WO2017038831A1 - 熱電変換素子および熱電変換モジュール - Google Patents
熱電変換素子および熱電変換モジュール Download PDFInfo
- Publication number
- WO2017038831A1 WO2017038831A1 PCT/JP2016/075355 JP2016075355W WO2017038831A1 WO 2017038831 A1 WO2017038831 A1 WO 2017038831A1 JP 2016075355 W JP2016075355 W JP 2016075355W WO 2017038831 A1 WO2017038831 A1 WO 2017038831A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermoelectric conversion
- type
- layer
- charge transport
- conversion element
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 465
- 239000000463 material Substances 0.000 claims abstract description 274
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 156
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 102
- 239000010439 graphite Substances 0.000 claims abstract description 102
- 239000004065 semiconductor Substances 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims description 142
- 239000002041 carbon nanotube Substances 0.000 claims description 53
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 53
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 claims description 52
- 238000000034 method Methods 0.000 claims description 34
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 claims description 25
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 claims description 24
- 229910002909 Bi-Te Inorganic materials 0.000 claims description 16
- -1 polyethylene Polymers 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 12
- VRLDDYIKZCBFEZ-UHFFFAOYSA-N trimethoxy(phenyl)phosphanium Chemical compound CO[P+](OC)(OC)C1=CC=CC=C1 VRLDDYIKZCBFEZ-UHFFFAOYSA-N 0.000 claims description 12
- FKNIDKXOANSRCS-UHFFFAOYSA-N 2,3,4-trinitrofluoren-1-one Chemical compound C1=CC=C2C3=C([N+](=O)[O-])C([N+]([O-])=O)=C([N+]([O-])=O)C(=O)C3=CC2=C1 FKNIDKXOANSRCS-UHFFFAOYSA-N 0.000 claims description 8
- JWWQNDLIYXEFQL-UHFFFAOYSA-N 2,3-dinitrofluoren-1-one Chemical compound C1=CC=C2C3=CC([N+](=O)[O-])=C([N+]([O-])=O)C(=O)C3=CC2=C1 JWWQNDLIYXEFQL-UHFFFAOYSA-N 0.000 claims description 8
- HGOTVGUTJPNVDR-UHFFFAOYSA-N 2-(4,5-dimethyl-1,3-dithiol-2-ylidene)-4,5-dimethyl-1,3-dithiole Chemical compound S1C(C)=C(C)SC1=C1SC(C)=C(C)S1 HGOTVGUTJPNVDR-UHFFFAOYSA-N 0.000 claims description 8
- IXHWGNYCZPISET-UHFFFAOYSA-N 2-[4-(dicyanomethylidene)-2,3,5,6-tetrafluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound FC1=C(F)C(=C(C#N)C#N)C(F)=C(F)C1=C(C#N)C#N IXHWGNYCZPISET-UHFFFAOYSA-N 0.000 claims description 8
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 8
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 claims description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 8
- RZQFSYXKJJIIHF-UHFFFAOYSA-N [phenoxy(propyl)phosphoryl]oxybenzene Chemical compound C=1C=CC=CC=1OP(=O)(CCC)OC1=CC=CC=C1 RZQFSYXKJJIIHF-UHFFFAOYSA-N 0.000 claims description 8
- GPAYUJZHTULNBE-UHFFFAOYSA-N diphenylphosphine Chemical compound C=1C=CC=CC=1PC1=CC=CC=C1 GPAYUJZHTULNBE-UHFFFAOYSA-N 0.000 claims description 8
- WUOIAOOSKMHJOV-UHFFFAOYSA-N ethyl(diphenyl)phosphane Chemical compound C=1C=CC=CC=1P(CC)C1=CC=CC=C1 WUOIAOOSKMHJOV-UHFFFAOYSA-N 0.000 claims description 8
- 239000011810 insulating material Substances 0.000 claims description 8
- 238000002161 passivation Methods 0.000 claims description 8
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 claims description 8
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 8
- FHCPAXDKURNIOZ-UHFFFAOYSA-N tetrathiafulvalene Chemical compound S1C=CSC1=C1SC=CS1 FHCPAXDKURNIOZ-UHFFFAOYSA-N 0.000 claims description 8
- GWPGDZPXOZATKL-UHFFFAOYSA-N 9h-carbazol-2-ol Chemical compound C1=CC=C2C3=CC=C(O)C=C3NC2=C1 GWPGDZPXOZATKL-UHFFFAOYSA-N 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 4
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 4
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 4
- 229920000768 polyamine Polymers 0.000 claims description 4
- 229920000573 polyethylene Polymers 0.000 claims description 4
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 4
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 claims description 4
- DCFPGPVOAHTHCK-UHFFFAOYSA-N (2,3,4-trifluorophenyl)phosphane Chemical compound FC1=CC=C(P)C(F)=C1F DCFPGPVOAHTHCK-UHFFFAOYSA-N 0.000 claims description 3
- 150000002466 imines Chemical class 0.000 claims description 3
- 239000011347 resin Substances 0.000 description 67
- 229920005989 resin Polymers 0.000 description 67
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 61
- 229910052710 silicon Inorganic materials 0.000 description 61
- 239000010703 silicon Substances 0.000 description 61
- 230000000052 comparative effect Effects 0.000 description 37
- 239000002019 doping agent Substances 0.000 description 37
- 239000012299 nitrogen atmosphere Substances 0.000 description 23
- 239000000853 adhesive Substances 0.000 description 20
- 230000001070 adhesive effect Effects 0.000 description 20
- 238000010438 heat treatment Methods 0.000 description 19
- 239000000919 ceramic Substances 0.000 description 15
- 239000005001 laminate film Substances 0.000 description 15
- 238000010030 laminating Methods 0.000 description 15
- 229910000679 solder Inorganic materials 0.000 description 15
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 14
- 238000000137 annealing Methods 0.000 description 13
- 238000007733 ion plating Methods 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- LBJNMUFDOHXDFG-UHFFFAOYSA-N copper;hydrate Chemical compound O.[Cu].[Cu] LBJNMUFDOHXDFG-UHFFFAOYSA-N 0.000 description 8
- 238000007606 doctor blade method Methods 0.000 description 7
- UEOHATPGKDSULR-UHFFFAOYSA-N 9h-carbazol-4-ol Chemical compound N1C2=CC=CC=C2C2=C1C=CC=C2O UEOHATPGKDSULR-UHFFFAOYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 239000005751 Copper oxide Substances 0.000 description 2
- 230000005679 Peltier effect Effects 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000005678 Seebeck effect Effects 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000088 plastic resin Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(II) oxide Inorganic materials [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- RPGWZZNNEUHDAQ-UHFFFAOYSA-N phenylphosphine Chemical class PC1=CC=CC=C1 RPGWZZNNEUHDAQ-UHFFFAOYSA-N 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/855—Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/21—After-treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/17—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/852—Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/856—Thermoelectric active materials comprising organic compositions
Definitions
- the present invention relates to a thermoelectric conversion element and a thermoelectric conversion module.
- Thermoelectric conversion elements are known as clean energy conversion elements that do not use petroleum or ozone, and in recent years, high efficiency, large area, and thinning are desired. For example, development of a power generation element (thermoelectric conversion power generation element) using the Seebeck effect and a cooling / heating element (Peltier element) using the Peltier effect is in progress.
- a power generation element thermoelectric conversion power generation element
- a cooling / heating element Peltier element
- FIG. 3 is a conceptual diagram for explaining a configuration of a conventional thermoelectric conversion element 100.
- a conventional thermoelectric conversion element 100 as shown in FIG. 3 is basically called a ⁇ -type thermoelectric conversion element, and is disposed between a plurality of opposing electrodes (metal electrodes) 120, 121, 180 and the electrodes.
- the block body 130 is made of an n-type thermoelectric conversion semiconductor and the block body 131 is made of a p-type thermoelectric conversion semiconductor.
- the block bodies 130 and 131 are electrically connected to each other by an electrode 180 at one end (joint end) thereof, and an n-type thermoelectric conversion semiconductor block body and a p-type thermoelectric conversion semiconductor block body are connected in series.
- the block bodies 130 and 131 are connected to the electrodes 120 and 121 at the other end.
- the electrode 180 when the electrode 180 is set to a high temperature and the opposite electrodes 120 and 121 are set to a low temperature to provide a temperature difference therebetween, the heat energy is converted into electric energy by the Seebeck effect.
- the electrode 180 by applying a DC voltage between the electrode 180 and the electrodes 120 and 121 and causing a current to flow from the electrode 120 to the electrode 121 through the electrode 180, the electrode 180 becomes an endothermic electrode, and the electrodes 120 and 121.
- the electrodes 120 and 121 Works as a heat radiation working electrode, and electrical energy is converted into thermal energy by the Peltier effect.
- thermoelectric conversion element when the conventional thermoelectric conversion element is used as a Peltier element, the endothermic energy is considered.
- Q P Peltier endotherm endothermic energy Q at the upper side of the Q R Joule heat, when the Q K and heat by thermal conduction (see FIG. 3), the electrode 180 is represented by the following equation (1).
- Q Q P ⁇ Q R ⁇ Q K (1)
- a practical element structure of a thermoelectric conversion element has a cross-sectional area S of about several mm 2 and a length L of about several mm. Many block bodies having such a shape are connected in series to form a module, and a thermoelectric conversion element (Peltier element) in which a heat absorption area (cooling area) is expanded by modularization has been put into practical use.
- thermoelectric conversion element has a length L of about several millimeters, and the radiant heat from the heat source directly affects the electrodes in the low temperature part, so it is difficult to ensure a temperature difference between the electrodes.
- shape is non-flexible, it is difficult to make the electrode part closely contact with the heat source and the cooling source, and there is a problem that it is difficult to ensure a temperature difference between the electrodes.
- thermoelectric conversion material is formed on a flexible insulating sheet, and a high temperature electrode and a low temperature electrode are formed at each end on the plane.
- Thermoelectric conversion elements have been actively developed (for example, see Non-Patent Document 1).
- Such a sheet-type thermoelectric conversion element has a structure in which a high-temperature part electrode and a low-temperature part electrode are formed at a certain distance from each other in a plane, and can avoid the influence of direct radiant heat from a heat source.
- the electrode portion can be brought into close contact with a heat source or a cooling source, and a temperature difference between the electrodes can be easily secured.
- thermoelectric conversion element advances the development of a thermoelectric conversion element by simultaneously giving the thermoelectric conversion material three characteristics of a high Seebeck coefficient, a high electrical conductivity, and a low thermal conductivity.
- thermoelectric conversion material with high conductivity is used to improve the internal resistance of the thermoelectric conversion material layer, the Seebeck coefficient is lowered, resulting in a large output. There is a problem that you can not get.
- thermoelectric conversion element including at least a charge transport layer, a thermoelectric conversion material layer, and an electrode, and the charge transport material is doped with a charge donating material so as to become an n-type semiconductor.
- thermoelectric conversion element characterized by being graphite or graphite subjected to a treatment for doping a charge-accepting material so as to become a p-type semiconductor.
- an n-type thermoelectric conversion element comprising at least an n-type charge transport layer, an n-type thermoelectric conversion material layer, and an electrode, so that the n-type charge transport layer is an n-type semiconductor.
- thermoelectric conversion material layer is formed on both ends of the charge transport layer, and the electrode is formed on the n-type thermoelectric conversion material layer.
- a conversion element is provided.
- a p-type thermoelectric conversion element comprising at least a p-type charge transport layer, a p-type thermoelectric conversion material layer, and an electrode, so that the p-type charge transport layer is a p-type semiconductor.
- P is a graphite that has been doped with a charge-accepting material, wherein the p-type thermoelectric conversion material layer is formed on both ends of the p-type charge transport layer, and the electrode is formed on the p-type thermoelectric conversion material layer.
- thermoelectric conversion element A type thermoelectric conversion element is provided.
- the charge donating material may be tetrathiafulvalene (TTF), tetramethyltetrathiafulvalene (TMTTF), bisethylenedithiotetrathiafulvalene (BEDT-TTF), tetraceranafulvalene (TDF).
- Triphenylphosphine TPP
- trimethoxyphenylphosphine MeO-TPP
- trifluorinated phenylphosphine F-TPP
- diphenylphosphine DPP
- diphenylphosphinoethane DPPE
- diphenylphosphono At least one of the group of propane (DPPP), amine, polyamine, polyethyleneimine, sodium carbonate, lithium carbonate, potassium carbonate, Cu-phthalocyanine, Zn-phthalocyanine, and derivatives thereof There.
- the charge accepting material may be tetracyanoquinodimethane (TCNQ), tetrafluorotetracyanoquinodimethane (TCNQF4), dicyclodicyanobenzoquinone (DDQ), trinitrofluorenone (TNF). , Dinitrofluorenone (DNF), carbazole, 4-hydroxy-9H-carbazole, 2-hydroxy-9H-carbazole, phenylboronic acid, pyridine, quinoline, imizazole, triphenylamine, and derivatives thereof It may be.
- TCNQ tetracyanoquinodimethane
- TCNQF4 tetrafluorotetracyanoquinodimethane
- DDQ dicyclodicyanobenzoquinone
- TNF trinitrofluorenone
- DNF Dinitrofluorenone
- the thermoelectric conversion material layer may be composed of carbon nanotubes, Bi-Te compounds, oxides, or a combination of these materials.
- the n-type thermoelectric conversion material layer has a structure in which n-type carbon nanotubes, n-type Bi-Te compounds, n-type oxides, or a laminate of these materials is laminated. It may be.
- the p-type thermoelectric conversion material layer has a structure in which p-type carbon nanotubes, p-type Bi-Te compounds, p-type oxides, or a laminate thereof are laminated. It may be.
- thermoelectric conversion element which connected the said n-type thermoelectric conversion element and the said p-type thermoelectric conversion element in series is provided.
- a thermoelectric conversion module in which a plurality of the thermoelectric conversion elements are connected in series, parallel, or a combination of series and parallel is provided.
- at least one n-type thermoelectric conversion element and at least one p-type thermoelectric conversion element are connected in series or in parallel, or a combination of series and parallel is connected.
- a thermoelectric conversion module is provided.
- the thermoelectric conversion element according to the present invention further includes an insulating substrate, and the insulating substrate includes a composite substrate formed by bonding two second substrates to both ends of the first substrate, and the second substrate.
