝導部32bが形成されていない側の表面(低熱伝導部32aのみの面)に密着層34を形成する。
 密着層34の形成は、密着層34の形成材料に応じて、公知の方法で行えばよい。例えば、密着層34が酸化珪素からなるものである場合には、EB(Electron Beam)蒸着法やスパッタリングによって、密着層34を形成すればよい。
 次いで、先と同様にして、熱電変換層36、電極46および電極48を形成した後、ガスバリア層38を形成する。ガスバリア層38も、公知の方法で形成すればよい。例えば、ガスバリア層38が酸化珪素からなるものである場合には、先と同様に、EB蒸着法やスパッタリングによって、ガスバリア層38を形成すればよい。
 次いで、ガスバリア層38の上に、粘着層40を形成する。粘着層40も、粘着層の形成材料に応じて、塗布法等の公知の方法で形成すればよい。あるいは、両面粘着テープを用いて、粘着層40を形成してもよい。
 最後に、全面が低熱伝導部42a側の面を粘着層40に向けて、第2基板42を粘着層40に貼着して、熱電変換素子30(熱電変換モジュール)とする。
 本発明の熱電変換素子30(熱電変換モジュール)を熱源に接触あるいは接着し、発電する際には、熱電接着シートおよび/または放熱フィンを併用してもよい。
 モジュールの加熱側もしくは冷却側に貼付して用いられる熱伝導接着シートとしては特に限定はないが、市販されている放熱シートを用いることができる。一例として、信越化学工業社製のTC-50TX2、住友スリーエム社製のハイパーソフト放熱材5580H、電気化学工業社製のBFG20A、日東電工社製のTR5912F等が例示される。なお、耐熱性の観点から、シリコーン系粘着剤からなる熱伝導接着シートが好ましい。
 熱伝導接着シートを用いることで、(1)熱源との密着性が向上し、モジュールの加熱側の表面温度が高くなる、(2)冷却効率が向上し、モジュールの冷却側の表面温度を低くできるなどの効果により、発電量を高くすることができる。
 また、熱電変換素子30(熱電変換モジュール)の冷却側の表面には、ステンレス、銅、アルミ等の公知の材料からなる放熱フィンやヒートシンクを設けてもよい。
 放熱フィンを用いることで、熱電変換素子の低温側をより好適に冷却することができ、温度差が大きくなり、熱電効率がより向上する点で好ましい。
 本発明の熱電変換素子は、各種の用途に利用可能である。
 一例として、温泉熱発電機、太陽熱発電機、廃熱発電機などの発電機や、腕時計用電源、半導体駆動電源、小型センサ用電源などの各種装置(デバイス)の電源等、様々な発電用途が例示される。また、本発明の熱電変換素子の用途としては、発電用途以外にも、感熱センサや熱電対などのセンサー素子用途も例示される。
 以上、本発明の熱電変換素子および熱電変換素子の製造方法について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
 以下、本発明の具体的実施例を挙げて、本発明の熱電変換素子について、より詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。
 [実施例1]
 <熱電変換層となる塗布組成物の調製>
 <<樹脂の合成>>
 250mL容の3つ口フラスコに、メチルメタクリレートを100g、チオプロピオン酸を0.35g投入して、80℃に加熱した。加熱後にAIBN(アゾビスイソブチロニトリル、和光純薬社製)を17mg投入して、40分反応させ、その後、繰り返して2回、AIBNを17mg投入して、40分反応させた。その後、テトラヒドロフランを10g投入して、反応を終了させた。反応液を再沈殿させ、中間体Aを60g得た。
 250mL容の3つ口フラスコに、得られた中間体Aを15g、キシレンを30g、グリシジルメタクリレートを0.28g、ハイドロキノンを0.01g、ジメチルラウリルアミンを0.01g投入して、リフラックス条件下で5時間反応させた。その後、反応液を再沈殿させ、ポリメチルメタクリレート(PMMA)のマクロモノマーを10g得た。
 300mL容の3つ口フラスコ中に、2-ヒドロキシエチルメタクリレートを0.27g、上記で合成したPMMAのマクロモノマーを4g、ジメチルアセトアミドを8g投入して、80℃に加熱した。その後、重合開始剤(和光純薬社製、V-601)を0.0127g投入して、2時間反応させた。さらに、同じ重合開始剤を0.0127g投入して2時間反応させる工程を、2度繰り返した。
