WO2015093226A1 - 基板処理装置、基板処理装置の制御方法、および記録媒体 - Google Patents

基板処理装置、基板処理装置の制御方法、および記録媒体 Download PDF

Info

Publication number
WO2015093226A1
WO2015093226A1 PCT/JP2014/080806 JP2014080806W WO2015093226A1 WO 2015093226 A1 WO2015093226 A1 WO 2015093226A1 JP 2014080806 W JP2014080806 W JP 2014080806W WO 2015093226 A1 WO2015093226 A1 WO 2015093226A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
substrate
flow rate
processing
schedule
Prior art date
Application number
PCT/JP2014/080806
Other languages
English (en)
French (fr)
Inventor
伸広 近成
荒木 浩之
仁 緒方
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2015093226A1 publication Critical patent/WO2015093226A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Definitions

  • the present invention relates to a substrate processing apparatus for processing a substrate, a method for controlling the substrate processing apparatus for controlling the substrate processing apparatus, and a computer-readable recording medium on which a program executed by the control apparatus for the substrate processing apparatus is recorded.
  • substrates to be processed include semiconductor wafers, liquid crystal display substrates, plasma display substrates, FED (Field (Emission Display) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomasks.
  • substrates to be processed include semiconductor wafers, liquid crystal display substrates, plasma display substrates, FED (Field (Emission Display) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomasks.
  • substrate substrate, ceramic substrate, solar cell substrate and the like.
  • a substrate processing apparatus for processing a substrate such as a semiconductor wafer or a glass substrate for a liquid crystal display device is used.
  • Patent Document 1 discloses a substrate processing apparatus including a control unit that monitors a pressure value of a pressure gauge that measures a pressure in a chamber body and performs feedback control for controlling a pressure of a fluid flowing through an electropneumatic regulator. Yes.
  • Patent Document 2 discloses a substrate processing apparatus including a control unit that performs feedback control for controlling dissolution or degassing of nitrogen gas in a concentration variable unit based on the results of measurement by a first nitrogen concentration meter and a second nitrogen concentration meter. Is disclosed.
  • one of the objects of the present invention is to shorten the time until the flow rate of the exhaust gas discharged from the processing unit is stabilized.
  • One embodiment of the present invention includes a processing unit that processes a plurality of substrates one by one, an exhaust unit that exhausts gas from the processing unit, a control device as a computer that controls the processing unit and the exhaust unit, A substrate processing apparatus is provided.
  • the processing unit is separated from a chamber having an internal space, a substrate holding unit for holding a substrate in the chamber, and a processing fluid supply unit for supplying a processing fluid to the substrate held in the substrate holding unit. And a movable member that can move in the chamber between an origin position and an operating position.
  • the exhaust unit includes an individual exhaust duct that guides the gas exhausted from the chamber toward an exhaust treatment facility, and an individual exhaust flow rate adjustment that adjusts the flow rate of the exhaust gas flowing through the individual exhaust duct toward the exhaust treatment facility. And a unit.
  • the control device creates a processing schedule for creating a processing schedule that defines the operation of the processing unit when processing a substrate in time series, and each time of the processing schedule created in the processing schedule creation step, A setting value change determination step for determining whether or not a setting value change condition including a position condition in which the movable member is located at a position other than the origin position is satisfied; and the setting at any time of the processing schedule
  • the reference is an exhaust flow rate setting value of the individual exhaust flow rate adjustment unit at a time when the set value change condition is satisfied, which is a set value when the movable member is located at the origin position.
  • the individual exhaust flow rate adjustment at each time of the processing schedule is set to a value larger than the value. Executing the individual exhaust scheduling step of creating a separate exhaust schedule defining the exhaust flow rate set value of the unit, the individual exhaust schedule execution step of executing the individual exhaust schedule in parallel with the processing schedule, the.
  • the set value change condition includes a plurality of conditions (for example, the position condition and the processing fluid discharge condition)
  • “the set value change condition is satisfied” means that “at least one of the plurality of conditions included in the set value change condition”.
  • the processing fluid supplied to the substrate by the processing fluid supply unit may be a processing liquid or a processing gas.
  • the treatment gas may be a vapor of the treatment agent (gas generated from a liquid or solid treatment agent), or a gas containing a carrier gas (for example, an inert gas) in addition to the vapor or mist of the treatment agent. It may be.
  • a processing schedule that defines the operation of the processing unit when processing a substrate in time series is created.
  • an individual exhaust schedule that defines the exhaust flow rate setting value of the individual exhaust flow rate adjustment unit is created. Then, an individual exhaust schedule is executed in parallel with the processing schedule.
  • the set value change condition includes a position condition where the movable member is located at a position other than the origin position. If the movable member is planned to be placed at a position other than the origin position at any time in the processing schedule, that is, if the set value change condition is satisfied, individual exhaust at the time when the set value change condition is satisfied.
  • the exhaust flow rate set value of the flow rate adjusting unit is planned to be set to a value larger than the set value (reference value) when the movable member is located at the origin position.
  • the reference value is a set value when all the movable members are located at the origin position.
  • the exhaust flow rate setting value of the individual exhaust flow rate adjustment unit is set to a value larger than the reference value. Accordingly, the force (exhaust pressure) for exhausting the gas in the chamber into the individual exhaust duct is increased. In other words, the absolute value of the exhaust pressure (negative pressure) lower than the atmospheric pressure is increased. Therefore, even if the exhaust resistance (pressure loss) of the processing unit increases according to the position of the movable member, the exhaust pressure increases accordingly, so that fluctuations in the flow rate of the exhaust discharged from the processing unit can be suppressed. .
  • the individual exhaust schedule is executed in parallel with the processing schedule.
  • the exhaust flow rate setting value of the individual exhaust flow rate adjustment unit is not changed after the flow rate of the gas discharged from the processing unit actually changes, but is adjusted before the flow rate changes. Therefore, the time until the exhaust gas flow rate is stabilized can be shortened compared with the case where feedback control is performed.
  • the individual exhaust schedule that defines the exhaust flow rate setting value of the individual exhaust flow rate adjustment unit is created based on the processing schedule. Even when the same recipe is run, the parameters affecting the exhaust flow rate may be different. Therefore, by creating an individual exhaust schedule based on individual process schedules, the exhaust flow rate can be optimized for processing of any substrate.
  • the set value changing condition may further include a processing fluid discharging condition in which the processing fluid supply unit is discharging the processing fluid.
  • mist is likely to be generated in the processing unit. If the mist adheres to the substrate, the substrate may be contaminated. In addition, the mist may change to particles that are one of the causes of substrate contamination, and the particles may float in the processing unit. Therefore, when the processing fluid is actually discharged, by increasing the exhaust pressure, the mist can be efficiently discharged from the processing unit, and the mist diffusion range can be narrowed. Therefore, contamination of the substrate due to adhesion of mist and particles can be reduced.
  • the processing fluid supply unit may include a chemical nozzle that discharges a chemical as a processing fluid toward a substrate held by the substrate holding unit.
  • the set value changing condition may further include a chemical solution discharge start condition for the chemical solution nozzle to start discharging the chemical solution.
  • the exhaust flow rate of the individual exhaust flow rate adjustment unit at the time when the set value change condition is satisfied when the set value change condition is satisfied at any time of the processing schedule, the exhaust flow rate of the individual exhaust flow rate adjustment unit at the time when the set value change condition is satisfied.
  • the set value is set to a value larger than the reference value
  • the exhaust flow rate setting value of the individual exhaust flow rate adjustment unit is set to a value larger than the reference value before the time when the chemical solution discharge start condition is satisfied.
  • a step of creating the individual exhaust schedule may be included.
  • the power (exhaust pressure) for discharging the gas in the chamber into the individual exhaust duct is planned to be increased.
  • mist of the chemical solution is likely to be generated in the processing unit.
  • the chemical mist is more likely to contaminate the substrate than the rinsing liquid mist such as pure water. Therefore, by increasing the exhaust pressure when the chemical liquid is actually being discharged, the chemical liquid mist can be efficiently discharged from the processing unit, and the mist diffusion range can be narrowed. Therefore, contamination of the substrate due to adhesion of mist and particles can be reduced.
  • exhaust pressure exhaust pressure
  • the exhaust pressure may be kept strong while the discharge of the chemical liquid is continued. Accordingly, since the discharge of the chemical liquid is started in a state where the exhaust pressure is increased, the mist of the chemical liquid can be efficiently discharged immediately after the chemical liquid is discharged. Thereby, the residual amount of chemical mist in the chamber can be reduced, and contamination of the substrate due to adhesion of mist and particles can be reduced.
  • the individual exhaust schedule creation step is configured such that when the set value change condition is satisfied at any time of the processing schedule, the exhaust of the individual exhaust flow rate adjustment unit at the time when the set value change condition is satisfied.
  • the flow rate set value is set to a value greater than the reference value
  • the exhaust flow rate set value of the individual exhaust flow rate adjustment unit is set to a value greater than the reference value until after the time when the chemical solution discharge start condition is satisfied.
  • a step of creating the individual exhaust schedule may be included as set.
  • the force (exhaust pressure) for exhausting the gas in the chamber into the individual exhaust duct is increased after the time when the chemical solution end condition is satisfied, that is, after the discharge of the chemical solution is stopped. Planned to. Therefore, it is possible to reliably discharge the mist of the chemical liquid floating in the chamber after the discharge of the chemical liquid is stopped. Thereby, the residual amount of chemical mist in the chamber can be reduced, and contamination of the substrate due to adhesion of mist and particles can be reduced.
  • the substrate holding unit may include a spin chuck that rotates while holding the substrate in the chamber.
  • the set value changing condition may further include a substrate rotation condition in which the substrate is rotating.
  • the processing liquid scatters from the substrate, so that mist is likely to occur. Therefore, by increasing the exhaust pressure when the substrate is actually rotating, the mist can be efficiently discharged from the processing unit and the mist diffusion range can be narrowed. Therefore, contamination of the substrate due to adhesion of mist and particles can be reduced.
  • the substrate rotation condition is that the substrate is rotated at a drying speed greater than the rotation speed of the substrate when the processing fluid supply unit is discharging the processing fluid (for example, processing liquid). Drying execution conditions may be included.
  • the drying speed is a rotation speed larger than the rotation speed of the substrate when the processing fluid supply unit is discharging the processing fluid.
  • the rotational speed of the substrate increases, the centrifugal force acting on the processing liquid adhering to the substrate also increases, so the amount of processing liquid scattered from the substrate increases. Therefore, when the substrate rotates at the drying speed, mist is likely to occur. Therefore, by increasing the exhaust pressure when the substrate is rotating at the drying speed, the mist can be efficiently discharged from the processing unit, and the mist diffusion range can be narrowed.
  • the movable member moves in the chamber between a shield plate origin position above the substrate holding unit and a shield plate operating position between the shield plate origin position and the substrate holding unit.
  • a movable blocking plate may be included.
  • the set value changing condition may further include a blocking plate raising condition in which the blocking plate moves from the blocking plate operating position to the blocking plate origin position.
  • the shield plate rises from the shield plate operating position to the shield plate origin position, the shield plate is separated from the substrate, and the interval between the shield plate and the substrate is widened.
  • the rising speed of the shielding plate is large, the air pressure between the shielding plate and the substrate decreases, and the atmosphere in the chamber is sucked between the shielding plate and the substrate. For this reason, mist or particles floating around the substrate may adhere to the substrate.
  • the rising speed of the barrier plate is reduced, it is considered that the suction of the atmosphere due to the generation of negative pressure is reduced.
  • the rising speed of the blocking plate is slow, the time required for substrate processing increases, and thus the throughput of the substrate processing apparatus (the number of substrates processed per unit time) may decrease.
  • the exhaust pressure is increased when the distance between the shield plate and the substrate is widened, the atmosphere around the substrate is forcibly sucked toward the individual exhaust duct, so that the atmosphere enters between the shield plate and the substrate. It is suppressed. Therefore, it can suppress or prevent that the atmosphere around a board
  • control device includes a plurality of points assigned for each position of the movable member and a plurality of points assigned for each discharge state of the processing fluid from the processing fluid supply unit.
  • a storage device in which the table is stored may be included.
  • the control device further executes a total value calculation step of obtaining a total value of points in each time of the processing schedule based on the table when the set value change condition is satisfied at any time of the processing schedule May be.
  • the step of creating the individual exhaust schedule may be included so as to be set to a value larger than the reference value according to the size of the total value.
  • a table including a plurality of points is stored in the storage device of the control device.
  • a plurality of points are allocated for each operation status of the processing unit.
  • the table includes a plurality of points respectively assigned to the origin position and the operation position of the movable member, and a plurality of points respectively assigned to the processing fluid discharging state and the discharging stop state.
  • the total value of points at each time in the processing schedule is calculated. Then, the exhaust flow rate setting value of the individual exhaust flow rate adjustment unit at each time of the processing schedule is planned to be set to a value larger than the reference value in accordance with the total value of the points. Therefore, the force (exhaust pressure) for exhausting the gas in the chamber into the individual exhaust duct is adjusted according to the operation status of the processing unit. Therefore, the airflow in the chamber can be brought close to an ideal state.
  • the substrate holding unit may include a spin chuck that rotates while holding the substrate in the chamber.
  • the table may further include a plurality of points assigned for each rotation state of the substrate.
  • the table stored in the storage device of the control device includes a plurality of points assigned for each position of the movable member and a plurality of points assigned for each discharge state of the processing fluid. And a plurality of points respectively assigned to the rotating state and the rotating stop state of the substrate. Therefore, the force (exhaust pressure) for discharging the gas in the chamber into the individual exhaust duct is adjusted to a magnitude that also takes into account the rotation state of the substrate. Therefore, the airflow in the chamber can be brought close to an ideal state.
  • the plurality of points allocated for each discharge state of the processing fluid from the processing fluid supply unit is the number of rinse liquids allocated to the state in which the rinse liquid as the processing fluid is discharged. It may be assigned to a state in which a chemical solution as a processing fluid is discharged, and may include a chemical solution score larger than the rinse solution score.
  • the table stored in the storage device of the control device includes the number of rinse liquids allocated to the rinsing liquid discharging state and the number of chemical liquids allocated to the chemical liquid discharging state. And.
  • the score of the chemical solution is larger than the score of the rinse solution. Therefore, if the other operating conditions of the processing unit are the same, the total value of the points when the chemical liquid is being discharged is larger than the total value of the points when the rinsing liquid is being discharged.
  • the exhaust flow rate setting value of the individual exhaust flow rate adjustment unit at each time of the processing schedule is planned to be set to a value larger than the reference value according to the size of the total value of the points. If the total value of the points is large, the force (exhaust pressure) for discharging the gas in the chamber into the individual exhaust duct is strong, so that the gas in the chamber is surely discharged.
  • Chemical liquid mist is more likely to contaminate the substrate than rinsing liquid mist such as pure water. Therefore, by increasing the exhaust pressure when the chemical liquid is actually being discharged, the chemical liquid mist can be efficiently discharged from the processing unit, and the mist diffusion range can be narrowed. Therefore, contamination of the substrate due to adhesion of mist and particles can be reduced.
  • the table classifies the total value of the points into a plurality of groups each assigned a plurality of addition values having different sizes according to the size of the total value of the points.
  • the threshold value may be included.
  • the control device may further execute a group determination step of determining, based on the table, which of the plurality of groups the total value of points obtained in the total value calculation step belongs to.
  • the method may include a step of creating the individual exhaust schedule so that the sum of the points obtained in the total value calculation step is larger than the reference value by the added value assigned to the group to which the group belongs.
  • one or more threshold values for classifying the total score into a plurality of groups are included in the table stored in the storage device of the control device. Which of the plurality of groups the total score value belongs to is determined based on a table.
  • the substrate processing apparatus may include a plurality of the processing units.
  • the exhaust units correspond to the plurality of processing units, respectively, and a plurality of the individual exhaust ducts that guide the gas discharged from the chambers of the plurality of processing units toward the exhaust processing facility, A plurality of the individual exhaust flow rate adjusting units that respectively correspond to the plurality of individual exhaust ducts, and that adjust the flow rate of the exhaust gas flowing through the plurality of individual exhaust ducts toward the exhaust treatment facility;
  • a collective exhaust duct to which each of the individual exhaust ducts is connected, and a collective exhaust flow rate adjustment unit that adjusts the flow rate of the exhaust gas flowing through the collective exhaust duct toward the exhaust treatment facility may be included.
  • the control device is configured so that, at each time of the individual exhaust schedule created in the individual exhaust schedule creation step, a source pressure in which an exhaust flow rate set value of any of the plurality of individual exhaust flow rate adjustment units is larger than the reference value.
  • a source pressure change determination step for determining whether or not a change condition is satisfied; and if the source pressure change condition is satisfied at any time of the individual exhaust schedule, the set at a time when the source pressure change condition is satisfied.
  • the individual flow rate setting values of the exhaust flow rate adjustment units are set to values larger than the original pressure reference value that is the set value when the exhaust flow rate setting values of the individual exhaust flow rate adjustment units are the reference values. Create a collective exhaust schedule that defines the exhaust flow rate setting value of the collective exhaust flow adjustment unit at each time of the exhaust schedule And covering the exhaust scheduling step, the collecting exhaust schedule execution step of executing the individual exhaust schedule and the joint exhaust schedule in parallel, may be further performed.
  • the gas in the plurality of processing units is discharged to the plurality of individual exhaust ducts, respectively.
  • Exhaust gas flowing downstream in each individual exhaust duct toward the exhaust treatment facility is discharged into the collective exhaust duct.
  • the flow rate of the exhaust gas flowing in the collective exhaust duct toward the exhaust treatment facility is adjusted by the collective exhaust flow rate adjusting unit.
  • the collective exhaust schedule that defines the exhaust flow rate setting value of the collective exhaust flow rate adjustment unit is created with reference to the individual exhaust schedule that defines the exhaust flow rate setting value of the individual exhaust flow rate adjustment unit.
  • the collective exhaust schedule is executed in parallel with the individual exhaust schedule.
  • the exhaust flow rate set value of the adjustment unit is planned to be set to a value larger than the set value (source pressure reference value) when the exhaust flow rate set value of each individual exhaust flow rate adjustment unit is the reference value.
  • the exhaust flow rate setting value of any individual exhaust flow adjustment unit is larger than the reference value, the exhaust pressure in the collective exhaust duct decreases, and the effect of this exhaust pressure drop may affect other processing units. Therefore, by decreasing the exhaust flow rate setting value of the collective exhaust flow rate adjustment unit to be greater than the original pressure reference value, it is possible to suppress or prevent a decrease in the flow rate of the exhaust discharged from other processing units. Thereby, pressure fluctuations in other processing units can be suppressed or prevented.
  • the collective exhaust schedule is executed in parallel with the individual exhaust schedule. That is, the exhaust flow rate setting value of the collective exhaust flow rate adjusting unit is not changed after the actual flow rate of the exhaust gas flowing through the collective exhaust duct is changed, but is adjusted before the flow rate changes. Therefore, the time until the exhaust gas flow rate is stabilized can be shortened compared with the case where feedback control is performed.
  • the substrate processing apparatus may include a plurality of the processing units.
  • the exhaust units correspond to the plurality of processing units, respectively, and a plurality of the individual exhaust ducts that guide the gas discharged from the chambers of the plurality of processing units toward the exhaust processing facility, A plurality of the individual exhaust flow rate adjusting units that respectively correspond to the plurality of individual exhaust ducts, and that adjust the flow rate of the exhaust gas flowing through the plurality of individual exhaust ducts toward the exhaust treatment facility;
  • a collective flow meter for detecting the flow rate of the exhaust gas flowing through the collective exhaust duct.
  • the control device is configured such that the exhaust flow rate in the collective exhaust duct determined based on the detection value of the collective flow meter is a value when the exhaust flow rate setting value of each individual exhaust flow rate adjustment unit is the reference value.
  • the collective exhaust gas flow rate adjusting unit may be controlled so as to approach the reference value.
  • the exhaust flow rate in the collective exhaust duct is obtained based on the detected value of the collective flow meter.
  • the collective exhaust duct is connected to each of the plurality of individual exhaust ducts.
  • the control device performs feedback control for controlling the collective exhaust flow adjustment unit so that the exhaust flow rate in the collective exhaust duct approaches the flow rate reference value.
  • the collective exhaust flow rate adjusting unit includes at least one of a collective damper that opens and closes the collective exhaust duct, and a blower that forms an airflow that flows toward the exhaust treatment facility in the collective exhaust duct. May be included.
  • At least one of the collective damper and the blower is provided in the collective exhaust flow rate adjustment unit.
  • the flow rate of the exhaust flowing through the collective exhaust duct increases or decreases.
  • the exhaust of the gas from the collective exhaust duct is promoted, so the flow rate of the exhaust gas flowing through the collective exhaust duct increases. To do. As a result, the flow rate of the exhaust flowing in the collective exhaust duct toward the exhaust treatment facility is adjusted.
  • the blower blows, the gas in the collective exhaust duct is forcibly exhausted by the blower, so that the exhaust pressure in the collective exhaust duct increases (the absolute value of the exhaust pressure increases). Therefore, even when the suction force of the exhaust equipment is not sufficient, the exhaust pressure in the collective exhaust duct can be maintained at a constant pressure by operating the blower. Thereby, the pressure fluctuation in each processing unit can be suppressed or prevented.
  • the movable member may form a gas flow path in the chamber that flows in the chamber toward the individual exhaust duct.
  • the operating position is a position where the pressure loss of the in-chamber flow path is larger than when the movable member is positioned at the origin position.
  • the gas flow path flowing inside the chamber toward the individual exhaust duct is formed in the chamber by the movable member. Accordingly, when the movable member moves in the chamber, the shape of the flow path changes, so that the exhaust resistance of the processing unit changes. Therefore, the flow rate of the gas discharged from the processing unit can be stabilized by changing the exhaust flow rate setting value of the individual exhaust flow rate adjustment unit according to the position of the movable member.
  • the movable member moves in the chamber between a shield plate origin position above the substrate holding unit and a shield plate operating position between the shield plate origin position and the substrate holding unit.
  • the inside of the chamber between a possible blocking plate and a guard origin position below the substrate held by the substrate holding unit and a guard operating position located around the substrate held by the substrate holding unit. It may include at least one of a movable splash guard.
  • the blocking plate origin position and the guard origin position are both origin positions.
  • the blocking plate operating position and the guard operating position are both operating positions.
  • a processing unit that processes a plurality of substrates one by one, an exhaust unit that exhausts gas in the processing unit, and a control device as a computer that controls the processing unit and the exhaust unit And a substrate processing apparatus control method executed by the control apparatus of the substrate processing apparatus.
  • the processing unit is separated from a chamber having an internal space, a substrate holding unit for holding a substrate in the chamber, and a processing fluid supply unit for supplying a processing fluid to the substrate held in the substrate holding unit. And a movable member that can move in the chamber between an origin position and an operating position.
  • the exhaust unit includes an individual exhaust duct that guides the gas exhausted from the chamber toward an exhaust treatment facility, and an individual exhaust flow rate adjustment that adjusts the flow rate of the exhaust gas flowing through the individual exhaust duct toward the exhaust treatment facility. And a unit.
  • the method for controlling the substrate processing apparatus includes a processing schedule creation step for creating a processing schedule that defines the operation of the processing unit when processing a substrate in time series, and the processing schedule created in the processing schedule creation step.
  • a set value change determination step for determining whether or not a set value change condition including a position condition in which the movable member is located at a position other than the origin position is satisfied at each time; and any one of the processing schedules
  • the exhaust flow rate set value of the individual exhaust flow rate adjustment unit at the time when the set value change condition is satisfied is set when the movable member is located at the origin position.
  • the value at each time of the processing schedule is set to a value larger than a reference value that is a value.
  • a computer-readable recording medium recording a computer program executed by the substrate processing apparatus control apparatus according to the substrate processing apparatus control method.
  • a computer program in which steps are incorporated so as to cause the control apparatus to execute the control method of the substrate processing apparatus is recorded.
  • FIG. 1 is a schematic plan view of a substrate processing apparatus according to an embodiment of the present invention. It is a schematic diagram which shows the inside of a processing unit when a processing unit is seen horizontally. It is a schematic diagram which shows a processing unit and a discharge unit. It is a block diagram which shows the exhaust system of a substrate processing apparatus. It is a block diagram which shows the physical structure of a control apparatus. It is a block diagram which shows the functional structure of a control apparatus. It is a figure which shows the score table memorize
  • the substrate processing apparatus 1 is a single-wafer type apparatus that processes a disk-shaped substrate W such as a semiconductor wafer one by one.
  • the substrate processing apparatus 1 includes a plurality of load ports 2 that hold a plurality of carriers C, and a plurality of (for example, twelve) processing units 3 that process the substrates W.
  • the substrate processing apparatus 1 further includes an indexer robot IR as a transfer robot that carries the substrate W into and out of the load port 2 and a center as a transfer robot that carries the substrate W into and out of the processing unit 3.
  • a robot CR and a control device 4 for controlling the substrate processing apparatus 1 are provided.
  • the load port 2 as the container holding unit is disposed at a position away from the processing unit 3 in the horizontal direction.
  • the plurality of load ports 2 hold the plurality of carriers C so that the plurality of carriers C are arranged in the horizontal arrangement direction D1.
  • the carrier C is a container that can accommodate the plurality of substrates W such that the plurality of substrates W are stacked in a horizontal posture at intervals.
  • the indexer robot IR includes two hands H that are U-shaped in plan view.
  • the two hands H are arranged at different heights.
  • Each hand H supports the substrate W in a horizontal posture.
  • the indexer robot IR moves the hand H in at least one of the horizontal direction and the vertical direction. Further, the indexer robot IR changes the direction of the hand H by rotating (spinning) around the vertical axis.
  • the indexer robot IR moves in the arrangement direction D1 along a path passing through the delivery position (position shown in FIG. 1).
  • the delivery position is a position where the indexer robot IR and the center robot CR face each other in a direction orthogonal to the arrangement direction D1 in plan view.
  • the indexer robot IR moves the hand H in at least one of the horizontal direction and the vertical direction to make the hand H face the center robot CR or an arbitrary carrier C.
  • the indexer robot IR performs a loading operation for loading the substrate W into the carrier C and a loading operation for unloading the substrate W from the carrier C. Further, the indexer robot IR performs a delivery operation for moving the substrate W from one of the indexer robot IR and the center robot CR at the delivery position in cooperation with the center robot CR.
  • the center robot CR includes two hands H that are U-shaped in plan view.
  • the two hands H are arranged at different heights.
  • Each hand H supports the substrate W in a horizontal posture.
  • the center robot CR moves the hand H in at least one of the horizontal direction and the vertical direction. Further, the center robot CR changes the direction of the hand H by rotating (spinning) around the vertical axis.
  • the center robot CR is surrounded by a plurality of processing units 3 in plan view.
  • the plurality of processing units 3 form four towers arranged so as to surround the center robot CR in plan view. Each tower is constituted by three processing units 3 stacked one above the other.
  • the center robot CR moves the hand H in at least one of the horizontal direction and the vertical direction so that the hand H faces the arbitrary processing unit 3 and the indexer robot IR.
  • the center robot CR performs a loading operation for loading the substrate W into the processing unit 3 and a loading operation for unloading the substrate W from the processing unit 3.
  • the center robot CR performs a delivery operation of moving the substrate W from one of the indexer robot IR and the center robot CR in cooperation with the indexer robot IR.
  • control device 4 controls the indexer robot IR, the center robot CR, the processing unit 3 and the like to cause the substrate processing device 1 to repeat the following series of operations.
  • control device 4 causes the indexer robot IR to carry out the unprocessed substrate W in the carrier C held in the load port 2. Thereafter, the control device 4 moves the unprocessed substrate W from the indexer robot IR to the center robot CR. Subsequently, the control device 4 causes the center robot CR to carry the unprocessed substrate W into any of the processing units 3. Thereafter, the control device 4 causes the processing unit 3 to process the unprocessed substrate W.
  • the control device 4 causes the central robot CR to carry out the processed substrate W in the processing unit 3. Thereafter, the control device 4 moves the processed substrate W from the center robot CR to the indexer robot IR. Subsequently, the control device 4 causes the indexer robot IR to carry the processed substrate W into one of the carriers C. In this way, the unprocessed substrate W in the carrier C held in the load port 2 is processed by the processing unit 3, and the substrate W processed in the processing unit 3 is held in the load port 2. C.
  • each processing unit 3 is a single-wafer type unit that processes a plurality of substrates W one by one using a processing liquid.
  • Each processing unit 3 holds a box-shaped chamber 5 having an internal space and a single substrate W in the chamber 5 in a horizontal posture, and the substrate W around a vertical rotation axis A1 passing through the center of the substrate W.
  • a spin chuck 8 for rotating.
  • Each processing unit 3 further includes a plurality of nozzles (first chemical liquid nozzle 12, second chemical liquid nozzle 13, rinse liquid nozzle 14) that discharge a processing liquid toward the substrate W held by the spin chuck 8, and a horizontal A disc-shaped blocking plate 30 disposed above the spin chuck 8 in a proper posture and a cylindrical processing liquid capturing member 15 surrounding the spin chuck 8 are provided.
  • the blocking plate 30 and the treatment liquid capturing member 15 are both examples of a movable member that forms a gas flow path in the chamber 5 that flows through the chamber 5 toward the discharge port 27 serving as an exhaust port.
  • the chamber 5 is a box-shaped partition 6 that houses the spin chuck 8 and the like, and a blower unit that sends clean air (air filtered by a filter) from the top of the partition 6 into the partition 6.
  • FFU7 fan filter unit 7
  • the FFU 7 is disposed above the partition wall 6.
  • the FFU 7 sends clean air downward from the ceiling of the partition wall 6 into the chamber 5 at a constant flow rate.
  • a downflow (downflow) that flows downward in the chamber 5 is formed by the FFU 7.
  • the substrate W is processed in a state where a down flow is formed in the chamber 5.
