WO2015087967A1 - 銀粒子の製造方法及び当該方法により製造される銀粒子 - Google Patents

銀粒子の製造方法及び当該方法により製造される銀粒子 Download PDF

Info

Publication number
WO2015087967A1
WO2015087967A1 PCT/JP2014/082822 JP2014082822W WO2015087967A1 WO 2015087967 A1 WO2015087967 A1 WO 2015087967A1 JP 2014082822 W JP2014082822 W JP 2014082822W WO 2015087967 A1 WO2015087967 A1 WO 2015087967A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
amine
silver particles
compound
carbonate
Prior art date
Application number
PCT/JP2014/082822
Other languages
English (en)
French (fr)
Inventor
久保 仁志
勇一 牧田
優輔 大嶋
英和 松田
淳一 谷内
紀章 中村
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Priority to KR1020187009848A priority Critical patent/KR20180038078A/ko
Priority to CN201480067173.3A priority patent/CN105813782B/zh
Priority to DE112014005640.5T priority patent/DE112014005640B4/de
Priority to KR1020167016391A priority patent/KR102085744B1/ko
Priority to US15/101,859 priority patent/US10486235B2/en
Publication of WO2015087967A1 publication Critical patent/WO2015087967A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/054Particle size between 1 and 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/056Particle size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a method for producing silver particles. Specifically, the present invention relates to a method for producing silver particles having a medium average particle diameter of 20 nm to 200 nm, and producing silver particles having a uniform particle diameter while controlling the size.
  • Silver (Ag) has excellent electrical conductivity and light reflectivity, and also has unique properties such as catalytic action and antibacterial action. Therefore, electrode / wiring material, adhesive / bonding material, heat conduction material, conductivity It is a metal that is expected to be used for various industrial applications such as adhesives, conductive bonding materials, reflective film materials, catalysts, and antibacterial materials.
  • As an application mode of silver for these various uses there is one in which silver particles are dispersed and suspended in an appropriate solvent. For example, this metal paste is formed by pasting silver particles into electrodes / wiring formation, adhesives / bonding materials, conductive adhesives / conductive bonding materials, and heat conductive materials of wiring boards mounted on electronic components such as semiconductor devices.
  • the desired electrode, wiring, joint, and pattern can be formed by applying and baking.
  • a generally known method for producing silver particles is a liquid phase reduction method.
  • a silver compound as a precursor is dissolved in a solvent, and silver is precipitated by adding a reducing agent thereto.
  • a compound called a protective agent it is usual to add a compound called a protective agent.
  • the protective agent binds to the silver particles that have been reduced and deposited, and suppresses the silver particles from contacting each other, thereby preventing aggregation of the silver particles.
  • the method for producing silver particles by the liquid phase reduction method can produce silver particles efficiently by adjusting the concentration of the silver compound in the solvent, the type and amount of the reducing agent, and further selecting an appropriate protective agent.
  • silver particles produced by the liquid phase reduction method tend to have a relatively large particle size, and the particle size distribution tends to widen due to the concentration gradient of the reactant in the solvent.
  • Such silver particles having a large particle size cannot form electrodes or wirings on the order of several microns, and cannot cope with the recent miniaturization of semiconductor devices and the like.
  • unevenness in the film thickness tends to occur, and thus it can be said that application to applications requiring smoothness is difficult.
  • the thermal decomposition method which makes a silver complex a precursor as a manufacturing method of the silver particle replaced with a liquid phase reduction method is reported (patent document 1).
  • This method basically utilizes the characteristics of a silver compound having thermal decomposability such as silver oxalate (Ag 2 C 2 0 4 ), and forms a complex between the silver compound and an organic compound serving as a protective agent. This is a method of heating this as a precursor to obtain silver particles.
  • an amine is added as a protective agent to silver oxalate to form a silver-amine complex, which is heated at a predetermined temperature and thermally decomposed to produce silver particles.
  • the above thermal decomposition method of silver complex extremely fine silver fine particles of several nanometers can be produced, and the particle diameter can be made relatively uniform.
  • the silver particles obtained by this method are conversely too small in particle size and may be difficult to apply depending on the application.
  • an adhesive / bonding material, a conductive adhesive / conductive bonding material, or a heat conductive material cracks are likely to occur due to volume shrinkage during firing, and there is a concern about disconnection or peeling. .
  • the present invention provides a method for producing silver particles, which can control the particle size within a range of an average particle size of 20 nm to 200 nm and can produce silver particles having a uniform particle size. To do.
  • the inventors of the present invention as a silver particle production method for solving the above-mentioned problems, first studied based on a silver particle production method using a pyrolysis method. This is because, as described above, it is considered that the thermal decomposition method can adjust the particle size more than the liquid phase reduction method, and can produce silver particles having a relatively uniform particle size. Then, the present inventors considered that in the thermal decomposition method, the thermal decomposition characteristics of the silver compound used as a raw material affect the silver particles having a particle diameter to be generated.
  • the thermal decomposition method in the said patent document 1 the manufacture example of the silver particle using silver oxalate as a silver compound is reported.
  • the complex formed from silver oxalate is due to the fact that it easily decomposes to form metallic silver and, after decomposition, has the advantage of releasing carbon dioxide and leaving no impurities.
  • the amine complex produced from silver oxalate is easily pyrolyzed, which means that the nucleation rate during silver particle precipitation is relatively high.
  • the precipitation of silver particles proceeds by a combination of nucleation and nucleation by complex decomposition at the periphery of the nucleus, but when the nucleation rate is high, the particle size of the silver particles tends to be small.
  • the silver particles produced by the conventional method are very small depending on the silver compound (silver oxalate) that is the raw material. It is considered that a silver compound having a characteristic may be applied.
  • silver carbonate (Ag 2 CO 3 ) can be used in place of silver oxalate as a raw silver compound for the thermal decomposition method. This is because silver carbonate has a decomposition temperature slightly higher than that of silver oxalate, which makes it possible to produce silver particles having a relatively large particle size.
  • silver carbonate when silver carbonate is applied as a silver compound as a raw material, silver particles are not always deposited smoothly from here. This is based on the decomposition characteristics of silver carbonate.
  • silver in the decomposition process of silver carbonate, silver is not immediately generated from silver carbonate, but first silver oxide (AgO) is generated, and then silver is passed through. The two-stage decomposition phenomenon of generating lucidly appears (see FIG. 6 described later).
