WO2015087485A1 - シリコン単結晶基板の欠陥濃度評価方法 - Google Patents
シリコン単結晶基板の欠陥濃度評価方法 Download PDFInfo
- Publication number
- WO2015087485A1 WO2015087485A1 PCT/JP2014/005680 JP2014005680W WO2015087485A1 WO 2015087485 A1 WO2015087485 A1 WO 2015087485A1 JP 2014005680 W JP2014005680 W JP 2014005680W WO 2015087485 A1 WO2015087485 A1 WO 2015087485A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crystal substrate
- silicon single
- concentration
- single crystal
- irradiation
- Prior art date
Links
- 230000007547 defect Effects 0.000 title claims abstract description 86
- 239000013078 crystal Substances 0.000 title claims abstract description 74
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 70
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 69
- 239000010703 silicon Substances 0.000 title claims abstract description 69
- 239000000758 substrate Substances 0.000 title claims abstract description 51
- 238000011156 evaluation Methods 0.000 title claims abstract description 28
- 239000002245 particle Substances 0.000 claims abstract description 46
- 238000000034 method Methods 0.000 claims abstract description 38
- 238000005259 measurement Methods 0.000 claims abstract description 10
- 238000012360 testing method Methods 0.000 claims description 28
- 239000002019 doping agent Substances 0.000 claims description 12
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims description 10
- 239000011574 phosphorus Substances 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 8
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052785 arsenic Inorganic materials 0.000 claims description 4
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 claims description 4
- 239000000969 carrier Substances 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 56
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 28
- 239000001301 oxygen Substances 0.000 description 28
- 229910052760 oxygen Inorganic materials 0.000 description 28
- 238000011084 recovery Methods 0.000 description 21
- 238000010894 electron beam technology Methods 0.000 description 14
- 229910052799 carbon Inorganic materials 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 125000004429 atom Chemical group 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005136 cathodoluminescence Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 101100060033 Drosophila melanogaster cic gene Proteins 0.000 description 2
- 101100060035 Mus musculus Cic gene Proteins 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001773 deep-level transient spectroscopy Methods 0.000 description 2
- 238000005424 photoluminescence Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 238000004435 EPR spectroscopy Methods 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- -1 helium ions Chemical class 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- FSLGCYNKXXIWGJ-UHFFFAOYSA-N silicon(1+) Chemical compound [Si+] FSLGCYNKXXIWGJ-UHFFFAOYSA-N 0.000 description 1
- 238000004857 zone melting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/041—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02598—Microstructure monocrystalline
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/14—Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
- H01L22/24—Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/025—Physical imperfections, e.g. particular concentration or distribution of impurities
Definitions
- the present invention relates to a method for evaluating the concentration of crystal defects introduced into a silicon single crystal substrate by irradiation with a particle beam made of electrons, ions, or the like.
- Patent Document 1 discloses a PN diode in which crystal defects are formed in the vicinity of a PN junction interface by implanting protons. By irradiating the particle beam, crystal defects are introduced into the silicon crystal, and the carrier lifetime is accordingly reduced. A desired lifetime can be obtained by controlling the dose.
- the process in which defects are formed in a silicon single crystal by particle beam irradiation is as follows. First, when a particle beam is implanted, silicon atoms constituting the crystal are ejected from the lattice positions, and interstitial silicon (I) and monoatomic vacancies (V) are generated. This interstitial silicon-monoatomic vacancy pair is called a Frenkel pair.
- interstitial silicon A part of the interstitial silicon is replaced with the carbon atom Cs existing at the lattice position, and interstitial carbon Ci is generated. Since this interstitial carbon is unstable, it is combined with interstitial oxygen or another substitutional carbon to form complex defects such as CiOi and CiCs, respectively.
- the remaining interstitial silicon is thought to either agglomerate with other interstitial silicon to form clusters, remain in the crystal as it is, or recombine with monoatomic vacancies and disappear. .
- defects such as CiOi and CiCs caused by interstitial carbon are detected by photoluminescence (PL) and cathodoluminescence (CL) and are influenced by oxygen concentration and carbon concentration in the crystal (Non-patent Document 1). ).
- the monoatomic vacancies in the Frenkel pair are considered to be in a stable state when they have a predetermined positional relationship with other monoatomic vacancies, and most of them are considered to form VV defects composed of two silicon atomic vacancies.
- ESR electron spin resonance
- crystal defects caused by irradiation serve as carrier traps and have a role of reducing lifetime.
- an evaluation method such as CL
- the amount of VV defects generated is reduced. There was a problem that quantitative evaluation was difficult.
- the present invention has been made in view of the above problems, and an object thereof is to provide a method capable of simply evaluating the concentration of VV defects generated in a silicon single crystal substrate by irradiation with particle beams.
- the present invention is a method for evaluating the concentration of defects generated in a silicon single crystal substrate by irradiation with particle beams, the resistivity of the silicon single crystal substrate being measured,
- the single crystal substrate is irradiated with the particle beam, and after the irradiation, the resistivity of the silicon single crystal substrate is measured again.
- the carrier concentration change rate is calculated and the change rate of the carrier concentration is calculated.
- the concentration of VV defects formed in the silicon single crystal substrate by irradiation with the particle beam and consisting of silicon atomic vacancies is calculated.
- a defect concentration evaluation method for a silicon single crystal substrate is provided.
