WO2015087649A1 - 内燃機関のバルブタイミング制御装置 - Google Patents

内燃機関のバルブタイミング制御装置 Download PDF

Info

Publication number
WO2015087649A1
WO2015087649A1 PCT/JP2014/079800 JP2014079800W WO2015087649A1 WO 2015087649 A1 WO2015087649 A1 WO 2015087649A1 JP 2014079800 W JP2014079800 W JP 2014079800W WO 2015087649 A1 WO2015087649 A1 WO 2015087649A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing control
valve timing
combustion engine
internal combustion
control device
Prior art date
Application number
PCT/JP2014/079800
Other languages
English (en)
French (fr)
Inventor
孝太郎 渡辺
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US15/032,400 priority Critical patent/US10082055B2/en
Priority to JP2015552369A priority patent/JPWO2015087649A1/ja
Priority to CN201480066837.4A priority patent/CN105793527B/zh
Publication of WO2015087649A1 publication Critical patent/WO2015087649A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/20Making machine elements valve parts
    • B21K1/22Making machine elements valve parts poppet valves, e.g. for internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/3443Solenoid driven oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34456Locking in only one position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34469Lock movement parallel to camshaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34479Sealing of phaser devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34483Phaser return springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant

Definitions

  • the present invention relates to a valve timing control device for an internal combustion engine that variably controls the opening and closing timing of an intake valve and an exhaust valve according to an operating state.
  • Patent Document 1 As a conventional valve timing control device for an internal combustion engine, one described in Patent Document 1 below is known.
  • a housing body in which a rotational force is transmitted from a crankshaft and a plurality of hydraulic oil chambers are provided on the inner periphery, a plate body that closes a front end opening of the housing body with an inner end surface, and the plate body
  • a front plate having a cylindrical portion at the center of an outer end surface (outer end surface) and a relative rotation to the most retarded angle side and the most advanced angle side within a predetermined angle range with respect to the housing main body, are provided in the hydraulic oil chamber.
  • a vane rotor having four vanes that are divided into a square oil chamber and an advanced oil chamber, a part of which is accommodated in the cylindrical portion of the front plate, and one end portion is locked to the front end portion of the cylindrical portion;
  • a torsion spring having an end portion locked to the vane rotor.
  • the torsion spring urges the vane rotor to rotate relative to the advance side by the spring force, and controls the opening / closing timing of the exhaust valve to the advance side, thereby improving engine startability and the like. ing.
  • one end opening of the housing body is closed at the inner end surface of the plate body of the front plate to seal each hydraulic oil chamber.
  • the accuracy of the side clearance between the inner peripheral portion of the inner end surface of the plate body and the opposing surface of the vane rotor that faces the inner peripheral portion in the axial direction cannot be sufficiently increased.
  • the present invention has been devised in view of the technical problem of the conventional valve timing control device, and can increase the sealing accuracy by increasing the surface area of the inner peripheral portion of the inner end surface of the plate body.
  • the valve timing control device is provided.
  • a rotational force is transmitted from the crankshaft and at least one end in the axial direction is formed as an opening, a rotor fixed to the camshaft, and an inner periphery of the housing body.
  • a plurality of vanes that separate the retarded working chamber and the advanced working chamber between the plurality of shoes, and selectively supplying and discharging hydraulic oil in the retarded working chamber and the advanced working chamber
  • a vane rotor configured to rotate relative to the retarding side or the leading side with respect to the housing body, and a disk-shaped plate that seals each working chamber by closing one end opening of the housing body with an inner end surface.
  • a front plate having a main body and a cylindrical portion integrally projecting outward from a hole edge of a through-hole formed in the center of the plate main body, and one end portion locked to the rotor, while the other end portion is By being engaged with the cylindrical portion, always the vane rotor relative to the housing body, and a torsion spring for urging in one direction side of the rotational direction,
  • the inner peripheral portion of the outer peripheral surface of the plate body near the root portion of the cylindrical portion is pushed into the inner end surface side to form a concave shape, and the inner peripheral portion of the inner end surface corresponding to the formation position of the concave portion,
  • the section between the inner peripheral portion of the inner end surface and the inner peripheral surface of the cylindrical portion is formed in a substantially right-angle cross section.
  • the present invention it is possible to increase the sealing accuracy on the inner peripheral portion side by suppressing the sagging of the inner peripheral portion of the inner end face of the plate body and enlarging the surface area. As a result, the leakage of hydraulic oil from each working chamber can be suppressed.
  • FIG. 6 is a cross-sectional view taken along line AA in FIG. It is an enlarged view of the instruction line B part of FIG. It is an enlarged view of the instruction line C part of FIG. It is a side view which shows the cylindrical part of the front plate provided to this embodiment.
  • FIG. 10 is a sectional view taken along line DD of FIG. 9.
  • FIGS. 4A to 4F are schematic views showing a process of forming a front plate used in the present embodiment.
  • the exhaust-side valve timing control device includes a sprocket 1 that is a driving rotary body that is rotationally driven via a timing chain by a crankshaft (not shown), and the sprocket 1 A camshaft 2 provided in a relatively rotatable manner, a phase changing mechanism 3 disposed between the sprocket 1 and the camshaft 2 for converting the relative rotational phase of the two and the camshaft 2, and the phase changing And a hydraulic circuit 4 for operating the mechanism 3.
  • the sprocket 1 is formed in a thick disk shape with an iron-based metal, and has a gear portion 1a around which the timing chain is wound, and in the center, on the outer periphery of the camshaft 2 A support hole 1b that is rotatably supported is formed through. Further, four female screw holes 1c into which four bolts 9 to be described later are screwed are formed at substantially equal intervals in the circumferential direction of the outer peripheral portion of the sprocket 1.
  • the sprocket 1 is configured as a rear cover that closes a rear end opening of a housing 5 described later.
  • the camshaft 2 is rotatably supported by a cylinder head (not shown) via a cam bearing, and a plurality of egg-shaped drive cams that open and close the exhaust valve are integrally fixed at predetermined positions in the axial direction on the outer peripheral surface.
  • a bolt insertion hole 2b through which a shaft portion 6a of a cam bolt 6 that fixes a vane rotor 7 described later from the axial direction is inserted is formed in the inner axial direction on the one end portion 2a side.
  • a female screw (not shown) to which a male screw formed at the tip of the cam bolt 6 is screwed is formed at the tip of the bolt insertion hole 2b.
  • the phase changing mechanism 3 is fixed to a housing 5 having an operation chamber inside and a cam bolt 6 at one end of the camshaft 2 so as to be relatively rotatable in the housing 5.
  • the working chamber is constituted by a vane rotor 7 that is a driven rotating body housed in a housing 5, four first to fourth shoes 8 a to 8 d that are integrally provided on an inner peripheral surface of a housing body 5 a described later of the housing 5, and the vane rotor 7.
  • the housing 5 includes a housing body 5a formed of a sintered metal in a cylindrical shape, a front plate 12 that closes a front end opening of the housing body 5a, and the sprocket 1 as a rear cover that closes a rear end opening. It is configured.
  • the housing body 5a, the front plate 12, and the sprocket 1 are fastened together by the four bolts 9 that pass through the bolt insertion holes 8e of the shoes 8a to 8d.
  • the front plate 12 is formed by integrally forming a plate material made of carbon steel by a unique press molding method of a press molding machine to be described later, and as shown in FIGS. 1, 2, and 4 to 6, the front plate 12 has a disk shape.
  • the plate main body 13 is formed, and the cylindrical portion 14 is integrally formed by press molding at the center of the plate main body 13.
  • the plate main body 13 is formed with a through hole 13a having a comparatively large diameter that is also a part of the cylindrical portion 14 at a central position, and the cylindrical portion 14 is integrated with a hole edge of the outer end surface 13d of the through hole 13a. Projected to That is, the cylindrical portion 14 is bent forward from the inner end surface 13e side of the plate body 13, and the inner diameter of the through hole 13a and the inner peripheral surface 14a of the cylindrical portion 14 are set to the same diameter. Are formed continuously in the axial direction.
  • the plate body 13 has four bolt insertion holes 13b through which the bolts 9 are inserted at circumferentially equidistant positions on the outer peripheral portion, and holes on the outer end surface 13d side of the bolt insertion holes 13b.
  • An annular tapered counterbore portion is formed on the edge to fit the base portion of the shaft portion of each bolt 9.
  • An annular seating surface 13c on which an end surface of the head portion 9a of the bolt 9 is seated is formed on the outer periphery of each counterbore portion.