- thermoelectric conversion element Is made of an insulating material having higher thermal conductivity than the first substrate, the charge transport layer is formed on the insulating substrate, and the thermoelectric conversion material layers are formed on the doped layers at both ends of the charge transport layer It may be what you did. Further, in the thermoelectric conversion element according to the present invention, a thermoelectric conversion material layer is formed on the dope layers at both ends of the charge transport layer, and the dope layer in the center of the charge transport layer where the thermoelectric conversion material layer is not formed A passivation film may be formed on the exposed portion. Moreover, according to this invention, the thermoelectric conversion module comprised by connecting at least 1 said thermoelectric conversion element in series or in parallel, or connecting in combination of series and parallel is provided.
- thermoelectric conversion element of the present invention is characterized in that the surface of graphite doped with a charge donating material or a charge accepting material is used as a charge transport layer so as to be an n-type or p-type semiconductor.
- the surface of graphite having semiconductor characteristics is 100 times or more higher in electrical conductivity than conventional thermoelectric conversion materials. Also, it does not generate heat or absorb heat even when it is brought into contact with a thermoelectric conversion material. Also, the surface of graphite doped with charge donating material or charge accepting material has low thermal conductivity properties.
- the internal resistance of the sheet-type thermoelectric conversion element can be lowered by using graphite pretreated so as to be an n-type or p-type semiconductor in the charge transport layer.
- the sheet-type thermoelectric conversion element has a structure in which a high temperature part electrode and a low temperature part electrode have a certain distance in a plane, and has an advantage that a large temperature difference between the electrodes can be secured.
- a material having a high Seebeck coefficient can be selected and used as the n-type or p-type thermoelectric conversion material formed at both ends of the charge transport layer. Even if the Seebeck coefficient is high, the electric conductivity is very low, so it is possible to use a thermoelectric conversion material that has not been used so far as a thermoelectric conversion material by providing a charge transport layer. . As a result, an unprecedented large output thermoelectric conversion element can be provided.
- the present invention can provide a thermoelectric conversion element that is stable over time by forming a passivation film in a portion where the doped layer of the charge transport layer is exposed.
- the present invention uses an insulating substrate in which an insulating material with high thermal conductivity and an insulating material with low thermal conductivity are used, so that one end of the stacked modules can be efficiently used as a heating / high temperature part. It is possible to provide an excellent thermoelectric conversion module that functions and the other end of the stacked modules functions efficiently as a cooling / low temperature part.
- the present invention provides a thermoelectric conversion element and a thermoelectric conversion module having such excellent thermoelectric characteristics. And it provides clean new energy conversion technology.
- thermoelectric conversion element A which concern on embodiment of this invention.
- thermoelectric conversion element B which concern on the comparison form of this invention.
- thermoelectric performance characteristic room temperature
- thermoelectric conversion material The thermoelectric performance characteristic of the thermoelectric conversion material.
- explanatory drawing which shows an example of the manufacturing process of the thermoelectric conversion module which concerns on Embodiment 1 of this invention. (1) shows the first layer (step 1) of the thermoelectric conversion module, (2) shows the second layer (step 2) of the thermoelectric conversion module, and (3) shows the third layer (step 3) of the thermoelectric conversion module. (4) shows the fourth layer (step 4) of the thermoelectric conversion module.
- thermoelectric conversion module which concerns on Embodiment 2 of this invention.
- (1) is a perspective view of the thermoelectric conversion module
- (2) is a cross-sectional view taken along line CC of the thermoelectric conversion module of (1).
- It is explanatory drawing which shows the example of a connection of the thermoelectric conversion module which concerns on Embodiment 1 or 2 of this invention, and an output measuring device.
- thermoelectric conversion element of the present invention Graphite has anisotropy with respect to conductivity, and a sheet made from natural graphite has an electric conductivity in the in-plane direction of about 2000 to 10,000 (S / cm), and an electric conductivity in the thickness direction.
- a graphite sheet obtained by graphitizing a polymer sheet of polyimide or the like with a conductivity of about 1 (S / cm) has an electric conductivity in the in-plane direction of about 10,000 to 25000 (S / cm), and an electric conductivity in the thickness direction. Is about 5 (S / cm).
- the electrical conductivity of Bi-Te materials which have been used as thermoelectric conversion materials, is about 500 to 1000 (S / cm), and regardless of which graphite sheet is used, high electrical conductivity in the in-plane direction of the graphite layer.
- the rate can be used as an effective charge transport layer.
- pretreatment is performed so that graphite becomes an n-type or p-type semiconductor in order to transfer carriers with the thermoelectric conversion material without losing energy.
- a pretreatment method a method of treating carbon nanotubes, graphene, or the like so as to become an n-type or p-type semiconductor can be used.
- a method of making graphite an n-type semiconductor there are a method of heat-treating graphite in a potassium atmosphere, a method of doping a charge donating material, and the like.
- charge donating materials include tetrathiafulvalene (TTF), tetramethyltetrathiafulvalene (TMTTF), bisethylenedithiotetrathiafulvalene (BEDT-TTF), tetraceranafulvalene (TDF), triphenylphosphine (TPP), Trimethoxyphenylphosphine (MeO-TPP), trifluorophenylphosphine (F-TPP), diphenylphosphine (DPP), diphenylphosphinoethane (DPPE), diphenylphosphonopropane (DPPP), amine, polyamine, polyethylene Commonly known charge donating materials such as imine, sodium carbonate, lithium carbonate, potassium carbonate, Cu-phthalocyanine, Zn-phthalocyanine, and derivatives thereof can be used.
- TTF tetrathiafulvalene
- TTF tetramethyltetrathiafulvalene
- charge accepting materials include tetracyanoquinodimethane (TCNQ), tetrafluorotetracyanoquinodimethane (TCNQF4), dicyclodicyanobenzoquinone (DDQ), trinitrofluorenone (TNF), dinitrofluorenone (DNF), carbazole, 4
- charge accepting materials such as -hydroxy-9H-carbazole, 2-hydroxy-9H-carbazole, phenylboronic acid, pyridine, quinoline, imizazole, triphenylamine and the like, and derivatives thereof can be used.
- thermoelectric conversion material carbon nanotubes, Bi-Te compounds, or oxides are used in the present invention.
- a CVD method using methane or acetylene as a raw material and a laser ablation method formed by applying a laser to graphite are known.
- a carbon nanotube dispersion liquid is obtained by filtration.
- the carbon nanotubes are doped with a charge donating material, and in order to produce p-type carbon nanotubes, the carbon nanotubes are doped with a charge accepting material.
- thermoelectric conversion material layer is formed by heating in a mold and drying.
- charge donating materials include tetrathiafulvalene (TTF), tetramethyltetrathiafulvalene (TMTTF), bisethylenedithiotetrathiafulvalene (BEDT-TTF), tetraceranafulvalene (TDF), triphenylphosphine (TPP), Trimethoxyphenylphosphine (MeO-TPP), trifluorophenylphosphine (F-TPP), diphenylphosphine (DPP), diphenylphosphinoethane (DPPE), diphenylphosphonopropane (DPPP), amine, polyamine, polyethylene Commonly known charge donating materials such as imine, sodium carbonate, lithium carbonate, potassium carbonate, Cu-phthalocyanine, Zn-phthalocyanine, and derivatives thereof can be used.
- TTF tetrathiafulvalene
- TTF tetramethyltetrathiafulvalene
- the thermal conductivity of the graphite surface is significantly reduced by doping the graphite surface with a charge donating material or a charge accepting material.
- the phonon propagation of graphite propagates two-dimensionally on the graphite surface. Unlike phonons propagating three-dimensionally through bulk solids, the phonon mean free path is lattice defects by injecting lattice defects into the graphite surface. It has been conventionally known that the thermal conductivity is greatly reduced because it becomes equal to the distance between them.
- the decrease in thermal conductivity in the present invention is considered to be due to the role of the doping element blocking the two-dimensional propagation of phonons instead of lattice defects.
- charge accepting materials examples include tetracyanoquinodimethane (TCNQ), tetrafluorotetracyanoquinodimethane (TCNQF4), dicyclodicyanobenzoquinone (DDQ), trinitrofluorenone (TNF), dinitrofluorenone (DNF), carbazole, 4
- Commonly known charge accepting materials such as -hydroxy-9H-carbazole, 2-hydroxy-9H-carbazole, phenylboronic acid, pyridine, quinoline, imizazole, triphenylamine and the like, and derivatives thereof can be used.
- thermoelectric performance characteristics of a thermoelectric conversion material are represented by the Seebeck coefficient: square of S and the conductivity: ⁇ : S 2 ⁇ as shown in FIG. is there.
- Bi-Te compounds include Bi-Te-Se compounds (n-type thermoelectric conversion materials) and Bi-Te-Sb compounds (p-type), which are considered to have excellent thermoelectric performance characteristics at temperatures below 500K. It is preferable to use a thermoelectric conversion material).
- Bi, Te, Se, Sb, and the like are rare metals and have high costs, and there is a problem that it is difficult to supply them sufficiently for the market demand.
- the oxide material is not particularly limited, FeO, Fe 2 O 3, Fe 3 O 4, CuO, Cu 2 O, ZnO, Zn 1-X Al X O, MnO, NiO, CoO, TiO 2 and metal oxide materials such as SrTiO 3 .
- the three characteristics of high Seebeck coefficient, high electrical conductivity, and low thermal conductivity are required for the thermoelectric conversion material, so the Seebeck coefficient is as high as 300 to 1000 ⁇ V / K.
- thermoelectric conversion element having the charge transport layer of the present invention the charge transport layer made of graphite plays a role for electric conduction, and the sheet type element structure that easily secures a temperature difference plays a role for heat conduction.
- the thermoelectric conversion material layer has an advantage that only the Seebeck coefficient needs to be high. For this reason, an oxide material having a high Seebeck coefficient can be used effectively, and the output of the thermoelectric conversion element can be greatly improved.
- thermoelectric conversion module includes an insulating substrate, a charge transport layer, a thermoelectric conversion material layer, and an electrode, and the charge transport layer performs a process of doping a charge donating material on the graphite surface.
- a large number of thermoelectric conversion elements each composed of an n-type charge transport layer or a p-type charge transport layer subjected to a treatment of doping a charge accepting material on the surface of p graphite are arranged in series on an insulating substrate. As shown in (2) of FIG.
- a plurality of n-type charge transport layers 2N and p-type charge transport layers 2P are alternately arranged on an insulating substrate with a predetermined interval therebetween.
- the n-type thermoelectric conversion material layer 3N is formed on both end surfaces of the n-type charge transport layer
- the p-type thermoelectric conversion material layer 3P is formed on both end surfaces of the p-type charge transport layer. Respectively.
- the electrode 4 is connected to the n-type thermoelectric conversion material layer 3N and the p-type thermoelectric conversion material layer 3P so that the third thermoelectric conversion material layer in FIG.
- thermoelectric conversion material layers 3N and p-type thermoelectric conversion material layers 3P are connected in series. Further, a passivation film 8 is formed on the surface portion where the central doped layer where the thermoelectric conversion material layer of the n-type charge transport layer 2N and the p-type charge transport layer 2P is not formed is exposed.
- the passivation film 8 is preferably a nitride film such as silicon nitride or aluminum nitride, a carbide film such as silicon carbide, or a fluororesin such as polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene or hexafluoropropylene, or the like.
- thermoelectric conversion module has a structure in which the thermoelectric conversion modules 1A, 1B, 1C, and 1D are stacked in the thickness direction and electrically connected, as shown in (1) and (2) of FIG. It is what you have.
- the end part of the thermoelectric conversion module acts as a heating / high temperature part or a cooling / low temperature part, it is preferable that the thermoelectric conversion modules at both end parts have good thermal conductivity.
- the thermal conductivity be as low as possible between the heating / high temperature portion and the cooling / low temperature portion. In order to realize such a thermoelectric conversion module structure, as shown in FIG.
- the insulating substrate is composed of a substrate made of an insulating material having high thermal conductivity at both ends, and the central portion. It is preferable to use a composite substrate composed of a substrate made of an insulating material having a low thermal conductivity.
- a ceramic substrate made of aluminum nitride, silicon carbide, alumina, or the like, or an insulating substrate coated on the surface with aluminum nitride, silicon carbide, alumina, or the like is preferable.
- FIG. 6B is a cross-sectional view of the end portion of the thermoelectric conversion module using the ceramic substrate 5 as the insulating substrate. The entire end portion has a high thermal conductivity.
- the substrate made of an insulating material having low thermal conductivity examples include a plastic resin substrate made of polyethylene, polypropylene, polystyrene, polyethylene terephthalate, methacrylic resin, phenol resin, melamine resin, polyurethane, polycarbonate, epoxy resin, or the above plastic resin.
- a composite resin substrate in which glass fiber, silicon oxide or alumina powder is mixed with the material, a porous ceramic substrate such as porous silicon or porous alumina, or the like is preferable.
- FIG. 1 is a drawing of a thermoelectric conversion element A
- FIG. 1 (1) is a top view
- FIG. 1 (2) is a cross-sectional view taken along line AA in FIG. 1 (1)
- FIG. It is sectional drawing in the BB line of (1).
- the thermoelectric conversion element A includes an n-type thermoelectric conversion unit 1N and a p-type thermoelectric conversion unit 1P that are formed on an insulating substrate 10 having heat resistance and insulation properties apart from each other. And the electrode 4.
- the n-type thermoelectric conversion part 1N is laminated on the insulating substrate 10 in the order of the charge transport layer 2N and the n-type thermoelectric conversion material layer 3N.
- the p-type thermoelectric conversion part 1P is laminated on the substrate 10 in the order of the charge transport layer 2P and the p-type thermoelectric conversion material layer 3P.
- a graphite sheet that has been pretreated so as to become an n-type or p-type semiconductor is used as the charge transport layers 2N and 2P.
- a PGS graphite sheet obtained by graphitizing a polymer sheet such as polyimide is used as the graphite sheet.
- the thickness of the graphite sheet is not particularly limited, but a graphite sheet having a thickness of about 50 to 300 ⁇ m is used.
- n-type dopants such as triphenylphosphine (TPP), diphenylphosphonopropane (DPPP), or trimethoxyphenylphosphine (MeO-TPP), which are charge-donating materials, as pretreatment for n-type
- TPP triphenylphosphine
- DPPP diphenylphosphonopropane
- MeO-TPP trimethoxyphenylphosphine
- a DMSO (dimethyl sulfoxide) solution is applied to the surface of the graphite sheet and heat-treated at 200 ° C. in an N 2 atmosphere. This is repeated 5 times to dope the charge donating material onto the graphite surface.