  • an amine complex produced from a silver compound is used as a precursor.
  • the present inventors have studied a method for forming an amine complex that can rapidly generate silver particles by heating while using silver carbonate as a raw material compound. As a result, the inventors have found that silver particles having a target particle size range can be produced by utilizing an amine complex obtained by reacting a limited range of amine compounds with silver carbonate, and have arrived at the present invention.
  • the present invention comprises a step of producing a silver-amine complex as a precursor by mixing a thermally decomposable silver compound and an amine compound, and a step of depositing silver particles by heating the silver-amine complex.
  • a silver-amine complex as a precursor by mixing a thermally decomposable silver compound and an amine compound
  • a step of depositing silver particles by heating the silver-amine complex silver carbonate is used as the silver compound, and the silver compound is mixed with an amine compound represented by the following formula, wherein the amine compound is a primary amino group.
  • R is a substituent satisfying the condition (1) or (2).
  • (1) A hydrocarbon group having a straight chain structure or a branched or cyclic structure having 5 to 10 carbon atoms. However, R may partially contain oxygen. R may partially contain a primary amino group, a secondary amino group, or a tertiary amino group.
  • (2) A hydrocarbon group having a straight chain structure having 4 carbon atoms. However, R may partially contain oxygen. R may partially contain a primary amino group or a secondary amino group.
  • the present invention is a method for producing silver particles using silver carbonate as a heat decomposable silver compound as a raw material, producing an amine complex reacted with a specific amine, and using this as a precursor.
  • the present invention comprises a step of producing a silver-amine complex by reacting silver carbonate and an amine, and a step of depositing silver particles by heating the silver-amine complex.
  • the raw material silver carbonate may be a commercial product, it may be produced for carrying out the present invention.
  • This silver carbonate is preferably in a dry state (water content of 1% by mass or less).
  • silver carbonate has a property of being decomposed by light and may partially contain silver oxide unless stored in a light-shielded state. When such low-purity silver carbonate is used, the yield of silver particles may be deteriorated. Therefore, the silver carbonate used in the present invention preferably has a silver oxide content of 3% by mass or less.
  • the amine to be reacted with silver carbonate is an amine compound (H 2 N—R) whose terminal is a primary amino group, and the substituent R is a hydrocarbon group having 5 or more carbon atoms or a straight chain having 4 carbon atoms. It is an amine compound that is a hydrocarbon group of a chain. Thus based on the number of carbons.
  • the amine to be reacted with silver carbonate is limited to an amine having 3 or less carbon atoms, or when a branched amine having 4 carbon atoms is applied, the reaction with silver carbonate is too fast, This is because complex formation is localized and a uniform complex cannot be obtained, and suitable silver particles cannot be produced.
  • the type of amine is limited to those whose terminal amino group is a primary amino group. Even if an amine compound composed only of a secondary amine or a tertiary amine is reacted, the complex formation reaction proceeds. This is because an unreacted portion remains difficult and silver particles are not precipitated even when heated.
  • a preferred example is an amine having a primary amino group as a terminal and a hydrocarbon group having 5 or more carbon atoms bonded thereto.
  • this amine compound is preferable is that the reactivity with silver carbonate is within an appropriate range and uniform complex formation is observed.
  • the reason why the upper limit of the carbon number is 10 is that when amines having a large number of carbon atoms are used, the formation of a silver carbonate-amine complex hardly occurs and silver particles are not generated.
  • the substituent of the amine compound having 5 or more carbon atoms is a hydrocarbon group having a linear structure, a branched structure or a cyclic structure, and examples thereof include an alkyl group having 5 or more carbon atoms and an aryl group.
  • this substituent may contain oxygen in the skeleton of the hydrocarbon group.
  • a part of the structural formula may contain a hydroxyl group, a methoxy group, an ethoxy group, or the like. Specific examples include 3-ethoxypropylamine, hexylamine, benzylamine, octylamine, 2-ethylhexylamine, phenethylamine, 6-amino-1-hexanol and the like.
  • the amino group contained in the hydrocarbon group may be a primary amino group, a secondary amino group, or a tertiary amino group.
  • Specific examples of such amine compounds containing primary to tertiary amino groups in addition to the terminal primary amino group include 3-dimethylaminopropylamine, 3-diethylaminopropylamine, methyliminobispropylamine, 3 -(2-hydroxyethylamino) propylamine, 2-aminomethylpiperidine, iminobispropylamine and the like.
  • the substituent is a hydrocarbon group having a linear structure of 4 carbon atoms
  • a hydrocarbon group having a branched structure is not applicable.
  • An amine compound having a branched structure is difficult to undergo a complex formation reaction, and silver particles cannot be obtained.
  • the amine compound having 4 carbon atoms may contain oxygen in the skeleton of the hydrocarbon group, and may contain, for example, a hydroxyl group, a methoxy group, an ethoxy group, or the like. Further, it may contain an amino group (primary amino group, secondary amino group). Specific examples of such an amine compound having 4 carbon atoms include butylamine, 3-methoxypropylamine, 1,4-diaminobutane, 4-aminobutanol, 3-methylaminopropylamine and the like.
  • the range of amine compounds that can form an amine complex suitable for silver particle precipitation by reacting with silver carbonate is clarified.
  • Each of the above amine compounds can form a complex alone with silver carbonate, and it is not necessary to mix a plurality of amine compounds.
  • the mixing ratio of silver carbonate and amine compound is preferably 1.5 times the molar amount of the amine compound with respect to the number of moles of silver in the silver carbonate. If this molar ratio is less than 1.5, unreacted silver compounds may remain, sufficient silver particles cannot be produced, and the particle size distribution of the silver particles tends to vary.
  • the upper limit (the upper limit amount of amine) of the above molar ratio is not particularly required to be specified. However, since excessive amine may affect the purity of silver particles, it is preferably 10 times the molar amount or less.
  • a solvent may be used, but an amine complex can be formed without a solvent.
  • the complex formation can be performed at normal temperature and pressure. After mixing the silver carbonate and the amine compound, it is preferable to stir so that a uniform reaction occurs.
  • silver particles are precipitated by heating the reaction system.
  • this heating step it is preferable to heat at a heating rate of 2.5 to 50 ° C./min until the reaction system reaches the set heating temperature. If the temperature rise is too slow, nucleation is prioritized over nucleation and coarse silver particles may be produced.
  • complex formation can be performed at normal temperature and it is preferable to heat up from the state after complex formation.
  • the heating temperature in the heating process is set to be equal to or higher than the decomposition temperature of the silver-amine complex.