  • the cylindrical portion 14 projects forward from the outer end surface 13d of the plate main body 13 with a predetermined length, and has a tapered surface 14c having an arcuate longitudinal section formed on the outer peripheral surface on the front end surface 14b side.
  • An arcuate cutout 14d is formed at a predetermined position in the circumferential direction within the relative rotation region of the first vane 18a having the maximum width.
  • a first spring locking groove 14e which is a locking portion, is formed at one end edge of the cutout portion 14d that faces in the circumferential direction.
  • the first spring locking groove 14 e is formed in a substantially rectangular shape and is hung from the projection 14 f side provided on the tip end surface 14 b side of the cylindrical portion 14 to the inside. It is formed in an arc shape, is formed substantially linearly from one end edge of this arc portion, and is further formed in an arc shape from the end edge of this linear portion.
  • the first spring locking groove 14e is configured such that a first locking end 32a of a torsion spring 32, which will be described later, is locked from the circumferential direction, and the projection 14f is a first engagement of the torsion spring 32. It prevents that the toe part 32a falls off from the front end side.
  • the first spring locking groove 14e has one inner end edge on the inner peripheral surface 14a side of the cylindrical portion 14, that is, an inner end locked by the first locking end portion 32a.
  • An edge is formed on the circular arc surface 14g.
  • the connecting portion of the plate 13 and the cylindrical portion 14 has a unique structure as shown in FIGS. 6 to 8, and this is formed at the time of press forming described later.
  • the inner peripheral portion 13f of the inner end face 13e is pushed toward the axial direction of the cylindrical portion 14 (in the direction of the arrow in FIG. 7), and the cross-sectional shape of the inner peripheral portion 13f is formed in a substantially right-angled shape.
  • the length L between the inner hole edge 13g of the inner peripheral portion 13f and the inner peripheral surface 14a of the cylindrical portion 14 is sufficiently small. Accordingly, the taper angle of the annular tapered surface 13h formed between the inner hole edge 13g of the inner peripheral portion 13f and the inner peripheral surface 14a of the cylindrical portion 14 is sufficiently small.
  • annular recessed part 16 is provided in the cyclic
  • the vane rotor 7 is integrally formed of, for example, a sintered metal material, and is fixed to the camshaft 2 by the cam bolt 6 inserted through the bolt insertion hole 7a formed at the center in the axial direction as shown in FIGS.
  • the rotor 17 is formed in a substantially cylindrical shape, and a circular annular groove 17a is formed on the outer periphery of the outer end surface. On the other hand, the rotor 17 is fitted in a circular shape in which the front end portion 2b of the camshaft 2 is fitted. A joint groove 17b is formed. A second spring locking groove 17c is formed on the inner peripheral surface of the annular groove 17a. The second spring locking groove 17c is cut out in the axial direction (radial direction) of the bolt insertion hole 7a.
  • the rotor 17 is configured such that one end surface in the axial direction on the camshaft 2 side is in sliding contact with the inner end surface facing the sprocket 1 with a minute side clearance.
  • the other end surface in the axial direction is in sliding contact with the opposed inner end surface 13e of the plate body 13 of the front plate 12 with a minute side clearance, and the inner end surface of the sprocket 1 and the inner end surface 13e of the plate body 13 are formed.
  • the seal function is demonstrated between.
  • the first to fourth vanes 18a to 18d are arranged between the shoes 8a to 8d, and are formed on the respective arc-shaped outer peripheral surfaces.
  • a seal member 15a that seals while sliding on the inner peripheral surface of the housing body 5a is fitted in the seal groove.
  • seal members 15b that slide while sliding on the outer peripheral surface of the rotor 17 are fitted into the seal grooves formed on the inner peripheral surfaces of the tips of the shoes 8a to 8d.
  • Each side surface in the width direction (rotor axial direction) of the vanes 18a to 18 is in sliding contact with the inner end surface of the sprocket 1 and the inner end surface 13e of the plate body 13 with a minute side clearance.
  • a sealing function is exhibited between the inner end surface of the sprocket 1 and the inner end surface 13e of the plate body 13.
  • each of the vanes 18a to 18d is formed such that the first vane 18a has a fan-shaped maximum width when viewed from the side and is heaviest, and the three second to fourth vanes other than the first vane 18a are formed.
  • the widths 18b to 18d are set to substantially the same width smaller than that of the first vane 18a.
  • the vane rotor 7 since the weight of the first vane 18a is the heaviest, the vane rotor 7 has its center of gravity Y (elliptical shaded portion in the figure) from the center point P1 to the first vane 18a as shown in FIG. It is close.
  • the other second to fourth vanes 18b to 18d are in a separated state without coming into contact with the opposing side surfaces of the shoes 8c and 8d whose both side surfaces face each other in the circumferential direction. Accordingly, the contact accuracy between the first vane 18a and the first and second shoes 8a, 8b is improved, and the supply speed of the hydraulic pressure to each of the retard and advance hydraulic chambers 10, 11 is increased, and the vane rotor 7 is increased. The rotational responsiveness in the forward / reverse direction becomes higher.
  • the retard hydraulic chambers 10 and the advance hydraulic chambers 11 are respectively connected to the hydraulic circuit 4 via first communication holes 10a and second communication holes 11a formed in the rotor 17 along the radial direction. Communicate.
  • the hydraulic circuit 4 selectively supplies or discharges hydraulic oil (hydraulic pressure) to each of the retard and advance hydraulic chambers 10 and 11, and as shown in FIG.
  • a retard oil passage 19 that supplies and discharges hydraulic pressure through the first communication hole 10a, and an advance oil that supplies and discharges hydraulic pressure to and from each advance hydraulic chamber 11 through the second communication hole 11a.
  • the oil pump 21 is a general one such as a trochoid pump that is rotationally driven by an engine crankshaft.
  • Each of the retard oil passage 19 and the advance oil passage 20 is connected at one end to the passage port of the electromagnetic switching valve 22, and the other end via an unillustrated cylinder head or cylinder block.
  • the camshaft 2 is formed with a retard passage portion 19a and an advance passage portion 20a that are parallel along the axial direction.
  • the retard passage portion 19a communicates with each retard hydraulic chamber 10 through the first communication hole 10a.
  • the advance passage portion 20a communicates with each advance hydraulic chamber 11 through the second communication hole 11a.
  • the electromagnetic switching valve 22 is a two-position three-port valve, and is provided with an unillustrated spool valve body that is slidable in the axial direction in the valve body by an unillustrated electronic controller. Is moved in the front-rear direction so that the discharge passage 21a of the oil pump 21 communicates with one of the oil passages 19 and 20, and at the same time, the other oil passage 19 and 20 and the drain passage 23 communicate with each other. ing.
  • a filtration filter 25 is provided downstream of the discharge passage 21a of the oil pump 21, and a main oil gallery M / G that supplies lubricating oil to a sliding portion of the internal combustion engine or the like on the downstream side. Communicate.
  • the oil pump 21 is provided with a flow rate control valve 26 that discharges excess hydraulic oil discharged from the discharge passage 21a to the oil pan 24 and controls it to an appropriate flow rate.
  • the electronic controller is supplied from various sensors such as a crank angle sensor, an air flow meter, an engine water temperature sensor, a throttle valve opening sensor, and a cam angle sensor that detects the current rotational phase of the camshaft 2 by an internal computer.
  • An information signal is input to detect the current engine operating state, and a control pulse current is output to the electromagnetic coil of the electromagnetic switching valve 22 to control the movement position of each spool valve body, thereby Switching control is performed.
  • a lock mechanism is provided between the first vane 18a and the rear cover 1b of the sprocket 1 to restrain the vane rotor 7 at the most advanced angle position with respect to the housing 5.
  • this locking mechanism is slidably accommodated in a sliding hole 27 formed through the first vane 18a in the direction of the internal axis, and can be moved forward and backward with respect to the rear cover 1b.
  • a lock pin 28 provided at the center, a lock hole 29 that is formed at a predetermined position in the center of the rear cover 1b in the radial direction, and engages with a tip 28a of the lock pin 28 to lock the vane rotor 7.
  • the engagement / disengagement mechanism engages / disengages the distal end portion 28a of the lock pin 28 with the lock hole 29 in accordance with the starting state.
  • the lock pin 28 as a whole including the front end 28a is formed in a substantially cylindrical shape, and is shaped to be easily engaged in the lock hole 29 from the axial direction, and from the rear end side to the internal axial direction.
  • a coil spring 30 is provided that is elastically mounted between the bottom surface of the formed groove and the inner surface of the front plate 12 and biases the lock pin 28 in the advance direction (the direction in which it is engaged).
  • the lock hole 29 is formed larger than the outer diameter of the tip end portion of the lock pin 28, is formed at a position biased toward the advance hydraulic chamber 11 in the circumferential direction, and the lock pin 28 is engaged with the lock hole 29.
  • the relative conversion angle between the housing 5 and the vane rotor 7 is set to be the most advanced position.