- the graphite sheet pretreated in this way is used for the charge transport layer 2N of the n-type thermoelectric converter 1N.
- DMSO dimethyl sulfoxide
- a p-type dopant such as tetracyanoquinodimethane (TCNQ), 4-hydroxy-9H-carbazole, or carbazole, which is a charge-accepting material, as pretreatment for conversion to p-type Is applied to the surface of the graphite sheet and heat-treated at 200 ° C. in an N 2 atmosphere. By repeating this five times, the graphite surface is doped with the charge-accepting material.
- the graphite sheet pretreated in this way is used for the charge transport layer 2P of the p-type thermoelectric converter 1P.
- the n-type thermoelectric conversion material layer 3N and the p-type thermoelectric conversion material layer 3P are formed of carbon nanotubes, Bi-Te compounds, oxides, or a laminate of these materials.
- the thermoelectric conversion material layer may be a plate-shaped thermoelectric conversion material obtained by cutting a sintered body, or may be a layer formed by a known vapor deposition method, sputtering method, ion plating method, or CVD method. good.
- the thermoelectric conversion material layer may be formed by pasting the thermoelectric conversion material, printing the paste by a screen printing method, a doctor blade method, or the like and heating.
- a commercially available carbon nanotube dispersion is filtered to prepare carbon nanotubes (density: 0.5 g / cm 3 ).
- an n-type dopant such as triphenylphosphine (TPP), diphenylphosphonopropane (DPPP), or trimethoxyphenylphosphine (MeO-TPP), which is a charge donating material, is used.
- TPP triphenylphosphine
- DPPP diphenylphosphonopropane
- MeO-TPP trimethoxyphenylphosphine
- thermoelectric conversion material layer is produced.
- DMSO dimethyl
- a p-type dopant such as tetracyanoquinodimethane (TCNQ), 4-hydroxy-9H-carbazole, or carbazole, which is a charge-accepting material
- TCNQ tetracyanoquinodimethane
- carbazole which is a charge-accepting material
- Bi-Te material In the case of a Bi-Te material, Bi 2 Te 2.7 Se 0.3 is used as an n-type thermoelectric conversion material, and Bi 0.5 Sb 1.5 Te 3 is used as a p-type thermoelectric conversion material.
- Bi- Te-based material paste was prepared. These Bi-Te based material pastes are printed and fired at 150 ° C. for 10 minutes in an N 2 atmosphere to produce a thermoelectric conversion material layer.
- the n-type thermoelectric conversion material layer 3N is made of iron oxide (Fe 2 O 3 ) or zinc oxide (ZnO), and the p-type thermoelectric conversion material layer 3P is made of copper oxide (Cu 2 O).
- iron oxide (Fe 2 O 3 ), zinc oxide (ZnO), and copper oxide (Cu 2 O) are formed by an ion plating method. Fe, Zn, and Cu are used as targets, respectively, and heated by an electron gun.
- An oxide film having a thickness of about 0.3 ⁇ m was formed under conditions of a substrate temperature of 130 ° C., a high-frequency power output of 300 W, a substrate bias of 0 V, and a film formation speed of 0.5 to 1 nm / sec, and then 10 ° C. at 150 ° C. in an N 2 atmosphere.
- a thermoelectric conversion material layer is formed on the graphite sheet by annealing for a minute.
- the charge transport layers 2N and 2P made of graphite are formed on the substrate 10 as described above, and carbon nanotubes, Bi-Te compounds, oxides, or carbon nanotubes and Bi are formed at both ends of the charge transport layer.
- Thermoelectric conversion material layers 3N and 3P made of a laminate of a -Te compound or a laminate of a carbon nanotube and an oxide are laminated.
- An Ag layer is formed on the thermoelectric conversion material layer by a vapor deposition method, and an electrode 4 is formed by attaching an Al substrate to the Ag layer with solder.
- thermoelectric conversion element B which concerns on the comparative form 1 is demonstrated.
- 2 is a drawing of the thermoelectric conversion element B
- FIG. 2 (1) is a top view
- FIG. 2 (2) is a cross-sectional view taken along the line CC of FIG. 2 (1)
- FIG. 2 (3) is FIG. It is sectional drawing in the DD line of (1).
- thermoelectric conversion element B As shown in FIG. 2, the thermoelectric conversion element B according to Comparative Embodiment 1 is that the thermoelectric conversion material layers 3N and 3P are formed on the insulating substrate 10, and the charge transport layers 2N and 2P are not formed. This is different from 1. And each electrode is formed in the both ends of thermoelectric conversion material layer 3N, 3P.
- the n-type thermoelectric conversion material layer 3N and the p-type thermoelectric conversion material layer 3P are formed of carbon nanotubes, Bi-Te-based materials, or oxide materials by the same process as in the first embodiment.
- the thermoelectric conversion element B (FIG. 2) which concerns on the comparison form 1 is manufactured according to the process similar to Embodiment 1.
- FIG. 2 which concerns on the comparison form 1 is manufactured according to the process similar to Embodiment 1.
- thermoelectric conversion element A (1) As in the following (1-1) to (1-4), a thermoelectric conversion element A (1) according to the embodiment 1 (FIG. 1) was produced.
- a PGS graphite sheet having a corner of 40 mm ⁇ 100 mm and a thickness of 100 ⁇ m is prepared.
- a graphite sheet is placed at a position on the silicon resin sheet 1 mm away from the end of the silicon resin sheet. Use heat resistant adhesive for placement.
- a PGS graphite sheet having a square of 40 mm ⁇ 100 mm and a thickness of 100 ⁇ m doped with tetracyanoquinodimethane (TCNQ), which is a charge-accepting material (p-type dopant), is prepared.
- TCNQ tetracyanoquinodimethane
- a graphite sheet is placed at a position on the silicon resin sheet that is 1 mm away from the end of the silicon resin sheet and 2 mm away from the end of the charge transport layer 2N.
- thermoelectric conversion material layer 3P Carbon nanotubes doped with tetracyanoquinodimethane (TCNQ), which is a charge-accepting material (p-type dopant), on both ends of a graphite sheet, which is a predetermined position of the thermoelectric conversion material layer 3P in FIG. It is formed in a size of 40 mm ⁇ 20 mm and a thickness of 100 ⁇ m, and is heat-dried at 130 ° C. for 20 minutes. From the above steps, the p-type thermoelectric conversion portion 1P has a structure in which the three-layer structure of the insulating substrate 10, the charge transport layer 2P, and the thermoelectric conversion material layer 3P is formed at both ends of the charge transport layer 2P.
- TCNQ tetracyanoquinodimethane
- thermoelectric conversion element A (1) which consists of the n-type thermoelectric conversion part 1N and the p-type thermoelectric conversion part 1P by the above was produced. (See Figure 1 above)
- thermoelectric conversion elements A (1) manufactured in the above steps are connected in series using an Al substrate having a square size of 82 mm ⁇ 20 mm and a thickness of 20 ⁇ m, and the upper part of each thermoelectric conversion element is connected. Laminate films were stacked, evacuated, heated at 200 ° C., and laminated to produce a module.
- thermoelectric conversion element 1A (1) manufactured by the above process, one electrode end is set to 50 ° C., and the other electrode end is set to 0 ° C., and the output of the module composed of the thermoelectric conversion element 1A (1) It was investigated. As shown in Table 1, an output of 1.80 mW was obtained.
- thermoelectric conversion element A (2) according to the embodiment 1 (FIG. 1) was produced.
- Insulating substrate 10 having a square 84 mm ⁇ 102 mm, 1 mm thick silicon resin sheet, and charge transporting layer 2N, trimethoxyphenylphosphine (MeO-TPP) which is a charge donating material (n-type dopant)
- MeO-TPP trimethoxyphenylphosphine
- a PGS graphite sheet having a square of 40 mm ⁇ 100 mm and a thickness of 100 ⁇ m is prepared. A graphite sheet is placed at a position on the silicon resin sheet 1 mm away from the end of the silicon resin sheet. Use heat resistant adhesive for placement.
- thermoelectric conversion material layer 3N A carbon nanotube doped with trimethoxyphenylphosphine (MeO-TPP), which is a charge donating material (n-type dopant), on both ends of a graphite sheet at a predetermined position of the thermoelectric conversion material layer 3N in FIG. Is formed into a size of 40 mm square ⁇ 20 mm square and 100 ⁇ m thick and dried by heating at 130 ° C. for 20 minutes. From the above steps, the n-type thermoelectric conversion portion 1N has a structure in which the three-layer structure of the insulating substrate 10, the charge transport layer 2N, and the thermoelectric conversion material layer 3N is formed at both ends of the charge transport layer 2N.
- MeO-TPP trimethoxyphenylphosphine
- a PGS graphite sheet having a corner of 40 mm ⁇ 100 mm and a thickness of 100 ⁇ m doped with carbazole which is a charge receiving material (p-type dopant) is prepared.
- a graphite sheet is placed at a position on the silicon resin sheet that is 1 mm away from the end of the silicon resin sheet and 2 mm away from the end of the charge transport layer 2N.
- the p-type thermoelectric conversion portion 1P has a structure in which the three-layer structure of the insulating substrate 10, the charge transport layer 2P, and the thermoelectric conversion material layer 3P is formed at both ends of the charge transport layer 2P.
- thermoelectric conversion element A (2) which consists of the n-type thermoelectric conversion part 1N and the p-type thermoelectric conversion part 1P by the above was produced. (See Figure 1 above)
- thermoelectric conversion elements A (2) produced in the above steps are connected in series using an Al substrate having a square size of 82 mm ⁇ 20 mm and a thickness of 20 ⁇ m, and the thermoelectric conversion elements are formed on the top of each thermoelectric conversion element. Laminate films were stacked, evacuated, heated at 200 ° C., and laminated to produce a module.
- thermoelectric conversion element 1A (2) manufactured in the above process, one electrode end is set to 50 ° C., and the other electrode end is set to 0 ° C., and the output of the module composed of the thermoelectric conversion element 1A (2) It was investigated. As shown in Table 1, an output of 2.24 mW was obtained.
- thermoelectric conversion element A (3) having the form of Embodiment 1 (FIG. 1) was produced.
- DPPP diphenylphosphonopropane
- a PGS graphite sheet having a size of 40 mm ⁇ 100 mm and a thickness of 100 ⁇ m is prepared.
- a graphite sheet is placed at a position on the silicon resin sheet 1 mm away from the end of the silicon resin sheet. Use heat resistant adhesive for placement.
- n-type thermoelectric conversion material is formed in a size of 40 mm ⁇ 20 mm and a thickness of 100 ⁇ m as n-type thermoelectric conversion material on both ends of the graphite sheet, which is a predetermined position of the thermoelectric conversion material layer 3N in FIG. Subsequently, baking is performed at 150 ° C. for 10 minutes in an N 2 atmosphere. From the above steps, the n-type thermoelectric conversion portion 1N has a structure in which the three-layer structure of the insulating substrate 10, the charge transport layer 2N, and the thermoelectric conversion material layer 3N is formed at both ends of the charge transport layer 2N.
- a graphite sheet is placed at a position on the silicon resin sheet that is 1 mm away from the end of the silicon resin sheet and 2 mm away from the end of the charge transport layer 2N. Use heat resistant adhesive for placement.
- Bi 0.5 Sb 1.5 Te 3 as a p-type thermoelectric conversion material is formed in a size of 40 mm ⁇ 20 mm and a thickness of 100 ⁇ m as a p-type thermoelectric conversion material on both ends of the graphite sheet at predetermined positions of the thermoelectric conversion material layer 3P in FIG. Subsequently, baking is performed at 150 ° C. for 10 minutes in an N 2 atmosphere. From the above steps, the p-type thermoelectric conversion portion 1P has a structure in which the three-layer structure of the insulating substrate 10, the charge transport layer 2P, and the thermoelectric conversion material layer 3P is formed at both ends of the charge transport layer 2P.
- thermoelectric conversion element A (3) which consists of the n-type thermoelectric conversion part 1N and the p-type thermoelectric conversion part 1P by the above was produced. (See Figure 1 above)
- thermoelectric conversion elements A (2) manufactured in the above steps are connected in series using an Al substrate having a square size of 82 mm ⁇ 20 mm and a thickness of 20 ⁇ m, and the upper part of each thermoelectric conversion element is connected.
- Laminate films were stacked, evacuated, heated at 200 ° C., and laminated to produce a module.
- thermoelectric conversion element 1A (3) manufactured by the above steps, one electrode end is set to 50 ° C. and the other electrode end is set to 0 ° C., and the output of the module formed of the thermoelectric conversion element 1A (3) It was investigated. As shown in Table 1, an output of 15.7 mW was obtained.
- thermoelectric conversion element A (4) according to the embodiment 1 (FIG. 1) was produced.
- a PGS graphite sheet having a corner of 40 mm ⁇ 100 mm and a thickness of 100 ⁇ m is prepared.
- a graphite sheet is placed at a position on the silicon resin sheet 1 mm away from the end of the silicon resin sheet. Use heat resistant adhesive for placement.
- Iron oxide (Fe 2 O 3 ) as an n-type thermoelectric conversion material having an angle of 40 mm ⁇ 20 mm and a thickness of 0.3 ⁇ m is formed on both ends of the graphite sheet at predetermined positions of the thermoelectric conversion material layer 3N in FIG. Form in size. Subsequently, annealing is performed at 150 ° C. for 10 minutes in an N 2 atmosphere. From the above steps, the n-type thermoelectric conversion portion 1N has a structure in which the three-layer structure of the insulating substrate 10, the charge transport layer 2N, and the thermoelectric conversion material layer 3N is formed at both ends of the charge transport layer 2N.
- a PGS graphite sheet having a square of 40 mm ⁇ 100 mm and a thickness of 100 ⁇ m doped with tetracyanoquinodimethane (TCNQ) as a charge-accepting material (p-type dopant) is prepared.
- a graphite sheet is placed at a position on the silicon resin sheet that is 1 mm away from the end of the silicon resin sheet and 2 mm away from the end of the charge transport layer 2N.
- Use heat resistant adhesive for placement Copper oxide (Cu 2 O) as a p-type thermoelectric conversion material is formed on both ends of the graphite sheet, which is a predetermined position of the thermoelectric conversion material layer 3P in FIG.
- the p-type thermoelectric conversion portion 1P has a structure in which the three-layer structure of the insulating substrate 10, the charge transport layer 2P, and the thermoelectric conversion material layer 3P is formed at both ends of the charge transport layer 2P.