 得られた反応液を再沈殿させて、下記式で示される樹脂を3g得た。
Figure JPOXMLDOC01-appb-C000001
 <<塗布組成物の調製>>
 単層CNT(KH Chemical社製、HP、CNTの平均長さ5μm以上)と、合成した樹脂とを、質量比がCNT/樹脂成分の比で25/75となるように、20mlのo-ジクロロベンゼンに加えて調整した。
 この溶液を、メカニカルホモジナイザー(エスエムテー社製、HIGH-FLEX HOMOGENIZER HF93)を用いて、20℃で15分間、混合して、予備混合物を得た。
 得られた予備混合物を、薄膜旋回型高速ミキサー「フィルミックス40-40型」(プライミクス社製)を用いて、10℃の恒温層中、周速40m/secで5分間、高速旋回薄膜分散法で分散処理して、熱電変換層14となる塗布組成物を調製した。
  <<導電率およびゼーベック係数の測定>>
 この塗布組成物を、厚さ25μmのプラスチックフィルムに塗布して、乾燥することで、厚さ100μmの熱電変換層を形成した。
 走査型電子顕微鏡(SEM)によって確認したところ、熱電変換層に含まれる単層CNTは、長さが1μmを十分に超えていた。
 形成した熱電変換層の面方向の導電率(σ//)、厚さ方向の導電率(σ/⊥)、および、ゼーベック係数S(温度差ΔT=10K)を測定した。
 その結果、面方向の導電率は123[S/cm]、厚さ方向の導電率は11[S/cm]、ゼーベック係数は35[μV/K]であった。
 <熱電変換素子の作製>
 図4(A)、図4(C)および図4(D)に概念的に示すような、ポリイミドからなる低熱伝導部(12a、16a)および銅からなる高熱伝導部(12b、16b)を有する、2枚の基板(12A、16A)を用意した。
 基板の厚さは50μm、高熱伝導部の厚さは40μm、高熱伝導部の露出面における単手方向の低熱伝導部および高熱伝導部の幅は5mmであった。
 一枚の基板を第1基板12Aとして、その高熱伝導部12bの非露出面に、先に調製した熱電変換層となる塗布組成物を塗布、乾燥して、厚さが100μmで、5×5mmの熱電変換層14を、図4(B)および図4(C)に概念的に示すように、4×4で16個、作製した。なお、熱電変換層14は、面方向の中心が低熱伝導部12aと高熱伝導部12bとの境界と一致するように形成した。
 作製した4×4で16個の熱電変換層14を、電極20および接続配線26として金を用いて、図4(B)に概念的に示すように、直列に接続した。
 さらに、もう1枚の基板を第2基板16Aとして、高熱伝導部16bの非露出面を熱電変換層14に向けて、図4(A)に概念的に示すように積層した。第2基板16Aは、熱電変換層14の面方向の中心が低熱伝導部16aと高熱伝導部16bとの境界と一致するように積層した。
 これにより、16個の熱電変換素子からなる、図4(A)~図4(D)に概念的に示すような熱電変換モジュールを作製した。
 [比較例1]
 同じ熱電変換層となる塗布組成物を用いて、図3に示す、従来の一般的な熱電変換素子(uni leg型の熱電変換素子)を16個、接続配線60によって直列に接続した熱電変換モジュール50を作製した。
 基板52は、厚さ25μmのポリイミドフィルムを用いた。電極54および58、接続配線60は、銅を用いた。
 熱電変換層56は、厚さが100μmで、5×5mmの直方体とした。
 [評価]
 このようにして得られた実施例1および比較例1の熱電変換モジュールを、サンプルの上下に温度差を10℃付けた状態で出力を測定した。
 その結果、比較例1の熱電変換モジュールの出力を1に規格化した際における実施例1の相対出力は、11であった。
 [実施例2および比較例2]
 単層CNTを変更(名城ナノカーボン社製CNT、CNTの平均長さ1μm以上)した以外は、実施例1と同様にして、熱電変換層となる塗布組成物を調製した。
 この塗布組成物について、実施例1と同様にして厚さ100μmの熱電変換層を作製した。実施例1と同様に確認したところ、熱電変換層に含まれる単層CNTは、長さが1μmを十分に超えていた。
 作製した熱電変換層について、実施例1と同様に、面方向の導電率、厚さ方向の導電率、および、ゼーベック係数Sを測定した。
 その結果、面方向の導電率は1990[S/cm]、厚さ方向の導電率は2[S/cm]、ゼーベック係数は56[μV/K]であった。
 さらに、この塗布組成物を用いた以外は、実施例1および比較例1と同様にして、熱電変換素子を16個、直列に接続した実施例2および比較例2の熱電変換モジュールを作製して、出力を測定した。