  • the decomposition temperature of the silver-amine complex varies depending on the type of amine coordinated to the silver compound, but the heating temperature is determined in consideration of the decomposition temperature of the amine complex generated by the amine compound applied in the present invention.
  • the temperature is preferably from 65 to 160 ° C. Particularly preferred is 100 ° C. to 160 ° C.
  • the reaction system is heated and held for 10 minutes to 2 hours to precipitate silver particles.
  • the present invention is useful in that silver particles having a medium particle size of 20 nm to 200 nm, which cannot be produced by conventional methods, can be produced by using silver carbonate as a raw material. It is also useful in that silver particles having a uniform particle size can be produced while performing. The particle size can be adjusted by adjusting the temperature increase rate until the heating temperature is reached. Silver particles having a smaller particle size can be produced as the heating rate is increased.
  • the silver particles having the target particle size range of the present application preferably have a heating rate of 2.5 to 50 ° C./min as described above.
  • the amine carbonate used as an impurity may remain slightly.
  • This amine carbonate is considered to be produced by the reaction of carbonic acid and amine generated when the silver-amine complex is decomposed.
  • the amine carbonate may be included, when the silver particles are applied as paste or the like and applied and fired, the amine carbonate may be decomposed and the volume of the fired body may vary. Therefore, it is preferable that the amine carbonate is excluded, and specifically, the amine carbonate is preferably 5% by mass or less.
  • the amine carbonate can be easily removed by washing the produced silver particles. This washing is preferably performed by dissolving and removing the amine carbonate with an alcohol such as methanol. The amine carbonate content can be reduced by repeating the washing.
  • the silver particles produced by the above steps can be stored and used in the form of ink, paste, slurry, or dried powder dispersed in an appropriate solvent.
  • the method for producing silver particles according to the present invention can easily control the particle size of the silver particles to be generated.
  • the silver particles produced at this time are uniform in size.
  • the amine compounds used for forming the silver-amine complex in this embodiment are as follows.
  • the amine compound was added in an amount of 10 mmol, 12 mmol, 15 mmol, 20 mmol, 30 mmol, that is, a 1-fold, 1.2-fold, 1.5-fold, 2-fold, 3-fold molar amount relative to silver in silver carbonate. Addition of the amine compound was carried out at room temperature, whereby a creamy silver-amine complex was formed.
  • the amine complex was stirred for 10 to 30 minutes and then heated to precipitate silver particles.
  • the temperature is increased from room temperature to 130 ° C. at a rate of temperature increase of 2, 5, 10, 20, 30, 40 ° C./min.
  • methanol was added to the reaction solution for washing, and this was centrifuged. This washing and centrifugation were performed twice. Silver particles were obtained by the above operation.
  • the collected silver particles were examined for their particle size (average particle size) and particle size distribution.
  • the silver particles were observed by SEM and photographed, the particle size of the silver particles in the image was measured (about 100 to 200 particles), and the average value was calculated.
  • Table 1 shows the evaluation results of the silver particles produced in this embodiment.
  • silver particles having a medium particle size of 20 nm to 200 nm can be produced by using silver carbonate as a raw material (No. 3 to No. 5, No. 7 to No. 12, No. 14, No. 17 to No. 21).
  • silver carbonate As a raw material
  • the amine compound suitable for the present invention in which the substituent R is a hydrocarbon group having 5 to 10 carbon atoms is applied, silver particles having a target particle size and particle size distribution can be produced. (No. 3 to No. 5, No. 7 to No. 12, No. 14, No. 17 to No. 21).
  • the amine compound (No. 1) having 3 carbon atoms and the amine compound (No. 13) having 12 carbon atoms generate coarse silver particles due to the excess or deficiency of the carbon number, or the complex formation reaction proceeds. This is not possible because silver particles cannot be obtained.
  • the availability of silver particles depends on the structure of the amine compound.
  • a silver compound having a suitable particle size and particle size distribution can be produced with an amine compound having a linear substituent (No. 3, No. 4), but a suitable silver particle is produced with a branched amine compound. It cannot be done (No. 22, No. 23).
  • isobutylamine, etc. the reactivity is high, and since the formation and decomposition reaction of silver amine complex occur simultaneously at the moment of addition, the reaction cannot be controlled, and the particle size distribution of silver particles is very wide including large particles of several microns. turn into. This does not correspond to the targeted medium particle size range of 20 nm to 200 nm.
  • the hydroxyl group and the methoxy group may be included in the substituent (No. 5, No. 14).
  • the cyclic hydrocarbon may be included (No. 8).
  • an amino group may be included in the structural formula of the substituent, and the amino group in the substituent may be a secondary or tertiary amino group (No. 14 to No. 21). .
  • the amount of amine compound to be reacted with silver carbonate is preferably 1.5 times the molar amount or more of silver in silver carbonate (No. 6, No. 15). .
  • the silver particle becomes coarse at about 2 ° C./min for the rate of temperature rise in the heating step, it is preferable to exceed this (No. 2).
  • the particle size adjustment of a silver particle for example, it is No. 9 and no. From the comparison with 10, it can be seen that the temperature can be adjusted by the heating rate.
  • FIG. 2 shows the No. in this embodiment. 9, no. 10, no. 19, no. 20 is an SEM photograph of silver particles produced in No. 20.
  • FIG. 1, no. 15, no. 22, no. 2 is an SEM photograph of silver particles produced in 24.
  • FIG. 9, no. 10, no. 20 shows the particle size distribution of 20 silver particles. The particle size distribution of 22 silver particles is shown.
  • No. Silver particles produced using a suitable amine compound such as No. 9 have a uniform particle size. In No. 22, coarse silver particles of 300 nm or more are generated, and it can be confirmed that the particle diameters are not uniform.
  • TG-DTA analysis mass-differential thermal analysis
  • FIG. 6 shows the results of TG-DTA analysis of silver carbonate, silver-amine complex (No. 19), and silver particles. From FIG. 6, the mass loss near 200 ° C. and the mass loss near 400 ° C. are observed for the silver carbonate as the raw material. These mass reductions indicate a change from silver carbonate to silver oxide in the former and a change from silver carbonate to silver in the latter. As described above, silver carbonate exhibits a two-stage decomposition behavior. On the other hand, the amine complex starts to decompose at around 110 ° C. and changes to silver without exhibiting a two-stage decomposition behavior like silver carbonate. It can be said that the decomposition behavior was improved by complex formation with an appropriate amine compound.
  • uniform silver particles can be produced while controlling the particle size.
  • the present invention relates to silver particles used in various applications such as electrodes / wiring materials, adhesives / bonding materials, conductive adhesives / conductive bonding materials, thermal conductive materials, reflective film materials, catalysts, antibacterial materials, etc. High quality products can be manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