  • the spin chuck 8 includes a plurality of chuck pins 9 pressed against the peripheral end surface of the substrate W, a disk-shaped spin base 10 that can rotate around the rotation axis A together with the plurality of chuck pins 9, And a spin motor 11 that rotates the chuck pin 9 and the spin base 10 about the rotation axis A1.
  • the spin chuck 8 is not limited to a mechanical chuck including a plurality of chuck pins 9, and the substrate W is horizontally aligned by adsorbing the back surface (lower surface) of the substrate W, which is a non-device forming surface, to the upper surface of the spin base 10 as an adsorption base. It may be a vacuum chuck that is held in a vacuum.
  • the plurality of nozzles includes a first chemical liquid nozzle 12 that discharges the first chemical liquid toward the substrate W, a second chemical liquid nozzle 13 that discharges the second chemical liquid toward the substrate W, and the substrate W.
  • the processing unit 3 includes a first chemical liquid pipe 37 connected to the first chemical liquid nozzle 12 and a first chemical liquid valve 38 interposed in the first chemical liquid pipe 37.
  • the processing unit 3 includes a second chemical liquid pipe 40 connected to the second chemical liquid nozzle 13 and a second chemical liquid valve 41 interposed in the second chemical liquid pipe 40.
  • the processing unit 3 further includes a rinsing liquid pipe 43 connected to the rinsing liquid nozzle 14 and a rinsing liquid valve 44 interposed in the rinsing liquid pipe 43.
  • the first chemical liquid valve 38 When the first chemical liquid valve 38 is opened, the first chemical liquid from the first chemical liquid supply source is discharged from the first chemical liquid nozzle 12. Similarly, when the second chemical liquid valve 41 is opened, the second chemical liquid from the second chemical liquid supply source is discharged from the second chemical liquid nozzle 13. When the rinse liquid valve 44 is opened, the rinse liquid from the rinse liquid supply source is discharged from the rinse liquid nozzle 14.
  • Examples of the first chemical solution are sulfuric acid, acetic acid, nitric acid, hydrochloric acid, hydrofluoric acid, aqueous ammonia, hydrogen peroxide, organic acid (eg, citric acid, oxalic acid, etc.), organic alkali (eg, TMAH: tetramethylammonium hydroxide, etc.) ), A liquid containing at least one of a surfactant and a corrosion inhibitor.
  • organic acid eg, citric acid, oxalic acid, etc.
  • organic alkali eg, TMAH: tetramethylammonium hydroxide, etc.
  • examples of the second chemical solution include sulfuric acid, acetic acid, nitric acid, hydrochloric acid, hydrofluoric acid, aqueous ammonia, aqueous hydrogen peroxide, organic acid (eg, citric acid, oxalic acid, etc.), organic alkali (eg, TMAH: tetramethylammonium). Hydroxide, etc.), a surfactant, and a liquid containing at least one of a corrosion inhibitor.
  • the first chemical solution and the second chemical solution may be different types of chemical solution or the same type of chemical solution.
  • the rinse liquid is pure water (deionized water: Deionized Water).
  • the rinsing liquid is not limited to pure water, but may be any of IPA (isopropyl alcohol), carbonated water, electrolytic ion water, hydrogen water, ozone water, and hydrochloric acid water having a diluted concentration (for example, about 10 to 100 ppm). Good.
  • the processing unit 3 includes a first chemical liquid nozzle moving unit 39 that moves the first chemical liquid nozzle 12 between a processing position (position of the first chemical liquid nozzle 12 shown in FIG. 2) and a retracted position.
  • the second chemical liquid nozzle moving unit 42 for moving the second chemical liquid nozzle 13 between the processing position and the retracted position (position of the second chemical liquid nozzle 13 shown in FIG. 2), and rinsing between the processing position and the retracted position
  • the processing position is a position where the processing liquid discharged from the nozzle is deposited on the upper surface of the substrate W
  • the retracted position is a position where the nozzle is retracted from above the substrate W.
  • the blocking plate 30 has a disk shape whose outer diameter is larger than the outer diameter of the substrate W.
  • the blocking plate 30 is supported in a horizontal posture by a support shaft 32 extending in the vertical direction along the rotation axis A1.
  • the support shaft 32 is supported by a support arm 33 that extends horizontally above the blocking plate 30.
  • the blocking plate 30 is disposed below the support shaft 32.
  • the central axis of the shielding plate 30 is disposed on the rotation axis A1.
  • the lower surface (opposing surface) of the blocking plate 30 faces the upper surface of the substrate W.
  • the blocking plate 30 is connected to a gas pipe 36 in which a gas valve 35 is interposed. When the gas valve 35 is opened, the gas (for example, nitrogen gas) supplied from the gas pipe 36 to the shielding plate 30 is discharged downward from the central opening 31 that opens at the center of the lower surface of the shielding plate 30.
  • the gas for example, nitrogen gas
  • the processing unit 3 includes a blocking plate lifting / lowering unit 34 that lifts and lowers the blocking plate 30 and the support shaft 32 together with the support arm 33 by moving the supporting arm 33 in the vertical direction.
  • the shielding plate lifting / lowering unit 34 has a proximity position (position shown in FIG. 3) in which the lower surface of the shielding plate 30 is close to the upper surface of the substrate W held by the spin chuck 8 and a retracted position (above the proximity position).
  • the blocking plate 30 is moved up and down between the position shown in FIG.
  • the retreat position is an origin position where the shielding plate 30 is separated from the substrate W so that the nozzles 12 to 14 can enter between the substrate W and the shielding plate 30.
  • the proximity position is an operation position where the shielding plate 30 approaches the substrate W so that the nozzles 12 to 14 cannot enter between the substrate W and the shielding plate 30.
  • the blocking plate lifting / lowering unit 34 can position the blocking plate 30 at an arbitrary position (height) from the close position to the retracted position.
  • the processing liquid capturing member 15 includes a cylindrical splash guard 16 that receives the processing liquid splashing outward from the substrate W, and a cylindrical cup 22 that receives the processing liquid guided by the splash guard 16. And a guard lifting / lowering unit 29 that lifts and lowers the splash guard 16.
  • the splash guard 16 is disposed above the cup 22.
  • the splash guard 16 surrounds the spin chuck 8.
  • the inner peripheral surface of the splash guard 16 includes an upper end that forms a guard opening 17 having a larger diameter than the outer diameter of the spin base 10.
  • the splash guard 16 includes an annular upper capture portion 18 having a V-shaped cross section that opens inward (direction toward the rotation axis A1), and a cylindrical upper portion that extends from the lower end of the upper capture portion 18 toward the cup 22. And a guide unit 19.
  • the splash guard 16 further includes an annular lower capture portion 20 having an arcuate cross section that opens obliquely inwardly, and an annular accommodation portion 21 that accommodates a part of the cup 22 (an inner wall 24 of the cup 22 described later). And.
  • the cup 22 includes a bottom wall 23 that surrounds the spin chuck 8, a cylindrical inner wall 24 that extends upward from the bottom wall 23, and a cylindrical shape that extends upward from the bottom wall 23 around the inner wall 24. And an outer wall 25.
  • the inner wall 24 surrounds the spin chuck 8 and the outer wall 25 surrounds the inner wall 24.
  • an annular drain groove 26 surrounding the spin chuck 8 is formed by the upper surface of the bottom wall 23 and the inner peripheral surface of the inner wall 24.
  • the cup 22 further forms an annular recovery groove 28 that surrounds the drainage groove 26 by the upper surface of the bottom wall 23, the outer peripheral surface of the inner wall 24, and the inner peripheral surface of the outer wall 25.
  • the drainage groove 26 and the recovery groove 28 are both open upward.
  • the upper guide portion 19 of the splash guard 16 is disposed above the drainage groove 26.
  • the accommodating portion 21 of the splash guard 16 is disposed above the inner wall 24.
  • the lower capture portion 20 of the splash guard 16 is disposed above the collection groove 28.
  • the guard lifting / lowering unit 29 has a lower position (position indicated by a solid line in FIG. 3), an intermediate position (position indicated by a two-dot chain line in FIG. 3), and an upper position (position shown in FIG. 2).
  • the splash guard 16 is moved to a plurality of positions including it.
  • the lower position is a delivery position where the splash guard 16 is disposed below the position where the spin chuck 8 holds the substrate W.
  • the intermediate position is a drainage position where the upper capturing portion 18 is horizontally opposed to the peripheral end surface of the substrate W held by the spin chuck 8.
  • the upper position is a collection position where the lower capturing unit 20 is horizontally opposed to the peripheral end surface of the substrate W held by the spin chuck 8.
  • the lower position is the origin position, and the middle position and the upper position are operating positions.
  • the middle position is a position above the lower position, and the upper position is a position above the middle position. Therefore, the height of the guard opening 17 is the lowest when the splash guard 16 is located at the lower position, and is the highest when the splash guard 16 is located at the upper position.
  • the control device 4 positions the splash guard 16 in the lower position by the guard lifting / lowering unit 29.
  • the control device 4 causes the guard lifting unit 29 to position the splash guard 16 at an intermediate position as a drainage position. Further, when the processing liquid splashed outward from the substrate W is received by the lower capture unit 20 of the splash guard 16, the control device 4 causes the guard lifting unit 29 to place the splash guard 16 in the upper position as a recovery position.
  • the processing liquid discharged from the substrate W is received by the upper capture portion 18 of the splash guard 16 and passes through the upper guide portion 19 of the splash guard 16 to discharge the cup 22. It flows down into the liquid groove 26. Further, when the splash guard 16 is positioned at the upper position, the processing liquid discharged from the substrate W is received by the lower capture unit 20 of the splash guard 16 and the cup 22 is recovered from the lower capture unit 20 of the splash guard 16. It flows down into the groove 28. As a result, the treatment liquid received by the splash guard 16 is guided to the drainage groove 26 or the recovery groove 28 of the cup 22.
  • the substrate processing apparatus 1 includes a discharge unit 46 that discharges gas and liquid from the plurality of processing units 3.
  • the discharge unit 46 is an example of an exhaust unit.
  • the discharge unit 46 has a drainage groove of the cup 22 through a recovery pipe 47 that guides the processing liquid discharged from the recovery groove 28 of the cup 22 and a discharge port 27 that opens in the drainage groove 26.
  • a discharge pipe 48 that guides the fluid (at least one of gas and liquid) discharged from the pipe 26
  • gas-liquid separation that separates the liquid from the mixed fluid of gas and liquid discharged from the processing liquid capturing member 15 by the discharge pipe 48.
  • a box 49 (mist separator) and a drainage pipe 50 for discharging the liquid in the gas-liquid separation box 49 are provided.
  • the discharge unit 46 includes an individual exhaust duct 51 that discharges the gas in the gas-liquid separation box 49, an individual flow meter 52 that detects the flow rate of the exhaust gas flowing through the individual exhaust duct 51, and an individual exhaust.
  • An individual damper 53 for adjusting the flow rate of the exhaust gas flowing in the duct 51 and an individual control device 58 for adjusting the opening degree of the individual damper 53 by controlling the individual damper 53 are provided.
  • the individual damper 53 is an example of an individual exhaust flow rate adjustment unit.
  • the set value of the opening degree of the individual damper 53 is an example of the exhaust flow rate set value of the individual exhaust flow rate adjustment unit.
  • the individual control device 58 calculates the flow rate of the exhaust gas flowing in the individual exhaust duct 51 based on the detection value of the individual flow meter 52.
  • the individual flow meter 52 is, for example, a pressure gauge that detects the exhaust pressure (atmospheric pressure) in the individual exhaust duct 51.
  • the control device 4 calculates the flow rate of the exhaust gas flowing in the individual exhaust duct 51 based on the detection value of the individual flow meter 52 that changes according to the exhaust pressure in the individual exhaust duct 51.
  • the control device 4 sends a set value (target value) of the opening degree of the individual damper 53 to the individual control device 58.
  • the individual control device 58 increases or decreases the opening degree of the individual damper 53 so that the difference between the set value sent from the control device 4 and the actual opening degree of the individual damper 53 decreases.
  • the individual damper 53 moves the damper body 54 that forms an exhaust passage for guiding exhaust, the valve body 55 that opens and closes the exhaust passage formed by the damper body 54, and the valve body 55. Accordingly, an actuator 56 that changes the opening degree of the individual damper 53 (the flow passage area of the exhaust flow passage) and a position sensor 57 that detects the position of the valve body 55 are provided.
  • a damper main body 54 of the individual damper 53 is interposed in the individual exhaust duct 51.
  • the individual control device 58 includes an opening calculation unit 59 that calculates the opening of the individual damper 53 based on the detection value of the position sensor 57, and a damper drive unit that drives the actuator 56 of the individual damper 53. 60 and an opening degree control unit 61 that gives a command to the damper driving unit 60 to reduce the difference between the actual opening degree of the individual damper 53 and the set value of the opening degree.
  • the set value of the opening degree of the individual damper 53 is sent from the control device 4 to the opening degree control unit 61 of the individual control device 58.
  • the opening control unit 61 compares the actual opening of the individual damper 53 calculated by the opening calculation unit 59 with the set value, and decreases the difference between the actual opening of the individual damper 53 and the set value. Is sent to the damper drive unit 60.
  • the damper driving unit 60 drives the actuator 56 so that the opening degree of the individual damper 53 increases or decreases in response to a command from the opening degree control unit 61. Thereby, the actual opening degree of the individual damper 53 is brought close to the set value.
  • the control device 4 can bring the actual exhaust pressure and exhaust flow rate in the individual exhaust duct 51 close to the target exhaust pressure and exhaust flow rate by sending the set value of the opening degree to the individual control device 58.
  • the discharge unit 46 includes a plurality of individual exhaust ducts 51 respectively corresponding to the plurality of processing units 3. Therefore, the individual exhaust duct 51 is provided for each processing unit 3. Similarly, the individual damper 53, the individual flow meter 52, and the individual control device 58 are provided for each processing unit 3.
  • the discharge unit 46 includes a collective exhaust duct 62 connected to each individual exhaust duct 51.
  • the collective exhaust duct 62 is connected to an exhaust treatment facility that sucks gas at a constant exhaust pressure.
  • the exhaust treatment facility is installed in a factory where the substrate processing apparatus 1 is installed.
  • the discharge unit 46 includes a collective damper 63 that adjusts the flow rate of the exhaust gas flowing in the collective exhaust duct 62 on the downstream side of the connection position between each individual exhaust duct 51 and the collective exhaust duct 62, A collective control device 64 that adjusts the flow rate of exhaust discharged from the collective exhaust duct 62 by controlling the damper 63, and a collective flow meter 65 that detects the flow rate of exhaust flowing through the collective exhaust duct 62 are provided.
  • the collective damper 63 is an example of a collective exhaust flow rate adjusting unit.
  • the set value of the opening degree of the collective damper 63 is an example of the exhaust flow rate set value of the collective exhaust flow rate adjustment unit.
  • the collective flow meter 65 is a differential pressure flow meter that detects the exhaust pressure (pressure) at two positions in the collective exhaust duct 62, for example.
  • the collective flow meter 65 generates an exhaust pressure (atmospheric pressure in the individual exhaust duct 51) between the connection position of each individual exhaust duct 51 and the collective exhaust duct 62 and the collective damper 63. It includes a first collective flow meter 65a for detecting and a second collective flow meter 65b for detecting the exhaust pressure downstream of the collective damper 63.
  • the collective flow meter 65 is not limited to a differential pressure flow meter, and may be another type of flow meter such as a thermal mass flow meter, a vortex flow meter, or an ultrasonic flow meter.
  • the control device 4 determines the pressure difference (difference) between the upstream position and the downstream position of the collective damper 63 in the individual exhaust duct 51. Pressure). Further, the control device 4 sends a set value (target value) of the opening degree of the collective damper 63 to the collective control device 64.
  • the collective control device 64 increases or decreases the opening degree of the collective damper 63 so that the difference between the set value sent from the control device 4 and the actual opening degree of the collective damper 63 decreases.
  • the collective damper 63 has the same configuration as the individual damper 53. Specifically, the collective damper 63 moves the damper body 54 that forms an exhaust passage for guiding exhaust, the valve body 55 that opens and closes the exhaust passage formed by the damper body 54, and the valve body 55. Are provided with an actuator 56 for changing the opening degree of the collective damper 63 (flow passage area of the exhaust passage) and a position sensor 57 for detecting the position of the valve body 55 (see FIG. 3).
  • the damper main body 54 of the collective damper 63 is interposed in the collective exhaust duct 62.
  • the collective control device 64 includes an opening calculation unit 59 that calculates the opening of the collective damper 63 based on the detection value of the position sensor 57, and a damper drive unit that drives the actuator 56 of the collective damper 63. 60 and an opening degree control unit 61 that gives a command to the damper driving unit 60 to reduce the difference between the actual opening degree of the collective damper 63 and the set value of the opening degree.
  • the set value of the opening degree of the individual damper 53 is sent from the control device 4 to the opening degree control unit 61 of the collective control device 64.
  • the opening degree control unit 61 compares the actual opening degree of the collective damper 63 calculated by the opening degree calculating unit 59 with the set value, and decreases the difference between the actual open degree of the collective damper 63 and the set value. Is sent to the damper drive unit 60.
  • the damper driving unit 60 drives the actuator 56 so that the opening degree of the collective damper 63 increases or decreases in response to a command from the opening degree control part 61. Thereby, the actual opening degree of the collective damper 63 is brought close to the set value.
  • the control device 4 can bring the actual exhaust pressure and exhaust flow rate in the collective exhaust duct 62 closer to the target exhaust pressure and exhaust flow rate by sending the set value of the opening degree to the collective control device 64.
  • the control device 4 includes a computer main body 67 and a peripheral device 68 connected to the computer main body 67.
  • the computer main body 67 includes a CPU 69 (central processing unit) that executes various instructions and a main storage device 70 that stores information.
  • the peripheral device 68 includes an auxiliary storage device 71 that stores information such as a program, a reading device 72 that reads information from the removable medium M, and a communication device 73 that communicates with an external device such as a host computer HC.
  • the computer main body 67 is connected to each of the auxiliary storage device 71, the reading device 72, and the communication device 73.
  • the computer main body 67 is further connected to devices such as the indexer robot IR and the processing unit 3.
  • the computer main body 67 exchanges information with each of the auxiliary storage devices 71 and the like.
  • the CPU 69 executes the program P stored in the auxiliary storage device 71 and the program P read from the removable medium M by the reading device 72.
  • the program in the auxiliary storage device 71 may be preinstalled in the control device 4, may be sent from the removable medium M to the auxiliary storage device 71 through the reading device 72, or may be in communication. It may be sent from the external device to the auxiliary storage device 71 through the device 73.
  • the auxiliary storage device 71 is a non-volatile memory that retains memory even when power is not supplied.
  • the auxiliary storage device 71 is, for example, a magnetic storage device such as a hard disk drive.
  • the auxiliary storage device 71 may be a non-volatile memory other than the magnetic storage device.
  • the recipe 74, the set value change condition 75, the original pressure change condition 76, and the table 77 are stored in the auxiliary storage device 71.
  • the table 77 includes a score table 78 and a classification table 79.
  • the removable media M is a non-volatile memory that retains memory even when power is not supplied.
  • the removable medium M is, for example, an optical disk such as a compact disk or a semiconductor memory such as a memory card.
  • the removable medium M may be a non-volatile memory other than the optical disk and the semiconductor memory.
  • the removable medium M is an example of a computer-readable recording medium on which the program P is recorded.
  • the host computer HC communicates with the control device 4.
  • the host computer HC determines the carrier C (starting position) containing the substrate W to be processed and the carrier C (target position) to store the substrate W processed by the processing unit 3 for each substrate W. Is specified. Further, the host computer HC designates the identification information of the recipe 74 indicating a series of steps performed on the substrate W to the control device 4 for each substrate W.
  • the control device 4 stores a plurality of types of recipes 74 in the auxiliary storage device 71.
  • the recipe 74 includes recipe identification information, substrate processing conditions, and a substrate processing procedure.
  • the computer main body 67 reads the recipe 74 designated by the host computer HC from the auxiliary storage device 71. Then, the computer main body 67 creates a processing schedule for processing the substrate W by the processing unit 3 in accordance with the designated recipe 74. Thereafter, the computer main body 67 causes the control target (resource) of the substrate processing apparatus 1 such as the indexer robot IR, the center robot CR, and the processing unit 3 to execute a processing schedule.
  • the control target (resource) of the substrate processing apparatus 1 such as the indexer robot IR, the center robot CR, and the processing unit 3 to execute a processing schedule.
  • control device 4 includes a processing schedule creation unit 80 and a processing schedule execution unit 81.
  • the process schedule creation unit 80 and the process schedule execution unit 81 are functional blocks realized by the CPU 69 executing a program installed in the control device 4.
  • the processing schedule creation unit 80 creates a processing schedule that defines the operation of the processing unit 3 when processing the substrate W in time series (step S11).
  • the processing schedule execution unit 81 controls the resources of the substrate processing apparatus 1 according to the processing schedule, thereby causing the resources of the substrate processing apparatus 1 to execute the processing schedule (step S12).
  • FIG. 9 shows an example of a processing schedule created by the processing schedule creation unit 80.
  • FIG. 9 and FIG. 12 will be referred to.
  • S21 to S28 shown in the upper part of FIG. 9 represent the numbers of the respective steps shown in FIG.
  • a loading step (step S ⁇ b> 21) for loading the substrate W into the chamber 5 is performed.
  • the control device 4 moves the hand H of the center robot CR holding the substrate W in a state where the blocking plate 30 is located at the retracted position and the splash guard 16 is located at the lower position. Enter the chamber 5. Then, the control device 4 causes the center robot CR to place the substrate W on the plurality of chuck pins 9. Thereafter, the control device 4 retracts the hand H of the center robot CR from the chamber 5 and moves each chuck pin 9 from the open position to the closed position. Thereby, the substrate W is held by the spin chuck 8. Thereafter, the control device 4 starts the rotation of the substrate W by controlling the spin motor 11. As a result, the substrate W rotates around the rotation axis A1 at the liquid processing speed.
  • a first rinsing liquid supply step (step S22) for supplying pure water, which is an example of the rinsing liquid, to the substrate W is performed.
  • the control device 4 controls the rinse liquid nozzle moving unit 45 to move the rinse liquid nozzle 14 from the retracted position to the processing position. Thereafter, the control device 4 opens the rinsing liquid valve 44 and discharges pure water to the rinsing liquid nozzle 14 toward the center of the upper surface of the substrate W in a state where the splash guard 16 is positioned at the lower position. Thereby, the entire upper surface of the substrate W is covered with the liquid film of pure water.
  • the control device 4 closes the rinsing liquid valve 44 and stops the discharge of pure water from the rinsing liquid nozzle 14. Thereafter, the control device 4 controls the rinse liquid nozzle moving unit 45 to retract the rinse liquid nozzle 14 from above the substrate W.
  • a first chemical solution supply step (step S23) for supplying the first chemical solution to the substrate W is performed.
  • control device 4 controls the first chemical liquid nozzle moving unit 39 to move the first chemical liquid nozzle 12 from the retracted position to the processing position.
  • the control device 4 further controls the guard lifting unit 29 to move the splash guard 16 from the lower position to the intermediate position.
  • the control device 4 opens the first chemical liquid valve 38 and causes the first chemical liquid nozzle 12 to eject the first chemical liquid toward the center of the upper surface of the substrate W. Thereby, the pure water on the substrate W is replaced with the first chemical solution, and the entire upper surface of the substrate W is covered with the liquid film of the first chemical solution.
  • the control device 4 closes the first chemical liquid valve 38 and stops discharging the first chemical liquid from the first chemical liquid nozzle 12. Thereafter, the control device 4 retracts the first chemical liquid nozzle 12 from above the substrate W by controlling the first chemical liquid nozzle moving unit 39.
  • a second rinse liquid supply step (step S24) for supplying pure water, which is an example of a rinse liquid, to the substrate W is performed.
  • the control device 4 controls the rinse liquid nozzle moving unit 45 to move the rinse liquid nozzle 14 from the retracted position to the processing position. Thereafter, the control device 4 opens the rinsing liquid valve 44 and discharges pure water to the rinsing liquid nozzle 14 toward the center of the upper surface of the substrate W in a state where the splash guard 16 is located at the intermediate position. As a result, the first chemical on the substrate W is washed away with pure water, and the entire upper surface of the substrate W is covered with a liquid film of pure water.
  • the control device 4 closes the rinsing liquid valve 44 and stops the discharge of pure water from the rinsing liquid nozzle 14. Thereafter, the control device 4 controls the rinse liquid nozzle moving unit 45 to retract the rinse liquid nozzle 14 from above the substrate W.
  • step S25 a second chemical solution supply step for supplying the second chemical solution to the substrate W is performed.
  • control device 4 moves the second chemical liquid nozzle 13 from the retracted position to the processing position by controlling the second chemical liquid nozzle moving unit 42.
  • the control device 4 further controls the guard lifting unit 29 to move the splash guard 16 from the intermediate position to the upper position.
  • the control device 4 opens the second chemical liquid valve 41 and causes the second chemical liquid nozzle 13 to eject the second chemical liquid toward the center of the upper surface of the substrate W.
  • the pure water on the substrate W is replaced with the second chemical solution, and the entire upper surface of the substrate W is covered with the liquid film of the second chemical solution.
  • the control device 4 closes the second chemical liquid valve 41 and stops the discharge of the second chemical liquid from the second chemical liquid nozzle 13. Thereafter, the control device 4 retracts the second chemical liquid nozzle 13 from above the substrate W by controlling the second chemical liquid nozzle moving unit 42.
  • a third rinse liquid supply process (step S26) is performed as a final rinse liquid supply process for supplying pure water, which is an example of a rinse liquid, to the substrate W.
  • control device 4 controls the rinse liquid nozzle moving unit 45 to move the rinse liquid nozzle 14 from the retracted position to the processing position. Thereafter, the control device 4 opens the rinsing liquid valve 44 and discharges pure water to the rinsing liquid nozzle 14 toward the center of the upper surface of the substrate W in a state where the splash guard 16 is located at the upper position. As a result, the second chemical solution on the substrate W is washed away with pure water, and the entire upper surface of the substrate W is covered with the pure water liquid film.
  • the control device 4 controls the guard lifting / lowering unit 29 to move the splash guard 16 from the upper position to the lower position while the rinse liquid nozzle 14 is discharging pure water.
  • the control device 4 closes the rinsing liquid valve 44 and stops the discharge of pure water from the rinsing liquid nozzle 14. Thereafter, the control device 4 controls the rinse liquid nozzle moving unit 45 to retract the rinse liquid nozzle 14 from above the substrate W.
  • step S27 a drying process for drying the substrate W is performed.
  • control device 4 moves the blocking plate 30 from the retracted position to the close position by controlling the blocking plate lifting / lowering unit 34.
  • the control device 4 further opens the gas valve 35 and discharges nitrogen gas from the central opening 31 that opens at the center of the lower surface of the shielding plate 30.
  • the control device 4 controls the spin motor 11 to control the rotation speed (liquid processing speed) of the substrate W from the first rinse liquid supply process (step S22) to the third rinse liquid supply process (step S26).
  • the rotation of the substrate W is accelerated to a higher drying speed (for example, several thousand rpm).
  • a higher drying speed for example, several thousand rpm
  • Step S28 an unloading step for unloading the substrate W from the chamber 5 is performed.
  • the control device 4 moves the blocking plate 30 from the proximity position to the retracted position by controlling the blocking plate lifting / lowering unit 34 (raising the blocking plate 30). Thereafter, the control device 4 controls the spin motor 11 to stop the rotation of the substrate W by the spin chuck 8. The control device 4 further moves each chuck pin 9 from the closed position to the open position, and releases the grip of the substrate W by the spin chuck 8. Thereby, the holding of the substrate W by the spin chuck 8 is released. In this state, the control device 4 causes the hand H of the center robot CR to enter the chamber 5. Then, the control device 4 holds the substrate W on the spin chuck 8 on the hand H of the center robot CR. Thereafter, the control device 4 retracts the hand H of the center robot CR from the chamber 5. As a result, the processed substrate W is unloaded from the chamber 5.
  • a plurality of substrate processing steps are executed under the substrate processing conditions specified in the recipe 74 and the substrate processing procedure specified in the recipe 74.
  • control device 4 includes a set value change determination unit 82, a total value calculation unit 83, a group determination unit 84, an individual exhaust schedule creation unit 85, and an individual exhaust schedule execution unit 86.
  • Control device 4 further includes a set value change condition 75 and a table 77.
  • the set value change determination unit 82, the total value calculation unit 83, the group determination unit 84, the individual exhaust schedule creation unit 85, and the individual exhaust schedule execution unit 86 are realized by the CPU 69 executing a program installed in the control device 4. Function block.
  • the setting value change determination unit 82 determines whether or not a setting value change condition 75 described later is satisfied at any time in the processing schedule after the processing schedule is created by the processing schedule creation unit 80. Is determined (step S31).
  • the total value calculation unit 83 obtains the total value of the scores at each time of the processing schedule based on the table 77. (Step S32).
  • the group determination unit 84 determines which of the plurality of groups the total score obtained by the total value calculation unit 83 belongs to (step S33).
  • the individual exhaust schedule creation unit 85 creates an individual exhaust schedule that defines the exhaust flow rate setting value (the set value of the opening degree of the individual damper 53) of the individual exhaust flow rate adjustment unit at each time of the processing schedule. (Step S34).
  • the individual exhaust schedule execution unit 86 controls the individual damper 53 according to the individual exhaust schedule, thereby causing the individual damper 53 to execute the individual exhaust schedule in parallel with the processing schedule (step S35).
  • the set value change determination unit 82 determines whether or not the set value change condition 75 is satisfied at each time of the processing schedule.
  • the blocking plate 30 and the processing liquid capturing member 15 are examples of movable members that can move in the chamber 5.
  • the set value change condition 75 includes a position condition in which the movable member is located at a position other than the origin position.
  • each of the first chemical liquid nozzle 12, the second chemical liquid nozzle 13, and the rinse liquid nozzle 14 is an example of a processing fluid supply unit that supplies a processing fluid to the substrate W.
  • the set value changing condition 75 is that the processing fluid is being discharged by at least one of the nozzles 12 to 14 and that at least one of the first chemical liquid nozzle 12 and the second chemical liquid nozzle 13 starts to discharge the chemical liquid. It further includes a chemical solution discharge start condition and a chemical solution discharge end condition in which at least one of the first chemical solution nozzle 12 and the second chemical solution nozzle 13 ends the discharge of the chemical solution.
  • the set value changing condition 75 further includes a substrate rotation condition in which the substrate W is rotating, and a blocking plate ascent condition in which the blocking plate 30 moves from a close position as an operation position to a retracted position as an origin position.
  • the substrate rotation condition includes a liquid processing execution condition in which the substrate W is rotated at the liquid processing speed and a drying execution condition in which the substrate W is rotated at the drying speed.
  • the total value calculation unit 83 obtains the total value of the scores at each time of the processing schedule based on the score table 78.
  • FIG. 7 shows an example of a score table 78 in which a plurality of points assigned for each operation status of the processing unit 3 are described.
  • the score table 78 includes a plurality of points assigned for each position of the movable member and the processing fluid from the first chemical liquid nozzle 12, the second chemical liquid nozzle 13, and the rinse liquid nozzle 14. And a plurality of points assigned for each of the discharge states, and a plurality of points assigned for each rotation state of the substrate W.
  • the retracting position of the shielding plate 30 is assigned to 0 point, and the proximity position of the shielding plate 30 is assigned to 2 points.
  • the lower position of the splash guard 16 is assigned to 0 point, the intermediate position of the splash guard 16 is assigned to 1 point, and the upper position of the splash guard 16 is assigned to 2 points.
  • the chemical solution discharge state is assigned to 3 points, and the chemical discharge stop state is assigned to 0 point.
  • the rinse liquid discharge state is assigned to 1 point, and the rinse liquid discharge stop state is assigned to 0 point.
  • the rotation stop state of the substrate W is 0 point, the liquid processing execution state in which the substrate W is rotating at the liquid processing speed is 1 point, and the drying execution state of the substrate W in which the substrate W is rotating at the drying speed is 2 points. Allocated to
  • the group determination unit 84 determines, based on the classification table 79, to which of the plurality of groups the total value of the points calculated by the total value calculation unit 83 belongs.