  • a semi-arc-shaped pressure receiving chamber 31 is formed in a side portion of the lock hole 29 at a position smaller than the outer diameter of the lock pin 28 and one step lower than the lock hole 29.
  • the engagement / disengagement mechanism supplies a hydraulic pressure to the coil spring 30 that urges the lock pin 28 in the advancing direction and a pressure receiving chamber 31 in the lock hole 29 to retreat the lock pin 28, and a release hydraulic pressure that is not shown.
  • the hydraulic pressure selectively supplied to the retard hydraulic chamber 10 and the advanced hydraulic chamber 11 is supplied to the pressure receiving chamber 31 through a predetermined oil hole.
  • the lock pin 28 acts in the backward direction.
  • a torsion spring 32 for urging the vane rotor 7 in the advance direction with respect to the housing 5 is mounted inside the plate body 13 and the cylindrical portion 14 and inside the annular groove 17a of the rotor 17.
  • the torsion spring 32 is a spring main body wound in a coil shape, and one end portion that is bent outward from the one end of the spring main body in the radial direction and protrudes outward.
  • the first locking end portion 32a and the second locking end portion 32b which is the other end portion which is bent inward in the radial direction from the other end of the spring body and protrudes inward.
  • the first locking end portion 32 a is locked and fixed in the first spring locking groove 14 e of the front plate 12 from the circumferential direction, while the second locking end portion 32 b is the second locking end portion 32 b of the rotor 17. 2 It is locked and fixed in the locking groove 17c from the axial direction. Due to the spring force of the torsion spring 32, the vane rotor 7 is always urged in the rotation direction on the advance side.
  • the torsion spring 32 is deformed in the direction of diameter reduction when the vane rotor 7 rotates relative to the housing 5 toward the retard side.
  • the front plate 12 is formed by a series of press forming steps shown in FIGS. 11A to 11F.
  • a base material 12 ′ of a carbon steel front plate 12 is pre-formed into a disk shape by a press molding machine not shown, and a forming hole 14h for forming a cylindrical portion 14 ′ is formed at the center. 'To penetrate.
  • the peripheral portion is pushed upward with the forming hole 14h 'as the center to gradually form the plate body 13' and the cylindrical portion 14 '(burring process).
  • arc-shaped so-called sagging occurs due to press molding at the inner peripheral portion 14i of the connecting portion (base portion) between the plate body 13 'and the cylindrical portion 14'.
  • the preform 12 ′ of the molded front plate 12 is positioned on the base 40 in which the insertion hole 40a is formed at a position corresponding to the cylindrical portion 14 ′.
  • the support jig 41 is inserted into the cylindrical portion 14 'from above.
  • the support jig 41 is formed in a stepped columnar shape, and the small-diameter portion 41a on the distal end side is set to an outer diameter slightly smaller than the inner diameter of the inner peripheral surface 14a ′ of the cylindrical portion 14 ′, and the inner peripheral surface 14a. Is placed close to.
  • the large-diameter portion 41b of the support jig 41 and the step portion 41c of the small-diameter portion 41a face the tip surface 14b 'of the cylindrical portion 14' from the axial direction with a slight gap.
  • the outer peripheral portion 14j of the base portion of the cylindrical portion 14 ' is pressed downward as indicated by the arrow by the pressing punch 42 disposed on the outer peripheral side of the support jig 41.
  • the pushing punch 42 is provided with an annular pushing portion 42b having a sharp tip at the end of the lower end hole of the central insertion hole 42a.
  • the inner peripheral surface 14 a ′ on the base side of the portion 14 ′ and the inner side in the vicinity of the through hole 13 a ′ of the plate body 13 ′ are defined by the outer peripheral surface of the support jig 41 and the upper surface near the insertion hole 40 a of the base 40. Supports against the pushing force.
  • the inner peripheral portion of the plate body 13 is pushed in the direction of the arrow in FIG. 8, that is, in the axial direction of the cylindrical portion 14, so that the inner peripheral portion 13f of the inner end face 13e is as shown in FIG. It is pushed toward the axial direction of the cylindrical portion 14. Therefore, the inner peripheral portion 13f of the inner end face 13e is formed in a substantially right-angle cross section, and the surface area expands inward. As a result, the sagging due to the press described above is corrected.
  • the punching punch 43 is pushed from the inside of the cylindrical portion 14 to the radially outer side (in the direction of the arrow), whereby the notched portion 14d and the first spring locking groove 14e shown in FIG. Is formed.
  • the punching punch 43 has a distal end surface 43a formed in an arc shape having a curvature radius substantially the same as the curvature radius of the cylindrical portion 14, and an upper end edge 43b of the distal end surface 43a is on the axial center side (inner side) of the cylindrical shape 14. Since the first spring engaging groove 14e is punched and formed by moving outward in the radial direction, an arcuate surface 14g is formed on the inner edge shown in FIG.
  • the base material 12 ′ of the front plate 12 is heat-treated at a predetermined time and temperature, and then, as shown in FIG.
  • the four bolt insertion holes 13b are drilled at equal intervals in the circumferential direction at equal intervals in the circumferential direction.
  • the annular seating portion 13c is formed by coining on the outer peripheral side of the hole edge on the outer end surface 13d side of each bolt insertion hole 13b.
  • the inner end surface 13e of the plate body 13 and the front end surface 14b of the cylindrical portion 14 are so-called double-headed polishing so as to be sandwiched between the front and rear polishing machines 44a and 44b.
  • the surface roughness of the inner end surface 13e can be increased, and the accuracy of the side clearance with the roller 17 can be increased.
  • the electronic controller maintains the non-energized state of the electromagnetic coil of the electromagnetic switching valve 22.
  • the discharge passage 18a of the oil pump 21 and the retard oil passage 19 are made to communicate with each other, and at the same time, the advance oil passage 20 and the drain passage 23 are made to communicate.
  • the vane rotor 7 rotates to the left side (retarded side) in the drawing as shown by the one-dot chain line in FIG. 3, and one side surface of the first vane 18a rotates.
  • the rotational position on the maximum retarding angle side is regulated by coming into contact with the opposite side surface of the first shoe 8a facing from the direction.
  • the relative rotation angle of the vane rotor 7, that is, the camshaft 2 is converted to the most retarded angle side with respect to the housing 5.
  • the torsion spring 32 is deformed in the diameter reducing direction.
  • the vane rotor 7 rotates toward the advance side with respect to the housing 5, and the opposite side surface of the second shoe 8 b is opposed to the other side surface of the first vane 18 a from the circumferential direction.
  • the rotational position on the maximum advance side is regulated by contacting.
  • the relative rotation phase of the camshaft 2 with respect to the housing 5 is converted to the most advanced angle side.
  • the opening / closing timing of the exhaust valve is controlled to the most advanced angle side, and the output of the engine in such a high rotation high load region can be improved.
  • the front plate 12 is integrally formed by press molding using a relatively thin iron-based metal plate, the weight can be reduced and the manufacturing operation can be facilitated. Therefore, the cost can be reduced.
  • the annular recess 16 is pushed into the inner peripheral portion on the outer end surface 13d side of the plate body 13 through the base portion of the cylindrical portion 14, and is formed by the punch 42, so that the inner peripheral portion 13f of the inner end surface 13e is substantially perpendicular. Since the seal surface can be expanded without sagging by forming the surface inward and the surface area is expanded inward, the sealing accuracy due to the side clearance with the other axial end surface of the rotor 17 is sufficiently increased. It becomes possible.
  • the inner edge of the first spring locking groove 14e is an arcuate surface 14g, the first locking end 32a of the torsion spring 32 is locked in the first spring locking groove 14e.
  • production of the damage of the 1st latching end part 32a outer surface can be suppressed.
  • annular tapered surface 13h is formed between the inner hole edge 13g of the inner peripheral portion 13f and the inner peripheral surface 14a of the cylindrical portion 14, the deformation is particularly reduced when the torsion spring 32 is subjected to a diameter expansion deformation. Since it can be absorbed in the space formed by the annular tapered surface 13h, smooth deformation of the torsion spring 32 can be ensured. In addition, since the outer surface of the torsion spring 32 can be prevented from interfering with the inner peripheral surface 14a of the cylindrical portion 14 due to the space, damage to the outer surface and generation of a hitting sound can be eliminated.
  • each seating surface 13c of the plate body 13 is also formed by press molding, the cost can be reduced as compared with the case of polishing.
  • the center of gravity of the vane rotor 7 is biased toward the first vane 18a by the maximum width of the first vane 18a.
  • the notch 14d of the cylindrical portion 14 and the first spring locking groove 14e Since the center of gravity of the front plate 12 is biased to the opposite side of the notch portion 14d and the first spring locking groove 14e, the excessive weight of the first vane 18a is offset.
  • the weight balance of the entire valve timing control device can be achieved without providing a balance weight on the third vane 18c located on the opposite side of the first vane 18a, and the device is provided by the notch portion 14d and the first spring locking groove 14e. Can be reduced in weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