 本発明は、熱分解性を有する銀化合物とアミン化合物とを混合して前駆体である銀-アミン錯体を製造する工程と、前記銀-アミン錯体をその分解温度以上の加熱温度で加熱して銀粒子を析出させる工程と、を含む銀粒子の製造方法において、前記銀化合物として炭酸銀を用い、前記アミン化合物として、少なくとも一方の末端が1級アミノ基であり、炭素数4~10の所定の炭化水素基Rを含むアミン化合物を混合して銀-アミン錯体を製造する銀粒子の製造方法である。平均粒径20nm~200nmの範囲内で粒径を制御することができ、粒径の揃った銀粒子を製造することができる方法を提供する。HN-R

Description

銀粒子の製造方法及び当該方法により製造される銀粒子
 本発明は、銀粒子の製造方法に関する。詳しくは、20nm~200nmの中程度の平均粒径を有する銀粒子を製造することのできる方法であって、大きさを制御しつつ、粒径の揃った銀粒子を製造する方法に関する。
 銀(Ag)は、優れた導電性、光反射率を有すると共に、触媒作用や抗菌作用等の特異な特性も有することから、電極・配線材料、接着材・接合材、熱伝導材、導電性接着材・導電性接合材、反射膜材料、触媒、抗菌材等の各種の工業的用途への利用が期待される金属である。これら各種用途への銀の利用態様として、銀粒子を適宜の溶媒に分散・懸濁させたものがある。例えば、半導体デバイス等の電子部品に実装される配線板の電極・配線形成や接着材・接合材、導電性接着材・導電性接合材、熱伝導材において、銀粒子をペースト化し、この金属ペーストを塗布・焼成することで所望の電極・配線・接合部・パターンを形成することができる。
 銀粒子の製造方法として一般に知られているのは液相還元法である。液相還元法による銀粒子の製造方法では、溶媒に前駆体となる銀化合物を溶解し、ここに還元剤を添加することで銀を析出させる。このとき、析出する銀粒子が凝集して粗大化するのを抑制するため、保護剤と称される化合物を添加するのが通例である。保護剤は、還元析出した銀粒子に結合し、銀粒子が相互に接触するのを抑制するため、銀粒子の凝集防止となる。
 液相還元法による銀粒子の製造方法は、溶媒中の銀化合物濃度や還元剤の種類及び添加量の調整、更に、保護剤の適切な選択により、効率的に銀粒子を製造することができる。しかし、液相還元法により製造される銀粒子は、比較的粒径が大きくなる傾向があり、また、溶媒中の反応物質の濃度勾配により粒径分布が広くなる傾向がある。かかる大粒径の銀粒子では、数ミクロンオーダーの電極や配線を形成することができず、近年の半導体機器等の微細化に対応することができない。また、粒径分布が広範な銀粒子を使用すると、膜厚にムラが生じる傾向があるため、平滑さが要求される用途への適用は困難であるといわざるを得ない。
 そこで、液相還元法に替わる銀粒子の製造方法として、銀錯体を前駆体とする熱分解法が報告されている(特許文献1)。この方法は、基本としてシュウ酸銀(Ag)等の熱分解性を有する銀化合物の特性を利用するものであり、銀化合物と保護剤となる有機化合物との錯体を形成し、これを前駆体として加熱して銀粒子を得る方法である。上記特許文献1では、シュウ酸銀に保護剤としてアミンを添加して銀-アミン錯体を形成し、これを所定温度で加熱して熱分解させて銀粒子を製造している。
特開2010-265543号公報
 上記の銀錯体の熱分解法によれば、数nmの極めて微小な銀微粒子を製造可能であり、比較的粒径の揃ったものとすることができる。しかし、この方法で得られる銀粒子は、逆に粒径が小さすぎて用途によっては適用が困難な場合がある。例えば、これを配線用材料、接着材・接合材、導電性接着材・導電性接合材、熱伝導材として利用した場合、焼成時の体積収縮によるクラックが生じ易くなり断線や剥離が懸念される。
 上述の通り、銀粒子の利用分野は広がる傾向にあり、そのため数nmの微小な銀微粒子だけでなく、用途によっては数十~数百nm程度の中程度に小さな粒径を有する銀粒子も必要である。この要求に応えるためには、任意の粒径で銀粒子を制御しつつ製造する方法が必要となる。
 この点、上記した従来の熱分解法による銀粒子の製造方法は、粒径調整という観点からは十分に対応することができない。上記特許文献では、銀化合物としてシュウ酸銀を用いたアミン錯体から製造された銀粒子の物性が具体的に検討されているが、この銀粒子はいずれも粒径数nm~20nmの範囲内に止まり、これより大きい中程度の粒径を有する銀粒子を製造するのは困難であると見受けられる。
 そこで、本発明は、銀粒子の製造方法について、平均粒径20nm~200nmの範囲内で粒径を制御することができ、更に、粒径の揃った銀粒子を製造することができる方法を提供する。
 本発明者等は、上記課題を解決するための銀粒子の製造方法として、まず、熱分解法による銀粒子製造方法を基礎に検討を行うこととした。上記の通り、熱分解法では、液相還元法よりは粒径調整が可能であり、更に比較的粒径の揃った銀粒子製造が可能であると考えたからである。そして、本発明者等は、熱分解法においては原料となる銀化合物の熱分解特性が生成する粒径の銀粒子に影響を及ぼすと考察した。ここで、上記特許文献1における熱分解法では、銀化合物としてシュウ酸銀を用いた銀粒子の製造例が報告されている。シュウ酸銀から生成される錯体は、容易に分解し金属銀を生成することに加え、分解後は二酸化炭素を放出して不純物を残留させないという利点を有することによるものである。
 シュウ酸銀から生成されるアミン錯体は容易に熱分解するということであるが、これは銀粒子析出の際の核生成速度が比較的高いことを意味する。銀粒子の析出は、核生成と核周辺部での錯体分解による核成長との組合せで進行するが、核生成速度が高い場合、銀粒子の粒径は小さいものになる傾向がある。つまり、従来法で製造される銀粒子が微小となるのは、原料である銀化合物(シュウ酸銀)に依存したものであり、粒径の大きい銀粒子製造のためには、それに応じた分解特性の銀化合物を適用すれば良いと考えられる。そこで、本発明者等は、熱分解法の原料銀化合物として、シュウ酸銀に替えて炭酸銀(AgCO)の適用の可否を検討することとした。炭酸銀は、シュウ酸銀よりも分解温度が若干高く、これにより比較的大粒径の銀粒子を製造することができると考えたことによる。
 もっとも、原料となる銀化合物として炭酸銀を適用した場合、ここからスムーズに銀粒子が析出するとは限らない。これは、炭酸銀の分解特性を考慮したものであるが、炭酸銀の分解過程においては、炭酸銀から直ちに銀を生成するものではなく、まず酸化銀(AgO)を生成し、これを経て銀を生成するという2段階の分解現象が明確に発現する(後述する図6参照)。熱分解法による銀粒子製造では、銀化合物から生成されるアミン錯体を前駆体とするが、このアミン錯体までも段階的な分解挙動を示すことは好ましいとはいえない。
 そこで、本発明者等は炭酸銀を原料化合物としつつ、加熱により速やかに銀粒子を生成することができるアミン錯体を形成するための方法を検討することとした。その結果、限定された範囲のアミン化合物を炭酸銀に反応させて得られるアミン錯体を利用することで、目的とする粒径範囲の銀粒子を製造することができること見出し、本発明に想到した。
 即ち、本発明は、熱分解性を有する銀化合物とアミン化合物とを混合して前駆体である銀-アミン錯体を製造する工程と、前記銀-アミン錯体を加熱して銀粒子を析出させる工程と、を含む銀粒子の製造方法において、前記銀化合物として炭酸銀を用い、前記アミン化合物として、下記式で示される、少なくとも一方の末端が1級アミノ基であるアミン化合物を混合して前記銀-アミン錯体を製造する銀粒子の製造方法である。
Figure JPOXMLDOC01-appb-C000002
 式中、Rは(1)又は(2)の条件を満たす置換基である。
(1)炭素数5以上10以下の直鎖構造又は分枝構造若しくは環状構造を有する炭化水素基。但し、Rは、その一部において酸素を含んでいても良い。また、Rは、その一部において1級アミノ基又は2級アミノ基若しくは3級アミノ基を含んでいても良い。