  • FIG. 8 shows an example of the classification table 79 for classifying the total value of the points obtained by the total value calculation unit 83 into three groups according to the size.
  • the classification table 79 includes two threshold values for classifying the total value of points into three groups according to the size.
  • FIG. 8 shows an example in which 2 and 5 points are set as the total value threshold.
  • Groups with a total score of 0 to 1 are weak exhaust groups
  • groups with a total score of 2 to 4 are medium exhaust groups
  • groups with a total score of 5 or more Is a strong exhaust group.
  • the set value of the opening degree of the individual damper 53 is set to a weak set value (reference value). Is done. That is, when the weak exhaust condition is satisfied, the added value is 0.
  • the set value of the opening of the individual damper 53 is set to a medium set value larger than the reference value. Is set. Therefore, when the medium exhaust condition is satisfied (when the total number of points is 2 to 4), the opening value of the individual damper 53 is obtained by adding the intermediate addition value to the weak setting value (reference value). Set to a value.
  • the set value of the opening degree of the individual damper 53 is set to a strong set value larger than the medium set value. Is done. Therefore, when the strong exhaust condition is satisfied (when the total number of points is 5 or more), the opening value of the individual damper 53 is set to a value obtained by adding a strong addition value to the weak setting value (reference value). Is set.
  • the strong addition value is a value larger than the medium addition value.
  • the set value of the opening of the individual damper 53 is adjusted according to the group to which the total value of the points belongs.
  • the strong exhaust group is the group with the largest opening value of the individual damper 53 among the three groups, and the weak exhaust group is the smallest with the opening value of the individual damper 53 among the three groups. It is a group.
  • the group determination unit 84 determines that the total value of points belongs to the middle exhaust group as shown in FIG.
  • the individual exhaust schedule creation unit 85 creates an individual exhaust schedule so that the set value of the opening degree of the individual damper 53 at this time is set to the medium set value.
  • the group determination unit 84 determines that the total score value belongs to the middle exhaust group. In this case, although the total value of the points has changed, the group to which the total value of the points belongs has not changed (because it remains a middle exhaust group), the individual exhaust schedule creation unit 85 then opens the opening of the individual damper 53. The individual exhaust schedule is created so that the set value is set to the medium set value.
  • FIG. 9 shows an example of an individual exhaust schedule created by the individual exhaust schedule creation unit 85 in addition to an example of the processing schedule.
  • the blocking plate 30 and the splash guard 16 are planned to be positioned at the retracted position and the lower position, respectively, and a position condition that requires that the movable member is positioned at a position other than the origin position is established. Not done. However, at the scheduled time T1, it is planned to rotate the substrate W at the liquid processing speed, and the substrate rotation condition is satisfied. Therefore, the set value change condition 75 is satisfied at the scheduled time T1.
  • the total value of the points is less than 2, and the total value of the points belongs to the weak exhaust group, so the opening degree of the individual damper 53 during this period is a weak set value ( Reference value ("A" in the figure) is planned to be set.
  • the substrate rotation condition liquid processing execution condition
  • the processing fluid discharging condition are satisfied.
  • the total value of the points is two points, and the total value of the points belongs to the middle exhaust group, so the opening degree of the individual damper 53 during this period is the middle set value ( It is planned to be set to “B” in the figure.
  • the total score is less than 5 (2 points). Classified into groups. However, since the discharge of the first chemical solution is started at the scheduled time T3 (satisfaction of the chemical solution discharge condition), the period from the scheduled time T2 to the scheduled time T3 is regarded as discharging the first chemical solution. Although the discharge of one chemical liquid is not planned, it is considered that the discharge of the first chemical liquid is planned as indicated by the thick line in FIG. 9, and three points assigned to the state of the first chemical liquid being discharged are added. . Therefore, the total value of the points in this period is regarded as belonging to the strong exhaust group, and the opening degree of the individual damper 53 is planned to be set to the strong set value (“C” in the figure).
  • the substrate rotation condition and the processing fluid discharge condition are satisfied. Furthermore, it is planned that the splash guard 16 is positioned at an intermediate position during this period. Therefore, the position condition related to the splash guard 16 is also established during this period. Since the total value of the points in this period is 5 points or more, the opening degree of the individual damper 53 is planned to be set to a strong set value.
  • the period from the scheduled time T4 to the scheduled time T5 is the same as the period from the scheduled time T2 to the scheduled time T3, except for the addition due to the discharge of the first chemical solution, the total value of the points is within the range of 2 to 4 points. (3 points), and the original value is classified into the middle exhaust group.
  • the discharge of the first chemical liquid is stopped at the scheduled time T4 (satisfaction of the chemical liquid discharge end condition)
  • it is assumed that the first chemical liquid is also discharged during the period from the scheduled time T4 to the scheduled time T5.
  • Three points allocated to the middle state are added. Therefore, the total value of the points in this period is regarded as belonging to the strong exhaust group, and the opening degree of the individual damper 53 is planned to be set to the strong set value.
  • the second chemical liquid is ejected in the same manner as the discharge start and discharge end of the first chemical liquid described above.
  • the three points assigned to the second chemical solution being discharged are added. Therefore, the total value of the points in these periods is considered to belong to the strong exhaust group, and the opening degree of the individual damper 53 is planned to be set to the strong set value.
  • the substrate rotation condition liquid processing execution condition
  • the processing fluid discharge in-process condition and the position condition are satisfied.
  • the splash guard 16 is planned to be positioned at the intermediate position, whereas in the period from the scheduled time T6 to the scheduled time T7, the splash guard 16 is in the upper position. It is planned to be located.
  • the upper position of the splash guard 16 is assigned a larger score than the middle position of the splash guard 16. Therefore, the total value (6 points) of the period from the scheduled time T6 to the scheduled time T7 is larger than the total value (5 points) of the period from the scheduled time T3 to the scheduled time T4. However, since the total value of any period belongs to the strong exhaust group, the opening degree of the individual damper 53 is planned to be set to the strong set value.
  • the substrate rotation condition drying execution condition
  • the blocking plate 30 is located in the proximity position. Therefore, the position condition related to the blocking plate 30 is also established during this period.
  • the total score during this period is in the range of 2 to 4 points (4 points). Therefore, it is planned that the opening degree of the individual damper 53 during this period is set to the medium setting value.
  • the total score is within the range of 0 to 1 (1 point). Is classified into a weak exhaust group. However, since it is planned to raise the shielding plate 30 from the close position to the retracted position at the scheduled time T10, the shielding plate raising condition is satisfied. Therefore, as indicated by a thick line in FIG. 9, the number of points (2 points) allocated to the proximity position of the shielding plate 30 on the assumption that the shielding plate 30 is also located in the proximity position during the period from the scheduled time T10 to the scheduled time T11. Is added. Therefore, the total value of the points in this period is considered to belong to the middle exhaust group, and the opening degree of the individual damper 53 is planned to be set to the middle set value.
  • the individual exhaust schedule creation unit 85 creates an individual exhaust schedule while referring to the processing schedule in this way.
  • the individual exhaust schedule execution unit 86 controls the individual damper 53 according to the individual exhaust schedule, thereby causing the individual damper 53 to execute the individual exhaust schedule so that the individual exhaust schedule is synchronized with the processing schedule.
  • control device 4 provides feedback for adjusting the opening degree of the individual damper 53 based on the detection value of the individual flow meter 52 in addition to the individual exhaust schedule creation unit 85 and the individual exhaust schedule execution unit 86.
  • An individual feedback execution unit 87 that performs control during execution of the individual exhaust schedule may be further included.
  • the individual feedback execution unit 87 is a functional block realized by the CPU 69 executing a program installed in the control device 4.
  • the individual feedback execution unit 87 monitors the flow rate of the exhaust discharged from the inside of the chamber 5 to the individual exhaust duct 51 based on the detection value of the individual flow meter 52.
  • the individual feedback execution unit 87 performs the individual exhaust schedule so that the flow rate of the exhaust discharged to the individual exhaust duct 51 approaches the exhaust flow rate associated with the set value of the opening degree of the individual damper 53.
  • the opening degree of the individual damper 53 is adjusted. Therefore, when the control device 4 further includes the individual feedback execution unit 87, the flow rate of the exhaust discharged from the processing unit 3 can be controlled more precisely.
  • the control device 4 includes a source pressure change determination unit 88, a collective exhaust schedule creation unit 89, and a collective exhaust schedule execution unit 90.
  • the control device 4 further includes a source pressure changing condition 76.
  • the source pressure change determination unit 88, the collective exhaust schedule creation unit 89, and the collective exhaust schedule execution unit 90 are functional blocks that are realized by the CPU 69 executing a program installed in the control device 4.
  • the source pressure change determination unit 88 has a source pressure change condition 76 in which the exhaust flow rate setting value of any of the plurality of individual exhaust flow rate adjustment units is larger than the reference value. Is determined at any time of the individual exhaust schedule (step S41).
  • the collective exhaust schedule creation unit 89 satisfies the source pressure change condition 76.
  • the exhaust pressure set value (the set value of the opening degree of the collective damper 63) of the collective exhaust flow rate adjusting unit over time is the original pressure reference value that is the set value when the set value of the opening degree of all the individual dampers 53 is the reference value
  • a collective exhaust schedule that defines a set value of the opening degree of the collective damper 63 at each time of the individual exhaust schedule is created so as to be set to a larger value (step S42).
  • the collective exhaust schedule execution unit 90 controls the collective damper 63 according to the collective exhaust schedule, thereby causing the collective damper 63 to execute the collective exhaust schedule in parallel with the individual exhaust schedule (step S43).
  • FIG. 10 shows an example of three individual exhaust schedules corresponding to the three processing units 3 (first processing unit 3, second processing unit 3, and third processing unit 3) and a collective exhaust schedule creation unit 89. An example of the collected exhaust schedule is shown.
  • the total number of processing units 3 provided in the substrate processing apparatus 1 is 12. However, in the description according to FIG. 10, it is assumed that the total number of processing units 3 is three.
  • the set value of the opening degree of the individual damper 53 corresponding to any one of the processing units 3 (the first processing unit 3 in FIG. 10) is set to the middle. Planned to set to setpoint. Therefore, the source pressure changing condition 76 is satisfied during this period. Therefore, it is planned to change the set value of the opening degree of the collective damper 63 to a value larger than the original pressure reference value.
  • FIG. 10 shows an example in which the set value of the opening degree of the collective damper 63 is changed from the weak set value to the medium set value.
  • the collective exhaust schedule creation unit 89 creates the collective exhaust schedule while referring to the individual exhaust schedule in this way.
  • the collective exhaust schedule execution unit 90 controls the collective damper 63 according to the collective exhaust schedule to cause the collective damper 63 to execute the collective exhaust schedule so that the collective exhaust schedule is synchronized with the individual exhaust schedule.
  • the control device 4 replaces the collective exhaust schedule creation unit 89 and the collective exhaust schedule execution unit 90 etc.
  • a collective feedback control execution unit 91 that performs feedback control for adjusting the opening of the collective damper 63 based on the detection value of the collective flow meter 65 may be further included.
  • the collective feedback control execution unit 91 is a functional block realized by the CPU 69 executing a program installed in the control device 4.
  • the collective feedback control execution unit 91 monitors the flow rate of the exhaust discharged from the inside of the individual exhaust duct 51 to the collective exhaust duct 62 based on the detection value of the collective flow meter 65. Then, the collective feedback control execution unit 91 causes the flow rate of the exhaust discharged to the collective exhaust duct 62 to approach a flow rate reference value (a value when the set values of the opening amounts of all the individual dampers 53 are the reference values). The opening degree of the collective damper 63 is adjusted. Therefore, when the control device 4 includes the collective feedback control execution unit 91, the exhaust pressure in the collective exhaust duct 62 is stabilized, so that fluctuations in the exhaust pressure applied to the individual exhaust ducts 51 can be suppressed or prevented. Thereby, the pressure fluctuation in each processing unit 3 can be suppressed or prevented.
  • the feedback control by the collective feedback control execution unit 91 may be executed in parallel with the collective exhaust schedule, or may be executed in a period when the collective exhaust schedule is not executed.
  • Each processing unit 3 is connected to the same exhaust source (exhaust processing facility).
  • the opening degree of each individual damper 53 is normally set on the assumption that the original pressure (exhaust pressure of the exhaust treatment facility) is constant. That is, the opening degree of each individual damper 53 is set on the assumption that the exhaust pressure in the collective exhaust duct 62 is constant.
  • the exhaust pressure in the collective exhaust duct 62 may change due to the influence. Therefore, the exhaust flow rate from the remaining processing units 3 may change. That is, although the exhaust processing equipment has the same suction power itself, the exhaust pressure acting on each processing unit 3 can change. When the exhaust pressure in the collective exhaust duct 62 changes, the exhaust flow rate discharged from each processing unit 3 changes even if the opening degree of the individual damper 53 is the same.
  • a collective exhaust schedule is created by referring to all individual exhaust schedules scheduled to be executed at the same time, and the collective exhaust schedule is executed, thereby suppressing fluctuations in exhaust pressure in the collective exhaust duct 62. be able to.
  • the opening of the collective damper 63 based on the exhaust pressure in the collective exhaust duct 62, fluctuations in the exhaust pressure in the collective exhaust duct 62 can be suppressed. Thereby, it can suppress or prevent that the flow volume of the exhaust_gas
  • a processing schedule that defines the operation of the processing unit 3 when processing the substrate W in time series is created.
  • an individual exhaust schedule that defines the exhaust flow rate setting value of the individual exhaust flow rate adjustment unit in the above example, the opening value of the individual damper 53
  • an individual exhaust schedule is executed in parallel with the processing schedule.
  • the blocking plate 30 and the treatment liquid capturing member 15 are examples of movable members that can move in the chamber 5.
  • the set value change condition 75 includes a position condition in which the movable member is located at a position other than the origin position.
  • any one of the blocking plate 30 and the processing liquid capturing member 15 is planned to be disposed at a position other than the origin position at any time in the processing schedule, that is, when the set value change condition 75 is satisfied.
  • the exhaust flow rate setting value of the individual exhaust flow rate adjustment unit at the time when the set value change condition 75 is satisfied is set to a value larger than the set value (reference value) when the movable member is located at the origin position. Planned.
  • the exhaust flow rate setting value of the individual exhaust flow rate adjustment unit is set to a value larger than the reference value. Accordingly, the force (exhaust pressure) for discharging the gas in the chamber 5 into the individual exhaust duct 51 is increased. In other words, the absolute value of the exhaust pressure (negative pressure) lower than the atmospheric pressure is increased. Therefore, even if the exhaust resistance (pressure loss) of the processing unit 3 increases according to the position of the movable member, the exhaust pressure increases accordingly, so that fluctuations in the flow rate of the exhaust discharged from the processing unit 3 are suppressed. Can do.
  • the individual exhaust schedule is executed in parallel with the processing schedule. That is, the exhaust flow rate setting value of the individual exhaust flow rate adjustment unit is not changed after the flow rate of the gas discharged from the processing unit 3 has actually changed, but is adjusted before the change in flow rate occurs. Therefore, the time until the exhaust gas flow rate is stabilized can be shortened compared with the case where feedback control is performed.
  • the individual exhaust schedule that defines the exhaust flow rate setting value of the individual exhaust flow rate adjustment unit is created based on the processing schedule. Even when the same recipe 74 is executed, parameters affecting the exhaust flow rate may be different. Therefore, by creating an individual exhaust schedule based on individual process schedules, the exhaust flow rate can be optimized for processing of any substrate W.
  • the set value changing condition 75 includes the processing fluid discharging condition. Therefore, even when the processing liquid which is an example of the processing fluid is planned to be discharged, the power (exhaust pressure) for discharging the gas in the chamber 5 into the individual exhaust duct 51 is planned to be increased.
  • mist is likely to be generated in the processing unit 3.
  • the substrate W may be contaminated.
  • the mist may change to particles that are one of the causes of contamination of the substrate W, and the particles may float in the processing unit 3. Therefore, by increasing the exhaust pressure when the processing fluid is actually discharged, the mist can be efficiently discharged from the processing unit 3 and the mist diffusion range can be narrowed. Therefore, contamination of the substrate W due to adhesion of mist and particles can be reduced.
  • the set value change condition 75 includes a chemical solution discharge start condition. Therefore, even when it is planned to discharge the chemical liquid as the processing fluid, it is planned to increase the force (exhaust pressure) for discharging the gas in the chamber 5 into the individual exhaust duct 51.
  • a mist of the chemical solution is likely to be generated in the processing unit 3. Furthermore, the chemical mist is more likely to contaminate the substrate W than the rinsing liquid mist such as pure water. Therefore, when the chemical liquid is actually discharged, the mist of the chemical liquid can be efficiently discharged from the processing unit 3 by increasing the exhaust pressure, and the mist diffusion range can be narrowed. Therefore, contamination of the substrate W due to adhesion of mist and particles can be reduced.
  • exhaust pressure exhaust pressure for discharging the gas in the chamber 5 into the individual exhaust duct 51
  • the force (exhaust pressure) for discharging the gas in the chamber 5 into the individual exhaust duct 51 is increased before the time when the chemical solution discharge start condition is satisfied, that is, before the discharge of the chemical solution is started. Planned. And it is planned so that the exhaust pressure may be kept strong while the discharge of the chemical liquid is continued. Accordingly, since the discharge of the chemical liquid is started in a state where the exhaust pressure is increased, the mist of the chemical liquid can be efficiently discharged immediately after the chemical liquid is discharged. Thereby, the residual amount of chemical mist in the chamber 5 can be reduced, and contamination of the substrate W due to adhesion of mist and particles can be reduced.
  • the set value change condition 75 includes a chemical solution discharge end condition. It is planned to increase the force (exhaust pressure) for discharging the gas in the chamber 5 into the individual exhaust duct 51 even after the time when the chemical discharge end condition is satisfied, that is, after the discharge of the chemical is stopped. . Therefore, it is possible to reliably discharge the mist of the chemical liquid floating in the chamber 5 after stopping the discharge of the chemical liquid. Thereby, the residual amount of chemical mist in the chamber 5 can be reduced, and contamination of the substrate W due to adhesion of mist and particles can be reduced.
  • the set value change condition 75 includes the substrate rotation condition. Therefore, even when the spin chuck 8 is planned to rotate the substrate W, it is planned to increase the force (exhaust pressure) for discharging the gas in the chamber 5 into the individual exhaust duct 51.
  • the processing liquid scatters from the substrate W, so that mist is likely to occur. Therefore, when the substrate W is actually rotating, the mist can be efficiently discharged from the processing unit 3 by increasing the exhaust pressure, and the mist diffusion range can be narrowed. Therefore, contamination of the substrate W due to adhesion of mist and particles can be reduced.
  • the set value change condition 75 includes the drying execution condition. Therefore, when the substrate W rotates at the drying speed, the force (exhaust pressure) for discharging the gas in the chamber 5 into the individual exhaust duct 51 is increased.
  • the drying speed is a rotation speed larger than the rotation speed of the substrate W when any of the first chemical liquid nozzle 12, the second chemical liquid nozzle 13, and the rinse liquid nozzle 14 is discharging the processing fluid.
  • the rotation speed of the substrate W increases, the centrifugal force acting on the processing liquid adhering to the substrate W also increases, so that the amount of the processing liquid scattered from the substrate W increases. Therefore, when the substrate W rotates at the drying speed, mist is likely to occur. Therefore, by increasing the exhaust pressure when the substrate W is rotating at the drying speed, the mist can be efficiently discharged from the processing unit 3 and the mist diffusion range can be narrowed.
  • the set value change condition 75 includes the shielding plate ascent condition. Therefore, even when it is planned to move the blocking plate 30 upward, it is planned to increase the force (exhaust pressure) for discharging the gas in the chamber 5 into the individual exhaust duct 51.
  • the shielding plate 30 When the shielding plate 30 rises from the close position as the shielding plate operating position to the retracted position as the shielding plate origin position, the shielding plate 30 is separated from the substrate W, and the interval between the shielding plate 30 and the substrate W is widened.
  • the rising speed of the shielding plate 30 is large, the air pressure between the shielding plate 30 and the substrate W decreases, and the atmosphere in the chamber 5 is sucked between the shielding plate 30 and the substrate W. Therefore, mist or particles floating around the substrate W may adhere to the substrate W.
  • the rising speed of the shielding plate 30 is reduced, it is considered that the suction of the atmosphere due to the generation of negative pressure is reduced.
  • the rising speed of the blocking plate 30 is slow, the time required for processing the substrate W increases, so that the throughput of the substrate processing apparatus 1 (the number of processed substrates W per unit time) may decrease.
  • the exhaust pressure is increased when the interval between the shielding plate 30 and the substrate W is widened, the atmosphere around the substrate W is forcibly sucked toward the individual exhaust duct 51. Entry of the atmosphere into the is suppressed. Therefore, it is possible to suppress or prevent the atmosphere around the substrate W from coming into contact with the substrate W without reducing the rising speed of the blocking plate 30. Therefore, contamination of the substrate W can be reduced while maintaining the throughput.
  • a table 77 including a plurality of points is stored in the auxiliary storage device 71 of the control device 4.
  • a plurality of points are assigned for each operation status of the processing unit 3.
  • the table 77 includes a plurality of points respectively assigned to the origin position and the operating position of the movable member, and a plurality of points respectively assigned to the processing fluid discharging state and the discharging stop state.
  • the total value of points at each time in the processing schedule is calculated. Then, the exhaust flow rate setting value of the individual exhaust flow rate adjustment unit at each time of the processing schedule is planned to be set to a value larger than the reference value in accordance with the total value of the points. Therefore, the force (exhaust pressure) for exhausting the gas in the chamber 5 into the individual exhaust duct 51 is adjusted according to the operation status of the processing unit 3. Therefore, the airflow in the chamber 5 can be brought close to an ideal state.
  • the table 77 stored in the auxiliary storage device 71 of the control device 4 includes a plurality of points assigned for each position of the movable member and a plurality of points assigned for each discharge state of the processing fluid. And a plurality of points respectively assigned to the rotating state and the rotating stopped state of the substrate W. Therefore, the force (exhaust pressure) for discharging the gas in the chamber 5 into the individual exhaust duct 51 is adjusted to a magnitude that also takes into account the rotational state of the substrate W. Therefore, the airflow in the chamber 5 can be brought close to an ideal state.
  • the table 77 stored in the auxiliary storage device 71 of the control device 4 is allocated to the number of rinse liquids allocated to the rinsing liquid discharging state and the chemical liquid discharging state. And the number of medicinal solutions.
  • the score of the chemical solution is larger than the score of the rinse solution. Therefore, if the other operating conditions of the processing unit 3 are the same, the total value of the points when the chemical liquid is being discharged is larger than the total value of the points when the rinsing liquid is being discharged.
  • the exhaust flow rate setting value of the individual exhaust flow rate adjustment unit at each time of the processing schedule is planned to be set to a value larger than the reference value according to the size of the total value of the points. If the total value of the points is large, the force (exhaust pressure) for discharging the gas in the chamber 5 into the individual exhaust duct 51 is strong, so that the gas in the chamber 5 is reliably discharged.
  • the chemical mist is more likely to contaminate the substrate W than a rinsing liquid mist such as pure water. Therefore, when the chemical liquid is actually discharged, the mist of the chemical liquid can be efficiently discharged from the processing unit 3 by increasing the exhaust pressure, and the mist diffusion range can be narrowed. Therefore, contamination of the substrate W due to adhesion of mist and particles can be reduced.
  • one or more threshold values for classifying the total value of the points into a plurality of groups are included in the table 77 stored in the auxiliary storage device 71 of the control device 4. Which of the plurality of groups the total score value belongs to is determined based on the classification table 79 of the table 77.
  • the gases in the plurality of processing units 3 are discharged to the plurality of individual exhaust ducts 51, respectively.
  • Exhaust gas flowing downstream in each individual exhaust duct 51 toward the exhaust treatment facility is discharged into the collective exhaust duct 62.
  • the flow rate of the exhaust gas flowing in the collective exhaust duct 62 toward the exhaust treatment facility is adjusted by a collective damper 63 as a collective exhaust flow rate adjusting unit.
  • the collective exhaust schedule that defines the exhaust flow rate setting value of the collective exhaust flow rate adjustment unit (the set value of the opening amount of the collective damper 63) is the exhaust flow rate setting value of the individual exhaust flow rate adjustment unit (the set value of the opening amount of the individual damper 53) It is created with reference to the individual exhaust schedule that prescribes.
  • the collective exhaust schedule is executed in parallel with the individual exhaust schedule.
  • the set at the time when the source pressure change condition 76 in which the exhaust flow rate setting value of any one of the individual exhaust flow rate adjustment units is larger than the reference value is satisfied at any time of the individual exhaust schedule, the set at the time when the source pressure change condition 76 is satisfied
  • the exhaust flow rate setting value of the exhaust flow rate adjustment unit is planned to be set to a value larger than the set value (original pressure reference value) when the exhaust flow rate setting value of each individual exhaust flow rate adjustment unit is the reference value.
  • the exhaust flow rate setting value of any one of the individual exhaust flow rate adjustment units is larger than the reference value, the exhaust pressure in the collective exhaust duct 62 decreases, and the influence of the decrease in the exhaust pressure may affect other processing units 3. is there. Therefore, a decrease in the flow rate of the exhaust gas discharged from the other processing units 3 can be suppressed or prevented by setting the exhaust gas flow rate setting value of the collective exhaust gas flow rate adjusting unit to be larger than the original pressure reference value. Thereby, the pressure fluctuation in the other processing unit 3 can be suppressed or prevented.
  • the collective exhaust schedule is executed in parallel with the individual exhaust schedule. That is, the exhaust flow rate setting value of the collective exhaust flow rate adjustment unit is not changed after the actual flow rate of the exhaust gas flowing through the collective exhaust duct 62 is changed, but is adjusted before the flow rate changes. Therefore, the time until the exhaust gas flow rate is stabilized can be shortened compared with the case where feedback control is performed.
  • a gas flow path that flows inside the chamber 5 toward the individual exhaust duct 51 is formed in the chamber 5 by the blocking plate 30 and the processing liquid capturing member 15 as movable members. Therefore, when at least one of the blocking plate 30 and the processing liquid capturing member 15 moves in the chamber 5, the shape of the flow path changes, so that the exhaust resistance of the processing unit 3 changes. For this reason, the exhaust flow rate setting value of the individual exhaust flow rate adjustment unit (the set value of the opening degree of the individual damper 53) is changed according to the positions of the blocking plate 30 and the processing liquid capturing member 15, thereby being discharged from the processing unit 3. The gas flow rate can be stabilized.
  • the set value changing condition 75 includes a processing fluid discharge condition, a chemical solution discharge start condition, a chemical solution discharge end condition, a substrate rotation condition, and a blocking plate raising condition is described in addition to the position condition.
  • the chemical solution discharge start condition, the chemical solution discharge end condition, the substrate rotation condition, and the blocking plate raising condition may be excluded from the set value change condition 75.
  • the discharge unit 46 increases the exhaust pressure in the collective exhaust duct 62 by sending gas toward the downstream end of the collective exhaust duct 62 in addition to the collective damper 63.
  • a blower 66 may be provided.
  • the collective damper 63 and the blower 66 are both examples of a collective exhaust flow rate adjusting unit that adjusts the flow rate of the exhaust gas flowing through the collective exhaust duct 62 toward the exhaust treatment facility.
  • the blower 66 is connected to the collective exhaust duct 62 on the downstream side of the collective damper 63.
  • the control device 4 switches the blower 66 between the blowing state (on) and the blowing stop state (off) by controlling the blower 66.
  • the control device 4 may change the air flow rate of the blower 66 in addition to the on / off of the blower 66.
  • the blower 66 forms an airflow that flows in the collective exhaust duct 62 downstream (toward the exhaust treatment facility). Therefore, during the blowing of the blower 66, a force for moving the gas in the collective exhaust duct 62 to the downstream side of the collective exhaust duct 62 is formed by the exhaust treatment facility and the blower 66, and the exhaust pressure in the collective exhaust duct 62 is increased. Enhanced. Therefore, the control device 4 can change the exhaust pressure and the exhaust flow rate in the collective exhaust duct 62 by controlling the blower 66.
  • the collective exhaust schedule creation unit 89 of the control device 4 may create the collective exhaust schedule so as to perform at least one of adjusting the opening degree of the collective damper 63 and switching the blower 66.
  • the collective feedback control execution unit 91 of the control device 4 may control at least one of the collective damper 63 and the blower 66 based on the detection value of the collective flow meter 65.
  • the blower 66 blows air
  • the gas in the collective exhaust duct 62 is forcibly discharged by the blower 66, so that the exhaust pressure in the collective exhaust duct 62 increases (the absolute value of the exhaust pressure increases). Therefore, even when the suction force of the exhaust equipment is not sufficient, the exhaust pressure in the collective exhaust duct 62 can be kept constant by operating the blower 66. Thereby, the pressure fluctuation in each processing unit 3 can be suppressed or prevented.
  • the discharge unit 46 may include an exhaust pump (individual pump) that discharges the gas in the individual exhaust duct 51 to the collective exhaust duct 62 in addition to or in place of the individual damper 53.
  • the individual exhaust schedule creation unit 85 of the control device 4 may create an individual exhaust schedule so as to perform at least one of opening adjustment of the individual damper 53 and output adjustment of the exhaust pump.
  • the individual feedback execution unit 87 of the control device 4 may control at least one of the individual damper 53 and the exhaust pump based on the detection value of the individual flow meter 52.
  • the substrate holding unit may include a non-rotatable holding base that supports the lower surface of the substrate W instead of the spin base 10 that can rotate together with the substrate W.
  • the total value of the points is obtained based on a plurality of points assigned for each operation status of the processing unit 3, and the exhaust flow rate setting value of the individual exhaust flow rate adjustment unit is determined according to the size of the total value of the points.
  • the case where the individual exhaust schedule is created so as to be set to a value larger than the reference value has been described. That is, the case where the addition value added to the reference value is changed according to the size of the total score is described. However, when the set value changing condition 75 is satisfied, a fixed value may be added to the reference value without obtaining the total score.
  • the added value assigned to the group to which the total belongs is added to the reference value explained. That is, the case has been described in which the same added value is added to the reference value as long as the groups to which the groups belong are the same even if the total values of the points are different. However, the added value may be changed for each total value of points.
  • the substrate processing apparatus 1 is an apparatus for processing a disk-shaped substrate.
  • the substrate processing apparatus 1 may be an apparatus that processes a polygonal substrate such as a substrate for a liquid crystal display device.