軽量化を図りつつプレート本体の内端面の内周部側のシール精度を高くすることのできるバルブタイミング制御装置を提供する。フロントプレート(12)は、ハウジング本体(5a)の前端開口を閉塞して各作動室を封止するプレート本体(13)と、プレート本体の中央に穿設された貫通孔(13a)から外方へ一体に突出した円筒部(14)と、からなり、プレート本体の外端面(13d)の円筒部の根元部付近の内周部位を、内端面(13e)側に押し込んで環状凹部(16)を形成すると共に、該環状溝の形成位置に対応する内端面(13e)の内周部位(13f)を、前記押し込み力に抗して支持することにより、前記内周部位と円筒部の内周面との間を、ほぼ直角状に形成して内周部位の表面積を拡大した。

Description

内燃機関のバルブタイミング制御装置
 本発明は、吸気弁や排気弁の開閉タイミングを運転状態に応じて可変制御する内燃機関のバルブタイミング制御装置に関する。
 従来の内燃機関のバルブタイミング制御装置としては、以下の特許文献1に記載されたものが知られている。
 概略を説明すると、クランクシャフトから回転力が伝達され、内周に複数の作動油室が設けられたハウジング本体と、該ハウジング本体の前端開口部を内端面で閉塞するプレート本体及び該プレート本体の外端面(外端面)中央に円筒部を有するフロントプレートと、前記ハウジング本体に対して所定角度範囲内で最遅角側と最進角側へ相対回転可能に設けられ、前記作動油室内を遅角油室と進角油室に隔成する4つのベーンを有するベーンロータと、前記フロントプレートの円筒部内に一部が収容配置されて、一端部が前記円筒部の前端部に係止され、他端部が前記ベーンロータに係止されたトーションスプリングと、を備えている。
 前記トーションスプリングは、ばね力によって前記ベーンロータを進角側へ相対回転するように付勢し、排気弁の開閉タイミングを進角側に制御することにより、機関始動性の向上などを図るようになっている。
特開2012-132404号公報
 ところで、前記従来のバルブタイミング制御装置にあっては、前述のように、フロントプレートのプレート本体の内端面でハウジング本体の一端開口を閉塞して前記各作動油室内を封止するようになっているが、前記プレート本体の内端面の内周部位と該内周部位に軸方向から対向する前記ベーンロータの対向面との間のサイドクリアランスの精度を十分に高くすることができない。
 すなわち、前記円筒部を含むフロントプレート全体をプレス成形によって形成した場合は、前記プレート本体の中央からバーリングプレスによって円筒部を形成すると、該円筒部の付け根部とプレート本体の内周部位との間にいわゆるダレが発生してしまう。このため、プレート本体の内端面の内周部位が湾曲状になって前記サイドクリアランスの精度が低下してしまうおそれがある。この結果、前記各作動油室からの作動油のリーク量が多くなってしまう。
 本発明は、前記従来のバルブタイミング制御装置の技術的課題に鑑みて案出されたもので、プレート本体の内端面の内周部位の表面積を大きくしてシール精度を高くすることのできる内燃機関のバルブタイミング制御装置を提供するものである。
 請求項1に記載の発明は、クランクシャフトから回転力が伝達され、軸方向の少なくとも一端が開口形成されたハウジング本体と、カムシャフトに固定されたロータ及び前記ハウジング本体の内周に突設された複数のシューの間に遅角作動室と進角作動室とを隔成する複数のベーンを有し、前記遅角作動室と進角作動室内の作動油を選択的に給排することによって前記ハウジング本体に対して遅角側あるいは進角側に相対回転するように構成されたベーンロータと、前記ハウジング本体の一端開口を内端面によって閉塞して前記各作動室を封止する円盤状のプレート本体及び該プレート本体の中央に穿設された貫通孔の孔縁から外方へ一体に突出した円筒部を有するフロントプレートと、一端部が前記ロータに係止される一方、他端部が前記円筒部に係止されることにより、前記ハウジング本体に対して前記ベーンロータを常時、回転方向の一方向側に付勢するトーションスプリングと、を備え、
 前記プレート本体の外端面の前記円筒部の根元部付近の内周部位を、前記内端面側に押し込んで凹状に形成すると共に、該凹部の形成位置に対応する前記内端面の内周部位を、前記押し込み力に抗して支持することにより、前記内端面の内周部位と前記円筒部の内周面との間を断面ほぼ直角状に形成したことを特徴としている。
 本発明によれば、プレート本体の内端面の内周部位のダレを抑制して表面積を拡大することにより該内周部位側のシール精度を高くすることができる。この結果、各作動室からの作動油のリークを抑制できる。
本発明に係るバルブタイミング制御装置の一部を断面して示す全体構成図である。 本実施形態に係るバルブタイミング制御装置の分解斜視図である。 フロントプレートを外してベーンロータなどを示した正面図である。 本実施形態に供されるフロントプレートの斜視図である。 同フロントプレートの正面図である。 図5のA-A線断面図である。 図6の指示線B部の拡大図である。 図6の指示線C部の拡大図である。 本実施形態に供されるフロントプレートの円筒部を示す側面図である。 図9のD-D線断面図である。 A~Fは本実施形態に供されるフロントプレートの成形過程を示す概略図である。
 以下、本発明に係る内燃機関のバルブタイミング制御装置の実施形態を図面に基づいて詳述する。本実施形態では、排気弁側の動弁装置に適用したものを示している。
〔第1実施形態〕
 排気側のバルブタイミング制御装置(VTC)は、図1及び図2に示すように、図外のクランクシャフトによりタイミングチェーンを介して回転駆動される駆動回転体であるスプロケット1と、該スプロケット1に対して相対回転可能に設けられたカムシャフト2と、前記スプロケット1とカムシャフト2との間に配置されて、該両者1、2の相対回転位相を変換する位相変更機構3と、該位相変更機構3を作動させる油圧回路4と、を備えている。
 前記スプロケット1は、鉄系金属によって肉厚円板状に形成されて、外周に前記タイミングチェーンが巻回される歯車部1aを有していると共に、中央には、前記カムシャフト2の外周に回転自在に支持される支持孔1bが貫通形成されている。また、スプロケット1の外周部の周方向のほぼ等間隔位置には、後述する4本のボルト9が螺着される4つの雌ねじ孔1cがそれぞれ形成されている。このスプロケット1は、後述するハウジング5の後端開口を閉鎖するリアカバーとして構成されている。
 前記カムシャフト2は、図外のシリンダヘッドにカム軸受を介して回転自在に支持され、外周面には排気弁を開閉作動させる卵形の複数の駆動カムが軸方向の所定位置に一体に固定されていると共に、一端部2a側の内部軸心方向には、後述するベーンロータ7を軸方向から固定するカムボルト6の軸部6aが挿通するボルト挿通孔2bが形成されている。なお、このボルト挿通孔2bの先端部には、カムボルト6の先端に形成された雄ねじが螺着する図外の雌ねじが形成されている。
 前記位相変更機構3は、図1~図3に示すように、内部に作動室を有するハウジング5と、前記カムシャフト2の一端部にカムボルト6によって固定されて、前記ハウジング5内に相対回転自在に収容された従動回転体であるベーンロータ7と、前記ハウジング5の後述するハウジング本体5aの内周面に一体に有する4つの第1~第4シュー8a~8dと前記ベーンロータ7によって前記作動室が隔成されたそれぞれ4つの遅角作動室である遅角油圧室10及び進角作動室である進角油圧室11と、を備えている。
 前記ハウジング5は、焼結金属によって円筒状に形成されたハウジング本体5aと、該ハウジング本体5aの前端開口を閉塞するフロントプレート12と、後端開口を閉塞するリアカバーとしての前記スプロケット1と、から構成されている。前記ハウジング本体5aとフロントプレート12及びスプロケット1とは、前記各シュー8a~8dの各ボルト挿通孔8eなどを貫通する4本の前記ボルト9によって共締め固定されている。
 前記フロントプレート12は、炭素鋼からなる板材を後述するプレス成形機の特異なプレス成形法によって一体に成形してなり、図1、図2、図4~図6に示すように、円盤状に形成されたプレート本体13と、該プレート本体13の中央にプレス成形にて一体形成された円筒部14と、から構成されている。
 前記プレート本体13は、中央位置に円筒部14の一部でもある比較大径な貫通孔13aが貫通形成されていると共に、この貫通孔13aの外端面13dの孔縁に前記円筒部14が一体に突設されている。つまり、この円筒部14は、プレート本体13の内端面13e側から前方へ折曲されて突出しており、前記貫通孔13aの内径と円筒部14の内周面14aの内径は同一径に設定されて軸方向に連続形成されている。
 また、前記プレート本体13は、外周部の円周方向等間隔位置にボルト9が挿通する4つのボルト挿通孔13bが貫通形成されていると共に、該各ボルト挿通孔13bの外端面13d側の孔縁には前記各ボルト9の軸部の付け根部が嵌合する円環テーパ状のザグリ部がそれぞれ形成されている。また、この各ザグリ部の外周には前記ボルト9の頭部9aの軸部側の端面が着座する円環状の着座面13cがそれぞれ形成されている。
 前記円筒部14は、プレート本体13の外端面13dから所定長さをもって前方へ突設され、先端面14b側の外周面には縦断面円弧状のテーパ面14cが形成されていると共に、後述する最大幅の第1ベーン18aの相対回転領域内の周方向の所定位置に円弧状の切欠部14dが形成されている。この切欠部14dの円周方向で対向する一方の端縁には、係止部である第1ばね係止溝14eが形成されている。
 この第1ばね係止溝14eは、図4及び図9にも示すように、ほぼ矩形状に形成されて、前記円筒部14の先端面14b側に設けられた突起14f側から内側に掛けて円弧状に形成され、この円弧部の一端縁からほぼ直線状に形成され、さらにこの直線部の端縁から円弧状に形成されている。この第1ばね係止溝14eは、後述するトーションスプリング32の第1係止端部32aが周方向から係止されるようになっており、前記突起14fが、前記トーションスプリング32の第1係止端部32aが先端側から脱落するのを抑制している。
 また、前記第1ばね係止溝14eは、図10に示すように、円筒部14の内周面14a側の一方の内端縁、つまり前記第1係止端部32aが係止する内端縁が円弧面14gに形成されている。
 そして、前記プレート13と円筒部14の結合箇所は、図6~図8に示すように、特異な構造になっており、これは後述するプレス成形時において成形されるようになっている。