- thermoelectric conversion element A (4) which consists of the n-type thermoelectric conversion part 1N and the p-type thermoelectric conversion part 1P by the above was produced. (See Figure 1 above)
- thermoelectric conversion elements A (4) manufactured in the above steps are connected in series using an Al substrate having a square size of 82 mm ⁇ 20 mm and a thickness of 20 ⁇ m, and the upper part of each thermoelectric conversion element is connected.
- Laminate films were stacked, evacuated, heated at 200 ° C., and laminated to produce a module.
- thermoelectric conversion element 1A (4) manufactured by the above steps, one electrode end is set to 50 ° C., and the other electrode end is set to 0 ° C., and the output of the module composed of the thermoelectric conversion element 1A (4) is output. It was investigated. As shown in Table 1, an output of 142 mW was obtained.
- thermoelectric conversion element A (5) As shown in the following (5-1) to (5-4), a thermoelectric conversion element A (5) according to the embodiment 1 (FIG. 1) was produced.
- MeO-TPP trimethoxyphenylphosphine
- a PGS graphite sheet having a square of 40 mm ⁇ 100 mm and a thickness of 100 ⁇ m is prepared.
- a graphite sheet is placed at a position on the silicon resin sheet 1 mm away from the end of the silicon resin sheet. Use heat resistant adhesive for placement.
- Zinc oxide (ZnO) is used as an n-type thermoelectric conversion material on both ends of the graphite sheet, which is a predetermined position of the thermoelectric conversion material layer 3N in FIG. Form. Subsequently, annealing is performed at 150 ° C. for 10 minutes in an N 2 atmosphere. From the above steps, the n-type thermoelectric conversion portion 1N has a structure in which the three-layer structure of the insulating substrate 10, the charge transport layer 2N, and the n-type thermoelectric conversion material layer 3N is formed at both ends of the charge transport layer 2N.
- a PGS graphite sheet having a corner of 40 mm ⁇ 100 mm and a thickness of 100 ⁇ m doped with carbazole as a charge-accepting material (p-type dopant) is prepared.
- a graphite sheet is placed at a position on the silicon resin sheet that is 1 mm away from the end of the silicon resin sheet and 2 mm away from the end of the charge transport layer 2N.
- Use heat resistant adhesive for placement Copper oxide (Cu 2 O) as a p-type thermoelectric conversion material is formed on both ends of the graphite sheet, which is a predetermined position of the thermoelectric conversion material layer 3P in FIG.
- the p-type thermoelectric conversion portion 1P has a structure in which the three-layer structure of the insulating substrate 10, the charge transport layer 2P, and the p-type thermoelectric conversion material layer 3P is formed at both ends of the charge transport layer 2P.
- thermoelectric conversion element A (5) which consists of the n-type thermoelectric conversion part 1N and the p-type thermoelectric conversion part 1P by the above was produced. (See Figure 1 above)
- thermoelectric conversion elements A (5) manufactured in the above process are connected in series using an Al substrate having a square size of 82 mm ⁇ 20 mm and a thickness of 20 ⁇ m, and the upper part of each thermoelectric conversion element is connected. Laminate films were stacked, evacuated, heated at 200 ° C., and laminated to produce a module.
- thermoelectric conversion element 1A (5) manufactured by the above process
- one electrode end is set to 50 ° C.
- the other electrode end is set to 0 ° C.
- the output of the module composed of the thermoelectric conversion element 1A (5) is output. It was investigated. As shown in Table 1, an output of 207 mW was obtained.
- thermoelectric conversion element A (6) As shown in the following (6-1) to (6-4), a thermoelectric conversion element A (6) according to the embodiment 1 (FIG. 1) was produced.
- DPPP diphenylphosphonopropane
- a PGS graphite sheet having a corner of 40 mm ⁇ 100 mm and a thickness of 100 ⁇ m is prepared.
- a graphite sheet is placed at a position on the silicon resin sheet 1 mm away from the end of the silicon resin sheet. Use heat resistant adhesive for placement.
- a charge donating material n-type dopant diphenylphosphonopropane
- an n-type thermoelectric conversion material layer 3N composed of a laminate of a carbon nanotube layer and a Bi 2 Te 2.7 Se 0.3 layer is formed. From the above steps, the n-type thermoelectric conversion portion 1N has a structure in which the three-layer structure of the insulating substrate 10, the charge transport layer 2N, and the thermoelectric conversion material layer 3N is formed at both ends of the charge transport layer 2N.
- a PGS graphite sheet having a corner of 40 mm ⁇ 100 mm and a thickness of 100 ⁇ m doped with 4-hydroxy-9H-carbazole as a charge-accepting material (p-type dopant) is prepared.
- a graphite sheet is placed at a position on the silicon resin sheet that is 1 mm away from the end of the silicon resin sheet and 2 mm away from the end of the charge transport layer 2N.
- Carbon nanotubes doped with 4-hydroxy-9H-carbazole, which is a charge-accepting material (p-type dopant) on both ends of a graphite sheet at a predetermined position of the thermoelectric conversion material layer 3P in FIG.
- the p-type thermoelectric conversion portion 1P has a structure in which the three-layer structure of the insulating substrate 10, the charge transport layer 2P, and the thermoelectric conversion material layer 3P is formed at both ends of the charge transport layer 2P.
- thermoelectric conversion elements A (6) manufactured in the above steps are connected in series using an Al substrate having a square size of 82 mm ⁇ 20 mm and a thickness of 20 ⁇ m, and the upper part of each thermoelectric conversion element is connected.
- Laminate films were stacked, evacuated, heated at 200 ° C., and laminated to produce a module.
- thermoelectric conversion element 1A (6) manufactured by the above steps, one electrode end is set to 50 ° C., and the other electrode end is set to 0 ° C., and the output of the module composed of the thermoelectric conversion element 1A (6) is output. It was investigated. As shown in Table 1, an output of 25.3 mW was obtained.
- thermoelectric conversion element A (7) As shown in (7-1) to (7-4) below, a thermoelectric conversion element A (7) according to the embodiment 1 (FIG. 1) was produced.
- a PGS graphite sheet having a corner of 40 mm ⁇ 100 mm and a thickness of 100 ⁇ m is prepared.
- a graphite sheet is placed at a position on the silicon resin sheet 1 mm away from the end of the silicon resin sheet. Use heat resistant adhesive for placement.
- iron oxide Fe 2 O 3
- annealing is performed at 150 ° C. for 10 minutes in an N 2 atmosphere.
- an n-type thermoelectric conversion material layer 3N composed of a laminate of a carbon nanotube layer and an iron oxide (Fe 2 O 3 ) layer is formed. From the above steps, the n-type thermoelectric conversion portion 1N has a structure in which the three-layer structure of the insulating substrate 10, the charge transport layer 2N, and the thermoelectric conversion material layer 3N is formed at both ends of the charge transport layer 2N.
- a PGS graphite sheet having a square of 40 mm ⁇ 100 mm and a thickness of 100 ⁇ m doped with tetracyanoquinodimethane (TCNQ) as a charge-accepting material (p-type dopant) is prepared.
- TCNQ tetracyanoquinodimethane
- a graphite sheet is placed at a position on the silicon resin sheet that is 1 mm away from the end of the silicon resin sheet and 2 mm away from the end of the charge transport layer 2N.
- TCNQ tetracyanoquinodimethane
- the p-type thermoelectric conversion material layer 3P composed of a laminate of a carbon nanotube layer and a copper oxide (Cu 2 O) layer is formed. From the above steps, the p-type thermoelectric conversion portion 1P has a structure in which the three-layer structure of the insulating substrate 10, the charge transport layer 2P, and the thermoelectric conversion material layer 3P is formed at both ends of the charge transport layer 2P.
- thermoelectric conversion element A (7) which consists of the n-type thermoelectric conversion part 1N and the p-type thermoelectric conversion part 1P by the above was produced. (See Figure 1 above)
- thermoelectric conversion elements A (7) manufactured in the above process are connected in series using an Al substrate having a square size of 82 mm ⁇ 20 mm and a thickness of 20 ⁇ m, and the upper part of each thermoelectric conversion element is connected. Laminate films were stacked, evacuated, heated at 200 ° C., and laminated to produce a module.
- thermoelectric conversion element 1A (7) manufactured by the above steps, one electrode end is set to 50 ° C., and the other electrode end is set to 0 ° C., and the output of the module composed of the thermoelectric conversion element 1A (7) is output. It was investigated. As shown in Table 1, an output of 157 mW was obtained.
- thermoelectric conversion element A (8) according to the embodiment 1 (FIG. 1) was produced.
- a carbon nanotube doped with trimethoxyphenylphosphine (MeO-TPP), which is a charge donating material (n-type dopant), on both ends of a graphite sheet at a predetermined position of the thermoelectric conversion material layer 3N in FIG. Is formed into a size of 40 mm square ⁇ 20 mm square and 100 ⁇ m thick and dried by heating at 130 ° C. for 20 minutes.
- zinc oxide (ZnO) is formed to have a size of 40 mm ⁇ 20 mm and a thickness of 0.3 ⁇ m by ion plating. Subsequently, annealing is performed at 150 ° C. for 10 minutes in an N 2 atmosphere.
- the n-type thermoelectric conversion material layer 3N formed by stacking the carbon nanotube layer and zinc oxide (ZnO) is formed. From the above steps, the n-type thermoelectric conversion portion 1N has a structure in which the three-layer structure of the insulating substrate 10, the charge transport layer 2N, and the thermoelectric conversion material layer 3N is formed at both ends of the charge transport layer 2N.
- a PGS graphite sheet having a corner of 40 mm ⁇ 100 mm and a thickness of 100 ⁇ m doped with carbazole as a charge-accepting material (p-type dopant) is prepared.
- a graphite sheet is placed at a position on the silicon resin sheet that is 1 mm away from the end of the silicon resin sheet and 2 mm away from the end of the charge transport layer 2N.
- thermoelectric conversion portion 1P is formed from the above steps. From the above steps, the p-type thermoelectric conversion portion 1P has a structure in which the three-layer structure of the insulating substrate 10, the charge transport layer 2P, and the thermoelectric conversion material layer 3P is formed at both ends of the charge transport layer 2P.
- thermoelectric conversion element A (8) which consists of the n-type thermoelectric conversion part 1N and the p-type thermoelectric conversion part 1P by the above was produced. (See Figure 1 above)
- thermoelectric conversion elements A (8) manufactured in the above steps are connected in series using an Al substrate having a square size of 82 mm ⁇ 20 mm and a thickness of 20 ⁇ m, and the upper part of each thermoelectric conversion element is connected. Laminate films were stacked, evacuated, heated at 200 ° C., and laminated to produce a module.
- thermoelectric conversion element 1A (8) manufactured in the above process, one electrode end is set to 50 ° C., and the other electrode end is set to 0 ° C., and the output of the module including the thermoelectric conversion element 1A (8) is output. It was investigated. As shown in Table 1, an output of 224 mW was obtained.
- thermoelectric conversion element B (1) of the aspect of Comparative Example 1 (FIG. 2) was produced.
- n-type thermoelectric conversion portion 1N has a two-layer structure of the insulating substrate 10 and the n-type thermoelectric conversion material layer 3N.
- a charge accepting material (p-type dopant) is formed at a position on the silicon resin sheet 1 mm away from the end of the silicon resin sheet and 2 mm away from the end of the n-type thermoelectric conversion material layer 3N.
- Carbon nanotubes doped with cyanoquinodimethane (TCNQ) are formed in a size of 40 mm ⁇ 100 mm and a thickness of 300 ⁇ m by the doctor blade method. From the above steps, the p-type thermoelectric conversion portion 1P has a two-layer structure of the insulating substrate 10 and the p-type thermoelectric conversion material layer 3P.
- thermoelectric conversion element B (1) which consists of the n-type thermoelectric conversion part 1N and the p-type thermoelectric conversion part 1P by the above was produced. (See Figure 2 above)
- thermoelectric conversion elements B (1) manufactured in the above process were connected in series using an Al substrate having a square size of 82 mm ⁇ 20 mm and a thickness of 20 ⁇ m, and the top of each thermoelectric conversion element A module was produced by laminating and laminating a laminate film, heating at 200 ° C., and laminating.
- thermoelectric conversion elements B (1) produced in the above process were connected in series at 50 ° C. and the other electrode end at 0 ° C.
- Table 1 compared to the output of 1.80 mW in Example 1, only an output of 0.013 mW was obtained.
- thermoelectric conversion element B (2) having the form of Comparative Form 1 (FIG. 2) was produced.
- thermoelectric conversion portion 1N has a two-layer structure of the insulating substrate 10 and the n-type thermoelectric conversion material layer 3N.
- carbazole which is a charge-accepting material (p-type dopant)
- carbazole which is a charge-accepting material (p-type dopant)
- the carbon nanotube doped with is formed into a size of 40 mm ⁇ 100 mm and a thickness of 300 ⁇ m by a doctor blade method. From the above steps, the p-type thermoelectric conversion portion 1P has a two-layer structure of the insulating substrate 10 and the p-type thermoelectric conversion material layer 3P.
- thermoelectric conversion element B (2) which consists of the n-type thermoelectric conversion part 1N and the p-type thermoelectric conversion part 1P by the above was produced. (See Figure 2 above)
- thermoelectric conversion elements B (2) manufactured in the above steps were connected in series using an Al substrate having a square size of 82 mm ⁇ 20 mm and a thickness of 20 ⁇ m, and the top of each thermoelectric conversion element A module was produced by laminating and laminating a laminate film, heating at 200 ° C., and laminating.
- thermoelectric conversion elements B (2) produced in the above process were connected in series at 50 ° C. and the other electrode end at 0 ° C.
- Table 1 compared with the output of 2.24 mW in Example 2, only an output of 0.0015 mW was obtained.
- thermoelectric conversion element B (3) of the mode of Comparative mode 1 (FIG. 3) was produced.
- thermoelectric conversion portion 1N has a two-layer structure of the insulating substrate 10 and the n-type thermoelectric conversion material layer 3N.
- thermoelectric conversion element B (3) which consists of the n-type thermoelectric conversion part 1N and the p-type thermoelectric conversion part 1P by the above was produced. (See Figure 2 above)
- thermoelectric conversion elements B (3) manufactured in the above steps were connected in series using an Al substrate having a square size of 82 mm ⁇ 20 mm and a thickness of 50 ⁇ m, and the top of each thermoelectric conversion element A module was produced by laminating and laminating a laminate film, heating at 200 ° C., and laminating.