(2)炭素数4の直鎖構造の炭化水素基。但し、Rは、その一部において酸素を含んでいても良い。また、Rは、その一部において1級アミノ基又は2級アミノ基を含んでいても良い。
 上記の通り、本発明は、原料となる熱分解性銀化合物として炭酸銀を用い、特定のアミンを反応させたアミン錯体を製造しこれを前駆体とする銀粒子の製造方法である。本発明は、炭酸銀とアミンを反応させて銀-アミン錯体を製造する工程と、この銀-アミン錯体を加熱して銀粒子を析出させる工程からなる。以下、本発明の各構成について詳細に説明する。
 原料である炭酸銀は、市販品であっても良いが、本発明実施のために製造しても良い。この炭酸銀は、乾燥状態(水分量1質量%以下)のものが好ましい。また、炭酸銀は光によっても分解する特性があり、遮光状態で保管されていないと部分的に酸化銀を含む場合がある。かかる純度の低い炭酸銀を使用すると、銀粒子の収率が悪化する可能性があることから、本発明で使用する炭酸銀は、酸化銀の含有量が3質量%以下のものが好ましい。
 そして、炭酸銀と反応させるアミンとしては、末端が1級アミノ基となるアミン化合物(HN-R)であり、置換基Rが、炭素数5以上の炭化水素基又は炭素数4の直鎖の炭化水素基であるアミン化合物である。このように炭素数に基づいて。炭酸銀と反応させるアミンを限定するのは、炭素数が3以下のアミン、又は、炭素数が4であっても分枝構造のアミンを適用した場合、炭酸銀との反応が速過ぎて、錯体形成が局所的となり均一な錯体を得ることができず、好適な銀粒子を生成することができないからである。また、アミンの種類として、末端のアミノ基が1級アミノ基であるものに限定するのは、2級アミン又は3級アミンのみで構成されるアミン化合物を反応させても、錯体形成反応が進行し難く未反応部分が残り、加熱しても銀粒子を析出させないからである。
 本発明に係る方法で好ましいアミン化合物の具体的態様についてより詳細に説明すると、まず、好ましいものとして挙げられるのが、1級アミノ基を末端とし、炭素数5以上の炭化水素基が結合するアミン化合物である。このアミン化合物が好ましい理由としては、炭酸銀との反応性が適正な範囲であり均一な錯体形成が見られるからである。尚、炭素数の上限を10とするのは、炭素数が多いアミン類を使うと炭酸銀-アミン錯体の形成が起き難く、銀粒子を生成しないからである。
 この炭素数5以上のアミン化合物の置換基は、直鎖構造又は分枝構造若しくは環状構造を有する炭化水素基であり、例えば、炭素数5以上のアルキル基、アリール基等である。但し、この置換基は、炭化水素基の骨格に酸素を含むものでも良い。例えば、その構造式の一部に水酸基、メトキシ基、エトキシ基等を含んでも良い。具体的には、3-エトキシプロピルアミン、ヘキシルアミン、ベンジルアミン、オクチルアミン、2-エチルヘキシルアミン、フェンエチルアミン、6-アミノ-1-ヘキサノール等が挙げられる。
 また、置換基Rとして構造式中にアミノ基を含んでいるものも効果的である。この炭化水素基に含まれるアミノ基については、1級アミノ基、2級アミノ基、3級アミノ基のいずれでも良い。このような、末端の1級アミノ基に加えて1級~3級アミノ基を含むアミン化合物の具体例としては、3-ジメチルアミノプロピルアミン、3-ジエチルアミノプロピルアミン、メチルイミノビスプロピルアミン、3-(2-ヒドロキシエチルアミノ)プロピルアミン、2-アミノメチルピペリジン、イミノビスプロピルアミン等が挙げられる。
 そして、本発明で適用可能なアミン化合物としては、置換基が炭素数4の直鎖構造である炭化水素基であるものも有用である。但し、この場合、炭化水素基が分枝構造のものは適用範囲外となる。分枝構造を有するアミン化合物は、錯体形成反応が進行し難く、銀粒子を得ることができない。この炭素数4のアミン化合物についても、炭化水素基の骨格に酸素を含んでも良く、例えば、水酸基、メトキシ基、エトキシ基等を含んでいても良い。また、アミノ基(1級アミノ基、2級アミノ基)を含んでいても良い。このような炭素数4のアミン化合物の具体例としては、ブチルアミン、3-メトキシプロピルアミン、1,4-ジアミノブタン、4-アミノブタノール、3-メチルアミノプロピルアミン等が挙げられる。
 以上の通り、本発明では、炭酸銀と反応することで銀粒子析出に好適なアミン錯体を形成できるアミン化合物の範囲を明確にするものである。上記の各アミン化合物は、炭酸銀と単独で錯体形成可能であり、アミン化合物を複数種混合することは不要である。
 そして、炭酸銀とアミン化合物との混合比率は、炭酸銀中の銀のモル数に対して、アミン化合物が1.5倍モル量以上とするのが好ましい。このモル比が1.5未満であると、未反応の銀化合物が残留するおそれがあり、十分な銀粒子が製造できず、また、銀粒子の粒径分布にバラつきが生じやすい。一方、上記モル比の上限値(アミンの上限量)については特に規定する必要はないが、アミン過多となると銀粒子の純度に影響を及ぼすおそれがあることから10倍モル量以下が好ましい。
 炭酸銀とアミン化合物との混合に際しては、溶媒を使用しても良いが無溶媒でもアミン錯体を生成できる。また、錯体形成は常温常圧で行うことができる。炭酸銀とアミン化合物とを混合した後は、攪拌して均一な反応が生じるようにするのが好ましい。
 以上のようにしてアミン錯体を含む反応系を形成した後、反応系を加熱することで銀粒子が析出する。この加熱工程では、反応系が設定した加熱温度に達するまで2.5~50℃/minの昇温速度で加熱することが好ましい。昇温が遅すぎる場合、核生成よりも核成長が優先され粗大な銀粒子が生成するおそれがある。尚、上記の通り、錯体形成は常温で実行可能であり、錯体形成後の状態から昇温することが好ましい。
 加熱工程の加熱温度は、銀-アミン錯体の分解温度以上で設定される。上述の通り、銀-アミン錯体の分解温度は、銀化合物に配位するアミンの種類によって相違するが、本発明で適用されるアミン化合物により生成するアミン錯体の分解温度を考慮し、加熱温度は65~160℃とするのが好ましい。特に好ましいのは100℃~160℃である。加熱工程では、上記加熱温度に達した後、10分~2時間反応系を加熱保持して銀粒子を析出させる。
 本発明は、炭酸銀を原料として利用することで、従来法では製造できない20nm~200nmの中程度の粒径の銀粒子を製造できる点で有用であるが、更に、この範囲で粒径調整を行いつつ粒径の揃った銀粒子を製造できる点においても有用である。この粒径調整は、加熱温度に達するまでの昇温速度の調整により可能となり、加熱速度を速くするほど粒径の小さい銀粒子を製造することができる。本願の目的とする粒径範囲の銀粒子は、上記した2.5~50℃/minの昇温速度が好適である。
 以上の加熱工程を経て銀粒子が析出する。この段階で製造される銀粒子においては、わずかながら不純物として使用したアミンの炭酸塩が残留することがある。このアミン炭酸塩は、銀-アミン錯体を分解させたとき発生する炭酸及びアミンが反応することにより生成するものと考えられている。アミン炭酸塩を含む場合、銀粒子をペースト等にして塗布・焼成した際にアミン炭酸塩が分解し焼成体の体積変動が生じるおそれがある。従って、このアミン炭酸塩は排除されたものが好ましく、具体的には5質量%以下としたものが好ましい。
 アミン炭酸塩は、製造された銀粒子を洗浄することで容易に除去できる。この洗浄は、メタノール等のアルコールでアミン炭酸塩を溶解除去して行うのが好ましい。洗浄は繰返し行うことでアミン炭酸塩の含有量を低減することができる。
 そして、以上の工程で製造される銀粒子は、適宜の溶媒に分散させたインク、ペースト、スラリー状態、又は乾燥させた粉末状態で保管、利用可能である。
 以上説明したように、本発明に係る銀粒子の製造方法は、生成する銀粒子の粒径を容易に制御することができる。このとき生成される銀粒子は、粒径の揃った均一なものである。