 すなわち、前記円筒部14のプレート本体13に対する付け根部付近を、プレス成形機の後述する押し込みパンチ42によって内端面13e方向に押し込むことによってプレート本体13の外端面13d側の内周部位に凹部である環状凹部16が形成されている。このとき、前記プレート本体13の内端面13e全体を、後述する円柱状の支持治具41によって前記押し込み力に抗して支持している。
 これによって、前記内端面13eの内周部位13fが、円筒部14の軸心方向(図7の矢印方向)へ押し寄せられて、この内周部位13fの断面形状がほぼ直角状に形成されて表面積が大きくなり、該内周部位13fの内側孔縁13gと円筒部14の内周面14aとの間の長さLが十分に小さくなっている。したがって、前記内周部位13fの内側孔縁13gと円筒部14の内周面14aとの間に形成された環状テーパ面13hのテーパ角度が十分小さくなる。
 なお、前記環状凹部16は、円筒部14の外周面の付け根付近の環状に設けられているが、必ずしも全周である必要はなく、途中で切れていても良い。
 前記ベーンロータ7は、例えば焼結金属材によって一体に形成され、図1~図3に示すように、軸方向中央に形成されたボルト挿通孔7aに挿通される前記カムボルト6によってカムシャフト2に固定されたロータ17と、該ロータ17の外周面に円周方向のほぼ90°等間隔位置に放射状に突設された4枚の第1~第4ベーン18a~18dとから構成されている。
 前記ロータ17は、ほぼ円筒状に形成され、外端面の外周に円形状の環状溝17aが形成されている一方、後端側に前記カムシャフト2の先端部2bが嵌合する円形状の嵌合溝17bが形成されている。前記環状溝17aの内周面には、前記ボルト挿通孔7aの軸心方向(径方向)に向かって切欠された第2ばね係止溝17cが形成されている。
 また、このロータ17は、図1に示すように、前記カムシャフト2側の軸方向の一端面が前記スプロケット1の対向する内端面に微小なサイドクリアランスをもって摺接するようになっている。一方、軸方向の他端面が前記フロントプレート12のプレート本体13の対向する内端面13eに微小なサイドクリアランスをもって摺接するようになっており、前記スプロケット1の内端面とプレート本体13の内端面13eとの間でシール機能を発揮している。
 一方、前記第1~第4ベーン18a~18dは、図2、図3に示すように、それぞれが各シュー8a~8dの間に配置されていると共に、それぞれの円弧状外周面に形成されたシール溝内に、ハウジング本体5aの内周面に摺動しつつシールするシール部材15aがそれぞれ嵌着されている。一方、前記各シュー8a~8dの先端内周面に形成されたシール溝には、ロータ17の外周面に摺動しつつシールするシール部材15bがそれぞれ嵌着されている。なお、この各ベーン18a~18での幅方向(ロータ軸方向)の各両側面は、前記スプロケット1の内端面とプレート本体13の内端面13eに対してそれぞれ微小なサイドクリアランスをもって摺接しており、同じく、前記スプロケット1の内端面とプレート本体13の内端面13eとの間でシール機能を発揮している。
 また、前記各ベーン18a~18dは、第1ベーン18aが側面からみて扇状の最大巾に設定されて、最も重量が重く形成され、該第1ベーン18a以外の3枚の第2~第4ベーン18b~18dの巾が第1ベーン18aよりも小さいほぼ同一の巾に設定されている。このように、前記第1ベーン18aの重量が最も重くなっていることから、ベーンロータ7は、図3に示すように、その重心Y(図中楕円斜線部)が中心点P1から第1ベーン18a寄りになっている。
 また、前記ベーンロータ7は、最遅角側へ相対回転すると、図3の一点鎖線で示すように、第1ベーン18aの一側面が周方向から対向する前記第1シュー8aの対向一側面に当接して最大遅角側の回転位置が規制されるようになっている。また、実線で示すように、最進角側へ相対回転すると、第1ベーン18aの他側面が周方向から対向する第2シュー8bの対向一側面に当接して最大進角側の回転位置が規制されるようになっている。これら第1ベーン18aと第1、第2シュー8a、8bがベーンロータ7の最遅角位置と最進角位置を規制するストッパとして機能するようになっている。
 このとき、他の第2~第4ベーン18b~18dは、両側面が円周方向から対向する各シュー8c、8dの対向側面に当接せずに離間状態にある。したがって、第1ベーン18aと第1、第2シュー8a、8bとの当接精度が向上すると共に、前記各遅角、進角油圧室10、11への油圧の供給速度が速くなってベーンロータ7の正逆方向の回転応答性が高くなる。
 前記各遅角油圧室10と各進角油圧室11は、前記ロータ17の内部に径方向に沿って形成された第1連通孔10aと第2連通孔11aを介して前記油圧回路4にそれぞれ連通している。
 前記油圧回路4は、前記各遅角、進角油圧室10、11に対して作動油(油圧)を選択的に供給あるいは排出するもので、図1に示すように、各遅角油圧室10に対して前記第1連通孔10aを介して油圧を給排する遅角油通路19と、各進角油圧室11に対して前記第2連通孔11aを介して油圧を給排する進角油通路20と、該各通路19、20に作動油を供給するオイルポンプ21と、機関の作動状態に応じて前記遅角油通路19と進角油通路20の流路を切り換える電磁切換弁22と、を備えている。前記オイルポンプ21は、機関のクランクシャフトによって回転駆動するトロコイドポンプなどの一般的なものである。
 前記遅角油通路19と進角油通路20とは、それぞれの一端部が前記電磁切換弁22の通路ポートに接続されている一方、各他端部側が図外のシリンダヘッドやシリンダブロックを介して前記カムシャフト2の内部に、軸方向に沿って平行な遅角通路部19aと進角通路部20aが形成されている。
 この遅角通路部19aは、前記第1連通孔10aを介して前記各遅角油圧室10に連通している。一方、進角通路部20aは、前記第2連通孔11aを介して前記各進角油圧室11に連通している。
 前記電磁切換弁22は、図1に示すように、2位置3ポート弁であって、図外の電子コントローラによって、バルブボディ内に軸方向へ摺動自在に設けられた図外のスプール弁体を前後方向に移動させて、オイルポンプ21の吐出通路21aと前記いずれかの油通路19、20と連通させると同時に、該他方の油通路19、20とドレン通路23とを連通させるようになっている。
 前記オイルポンプ21の吸入通路21bと前記ドレン通路23とは、オイルパン24内に連通している。また、オイルポンプ21の前記吐出通路21aの下流側には、濾過フィルタ25が設けられていると共に、この下流側で内燃機関の摺動部などに潤滑油を供給するメインオイルギャラリーM/Gに連通している。さらに、オイルポンプ21は、吐出通路21aから吐出された過剰な作動油をオイルパン24に排出して適正な流量に制御する流量制御弁26が設けられている。
 前記電子コントローラは、内部のコンピュータが図外のクランク角センサやエアフローメータ、機関水温センサ、スロットルバルブ開度センサ及びカムシャフト2の現在の回転位相を検出するカム角センサなどの各種センサ類からの情報信号を入力して現在の機関運転状態を検出すると共に、電磁切換弁22の電磁コイルに制御パルス電流を出力してそれぞれのスプール弁体の移動位置を制御し、これによって、前記各通路を切り換え制御するようになっている。
 また、前記第1ベーン18aと前記スプロケット1のリアカバー1bとの間には、前記ハウジング5に対してベーンロータ7を最進角位置に拘束するロック機構が設けられている。
 このロック機構は、図1~図3に示すように、前記第1ベーン18aの内部軸方向に貫通形成された摺動用孔27に摺動自在に収容されて、リアカバー1b側に対して進退自在に設けられたロックピン28と、前記リアカバー1bの径方向のほぼ中央所定位置に形成され、前記ロックピン28の先端部28aが係合して前記ベーンロータ7をロックするロック穴29と、機関の始動状態に応じて前記ロックピン28の先端部28aをロック穴29に係合あるいは係合を解除する係脱機構と、から構成されている。
 前記ロックピン28は、先端部28aを含めた全体がほぼ円柱状に形成されて、前記ロック穴29内に軸方向から係合し易い形状になっていると共に、後端側から内部軸方向に形成された凹溝底面とフロントプレート12の内面との間に弾装されて、ロックピン28を進出方向(係合する方向)へ付勢するコイルスプリング30が設けられている。
 前記ロック穴29は、前記ロックピン28の先端部外径よりも大きく形成され、円周方向の前記進角油圧室11側に偏倚した位置に形成されていると共に、前記ロックピン28が係合した場合には、前記ハウジング5とベーンロータ7の相対変換角度が最進角側の位置となるように設定されている。また、前記ロック穴29の側部には、前記ロックピン28の外径よりも小径で前記ロック穴29よりも一段下がった位置に半円弧状の受圧室31が形成されている。
 前記係脱機構は、前記ロックピン28を進出方向へ付勢する前記コイルスプリング30と、前記ロック穴29内の受圧室31に油圧を供給してロックピン28を後退させる図外の解除用油圧回路とから構成されており、この解除用油圧回路は、前記遅角油圧室10と進角油圧室11にそれぞれ選択的に供給された油圧が所定の油孔を介して受圧室31に供給されて前記ロックピン28に後退方向へ作用するようになっている。
 また、前記プレート本体13や円筒部14の内側及び前記ロータ17の環状溝17aの内部には、前記ベーンロータ7をハウジング5に対して進角方向へ付勢するトーションスプリング32が装着されている。
 前記トーションスプリング32は、図1及び図2に示すように、コイル状に巻回されたスプリング本体と、該スプリング本体の一端から径方向外側へ折曲されて外方に突出した一端部である前記第1係止端部32aと、前記スプリング本体の他端から径方向内側へ折曲されて内方に突出した他端部である第2係止端部32bと、から構成されている。
 前記スプリング本体は、その大部分が前記貫通孔13aや円筒部14内に収容されていると共に、軸方向内側の一部が前記ロータ17の環状溝17a内に収容配置されている。
 前記第1係止端部32aは、前記フロントプレート12の前記第1ばね係止溝14eに周方向から係止固定されている一方、前記第2係止端部32bは、前記ロータ17の第2係止溝17cに軸方向から係止固定されている。このトーションスプリング32のばね力によって、前記ベーンロータ7を進角側の回転方向へ常時付勢するようになっている。