 その結果、比較例2の熱電変換モジュールの出力を1に規格化した際における実施例2の相対出力は、995であった。
 [実施例3および比較例3]
 PEDOTをポリスチレンスルフォネート(Poly(styrenesulfonate) PSS)に分散してなるPEDOT・PSS溶液(製品名:Clevios PH1000、ヘレウス社製)に、エチレングリコールを3質量%添加して、熱電変換層となる塗布組成物を調製した。
 この塗布組成物を厚さ25μmのプラスチックフィルムに塗布して、乾燥することで、厚さ50nmの熱電変換層を作製した。
 作製した熱電変換層について、実施例1と同様にして面方向の導電率、厚さ方向の導電率、および、ゼーベック係数Sを測定した。
 その結果、面方向の導電率は900[S/cm]、厚さ方向の導電率は2[S/cm]、ゼーベック係数は28[μV/K]であった。
 さらに、この塗布組成物を用いた以外は、実施例1および比較例1と同様にして、熱電変換素子を16個、直列に接続した実施例3および比較例3の熱電変換モジュールを作製して、出力を測定した。
 その結果、比較例3の熱電変換モジュールの出力を1に規格化した際における実施例3の相対出力は、450であった。
 [実施例4]
 接着剤フリーの銅張ポリイミド基板(FELIOS R-F775、パナソニック電工社製)を用意した。この銅張ポリイミド基板は、サイズが80×80mmで、ポリイミド層の厚さが20μm、銅層の厚さが70μmのものである。
 この銅張ポリイミド基板の銅層をエッチングして、1mm幅で、1mm間隔の銅ストライプパターンを形成した。これにより、厚さ20μmのシート状の低熱伝導部の表面に、厚さ70μmで幅1mmの帯状の高熱伝導部が、帯の延在方向と直交する方向に1mm間隔で配列された第1基板および第2基板を作製した。
 第1基板の全面がポリイミド層である面(平面状の面)の全面に、EB蒸着法によって、厚さ150nmの酸化珪素層を密着層として形成した。
 次いで、密着層の上に、スクリーン印刷によって、帯状の高熱伝導部の延在方向に1mm間隔、帯状の高熱伝導部の配列方向に1mm間隔で、実施例1と同様の1×1mmの塗布組成物のパターンを885個形成し、乾燥した。このパターン形成および乾燥を3回行うことで、厚さ4.5μmの885個の熱電変換層を作製した。
 なお、1×1mmのパターンは、中心が帯状の高熱伝導部と低熱伝導部との境目に位置するように作製した。
 次いで、メタルマスクを用いる真空蒸着法によって、厚さ1000nmの金(Au)からなる電極および接続配線を形成して、図4(B)に示されるように、885個の熱電変換層を直列に接続した。
 次いで、第1基板の熱電変換層および電極を形成した面を全面的に覆うように、EB蒸着法によって、厚さ150nmの酸化珪素層をガスバリア層として形成した。
 次いで、ガスバリア層の上に、粘着層として、厚さ25μmの両面テープ(日東電工社製、両面テープNo.5603)を貼着した。
 さらに、粘着層の上に、全面が低熱伝導部である面を粘着層に向けて、第2基板を貼着した。なお、第2基板は、高熱伝導部の延在方向を第1基板と一致して、高熱伝導部と低熱伝導部との端辺を一致して、高熱伝導部と低熱伝導部とが第1基板と互い違いになるように、粘着層に貼着した(図4(A)~図4(C)参照)。
 これにより、図2(A)~図2(C)に示される熱電変換素子と同様の層構成を有する885個の熱電変換素子を直列に接続してなる熱電変換モジュールを作製した。
 [実施例5]
 実施例4と同様の第1基板および第2基板を用意した。
 この第1基板の全面が低熱伝導部である面に、メタルマスクを用いた真空蒸着法によって、密着層として厚さ100nmのクロム(Cr)層を形成した。
 クロム層の上に、メタルマスクを用いた真空蒸着法によって、実施例4と同じ885個の熱電変換層に対応して、厚さ1000nmの金(Au)からなる電極および接続配線を形成した。
 次いで、実施例4と同様にして、885個の熱電変換層を作製した。
 次いで、第1基板の熱電変換層および電極を形成した面を全面的に覆うように、粘着層として実施例4と同じ両面テープを貼着し、さらに、実施例4と同様に第2基板を貼着した。
 これにより、ガスバリア層38を有さない以外は、図2(A)~図2(C)に示される熱電変換素子と同様の層構成を有する885個の熱電変換素子を直列に接続してなる熱電変換モジュールを作製した。