Abstract

基板処理装置の制御装置は、処理スケジュールの各時間において設定値変更条件が成立するか否かを判断する。処理スケジュールのいずれかの時間において設定値変更条件が成立する場合、制御装置は、設定値変更条件が成立する時間における個別排気流量調整ユニットの排気流量設定値が基準値よりも大きな値に設定されるように、処理スケジュールの各時間における個別排気流量調整ユニットの排気流量設定値を規定する個別排気スケジュールを作成する。そして、制御装置は、処理スケジュールと並行して個別排気スケジュールを実行する。

Description

基板処理装置、基板処理装置の制御方法、および記録媒体
 本発明は、基板を処理する基板処理装置と、基板処理装置を制御する基板処理装置の制御方法と、基板処理装置の制御装置によって実行されるプログラムを記録したコンピュータ読取可能な記録媒体とに関する。
 処理対象となる基板には、たとえば、半導体ウエハ、液晶表示装置用基板、プラズマディスプレイ用基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。
 半導体装置や液晶表示装置などの製造工程では、半導体ウエハや液晶表示装置用ガラス基板などの基板を処理する基板処理装置が用いられる。
 特許文献1には、チャンバー本体内の圧力を計測する圧力計の圧力値を監視し、電空レギュレータを流通する流体の圧力を制御するフィードバック制御を行う制御部を備える基板処理装置が開示されている。
 特許文献2には、第1窒素濃度計および第2窒素濃度計の測定の結果に基づいて、濃度可変部における窒素ガスの溶解あるいは脱気を制御するフィードバック制御を行う制御部を備える基板処理装置が開示されている。
特開2000-252275号公報 特開2004-79990号公報
 基板の処理では排気流量などの流量を最適な値で安定させることが重要であるが、流量を高精度で安定させることは難しい。
 従来の基板処理装置は、流量を安定させるために、計測器などで装置の状態を計測し、フィードバック制御を行っている。しかし、流量に係るフィードバック制御は、流量が安定するまで時間がかかるといった問題がある。
 そこで、本発明の目的の一つは、処理ユニットから排出される排気の流量が安定するまでの時間を短縮することである。
 本発明の一実施形態は、複数枚の基板を一枚ずつ処理する処理ユニットと、前記処理ユニットから気体を排出する排気ユニットと、前記処理ユニットおよび排気ユニットを制御するコンピュータとしての制御装置と、を備える、基板処理装置を提供する。
 前記処理ユニットは、内部空間を有するチャンバーと、前記チャンバー内で基板を保持する基板保持ユニットと、前記基板保持ユニットに保持されている基板に処理流体を供給する処理流体供給ユニットと、互いに離れた位置である原点位置および動作位置の間で前記チャンバー内を移動可能な可動部材と、を含む。
 前記排気ユニットは、前記チャンバーから排出された気体を排気処理設備に向けて案内する個別排気ダクトと、前記排気処理設備に向かって前記個別排気ダクト内を流れる排気の流量を調整する個別排気流量調整ユニットと、を含む。
 前記制御装置は、基板を処理するときの前記処理ユニットの動作を時系列で規定する処理スケジュールを作成する処理スケジュール作成ステップと、前記処理スケジュール作成ステップで作成された前記処理スケジュールの各時間において、前記可動部材が前記原点位置以外の位置に位置している位置条件を含む設定値変更条件が成立するか否かを判断する設定値変更判断ステップと、前記処理スケジュールのいずれかの時間において前記設定値変更条件が成立する場合、前記設定値変更条件が成立する時間における前記個別排気流量調整ユニットの排気流量設定値が、前記可動部材が前記原点位置に位置しているときの設定値である基準値よりも大きな値に設定されるように、前記処理スケジュールの各時間における前記個別排気流量調整ユニットの排気流量設定値を規定する個別排気スケジュールを作成する個別排気スケジュール作成ステップと、前記処理スケジュールと並行して前記個別排気スケジュールを実行する個別排気スケジュール実行ステップと、を実行する。
 設定値変更条件が複数の条件(たとえば、位置条件と処理流体吐出中条件)を含む場合、「設定値変更条件が成立する」とは、「設定値変更条件に含まれる複数の条件の少なくとも一つが成立する」ことを意味する。
 処理流体供給ユニットによって基板に供給される処理流体は、処理液であってもよいし、処理ガスであってもよい。処理ガスは、処理剤の蒸気(液状または固体状の処理剤から発生した気体)であってもよいし、処理剤の蒸気またはミストに加えて、キャリアガス(たとえば、不活性ガス)を含む気体であってもよい。
 前記一実施形態に係る構成によれば、基板を処理するときの処理ユニットの動作を時系列で規定する処理スケジュールが作成される。この処理スケジュールを参照しながら、個別排気流量調整ユニットの排気流量設定値を規定する個別排気スケジュールが作成される。そして、処理スケジュールと並行して個別排気スケジュールが実行される。
 設定値変更条件は、可動部材が原点位置以外の位置に位置している位置条件を含む。処理スケジュールのいずれかの時間において、可動部材を原点位置以外の位置に配置するように計画されている場合、すなわち、設定値変更条件が成立する場合、設定値変更条件が成立する時間における個別排気流量調整ユニットの排気流量設定値は、可動部材が原点位置に位置しているときの設定値(基準値)よりも大きな値に設定されるように計画される。基板処理装置が複数の可動部材を備える場合、基準値は、全ての可動部材が原点位置に位置しているときの設定値である。
 可動部材が原点位置以外の位置に実際に位置しているとき、個別排気流量調整ユニットの排気流量設定値は、基準値よりも大きい値に設定される。したがって、チャンバー内の気体を個別排気ダクト内に排出する力(排気圧)が強くなる。言い換えると、大気圧よりも低い排気圧(負圧)の絶対値が大きくなる。そのため、処理ユニットの排気抵抗(圧力損失)が可動部材の位置に応じて増加したとしても、それに応じて排気圧が強くなるので、処理ユニットから排出される排気の流量の変動を抑えることができる。
 さらに、個別排気スケジュールは、処理スケジュールと並行して実行される。つまり、個別排気流量調整ユニットの排気流量設定値は、処理ユニットから排出される気体の流量が実際に変化した後に変更されるのではなく、流量の変化が発生する前に調整される。したがって、フィードバック制御が行われる場合よりも排気流量が安定するまでの時間を短縮できる。
 個別排気流量調整ユニットの排気流量設定値を規定する個別排気スケジュールは、処理スケジュールに基づいて作成される。同じレシピを実行する場合でも、排気流量に影響するパラメータは異なることがある。したがって、個々の処理スケジュールに基づいて個別排気スケジュールを作成することにより、いずれの基板の処理でも排気流量を最適化できる。
 前記一実施形態において、前記設定値変更条件は、前記処理流体供給ユニットが処理流体を吐出している処理流体吐出中条件をさらに含んでいてもよい。
 この構成によれば、処理流体を吐出するように計画されている場合にも、チャンバー内の気体を個別排気ダクト内に排出する力(排気圧)を強めるように計画される。
 処理流体が吐出されている場合(特に、処理液が吐出されている場合)、ミストが処理ユニット内に発生し易い。ミストが基板に付着すると、基板が汚染される場合がある。また、ミストが基板の汚染原因の一つであるパーティクルに変化し、パーティクルが処理ユニット内を浮遊する場合がある。したがって、処理流体が実際に吐出されているときに、排気圧を強くすることにより、ミストを処理ユニット内から効率的に排出でき、ミストの拡散範囲を狭めることができる。そのため、ミストやパーティクルの付着による基板の汚染を低減できる。
 前記一実施形態において、前記処理流体供給ユニットは、処理流体としての薬液を前記基板保持ユニットに保持されている基板に向けて吐出する薬液ノズルを含んでいてもよい。前記設定値変更条件は、前記薬液ノズルが薬液の吐出を開始する薬液吐出開始条件をさらに含んでいてもよい。
 この構成において、前記個別排気スケジュール作成ステップは、前記処理スケジュールのいずれかの時間において前記設定値変更条件が成立する場合、前記設定値変更条件が成立する時間における前記個別排気流量調整ユニットの排気流量設定値が前記基準値よりも大きな値に設定されると共に、前記薬液吐出開始条件が成立する時間よりも前から前記個別排気流量調整ユニットの排気流量設定値が前記基準値よりも大きな値に設定されるように、前記個別排気スケジュールを作成するステップを含んでいてもよい。
 この構成によれば、処理流体としての薬液を吐出するように計画されている場合にも、チャンバー内の気体を個別排気ダクト内に排出する力(排気圧)を強めるように計画される。薬液が吐出されている場合、薬液のミストが処理ユニット内に発生し易い。さらに、薬液のミストは、純水などのリンス液のミストよりも基板を汚染する可能性が高い。したがって、薬液が実際に吐出されているときに、排気圧を強くすることにより、薬液のミストを処理ユニット内から効率的に排出でき、ミストの拡散範囲を狭めることができる。そのため、ミストやパーティクルの付着による基板の汚染を低減できる。
 さらに、薬液吐出開始条件が成立する時間よりも前から、すなわち、薬液の吐出が開始される前から、チャンバー内の気体を個別排気ダクト内に排出する力(排気圧)を強めるように計画される。そして、薬液の吐出が継続している間も、排気圧が強くされた状態が維持されるように計画される。したがって、排気圧が強められた状態で薬液の吐出が開始されるので、薬液の吐出直後から薬液のミストを効率的に排出できる。これにより、チャンバー内における薬液のミストの残留量を低減でき、ミストやパーティクルの付着による基板の汚染を低減できる。
 前記の構成において、前記個別排気スケジュール作成ステップは、前記処理スケジュールのいずれかの時間において前記設定値変更条件が成立する場合、前記設定値変更条件が成立する時間における前記個別排気流量調整ユニットの排気流量設定値が前記基準値よりも大きな値に設定されると共に、前記薬液吐出開始条件が成立する時間よりも後まで前記個別排気流量調整ユニットの排気流量設定値が前記基準値よりも大きな値に設定されるように、前記個別排気スケジュールを作成するステップを含んでいてもよい。
 この構成によれば、薬液吐出終了条件が成立する時間よりも後、すなわち、薬液の吐出が停止された後も、チャンバー内の気体を個別排気ダクト内に排出する力(排気圧)を強めるように計画される。したがって、薬液の吐出停止後にチャンバー内を浮遊する薬液のミストを確実に排出できる。これにより、チャンバー内における薬液のミストの残留量を低減でき、ミストやパーティクルの付着による基板の汚染を低減できる。
 前記一実施形態において、前記基板保持ユニットは、前記チャンバー内で基板を保持しながら回転させるスピンチャックを含んでいてもよい。前記設定値変更条件は、基板が回転している基板回転条件をさらに含んでいてもよい。
 この構成によれば、スピンチャックが基板を回転させるように計画されている場合にも、チャンバー内の気体を個別排気ダクト内に排出する力(排気圧)を強めるように計画される。
 処理液が付着している基板が回転すると、基板から処理液が飛散するので、ミストが発生し易い。したがって、基板が実際に回転しているときに、排気圧を強くすることにより、ミストを処理ユニット内から効率的に排出でき、ミストの拡散範囲を狭めることができる。そのため、ミストやパーティクルの付着による基板の汚染を低減できる。
 前記一実施形態において、前記基板回転条件は、前記処理流体供給ユニットが処理流体(たとえば、処理液)を吐出しているときの基板の回転速度よりも大きい乾燥速度で、基板が回転している乾燥実行条件を含んでいてもよい。
 この構成によれば、基板が乾燥速度で回転しているときに、チャンバー内の気体を個別排気ダクト内に排出する力(排気圧)が強められる。
 乾燥速度は、処理流体供給ユニットが処理流体を吐出しているときの基板の回転速度よりも大きい回転速度である。基板の回転速度が増加すると、基板に付着している処理液に働く遠心力も増加するので、基板から飛散する処理液の量が増加する。したがって、基板が乾燥速度で回転しているときは、ミストが発生し易い。そのため、基板が乾燥速度で回転しているときに、排気圧を強めることにより、ミストを処理ユニット内から効率的に排出でき、ミストの拡散範囲を狭めることができる。
 前記一実施形態において、前記可動部材は、前記基板保持ユニットの上方の遮断板原点位置と前記遮断板原点位置と前記基板保持ユニットとの間の遮断板動作位置との間で、前記チャンバー内を移動可能な遮断板を含んでいてもよい。前記設定値変更条件は、前記遮断板が前記遮断板動作位置から前記遮断板原点位置に移動する遮断板上昇条件をさらに含んでいてもよい。
 この構成によれば、遮断板を上方に移動させるように計画されている場合にも、チャンバー内の気体を個別排気ダクト内に排出する力(排気圧)を強めるように計画される。
 遮断板が遮断板動作位置から遮断板原点位置に上昇すると、遮断板が基板から離れ、遮断板と基板との間隔が広がる。遮断板の上昇速度が大きいと、遮断板と基板との間の気圧が低下し、チャンバー内の雰囲気が遮断板と基板との間に吸い込まれる。そのため、基板の周囲を浮遊するミストやパーティクルが基板に付着するおそれがある。
 遮断板の上昇速度を低下させれば、負圧の発生による雰囲気の吸い込みが低減されると考えられる。しかしながら、遮断板の上昇速度が遅いと、基板の処理に要する時間が増加するので、基板処理装置のスループット(単位時間あたりの基板の処理枚数)が減少するおそれがある。
 遮断板と基板との間隔が広がるときに排気圧を強くすれば、基板の周囲の雰囲気が個別排気ダクトの方に強制的に吸い寄せられるので、遮断板と基板との間への雰囲気の進入が抑制される。したがって、遮断板の上昇速度を低下させずに、基板の周囲の雰囲気が基板に接触することを抑制または防止できる。そのため、スループットを維持しながら、基板の汚染を低減できる。
 前記一実施形態において、前記制御装置は、前記可動部材の位置ごとに割り振られた複数の点数と、前記処理流体供給ユニットからの処理流体の吐出状態ごとに割り振られた複数の点数と、を含むテーブルが記憶された記憶装置を含んでいてもよい。前記制御装置は、前記処理スケジュールのいずれかの時間において前記設定値変更条件が成立する場合に、前記処理スケジュールの各時間における点数の合計値を前記テーブルに基づいて求める合計値計算ステップをさらに実行してもよい。前記個別排気スケジュール作成ステップは、前記処理スケジュールのいずれかの時間において前記設定値変更条件が成立する場合、前記設定値変更条件が成立する時間における前記個別排気流量調整ユニットの排気流量設定値が、前記合計値の大きさに応じて前記基準値よりも大きな値に設定されるように、前記個別排気スケジュールを作成するステップを含んでいてもよい。
 この構成によれば、複数の点数を含むテーブルが制御装置の記憶装置に記憶されている。複数の点数は、処理ユニットの稼動状況ごとに割り振られている。具体的には、テーブルは、可動部材の原点位置および動作位置にそれぞれ割り振られた複数の点数と、処理流体の吐出中状態および吐出停止状態にそれぞれ割り振られた複数の点数と、を含む。
 処理スケジュールのいずれかの時間において設定値変更条件が成立する場合、処理スケジュールの各時間における点数の合計値が計算される。そして、処理スケジュールの各時間における個別排気流量調整ユニットの排気流量設定値は、点数の合計値の大きさに応じて基準値よりも大きな値に設定されるように計画される。したがって、チャンバー内の気体を個別排気ダクト内に排出する力(排気圧)は、処理ユニットの稼動状況に応じて調整される。そのため、チャンバー内の気流を理想的な状態に近づけることができる。
 前記一実施形態において、前記基板保持ユニットは、前記チャンバー内で基板を保持しながら回転させるスピンチャックを含んでいてもよい。前記テーブルは、基板の回転状態ごとに割り振られた複数の点数をさらに含んでいてもよい。
 この構成によれば、制御装置の記憶装置に記憶されたテーブルは、可動部材の位置ごとに割り振られた複数の点数と、処理流体の吐出状態ごとに割り振られた複数の点数と、に加えて、基板の回転中状態および回転停止状態にそれぞれ割り振られた複数の点数を含む。したがって、チャンバー内の気体を個別排気ダクト内に排出する力(排気圧)は、基板の回転状態をも考慮した大きさに調整される。そのため、チャンバー内の気流を理想的な状態に近づけることができる。
 前記一実施形態において、前記処理流体供給ユニットからの処理流体の吐出状態ごとに割り振られた前記複数の点数は、処理流体としてのリンス液が吐出されている状態に対して割り振られたリンス液の点数と、処理流体としての薬液が吐出されている状態に対して割り振られており、前記リンス液の点数よりも大きい薬液の点数と、を含んでいてもよい。
 この構成によれば、制御装置の記憶装置に記憶されたテーブルは、リンス液の吐出中状態に対して割り振られたリンス液の点数と、薬液の吐出中状態に対して割り振られた薬液の点数と、を含んでいる。薬液の点数は、リンス液の点数よりも大きい。したがって、処理ユニットの他の稼動状況が同じであれば、薬液が吐出されているときの点数の合計値は、リンス液が吐出されているときの点数の合計値よりも大きい。
 前述のように、処理スケジュールの各時間における個別排気流量調整ユニットの排気流量設定値は、点数の合計値の大きさに応じて基準値よりも大きな値に設定されるように計画される。点数の合計値が大きければ、チャンバー内の気体を個別排気ダクト内に排出する力(排気圧)が強いので、チャンバー内の気体が確実に排出される。
 薬液のミストは、純水などのリンス液のミストよりも基板を汚染する可能性が高い。したがって、薬液が実際に吐出されているときに、排気圧を強くすることにより、薬液のミストを処理ユニット内から効率的に排出でき、ミストの拡散範囲を狭めることができる。そのため、ミストやパーティクルの付着による基板の汚染を低減できる。
 前記一実施形態において、前記テーブルは、点数の合計値を、点数の合計値の大きさに応じて、大きさがそれぞれ異なる複数の加算値がそれぞれ割り振られた複数のグループに分類する一つ以上のしきい値を含んでいてもよい。前記制御装置は、前記合計値計算ステップで求められた点数の合計値が前記複数のグループのいずれに属するかを前記テーブルに基づいて求めるグループ判定ステップをさらに実行してもよい。前記個別排気スケジュール作成ステップは、前記処理スケジュールのいずれかの時間において前記設定値変更条件が成立する場合、前記設定値変更条件が成立する時間における前記個別排気流量調整ユニットの排気流量設定値が、前記基準値よりも、前記合計値計算ステップで求められた点数の合計値が属する前記グループに割り振られた前記加算値だけ大きくなるように、前記個別排気スケジュールを作成するステップを含んでいてもよい。
 この構成によれば、点数の合計値を複数のグループに分類する一つ以上のしきい値が、制御装置の記憶装置に記憶されたテーブルに含まれている。点数の合計値が複数のグループのいずれに属するかは、テーブルに基づいて求められる。
 処理スケジュールの各時間における点数の合計値が異なる場合でも、グループが共通であれば、このグループに割り振られた加算値が、個別排気流量調整ユニットの基準値に加えられる。言い換えると、点数の合計値が変わったとしても、合計値が属するグループが同じであれば、個別排気流量調整ユニットの排気流量設定値は変わらない。したがって、点数の合計値が変化するたびに排気の強さを変更する場合よりも、制御の複雑化を防止できる。
 前記一実施形態において、前記基板処理装置は、複数の前記処理ユニットを含んでいてもよい。前記排気ユニットは、前記複数の前記処理ユニットにそれぞれ対応しており、前記複数の前記処理ユニットの前記チャンバーから排出された気体を前記排気処理設備に向けて案内する複数の前記個別排気ダクトと、前記複数の前記個別排気ダクトにそれぞれ対応しており、前記排気処理設備に向かって前記複数の前記個別排気ダクト内を流れる排気の流量を調整する複数の前記個別排気流量調整ユニットと、前記複数の前記個別排気ダクトのそれぞれが接続された集合排気ダクトと、前記排気処理設備に向かって前記集合排気ダクト内を流れる排気の流量を調整する集合排気流量調整ユニットと、を含んでいてもよい。
 前記制御装置は、前記個別排気スケジュール作成ステップで作成された前記個別排気スケジュールの各時間において、前記複数の前記個別排気流量調整ユニットのいずれかの排気流量設定値が前記基準値よりも大きい元圧変更条件が成立するか否かを判断する元圧変更判断ステップと、前記個別排気スケジュールのいずれかの時間において前記元圧変更条件が成立する場合、前記元圧変更条件が成立する時間における前記集合排気流量調整ユニットの排気流量設定値が、各個別排気流量調整ユニットの排気流量設定値が前記基準値のときの設定値である元圧基準値よりも大きな値に設定されるように、前記個別排気スケジュールの各時間における前記集合排気流量調整ユニットの排気流量設定値を規定する集合排気スケジュールを作成する集合排気スケジュール作成ステップと、前記個別排気スケジュールと並行して前記集合排気スケジュールを実行する集合排気スケジュール実行ステップと、をさらに実行してもよい。
 この構成によれば、複数の処理ユニット内の気体が、それぞれ、複数の個別排気ダクトに排出される。各個別排気ダクト内を排気処理設備に向かって下流側に流れる排気は、集合排気ダクト内に排出される。排気処理設備に向かって集合排気ダクト内を流れる排気の流量は、集合排気流量調整ユニットによって調整される。
 集合排気流量調整ユニットの排気流量設定値を規定する集合排気スケジュールは、個別排気流量調整ユニットの排気流量設定値を規定する個別排気スケジュールを参照しながら作成される。そして、個別排気スケジュールと並行して集合排気スケジュールが実行される。
 個別排気スケジュールのいずれかの時間において、いずれかの個別排気流量調整ユニットの排気流量設定値が基準値よりも大きい元圧変更条件が成立する場合、元圧変更条件が成立する時間における集合排気流量調整ユニットの排気流量設定値は、各個別排気流量調整ユニットの排気流量設定値が基準値であるときの設定値(元圧基準値)よりも大きな値に設定されるように計画される。
 いずれかの個別排気流量調整ユニットの排気流量設定値が基準値よりも大きいと、集合排気ダクト内の排気圧が低下し、この排気圧の低下の影響が他の処理ユニットに及ぶ場合がある。したがって、集合排気流量調整ユニットの排気流量設定値を元圧基準値よりも大きくすることにより、他の処理ユニットから排出される排気の流量の減少を抑制または防止できる。これにより、他の処理ユニットでの圧力変動を抑制または防止できる。
 さらに、集合排気スケジュールは、個別排気スケジュールと並行して実行される。つまり、集合排気流量調整ユニットの排気流量設定値は、集合排気ダクト内を流れる排気の流量が実際に変化した後に変更されるのではなく、流量の変化が発生する前に調整される。したがって、フィードバック制御が行われる場合よりも排気流量が安定するまでの時間を短縮できる。
 前記一実施形態において、前記基板処理装置は、複数の前記処理ユニットを含んでいてもよい。前記排気ユニットは、前記複数の前記処理ユニットにそれぞれ対応しており、前記複数の前記処理ユニットの前記チャンバーから排出された気体を前記排気処理設備に向けて案内する複数の前記個別排気ダクトと、前記複数の前記個別排気ダクトにそれぞれ対応しており、前記排気処理設備に向かって前記複数の前記個別排気ダクト内を流れる排気の流量を調整する複数の前記個別排気流量調整ユニットと、前記複数の前記個別排気ダクトのそれぞれが接続された集合排気ダクトと、前記排気処理設備に向かって前記集合排気ダクト内を流れる排気の流量を調整する集合排気流量調整ユニットと、前記排気処理設備に向かって前記集合排気ダクト内を流れる排気の流量を検出する集合流量計と、を含んでいてもよい。前記制御装置は、前記集合流量計の検出値に基づいて求められた前記集合排気ダクト内の排気流量が、各個別排気流量調整ユニットの排気流量設定値が前記基準値のときの値である流量基準値に近づくように、前記集合排気流量調整ユニットを制御してもよい。
 この構成によれば、集合流量計の検出値に基づいて集合排気ダクト内の排気流量が求められる。集合排気ダクトは、複数の個別排気ダクトのそれぞれに接続されている。集合排気ダクト内の排気流量が変動すると、各個別排気ダクト内を流れる排気の流量も変動する。集合排気ダクト内の排気流量が変動すると、制御装置は、集合排気ダクト内の排気流量が流量基準値に近づくように、集合排気流量調整ユニットを制御するフィードバック制御を行う。これにより、各処理ユニットから排出される排気の流量の変化を低減でき、各処理ユニットでの圧力変動を抑制または防止できる。
 前記一実施形態において、前記集合排気流量調整ユニットは、前記集合排気ダクトを開閉する集合ダンパーと、前記排気処理設備に向かって流れる気流を前記集合排気ダクト内に形成するブロワと、の少なくとも一つを含んでいてもよい。
 この構成によれば、集合ダンパーとブロワとの少なくとも一つが、集合排気流量調整ユニットに設けられている。
 集合ダンパーが集合排気ダクトの流路面積を増加または減少させると、集合排気ダクト内を流れる排気の流量が増加または減少する。また、ブロワの送風により排気処理設備に向かって流れる気流が集合排気ダクト内に形成されると、集合排気ダクトからの気体の排出が促進されるので、集合排気ダクト内を流れる排気の流量が増加する。これにより、排気処理設備に向かって集合排気ダクト内を流れる排気の流量が調整される。
 さらに、ブロワが送風を行うと、集合排気ダクト内の気体がブロワによって強制的に排出されるので、集合排気ダクト内の排気圧が高まる(排気圧の絶対値が大きくなる)。したがって、排気設備の吸引力が十分でない場合でも、ブロワを作動させることにより、集合排気ダクト内の排気圧を一定の圧力に保つことができる。これにより、各処理ユニットでの圧力変動を抑制または防止できる。
 前記一実施形態において、前記可動部材は、前記個別排気ダクトに向かって前記チャンバーの内部を流れる気体の流路を前記チャンバー内に形成していてもよい。前記動作位置は、前記可動部材が前記原点位置に位置しているときよりも前記チャンバー内流路の圧力損失が大きい位置である。
 この構成によれば、個別排気ダクトに向かってチャンバーの内部を流れる気体の流路が、可動部材によってチャンバー内に形成されている。したがって、可動部材がチャンバー内を移動すると、流路の形状が変化するので、処理ユニットの排気抵抗が変化する。そのため、個別排気流量調整ユニットの排気流量設定値を、可動部材の位置に応じて変更することにより、処理ユニットから排出される気体の流量を安定させることができる。