 また、このトーションスプリング32は、前記ベーンロータ7がハウジング5に対して遅角側へ相対回転した場合に縮径方向へ変形するようになっている。
〔フロントプレートの成形方法〕
 そして、前記フロントプレート12は、図11A~Fに示す一連のプレス成形工程によって形成されるようになっている。
 まず、図11Aに示すように、炭素鋼材のフロントプレート12の母材12’を、図外のプレス成形機によって円盤状に予め成形すると共に、中央に円筒部14’成形用の成形用孔14h’を貫通形成しておく。
 次に、同図B、Cに示すように、前記成形用孔14h’を中心としてこの周囲の部位を上方へ押し上げて、漸次プレート本体13’と円筒部14’を成形する(バーリング加工)。このとき、前記プレート本体13’と円筒部14’との結合箇所(付け根箇所)の内周部14iにプレス成形による円弧状のいわゆるダレが発生している。
 その後、同図Dに示すように、まず、前記成形されたフロントプレート12の母材12’を、前記円筒部14’に対応した位置に挿通用孔40aが形成された基台40上に位置決め固定すると共に、前記円筒部14’の内部へ支持治具41を上方から挿入する。この支持治具41は、段差円柱状に形成され、先端側の小径部41aが前記円筒部14’の内周面14a’の内径よりも僅かに小さな外径に設定されて前記内周面14a’に近接配置されている。また、このとき、支持治具41の大径部41bと小径部41aの段差部41cが、前記円筒部14’の先端面14b’に僅かな隙間をもって軸方向から対向している。
 この状態で、前記支持治具41の外周側に配置された押し込みパンチ42によって、前記円筒部14’の付け根部の外周部14jを矢印に示す下方向へ押し込む。前記押し込みパンチ42は、右図に示すように、中央の挿通孔42aの下端孔縁に先端鋭角状の円環状の押し込み部42bが突設されており、この押し込み部42bによって前記外周部14jを図11Dの矢印下方向へ押し込むと、図8に示したように、プレート本体13の内周部に前記環状凹部16が形成される。
 そして、前記環状凹部16を形成する押し込み力が作用すると、プレート本体13’の内周部や円筒部14’の付け根部付近の部位が内方へ押し出される状態になるが、このとき、前記円筒部14’の付け根部側の内周面14a’内側とプレート本体13’の貫通孔13a’付近の内側を、前記支持治具41の外周面と基台40の挿通孔40a付近の上面によって前記押し込み力に抗して支持する。
 このため、プレート本体13の内周部の肉は、図8の矢印方向へ、つまり円筒部14の軸線方向へ押し出されて、前記内端面13eの内周部位13fが、図7に示すように円筒部14の軸線方向へ押し寄せられる。したがって、前記内端面13eの内周部位13fが断面ほぼ直角状に形成されて表面積が内方へ拡大するのである。これによって、前述したプレスによるダレが矯正される。
 続いて、同図Eに示すように、打ち抜きパンチ43を、円筒部14の内側から径方向外側(矢印方向)へ押し出すことによって、図10に示す前記切欠部14dと第1ばね係止溝14eが形成される。前記打ち抜きパンチ43は、先端面43aが円筒部14の曲率半径とほぼ同じ曲率半径の円弧状に形成されていると共に、該先端面43aの上端縁43bが円筒状14の軸中心側(内側)から半径方向外側に向かって移動して第1ばね係止溝14eを打ち抜き形成することから、図10に示した内側端縁に円弧面14gが形成される。
 次に、前記フロントプレート12の母材12’を、所定の時間と温度で熱処理を行った後、同図Fに示すように、前記プレート本体13の外周部に、図5に示した4つの円周方向等間隔位置に前記4つのボルト挿通孔13bを円周方向の等間隔位置に孔開け加工する。続いて、各ボルト挿通孔13bの外端面13d側の孔縁外周側に、コイニング加工によって円環状の前記着座部13cをそれぞれ形成する。
 その後、プレート本体13の内端面13eと円筒部14の先端面14bとを、前後の研磨機44a、44bで挟み込むようにしていわゆる両頭研磨加工を行う。これによって、特に、前記内端面13eの面粗度を高くして前記ローラ17との間のサイドクリアランスの精度を高めることができる。
 これによって、前記フロントプレート12の一連の成形作業が完了する。
〔本実施形態における可変動弁装置の作用効果〕
 まず、機関始動時は、図3に示すように、トーションスプリング32のばね力によってベーンロータ7を最大進角位置に付勢していると共に、この位置で予めロックピン28の先端部28aがロック穴29内に係入して、ベーンロータ7を始動に最適な進角側の相対回転位置に拘束している。このため、排気弁のバルブタイミングが最進角側へ安定的に制御されている。このことから、イグニッションスイッチをオン操作して始動が開始されると、スムーズなクランキングによって良好な始動性が得られる。
 そして、機関始動後の例えば低回転負荷域では、電子コントローラが電磁切換弁22の電磁コイルへの非通電状態が維持される。これによって、オイルポンプ21の吐出通路18aと遅角油通路19を連通させると同時に、進角油通路20とドレン通路23を連通させる。
 このため、前記オイルポンプ21から吐出された作動油は、前記遅角油通路19を介して各遅角油圧室10内に流入して、該各遅角油圧室10が高圧になる一方、各進角油圧室11内の作動油が前記進角油通路20を通って前記ドレン通路23からオイルパン22内に排出されて、各進角油圧室11内が低圧になる。
 このとき、前記各遅角油圧室10内に流入した作動油が前記解除用油圧回路から受圧室31及びロック孔29内にも流入して高圧となり、これによりロックピン28が後退動して先端部28aがロック穴29から抜け出して、ベーンロータ7の自由な回転が確保される。
 したがって、前記各遅角油圧室10の容積の拡大に伴い、ベーンロータ7が図3の一点鎖線で示すように、図中左側(遅角側)へ回転して第1ベーン18aの一側面が周方向から対向する前記第1シュー8aの対向一側面に当接して最大遅角側の回転位置が規制される。これにより、ベーンロータ7、つまりカムシャフト2は、ハウジング5に対して相対回転角度が最遅角側に変換される。
 また、ベーンロータ7がハウジング5に対して遅角側へ相対回転することによって前記トーションスプリング32が縮径方向へ変形する。
 次に、機関が例えば高回転負荷域に移行した場合は、電子コントローラから電磁切換弁22に制御電流が出力されて、吐出通路21aと進角油通路20を連通させると同時に、遅角油通路19とドレン通路23を連通させる。これにより、遅角油圧室10内の作動油が排出されて低圧になると共に、進角油圧室11内に作動油が供給されて内部が高圧になる。このとき、進角油圧室11から前記解除用油圧回路を介して前記受圧室31内に油圧が供給されることから、この油圧によってロックピン28はロック穴29から抜け出した状態が維持される。
 このため、ベーンロータ7は、図3の実線で示すように、ハウジング5に対して進角側へ回転して第1ベーン18aの他側面が周方向から対向する第2シュー8bの対向一側面に当接して最大進角側の回転位置が規制される。これによって、カムシャフト2のハウジング5に対する相対回動位相が最進角側に変換される。この結果、排気弁の開閉タイミングが最進角側に制御されて、かかる高回転高負荷域における機関の出力を向上させることができる。
 また、機関停止直前には、ドレン通路23を介して各油圧室10、11内の油圧がオイルパン22へ排出されて、受圧室29やロック穴29内の油圧も低下する。このため、前記カムシャフト2に作用するトーションスプリング32のばね力によってベーンロータ7が前記最進角側へ相対回転してこの位置、ロックピン28がコイルスプリング30のばね力によって進出し、先端部28aがロック穴29内に係合する。
 この場合、各構成部材の組み付け時に、前記ロックピン28と前記ロック穴29によってハウジング5の円周方向の正確な位置決めが行われているため、前記ロックピン28のスムーズな係合作用が得られる。
 そして、本実施形態では、前記フロントプレート12を、比較的薄肉な鉄系金属板を用いてプレス成形により一体に形成したことから、軽量化が図れることは勿論のこと、製造作業が容易になることからコストの低減化が図れる。
 しかも、前記円筒部14の付け根部を介して前記プレート本体13の外端面13d側の内周部に前記環状凹部16を押し込みパンチ42によって形成して、内端面13eの内周部位13fをほぼ直角状に形成して表面積を内方へ拡大したことにより、ダレを無くしてシール面を拡大することができることから、前記ロータ17の軸方向他端面との間のサイドクリアランスによるシール精度を十分に高めることが可能になる。
 また、前記内端面13eの内周部位13fの表面積の拡大を、内端面13eを研磨加工して行うのではなく、単に押し込みパンチ42と支持治具41との協働によって行うことにしたことから、成形コストの低減化が図れる。
 また、前記第1ばね係止溝14eの内側端縁を円弧面14gとしたことによって、前記トーションスプリング32の第1係止端部32aが第1ばね係止溝14eに係止した状態での第1係止端部32a外面の損傷の発生を抑制できる。
 さらに、前記内周部位13fの内側孔縁13gと円筒部14の内周面14aとの間に、環状テーパ面13hを形成したため、前記トーションスプリング32が特に拡径変形した際に、この変形を前記環状テーパ面13hで形成された空間内に吸収できることから、前記トーションスプリング32のスムーズな変形を確保できる。しかも、前記空間によってトーションスプリング32の外面が円筒部14の内周面14aに干渉するのを抑制することができので、前記外面の損傷や打音の発生をなくすことができる。
 さらに、前記プレート本体13の各着座面13cもプレス成形によって形成したので、研磨加工による場合に比較してコストの低減が図れる。
 また、本実施形態では、前記ベーンロータ7の最大幅の第1ベーン18aによってその重心が第1ベーン18a側に偏っているが、前記円筒部14の切欠部14d及び第1ばね係止溝14eによって、フロントプレート12の重心が前記切欠部14dや第1ばね係止溝14eと反対側に偏っていることから、第1ベーン18aの過重量分が相殺される。
 このため、第1ベーン18aと反対側に位置する第3ベーン18cなどにバランスウエイトを設けなくともバルブタイミング制御装置全体の重量バランスが図れると共に、切欠部14dや第1ばね係止溝14eによって装置の軽量化が図れる。
 本発明は、前記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲で構成を変更することも可能である。