 [実施例6]
 単層CNT(名城ナノカーボン社製CNT、CNTの平均長さ1μm以上)50mgと、界面活性剤(和光純薬社製、ドデシルベンゼンスルホン酸ナトリウム)150mgとを、イオン交換水20mlに添加した溶液を調製した。
 この溶液を、メカニカルホモジナイザー(エスエムテー社製、HIGH-FLEX HOMOGENIZER HF93)を用いて、20℃で5分間(18000rpm)、混合して予備混合物を得た。
 得られた予備混合物を、薄膜旋回型高速ミキサー「フィルミックス40-40型」(プライミクス社製)を用いて、10℃に冷却しながら、周速30m/secで5分間、高速旋回薄膜分散法で分散処理して、熱電変換層となる塗布組成物を調製した。
 この塗布組成物について、実施例1と同様にして厚さ100μmの熱電変換層を作製した。実施例1と同様に確認したところ、熱電変換層に含まれる単層CNTは、長さが1μmを十分に超えていた。
 作製した熱電変換層について、実施例1と同様に、面方向の導電率、厚さ方向の導電率、および、ゼーベック係数Sを測定した。
 その結果、面方向の導電率は450[S/cm]、厚さ方向の導電率は15[S/cm]、ゼーベック係数は52[μV/K]であった。
 この塗布組成物を用い、1回のスクリーン印刷によって厚さ8μmの885個の熱電変換層を形成した以外は、実施例5と同様にして、熱電変換モジュールを作製した。
 これにより、ガスバリア層38を有さない以外は、図2(A)~図2(C)に示される熱電変換素子と同様の層構成を有する885個の熱電変換素子を直列に接続してなる熱電変換モジュールを作製した。
 [実施例7]
 第1基板および第2基板において、帯状の高熱伝導部の幅(銅ストライプの幅)を0.975mmとし、帯状の高熱伝導部の形成間隔(銅ストライプの形成間隔)を1.025mmとし、かつ、実施例4と同様にガスバリア層を形成した以外は、実施例6と同様にして、熱電変換モジュールを作製した。
 なお、この熱電変換モジュールにおいて、第2基板の貼着は、第1基板および第2基板の帯状の高熱伝導部の端辺を一致させずに、短辺が高熱伝導部の配列方向(すなわち通電方向)に0.25μmの間隔が開くように行った。
 これにより、図2(A)~図2(C)に示される熱電変換素子と同様の層構成を有する885個の熱電変換素子を直列に接続してなる熱電変換モジュールを作製した。
 [実施例8]
 熱電変換層を形成した後、熱電変換層の電極接続部に、メタルマスクを用いる真空蒸着法によって厚さ10nmのバッファ層(関東化学製、F4:TCNQ)を形成し、かつ、密着層およびガスバリア層を形成しない以外は、実施例1と同様にして、熱電変換モジュールを作製した。
 これにより、密着層およびガスバリア層を有さない以外は、図2(A)~図2(C)に示される熱電変換素子と同様の層構成を有する885個の熱電変換素子を直列に接続してなる熱電変換モジュールを作製した。
 [評価]
 このようにして作製した実施例4~8の熱電変換モジュールについて、発電量、屈曲試験および耐熱性試験を行った。
  <発電量>
 作製した熱電変換モジュールを、加熱した銅プレートと、冷水循環装置を接続した銅プレートとで挟持して、両銅プレートの温度差が10℃になるように、加熱した銅プレートの温度を調節した。
 さらに、直列に接続した最上流の熱電変換層の電極および最下流の熱電変換層の電極とを、ソースメーター(ケースレー社製、ソースメーター2450)とを接続し、開放電圧と短絡電流を計測し、下記式から発電量を求めた。
(発電量)=0.25×(開放電圧)×(短絡電流)
  <屈曲試験>
 発電量を測定した後、JIS K 5600に準じて熱電変換モジュールの屈曲試験を行った。円筒形マンドレルは直径32mmのものを用い、180°折り曲げとした。
 屈曲試験を行った後、先と同様に熱電変換モジュールの発電量を測定し、発電量の比較を行い、発電量の変化率を求め、変化率を下記の評価基準にて、判定した。
 A: 変化率5%以内
 B: 変化率5%超20%以内
  <耐熱性試験>
 作製した熱電変換モジュールを、温度150℃の恒温槽内に1000時間、放置した後、上記と同様にして、発電量を測定し、加熱試験前の発電量との変化率を求め、変化率を下記評価基準にて、判定した。
 A: 変化率5%以内
 B: 変化率5%超20%以内
 結果を下記の表に示す。
Figure JPOXMLDOC01-appb-T000002