本実施形態における銀粒子製造工程を説明する図。 本実施形態におけるNo.9、No.10、No.19、No.20で製造した銀粒子のSEM写真。 本実施形態におけるNo.1、No.15、No.22、No.24で製造した銀粒子のSEM写真。 本実施形態におけるNo.9、No.10、No.20の銀粒子の粒径分布を示す図。 本実施形態におけるNo.22の銀粒子の粒径分布を示す図。 炭酸銀のTG-DTA分析結果。
第1実施形態:以下、本発明の好適な実施形態について説明する。本実施形態では、図1の工程に沿って各種条件を変更しつつ銀粒子を製造し、その性状を評価した。
 本実施形態では、原料となる銀化合物として炭酸銀(AgCO)を1.38g(銀含有量10mmol)を使用した。この炭酸銀については、遮光された乾燥機で十分に水分を除去した乾燥状態の物を使用した。
 本実施形態で銀-アミン錯体形成のために使用したアミン化合物は以下の通りである。
(a)置換基Rが炭素数3以上の炭化水素基であるアミン化合物
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
(b)置換基Rが炭素数3以上の炭化水素基であって、構造式中にアミノ基を含むアミン化合物
Figure JPOXMLDOC01-appb-C000005
(c)2級アミン又は3級アミンのみからなるアミン化合物
Figure JPOXMLDOC01-appb-C000006
 アミン化合物は、10mmol、12mmol、15mmol、20mmol、30mmol、即ち、炭酸銀中の銀に対して1倍、1.2倍、1.5倍、2倍、3倍モル量添加した。アミン化合物の添加は室温にて行い、これによりクリーム状の銀-アミン錯体が生成した。
 そして、アミン錯体を10~30分間攪拌した後、加熱して銀粒子を析出させた。この加熱工程では、室温から昇温速度2、5、10、20、30、40℃/minで130℃まで加熱し、130℃になった時点から20~30分間温度保持した後、室温で冷却し、反応液にメタノールを添加して洗浄し、これを遠心分離した。この洗浄と遠心分離は2回行った。以上の操作により銀粒子を得た。
 回収した銀粒子について、その粒径(平均粒径)と粒径分布を検討した。この評価は、銀粒子についてSEM観察、写真撮影を行い、画像中の銀粒子の粒径を測定(約100~200個)、平均値を算出した。更に、粒径分布の相対的なバラつきの指標として、「変動係数CV(%)=(標準偏差/平均粒径)×100」の式より変動係数(CV)を求め、変動係数が50%以下を「合格:○」とし、50%超を「不良:×」とした。本実施形態で製造した銀粒子の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000007
 表1から、炭酸銀を原料とすることで、20nm~200nmの中程度の粒径を有する銀粒子を製造することが確認できる(No.3~No.5、No.7~No.12、No.14、No.17~No.21)。但し、好適な銀粒子を製造するためには、銀-アミン錯体のためのアミン化合物の範囲には一定の範囲がある。
 詳細には、置換基Rが炭素数5以上10以下の炭化水素基である本発明で好適とするアミン化合物を適用する場合、目的とする粒径及び粒度分布の銀粒子を製造することができる(No.3~No.5、No.7~No.12、No.14、No.17~No.21)。これに対し、炭素数3のアミン化合物(No.1)や炭素数12のアミン化合物(No.13)は、炭素数の過不足により粗大な銀粒子が生成する、又は、錯体形成反応が進行せずに銀粒子が得られない、といった点から採用できない。
 また、置換基Rの炭素数が炭素数4の場合、アミン化合物の構造により銀粒子製造の可否が分かれる。置換基が直鎖であるアミン化合物では好適な粒径、粒度分布の銀粒子製造が可能であるが(No.3、No.4)、分枝構造のアミン化合物により好適な銀粒子を製造することはできない(No.22、No.23)。イソブチルアミン等においては反応性が高く、加えた瞬間に銀アミン錯体の形成と分解反応が同時に起こるため、反応を制御できず銀粒子の粒径分布は数ミクロンの巨大粒子を含む大変広いものとなってしまう。これは目的とする20nm~200nmの中程度の粒径範囲に合致するものではない。
 更に、炭酸銀を原料とする場合、2級アミン、3級アミンのみからなるアミン化合物では、銀-アミン錯体の生成が不完全であり、銀粒子の発生そのものが不可能である(No.24~No.27)。以上の検討から、炭酸銀に対しては、限定された範囲でのアミン化合物が有効であるが、これを適切に行うことで好適な銀粒子を製造できることがわかる。
 尚、アミン化合物としては、置換基中に水酸基やメトキシ基を含んでいても良い(No.5、No.14)。また、環状炭化水素を含んでいても良い(No.8)。更に、置換基の構造式中にアミノ基を含んでいても良く、置換基中のアミノ基に関しては2級、3級アミノ基であっても良いことがわかる(No.14~No.21)。
 製造条件に関してみると、炭酸銀と反応させるアミン化合物の混合量は、炭酸銀中の銀に対して1.5倍モル量以上にすることが好ましいことがわかる(No.6、No.15)。また、加熱工程の際の昇温速度についても2℃/min程度では、銀粒子が粗大になることから、これを超えるようにすることが好ましい(No.2)。そして、銀粒子の粒径調整については、例えば、No.9とNo.10との対比から、昇温速度で調整できることがわかる。
 図2は、本実施形態におけるNo.9、No.10、No.19、No.20で製造した銀粒子のSEM写真である。また、図3は、No.1、No.15、No.22、No.24で製造した銀粒子のSEM写真である。更に、図4は、No.9、No.10、No.20の銀粒子の粒径分布を示し、図5は、No.22の銀粒子の粒径分布を示す。No.9等の好適なアミン化合物を使用して製造される銀粒子は、粒径の揃ったものであり、No.22では300nm以上の粗大な銀粒子が生成し、粒径が揃っていないことが確認できる。
 以上の通り、炭素数の制限されたアミン化合物により目的とする粒径範囲の銀粒子を製造することができることが確認された。ここで、原料となる炭酸銀、銀-アミン錯体、製造された銀粒子、の熱的特性を検討するため、それぞれの試料についてTG-DTA分析(質量-示差熱分析)を行った。
 図6は、炭酸銀、銀-アミン錯体(No.19)、銀粒子のTG-DTA分析の結果である。図6から、原料である炭酸銀は200℃近傍における質量減と400℃近傍における質量減が観察される。これらの質量減は、前者は炭酸銀から酸化銀への変化を、後者は炭酸銀から銀への変化を示すものである。上述の通り、炭酸銀は2段階の分解挙動を示す。これに対し、アミン錯体は、炭酸銀のような2段階の分解挙動を示すことなく、110℃近傍から分解を開始して銀に変化する。適切なアミン化合物による錯体形成により、分解挙動が改善されたといえる。
 尚、アミン錯体のTG曲線についてみると、銀へ分解した後に加熱を継続すると、300℃を超えた辺りでわずかな質量減が見られる。この質量減は、アミン錯体の分解により発生する炭酸とアミンとが反応してアミン炭酸塩が生成し、これが分解したことによるものと推定される。つまり、銀-アミン錯体の熱分解においては、銀粒子にわずかながらアミン炭酸塩が混入していることとなる。もっとも、銀粒子を生成・回収した後に銀粒子を洗浄することで、アミン錯体は除去されたものと考える。これは、図6の銀粒子のTG曲線において、300℃以降での質量減が見られないことから確認できる。
 以上説明したように、本発明によれば、粒径を制御しつつ、均一な銀粒子を製造することができる。本発明は、電極・配線材料、接着材・接合材、導電性接着材・導電性接合材、熱伝導材、反射膜材料、触媒、抗菌材等の各種用途へ使用される銀粒子について、効率的に高品質なものを製造することができる。