- thermoelectric conversion elements B (3) produced in the above process were connected in series at 50 ° C. and the other electrode end at 0 ° C. Compared with 15.7 mW of Example 3 and 25.3 mW of Example 6, only an output of 1.26 mW was obtained.
- thermoelectric conversion element B (4) of the mode of Comparative Mode 1 (FIG. 2) was produced.
- thermoelectric conversion material A silicon resin sheet having a corner of 84 mm ⁇ 102 mm and a thickness of 1 mm is prepared as the insulating substrate 10, and the n-type thermoelectric conversion material is placed at a position on the silicon resin sheet 1 mm away from the end of the silicon resin sheet.
- iron oxide Fe 2 O 3
- annealing is performed at 150 ° C. for 10 minutes in an N 2 atmosphere. From the above steps, the n-type thermoelectric conversion portion 1N has a two-layer structure of the insulating substrate 10 and the n-type thermoelectric conversion material layer 3N.
- thermoelectric conversion element B which consists of the n-type thermoelectric conversion part 1N and the p-type thermoelectric conversion part 1P by the above was produced. (See Figure 2 above)
- thermoelectric conversion elements B (4) manufactured in the above steps were connected in series using an Al substrate having a square size of 82 mm ⁇ 20 mm and a thickness of 20 ⁇ m, and the top of each thermoelectric conversion element A module was produced by laminating and laminating a laminate film, heating at 200 ° C., and laminating.
- thermoelectric conversion elements B (4) produced in the above steps were connected in series at 50 ° C. and the other electrode end at 0 ° C.
- a module in which 10 thermoelectric conversion elements B (4) produced in the above steps were connected in series at 50 ° C. and the other electrode end at 0 ° C.
- 142 mW of Example 4 and 157 mW of Example 7 only an output of 0.00093 mW was obtained.
- thermoelectric conversion element B (5) of the mode of Comparative mode 1 (FIG. 2) was produced.
- thermoelectric conversion portion 1N has a two-layer structure of the insulating substrate 10 and the n-type thermoelectric conversion material layer 3N.
- Cu 2 copper oxide
- O copper oxide
- annealing is performed at 150 ° C. for 10 minutes in an N 2 atmosphere. From the above steps, the p-type thermoelectric conversion portion 1P has a two-layer structure of the insulating substrate 10 and the p-type thermoelectric conversion material layer 3P.
- thermoelectric conversion element B (3) which consists of the n-type thermoelectric conversion part 1N and the p-type thermoelectric conversion part 1P by the above was produced. (See Figure 2 above)
- thermoelectric conversion elements B (5) manufactured in the above process were connected in series using an Al substrate having a square size of 82 mm ⁇ 20 mm and a thickness of 20 ⁇ m, and the top of each thermoelectric conversion element A module was produced by laminating and laminating a laminate film, heating at 200 ° C., and laminating.
- thermoelectric conversion elements B (5) produced in the above process were connected in series at 50 ° C. and the other electrode end at 0 ° C.
- 207 mW in Example 4 and 224 mW in Example 8 only an output of 0.00061 mW was obtained.
- FIG. 5 is an explanatory diagram illustrating an example of a manufacturing process of the thermoelectric conversion module according to the first embodiment of the present invention.
- 5 (1) shows the first layer (step 1) of the thermoelectric conversion module
- FIG. 5 (2) shows the second layer (step 2) of the thermoelectric conversion module
- FIG. 5 (3) shows the thermoelectric conversion module.
- a 3rd layer (process 3) is shown
- FIG.5 (4) shows the 4th layer (process 4) of a thermoelectric conversion module.
- Two ceramic substrates 5 having a corner of 310 mm ⁇ 51 mm and a thickness of 1 mm and a resin substrate 6 made of phenol resin having a corner of 310 mm ⁇ 50 mm and a thickness of 1 mm are prepared.
- first layer (step 1) of FIG. 5 the resin substrate 6 is disposed so as to be sandwiched between two ceramic substrates 5 and bonded with a heat-resistant adhesive, and the corner is 310 mm ⁇ 152 mm.
- a composite substrate made of a ceramic substrate 5 and a resin substrate 6 having a thickness of 1 mm is manufactured. This is used as the insulating substrate 1.
- the ceramic substrate 5 and the resin substrate 5 are arranged in the Y direction so that the ceramic substrate 5, the resin substrate 6 and the ceramic substrate 5 are arranged in this order.
- a substrate 6 is arranged.
- Step 2 As the charge transport layer 2N, three PGS graphite sheets (2N) having a corner of 50 mm ⁇ 150 mm and a thickness of 100 ⁇ m, doped with TPP (triphenylphosphine) as a charge donating material (n-type dopant) on the surface prepare.
- TPP triphenylphosphine
- n-type dopant a charge donating material
- the charge transport layer 2P three PGS graphite sheets (2P) having an angle of 50 mm ⁇ 150 mm and a thickness of 100 ⁇ m, doped with tetracyanoquinodimethane (TCNQ), which is a charge-accepting material (p-type dopant), are prepared. To do. As shown in FIG.
- a graphite sheet (2N, 2P) is provided as a charge transport layer at the position of the charge transport layers 2N, 2P, and the insulating substrate with the doped surface facing up, respectively. 1 are alternately arranged.
- Use heat resistant adhesive for placement Each graphite sheet (2N, 2P) is arranged such that its longitudinal direction is in the Y direction.
- both ends of each graphite sheet (2N, 2P) are arranged so as to be in contact with the ceramic substrates 5 at both ends of the insulating substrate 1.
- a plurality of graphite sheets (2N, 2P) are arranged (three in FIG. 5) so that N-type and P-type are alternately arranged in the X direction.
- Step 3 As shown in FIG. 5 (3) third layer (step 3), on both ends of each graphite sheet (2N, 2P) of the second layer, the size of the corner is 50 mm ⁇ 50 mm and the thickness is 100 ⁇ m.
- Thermoelectric conversion material layers 3N and 3P are formed, respectively.
- the paste of Bi 2 Te 2.7 Se 0.3 is used as the n-type thermoelectric conversion material
- the paste of Bi 0.5 Sb 1.5 Te 3 is used as the p-type thermoelectric conversion material
- the thermoelectric conversion material layers 3N and 3P are formed by a printing method, respectively.
- baking is performed at 150 ° C. for 10 minutes in an N 2 atmosphere.
- Step 4 As shown in FIG. 5 (4) fourth layer (step 4), polytetrafluoroethylene is applied to the exposed portion of the doped layer on the central surface of the graphite sheet (2N) at 350 ° C. Then, the passivation film 8 is formed by baking. Further, a passivation film 8 is formed by forming a silicon nitride film by a plasma CVD method on the exposed portion of the doped layer on the central surface of the graphite sheet (2P). Subsequently, an Ag layer of 50 mm ⁇ 50 mm is formed on the surface of the thermoelectric conversion material layers 3N and 3P by a vapor deposition method.
- an electrode 4 is formed by fixing an Al substrate having a corner of 50 mm ⁇ 50 mm and a thickness of 50 ⁇ m, or a corner of 101 mm ⁇ 50 mm and a thickness of 50 ⁇ m on the Ag layer with solder.
- the electrode 4 is disposed by adjoining adjacent Ag layers so that the path of charge flowing through the second layer graphite sheet (2N, 2P) has a meandering shape.
- the electrical connection terminals 7 are fixed to the side surfaces of the electrodes 4 at both ends of the meandering wiring by soldering.
- the electrical connection terminal 7 is a terminal made of copper wire, and has a structure in which the surface is covered with an insulator.
- a thermoelectric conversion module in which three sets of thermoelectric conversion elements including an n-type thermoelectric conversion unit and a p-type thermoelectric conversion unit are arranged in series on the insulating substrate 1 is manufactured.
- thermoelectric conversion module having a charge transport layer can be realized by arranging three sets of thermoelectric conversion elements composed of an n-type thermoelectric conversion unit and a p-type thermoelectric conversion unit in series.
- FIG. 6 is an explanatory diagram showing a schematic diagram of a thermoelectric conversion module according to Embodiment 2 of the present invention.
- 6 (1) is a perspective view of the thermoelectric conversion module
- FIG. 6 (2) is a cross-sectional view of the thermoelectric conversion module taken along the line CC of FIG. 6 (1).
- thermoelectric conversion module according to Embodiment 2 of the present invention has a structure in which the thermoelectric conversion modules of FIG. 5 are stacked in the three-stage thickness direction (Z direction).
- the bottom surface of the ceramic substrate 5 of the insulating substrate 1B is in contact with the top surface of the electrode 4 of the insulating substrate 1A, and the top surface of the electrode 4 of the insulating substrate 1B.
- Three thermoelectric conversion modules are adhered and arranged with a heat-resistant adhesive so that the bottom surface of the ceramic substrate 5 of the insulating substrate 1C is in contact with.
- an insulating substrate 1D having a corner of 310 mm ⁇ 152 mm and a thickness of 1 mm is disposed on the top of the three-tiered thermoelectric conversion module.
- thermoelectric conversion unit and the p-type thermoelectric conversion unit of the uppermost and lowermost thermoelectric conversion modules and the middle thermoelectric conversion module is an exchanged arrangement.
- the electrical connection terminals 7 of the thermoelectric conversion modules stacked in the thickness direction (Z direction) are connected in series so as to form a meander shape from the first stage to the third stage.
- a phenol resin substrate is bonded to the four sides of the stacked thermoelectric conversion modules with a heat resistant adhesive.
- a laminate film is placed at the joints on the four sides, and after evacuation, it is heated at 200 ° C. to laminate and seal. The laminate film on the upper and lower ceramic substrate surfaces of the module is removed to expose the ceramic substrate surface.
- thermoelectric conversion modules By arranging the thermoelectric conversion modules in three layers, a thermoelectric conversion module having a charge transport layer and having excellent thermoelectric conversion characteristics can be realized.
- FIG. 7 is an explanatory diagram showing a connection example between the thermoelectric conversion module and the output measuring device according to the first or second embodiment of the present invention.
- one end of the stacked module functions efficiently as a heating / high temperature portion, and the other end of the stacked module is cooled / low temperature. It functions efficiently as a part and can realize excellent thermoelectric conversion characteristics.
- thermoelectric conversion module in which three thermoelectric conversion modules are stacked has been described. Of course, the structure is not limited to three.
- thermoelectric conversion module in which the thermoelectric conversion elements are arranged in three stages in series has been described. Of course, the thermoelectric conversion module is not limited to three stages, and may be combined in parallel.