 上記表に示されるように、密着層を有する実施例4~7は、屈曲試験において優れた結果が得られている。密着層およびバリア層を両方とも有する実施例4および7は、屈曲試験および耐熱性試験共に、優れた結果が得られている。
 CNTと界面活性剤とからなる熱電変換層を有する実施例6および7は、良好な発電量を有し、特に第1基板と第2基板とで高熱伝導部が通電方向に離間する実施例7は、良好な発電量が得られている。
 熱電変換層と電極との間にバッファ層を有する実施例8は、同じ熱電変換層を用いる実施例4等に比して、良好な発電量が得られている。
 なお、屈曲試験および耐熱性試験は、共に、評価が『B』であっても、熱電変換モジュールとしては十分に使用可能である。
 [実施例9]
 表面温度が80℃で、直径が120mmの曲面状の加熱源に、熱伝導接着シート(日東電工社製、TR5912F)を用いて、実施例7と同様の方法で作製した熱電変換モジュールを接着した。
 さらに、熱電変換モジュールの表面に、先と同じ熱伝導接着シートを用いて、サイズ80×80mmのコルゲートフィン(最上インクス社製、OA-5B2D75B)を接着した。
 直列に接続した最上流の熱電変換層の電極および最下流の熱電変換層の電極と、ソースメーター(ケースレー社製、ソースメーター2450)とを接続し、開放電圧と短絡電流を計測し、発電量を求めたところ、0.82μWの出力が得られた。
 この結果から、本発明の熱電変換素子(本発明の熱電変換素子を用いる熱電変換モジュール)は、空冷でも発電することが分かった。
 以上の結果より、本発明の効果は明らかである。
 10,30 熱電変換素子
 12,12A,32 第1基板
 12a,16a,30a,42a 低熱伝導部
 12b,16b,30b,42b 高熱伝導部
 14,36,56 熱電変換層
 16,16A,42 第2基板
 20,24,46,48,54,58 電極
 26,60 接続配線
 34 密着層
 38 ガスバリア層
 40 粘着層
 50 熱電変換モジュール
 52 基板