Claims (5)

  1.  熱分解性を有する銀化合物とアミン化合物とを混合して前駆体である銀-アミン錯体を製造する工程と、前記銀-アミン錯体をその分解温度以上の加熱温度で加熱して銀粒子を析出させる工程と、を含む銀粒子の製造方法において、
     前記銀化合物として炭酸銀を用い、
     前記アミン化合物として、少なくとも一方の末端が1級アミノ基である下記式で示されるアミン化合物を混合して銀-アミン錯体を製造する銀粒子の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     式中、Rは(1)又は(2)の条件を満たす置換基である。
    (1)炭素数5以上10以下の直鎖構造又は分枝構造若しくは環状構造を有する炭化水素基。但し、Rは、その一部において酸素を含んでいても良い。また、Rは、その一部において1級アミノ基又は2級アミノ基若しくは3級アミノ基を含んでいても良い。
    (2)炭素数4の直鎖構造の炭化水素基。但し、Rは、その一部において酸素を含んでいても良い。また、Rは、その一部において1級アミノ基又は2級アミノ基を含んでいても良い。
  2.  炭酸銀へのアミン化合物の混合量は、炭酸銀中の銀のモル量に対して、1.5~10倍モル量である請求項1記載の銀粒子の製造方法。
  3.  銀-アミン錯体を加熱する工程の加熱温度は、65~160℃である請求項1又は請求項2に記載の銀粒子の製造方法。
  4.  銀-アミン錯体を加熱する工程は、銀-アミン錯体を加熱温度に達するまで2.5~50℃/分の昇温速度で加熱するものである請求項1~請求項3のいずれかに記載の銀粒子の製造方法。
  5.  請求項1~請求項4のいずれかに記載の方法により製造される銀粒子であって、
     平均粒径20~200nmであり、アミン炭酸塩の含有量が5質量%以下である銀粒子。
     
PCT/JP2014/082822 2013-12-11 2014-12-11 銀粒子の製造方法及び当該方法により製造される銀粒子 WO2015087967A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187009848A KR20180038078A (ko) 2013-12-11 2014-12-11 은 입자의 제조 방법 및 당해 방법에 의해 제조되는 은 입자
CN201480067173.3A CN105813782B (zh) 2013-12-11 2014-12-11 银粒子的制造方法及通过该方法制造的银粒子
DE112014005640.5T DE112014005640B4 (de) 2013-12-11 2014-12-11 Verfahren zur Herstellung von Silberteilchen und Silberteilchen, die durch das Verfahren hergestellt werden
KR1020167016391A KR102085744B1 (ko) 2013-12-11 2014-12-11 은 입자의 제조 방법
US15/101,859 US10486235B2 (en) 2013-12-11 2014-12-11 Method for producing silver particles, and silver particles produced by the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013256182A JP5732520B1 (ja) 2013-12-11 2013-12-11 銀粒子の製造方法及び当該方法により製造される銀粒子
JP2013-256182 2013-12-11

Publications (1)

Publication Number Publication Date
WO2015087967A1 true WO2015087967A1 (ja) 2015-06-18

Family

ID=53371266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082822 WO2015087967A1 (ja) 2013-12-11 2014-12-11 銀粒子の製造方法及び当該方法により製造される銀粒子

Country Status (7)

Country Link
US (1) US10486235B2 (ja)
JP (1) JP5732520B1 (ja)
KR (2) KR20180038078A (ja)
CN (1) CN105813782B (ja)
DE (1) DE112014005640B4 (ja)
TW (1) TWI638056B (ja)
WO (1) WO2015087967A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017033911A1 (ja) * 2015-08-25 2018-06-14 田中貴金属工業株式会社 低温焼結性に優れる金属ペースト及び該金属ペーストの製造方法
WO2018198810A1 (ja) * 2017-04-27 2018-11-01 御国色素株式会社 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子
WO2019035246A1 (ja) * 2017-08-18 2019-02-21 御国色素株式会社 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108102579B (zh) * 2017-12-26 2020-04-21 昆明贵金属研究所 一种高导热导电胶的制备方法及应用
JP7190449B2 (ja) * 2018-01-09 2022-12-15 株式会社ノリタケカンパニーリミテド 銀ナノ微粒子の製造方法および銀ナノ微粒子を含む銀ペースト