 前記一実施形態において、前記可動部材は、前記基板保持ユニットの上方の遮断板原点位置と前記遮断板原点位置と前記基板保持ユニットとの間の遮断板動作位置との間で前記チャンバー内を移動可能な遮断板と、前記基板保持ユニットに保持されている基板よりも下方のガード原点位置と前記基板保持ユニットに保持されている基板の周囲に位置するガード動作位置との間で前記チャンバー内を移動可能なスプラッシュガードと、の少なくとも一方を含んでいてもよい。遮断板原点位置およびガード原点位置は、いずれも原点位置である。同様に、遮断板動作位置およびガード動作位置は、いずれも動作位置である。
 本発明の他の実施形態は、複数枚の基板を一枚ずつ処理する処理ユニットと、前記処理ユニット内の気体を排出する排気ユニットと、前記処理ユニットおよび排気ユニットを制御するコンピュータとしての制御装置と、を備える基板処理装置の前記制御装置によって実行される基板処理装置の制御方法を提供する。
 前記処理ユニットは、内部空間を有するチャンバーと、前記チャンバー内で基板を保持する基板保持ユニットと、前記基板保持ユニットに保持されている基板に処理流体を供給する処理流体供給ユニットと、互いに離れた位置である原点位置および動作位置の間で前記チャンバー内を移動可能な可動部材と、を含む。
 前記排気ユニットは、前記チャンバーから排出された気体を排気処理設備に向けて案内する個別排気ダクトと、前記排気処理設備に向かって前記個別排気ダクト内を流れる排気の流量を調整する個別排気流量調整ユニットと、を含む。
 前記基板処理装置の制御方法は、基板を処理するときの前記処理ユニットの動作を時系列で規定する処理スケジュールを作成する処理スケジュール作成ステップと、前記処理スケジュール作成ステップで作成された前記処理スケジュールの各時間において、前記可動部材が前記原点位置以外の位置に位置している位置条件を含む設定値変更条件が成立するか否かを判断する設定値変更判断ステップと、前記処理スケジュールのいずれかの時間において前記設定値変更条件が成立する場合、前記設定値変更条件が成立する時間における前記個別排気流量調整ユニットの排気流量設定値が、前記可動部材が前記原点位置に位置しているときの設定値である基準値よりも大きな値に設定されるように、前記処理スケジュールの各時間における前記個別排気流量調整ユニットの排気流量設定値を規定する個別排気スケジュールを作成する個別排気スケジュール作成ステップと、前記処理スケジュールと並行して前記個別排気スケジュールを実行する個別排気スケジュール実行ステップと、を含む。この方法によれば、前述の効果と同様の効果を奏することができる。
 本発明のさらに他の実施形態は、前記基板処理装置の制御方法に係る基板処理装置の制御装置によって実行されるコンピュータプログラムを記録したコンピュータ読取可能な記録媒体を提供する前記記録媒体は、コンピュータとしての前記制御装置に前記基板処理装置の制御方法を実行させるようにステップ群が組み込まれたコンピュータプログラムを記録している。
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
本発明の一実施形態に係る基板処理装置の模式的な平面図である。 処理ユニットを水平に見たときの処理ユニットの内部を示す模式図である。 処理ユニットおよび排出ユニットを示す模式図である。 基板処理装置の排気系統を示すブロック図である。 制御装置の物理的な構成を示すブロック図である。 制御装置の機能的な構成を示すブロック図である。 制御装置に記憶されている点数表を示す図である。 制御装置に記憶されている分類表を示す図である。 制御装置によって作成された処理スケジュールおよび個別排気スケジュールの一例を示す図である。 制御装置によって作成された集合排気スケジュールの一例を示す図である。 処理スケジュールの作成および実行の流れを示すフローチャートである。 処理スケジュールで計画された各工程が実行されるときの流れを示すフローチャートである。 個別排気スケジュールの作成および実行の流れを示すフローチャートである。 集合排気スケジュールの作成および実行の流れを示すフローチャートである。
 図1に示すように、基板処理装置1は、半導体ウエハなどの円板状の基板Wを一枚ずつ処理する枚葉式の装置である。基板処理装置1は、複数のキャリアCを保持する複数のロードポート2と、基板Wを処理する複数(たとえば12台)の処理ユニット3と、を備えている。基板処理装置1は、さらに、ロードポート2に対して基板Wの搬入および搬出を行う搬送ロボットとしてのインデクサロボットIRと、処理ユニット3に対して基板Wの搬入および搬出を行う搬送ロボットとしてのセンターロボットCRと、基板処理装置1を制御する制御装置4と、を備えている。
 図1に示すように、収容器保持ユニットとしてのロードポート2は、処理ユニット3から水平方向に離れた位置に配置されている。複数のロードポート2は、複数のキャリアCが水平な配列方向D1に配列されるように、複数のキャリアCを保持している。キャリアCは、複数枚の基板Wが水平な姿勢で間隔を空けて上下に積層されるように当該複数枚の基板Wを収容可能な収容器である。
 図1に示すように、インデクサロボットIRは、平面視U字状の2つのハンドHを備えている。2つのハンドHは、異なる高さに配置されている。各ハンドHは、基板Wを水平な姿勢で支持する。インデクサロボットIRは、水平方向および鉛直方向の少なくとも一方にハンドHを移動させる。さらに、インデクサロボットIRは、鉛直軸線まわりに回転(自転)することにより、ハンドHの向きを変更する。インデクサロボットIRは、受渡位置(図1に示す位置)を通る経路に沿って配列方向D1に移動する。受渡位置は、平面視で、インデクサロボットIRおよびセンターロボットCRが配列方向D1に直交する方向に対向する位置である。
 インデクサロボットIRは、水平方向および鉛直方向の少なくとも一方にハンドHを移動させることにより、センターロボットCRまたは任意のキャリアCにハンドHを対向させる。インデクサロボットIRは、キャリアCに基板Wを搬入する搬入動作と、キャリアCから基板Wを搬出する搬出動作とを行う。また、インデクサロボットIRは、センターロボットCRと協働して、インデクサロボットIRおよびセンターロボットCRの一方から他方に基板Wを移動させる受渡動作を受渡位置で行う。
 図1に示すように、センターロボットCRは、平面視U字状の2つのハンドHを備えている。2つのハンドHは、異なる高さに配置されている。各ハンドHは、基板Wを水平な姿勢で支持する。センターロボットCRは、水平方向および鉛直方向の少なくとも一方にハンドHを移動させる。さらに、センターロボットCRは、鉛直軸線まわりに回転(自転)することにより、ハンドHの向きを変更する。センターロボットCRは、平面視において複数の処理ユニット3に取り囲まれている。複数の処理ユニット3は、平面視においてセンターロボットCRを取り囲むように配置された4つの塔を形成している。各塔は、上下に積層された3台の処理ユニット3によって構成されている。
 センターロボットCRは、水平方向および鉛直方向の少なくとも一方にハンドHを移動させることにより、任意の処理ユニット3およびインデクサロボットIRにハンドHを対向させる。そして、センターロボットCRは、処理ユニット3に基板Wを搬入する搬入動作と、処理ユニット3から基板Wを搬出する搬出動作を行う。また、センターロボットCRは、インデクサロボットIRと協働して、インデクサロボットIRおよびセンターロボットCRの一方から他方に基板Wを移動させる受渡動作を行う。
 複数枚の基板Wを処理するとき、制御装置4は、インデクサロボットIR、センターロボットCR、および処理ユニット3等を制御することにより、以下の一連の動作を基板処理装置1に繰り返させる。
 具体的には、制御装置4は、ロードポート2に保持されているキャリアC内の未処理の基板WをインデクサロボットIRに搬出させる。その後、制御装置4は、未処理の基板WをインデクサロボットIRからセンターロボットCRに移動させる。続いて、制御装置4は、センターロボットCRに未処理の基板Wをいずれかの処理ユニット3に搬入させる。その後、制御装置4は、処理ユニット3に未処理の基板Wを処理させる。
 制御装置4は、処理ユニット3内の処理済みの基板WをセンターロボットCRに搬出させる。その後、制御装置4は、処理済みの基板WをセンターロボットCRからインデクサロボットIRに移動させる。続いて、制御装置4は、インデクサロボットIRに処理済みの基板WをいずれかのキャリアCに搬入させる。このようにして、ロードポート2に保持されているキャリアC内の未処理の基板Wが処理ユニット3で処理され、処理ユニット3で処理された基板Wが、ロードポート2に保持されているキャリアC内に収容される。
 図2に示すように、各処理ユニット3は、処理液を用いて複数枚の基板Wを一枚ずつ処理する枚葉式のユニットである。各処理ユニット3は、内部空間を有する箱形のチャンバー5と、チャンバー5内で一枚の基板Wを水平な姿勢で保持して、基板Wの中心を通る鉛直な回転軸線A1まわりに基板Wを回転させるスピンチャック8と、を備えている。各処理ユニット3は、さらに、スピンチャック8に保持されている基板Wに向けて処理液を吐出する複数のノズル(第1薬液ノズル12、第2薬液ノズル13、リンス液ノズル14)と、水平な姿勢でスピンチャック8の上方に配置された円板状の遮断板30と、スピンチャック8を取り囲む筒状の処理液捕獲部材15と、を備えている。遮断板30および処理液捕獲部材15は、いずれも、排気口としての排出口27に向かってチャンバー5の内部を流れる気体の流路をチャンバー5内に形成する可動部材の一例である。
 図2に示すように、チャンバー5は、スピンチャック8等を収容する箱形の隔壁6と、隔壁6の上部から隔壁6内にクリーンエアー(フィルターによってろ過された空気)を送る送風ユニットとしてのFFU7(ファン・フィルタ・ユニット7)と、を備えている。FFU7は、隔壁6の上方に配置されている。FFU7は、隔壁6の天井からチャンバー5内に一定の流量で下向きにクリーンエアーを送る。これにより、チャンバー5内を下方に流れるダウンフロー(下降流)が、FFU7によって形成される。基板Wは、チャンバー5内にダウンフローが形成されている状態で処理される。
 図2に示すように、スピンチャック8は、基板Wの周端面に押し付けられる複数のチャックピン9と、複数のチャックピン9と共に回転軸線Aまわりに回転可能な円板状のスピンベース10と、チャックピン9およびスピンベース10を回転軸線A1まわりに回転させるスピンモータ11とを含む。スピンチャック8は、複数のチャックピン9を備えるメカニカルチャックに限らず、非デバイス形成面である基板Wの裏面(下面)を吸着ベースとしてのスピンベース10の上面に吸着させることにより基板Wを水平に保持するバキューム式のチャックであってもよい。
 図2に示すように、複数のノズルは、基板Wに向けて第1薬液を吐出する第1薬液ノズル12と、基板Wに向けて第2薬液を吐出する第2薬液ノズル13と、基板Wに向けてリンス液を吐出するリンス液ノズル14とを含む。
 図2に示すように、処理ユニット3は、第1薬液ノズル12に接続された第1薬液配管37と、第1薬液配管37に介装された第1薬液バルブ38とを含む。同様に、処理ユニット3は、第2薬液ノズル13に接続された第2薬液配管40と、第2薬液配管40に介装された第2薬液バルブ41と、を含む。処理ユニット3は、さらに、リンス液ノズル14に接続されたリンス液配管43と、リンス液配管43に介装されたリンス液バルブ44とを含む。
 第1薬液バルブ38が開かれると、第1薬液供給源からの第1薬液が、第1薬液ノズル12から吐出される。同様に、第2薬液バルブ41が開かれると、第2薬液供給源からの第2薬液が、第2薬液ノズル13から吐出される。リンス液バルブ44が開かれると、リンス液供給源からのリンス液が、リンス液ノズル14から吐出される。
 第1薬液の一例は、硫酸、酢酸、硝酸、塩酸、フッ酸、アンモニア水、過酸化水素水、有機酸(たとえばクエン酸、蓚酸など)、有機アルカリ(たとえば、TMAH:テトラメチルアンモニウムハイドロオキサイドなど)、界面活性剤、腐食防止剤のうちの少なくとも1つを含む液である。
 同様に、第2薬液の一例は、硫酸、酢酸、硝酸、塩酸、フッ酸、アンモニア水、過酸化水素水、有機酸(たとえばクエン酸、蓚酸など)、有機アルカリ(たとえば、TMAH:テトラメチルアンモニウムハイドロオキサイドなど)、界面活性剤、腐食防止剤のうちの少なくとも1つを含む液である。第1薬液および第2薬液は、互いに異なる種類の薬液であってもよいし、同種の薬液であってもよい。
 リンス液の一例は、純水(脱イオン水:Deionized Water)である。リンス液は、純水に限らず、IPA(イソプロピルアルコール)、炭酸水、電解イオン水、水素水、オゾン水、および希釈濃度(たとえば、10~100ppm程度)の塩酸水のいずれかであってもよい。
 図2に示すように、処理ユニット3は、処理位置(図2に示す第1薬液ノズル12の位置)と退避位置との間で第1薬液ノズル12を移動させる第1薬液ノズル移動ユニット39と、処理位置と退避位置(図2に示す第2薬液ノズル13の位置)との間で第2薬液ノズル13を移動させる第2薬液ノズル移動ユニット42と、処理位置と退避位置との間でリンス液ノズル14を移動させるリンス液ノズル移動ユニット45と、を含む。処理位置は、ノズルから吐出された処理液が基板Wの上面に着液する位置であり、退避位置は、ノズルが基板Wの上方から退避した位置である。
 図2に示すように、遮断板30は、外径が基板Wの外径よりも大きい円板状である。遮断板30は、回転軸線A1に沿って上下方向に延びる支軸32によって水平な姿勢で支持されている。支軸32は、遮断板30の上方で水平に延びる支持アーム33に支持されている。遮断板30は、支軸32の下方に配置されている。遮断板30の中心軸線は、回転軸線A1上に配置されている。遮断板30の下面(対向面)は、基板Wの上面に対向している。遮断板30は、ガスバルブ35が介装されたガス配管36に接続されている。ガスバルブ35が開かれると、ガス配管36から遮断板30に供給された気体(たとえば、窒素ガス)が、遮断板30の下面中央部で開口する中心開口31から下方に吐出される。
 図3に示すように、処理ユニット3は、支持アーム33を鉛直方向に昇降させることにより、支持アーム33と共に、遮断板30および支軸32を昇降させる遮断板昇降ユニット34を含む。遮断板昇降ユニット34は、遮断板30の下面がスピンチャック8に保持されている基板Wの上面に近接する近接位置(図3に示す位置)と、近接位置の上方に設けられた退避位置(図2に示す位置)との間で、遮断板30を昇降させる。退避位置は、各ノズル12~14が基板Wと遮断板30との間に進入できるように遮断板30が基板Wから離れた原点位置である。近接位置は、各ノズル12~14が基板Wと遮断板30との間に進入できないように遮断板30が基板Wに近づいた動作位置である。遮断板昇降ユニット34は、近接位置から退避位置までの任意の位置(高さ)に遮断板30を位置させることができる。
 図3に示すように、処理液捕獲部材15は、基板Wから外方に飛散する処理液を受け止める筒状のスプラッシュガード16と、スプラッシュガード16によって案内される処理液を受け止める筒状のカップ22と、スプラッシュガード16を昇降させるガード昇降ユニット29と、を備えている。
 図3に示すように、スプラッシュガード16は、カップ22の上方に配置されている。スプラッシュガード16は、スピンチャック8を取り囲んでいる。スプラッシュガード16の内周面は、直径がスピンベース10の外径よりも大きいガード開口17を形成する上端を含む。スプラッシュガード16は、内向き(回転軸線A1に向かう方向)に開いたV字状の断面を有する環状の上捕獲部18と、上捕獲部18の下端からカップ22に向かって延びる筒状の上案内部19と、を備えている。スプラッシュガード16は、さらに、斜め下に内向きに開いた弓形の断面を有する環状の下捕獲部20と、カップ22の一部(後述するカップ22の内壁24)を収容する環状の収容部21と、を備えている。
 図3に示すように、カップ22は、スピンチャック8を取り囲む底壁23と、底壁23から上方に延びる筒状の内壁24と、内壁24の周囲で底壁23から上方に延びる筒状の外壁25と、を備えている。内壁24は、スピンチャック8を取り囲んでおり、外壁25は、内壁24を取り囲んでいる。カップ22は、底壁23の上面と内壁24の内周面とによって、スピンチャック8を取り囲む環状の排液溝26を形成している。カップ22は、さらに、底壁23の上面と内壁24の外周面と外壁25の内周面とによって、排液溝26を取り囲む環状の回収溝28を形成している。排液溝26および回収溝28は、いずれも上向きに開いている。スプラッシュガード16の上案内部19は、排液溝26の上方に配置されている。スプラッシュガード16の収容部21は、内壁24の上方に配置されている。スプラッシュガード16の下捕獲部20は、回収溝28の上方に配置されている。
 図3に示すように、ガード昇降ユニット29は、下位置(図3で実線で示す位置)、中間位置(図3で二点鎖線で示す位置)、および上位置(図2に示す位置)を含む複数の位置にスプラッシュガード16を移動させる。下位置は、スピンチャック8による基板Wの保持位置よりも下方にスプラッシュガード16が配置される受渡位置である。中間位置は、上捕獲部18がスピンチャック8に保持されている基板Wの周端面に水平に対向する排液位置である。上位置は、下捕獲部20がスピンチャック8に保持されている基板Wの周端面に水平に対向する回収位置である。下位置は、原点位置であり、中間位置および上位置は、動作位置である。中間位置は、下位置よりも上方の位置であり、上位置は、中間位置よりも上方の位置である。したがって、ガード開口17の高さは、スプラッシュガード16が下位置に位置しているときが最も低く、スプラッシュガード16が上位置に位置しているときが最も高い。
 センターロボットCRがスピンチャック8上に基板Wを置いたりスピンチャック8から基板Wを取ったりするとき、制御装置4は、ガード昇降ユニット29によってスプラッシュガード16を下位置に位置させる。基板Wから外方に飛散した処理液をスプラッシュガード16の上捕獲部18で受け止めるとき、制御装置4は、ガード昇降ユニット29によってスプラッシュガード16を排液位置としての中間位置に位置させる。また、基板Wから外方に飛散した処理液をスプラッシュガード16の下捕獲部20で受け止めるとき、制御装置4は、ガード昇降ユニット29によってスプラッシュガード16を回収位置としての上位置に位置させる。
 スプラッシュガード16が中間位置に位置しているとき、基板Wから排出された処理液は、スプラッシュガード16の上捕獲部18によって受け止められ、スプラッシュガード16の上案内部19を伝ってカップ22の排液溝26内に流下する。また、スプラッシュガード16が上位置に位置しているとき、基板Wから排出された処理液は、スプラッシュガード16の下捕獲部20によって受け止められ、スプラッシュガード16の下捕獲部20からカップ22の回収溝28内に流下する。これにより、スプラッシュガード16によって受け止められた処理液が、カップ22の排液溝26または回収溝28に案内される。
 図3に示すように、基板処理装置1は、複数の処理ユニット3から気体および液体を排出する排出する排出ユニット46を備えている。排出ユニット46は、排気ユニットの一例である。
 図3に示すように、排出ユニット46は、カップ22の回収溝28から排出される処理液を案内する回収配管47と、排液溝26内で開口する排出口27を通じてカップ22の排液溝26から排出される流体(気体および液体の少なくとも一方)を案内する排出配管48と、排出配管48によって処理液捕獲部材15から排出された、気体および液体の混合流体から液体を分離する気液分離ボックス49(ミストセパレータ)と、気液分離ボックス49内の液体を排出する排液配管50と、を備えている。
 図3に示すように、排出ユニット46は、気液分離ボックス49内の気体を排出する個別排気ダクト51と、個別排気ダクト51内を流れる排気の流量を検出する個別流量計52と、個別排気ダクト51内を流れる排気の流量を調整する個別ダンパー53と、個別ダンパー53を制御することにより個別ダンパー53の開度を調整する個別制御装置58と、を備えている。個別ダンパー53は、個別排気流量調整ユニットの一例である。個別ダンパー53の開度の設定値は、個別排気流量調整ユニットの排気流量設定値の一例である。
 個別制御装置58は、個別流量計52の検出値に基づいて個別排気ダクト51内を流れる排気の流量を演算する。個別流量計52は、たとえば、個別排気ダクト51内の排気圧(気圧)を検出する圧力計である。この場合、制御装置4は、個別排気ダクト51内の排気圧に応じて変化する個別流量計52の検出値に基づいて個別排気ダクト51内を流れる排気の流量を演算する。また、制御装置4は、個別ダンパー53の開度の設定値(目標値)を個別制御装置58に送る。個別制御装置58は、制御装置4から送られた設定値と個別ダンパー53の実際の開度との差が減少するように、個別ダンパー53の開度を増加または減少させる。
 図3に示すように、個別ダンパー53は、排気を案内する排気流路を形成するダンパー本体54と、ダンパー本体54によって形成された排気流路を開閉する弁体55と、弁体55を移動させることにより個別ダンパー53の開度(排気流路の流路面積)を変更するアクチュエータ56と、弁体55の位置を検出する位置センサー57と、を備えている。個別ダンパー53のダンパー本体54は、個別排気ダクト51に介装されている。
 図4に示すように、個別制御装置58は、位置センサー57の検出値に基づいて個別ダンパー53の開度を演算する開度演算部59と、個別ダンパー53のアクチュエータ56を駆動するダンパー駆動部60と、個別ダンパー53の実際の開度と開度の設定値との差を減少させる指令をダンパー駆動部60に与える開度制御部61と、を含む。
 個別ダンパー53の開度の設定値は、制御装置4から個別制御装置58の開度制御部61に送られる。開度制御部61は、開度演算部59によって演算された個別ダンパー53の実際の開度と設定値とを比較し、個別ダンパー53の実際の開度と設定値との差を減少させる指令をダンパー駆動部60に送る。ダンパー駆動部60は、開度制御部61からの指令に応じて、個別ダンパー53の開度が増加または減少するように、アクチュエータ56を駆動する。これにより、個別ダンパー53の実際の開度が設定値に近づけられる。
 個別ダンパー53の開度が増加または減少すると、個別ダンパー53の流路面積および排気抵抗(圧力損失)が変化する。したがって、個別排気ダクト51内の排気圧および排気流量が変化する。そのため、制御装置4は、開度の設定値を個別制御装置58に送ることにより、個別排気ダクト51内の実際の排気圧および排気流量を目標とする排気圧および排気流量に近づけることができる。
 図4に示すように、排出ユニット46は、複数の処理ユニット3にそれぞれ対応する複数の個別排気ダクト51を備えている。したがって、個別排気ダクト51は、処理ユニット3ごとに設けられている。同様に、個別ダンパー53、個別流量計52、個別制御装置58は、処理ユニット3ごとに設けられている。排出ユニット46は、各個別排気ダクト51に接続された集合排気ダクト62を備えている。集合排気ダクト62は、一定の排気圧で気体を吸引する排気処理設備に接続されている。排気処理設備は、基板処理装置1が設置される工場に設置されている。
 図4に示すように、排出ユニット46は、各個別排気ダクト51と集合排気ダクト62との接続位置よりも下流側で集合排気ダクト62内を流れる排気の流量を調整する集合ダンパー63と、集合ダンパー63を制御することにより集合排気ダクト62から排出される排気の流量を調整する集合制御装置64と、集合排気ダクト62内を流れる排気の流量を検出する集合流量計65と、を備えている。集合ダンパー63は、集合排気流量調整ユニットの一例である。集合ダンパー63の開度の設定値は、集合排気流量調整ユニットの排気流量設定値の一例である。
 集合流量計65は、たとえば、集合排気ダクト62内の2つの位置の排気圧(圧力)を検出する差圧流量計である。この場合、図4に示すように、集合流量計65は、各個別排気ダクト51と集合排気ダクト62との接続位置と集合ダンパー63との間で排気圧(個別排気ダクト51内の気圧)を検出する第1集合流量計65aと、集合ダンパー63よりも下流側で排気圧を検出する第2集合流量計65bと、を含む。集合流量計65は、差圧流量計に限らず、熱式質量流量計、渦流量計、超音波流量計などの他の形式の流量計であってもよい。
 制御装置4は、第1集合流量計65aの検出値と第2集合流量計65bの検出値とに基づいて、個別排気ダクト51内における集合ダンパー63の上流位置および下流位置間の圧力差(差圧)を演算する。また、制御装置4は、集合ダンパー63の開度の設定値(目標値)を集合制御装置64に送る。集合制御装置64は、制御装置4から送られた設定値と集合ダンパー63の実際の開度との差が減少するように、集合ダンパー63の開度を増加または減少させる。
 集合ダンパー63は、個別ダンパー53と同様の構成を備えている。具体的には、集合ダンパー63は、排気を案内する排気流路を形成するダンパー本体54と、ダンパー本体54によって形成された排気流路を開閉する弁体55と、弁体55を移動させることにより集合ダンパー63の開度(排気流路の流路面積)を変更するアクチュエータ56と、弁体55の位置を検出する位置センサー57と、を備えている(図3参照)。集合ダンパー63のダンパー本体54は、集合排気ダクト62に介装されている。
 図4に示すように、集合制御装置64は、位置センサー57の検出値に基づいて集合ダンパー63の開度を演算する開度演算部59と、集合ダンパー63のアクチュエータ56を駆動するダンパー駆動部60と、集合ダンパー63の実際の開度と開度の設定値との差を減少させる指令をダンパー駆動部60に与える開度制御部61と、を含む。
 個別ダンパー53の開度の設定値は、制御装置4から集合制御装置64の開度制御部61に送られる。開度制御部61は、開度演算部59によって演算された集合ダンパー63の実際の開度と設定値とを比較し、集合ダンパー63の実際の開度と設定値との差を減少させる指令をダンパー駆動部60に送る。ダンパー駆動部60は、開度制御部61からの指令に応じて、集合ダンパー63の開度が増加または減少するように、アクチュエータ56を駆動する。これにより、集合ダンパー63の実際の開度が設定値に近づけられる。