Claims (20)

  1.  面方向の少なくとも一部に他の領域よりも熱伝導率が高い高熱伝導部を有する第1基板と、
     前記第1基板の上に形成される、有機材料からなり、かつ、厚さ方向より面方向の方が導電率が高い熱電変換層と、
     前記熱電変換層の上に形成される、面方向の少なくとも一部に他の領域よりも熱伝導率が高い高熱伝導部を有し、かつ、面方向において自身の前記高熱伝導部が前記第1基板の高熱伝導部と完全に重複しない第2基板と、
     面方向に前記熱電変換層を挟むように、前記熱電変換層に接続される一対の電極とを有することを特徴とする熱電変換素子。
  2.  前記熱電変換層の面方向と厚さ方向との導電率の比が、面方向:厚さ方向>10:1である請求項1に記載の熱電変換素子。
  3.  前記熱電変換層の面方向と厚さ方向との導電率の比が、面方向:厚さ方向>100:1である請求項2に記載の熱電変換素子。
  4.  前記熱電変換層が、カーボンナノチューブを含む請求項1~3のいずれか1項に記載の熱電変換素子。
  5.  前記熱電変換層が、樹脂材料にカーボンナノチューブを分散してなるものである請求項4に記載の熱電変換素子。
  6.  前記熱電変換層が、カーボンナノチューブと界面活性剤とを含有する請求項4に記載の熱電変換素子。
  7.  前記カーボンナノチューブが単層カーボンナノチューブであり、長さが1μm以上である請求項4~6のいずれか1項に記載の熱電変換素子。
  8.  前記熱電変換層が、導電性高分子を含む請求項1~3のいずれか1項に記載の熱電変換素子。
  9.  前記導電性高分子が、ポリ(3,4-エチレンジオキシチオフェン)である請求項8に記載の熱電変換素子。
  10.  前記第1基板の高熱伝導部と前記第2基板の高熱伝導部とが、面方向において、前記電極の離間方向に異なる位置に設けられる請求項1~9のいずれか1項に記載の熱電変換素子。
  11.  前記第1基板の高熱伝導部および前記第2基板の高熱伝導部が、積層方向に対して外面に位置する請求項1~10のいずれか1項に記載の熱電変換素子。
  12.  前記第1基板と前記電極対との間に、密着層を有する請求項1~11のいずれか1項に記載の熱電変換素子。
  13.  前記熱電変換層および電極対を覆って、ガスバリア層を有する請求項1~12のいずれか1項に記載の熱電変換素子。
  14.  前記熱電変換層の面方向の端面がテーパ状である請求項1~13のいずれか1項に記載の熱電変換素子。
  15.  前記電極対の各電極が、前記熱電変換層の面方向の端面から上面に到るように形成される請求項1~14のいずれか1項に記載の熱電変換素子。
  16.  前記電極対の形成材料が金であり、前記電極対の少なくとも一方の電極と熱電変換層との間に、バッファ層を有する請求項1~15のいずれか1項に記載の熱電変換素子。
  17.  少なくともカーボンナノチューブと分散媒とを含む溶液を、高速旋回薄膜分散法によって処理して、前記分散媒中にカーボンナノチューブを分散してなるCNT塗布液を調製する工程、
     面方向の少なくとも一部に他の領域よりも熱伝導率が高い高熱伝導部を有する第1基板に、前記CNT塗布液を塗布、乾燥して、熱電変換層を形成する工程、
     面方向に挟むようにして、前記熱電変換層に電極対を接続する工程、
     および、前記熱電変換層の上に、面方向の少なくとも一部に、他の領域よりも熱伝導率が高い高熱伝導部を有し、かつ、面方向おいて自身の前記高熱伝導部が前記第1基板の高熱伝導部と完全に重複しないように第2基板を積層する工程、とを有することを特徴とする熱電変換素子の製造方法。
  18.  前記CNT塗布液に含まれる分散媒が、樹脂材料である請求項17に記載の熱電変換素子の製造方法。
  19.  前記CNT塗布液に含まれる分散媒が水であり、かつ、前記CNT塗布液が、界面活性剤を含有する請求項17に記載の熱電変換素子の製造方法。
  20.  前記熱電変換層を形成する工程において、前記第1基板へのCNT塗布液を塗布を印刷によって行う請求項17~19のいずれか1項に記載の熱電変換素子の製造方法。
PCT/JP2014/082973 2013-12-27 2014-12-12 熱電変換素子および熱電変換素子の製造方法 WO2015098574A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015554743A JP6181206B2 (ja) 2013-12-27 2014-12-12 熱電変換素子および熱電変換素子の製造方法
CN201480070902.0A CN105874621B (zh) 2013-12-27 2014-12-12 热电转换元件及热电转换元件的制造方法
US15/156,938 US20160260883A1 (en) 2013-12-27 2016-05-17 Thermoelectric conversion element and method for manufacturing thermoelectric conversion element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-271493 2013-12-27
JP2013271493 2013-12-27
JP2014172922 2014-08-27
JP2014-172922 2014-08-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/156,938 Continuation US20160260883A1 (en) 2013-12-27 2016-05-17 Thermoelectric conversion element and method for manufacturing thermoelectric conversion element