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214695A (ja) * 2007-03-05 2008-09-18 Shoei Chem Ind Co 銀超微粒子の製造方法
WO2014189025A1 (ja) * 2013-05-24 2014-11-27 田中貴金属工業株式会社 銀粒子の製造方法
WO2014189024A1 (ja) * 2013-05-24 2014-11-27 田中貴金属工業株式会社 銀粒子の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3276330B2 (ja) * 1998-02-24 2002-04-22 住友金属鉱山株式会社 球状粉末の製造方法とこの方法により製造された球状粉末
JP4583063B2 (ja) * 2004-04-14 2010-11-17 三井金属鉱業株式会社 銀化合物被覆銀粉及びその製造方法
WO2006080319A1 (ja) * 2005-01-25 2006-08-03 Kaneka Corporation 金属超微粒子含有樹脂組成物及び該組成物の製造方法
TWI285568B (en) * 2005-02-02 2007-08-21 Dowa Mining Co Powder of silver particles and process
JP4577515B2 (ja) * 2005-03-30 2010-11-10 三菱マテリアル株式会社 高分散性の銀微粒子とその製造方法、および用途
JP2006348213A (ja) * 2005-06-17 2006-12-28 Tokan Material Technology Co Ltd 金属超微粒子、同超微粒子を含む樹脂組成物またはその成型物、および同樹脂組成物またはその成型物の製造方法
US8282860B2 (en) * 2006-08-07 2012-10-09 Inktec Co., Ltd. Process for preparation of silver nanoparticles, and the compositions of silver ink containing the same
US8298314B2 (en) * 2008-08-18 2012-10-30 Xerox Corporation Silver nanoparticles and process for producing same
JP5574761B2 (ja) 2009-04-17 2014-08-20 国立大学法人山形大学 被覆銀超微粒子とその製造方法
US8147908B2 (en) 2010-06-09 2012-04-03 Xerox Corporation Increased throughput for large-scale production of low melt organoamine stabilized silver nano-particles
JP2012031478A (ja) * 2010-07-30 2012-02-16 Toda Kogyo Corp 銀微粒子とその製造方法、並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイス
JP6001861B2 (ja) * 2012-01-11 2016-10-05 株式会社ダイセル 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
JP6037494B2 (ja) * 2012-01-11 2016-12-07 国立大学法人山形大学 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
EP2833140B1 (en) * 2012-03-30 2018-05-09 Konica Minolta, Inc. Method for detecting biological material
TWI591134B (zh) * 2012-08-02 2017-07-11 Daicel Corp A method of manufacturing silver ink containing silver nanoparticles, and an ink containing silver nanoparticles
TWI592234B (zh) * 2012-08-07 2017-07-21 Daicel Corp Method for producing silver nano-particles, silver nano-particles and silver paint composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214695A (ja) * 2007-03-05 2008-09-18 Shoei Chem Ind Co 銀超微粒子の製造方法
WO2014189025A1 (ja) * 2013-05-24 2014-11-27 田中貴金属工業株式会社 銀粒子の製造方法
WO2014189024A1 (ja) * 2013-05-24 2014-11-27 田中貴金属工業株式会社 銀粒子の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017033911A1 (ja) * 2015-08-25 2018-06-14 田中貴金属工業株式会社 低温焼結性に優れる金属ペースト及び該金属ペーストの製造方法
WO2018198810A1 (ja) * 2017-04-27 2018-11-01 御国色素株式会社 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子
JPWO2018198810A1 (ja) * 2017-04-27 2020-03-19 御国色素株式会社 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子
JP2021073371A (ja) * 2017-04-27 2021-05-13 御国色素株式会社 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子
JP7097032B2 (ja) 2017-04-27 2022-07-07 御国色素株式会社 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子
WO2019035246A1 (ja) * 2017-08-18 2019-02-21 御国色素株式会社 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子
JPWO2019035246A1 (ja) * 2017-08-18 2020-04-02 御国色素株式会社 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子

Also Published As

Publication number Publication date
KR102085744B1 (ko) 2020-03-06
JP5732520B1 (ja) 2015-06-10
US20160303659A1 (en) 2016-10-20
DE112014005640B4 (de) 2021-10-07
US10486235B2 (en) 2019-11-26
JP2015113488A (ja) 2015-06-22
CN105813782A (zh) 2016-07-27
KR20160088919A (ko) 2016-07-26
TW201527556A (zh) 2015-07-16
DE112014005640T5 (de) 2016-09-01
CN105813782B (zh) 2017-08-29
KR20180038078A (ko) 2018-04-13
TWI638056B (zh) 2018-10-11

Similar Documents

Publication Publication Date Title
WO2015087967A1 (ja) 銀粒子の製造方法及び当該方法により製造される銀粒子
JP4978242B2 (ja) 銀超微粒子の製造方法
JP4661726B2 (ja) 微粒ニッケル粉末及びその製造方法
TWI716526B (zh) 鎳粉末
WO2012043399A1 (ja) 被覆銅微粒子とその製造方法
JP2018523758A (ja) 高温焼結型導電性ペースト用銀粉末の製造方法
WO2014189025A1 (ja) 銀粒子の製造方法
JP2021105214A (ja) ニッケル粉及びその製造方法、ニッケルペースト
KR102233293B1 (ko) 구리포메이트-아민 컴플렉스를 포함하는 잉크 조성물의 제조방법
JP2008308733A (ja) 炭素被覆ニッケル粉末及びその製造方法
WO2014013557A1 (ja) 銀含有組成物及び銀要素形成基材
JP2011089153A (ja) 銅微粒子の製造方法
JP2004323866A (ja) ニッケル粉末の製造方法及びニッケル粉末
TWI813559B (zh) 鎳粉及鎳糊
WO2015122430A1 (ja) 金属ナノ微粒子の製造方法
JP2009062611A (ja) 金属微粒子材料、金属微粒子材料分散液及びこれを含む導電性インキ、並びにこれらの製造方法
WO2014189024A1 (ja) 銀粒子の製造方法
JP6404523B1 (ja) 銀ナノ粒子の製造方法
JP2004084069A5 (ja)
KR20170019157A (ko) 저온 소성용 구리 나노잉크 제조를 위한 구리 나노 입자 제조방법
JP2007238979A (ja) 金属粉体、その製造方法及び導体用ペースト
TW202239980A (zh) 鎳奈米粒子、膏材料及層疊陶瓷電容器
TWI476202B (zh) Silver-containing compositions and substrates
JP2015063712A (ja) 有機金化合物、その製造方法及び導電性ペースト
JP2006219461A (ja) 塩基性有機酸金属塩及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870088

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15101859

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014005640

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20167016391

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14870088

Country of ref document: EP

Kind code of ref document: A1