 集合ダンパー63の開度が増加または減少すると、集合ダンパー63の流路面積および排気抵抗(圧力損失)が変化する。したがって、集合排気ダクト62内の排気圧および排気流量が変化する。そのため、制御装置4は、開度の設定値を集合制御装置64に送ることにより、集合排気ダクト62内の実際の排気圧および排気流量を目標とする排気圧および排気流量に近づけることができる。
 図5に示すように、制御装置4は、コンピュータ本体67と、コンピュータ本体67に接続された周辺装置68とを含む。コンピュータ本体67は、各種の命令を実行するCPU69(central processing unit:中央処理装置)と、情報を記憶する主記憶装置70とを含む。周辺装置68は、プログラム等の情報を記憶する補助記憶装置71と、リムーバブルメディアMから情報を読み取る読取装置72と、ホストコンピュータHC等の外部装置と通信する通信装置73と、を含む。
 図5に示すように、コンピュータ本体67は、補助記憶装置71、読取装置72、および通信装置73のそれぞれに接続されている。コンピュータ本体67は、さらに、インデクサロボットIRや処理ユニット3等の各装置に接続されている。コンピュータ本体67は、補助記憶装置71等のそれぞれと情報のやり取りを行う。CPU69は、補助記憶装置71に記憶されているプログラムPや、読取装置72によってリムーバブルメディアMから読み取られたプログラムPを実行する。補助記憶装置71内のプログラムは、制御装置4に予めインストールされたものであってもよいし、読取装置72を通じてリムーバブルメディアMから補助記憶装置71に送られたものであってもよいし、通信装置73を通じて外部装置から補助記憶装置71に送られたものであってもよい。
 補助記憶装置71は、電力が供給されていなくても記憶を保持する不揮発性メモリーである。補助記憶装置71は、たとえば、ハードディスクドライブ等の磁気記憶装置である。補助記憶装置71は、磁気記憶装置以外の不揮発性メモリーであってもよい。図5に示すように、レシピ74、設定値変更条件75、元圧変更条件76、およびテーブル77は、補助記憶装置71に格納されている。テーブル77は、点数表78および分類表79を含む。
 リムーバブルメディアMは、電力が供給されていなくても記憶を保持する不揮発性メモリーである。リムーバブルメディアMは、たとえば、コンパクトディスクなどの光ディスクまたはメモリーカードなどの半導体メモリーである。リムーバブルメディアMは、光ディスクおよび半導体メモリー以外の不揮発性メモリーであってもよい。リムーバブルメディアMは、プログラムPが記録されたコンピュータ読取可能な記録媒体の一例である。
 図5に示すように、ホストコンピュータHCは、制御装置4と通信を行う。ホストコンピュータHCは、処理すべき基板Wを収容したキャリアC(出発位置)と、処理ユニット3で処理された基板Wを収容すべきキャリアC(目的位置)とを、基板Wごとに制御装置4に指定する。ホストコンピュータHCは、さらに、基板Wに対して行われる一連の工程を示すレシピ74の識別情報を基板Wごとに制御装置4に指定する。
 図5に示すように、制御装置4は、複数種類のレシピ74を補助記憶装置71に記憶している。レシピ74は、レシピ識別情報、基板処理条件、および基板処理手順を含む。コンピュータ本体67は、ホストコンピュータHCによって指定されたレシピ74を補助記憶装置71から読み込む。そして、コンピュータ本体67は、指定されたレシピ74に従って当該基板Wを処理ユニット3で処理する処理スケジュールを作成する。その後、コンピュータ本体67は、インデクサロボットIR、センターロボットCR、および処理ユニット3等の基板処理装置1の制御対象(リソース)に処理スケジュールを実行させる。
 図6に示すように、制御装置4は、処理スケジュール作成部80と、処理スケジュール実行部81と、を含む。処理スケジュール作成部80および処理スケジュール実行部81は、制御装置4にインストールされたプログラムをCPU69が実行することにより実現される機能ブロックである。
 図11に示すように、処理スケジュール作成部80は、基板Wを処理するときの処理ユニット3の動作を時系列で規定する処理スケジュールを作成する(ステップS11)。処理スケジュール実行部81は、処理スケジュールに従って基板処理装置1のリソースを制御することにより、基板処理装置1のリソースに処理スケジュールを実行させる(ステップS12)
 図9は、処理スケジュール作成部80によって作成された処理スケジュールの一例を示している。以下では、図9および図12を参照する。図9の上部に示すS21~S28は、図12に示す各ステップの番号を表している。
 基板Wが処理ユニット3で処理されるときには、チャンバー5内に基板Wを搬入する搬入工程(ステップS21)が行われる。
 具体的には、制御装置4は、遮断板30が退避位置に位置しており、スプラッシュガード16が下位置に位置している状態で、基板Wを保持しているセンターロボットCRのハンドHをチャンバー5内に進入させる。そして、制御装置4は、センターロボットCRに基板Wを複数のチャックピン9上に載置させる。その後、制御装置4は、センターロボットCRのハンドHをチャンバー5内から退避させると共に、各チャックピン9を開位置から閉位置に移動させる。これにより、基板Wがスピンチャック8に保持される。その後、制御装置4は、スピンモータ11を制御することにより、基板Wの回転を開始させる。これにより、基板Wが液処理速度で回転軸線A1まわりに回転する。
 次に、リンス液の一例である純水を基板Wに供給する第1リンス液供給工程(ステップS22)が行われる。
 具体的には、制御装置4は、リンス液ノズル移動ユニット45を制御することにより、リンス液ノズル14を退避位置から処理位置に移動させる。その後、制御装置4は、リンス液バルブ44を開いて、スプラッシュガード16が下位置に位置している状態で、基板Wの上面中央部に向けて純水をリンス液ノズル14に吐出させる。これにより、基板Wの上面全域が純水の液膜で覆われる。リンス液バルブ44が開かれてから所定時間が経過すると、制御装置4は、リンス液バルブ44を閉じて、リンス液ノズル14からの純水の吐出を停止させる。その後、制御装置4は、リンス液ノズル移動ユニット45を制御することにより、リンス液ノズル14を基板Wの上方から退避させる。
 次に、第1薬液を基板Wに供給する第1薬液供給工程(ステップS23)が行われる。
 具体的には、制御装置4は、第1薬液ノズル移動ユニット39を制御することにより、第1薬液ノズル12を退避位置から処理位置に移動させる。制御装置4は、さらに、ガード昇降ユニット29を制御することにより、スプラッシュガード16を下位置から中間位置に移動させる。この状態で、制御装置4は、第1薬液バルブ38を開いて、基板Wの上面中央部に向けて第1薬液を第1薬液ノズル12に吐出させる。これにより、基板W上の純水が第1薬液に置換され、基板Wの上面全域が第1薬液の液膜で覆われる。第1薬液バルブ38が開かれてから所定時間が経過すると、制御装置4は、第1薬液バルブ38を閉じて、第1薬液ノズル12からの第1薬液の吐出を停止させる。その後、制御装置4は、第1薬液ノズル移動ユニット39を制御することにより、第1薬液ノズル12を基板Wの上方から退避させる。
 次に、リンス液の一例である純水を基板Wに供給する第2リンス液供給工程(ステップS24)が行われる。
 具体的には、制御装置4は、リンス液ノズル移動ユニット45を制御することにより、リンス液ノズル14を退避位置から処理位置に移動させる。その後、制御装置4は、リンス液バルブ44を開いて、スプラッシュガード16が中間位置に位置している状態で、基板Wの上面中央部に向けて純水をリンス液ノズル14に吐出させる。これにより、基板W上の第1薬液が純水で洗い流され、基板Wの上面全域が純水の液膜で覆われる。リンス液バルブ44が開かれてから所定時間が経過すると、制御装置4は、リンス液バルブ44を閉じて、リンス液ノズル14からの純水の吐出を停止させる。その後、制御装置4は、リンス液ノズル移動ユニット45を制御することにより、リンス液ノズル14を基板Wの上方から退避させる。
 次に、第2薬液を基板Wに供給する第2薬液供給工程(ステップS25)が行われる。
 具体的には、制御装置4は、第2薬液ノズル移動ユニット42を制御することにより、第2薬液ノズル13を退避位置から処理位置に移動させる。制御装置4は、さらに、ガード昇降ユニット29を制御することにより、スプラッシュガード16を中間位置から上位置に移動させる。この状態で、制御装置4は、第2薬液バルブ41を開いて、基板Wの上面中央部に向けて第2薬液を第2薬液ノズル13に吐出させる。これにより、基板W上の純水が第2薬液に置換され、基板Wの上面全域が第2薬液の液膜で覆われる。第2薬液バルブ41が開かれてから所定時間が経過すると、制御装置4は、第2薬液バルブ41を閉じて、第2薬液ノズル13からの第2薬液の吐出を停止させる。その後、制御装置4は、第2薬液ノズル移動ユニット42を制御することにより、第2薬液ノズル13を基板Wの上方から退避させる。
 次に、リンス液の一例である純水を基板Wに供給する最終リンス液供給工程としての第3リンス液供給工程(ステップS26)が行われる。
 具体的には、制御装置4は、リンス液ノズル移動ユニット45を制御することにより、リンス液ノズル14を退避位置から処理位置に移動させる。その後、制御装置4は、リンス液バルブ44を開いて、スプラッシュガード16が上位置に位置している状態で、基板Wの上面中央部に向けて純水をリンス液ノズル14に吐出させる。これにより、基板W上の第2薬液が純水で洗い流され、基板Wの上面全域が純水の液膜で覆われる。制御装置4は、ガード昇降ユニット29を制御することにより、リンス液ノズル14が純水を吐出している状態で、スプラッシュガード16を上位置から下位置に移動させる。リンス液バルブ44が開かれてから所定時間が経過すると、制御装置4は、リンス液バルブ44を閉じて、リンス液ノズル14からの純水の吐出を停止させる。その後、制御装置4は、リンス液ノズル移動ユニット45を制御することにより、リンス液ノズル14を基板Wの上方から退避させる。
 次に、基板Wを乾燥させる乾燥工程(ステップS27)が行われる。
 具体的には、制御装置4は、遮断板昇降ユニット34を制御することにより、遮断板30を退避位置から近接位置に移動させる。制御装置4は、さらに、ガスバルブ35を開いて、遮断板30の下面中央部で開口する中心開口31から窒素ガスを吐出させる。その後、制御装置4は、スピンモータ11を制御することにより、第1リンス液供給工程(ステップS22)から第3リンス液供給工程(ステップS26)までの基板Wの回転速度(液処理速度)よりも大きい乾燥速度(たとえば数千rpm)まで、基板Wの回転を加速させる。これにより、遮断板30が近接位置に位置しており、スプラッシュガード16が下位置に位置している状態で、基板Wが乾燥速度で回転する。
 遮断板30が基板Wに近づいている状態で、遮断板30と基板Wとの間の空間に窒素ガスが供給されることにより、遮断板30と基板Wとの間の雰囲気が、遮断板30と基板Wとの間から押し出される。これにより、遮断板30と基板Wとの間の空間が窒素ガスで満たされる。また、基板Wが乾燥速度で回転することにより、大きな遠心力が基板W上の液体に加わり、基板Wに付着している液体が基板Wの周囲に振り切られる。これにより、基板Wから液体が除去され、基板Wが窒素ガス雰囲気中で乾燥する。そして、基板Wの高速回転が開始されてから所定時間が経過すると、制御装置4は、スピンモータ11を制御することにより基板Wの回転速度を低下させると共に、ガスバルブ35を閉じて遮断板30からの窒素ガスの吐出を停止させる。
 次に、基板Wをチャンバー5内から搬出する搬出工程(ステップS28)が行われる。
 具体的には、制御装置4は、遮断板昇降ユニット34を制御することにより、遮断板30を近接位置から退避位置に移動させる(遮断板30の上昇)。その後、制御装置4は、スピンモータ11を制御することにより、スピンチャック8による基板Wの回転を停止させる。制御装置4は、さらに、各チャックピン9を閉位置から開位置に移動させて、スピンチャック8による基板Wの把持を解除させる。これにより、スピンチャック8による基板Wの保持が解除される。この状態で、制御装置4は、センターロボットCRのハンドHをチャンバー5内に進入させる。そして、制御装置4は、センターロボットCRのハンドHにスピンチャック8上の基板Wを保持させる。その後、制御装置4は、センターロボットCRのハンドHをチャンバー5内から退避させる。これにより、処理済みの基板Wがチャンバー5から搬出される。
 このようにして、複数の基板処理工程(処理液供給工程や乾燥工程)が、レシピ74で指定された基板処理条件で、かつレシピ74で指定された基板処理手順で実行される。
 図6に示すように、制御装置4は、設定値変更判断部82と、合計値計算部83と、グループ判定部84と、個別排気スケジュール作成部85と、個別排気スケジュール実行部86と、を含む。制御装置4は、さらに、設定値変更条件75およびテーブル77を含む。設定値変更判断部82、合計値計算部83、グループ判定部84、個別排気スケジュール作成部85、および個別排気スケジュール実行部86は、制御装置4にインストールされたプログラムをCPU69が実行することにより実現される機能ブロックである。
 図13に示すように、設定値変更判断部82は、処理スケジュール作成部80によって処理スケジュールが作成された後に、後述する設定値変更条件75が処理スケジュールのいずれかの時間において成立するか否かを判断する(ステップS31)。処理スケジュールのいずれかの時間において設定値変更条件75が成立する場合(ステップS31でYesの場合)、合計値計算部83は、処理スケジュールの各時間における点数の合計値をテーブル77に基づいて求める(ステップS32)。グループ判定部84は、合計値計算部83で求められた点数の合計値が複数のグループのいずれに属するかをテーブル77に基づいて求める(ステップS33)。
 図13に示すように、個別排気スケジュール作成部85は、処理スケジュールの各時間における個別排気流量調整ユニットの排気流量設定値(個別ダンパー53の開度の設定値)を規定する個別排気スケジュールを作成する(ステップS34)。個別排気スケジュール実行部86は、個別排気スケジュールに従って個別ダンパー53を制御することにより、処理スケジュールと並行して個別ダンパー53に個別排気スケジュールを実行させる(ステップS35)。
 このように、設定値変更判断部82は、処理スケジュールの各時間において設定値変更条件75が成立するか否かを判断する。遮断板30および処理液捕獲部材15は、チャンバー5内を移動可能な可動部材の一例である。設定値変更条件75は、可動部材が原点位置以外の位置に位置している位置条件を含む。
 また、第1薬液ノズル12、第2薬液ノズル13、およびリンス液ノズル14のそれぞれは、処理流体を基板Wに供給する処理流体供給ユニットの一例である。設定値変更条件75は、ノズル12~14の少なくとも一つが処理流体を吐出している処理流体吐出中条件と、第1薬液ノズル12および第2薬液ノズル13の少なくとも一方が薬液の吐出を開始する薬液吐出開始条件と、第1薬液ノズル12および第2薬液ノズル13の少なくとも一方が薬液の吐出を終了する薬液吐出終了条件と、をさらに含む。
 設定値変更条件75は、さらに、基板Wが回転している基板回転条件と、遮断板30が動作位置としての近接位置から原点位置としての退避位置に移動する遮断板上昇条件と、を含む。基板回転条件は、基板Wが液処理速度で回転している液処理実行条件と、基板Wが乾燥速度で回転している乾燥実行条件と、を含む。
 また、合計値計算部83は、処理スケジュールの各時間における点数の合計値を点数表78に基づいて求める。図7は、処理ユニット3の稼動状況ごとに割り振られた複数の点数が記述された点数表78の一例を示している。
 図7において上から順に示すように、点数表78は、可動部材の位置ごとに割り振られた複数の点数と、第1薬液ノズル12、第2薬液ノズル13、およびリンス液ノズル14からの処理流体の吐出状態ごとに割り振られた複数の点数と、基板Wの回転状態ごとに割り振られた複数の点数と、を含む。
 図7に示すように、遮断板30の退避位置は0点に、遮断板30の近接位置は2点に、それぞれ割り振られている。スプラッシュガード16の下位置は0点に、スプラッシュガード16の中間位置は1点に、スプラッシュガード16の上位置は2点に、それぞれ割り振られている。薬液の吐出中状態は3点に、薬液の吐出停止状態は0点に、それぞれ割り振られている。リンス液の吐出中状態は1点に、リンス液の吐出停止状態は0点に、それぞれ割り振られている。基板Wの回転停止状態は0点に、液処理速度で基板Wが回転している液処理実行状態は1点に、乾燥速度で基板Wが回転している基板Wの乾燥実行状態は2点に割り振られている。
 また、グループ判定部84は、合計値計算部83で求められた点数の合計値が複数のグループのいずれに属するかを分類表79に基づいて求める。図8は、合計値計算部83によって求められた点数の合計値をその大きさに応じて3つのグループに分類する分類表79の一例を示している。
 図8に示すように、分類表79は、点数の合計値をその大きさに応じて3つのグループに分類する2つのしきい値を含む。図8は、2点と5点とが合計値のしきい値に設定されている例を示している。点数の合計値が0点~1点のグループは、弱排気グループであり、点数の合計値が2点~4点のグループは、中排気グループであり、点数の合計値が5点以上のグループは、強排気グループである。
 図8に示すように、点数の合計値が0点~1点の場合、すなわち、弱排気条件が成立する場合、個別ダンパー53の開度の設定値は、弱設定値(基準値)に設定される。つまり、弱排気条件が成立する場合、加算値は0である。
 図8に示すように、点数の合計値が2点~4点の場合、すなわち、中排気条件が成立する場合、個別ダンパー53の開度の設定値は、基準値よりも大きい中設定値に設定される。したがって、中排気条件が成立する場合(点数の合計値が2点~4点の場合)、個別ダンパー53の開度の設定値は、弱設定値(基準値)に中加算値が加算された値に設定される。
 図8に示すように、点数の合計値が5点以上の場合、すなわち、強排気条件が成立する場合、個別ダンパー53の開度の設定値は、中設定値よりも大きい強設定値に設定される。したがって、強排気条件が成立する場合(点数の合計値が5点以上の場合)、個別ダンパー53の開度の設定値は、弱設定値(基準値)に強加算値が加算された値に設定される。強加算値は、中加算値よりも大きい値である。
 個別ダンパー53の開度の設定値は、点数の合計値が属するグループに応じて調整される。強排気グループは、個別ダンパー53の開度の設定値が3つのグループのうちで最も大きいグループであり、弱排気グループは、個別ダンパー53の開度の設定値が3つのグループのうちで最も小さいグループである。
 処理スケジュールのある時間における点数の合計値が、たとえば3点の場合、図8に示すように、グループ判定部84は、点数の合計値が中排気グループに属すると判定する。個別排気スケジュール作成部85は、この時間における個別ダンパー53の開度の設定値が中設定値に設定されるように、個別排気スケジュールを作成する。
 また、点数の合計値が3点から4点に変化した場合も、図8に示すように、グループ判定部84は、点数の合計値が中排気グループに属すると判定する。この場合、点数の合計値が変化しているものの、点数の合計値が属するグループが変化していないので(中排気グループのままなので)、個別排気スケジュール作成部85は、個別ダンパー53の開度の設定値が中設定値に設定されるように、個別排気スケジュールを作成する。
 図9は、処理スケジュールの一例に加えて、個別排気スケジュール作成部85によって作成された個別排気スケジュールの一例を示している。
 予定時刻T1では、遮断板30およびスプラッシュガード16をそれぞれ退避位置および下位置に位置させるように計画されており、可動部材が原点位置以外の位置に位置していることを要求する位置条件が成立していない。しかし、予定時刻T1では、液処理速度で基板Wを回転させるように計画されており、基板回転条件が成立する。したがって、予定時刻T1では設定値変更条件75が成立している。
 予定時刻T0から予定時刻T1までの期間は、点数の合計値が2未満であり、点数の合計値が弱排気グループに属しているので、この期間の個別ダンパー53の開度が弱設定値(基準値。図中の「A」)に設定されるように計画される。
 予定時刻T2では、液処理速度で基板Wを回転させると共に、純水を吐出させるように計画されている。したがって、予定時刻T2では、基板回転条件(液処理実行条件)と処理流体吐出中条件とが成立している。
 予定時刻T1から予定時刻T2までの期間は、点数の合計値が2点であり、点数の合計値が中排気グループに属しているので、この期間の個別ダンパー53の開度が中設定値(図中の「B」)に設定されるように計画される。
 予定時刻T2から予定時刻T3までの期間は、第1薬液の吐出による加算を除けば、点数の合計値が5点未満(2点)であり、本来であれば、点数の合計値が中排気グループに分類される。しかし、予定時刻T3に第1薬液の吐出が開始されるので(薬液吐出条件の成立)、予定時刻T2から予定時刻T3までの期間も第1薬液を吐出するとみなして、つまり、この期間では第1薬液の吐出が計画されていないが、図9に太線で示すように第1薬液の吐出を計画しているとみなして、第1薬液の吐出中状態に割り振られた3点が加算される。そのため、この期間の点数の合計値が強排気グループに属するとみなされ、個別ダンパー53の開度が強設定値(図中の「C」)に設定されるように計画される。
 予定時刻T3から予定時刻T4までの期間では、液処理速度で基板Wを回転させると共に、第1薬液を吐出させるように計画されている。したがって、この期間では、基板回転条件と処理流体吐出中条件とが成立している。さらに、この期間では、スプラッシュガード16を中間位置に位置させるように計画されている。したがって、この期間では、スプラッシュガード16に係る位置条件も成立している。この期間の点数の合計値は5点以上であるので、個別ダンパー53の開度が強設定値に設定されるように計画される。
 予定時刻T4から予定時刻T5までの期間は、予定時刻T2から予定時刻T3までの期間と同様に、第1薬液の吐出による加算を除けば、点数の合計値が2点~4点の範囲内(3点)であり、本来であれば、点数の合計値が中排気グループに分類される。しかし、予定時刻T4に第1薬液の吐出が停止されるので(薬液吐出終了条件の成立)、予定時刻T4から予定時刻T5までの期間も第1薬液を吐出するとみなして、第1薬液の吐出中状態に割り振られた3点が加算される。そのため、この期間の点数の合計値が強排気グループに属するとみなされ、個別ダンパー53の開度が強設定値に設定されるように計画される。
 予定時刻T5から予定時刻T6までの期間と、予定時刻T7から予定時刻T8までの期間とについても、前述の第1薬液の吐出開始および吐出終了と同様に、第2薬液が吐出されるとみなして、第2薬液の吐出中状態に割り振られた3点が加算される。そのため、これらの期間の点数の合計値は強排気グループに属するとみなされ、個別ダンパー53の開度が強設定値に設定されるように計画される。
 予定時刻T6から予定時刻T7までの期間では、予定時刻T3から予定時刻T4までの期間と同様に、基板回転条件(液処理実行条件)と処理流体吐出中条件と位置条件とが成立している。予定時刻T3から予定時刻T4までの期間では、スプラッシュガード16を中間位置に位置させるように計画されているのに対し、予定時刻T6から予定時刻T7までの期間では、スプラッシュガード16を上位置に位置させるように計画されている。
 スプラッシュガード16の上位置は、スプラッシュガード16の中間位置よりも大きい点数が割り振られている。したがって、予定時刻T6から予定時刻T7までの期間の点数の合計値(6点)は、予定時刻T3から予定時刻T4までの期間の点数の合計値(5点)よりも大きい。しかしながら、いずれの期間の合計値も強排気グループに属しているので、個別ダンパー53の開度が強設定値に設定されるように計画される。
 予定時刻T9から予定時刻T10までの期間では、乾燥速度で基板Wを回転させる計画されている。したがって、この期間では、基板回転条件(乾燥実行条件)が成立している。さらに、この期間では、遮断板30を近接位置に位置させるように計画されている。したがって、この期間では、遮断板30に係る位置条件も成立している。この期間の点数の合計値は2点~4点の範囲内(4点)である。したがって、この期間の個別ダンパー53の開度が中設定値に設定されるように計画される。
 予定時刻T10から予定時刻T11までの期間では、遮断板30による加算を除けば、点数の合計値が0点~1点の範囲内(1点)であり、本来であれば、点数の合計値が弱排気グループに分類される。しかし、予定時刻T10で、遮断板30を近接位置から退避位置に上昇させるように計画されているので、遮断板上昇条件が成立している。そのため、図9に太線で示すように、予定時刻T10から予定時刻T11までの期間も遮断板30を近接位置に位置させるとみなして、遮断板30の近接位置に割り振られた点数(2点)が加算される。そのため、この期間の点数の合計値が中排気グループに属するとみなされ、個別ダンパー53の開度が中設定値に設定されるように計画される。
 個別排気スケジュール作成部85は、このように処理スケジュールを参照しながら、個別排気スケジュールを作成する。個別排気スケジュール実行部86は、個別排気スケジュールに従って個別ダンパー53を制御することにより、個別排気スケジュールが処理スケジュールに同期するように、個別ダンパー53に個別排気スケジュールを実行させる。
 図6に示すように、制御装置4は、個別排気スケジュール作成部85および個別排気スケジュール実行部86等に加えて、個別流量計52の検出値に基づいて個別ダンパー53の開度を調整するフィードバック制御を個別排気スケジュールの実行中に行う個別フィードバック実行部87をさらに含んでいてもよい。個別フィードバック実行部87は、制御装置4にインストールされたプログラムをCPU69が実行することにより実現される機能ブロックである。
 個別フィードバック実行部87は、個別流量計52の検出値に基づいてチャンバー5の内部から個別排気ダクト51に排出される排気の流量を監視する。そして、個別フィードバック実行部87は、個別排気ダクト51に排出される排気の流量が、個別ダンパー53の開度の設定値に対応付けられた排気流量に近づくように、個別排気スケジュールの実行中に個別ダンパー53の開度を調整する。したがって、制御装置4が、個別フィードバック実行部87をさらに備えている場合には、処理ユニット3から排出される排気の流量をより精密に制御できる。