Claims (13)

  1.  クランクシャフトから回転力が伝達され、軸方向の少なくとも一端が開口形成されたハウジング本体と、
     カムシャフトに固定されたロータ及び前記ハウジング本体の内周に突設された複数のシューの間に遅角作動室と進角作動室とを隔成する複数のベーンを有し、前記遅角作動室と進角作動室内の作動油を選択的に給排することによって前記ハウジング本体に対して遅角側あるいは進角側に相対回転するように構成されたベーンロータと、
     前記ハウジング本体の一端開口を内端面によって閉塞して前記各作動室を封止する円盤状のプレート本体及び該プレート本体の中央に穿設された貫通孔の孔縁から外方へ一体に突出した円筒部を有するフロントプレートと、
     一端部が前記ロータに係止され、他端部が前記円筒部に係止されることにより、前記ハウジング本体に対して前記ベーンロータを常時回転方向の一方向側に付勢するトーションスプリングと、
     を備え、
     前記プレート本体の外端面の前記円筒部の根元部付近に、前記内端面側に押し込んで形成された凹部を有することを特徴とする内燃機関のバルブタイミング制御装置。
  2.  請求項1に記載の内燃機関のバルブタイミング制御装置において、
     前記プレート本体の貫通孔の内周面に、前記内端面側から前記円筒部方向へ下り傾斜状のテーパ面を形成したことを特徴とする内燃機関のバルブタイミング制御装置。
  3.  請求項2に記載の内燃機関のバルブタイミング制御装置において、
     前記凹部を、プレス成形によって形成したことを特徴とする内燃機関のバルブタイミング制御装置。
  4.  請求項3に記載の内燃機関のバルブタイミング制御装置において、
     前記凹部を、前記円筒部の根元部を囲むように円環状に形成したことを特徴とする内燃機関のバルブタイミング制御装置。
  5.  請求項3に記載の内燃機関のバルブタイミング制御装置において、
     前記フロントプレートのプレート本体と円筒部をプレス成形によって一体に形成すると共に、前記凹部をプレス成形する際に、前記プレート本体の内端面の前記凹部に対応する箇所を予め内側から支持することによって前記テーパ面を形成したことを特徴とする内燃機関のバルブタイミング制御装置。
  6.  請求項2に記載の内燃機関のバルブタイミング制御装置において、
     前記円筒部の先端縁から軸方向へ所定長さ切り欠くと共に、該切欠部の前記プレート本体側の端部に、前記円筒部の周方向へ切欠して前記トーションスプリングの一端部を係止する係止部を形成したことを特徴とする内燃機関のバルブタイミング制御装置。
  7.  請求項6に記載の内燃機関のバルブタイミング制御装置において、
     前記切欠部と係止部の内側周縁部を円弧状に形成したことを特徴とする内燃機関のバルブタイミング制御装置。
  8.  請求項1に記載の内燃機関のバルブタイミング制御装置において、
     前記プレート本体の外周部の円周方向位置に、前記ハウジング本体に結合させるボルトを挿通させる複数のボルト挿通孔を穿設すると共に、該ボルト挿通孔の前記外端面側の孔縁に前記ボルトの頭部が着座する着座面を形成したことを特徴とする内燃機関のバルブタイミング制御装置。
  9.  クランクシャフトから回転力が伝達され、軸方向の少なくとも一端が開口形成されたハウジング本体と、
     カムシャフトに固定されたロータ及び前記ハウジング本体の内周に突設された複数のシューの間に遅角作動室と進角作動室とを隔成する複数のベーンを有し、前記遅角作動室と進角作動室内の作動油を選択的に給排することによって前記ハウジング本体に対して遅角側あるいは進角側に相対回転するように構成されたベーンロータと、
     前記ハウジング本体の一端開口を内端面によって閉塞して前記各作動室を封止する円盤状のプレート本体と、該プレート本体の中央に穿設された貫通孔の孔縁部を外側に折り曲げて外方へ一体に突出した円筒部と、を有するプレート本体と、
     一端部が前記ロータに係止され、他端部が前記円筒部に係止されることにより、前記ハウジング本体に対して前記ベーンロータを常時、回転方向の一方向側に付勢するトーションスプリングと、
     を備えた内燃機関のバルブタイミング制御装置の製造方法であって、
     前記プレート本体をプレス基台上に固定する工程と、
     前記円筒部の内部に該円筒部の内周面に沿った外形の円柱状の支持治具を予め挿通配置する工程と、
     前記プレート本体の外端面の前記円筒部の根元部付近の内周部位を、パンチによって前記内端面側へ押し込んで凹状に形成すると同時に、前記支持治具によって前記円筒部の内端面の前記凹部に対応した内周部位を前記パンチの押し込み力に抗して押圧支持することにより、前記円筒部の内端面の内周部位を前記挿通孔方向へ引き延ばして表面積を拡大する工程と、を有することを特徴とする内燃機関のバルブタイミング制御装置の製造方法。
  10.  請求項9に記載の内燃機関のバルブタイミング制御装置の製造方法において、
     前記円筒部の先端縁から軸方向へ所定長さ切り欠くと共に、該切欠部の前記プレート本体側の端部に、前記円筒部の周方向へ切欠して前記トーションスプリングの一端部を係止する係止部を形成したことを特徴とする内燃機関のバルブタイミング制御装置の製造方法。
  11.  請求項10に記載の内燃機関のバルブタイミング制御装置の製造方法において、
     前記切欠部と係止部を、前記円筒部の内側からプレス成形機のパンチによって打ち抜き加工すると共に、該打ち抜き加工時に前記切欠部と係止部の内側周縁部を円弧状に形成したことを特徴とする内燃機関のバルブタイミング制御装置の製造方法。
  12.  請求項9に記載の内燃機関のバルブタイミング制御装置の製造方法において、
     前記プレート本体の内端面全体と前記円筒部の先端面を、互いに軸方向から同時に研磨加工したことを特徴とする内燃機関のバルブタイミング制御装置の製造方法。
  13.  請求項9に記載の内燃機関のバルブタイミング制御装置の製造方法において、
     前記プレート本体の外周部の円周方向位置に、前記ハウジング本体に結合させるボルトを挿通させる複数のボルト挿通孔を穿設すると共に、該ボルト挿通孔の前記外端面側の孔縁に前記ボルトの頭部が着座する着座面をコイニング加工によって形成したことを特徴とする内燃機関のバルブタイミング制御装置の製造方法。
PCT/JP2014/079800 2013-12-11 2014-11-11 内燃機関のバルブタイミング制御装置 WO2015087649A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/032,400 US10082055B2 (en) 2013-12-11 2014-11-11 Valve timing control device for internal combustion engine
JP2015552369A JPWO2015087649A1 (ja) 2013-12-11 2014-11-11 内燃機関のバルブタイミング制御装置
CN201480066837.4A CN105793527B (zh) 2013-12-11 2014-11-11 内燃机的气门正时控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-255530 2013-12-11
JP2013255530 2013-12-11