Publications (1)

Publication Number Publication Date
WO2015098574A1 true WO2015098574A1 (ja) 2015-07-02

Family

ID=53478438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082973 WO2015098574A1 (ja) 2013-12-27 2014-12-12 熱電変換素子および熱電変換素子の製造方法

Country Status (4)

Country Link
US (1) US20160260883A1 (ja)
JP (1) JP6181206B2 (ja)
CN (1) CN105874621B (ja)
WO (1) WO2015098574A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039022A1 (ja) * 2014-09-08 2016-03-17 富士フイルム株式会社 熱電変換素子および熱電変換モジュール
WO2017038831A1 (ja) * 2015-09-04 2017-03-09 浩明 中弥 熱電変換素子および熱電変換モジュール
JP2017092407A (ja) * 2015-11-17 2017-05-25 富士フイルム株式会社 熱電変換素子
JP2017092263A (ja) * 2015-11-11 2017-05-25 日東電工株式会社 熱電変換装置
WO2017086271A1 (ja) * 2015-11-17 2017-05-26 富士フイルム株式会社 熱電変換素子および熱電変換モジュール
JP2017112319A (ja) * 2015-12-18 2017-06-22 富士フイルム株式会社 分散組成物の製造方法および熱電変換層の製造方法
WO2017154823A1 (ja) * 2016-03-09 2017-09-14 富士フイルム株式会社 熱電変換素子、熱電変換素子の製造方法、熱電変換モジュール、および、熱電変換モジュールの製造方法
US20180130937A1 (en) * 2016-11-09 2018-05-10 Advanced Semiconductor Engineering, Inc. Electronic module and method for manufacturing the same, and thermoelectric device including the same
JP2018078280A (ja) * 2016-11-08 2018-05-17 三星電子株式会社Samsung Electronics Co.,Ltd. 高い光電変換効率と低い暗電流とが具現可能なイメージセンサ
US20180212130A1 (en) * 2015-10-01 2018-07-26 Research & Business Foundation Sungkyunkwan University Thermoelectric structure, thermoelectric device and method of manufacturing the same
JP2019036599A (ja) * 2017-08-10 2019-03-07 デンカ株式会社 熱電変換材料の製造方法、熱電変換素子の製造方法及び熱電変換材料の改質方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136363A1 (ja) * 2015-02-24 2016-09-01 富士フイルム株式会社 熱電変換素子および熱電変換モジュール
US10886452B2 (en) * 2018-01-25 2021-01-05 United States Of America As Represented By The Administrator Of Nasa Selective and direct deposition technique for streamlined CMOS processing
CN110233201B (zh) * 2019-07-12 2020-09-01 中国科学院化学研究所 一种六氰基三甲烯环丙烷掺杂酞菁铜的多层薄膜器件
JP7451361B2 (ja) 2020-09-10 2024-03-18 株式会社日立製作所 熱電変換素子
CN113380941B (zh) * 2021-06-07 2022-07-26 北京航空航天大学 一种可拉伸多孔结构的面外型热电器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099617A1 (ja) * 2010-02-15 2011-08-18 国立大学法人北海道大学 カーボンナノチューブシート及びその製造方法
JP2011168421A (ja) * 2010-02-17 2011-09-01 Toray Ind Inc 透明導電複合材
JP2013098299A (ja) * 2011-10-31 2013-05-20 Fujifilm Corp 熱電変換材料及び熱電変換素子
WO2013121486A1 (ja) * 2012-02-16 2013-08-22 日本電気株式会社 熱電変換モジュール装置、及び電子機器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555639A (ja) * 1991-08-22 1993-03-05 Matsushita Electric Ind Co Ltd 熱電装置
US6385976B1 (en) * 2000-09-08 2002-05-14 Ferrotec (Usa) Corporation Thermoelectric module with integrated heat exchanger and method of use
JP2005259944A (ja) * 2004-03-11 2005-09-22 Nagoya Industrial Science Research Inst 薄膜熱電半導体装置およびその製造方法
JP3981738B2 (ja) * 2004-12-28 2007-09-26 国立大学法人長岡技術科学大学 熱電変換素子
JP5212937B2 (ja) * 2008-04-21 2013-06-19 学校法人東京理科大学 熱電変換素子、当該熱電変換素子を備えた熱電モジュール及び熱電変換素子の製造方法
JP5742174B2 (ja) * 2009-12-09 2015-07-01 ソニー株式会社 熱電発電装置、熱電発電方法及び電気信号検出方法
EP2693444B1 (en) * 2011-03-28 2019-03-13 FUJIFILM Corporation An electrically conductive composition, an electrically conductive film using the composition and a method of producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099617A1 (ja) * 2010-02-15 2011-08-18 国立大学法人北海道大学 カーボンナノチューブシート及びその製造方法
JP2011168421A (ja) * 2010-02-17 2011-09-01 Toray Ind Inc 透明導電複合材
JP2013098299A (ja) * 2011-10-31 2013-05-20 Fujifilm Corp 熱電変換材料及び熱電変換素子
WO2013121486A1 (ja) * 2012-02-16 2013-08-22 日本電気株式会社 熱電変換モジュール装置、及び電子機器