 図6に示すように、制御装置4は、元圧変更判断部88と、集合排気スケジュール作成部89と、集合排気スケジュール実行部90と、を含む。制御装置4は、さらに、元圧変更条件76を含む。元圧変更判断部88、集合排気スケジュール作成部89、および集合排気スケジュール実行部90は、制御装置4にインストールされたプログラムをCPU69が実行することにより実現される機能ブロックである。
 図14に示すように、元圧変更判断部88は、個別排気スケジュールが作成された後、複数の個別排気流量調整ユニットのいずれかの排気流量設定値が基準値よりも大きい元圧変更条件76が個別排気スケジュールのいずれかの時間において成立するか否かを判断する(ステップS41)。
 図14に示すように、個別排気スケジュールのいずれかの時間において元圧変更条件76が成立する場合(ステップS41でYesの場合)、集合排気スケジュール作成部89は、元圧変更条件76が成立する時間における集合排気流量調整ユニットの排気流量設定値(集合ダンパー63の開度の設定値)が、全ての個別ダンパー53の開度の設定値が基準値のときの設定値である元圧基準値よりも大きな値に設定されるように、個別排気スケジュールの各時間における集合ダンパー63の開度の設定値を規定する集合排気スケジュールを作成する(ステップS42)。
 図14に示すように、集合排気スケジュール実行部90は、集合排気スケジュールに従って集合ダンパー63を制御することにより、個別排気スケジュールと並行して集合ダンパー63に集合排気スケジュールを実行させる(ステップS43)。
 図10は、3つの処理ユニット3(第1処理ユニット3、第2処理ユニット3、および第3処理ユニット3)にそれぞれ対応する3つの個別排気スケジュールの一例と、集合排気スケジュール作成部89によって作成された集合排気スケジュールの一例とを示している。基板処理装置1に備えられた処理ユニット3の総数は12台であるが、図10に係る説明では、処理ユニット3の総数が3台であると仮定する。
 図10に示すように、予定時刻T20から予定時刻T21までの期間は、各個別ダンパー53の開度の設定値を弱設定値(基準値)に設定するように計画されている。したがって、この期間では元圧変更条件76が成立しない。そのため、集合ダンパー63の開度を元圧基準値に設定するよう計画される。
 図10に示すように、予定時刻T21から予定時刻T22までの期間は、いずれかの処理ユニット3(図10では、第1処理ユニット3)に対応する個別ダンパー53の開度の設定値を中設定値に設定するように計画されている。したがって、この期間では元圧変更条件76が成立している。そのため、集合ダンパー63の開度の設定値を元圧基準値よりも大きな値に変更するように計画される。図10は、集合ダンパー63の開度の設定値が弱設定値から中設定値に変更される例を示している。
 図10に示すように、予定時刻T22から予定時刻T23までの期間は、各個別ダンパー53の開度の設定値を弱設定値(基準値)に設定するように計画されている。したがって、この期間では元圧変更条件76が成立しない。そのため、集合ダンパー63の開度の設定値を元圧基準値に設定するよう計画される。
 集合排気スケジュール作成部89は、このように個別排気スケジュールを参照しながら、集合排気スケジュールを作成する。集合排気スケジュール実行部90は、集合排気スケジュールに従って集合ダンパー63を制御することにより、集合排気スケジュールが個別排気スケジュールに同期するように、集合ダンパー63に集合排気スケジュールを実行させる。
 図6に示すように、制御装置4は、集合排気スケジュール作成部89および集合排気スケジュール実行部90等に加えて、若しくは、集合排気スケジュール作成部89および集合排気スケジュール実行部90等に代えて、集合流量計65の検出値に基づいて集合ダンパー63の開度を調整するフィードバック制御を行う集合フィードバック制御実行部91をさらに含んでいてもよい。集合フィードバック制御実行部91は、制御装置4にインストールされたプログラムをCPU69が実行することにより実現される機能ブロックである。
 集合フィードバック制御実行部91は、集合流量計65の検出値に基づいて個別排気ダクト51の内部から集合排気ダクト62に排出される排気の流量を監視する。そして、集合フィードバック制御実行部91は、集合排気ダクト62に排出される排気の流量が、流量基準値(全ての個別ダンパー53の開度の設定値が基準値のときの値)に近づくように、集合ダンパー63の開度を調整する。したがって、制御装置4が集合フィードバック制御実行部91を備えている場合には、集合排気ダクト62内の排気圧が安定するので、各個別排気ダクト51に加わる排気圧の変動を抑制または防止できる。これにより、各処理ユニット3での圧力変動を抑制または防止できる。集合フィードバック制御実行部91によるフィードバック制御は、集合排気スケジュールと並行して実行されてもよいし、集合排気スケジュールが実行されていない期間に実行されてもよい。
 各処理ユニット3は、同じ排気源(排気処理設備)に接続されている。各個別ダンパー53の開度は、通常、元圧(排気処理設備の排気圧)が一定であることを前提にして設定される。すなわち、集合排気ダクト62内の排気圧が一定であることを前提にして、各個別ダンパー53の開度が設定される。
 いずれかの個別ダンパー53の開度が変わり、その個別ダンパー53に対応する処理ユニット3からの排気流量が変わると、その影響により集合排気ダクト62内の排気圧が変化する場合がある。したがって、残りの処理ユニット3からの排気流量が変化する場合がある。つまり、排気処理設備の吸引力の強さ自体は同じであるが、各処理ユニット3に作用する排気圧が変化し得る。集合排気ダクト62内の排気圧が変化すると、個別ダンパー53の開度が同じであっても、各処理ユニット3から排出される排気流量が変化する。
 前述のように、同時期に実行される予定の全ての個別排気スケジュールを参照して集合排気スケジュールを作成し、集合排気スケジュールを実行することにより、集合排気ダクト62内の排気圧の変動を抑えることができる。同様に、集合排気ダクト62内の排気圧に基づいて集合ダンパー63の開度を調整することにより、集合排気ダクト62内の排気圧の変動を抑えることができる。これにより、各処理ユニット3から排出される排気の流量が意図せず変化することを抑制または防止できる。
 以上のように本実施形態では、基板Wを処理するときの処理ユニット3の動作を時系列で規定する処理スケジュールが作成される。この処理スケジュールを参照しながら、個別排気流量調整ユニットの排気流量設定値(前述の例では、個別ダンパー53の開度の設定値)を規定する個別排気スケジュールが作成される。そして、処理スケジュールと並行して個別排気スケジュールが実行される。
 遮断板30および処理液捕獲部材15は、チャンバー5内を移動可能な可動部材の一例である。設定値変更条件75は、可動部材が原点位置以外の位置に位置している位置条件を含む。処理スケジュールのいずれかの時間において、遮断板30および処理液捕獲部材15のいずれかを原点位置以外の位置に配置するように計画されている場合、すなわち、設定値変更条件75が成立する場合、設定値変更条件75が成立する時間における個別排気流量調整ユニットの排気流量設定値は、可動部材が原点位置に位置しているときの設定値(基準値)よりも大きな値に設定されるように計画される。
 可動部材が原点位置以外の位置に実際に位置しているとき、個別排気流量調整ユニットの排気流量設定値は、基準値よりも大きい値に設定される。したがって、チャンバー5内の気体を個別排気ダクト51内に排出する力(排気圧)が強くなる。言い換えると、大気圧よりも低い排気圧(負圧)の絶対値が大きくなる。そのため、処理ユニット3の排気抵抗(圧力損失)が可動部材の位置に応じて増加したとしても、それに応じて排気圧が強くなるので、処理ユニット3から排出される排気の流量の変動を抑えることができる。
 さらに、個別排気スケジュールは、処理スケジュールと並行して実行される。つまり、個別排気流量調整ユニットの排気流量設定値は、処理ユニット3から排出される気体の流量が実際に変化した後に変更されるのではなく、流量の変化が発生する前に調整される。したがって、フィードバック制御が行われる場合よりも排気流量が安定するまでの時間を短縮できる。
 個別排気流量調整ユニットの排気流量設定値を規定する個別排気スケジュールは、処理スケジュールに基づいて作成される。同じレシピ74を実行する場合でも、排気流量に影響するパラメータは異なることがある。したがって、個々の処理スケジュールに基づいて個別排気スケジュールを作成することにより、いずれの基板Wの処理でも排気流量を最適化できる。
 また本実施形態では、設定値変更条件75が処理流体吐出中条件を含んでいる。したがって、処理流体の一例である処理液を吐出するように計画されている場合にも、チャンバー5内の気体を個別排気ダクト51内に排出する力(排気圧)を強めるように計画される。
 処理流体が吐出されている場合(特に、処理液が吐出されている場合)、ミストが処理ユニット3内に発生し易い。ミストが基板Wに付着すると、基板Wが汚染される場合がある。また、ミストが基板Wの汚染原因の一つであるパーティクルに変化し、パーティクルが処理ユニット3内を浮遊する場合がある。したがって、処理流体が実際に吐出されているときに、排気圧を強くすることにより、ミストを処理ユニット3内から効率的に排出でき、ミストの拡散範囲を狭めることができる。そのため、ミストやパーティクルの付着による基板Wの汚染を低減できる。
 また本実施形態では、設定値変更条件75が薬液吐出開始条件を含んでいる。したがって、処理流体としての薬液を吐出するように計画されている場合にも、チャンバー5内の気体を個別排気ダクト51内に排出する力(排気圧)を強めるように計画される。薬液が吐出されている場合、薬液のミストが処理ユニット3内に発生し易い。さらに、薬液のミストは、純水などのリンス液のミストよりも基板Wを汚染する可能性が高い。したがって、薬液が実際に吐出されているときに、排気圧を強くすることにより、薬液のミストを処理ユニット3内から効率的に排出でき、ミストの拡散範囲を狭めることができる。そのため、ミストやパーティクルの付着による基板Wの汚染を低減できる。
 さらに、薬液吐出開始条件が成立する時間よりも前から、すなわち、薬液の吐出が開始される前から、チャンバー5内の気体を個別排気ダクト51内に排出する力(排気圧)を強めるように計画される。そして、薬液の吐出が継続している間も、排気圧が強くされた状態が維持されるように計画される。したがって、排気圧が強められた状態で薬液の吐出が開始されるので、薬液の吐出直後から薬液のミストを効率的に排出できる。これにより、チャンバー5内における薬液のミストの残留量を低減でき、ミストやパーティクルの付着による基板Wの汚染を低減できる。
 また本実施形態では、設定値変更条件75が薬液吐出終了条件を含んでいる。薬液吐出終了条件が成立する時間よりも後、すなわち、薬液の吐出が停止された後も、チャンバー5内の気体を個別排気ダクト51内に排出する力(排気圧)を強めるように計画される。したがって、薬液の吐出停止後にチャンバー5内を浮遊する薬液のミストを確実に排出できる。これにより、チャンバー5内における薬液のミストの残留量を低減でき、ミストやパーティクルの付着による基板Wの汚染を低減できる。
 また本実施形態では、設定値変更条件75が基板回転条件を含んでいる。したがって、スピンチャック8が基板Wを回転させるように計画されている場合にも、チャンバー5内の気体を個別排気ダクト51内に排出する力(排気圧)を強めるように計画される。
 処理液が付着している基板Wが回転すると、基板Wから処理液が飛散するので、ミストが発生し易い。したがって、基板Wが実際に回転しているときに、排気圧を強くすることにより、ミストを処理ユニット3内から効率的に排出でき、ミストの拡散範囲を狭めることができる。そのため、ミストやパーティクルの付着による基板Wの汚染を低減できる。
 また本実施形態では、設定値変更条件75が乾燥実行条件を含んでいる。したがって、基板Wが乾燥速度で回転しているときに、チャンバー5内の気体を個別排気ダクト51内に排出する力(排気圧)が強められる。
 乾燥速度は、第1薬液ノズル12、第2薬液ノズル13、およびリンス液ノズル14のいずれかが処理流体を吐出しているときの基板Wの回転速度よりも大きい回転速度である。基板Wの回転速度が増加すると、基板Wに付着している処理液に働く遠心力も増加するので、基板Wから飛散する処理液の量が増加する。したがって、基板Wが乾燥速度で回転しているときは、ミストが発生し易い。そのため、基板Wが乾燥速度で回転しているときに、排気圧を強めることにより、ミストを処理ユニット3内から効率的に排出でき、ミストの拡散範囲を狭めることができる。
 また本実施形態では、設定値変更条件75が遮断板上昇条件を含んでいる。したがって、遮断板30を上方に移動させるように計画されている場合にも、チャンバー5内の気体を個別排気ダクト51内に排出する力(排気圧)を強めるように計画される。
 遮断板30が遮断板動作位置としての近接位置から遮断板原点位置としての退避位置に上昇すると、遮断板30が基板Wから離れ、遮断板30と基板Wとの間隔が広がる。遮断板30の上昇速度が大きいと、遮断板30と基板Wとの間の気圧が低下し、チャンバー5内の雰囲気が遮断板30と基板Wとの間に吸い込まれる。そのため、基板Wの周囲を浮遊するミストやパーティクルが基板Wに付着するおそれがある。
 遮断板30の上昇速度を低下させれば、負圧の発生による雰囲気の吸い込みが低減されると考えられる。しかしながら、遮断板30の上昇速度が遅いと、基板Wの処理に要する時間が増加するので、基板処理装置1のスループット(単位時間あたりの基板Wの処理枚数)が減少するおそれがある。
 遮断板30と基板Wとの間隔が広がるときに排気圧を強くすれば、基板Wの周囲の雰囲気が個別排気ダクト51の方に強制的に吸い寄せられるので、遮断板30と基板Wとの間への雰囲気の進入が抑制される。したがって、遮断板30の上昇速度を低下させずに、基板Wの周囲の雰囲気が基板Wに接触することを抑制または防止できる。そのため、スループットを維持しながら、基板Wの汚染を低減できる。
 また本実施形態では、複数の点数を含むテーブル77が制御装置4の補助記憶装置71に記憶されている。複数の点数は、処理ユニット3の稼動状況ごとに割り振られている。具体的には、テーブル77は、可動部材の原点位置および動作位置にそれぞれ割り振られた複数の点数と、処理流体の吐出中状態および吐出停止状態にそれぞれ割り振られた複数の点数と、を含む。
 処理スケジュールのいずれかの時間において設定値変更条件75が成立する場合、処理スケジュールの各時間における点数の合計値が計算される。そして、処理スケジュールの各時間における個別排気流量調整ユニットの排気流量設定値は、点数の合計値の大きさに応じて基準値よりも大きな値に設定されるように計画される。したがって、チャンバー5内の気体を個別排気ダクト51内に排出する力(排気圧)は、処理ユニット3の稼動状況に応じて調整される。そのため、チャンバー5内の気流を理想的な状態に近づけることができる。
 また本実施形態では、制御装置4の補助記憶装置71に記憶されたテーブル77は、可動部材の位置ごとに割り振られた複数の点数と、処理流体の吐出状態ごとに割り振られた複数の点数と、に加えて、基板Wの回転中状態および回転停止状態にそれぞれ割り振られた複数の点数を含む。したがって、チャンバー5内の気体を個別排気ダクト51内に排出する力(排気圧)は、基板Wの回転状態をも考慮した大きさに調整される。そのため、チャンバー5内の気流を理想的な状態に近づけることができる。
 また本実施形態では、制御装置4の補助記憶装置71に記憶されたテーブル77は、リンス液の吐出中状態に対して割り振られたリンス液の点数と、薬液の吐出中状態に対して割り振られた薬液の点数と、を含んでいる。薬液の点数は、リンス液の点数よりも大きい。したがって、処理ユニット3の他の稼動状況が同じであれば、薬液が吐出されているときの点数の合計値は、リンス液が吐出されているときの点数の合計値よりも大きい。
 前述のように、処理スケジュールの各時間における個別排気流量調整ユニットの排気流量設定値は、点数の合計値の大きさに応じて基準値よりも大きな値に設定されるように計画される。点数の合計値が大きければ、チャンバー5内の気体を個別排気ダクト51内に排出する力(排気圧)が強いので、チャンバー5内の気体が確実に排出される。
 薬液のミストは、純水などのリンス液のミストよりも基板Wを汚染する可能性が高い。したがって、薬液が実際に吐出されているときに、排気圧を強くすることにより、薬液のミストを処理ユニット3内から効率的に排出でき、ミストの拡散範囲を狭めることができる。そのため、ミストやパーティクルの付着による基板Wの汚染を低減できる。
 また本実施形態では、点数の合計値を複数のグループに分類する一つ以上のしきい値が、制御装置4の補助記憶装置71に記憶されたテーブル77に含まれている。点数の合計値が複数のグループのいずれに属するかは、テーブル77の分類表79に基づいて求められる。
 処理スケジュールの各時間における点数の合計値が異なる場合でも、グループが共通であれば、このグループに割り振られた加算値が、個別排気流量調整ユニットの基準値に加えられる。言い換えると、点数の合計値が変わったとしても、合計値が属するグループが同じであれば、個別排気流量調整ユニットの排気流量設定値は変わらない。したがって、点数の合計値が変化するたびに排気の強さを変更する場合よりも、制御の複雑化を防止できる。
 また本実施形態では、複数の処理ユニット3内の気体が、それぞれ、複数の個別排気ダクト51に排出される。各個別排気ダクト51内を排気処理設備に向かって下流側に流れる排気は、集合排気ダクト62内に排出される。排気処理設備に向かって集合排気ダクト62内を流れる排気の流量は、集合排気流量調整ユニットとしての集合ダンパー63によって調整される。
 集合排気流量調整ユニットの排気流量設定値(集合ダンパー63の開度の設定値)を規定する集合排気スケジュールは、個別排気流量調整ユニットの排気流量設定値(個別ダンパー53の開度の設定値)を規定する個別排気スケジュールを参照しながら作成される。そして、個別排気スケジュールと並行して集合排気スケジュールが実行される。
 個別排気スケジュールのいずれかの時間において、いずれかの個別排気流量調整ユニットの排気流量設定値が基準値よりも大きい元圧変更条件76が成立する場合、元圧変更条件76が成立する時間における集合排気流量調整ユニットの排気流量設定値は、各個別排気流量調整ユニットの排気流量設定値が基準値であるときの設定値(元圧基準値)よりも大きな値に設定されるように計画される。
 いずれかの個別排気流量調整ユニットの排気流量設定値が基準値よりも大きいと、集合排気ダクト62内の排気圧が低下し、この排気圧の低下の影響が他の処理ユニット3に及ぶ場合がある。したがって、集合排気流量調整ユニットの排気流量設定値を元圧基準値よりも大きくすることにより、他の処理ユニット3から排出される排気の流量の減少を抑制または防止できる。これにより、他の処理ユニット3での圧力変動を抑制または防止できる。
 さらに、集合排気スケジュールは、個別排気スケジュールと並行して実行される。つまり、集合排気流量調整ユニットの排気流量設定値は、集合排気ダクト62内を流れる排気の流量が実際に変化した後に変更されるのではなく、流量の変化が発生する前に調整される。したがって、フィードバック制御が行われる場合よりも排気流量が安定するまでの時間を短縮できる。
 また本実施形態では、個別排気ダクト51に向かってチャンバー5の内部を流れる気体の流路が、可動部材としての遮断板30および処理液捕獲部材15によってチャンバー5内に形成されている。したがって、遮断板30および処理液捕獲部材15の少なくとも一方がチャンバー5内を移動すると、流路の形状が変化するので、処理ユニット3の排気抵抗が変化する。そのため、個別排気流量調整ユニットの排気流量設定値(個別ダンパー53の開度の設定値)を、遮断板30および処理液捕獲部材15の位置に応じて変更することにより、処理ユニット3から排出される気体の流量を安定させることができる。
 本発明の実施形態の説明は以上であるが、本発明は、前述の実施形態の内容に限定されるものではなく、本発明の範囲内において種々の変更が可能である。
 たとえば、前記実施形態では、設定値変更条件75は、位置条件以外に、処理流体吐出中条件、薬液吐出開始条件、薬液吐出終了条件、基板回転条件、および遮断板上昇条件を含む場合について説明した。しかし、薬液吐出開始条件、薬液吐出終了条件、基板回転条件、および遮断板上昇条件の少なくとも一つが、設定値変更条件75から除外されてもよい。
 また図4に示すように、前記実施形態において、排出ユニット46は、集合ダンパー63に加えて、集合排気ダクト62の下流端に向けて気体を送ることにより集合排気ダクト62内の排気圧を強めるブロワ66を備えていてもよい。集合ダンパー63およびブロワ66は、いずれも、排気処理設備に向かって集合排気ダクト62内を流れる排気の流量を調整する集合排気流量調整ユニットの一例である。
 ブロワ66は、集合ダンパー63よりも下流側で集合排気ダクト62に接続されている。制御装置4は、ブロワ66を制御することにより、送風状態(オン)と送風停止状態(オフ)との間でブロワ66を切り替える。制御装置4は、ブロワ66のオン/オフに加えて、ブロワ66の送風流量を変更してもよい。ブロワ66は、集合排気ダクト62内を下流側(排気処理設備の方)に流れる気流を形成する。したがって、ブロワ66の送風中は、集合排気ダクト62内の気体を集合排気ダクト62の下流側に移動させる力が、排気処理設備とブロワ66とによって形成され、集合排気ダクト62内の排気圧が高められる。そのため、制御装置4は、ブロワ66を制御することにより、集合排気ダクト62内の排気圧および排気流量を変化させることができる。
 送風状態と送風停止状態との間でブロワ66が切り替えられると、集合排気ダクト62内を流れる排気の流量が調整される。同様に、集合ダンパー63の開度が変更されると、集合排気ダクト62内を流れる排気の流量が調整される。したがって、制御装置4の集合排気スケジュール作成部89は、集合ダンパー63の開度調整とブロワ66の切り替えとの少なくとも一方を行うように、集合排気スケジュールを作成してもよい。同様に、制御装置4の集合フィードバック制御実行部91は、集合流量計65の検出値に基づいて、集合ダンパー63およびブロワ66の少なくとも一方を制御してもよい。
 ブロワ66が送風を行うと、集合排気ダクト62内の気体がブロワ66によって強制的に排出されるので、集合排気ダクト62内の排気圧が高まる(排気圧の絶対値が大きくなる)。したがって、排気設備の吸引力が十分でない場合でも、ブロワ66を作動させることにより、集合排気ダクト62内の排気圧を一定の圧力に保つことができる。これにより、各処理ユニット3での圧力変動を抑制または防止できる。
 前記実施形態において、排出ユニット46は、個別ダンパー53に加えて若しくは個別ダンパー53に代えて、個別排気ダクト51内の気体を集合排気ダクト62に排出する排気ポンプ(個別ポンプ)を備えていてもよい。この場合、制御装置4の個別排気スケジュール作成部85は、個別ダンパー53の開度調整と排気ポンプの出力調整との少なくとも一方を行うように、個別排気スケジュールを作成してもよい。同様に、制御装置4の個別フィードバック実行部87は、個別流量計52の検出値に基づいて、個別ダンパー53および排気ポンプの少なくとも一方を制御してもよい。
 前記実施形態では、基板保持ユニットとしてのスピンチャック8が、基板Wを保持しながら回転させる場合について説明した。しかし、基板保持ユニットは、基板Wと共に回転可能なスピンベース10に代えて、基板Wの下面を支持する回転不能な保持ベースを備えていてもよい。
 前記実施形態では、処理ユニット3の稼動状況ごとに割り振られた複数の点数に基づいて点数の合計値を求め、点数の合計値の大きさに応じて個別排気流量調整ユニットの排気流量設定値が基準値よりも大きな値に設定されるように、個別排気スケジュールを作成する場合について説明した。つまり、基準値に加算される加算値が、点数の合計値の大きさに応じて変更される場合について説明した。しかし、設定値変更条件75が成立する場合には、点数の合計値を求めずに、一定の値を基準値に加算してもよい。
 前記実施形態では、点数の合計値が複数のグループ(弱排気グループ、中排気グループ、および強排気グループ)のいずれに属するかを判断し、属するグループに割り振られた加算値を基準値に加える場合について説明した。つまり、点数の合計値が異なっていても、属するグループが同じであれば、同じ大きさの加算値が基準値に加えられる場合について説明した。しかし、点数の合計値ごとに加算値が変更されてもよい。
 前記実施形態では、基板処理装置1が、円板状の基板を処理する装置である場合について説明した。しかし、基板処理装置1は、液晶表示装置用基板などの多角形の基板を処理する装置であってもよい。
 全ての実施形態のうちの2つ以上が組み合わされてもよい。
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の精神および範囲は添付の請求の範囲によってのみ限定される。
 この出願は、2013年12月18日に日本国特許庁に提出された特願2013-261468号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。
1    :基板処理装置
3    :処理ユニット
4    :制御装置
5    :チャンバー
8    :スピンチャック
12   :第1薬液ノズル
13   :第2薬液ノズル
14   :リンス液ノズル
15   :処理液捕獲部材
16   :スプラッシュガード
22   :カップ
30   :遮断板
46   :排出ユニット
51   :個別排気ダクト
52   :個別流量計
53   :個別ダンパー
62   :集合排気ダクト
63   :集合ダンパー
65   :集合流量計
66   :ブロワ
69   :CPU
70   :主記憶装置
71   :補助記憶装置
72   :読取装置
73   :通信装置
74   :レシピ
75   :設定値変更条件
76   :元圧変更条件
77   :テーブル
78   :点数表
79   :分類表
80   :処理スケジュール作成部
81   :処理スケジュール実行部
82   :設定値変更判断部
83   :合計値計算部
84   :グループ判定部
85   :個別排気スケジュール作成部
86   :個別排気スケジュール実行部
87   :個別フィードバック実行部
88   :元圧変更判断部
89   :集合排気スケジュール作成部
90   :集合排気スケジュール実行部
91   :集合フィードバック制御実行部
M    :リムーバブルメディア
P    :プログラム
W    :基板