Publications (1)

Publication Number Publication Date
WO2015087649A1 true WO2015087649A1 (ja) 2015-06-18

Family

ID=53370964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079800 WO2015087649A1 (ja) 2013-12-11 2014-11-11 内燃機関のバルブタイミング制御装置

Country Status (4)

Country Link
US (1) US10082055B2 (ja)
JP (2) JPWO2015087649A1 (ja)
CN (1) CN105793527B (ja)
WO (1) WO2015087649A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002558A1 (ja) * 2015-06-29 2017-01-05 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御装置
JP2017075567A (ja) * 2015-10-15 2017-04-20 株式会社デンソー バルブタイミング調整装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10167747B2 (en) * 2016-10-28 2019-01-01 Schaeffler Technologies AG & Co. KG Sheet metal locking cover for a cam phaser
DE112018008008T5 (de) * 2018-09-25 2021-06-17 Schaeffler Technologies AG & Co. KG Einsatz für einen Nockenwellenversteller sowie Nockenwellenversteller
JP2020076357A (ja) * 2018-11-07 2020-05-21 アイシン精機株式会社 弁開閉時期制御装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433728A (ja) * 1990-05-25 1992-02-05 Toshiba Corp バーリング加工方法
JPH09189210A (ja) * 1995-12-20 1997-07-22 Eaton Corp バルブコントロールシステム
JPH10225729A (ja) * 1997-02-12 1998-08-25 Aida Eng Ltd バーリング加工方法
JPH10331614A (ja) * 1997-05-30 1998-12-15 Aisin Seiki Co Ltd 弁開閉時期制御装置
JP2000240414A (ja) * 1999-02-16 2000-09-05 Mitsubishi Electric Corp ベーン式油圧アクチュエータ
JP2003088055A (ja) * 2001-09-17 2003-03-20 Mitsuba Corp 磁石発電機の回転子
JP2003262107A (ja) * 2002-03-07 2003-09-19 Hitachi Unisia Automotive Ltd 内燃機関のバルブタイミング制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330468A (en) 1976-09-01 1978-03-22 Hamasawa Kogyo Kk Plastic processing method
JPS62168615A (ja) 1986-01-21 1987-07-24 Mitsubishi Electric Corp 半導体装置のダイパツト成形金型
JPH03106518A (ja) 1989-09-20 1991-05-07 Hitachi Ltd エレベータ補強部材の打抜き方法
DE10103876B4 (de) * 2000-01-31 2005-12-01 Aisin Seiki K.K., Kariya Ventilsteuerzeitverstellvorrichtung für Verbrennungsmotoren
JP4930791B2 (ja) * 2007-12-20 2012-05-16 アイシン精機株式会社 弁開閉時期制御装置
JP2011064105A (ja) * 2009-09-16 2011-03-31 Hitachi Automotive Systems Ltd 内燃機関のバルブタイミング制御装置
JP5804765B2 (ja) 2010-05-17 2015-11-04 日新製鋼株式会社 塗装鋼板の溶接方法
JP5357137B2 (ja) 2010-12-24 2013-12-04 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433728A (ja) * 1990-05-25 1992-02-05 Toshiba Corp バーリング加工方法
JPH09189210A (ja) * 1995-12-20 1997-07-22 Eaton Corp バルブコントロールシステム
JPH10225729A (ja) * 1997-02-12 1998-08-25 Aida Eng Ltd バーリング加工方法
JPH10331614A (ja) * 1997-05-30 1998-12-15 Aisin Seiki Co Ltd 弁開閉時期制御装置
JP2000240414A (ja) * 1999-02-16 2000-09-05 Mitsubishi Electric Corp ベーン式油圧アクチュエータ
JP2003088055A (ja) * 2001-09-17 2003-03-20 Mitsuba Corp 磁石発電機の回転子
JP2003262107A (ja) * 2002-03-07 2003-09-19 Hitachi Unisia Automotive Ltd 内燃機関のバルブタイミング制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002558A1 (ja) * 2015-06-29 2017-01-05 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御装置
JP2017014939A (ja) * 2015-06-29 2017-01-19 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御装置
CN107709712A (zh) * 2015-06-29 2018-02-16 日立汽车系统株式会社 内燃机的气门正时控制装置
US10480424B2 (en) 2015-06-29 2019-11-19 Hitachi Automotive Systems, Ltd. Internal-combustion engine valve timing control apparatus
JP2017075567A (ja) * 2015-10-15 2017-04-20 株式会社デンソー バルブタイミング調整装置

Also Published As

Publication number Publication date
CN105793527B (zh) 2019-06-21
JP6368008B2 (ja) 2018-08-01
CN105793527A (zh) 2016-07-20
JPWO2015087649A1 (ja) 2017-03-16
JP2017172589A (ja) 2017-09-28
US10082055B2 (en) 2018-09-25
US20160273417A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
JP6368008B2 (ja) 内燃機関のバルブタイミング制御装置
US9133734B2 (en) Valve timing control apparatus for internal combustion engine
JP6084847B2 (ja) 内燃機関のバルブタイミング制御装置及びその組立方法
US9004025B2 (en) Variable valve timing control apparatus of internal combustion engine
JP5763432B2 (ja) 内燃機関のバルブタイミング制御装置
JP4016020B2 (ja) 内燃機関のバルブタイミング制御装置
US10371019B2 (en) Valve timing control device for internal combustion engine
JP6110768B2 (ja) 内燃機関の可変動弁装置
JP2006328986A (ja) 内燃機関のバルブタイミング制御装置
US9506378B2 (en) Variable valve timing control apparatus of internal combustion engine
JP6312568B2 (ja) 内燃機関のバルブタイミング制御装置
JP6157308B2 (ja) 内燃機関のバルブタイミング制御装置
CN107923274B (zh) 内燃机的气门正时控制装置
JP4304219B2 (ja) 内燃機関のバルブタイミング制御装置及びその組立方法
WO2017119234A1 (ja) 内燃機関のバルブタイミング制御装置
JP6533322B2 (ja) 内燃機関のバルブタイミング制御装置
WO2019159511A1 (ja) 内燃機関のバルブタイミング制御装置
WO2021125073A1 (ja) 内燃機関のバルブタイミング制御装置
JP6689665B2 (ja) 内燃機関のバルブタイミング制御装置及び該バルブタイミング制御装置の組み付け方法
WO2020121635A1 (ja) 内燃機関のバルブタイミング制御装置
WO2018230173A1 (ja) 内燃機関のバルブタイミング制御装置
JPWO2018030056A1 (ja) 内燃機関のバルブタイミング制御装置及び該バルブタイミング制御装置の組立方法
JP2020094507A (ja) 内燃機関のバルブタイミング制御装置及び内燃機関のバルブタイミング制御システム
JP2007100651A (ja) バルブタイミング調整装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552369

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15032400

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14870224

Country of ref document: EP

Kind code of ref document: A1