- Thermoelectric conversion element A Thermoelectric conversion element of Embodiment 1 of the present invention
- Thermoelectric conversion element B Thermoelectric conversion element 2N: n-type charge transport layer 2P: p-type charge transport layer 3N: n-type thermoelectric conversion material layer 3P: p-type thermoelectric conversion material layers 1, 10: insulating substrate 4: electrode 5: ceramic substrate 6: resin substrate 7: electrical connection terminal 8: passivation film 100: thermoelectric conversion elements 120, 121, 180: electrode
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
図3に示すような従来の熱電変換素子100は、基本的にπ型熱電変換素子と呼ばれるものであり、対向する複数の電極(金属電極)120,121,180と、電極間に配置されたn型熱電変換半導体からなるブロック体130及びp型熱電変換半導体からなるブロック体131とで構成されている。ブロック体130,131は、その一端(接合端)で電極180によって互いに電気的に接続され、n型熱電変換半導体のブロック体とp型熱電変換半導体のブロック体とが直列に接続されている。また、ブロック体130,131は、もう一方の端で電極120,121に接続されている。
Q=QP-QR-QK・・・(1)式
現在、実用的な熱電変換素子の素子構造は、断面積Sが数mm2程度で長さLが数mm程度である。このような形状のブロック体が多数直列接続されてモジュール化され、モジュール化によって吸熱面積(冷却面積)を拡大させた熱電変換素子(ペルチェ素子)が実用化されている。しかし、このようなπ型熱電変換素子は長さLが数mm程度であり、熱源からの放射熱が低温部の電極に直接影響を与えるため電極間での温度差を確保することが難しい。また、形状が非フレキシブルであり、熱源や冷却源に対して電極部分を密着させることが難しく、電極間での温度差を確保することが難しいという問題がある。
また、従来の熱電変換素子は、熱電変換材料に高いゼーベック係数、高い電気伝導率、低い熱伝導率の三特性を同時に持たせることで熱電変換素子の開発を進めるものである。しかし、この三特性を同時に満たす材料を得ることは困難であり、特に、熱電変換材料層の内部抵抗を改善するため導電率の高い熱電変換材料を使用するとゼーベック係数が低くなり、結果として大きな出力を得ることができないという問題がある。
また、本発明によれば、少なくともn型電荷輸送層と、n型熱電変換材料層と、電極からなるn型熱電変換素子であり、該n型電荷輸送層が、n型半導体になるように、電荷供与材料をドープする処理を行ったグラファイトであり、該電荷輸送層の両端部に前記n型熱電変換材料層を形成し、その上部に前記電極を形成したことを特徴とするn型熱電変換素子が提供される。
また、本発明によれば、少なくともp型電荷輸送層と、p型熱電変換材料層と、電極からなるp型熱電変換素子であり、該p型電荷輸送層が、p型半導体になるように、電荷受容材料をドープする処理を行ったグラファイトであり、該p型電荷輸送層の両端部に前記p型熱電変換材料層を形成し、その上部に前記電極を形成したことを特徴とするp型熱電変換素子が提供される。
また、本発明による熱電変換素子において、前記電荷供与材料が、テトラチアフルバレン(TTF)、テトラメチルテトラチアフルバレン(TMTTF)、ビスエチレンジチオテトラチアフルバレン(BEDT-TTF)、テトラセラナフルバレン(TDF)、トリフェニルフォスフィン(TPP)、トリメトキシフェニルフォスフィン(MeO-TPP)、トリフッ化フェニルフォスフィン(F-TPP)、ジフェニルフォスフィン(DPP)、ジフェニルホスフィノエタン(DPPE)、ジフェニルホスフォノプロパン(DPPP)、アミン、ポリアミン、ポリエチレンイミン、炭酸ナトリウム、炭酸リチウム、炭酸カリウム、Cu-フタロシアニン、Zn-フタロシアニン、およびそれらの誘導体の群のうち少なくとも一つであってもよい。
また、本発明による熱電変換素子において、前記電荷受容材料が、テトラシアノキノジメタン(TCNQ)、テトラフルオロテトラシアノキノジメタン(TCNQF4)、ジシクロジシアノベンゾキノン(DDQ)、トリニトロフルオレノン(TNF)、ジニトロフルオレノン(DNF)、カルバゾール、4-ヒドロキシ-9H-カルバゾール、2-ヒドロキシ-9H-カルバゾール、フェニルボロン酸、ピリジン、キノリン、イミザゾール、トリフェニルアミン、およびそれらの誘導体の群のうち少なくとも一つであってもよい。
また、本発明による熱電変換素子において、前記熱電変換材料層が、カーボンナノチューブ、Bi-Te系化合物、酸化物、或いはそれらの材料の組み合わせからなるものであってもよい。
また、本発明によるn型熱電変換素子において、前記n型熱電変換材料層が、n型カーボンナノチューブ、n型Bi-Te系化合物、n型酸化物、或いはそれらの材料を積層した構造を有するものであってもよい。
また、本発明によるp型熱電変換素子において、前記p型熱電変換材料層が、p型カーボンナノチューブ、p型Bi-Te系化合物、p型酸化物、或いはそれらの材料を積層した構造を有するものであってもよい。
また、本発明によれば、前記n型熱電変換素子と前記p型熱電変換素子を直列に繋いだ熱電変換素子が提供される。
また、複数の前記熱電変換素子を直列、並列、または直列と並列を組み合わせて接続した熱電変換モジュールが提供される。
また、本発明によれば、少なくとも1つの前記n型熱電変換素子と、少なくとも1つの前記p型熱電変換素子とを直列もしくは並列に接続し、または直列と並列を組み合わせて接続することによって構成された熱電変換モジュールが提供される。
また、本発明による熱電変換素子において、絶縁性基板をさらに備え、前記絶縁性基板は、第1基板の両端に2枚の第2基板をそれぞれ接合してなる複合基板からなり、前記第2基板は前記第1基板よりも熱伝導性が高い絶縁性材料からなり、前記絶縁性基板上に前記電荷輸送層を形成し、前記電荷輸送層の両端部のドープ層上に熱電変換材料層を形成したものであってもよい。
また、本発明による熱電変換素子において、前記電荷輸送層の両端部のドープ層上に熱電変換材料層を形成し、前記熱電変換材料層を形成していない前記電荷輸送層の中央部のドープ層が露出している部分にパッシベーション膜を形成したものであってもよい。
また、本発明によれば、少なくとも1つの前記熱電変換素子を直列もしくは並列に接続し、または直列と並列を組み合わせて接続することによって構成された熱電変換モジュールが提供される。
本発明は、電荷輸送層にn型あるいはp型の半導体になるように前処理を行ったグラファイトを使用することで、シート型の熱電変換素子の内部抵抗を低くすることができる。シート型の熱電変換素子は、高温部電極と低温部電極を平面状にある程度の距離を有する構造で、電極間の温度差を大きく確保できる利点がある。また、電荷輸送層の両端に形成されるn型あるいはp型の熱電変換材料に、ゼーベック係数の高い材料を選択して使用することができる。ゼーベック係数が高くても電気導伝率が非常に低いために、これまであまり熱電変換材料として使用されることがなかった熱電変換材料を、電荷輸送層を設けることで使用することが可能となる。結果として、これまでにない大きな出力の熱電変換素子を提供できる。
また、本発明は、電荷輸送層のドープ層が露出している部分にパッシベーション膜を形成することで経時的に安定した熱電変換素子を提供することができる。
また、本発明は、熱伝導性が高い絶縁性材料と熱伝導性の低い絶縁材料を組み合わせた絶縁性基板を使用することで、積層したモジュールの一方の端部が加熱・高温部として効率よく機能し、積層したモジュールの他方の端部が冷却・低温部として効率よく機能する優れた熱電変換モジュールを提供できる。
本発明は、このような優れた熱電特性を有する熱電変換素子および熱電変換モジュールを提供するものである。そして、クリーンな新しいエネルギー変換技術を提供するものである。
グラファイトは導電性に対して異方性を有しており、天然黒鉛から製造したシートは、層面内方向の電気伝導率が2000~10000(S/cm)程度で、厚み方向の電気伝導率が1(S/cm)程度あり、ポリイミド等の高分子シートをグラファイト化させたグラファイトシートは、層面内方向の電気伝導率が10000~25000(S/cm)程度であり、厚み方向の電気伝導率が5(S/cm)程度ある。従来から熱電変換材料として使用されているBi-Te系材料の電気伝導率が500~1000(S/cm)程度であり、どちらのグラファイトシートを使用してもグラファイトの層面内方向の高い電気伝導率を利用して有効な電荷輸送層として利用することができる。
グラファイトをn型半導体にする方法としては、グラファイトをカリウム雰囲気下で熱処理する方法、電荷供与材料をドープする方法等がある。
電荷供与材料としては、テトラチアフルバレン(TTF)、テトラメチルテトラチアフルバレン(TMTTF)、ビスエチレンジチオテトラチアフルバレン(BEDT-TTF)、テトラセラナフルバレン(TDF)、トリフェニルフォスフィン(TPP)、トリメトキシフェニルフォスフィン(MeO-TPP)、トリフッ化フェニルフォスフィン(F-TPP)、ジフェニルフォスフィン(DPP)、ジフェニルホスフィノエタン(DPPE)、ジフェニルホスフォノプロパン(DPPP)、アミン、ポリアミン、ポリエチレンイミン、炭酸ナトリウム、炭酸リチウム、炭酸カリウム、Cu-フタロシアニン、Zn-フタロシアニン等、およびその誘導体等の一般に知られた電荷供与材料を使用する事ができる。
グラファイトをp型半導体にする方法としては、グラファイトに格子欠陥を導入する方法、電荷受容材料をドープする方法がある。
電荷受容材料としては、テトラシアノキノジメタン(TCNQ)、テトラフルオロテトラシアノキノジメタン(TCNQF4)、ジシクロジシアノベンゾキノン(DDQ)、トリニトロフルオレノン(TNF)、ジニトロフルオレノン(DNF)、カルバゾール、4-ヒドロキシ-9H-カルバゾール、2-ヒドロキシ-9H-カルバゾール、フェニルボロン酸、ピリジン、キノリン、イミザゾール、トリフェニルアミン等、およびそれらの誘導体等の一般に知られた電荷受容材料を使用する事ができる。
カーボンナノチューブの形成にはメタンやアセチレンを原料とするCVD法や、黒鉛にレーザーを当てて形成するレーザーアブレーション法が知られているが、本発明では市販のカーボンナノチューブ分散液を濾過して得られるカーボンナノチューブを使用する。n型カーボンナノチューブを作製するために、電荷供与材料をカーボンナノチューブにドープし、p型カーボンナノチューブを作製するために、電荷受容材料をカーボンナノチューブにドープする。ドープする方法は、電荷供与材料あるいは電荷受容材料の各ドーパントを数重量%含む有機溶剤を用意し、所定量のカーボンナノチューブをこれに加え、混合・撹拌した後濾過し、得られた濾過物を型に入れ加熱乾燥することで熱電変換材料層を形成する。
電荷供与材料としては、テトラチアフルバレン(TTF)、テトラメチルテトラチアフルバレン(TMTTF)、ビスエチレンジチオテトラチアフルバレン(BEDT-TTF)、テトラセラナフルバレン(TDF)、トリフェニルフォスフィン(TPP)、トリメトキシフェニルフォスフィン(MeO-TPP)、トリフッ化フェニルフォスフィン(F-TPP)、ジフェニルフォスフィン(DPP)、ジフェニルホスフィノエタン(DPPE)、ジフェニルホスフォノプロパン(DPPP)、アミン、ポリアミン、ポリエチレンイミン、炭酸ナトリウム、炭酸リチウム、炭酸カリウム、Cu-フタロシアニン、Zn-フタロシアニン等、およびその誘導体等の一般に知られた電荷供与材料を使用する事ができる。
また、本発明においては、電荷供与材料あるいは電荷受容材料をグラファイト表面にドープすることにより、グラファイト表面の熱伝導率が大幅に小さくなることがわかった。グラファイトのフォノン伝播はグラファイト表面を二次元伝播するものであり、バルク状の固体をフォノンが三次元伝播する場合とは異なり、グラファイト表面に格子欠陥を注入することによりフォノンの平均自由工程が格子欠陥間の距離に等しくなってしまい熱伝導率が大きく低下することが、従来より知られている。本発明における熱伝導率の低下は、格子欠陥の代わりにドープ元素がフォノンの二次元伝播を遮る役割をしたためと考えられる。
電荷受容材料としては、テトラシアノキノジメタン(TCNQ)、テトラフルオロテトラシアノキノジメタン(TCNQF4)、ジシクロジシアノベンゾキノン(DDQ)、トリニトロフルオレノン(TNF)、ジニトロフルオレノン(DNF)、カルバゾール、4-ヒドロキシ-9H-カルバゾール、2-ヒドロキシ-9H-カルバゾール、フェニルボロン酸、ピリジン、キノリン、イミザゾール、トリフェニルアミン等、およびそれらの誘導体等の一般に知られた電荷受容材料を使用する事ができる。
一般に、熱電変換材料の熱電性能特性は、図4に示すようにゼーベック係数:Sの二乗と導電率:σの積:S2σで表わされ、その最大値付近にBi-Te系化合物がある。Bi-Te系化合物としては、500K以下の温度範囲で熱電性能特性が優れているとされているBi-Te-Se系化合物(n型熱電変換材料)、Bi-Te-Sb系化合物(p型熱電変換材料)を使用することが好ましい。しかしながら、Bi,Te,Se,Sb等は希少金属でありコストも高く、市場の需要に対して十分に供給することが困難となる等の問題がある。よって、Bi-Te系化合物以外に、ゼーベック係数の高いけれども電気導伝率が非常に低いためにこれまであまり熱電変換材料として使用されることがなかった酸化物材料を使用することを検討した。
酸化物材料としては、特に限定されるものではないが、FeO、Fe2O3、Fe3O4、CuO、Cu2O、ZnO、Zn1-XAlXO、MnO、NiO、CoO、TiO2、SrTiO3等の金属酸化物材料があげられる。
従来の熱電変換素子の構造では、高いゼーベック係数、高い電気伝導率、低い熱伝導率の三特性を熱電変換材料に要求するため、ゼーベック係数が300~1000μV/Kと高いが、電気導伝率が50(S/m)以下と低い酸化物材料を熱電変換材料として使用することは困難であった。しかしながら、本発明の電荷輸送層を有する熱電変換素子においては、電気伝導についてはグラファイトからなる電荷輸送層が役割を担い、熱伝導については温度差を確保しやすいシート型の素子構造が役割を担い、熱電変換材料層はゼーベック係数のみ高ければよいという利点を有する。このため、ゼーベック係数の高い酸化物材料を有効に使用する事ができ、熱電変換素子の出力の改善を大幅に図ることが可能となる。
〔本発明の実施形態1および実施形態2の熱電変換モジュールについて〕
本発明の実施形態1の熱電変換モジュールは、絶縁性基板と、電荷輸送層と、熱電変換材料層と、電極からなり、電荷輸送層が、グラファイト表面に電荷供与材料をドープする処理を行ったn型電荷輸送層、またはpグラファイト表面に電荷受容材料をドープする処理を行ったp型電荷輸送層からなる熱電変換素子を、絶縁性基板上に多数直列に配列したものである。
図5の(2)に示すように、絶縁性基板上に複数枚のn型電荷輸送層2N及びp型電荷輸送層2Pを所定間隔離して交互に配置する。
次に、図5の(3)に示すように、n型電荷輸送層の両端表面上にn型熱電変換材料層3Nを、p型電荷輸送層の両端表面上にp型熱電変換材料層3Pをそれぞれ形成する。
次に、図5(4)に示すように、n型熱電変換材料層3Nとp型熱電変換材料層3Pに接触するように電極4を図5(3)の第3層の熱電変換材料層上に形成して複数枚のn型熱電変換材料層3N及びp型熱電変換材料層3Pを直列に接続する構成とする。
更に、n型電荷輸送層2N及びp型電荷輸送層2Pの熱電変換材料層が形成されていない中央部のドープ層が露出している表面部分にパッシベーション膜8を形成する。
パッシベーション膜8としては、窒化シリコン、窒化アルミニウム等の窒化膜、炭化シリコン等の炭化膜、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、四フッ化エチレン・6フッ化プロピレン等のフッ素樹脂等が好ましい。
本発明の実施形態2の熱電変換モジュールは、図6の(1),(2)に示すように、熱電変換モジュール1A,1B,1C,1Dを厚み方向に積み重ねて電気的に接続する構造を有するものである。この場合、熱電変換モジュールの端部は、加熱・高温部、或いは冷却・低温部として作用するため、両端部における各熱電変換モジュール間は、それぞれ良好な熱伝導性を有することが好ましい。それに対して加熱・高温部と冷却・低温部の間はできるだけ熱伝導性が低いことが好ましい。このような熱電変換モジュール構造を実現するためには、図5の(1)に示すように、絶縁性基板は、両端部が熱伝導性の高い絶縁性素材からなる基板で構成され、中央部が熱伝導性の低い絶縁性素材からなる基板で構成される複合基板を使用することが好ましい。
熱伝導性の高い絶縁性素材からなる基板としては、窒化アルミニウム、炭化シリコン、アルミナ等からなるセラミック基板や、窒化アルミニウム、炭化シリコン、アルミナ等を表面に被膜した絶縁性基板が好ましい。