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10243128B2 (en) 2014-09-08 2019-03-26 Fujifilm Corporation Thermoelectric conversion element and thermoelectric conversion module
WO2016039022A1 (ja) * 2014-09-08 2016-03-17 富士フイルム株式会社 熱電変換素子および熱電変換モジュール
WO2017038831A1 (ja) * 2015-09-04 2017-03-09 浩明 中弥 熱電変換素子および熱電変換モジュール
US11211539B2 (en) 2015-09-04 2021-12-28 Hiroaki Nakaya Thermoelectric conversion element and thermoelectric conversion module
JPWO2017038831A1 (ja) * 2015-09-04 2018-12-13 浩明 中弥 熱電変換素子および熱電変換モジュール
US20180212130A1 (en) * 2015-10-01 2018-07-26 Research & Business Foundation Sungkyunkwan University Thermoelectric structure, thermoelectric device and method of manufacturing the same
JP2017092263A (ja) * 2015-11-11 2017-05-25 日東電工株式会社 熱電変換装置
JPWO2017086271A1 (ja) * 2015-11-17 2018-09-13 富士フイルム株式会社 熱電変換素子および熱電変換モジュール
US10236431B2 (en) 2015-11-17 2019-03-19 Fujifilm Corporation Thermoelectric conversion element and thermoelectric conversion module
JP2017092407A (ja) * 2015-11-17 2017-05-25 富士フイルム株式会社 熱電変換素子
WO2017086271A1 (ja) * 2015-11-17 2017-05-26 富士フイルム株式会社 熱電変換素子および熱電変換モジュール
JP2017112319A (ja) * 2015-12-18 2017-06-22 富士フイルム株式会社 分散組成物の製造方法および熱電変換層の製造方法
JPWO2017154823A1 (ja) * 2016-03-09 2019-01-17 富士フイルム株式会社 熱電変換素子、熱電変換素子の製造方法、熱電変換モジュール、および、熱電変換モジュールの製造方法
WO2017154823A1 (ja) * 2016-03-09 2017-09-14 富士フイルム株式会社 熱電変換素子、熱電変換素子の製造方法、熱電変換モジュール、および、熱電変換モジュールの製造方法
JP2018078280A (ja) * 2016-11-08 2018-05-17 三星電子株式会社Samsung Electronics Co.,Ltd. 高い光電変換効率と低い暗電流とが具現可能なイメージセンサ
US11239274B2 (en) 2016-11-08 2022-02-01 Samsung Electronics Co., Ltd. Image sensor for high photoelectric conversion efficiency and low dark current
JP7226910B2 (ja) 2016-11-08 2023-02-21 三星電子株式会社 高い光電変換効率と低い暗電流とが具現可能なイメージセンサ
US11888016B2 (en) 2016-11-08 2024-01-30 Samsung Electronics Co., Ltd. Image sensor for high photoelectric conversion efficiency and low dark current
US20180130937A1 (en) * 2016-11-09 2018-05-10 Advanced Semiconductor Engineering, Inc. Electronic module and method for manufacturing the same, and thermoelectric device including the same
JP2019036599A (ja) * 2017-08-10 2019-03-07 デンカ株式会社 熱電変換材料の製造方法、熱電変換素子の製造方法及び熱電変換材料の改質方法
JP7142278B2 (ja) 2017-08-10 2022-09-27 デンカ株式会社 熱電変換材料の製造方法、熱電変換素子の製造方法及び熱電変換材料の改質方法

Also Published As

Publication number Publication date
CN105874621A (zh) 2016-08-17
CN105874621B (zh) 2019-04-05
JP6181206B2 (ja) 2017-08-16
US20160260883A1 (en) 2016-09-08
JPWO2015098574A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6181206B2 (ja) 熱電変換素子および熱電変換素子の製造方法
JP6247771B2 (ja) 熱電変換素子および熱電変換モジュール
Xu et al. Recent advances in flexible organic light-emitting diodes
Zhang et al. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes
Wu et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes
US20160104829A1 (en) Thermoelectric conversion element and thermoelectric conversion module
Liang et al. Initiating a stretchable, compressible, and wearable thermoelectric generator by a spiral architecture with ternary nanocomposites for efficient heat harvesting
JP6110818B2 (ja) 熱電変換材料、熱電変換素子ならびにこれを用いた熱電発電用物品およびセンサー用電源
JP6417050B2 (ja) 熱電変換モジュール
US20180190892A1 (en) Thermoelectric conversion module, method of manufacturing thermoelectric conversion module, and thermally conductive substrate
Liu et al. Organic multilevel memory devices of long‐term environmental stability via incorporation of fluorine
JP6600012B2 (ja) 熱電変換デバイス
WO2015033868A1 (ja) 熱電変換素子
Kim et al. High-performance transparent quantum dot light-emitting diode with patchable transparent electrodes
Kim et al. Highly efficient flexible organic light-emitting devices based on PEDOT: PSS electrodes doped with highly conductive Pyronin B
Lee et al. Acidity-controlled conducting polymer films for organic thermoelectric devices with horizontal and vertical architectures
Chu et al. Highly conductive and environmentally stable organic transparent electrodes laminated with graphene
WO2017038553A1 (ja) 熱電変換モジュール
Mukaida et al. Polymer thermoelectric devices prepared by thermal lamination
JP6659836B2 (ja) 熱電変換モジュール
Aftab et al. 2D MXene interface engineering for organic solar cells
WO2017086271A1 (ja) 熱電変換素子および熱電変換モジュール
WO2016203939A1 (ja) 熱電変換素子および熱電変換モジュール
Okigawa et al. Improvement of device performance of polymer organic light-emitting diodes on smooth transparent sheet with graphene films synthesized by plasma treatment
JP6463510B2 (ja) 熱電変換モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554743

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874340

Country of ref document: EP

Kind code of ref document: A1