Claims (18)

  1.  複数枚の基板を一枚ずつ処理する処理ユニットと、
     前記処理ユニットから気体を排出する排気ユニットと、
     前記処理ユニットおよび排気ユニットを制御するコンピュータとしての制御装置と、を備え、
     前記処理ユニットは、
     内部空間を有するチャンバーと、
     前記チャンバー内で基板を保持する基板保持ユニットと、
     前記基板保持ユニットに保持されている基板に処理流体を供給する処理流体供給ユニットと、
     互いに離れた位置である原点位置および動作位置の間で前記チャンバー内を移動可能な可動部材と、を含み、
     前記排気ユニットは、
     前記チャンバーから排出された気体を排気処理設備に向けて案内する個別排気ダクトと、
     前記排気処理設備に向かって前記個別排気ダクト内を流れる排気の流量を調整する個別排気流量調整ユニットと、を含み、
     前記制御装置は、
     基板を処理するときの前記処理ユニットの動作を時系列で規定する処理スケジュールを作成する処理スケジュール作成ステップと、
     前記処理スケジュール作成ステップで作成された前記処理スケジュールの各時間において、前記可動部材が前記原点位置以外の位置に位置している位置条件を含む設定値変更条件が成立するか否かを判断する設定値変更判断ステップと、
     前記処理スケジュールのいずれかの時間において前記設定値変更条件が成立する場合、前記設定値変更条件が成立する時間における前記個別排気流量調整ユニットの排気流量設定値が、前記可動部材が前記原点位置に位置しているときの設定値である基準値よりも大きな値に設定されるように、前記処理スケジュールの各時間における前記個別排気流量調整ユニットの排気流量設定値を規定する個別排気スケジュールを作成する個別排気スケジュール作成ステップと、
     前記処理スケジュールと並行して前記個別排気スケジュールを実行する個別排気スケジュール実行ステップと、を実行する、基板処理装置。
  2.  前記設定値変更条件は、前記処理流体供給ユニットが処理流体を吐出している処理流体吐出中条件をさらに含む、請求項1に記載の基板処理装置。
  3.  前記処理流体供給ユニットは、処理流体としての薬液を前記基板保持ユニットに保持されている基板に向けて吐出する薬液ノズルを含み、
     前記設定値変更条件は、前記薬液ノズルが薬液の吐出を開始する薬液吐出開始条件をさらに含み、
     前記個別排気スケジュール作成ステップは、前記処理スケジュールのいずれかの時間において前記設定値変更条件が成立する場合、前記設定値変更条件が成立する時間における前記個別排気流量調整ユニットの排気流量設定値が前記基準値よりも大きな値に設定されると共に、前記薬液吐出開始条件が成立する時間よりも前から前記個別排気流量調整ユニットの排気流量設定値が前記基準値よりも大きな値に設定されるように、前記個別排気スケジュールを作成するステップを含む、請求項1または2に記載の基板処理装置。
  4.  前記処理流体供給ユニットは、処理流体としての薬液を前記基板保持ユニットに保持されている基板に向けて吐出する薬液ノズルを含み、
     前記設定値変更条件は、前記薬液ノズルが薬液の吐出を終了する薬液吐出終了条件をさらに含み、
     前記個別排気スケジュール作成ステップは、前記処理スケジュールのいずれかの時間において前記設定値変更条件が成立する場合、前記設定値変更条件が成立する時間における前記個別排気流量調整ユニットの排気流量設定値が前記基準値よりも大きな値に設定されると共に、前記薬液吐出開始条件が成立する時間よりも後まで前記個別排気流量調整ユニットの排気流量設定値が前記基準値よりも大きな値に設定されるように、前記個別排気スケジュールを作成するステップを含む、請求項1~3のいずれか一項に記載の基板処理装置。
  5.  前記基板保持ユニットは、前記チャンバー内で基板を保持しながら回転させるスピンチャックを含み、
     前記設定値変更条件は、基板が回転している基板回転条件をさらに含む、請求項1~4のいずれか一項に記載の基板処理装置。
  6.  前記基板回転条件は、前記処理流体供給ユニットが処理流体を吐出しているときの基板の回転速度よりも大きい乾燥速度で、基板が回転している乾燥実行条件を含む、請求項5に記載の基板処理装置。
  7.  前記可動部材は、前記基板保持ユニットの上方の遮断板原点位置と前記遮断板原点位置と前記基板保持ユニットとの間の遮断板動作位置との間で、前記チャンバー内を移動可能な遮断板を含み、
     前記設定値変更条件は、前記遮断板が前記遮断板動作位置から前記遮断板原点位置に移動する遮断板上昇条件をさらに含む、請求項1~6のいずれか一項に記載の基板処理装置。
  8.  前記制御装置は、前記可動部材の位置ごとに割り振られた複数の点数と、前記処理流体供給ユニットからの処理流体の吐出状態ごとに割り振られた複数の点数と、を含むテーブルが記憶された記憶装置を含み、
     前記制御装置は、前記処理スケジュールのいずれかの時間において前記設定値変更条件が成立する場合に、前記処理スケジュールの各時間における点数の合計値を前記テーブルに基づいて求める合計値計算ステップをさらに実行し、
     前記個別排気スケジュール作成ステップは、前記処理スケジュールのいずれかの時間において前記設定値変更条件が成立する場合、前記設定値変更条件が成立する時間における前記個別排気流量調整ユニットの排気流量設定値が、前記合計値の大きさに応じて前記基準値よりも大きな値に設定されるように、前記個別排気スケジュールを作成するステップを含む、請求項1~7のいずれか一項に記載の基板処理装置。
  9.  前記基板保持ユニットは、前記チャンバー内で基板を保持しながら回転させるスピンチャックを含み、
     前記テーブルは、基板の回転状態ごとに割り振られた複数の点数をさらに含む、請求項8に記載の基板処理装置。
  10.  前記処理流体供給ユニットからの処理流体の吐出状態ごとに割り振られた前記複数の点数は、処理流体としてのリンス液が吐出されている状態に対して割り振られたリンス液の点数と、処理流体としての薬液が吐出されている状態に対して割り振られており、前記リンス液の点数よりも大きい薬液の点数と、を含む、請求項8または9に記載の基板処理装置。
  11.  前記テーブルは、点数の合計値を、点数の合計値の大きさに応じて、大きさがそれぞれ異なる複数の加算値がそれぞれ割り振られた複数のグループに分類する一つ以上のしきい値を含み、
     前記制御装置は、前記合計値計算ステップで求められた点数の合計値が前記複数のグループのいずれに属するかを前記テーブルに基づいて求めるグループ判定ステップをさらに実行し、
     前記個別排気スケジュール作成ステップは、前記処理スケジュールのいずれかの時間において前記設定値変更条件が成立する場合、前記設定値変更条件が成立する時間における前記個別排気流量調整ユニットの排気流量設定値が、前記基準値よりも、前記合計値計算ステップで求められた点数の合計値が属する前記グループに割り振られた前記加算値だけ大きくなるように、前記個別排気スケジュールを作成するステップを含む、請求項1~10のいずれか一項に記載の基板処理装置。
  12.  前記基板処理装置は、複数の前記処理ユニットを含み、
     前記排気ユニットは、
     前記複数の前記処理ユニットにそれぞれ対応しており、前記複数の前記処理ユニットの前記チャンバーから排出された気体を前記排気処理設備に向けて案内する複数の前記個別排気ダクトと、
     前記複数の前記個別排気ダクトにそれぞれ対応しており、前記排気処理設備に向かって前記複数の前記個別排気ダクト内を流れる排気の流量を調整する複数の前記個別排気流量調整ユニットと、
     前記複数の前記個別排気ダクトのそれぞれが接続された集合排気ダクトと、
     前記排気処理設備に向かって前記集合排気ダクト内を流れる排気の流量を調整する集合排気流量調整ユニットと、を含み、
     前記制御装置は、
     前記個別排気スケジュール作成ステップで作成された前記個別排気スケジュールの各時間において、前記複数の前記個別排気流量調整ユニットのいずれかの排気流量設定値が前記基準値よりも大きい元圧変更条件が成立するか否かを判断する元圧変更判断ステップと、
     前記個別排気スケジュールのいずれかの時間において前記元圧変更条件が成立する場合、前記元圧変更条件が成立する時間における前記集合排気流量調整ユニットの排気流量設定値が、各個別排気流量調整ユニットの排気流量設定値が前記基準値のときの設定値である元圧基準値よりも大きな値に設定されるように、前記個別排気スケジュールの各時間における前記集合排気流量調整ユニットの排気流量設定値を規定する集合排気スケジュールを作成する集合排気スケジュール作成ステップと、
     前記個別排気スケジュールと並行して前記集合排気スケジュールを実行する集合排気スケジュール実行ステップと、をさらに実行する、請求項1~11のいずれか一項に記載の基板処理装置。
  13.  前記基板処理装置は、複数の前記処理ユニットを含み、
     前記排気ユニットは、
     前記複数の前記処理ユニットにそれぞれ対応しており、前記複数の前記処理ユニットの前記チャンバーから排出された気体を前記排気処理設備に向けて案内する複数の前記個別排気ダクトと、
     前記複数の前記個別排気ダクトにそれぞれ対応しており、前記排気処理設備に向かって前記複数の前記個別排気ダクト内を流れる排気の流量を調整する複数の前記個別排気流量調整ユニットと、
     前記複数の前記個別排気ダクトのそれぞれが接続された集合排気ダクトと、
     前記排気処理設備に向かって前記集合排気ダクト内を流れる排気の流量を調整する集合排気流量調整ユニットと、
     前記排気処理設備に向かって前記集合排気ダクト内を流れる排気の流量を検出する集合流量計と、を含み、
     前記制御装置は、前記集合流量計の検出値に基づいて求められた前記集合排気ダクト内の排気流量が、各個別排気流量調整ユニットの排気流量設定値が前記基準値のときの値である流量基準値に近づくように、前記集合排気流量調整ユニットを制御する、請求項1~12のいずれか一項に記載の基板処理装置。
  14.  前記集合排気流量調整ユニットは、前記集合排気ダクトを開閉する集合ダンパーと、前記排気処理設備に向かって流れる気流を前記集合排気ダクト内に形成するブロワと、の少なくとも一つを含む、請求項12または13に記載の基板処理装置。
  15.  前記可動部材は、前記個別排気ダクトに向かって前記チャンバーの内部を流れる気体の流路を前記チャンバー内に形成している、請求項1~14のいずれか一項に記載の基板処理装置。
  16.  前記可動部材は、前記基板保持ユニットの上方の遮断板原点位置と前記遮断板原点位置と前記基板保持ユニットとの間の遮断板動作位置との間で前記チャンバー内を移動可能な遮断板と、前記基板保持ユニットに保持されている基板よりも下方のガード原点位置と前記基板保持ユニットに保持されている基板の周囲に位置するガード動作位置との間で前記チャンバー内を移動可能なスプラッシュガードと、の少なくとも一方を含む、請求項1~15のいずれか一項に記載の基板処理装置。
  17.  複数枚の基板を一枚ずつ処理する処理ユニットと、前記処理ユニット内の気体を排出する排気ユニットと、前記処理ユニットおよび排気ユニットを制御するコンピュータとしての制御装置と、を備える基板処理装置の前記制御装置によって実行される基板処理装置の制御方法において、
     前記処理ユニットは、
     内部空間を有するチャンバーと、
     前記チャンバー内で基板を保持する基板保持ユニットと、
     前記基板保持ユニットに保持されている基板に処理流体を供給する処理流体供給ユニットと、
     互いに離れた位置である原点位置および動作位置の間で前記チャンバー内を移動可能な可動部材と、を含み、
     前記排気ユニットは、
     前記チャンバーから排出された気体を排気処理設備に向けて案内する個別排気ダクトと、
     前記排気処理設備に向かって前記個別排気ダクト内を流れる排気の流量を調整する個別排気流量調整ユニットと、を含み、
     前記基板処理装置の制御方法は、
     基板を処理するときの前記処理ユニットの動作を時系列で規定する処理スケジュールを作成する処理スケジュール作成ステップと、
     前記処理スケジュール作成ステップで作成された前記処理スケジュールの各時間において、前記可動部材が前記原点位置以外の位置に位置している位置条件を含む設定値変更条件が成立するか否かを判断する設定値変更判断ステップと、
     前記処理スケジュールのいずれかの時間において前記設定値変更条件が成立する場合、前記設定値変更条件が成立する時間における前記個別排気流量調整ユニットの排気流量設定値が、前記可動部材が前記原点位置に位置しているときの設定値である基準値よりも大きな値に設定されるように、前記処理スケジュールの各時間における前記個別排気流量調整ユニットの排気流量設定値を規定する個別排気スケジュールを作成する個別排気スケジュール作成ステップと、
     前記処理スケジュールと並行して前記個別排気スケジュールを実行する個別排気スケジュール実行ステップと、を含む、基板処理装置の制御方法。
  18.  請求項17に記載の基板処理装置の制御方法に係る基板処理装置の制御装置によって実行されるコンピュータプログラムを記録したコンピュータ読取可能な記録媒体において、
     コンピュータとしての前記制御装置に前記基板処理装置の制御方法を実行させるようにステップ群が組み込まれたコンピュータプログラムを記録した記録媒体。
     
PCT/JP2014/080806 2013-12-18 2014-11-20 基板処理装置、基板処理装置の制御方法、および記録媒体 WO2015093226A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013261468A JP6268469B2 (ja) 2013-12-18 2013-12-18 基板処理装置、基板処理装置の制御方法、および記録媒体
JP2013-261468 2013-12-18

Publications (1)

Publication Number Publication Date
WO2015093226A1 true WO2015093226A1 (ja) 2015-06-25

Family

ID=53402581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080806 WO2015093226A1 (ja) 2013-12-18 2014-11-20 基板処理装置、基板処理装置の制御方法、および記録媒体

Country Status (3)

Country Link
JP (1) JP6268469B2 (ja)
TW (1) TWI618170B (ja)
WO (1) WO2015093226A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108200778A (zh) * 2015-11-06 2018-06-22 株式会社斯库林集团 基板处理装置的排程制作方法以及排程制作程序

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6489524B2 (ja) * 2015-08-18 2019-03-27 株式会社Screenホールディングス 基板処理装置
US10453721B2 (en) 2016-03-15 2019-10-22 Applied Materials, Inc. Methods and assemblies for gas flow ratio control
JP6712482B2 (ja) * 2016-03-31 2020-06-24 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP6890992B2 (ja) * 2017-02-10 2021-06-18 株式会社Screenホールディングス 基板処理装置及び基板処理方法
JP7040870B2 (ja) * 2017-07-28 2022-03-23 株式会社Screenホールディングス 基板処理装置、及び基板処理装置の部品検査方法
JP6985964B2 (ja) * 2018-03-23 2021-12-22 株式会社Screenホールディングス 基板処理装置用のピトー管式流量計、基板処理装置、および基板処理方法
JP7027284B2 (ja) * 2018-09-07 2022-03-01 芝浦メカトロニクス株式会社 基板処理装置及び基板処理方法
CN112992741A (zh) * 2021-03-04 2021-06-18 长江存储科技有限责任公司 半导体处理装置及排气方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224213A (ja) * 1989-12-26 1991-10-03 Nec Corp 低圧cvd装置
JPH09148231A (ja) * 1995-11-16 1997-06-06 Dainippon Screen Mfg Co Ltd 回転式基板処理装置
JP2003213422A (ja) * 2002-01-24 2003-07-30 Nec Corp 薄膜の形成装置及びその形成方法
JP2009246007A (ja) * 2008-03-28 2009-10-22 Epson Toyocom Corp プラズマ処理方法およびプラズマ処理装置
JP2009277789A (ja) * 2008-05-13 2009-11-26 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2011044446A (ja) * 2009-08-19 2011-03-03 Tokyo Electron Ltd 圧力制御機器、圧力制御方法および基板処理装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5312856B2 (ja) * 2008-06-27 2013-10-09 大日本スクリーン製造株式会社 基板処理装置
JP5257328B2 (ja) * 2009-11-04 2013-08-07 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記憶媒体
US20130295768A1 (en) * 2010-12-22 2013-11-07 Hitachi Kokusai Electric Inc. Substrate processing apparatus and method of manufacturing semiconductor device
KR101652613B1 (ko) * 2012-03-07 2016-08-30 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치, 반도체 장치의 제조 방법, 기판 처리 방법 및 프로그램

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224213A (ja) * 1989-12-26 1991-10-03 Nec Corp 低圧cvd装置
JPH09148231A (ja) * 1995-11-16 1997-06-06 Dainippon Screen Mfg Co Ltd 回転式基板処理装置
JP2003213422A (ja) * 2002-01-24 2003-07-30 Nec Corp 薄膜の形成装置及びその形成方法
JP2009246007A (ja) * 2008-03-28 2009-10-22 Epson Toyocom Corp プラズマ処理方法およびプラズマ処理装置
JP2009277789A (ja) * 2008-05-13 2009-11-26 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2011044446A (ja) * 2009-08-19 2011-03-03 Tokyo Electron Ltd 圧力制御機器、圧力制御方法および基板処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108200778A (zh) * 2015-11-06 2018-06-22 株式会社斯库林集团 基板处理装置的排程制作方法以及排程制作程序
CN108200778B (zh) * 2015-11-06 2022-06-14 株式会社斯库林集团 基板处理装置的排程制作方法以及存储介质

Also Published As

Publication number Publication date
JP2015119042A (ja) 2015-06-25
JP6268469B2 (ja) 2018-01-31
TWI618170B (zh) 2018-03-11
TW201528412A (zh) 2015-07-16

Similar Documents

Publication Publication Date Title
JP6268469B2 (ja) 基板処理装置、基板処理装置の制御方法、および記録媒体
JP6057334B2 (ja) 基板処理装置
JP6229933B2 (ja) 処理カップ洗浄方法、基板処理方法および基板処理装置
US10658203B2 (en) Substrate processing apparatus and processing cup cleaning method
KR102041058B1 (ko) 기판 처리 장치
JP2014197592A (ja) 基板処理装置
US11260436B2 (en) Substrate processing apparatus and substrate processing method
JP6363876B2 (ja) 基板処理方法および基板処理装置
KR102182116B1 (ko) 기판 처리 방법 및 기판 처리 장치
US10717117B2 (en) Substrate processing apparatus and substrate processing method
US20200227285A1 (en) Substrate processing device and substrate processing method
KR20220153502A (ko) 기판 처리 장치 및 기판 처리 방법
US11154913B2 (en) Substrate treatment method and substrate treatment device
US10814251B2 (en) Substrate processing method and substrate processing apparatus
US10262876B2 (en) Substrate processing apparatus
TWI783187B (zh) 基板處理方法及基板處理裝置
JP2016012629A (ja) 基板処理方法および基板処理装置
JP6016096B2 (ja) 基板処理装置
JP2022041256A (ja) 基板処理装置
JP2012244128A (ja) 液処理装置、液処理方法
JP2018163898A (ja) 基板処理装置
JP2023122439A (ja) 基板処理装置および基板処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14871031

Country of ref document: EP

Kind code of ref document: A1