図6の(2)には、絶縁性基板としてセラミック基板5を使用した熱電変換モジュールの端部の断面図を示す。端部全体の熱伝導率が高い構造となっている。
熱伝導性の低い絶縁性素材からなる基板としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエチレンテレフタレート、メタクリル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン、ポリカーボネート、エポキシ樹脂等をからなるプラスチック樹脂基板や、上記プラスチック樹脂材料にガラス繊維や酸化シリコンやアルミナの粉体を混合させた複合樹脂基板や、多孔質シリコンや多孔質アルミナ等の多孔質セラミック基板等が好ましい。
本発明の絶縁性基板を使用することによって、図7に示すように、積層した熱電変換モジュールの一方の端部が加熱・高温部として効率よく機能し、積層した熱電変換モジュールの他方の端部が冷却・低温部として効率よく機能し、優れた熱電変換特性が実現できる。
〔実施形態1〕
実施形態1に係る熱電変換素子Aについて説明する。図1は、熱電変換素子Aの図面であり、図1(1)が上面図、図1(2)が図1(1)のA-A線における断面図、図1(3)が図1(1)のB-B線における断面図である。
n型にする前処理として、電荷供与材料であるトリフェニルフォスフィン(TPP)、ジフェニルホスフォノプロパン(DPPP)、或いはトリメトキシフェニルフォスフィン(MeO-TPP)等のn型ドーパントを5重量%含有するDMSO(ジメチルスルホキシド)溶液をグラファイトシート表面に塗布し、N2雰囲気下200℃で加熱処理する。
これを5回繰り返すことにより電荷供与材料をグラファイト表面にドープする。このように前処理されたグラファイトシートを、n型熱電変換部1Nの電荷輸送層2Nに使用する。
p型に変換する前処理として、電荷受容材料であるテトラシアノキノジメタン(TCNQ)、4-ヒドロキシ-9H-カルバゾール、或いはカルバゾール等のp型ドーパントを5重量%含有するDMSO(ジメチルスルホキシド)溶液をグラファイトシート表面に塗布し、N2雰囲気下200℃で加熱処理する。これを5回繰り返すことにより電荷受容材料をグラファイト表面にドープする。このように前処理されたグラファイトシートを、p型熱電変換部1Pの電荷輸送層2Pに使用する。
n型のカーボンナノチューブを形成するためには、電荷供与材料であるトリフェニルフォスフィン(TPP)、ジフェニルホスフォノプロパン(DPPP)、或いはトリメトキシフェニルフォスフィン(MeO-TPP)等のn型ドーパントを5重量%含有するDMSO(ジメチルスルホキシド)溶液10mlにカーボンナノチューブ5mgを加え、よく混合・撹拌した後に濾過し、この濾過物を型に入れ20分間130℃で加熱乾燥することによりn型カーボンナノチューブよりなる熱電変換材料層を作製する。
p型のカーボンナノチューブを形成するためには、電荷受容材料であるテトラシアノキノジメタン(TCNQ)、4-ヒドロキシ-9H-カルバゾール、或いはカルバゾール等のp型ドーパントを5重量%含有するDMSO(ジメチルスルホキシド)溶液10mlにカーボンナノチューブ5mgを加え、よく混合・撹拌した後に濾過し、この濾過物を型に入れ20分間130℃で加熱乾燥することによりp型カーボンナノチューブよりなる熱電変換材料層を作製する。
〔Bi-Te系材料層形成用ペーストの配合(重量部)〕
・Bi-Te系材料粉末:100部
・テレピネオール:12部
・エチルセルロース:3部
以上の工程により、実施形態1に係る熱電変換素子A(図1)が製造される。
比較形態1に係る熱電変換素子Bについて説明する。図2は、熱電変換素子Bの図面であり、図2(1)が上面図、図2(2)が図2(1)のC-C線における断面図、図2(3)が図2(1)のD-D線における断面図である。
本比較形態では、n型熱電変換材料層3N及びp型熱電変換材料層3Pは、実施形態1と同様の工程により、カーボンナノチューブ、Bi-Te系材料、あるいは酸化物材料で形成される。その他、実施形態1と同様の工程により、比較形態1に係る熱電変換素子B(図2)が製造される。
〔実施例1〕
以下の(1-1)~(1-4)のように、実施形態1(図1)の態様の熱電変換素子A(1)を作製した。
以上の工程よりn型熱電変換部1Nは、絶縁性基板10、電荷輸送層2N、熱電変換材料層3Nの3層構造が、電荷輸送層2Nの両端部に形成された構造とした。
以上の工程よりp型熱電変換部1Pは、絶縁性基板10、電荷輸送層2P、熱電変換材料層3Pの3層構造が、電荷輸送層2Pの両端部に形成された構造とした。
以上によりn型熱電変換部1Nとp型熱電変換部1Pからなる熱電変換素子A(1)を作製した。(以上、図1参照)
以下の(2-1)~(2-4)のように、実施形態1(図1)の態様の熱電変換素子A(2)を作製した。
以上の工程よりn型熱電変換部1Nは、絶縁性基板10、電荷輸送層2N、熱電変換材料層3Nの3層構造が、電荷輸送層2Nの両端部に形成された構造とした。
以上の工程よりp型熱電変換部1Pは、絶縁性基板10、電荷輸送層2P、熱電変換材料層3Pの3層構造が、電荷輸送層2Pの両端部に形成された構造とした。
以上によりn型熱電変換部1Nとp型熱電変換部1Pからなる熱電変換素子A(2)を作製した。(以上、図1参照)
以下の(3-1)~(3-4)のように、実施形態1(図1)の態様の熱電変換素子A(3)を作製した。
以上によりn型熱電変換部1Nとp型熱電変換部1Pからなる熱電変換素子A(3)を作製した。(以上、図1参照)
以下の(4-1)~(4-4)のように、実施形態1(図1)の態様の熱電変換素子A(4)を作製した。
以上によりn型熱電変換部1Nとp型熱電変換部1Pからなる熱電変換素子A(4)を作製した。(以上、図1参照)
以下の(5-1)~(5-4)のように、実施形態1(図1)の態様の熱電変換素子A(5)を作製した。
以上によりn型熱電変換部1Nとp型熱電変換部1Pからなる熱電変換素子A(5)を作製した。(以上、図1参照)
以下の(6-1)~(6-4)のように、実施形態1(図1)の態様の熱電変換素子A(6)を作製した。
図1の熱電変換材料層3Nの所定位置であるグラファイトシート両端部上に、電荷供与材料(n型ドーパント)であるジフェニルホスフォノプロパン(DPPP)をドープしたカーボンナノチューブを、ドクターブレード法によって角40mm×20mm、厚み100μmの大きさに形成し、20分間130℃で加熱乾燥する。形成されたカーボンナノチューブ層の上にBi2Te2.7Se0.3を印刷法によって角40mm×20mm、厚み100μmの大きさに形成する。続いて、N2雰囲気下,150℃で10分間焼成する。このようにして、カーボンナノチューブ層とBi2Te2.7Se0.3層の積層からなるn型熱電変換材料層3Nを形成する。
以上の工程よりn型熱電変換部1Nは、絶縁性基板10、電荷輸送層2N、熱電変換材料層3Nの3層構造が、電荷輸送層2Nの両端部に形成された構造とした。
図1の熱電変換材料層3Pの所定位置であるグラファイトシート両端部上に、電荷受容材料(p型ドーパント)である4-ヒドロキシ-9H-カルバゾールをドープしたカーボンナノチューブを、ドクターブレード法によって角40mm×20mm、厚み100μmの大きさに形成し、20分間130℃で加熱乾燥する。形成されたカーボンナノチューブ層の上にBi0.5Sb1.5Te3を印刷法によって角40mm×20mm、厚み100μmの大きさに形成する。続いて、N2雰囲気下,150℃で10分間焼成する。このようにして、カーボンナノチューブ層とBi0.5Sb1.5Te3層の積層からなるp型熱電変換材料層3Pを形成する。
以上の工程よりp型熱電変換部1Pは、絶縁性基板10、電荷輸送層2P、熱電変換材料層3Pの3層構造が、電荷輸送層2Pの両端部に形成された構造とした。
以上によりn型熱電変換部1Nとp型熱電変換部1Pからなる熱電変換素子A(6)を作製した。(以上、図1参照)
以下の(7-1)~(7-4)のように、実施形態1(図1)の態様の熱電変換素子A(7)を作製した。
図1の熱電変換材料層3Nの所定位置であるグラファイトシート両端部上に、電荷供与材料(n型ドーパント)であるTPP(トリフェニルフォスフィン)をドープしたカーボンナノチューブを、ドクターブレード法によって角40mm×20mm、厚み100μmの大きさに形成し、20分間130℃で加熱乾燥する。形成されたカーボンナノチューブ層の上に酸化鉄(Fe2O3)をイオンプレーティング法によって角40mm×20mm、厚み0.3μmの大きさに形成する。続いて、N2雰囲気下、150℃で10分間アニールする。このようにして、カーボンナノチューブ層と酸化鉄(Fe2O3)層の積層からなるn型熱電変換材料層3Nを形成する。
以上の工程よりn型熱電変換部1Nは、絶縁性基板10、電荷輸送層2N、熱電変換材料層3Nの3層構造が、電荷輸送層2Nの両端部に形成された構造とした。
図1の熱電変換材料層3Pの所定位置であるグラファイトシート両端部上に、電荷受容材料(p型ドーパント)であるテトラシアノキノジメタン(TCNQ)をドープしたカーボンナノチューブを、ドクターブレード法によって角40mm×20mm、厚み20μmの大きさに形成し、20分間130℃で加熱乾燥する。形成されたカーボンナノチューブ層の上に酸化銅(Cu2O)をイオンプレーティング法によって角40mm×20mm、厚み0.3μmの大きさに形成する。続いて、N2雰囲気下、150℃で10分間アニールする。このようにして、カーボンナノチューブ層と酸化銅(Cu2O)層の積層からなるp型熱電変換材料層3Pを形成する。
以上の工程よりp型熱電変換部1Pは、絶縁性基板10、電荷輸送層2P、熱電変換材料層3Pの3層構造が、電荷輸送層2Pの両端部に形成された構造とした。
以上によりn型熱電変換部1Nとp型熱電変換部1Pからなる熱電変換素子A(7)を作製した。(以上、図1参照)
以下の(8-1)~(8-4)のように、実施形態1(図1)の態様の熱電変換素子A(8)を作製した。
図1の熱電変換材料層3Nの所定位置であるグラファイトシート両端部上に、電荷供与材料(n型ドーパント)であるトリメトキシフェニルフォスフィン(MeO-TPP)をドープしたカーボンナノチューブを、ドクターブレード法によって角40mm×20mm、厚み100μmの大きさに形成し、20分間130℃で加熱乾燥する。形成されたカーボンナノチューブ層の上に酸化亜鉛(ZnO)をイオンプレーティング法によって角40mm×20mm、厚み0.3μmの大きさに形成する。続いて、N2雰囲気下、150℃で10分間アニールする。このようにして、カーボンナノチューブ層と酸化亜鉛(ZnO)を層の積層からなるn型熱電変換材料層3Nを形成する。
以上の工程よりn型熱電変換部1Nは、絶縁性基板10、電荷輸送層2N、熱電変換材料層3Nの3層構造が、電荷輸送層2Nの両端部に形成された構造とした。
以上の工程よりp型熱電変換部1Pは、絶縁性基板10、電荷輸送層2P、熱電変換材料層3Pの3層構造が、電荷輸送層2Pの両端部に形成された構造とした。
以上によりn型熱電変換部1Nとp型熱電変換部1Pからなる熱電変換素子A(8)を作製した。(以上、図1参照)
〔比較例1〕
以下の(比較1-1)~(比較1-4)のように、比較形態1(図2)の態様の熱電変換素子B(1)を作製した。
以上によりn型熱電変換部1Nとp型熱電変換部1Pからなる熱電変換素子B(1)を作製した。(以上、図2参照)
以下の(比較2-1)~(比較2-4)のように、比較形態1(図2)の態様の熱電変換素子B(2)を作製した。
以上によりn型熱電変換部1Nとp型熱電変換部1Pからなる熱電変換素子B(2)を作製した。(以上、図2参照)
以下の(比較3-1)~(比較3-4)のように、比較形態1(図3)の態様の熱電変換素子B(3)を作製した。
以上によりn型熱電変換部1Nとp型熱電変換部1Pからなる熱電変換素子B(3)を作製した。(以上、図2参照)
以下の(比較4-1)~(比較4-4)のように、比較形態1(図2)の態様の熱電変換素子B(4)を作製した。
以上によりn型熱電変換部1Nとp型熱電変換部1Pからなる熱電変換素子B(4)を作製した。(以上、図2参照)
以下の(比較5-1)~(比較5-4)のように、比較形態1(図2)の態様の熱電変換素子B(5)を作製した。
以上によりn型熱電変換部1Nとp型熱電変換部1Pからなる熱電変換素子B(3)を作製した。(以上、図2参照)
図5は、本発明の実施形態1に係る熱電変換モジュールの製造工程の一例を示す説明図である。図5(1)は熱電変換モジュールの第1層(工程1)を示し、図5(2)は熱電変換モジュールの第2層(工程2)を示し、図5(3)は熱電変換モジュールの第3層(工程3)を示し、図5(4)は熱電変換モジュールの第4層(工程4)を示す。
図5の(1)第1層(工程1)に示すように、樹脂基板6が2枚のセラミック基板5の間に挟まれるように配置して耐熱性接着剤で接着し、角310mm×152mm、厚さ1mmの、セラミック基板5と樹脂基板6からなる複合基板を作製する。これを絶縁性基板1として使用する。
ここで、絶縁性基板1の長手方向をX方向、短手方向をY方向とすると、Y方向には、セラミック基板5、樹脂基板6およびセラミック基板5の順に並ぶように、セラミック基板5と樹脂基板6が配置される。
図5(2)第2層(工程2)に示すように、電荷輸送層2N,2Pの位置に、電荷輸送層としてグラファイトシート(2N,2P)を、それぞれドープ表面を上にして絶縁性基板1上に交互に配置する。配置には耐熱性接着剤を使用する。
各グラファイトシート(2N,2P)は、その長手方向がY方向を向くように配置される。その結果、各グラファイトシート(2N、2P)の両端は、絶縁性基板1の両端のセラミック基板5に接触するように配置される。
また、グラファイトシート(2N,2P)は、X方向において、N型とP型が交互になるように複数枚(図5ではそれぞれ3枚ずつ)配置される。
電極4は、第2層のグラファイトシート(2N,2P)を流れる電荷の経路が蛇行(ミアンダ)形状をなすように、隣り合ったAg層同士を接合して配置する。
更に、電気接続端子7を半田付で上記蛇行配線の両端部の電極4の側面に固定する。電気接続端子7は銅線からなる端子であり、表面を絶縁体で被覆した構造である。
以上により、絶縁性基板1上に、n型熱電変換部とp型熱電変換部からなる熱電変換素子が3セット直列に配置された熱電変換モジュールが作製される。
図6は、本発明の実施形態2に係る熱電変換モジュールの概略図を示す説明図である。図6(1)は熱電変換モジュールの斜視図であり、図6(2)は図6(1)の熱電変換モジュールのC-C線矢視断面図である。
続いて、3段重ねた熱電変換モジュールの最上部に角310mm×152mm、厚さ1mmの絶縁性基板1Dを配置する。
最後にラミネートフィルムを四方側部の継ぎ目部分に配置し、真空排気後200℃で加熱してラミネートし密封する。モジュールの上部と下部のセラミック基板面にかかったラミネートフィルムを取り除きセラミック基板面を露出させる。
また、実施形態2においては、熱電変換素子が3段直列に配置した熱電変換モジュールについて説明したが、もちろん3段に限られるものではないし、並列に組み合わせたものであってもよい。
熱電変換素子B:比較形態の熱電変換素子
2N:n型電荷輸送層 2P:p型電荷輸送層
3N:n型熱電変換材料層 3P:p型熱電変換材料層
1,10:絶縁性基板
4:電極
5:セラミック基板 6:樹脂基板
7:電気接続端子
8:パッシベーション膜
100:熱電変換素子
120,121,180:電極
Claims (10)
- 少なくとも電荷輸送層と、熱電変換材料層と、電極からなる熱電変換素子であり、該電荷輸送層が、n型半導体になるように電荷供与材料をドープする処理を行ったグラファイト、またはp型半導体になるように電荷受容材料をドープする処理を行ったグラファイトであることを特徴とする熱電変換素子。
- 少なくともn型電荷輸送層と、n型熱電変換材料層と、電極からなるn型熱電変換素子であり、該n型電荷輸送層が、n型半導体になるように、電荷供与材料をドープする処理を行ったグラファイトであり、該n型電荷輸送層の両端部に前記n型熱電変換材料層を形成し、その上部に前記電極を形成したことを特徴とするn型熱電変換素子。
- 少なくともp型電荷輸送層と、p型熱電変換材料層と、電極からなるp型熱電変換素子であり、該p型電荷輸送層が、p型半導体になるように、電荷受容材料をドープする処理を行ったグラファイトであり、該p型電荷輸送層の両端部に前記p型熱電変換材料層を形成し、その上部に前記電極を形成したことを特徴とするp型熱電変換素子。
- 前記電荷供与材料が、テトラチアフルバレン(TTF)、テトラメチルテトラチアフルバレン(TMTTF)、ビスエチレンジチオテトラチアフルバレン(BEDT-TTF)、テトラセラナフルバレン(TDF)、トリフェニルフォスフィン(TPP)、トリメトキシフェニルフォスフィン(MeO-TPP)、トリフッ化フェニルフォスフィン(F-TPP)、ジフェニルフォスフィン(DPP)、ジフェニルホスフィノエタン(DPPE)、ジフェニルホスフォノプロパン(DPPP)、アミン、ポリアミン、ポリエチレンイミン、炭酸ナトリウム、炭酸リチウム、炭酸カリウム、Cu-フタロシアニン、Zn-フタロシアニン、およびそれらの誘導体の群のうち少なくとも一つである請求項1または2に記載の熱電変換素子。
- 前記電荷受容材料が、テトラシアノキノジメタン(TCNQ)、テトラフルオロテトラシアノキノジメタン(TCNQF4)、ジシクロジシアノベンゾキノン(DDQ)、トリニトロフルオレノン(TNF)、ジニトロフルオレノン(DNF)、カルバゾール、4-ヒドロキシ-9H-カルバゾール、2-ヒドロキシ-9H-カルバゾール、フェニルボロン酸、ピリジン、キノリン、イミザゾール、トリフェニルアミン、およびそれらの誘導体の群のうち少なくとも一つである請求項1または3に記載の熱電変換素子。
- 前記熱電変換材料層が、カーボンナノチューブ、Bi-Te系化合物、酸化物、或いはそれらの材料の組み合わせからなる請求項1ないし3のいずれか1つに記載の熱電変換素子。
- 少なくとも1つの請求項2に記載のn型熱電変換素子と、少なくとも1つの請求項3に記載のp型熱電変換素子とを直列もしくは並列に接続し、または直列と並列を組み合わせて接続することによって構成された熱電変換モジュール。
- 絶縁性基板をさらに備え、
前記絶縁性基板は、第1基板の両端に2枚の第2基板をそれぞれ接合してなる複合基板からなり、
前記第2基板は前記第1基板よりも熱伝導性が高い絶縁性材料からなり、
前記絶縁性基板上に前記電荷輸送層を形成し、前記電荷輸送層の両端部のドープ層上に熱電変換材料層を形成した請求項1に記載の熱電変換素子。 - 前記電荷輸送層の両端部のドープ層上に熱電変換材料層を形成し、前記熱電変換材料層を形成していない前記電荷輸送層の中央部のドープ層が露出している部分にパッシベーション膜を形成した請求項1に記載の熱電変換素子。
- 少なくとも2つの請求項8または9に記載の熱電変換素子を直列もしくは並列に接続し、または直列と並列を組み合わせて接続することによって構成された熱電変換モジュール。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/757,229 US11211539B2 (en) | 2015-09-04 | 2016-08-30 | Thermoelectric conversion element and thermoelectric conversion module |
AU2016316164A AU2016316164A1 (en) | 2015-09-04 | 2016-08-30 | Thermoelectric conversion element and thermoelectric conversion module |
JP2017538055A JP6738338B2 (ja) | 2015-09-04 | 2016-08-30 | 熱電変換素子および熱電変換モジュール |
CN201680050722.5A CN107949923B (zh) | 2015-09-04 | 2016-08-30 | 热电转换元件及热电转换模块 |
CA2996898A CA2996898C (en) | 2015-09-04 | 2016-08-30 | Thermoelectric conversion element and thermoelectric conversion module |
AU2019229329A AU2019229329A1 (en) | 2015-09-04 | 2019-09-10 | Thermoelectric conversion element and thermoelectric conversion module |
AU2021202294A AU2021202294B2 (en) | 2015-09-04 | 2021-04-15 | Thermoelectric conversion element and thermoelectric conversion module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015174755 | 2015-09-04 | ||
JP2015-174755 | 2015-09-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017038831A1 true WO2017038831A1 (ja) | 2017-03-09 |
Family
ID=58187536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/075355 WO2017038831A1 (ja) | 2015-09-04 | 2016-08-30 | 熱電変換素子および熱電変換モジュール |
Country Status (6)
Country | Link |
---|---|
US (1) | US11211539B2 (ja) |
JP (1) | JP6738338B2 (ja) |
CN (1) | CN107949923B (ja) |
AU (3) | AU2016316164A1 (ja) |
CA (1) | CA2996898C (ja) |
WO (1) | WO2017038831A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019517128A (ja) * | 2016-03-30 | 2019-06-20 | クアルコム,インコーポレイテッド | モバイル電子機器のための面内能動冷却デバイス |
JP2021015862A (ja) * | 2019-07-11 | 2021-02-12 | 国立研究開発法人物質・材料研究機構 | 熱電材料、その製造方法、および、熱電発電素子 |
US11417815B2 (en) | 2017-03-03 | 2022-08-16 | Hiroaki Nakaya | Thermoelectric conversion module provided with photothermal conversion substrate |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109119528A (zh) * | 2018-08-17 | 2019-01-01 | 深圳大学 | 一种电荷转移复合物修饰的碳纳米管及其制备方法与应用 |
CN110233201B (zh) * | 2019-07-12 | 2020-09-01 | 中国科学院化学研究所 | 一种六氰基三甲烯环丙烷掺杂酞菁铜的多层薄膜器件 |
CN112582527B (zh) * | 2020-12-13 | 2022-12-02 | 安徽大学 | 一种石墨掺杂的GeS2热电材料的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010146657A1 (ja) * | 2009-06-16 | 2010-12-23 | 富士通株式会社 | グラファイト構造体、電子部品及び電子部品の製造方法 |
WO2014133029A1 (ja) * | 2013-02-28 | 2014-09-04 | 国立大学法人奈良先端科学技術大学院大学 | ドーパントの選択方法、ドーパント組成物、カーボンナノチューブ-ドーパント複合体の製造方法、シート状材料およびカーボンナノチューブ-ドーパント複合体 |
JP2014225534A (ja) * | 2013-05-15 | 2014-12-04 | パイオニア株式会社 | 熱電変換素子 |
WO2015098574A1 (ja) * | 2013-12-27 | 2015-07-02 | 富士フイルム株式会社 | 熱電変換素子および熱電変換素子の製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3061656A (en) | 1961-12-12 | 1962-10-30 | Union Carbide Corp | Flexible high temperature thermoelectric device |
CN1162370C (zh) | 2001-07-24 | 2004-08-18 | 中国科学院等离子体物理研究所 | 一种新型掺杂石墨复合材料及其制备方法 |
JP2003174204A (ja) * | 2001-12-07 | 2003-06-20 | Sony Corp | 熱電変換装置 |
CN102106010A (zh) | 2008-07-06 | 2011-06-22 | 拉莫斯有限公司 | 分裂式热电结构以及采用该结构的设备和系统 |
JP2010192780A (ja) * | 2009-02-20 | 2010-09-02 | Fujitsu Ltd | 熱電変換素子 |
KR101469450B1 (ko) * | 2011-03-02 | 2014-12-05 | 그래핀스퀘어 주식회사 | 그래핀의 n-도핑 방법 |
WO2013012065A1 (ja) * | 2011-07-20 | 2013-01-24 | Nakaya Hiroaki | 熱電変換素子及び熱電変換発電装置 |
CN103688379A (zh) * | 2011-07-20 | 2014-03-26 | 中弥浩明 | 热电转变元件和热电转变发电装置 |
KR101956278B1 (ko) | 2011-12-30 | 2019-03-11 | 삼성전자주식회사 | 그래핀 함유 복합 적층체, 이를 포함하는 열전재료, 열전모듈과 열전 장치 |
KR102140146B1 (ko) | 2013-02-19 | 2020-08-11 | 삼성전자주식회사 | 그래핀 함유 복합 적층체, 그 제조방법, 이를 포함하는 열전재료 및 열전모듈과 열전 장치 |
-
2016
- 2016-08-30 US US15/757,229 patent/US11211539B2/en active Active
- 2016-08-30 JP JP2017538055A patent/JP6738338B2/ja active Active
- 2016-08-30 CA CA2996898A patent/CA2996898C/en active Active
- 2016-08-30 CN CN201680050722.5A patent/CN107949923B/zh active Active
- 2016-08-30 AU AU2016316164A patent/AU2016316164A1/en not_active Abandoned
- 2016-08-30 WO PCT/JP2016/075355 patent/WO2017038831A1/ja active Application Filing
-
2019
- 2019-09-10 AU AU2019229329A patent/AU2019229329A1/en not_active Abandoned
-
2021
- 2021-04-15 AU AU2021202294A patent/AU2021202294B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010146657A1 (ja) * | 2009-06-16 | 2010-12-23 | 富士通株式会社 | グラファイト構造体、電子部品及び電子部品の製造方法 |
WO2014133029A1 (ja) * | 2013-02-28 | 2014-09-04 | 国立大学法人奈良先端科学技術大学院大学 | ドーパントの選択方法、ドーパント組成物、カーボンナノチューブ-ドーパント複合体の製造方法、シート状材料およびカーボンナノチューブ-ドーパント複合体 |
JP2014225534A (ja) * | 2013-05-15 | 2014-12-04 | パイオニア株式会社 | 熱電変換素子 |
WO2015098574A1 (ja) * | 2013-12-27 | 2015-07-02 | 富士フイルム株式会社 | 熱電変換素子および熱電変換素子の製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019517128A (ja) * | 2016-03-30 | 2019-06-20 | クアルコム,インコーポレイテッド | モバイル電子機器のための面内能動冷却デバイス |
US11417815B2 (en) | 2017-03-03 | 2022-08-16 | Hiroaki Nakaya | Thermoelectric conversion module provided with photothermal conversion substrate |
JP2021015862A (ja) * | 2019-07-11 | 2021-02-12 | 国立研究開発法人物質・材料研究機構 | 熱電材料、その製造方法、および、熱電発電素子 |
Also Published As
Publication number | Publication date |
---|---|
AU2019229329A1 (en) | 2019-10-03 |
CA2996898C (en) | 2020-03-24 |
JPWO2017038831A1 (ja) | 2018-12-13 |
AU2021202294B2 (en) | 2022-12-15 |
AU2021202294A1 (en) | 2021-05-13 |
CN107949923A (zh) | 2018-04-20 |
CA2996898A1 (en) | 2017-03-09 |
JP6738338B2 (ja) | 2020-08-12 |
US11211539B2 (en) | 2021-12-28 |
US20180254400A1 (en) | 2018-09-06 |
AU2016316164A1 (en) | 2018-04-26 |
CN107949923B (zh) | 2021-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017038831A1 (ja) | 熱電変換素子および熱電変換モジュール | |
US7777126B2 (en) | Thermoelectric device with thin film elements, apparatus and stacks having the same | |
Takayama et al. | Multi-layered-stack thermoelectric generators using p-type Sb2Te3 and n-type Bi2Te3 thin films by radio-frequency magnetron sputtering | |
CA2840059C (en) | Thermoelectric conversion element and thermoelectric conversion power generation device | |
AU2018228169B2 (en) | Thermoelectric conversion module provided with photothermal conversion substrate | |
JP6907323B2 (ja) | 多層薄膜およびその調製 | |
US20060107990A1 (en) | Thermoelectric conversion element and method of manufacturing the same, and thermoelectric conversion device using the element | |
JP2013211212A (ja) | 積層電極とその製造方法およびそれ用いた光電変換素子 | |
JPH09107129A (ja) | 半導体素子及びその製造方法 | |
JP5934711B2 (ja) | 光電池及び光電池の製造方法 | |
JP6553191B2 (ja) | 熱電変換モジュール | |
CN101969096B (zh) | 纳米结构热电材料、器件及其制备方法 | |
WO2013012065A1 (ja) | 熱電変換素子及び熱電変換発電装置 | |
JP3626169B2 (ja) | 熱電変換材料およびその製造方法 | |
JP5923332B2 (ja) | 熱電変換素子、熱電変換発電装置および発電方法 | |
JPWO2012140800A1 (ja) | 冷暖房装置 | |
KR102026838B1 (ko) | 적층형 열전 모듈 및 이의 제조방법 | |
US20110062420A1 (en) | Quantum well thermoelectric module | |
AU2014268196A1 (en) | Thermoelectric conversion element and thermoelectric conversion power generation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16841862 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2996898 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2017538055 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15757229 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2016316164 Country of ref document: AU Date of ref document: 20160830 Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16841862 Country of ref document: EP Kind code of ref document: A1 |