- the present invention can evaluate the concentration of VV defects from the measurement of the resistivity before and after the irradiation of the particle beam and the change rate of the carrier concentration obtained from the measured value. is there. In addition, from the evaluation results, it is possible to obtain the relationship between the dose of the particle beam and the crystal quality (for example, oxygen concentration) with respect to the concentration of the VV defect.
- the crystal quality for example, oxygen concentration
- the particle beam to be irradiated can be made of electrons or ions.
- Such a particle beam irradiation can generate a Frenkel pair and VV defects caused by the monoatomic vacancies V in the silicon single crystal substrate.
- the dopant impurity contained in the silicon single crystal substrate can be any of phosphorus, arsenic, and antimony.
- the atomic diameter is about the same as or larger than that of silicon, and it is possible to form and stabilize a complex with single atomic vacancies, and to more reliably increase the concentration of VV defects in the above carrier. It can be evaluated using the rate of change in concentration.
- a preliminary test silicon single crystal substrate in which the concentration of VV defects has already been evaluated is prepared in advance.
- a correlation is obtained from the change rate of the carrier concentration before and after the irradiation of the beam and the concentration of the already evaluated VV defect, and a particle beam is applied to the silicon single crystal substrate to be evaluated using the correlation. Irradiation can be used to evaluate the concentration of VV defects.
- the concentration of VV defects in the silicon single crystal substrate to be evaluated can be more easily and relatively evaluated.
- the concentration of VV defects caused by particle beam irradiation can be easily evaluated, and the relationship between the VV defect concentration with respect to the particle beam irradiation amount and crystal quality can be obtained. .
- the dose or crystal quality necessary for controlling the lifetime of the silicon single crystal substrate to a desired value can be grasped more easily.
- the abundance of each impurity element and defect will be determined.
- the oxygen concentration is, for example, from the 17th to the 18th power per cm 3 , and in the case of the FZ method, depending on the oxygen concentration of the raw material, it is about the 15th to the 16th power.
- the dopant concentration is, for example, 5 ⁇ 10 14 atoms / cm 3 or less in terms of phosphorus, for example, when the resistivity range generally used as IGBT is 10 ⁇ cm or more.
- the amount of monoatomic vacancies varies greatly depending on the dose of particle beam and is difficult to estimate.
- the Frenkel pair of 1 ⁇ 10 13 to 1 ⁇ 10 15 / cm 3 is included in the crystal. Suppose that irradiation was performed to such an extent that
- the oxygen concentration is sufficiently higher than the phosphorus concentration [P] and the V concentration [V], and therefore the reaction (1) occurs preferentially.
- the remaining V causes the reactions (2) and (3).
- the reaction (1) is likely to occur in a crystal having a high oxygen concentration, whereas the reactions (2) and (3) are less likely to occur, and the reaction (1) is suppressed in a crystal having a low oxygen concentration ( 2)
- the reaction (3) tends to occur.
- VP has been reported to form a level at about 0.45 eV below the conduction band of silicon by analysis of DLTS (Deep Level Transient Spectroscopy), and does not work as an N-type dopant. That is, since the resistivity of the silicon substrate increases with the amount of VP formed, [VP] can be estimated by measuring the carrier concentration change rate before and after irradiation. Therefore, it is possible to simply estimate and evaluate [VV] as [VV] ⁇ [VP] ⁇ carrier concentration change rate. The present inventors found these things and completed the present invention.
- Step 1 An example of the process of the defect concentration evaluation method for a silicon single crystal substrate of the present invention is shown in FIG. (Step 1: Preparation of silicon single crystal substrate to be evaluated)
- a silicon single crystal substrate hereinafter simply referred to as a wafer
- the silicon single crystal ingot used as the raw material of the wafer may be made by either the floating zone melting method (FZ method) or the Czochralski method (CZ method). Further, the thickness of the wafer and the method for processing the surface are not particularly limited.
- the oxygen concentration of the wafer is not particularly limited, but can be, for example, about 5 ⁇ 10 15 to 2 ⁇ 10 18 atoms / cm 3 which is usually manufactured by the FZ method or the CZ method. Within this range, there is a relationship with the dopant concentration, etc., but the defect formation mechanism found by the present inventors as described above is more likely to be realized, and the evaluation method of the present invention is effective. Can be used.
- the conductivity type of silicon is not particularly limited, but for example, it may be an N type doped with any of phosphorus, arsenic, and antimony.
- the dopant concentration in the crystal can be set to 5 ⁇ 10 14 atoms / cm 3 or less. This is in the case of phosphorus doping, which corresponds to a resistivity of approximately 10 ⁇ cm or more.
- the reaction between the monoatomic vacancies and dopant atoms if the atomic diameter is about the same as or larger than that of silicon, a complex is formed with the monoatomic vacancies and stabilized. On the other hand, when the atomic diameter is smaller than that of silicon, a composite with interstitial silicon is formed and stabilized.
- the element such as phosphorus, arsenic, or antimony is more than the element having a relatively small atomic diameter such as boron, a complex defect can be more reliably formed by a single atomic vacancy and a dopant atom. Is likely to occur.
- the dopant species and the concentration range thereof are that the defect formation mechanism is more likely to be realized, as in the description regarding the oxygen concentration. In the following, the case of phosphorus doping will be described as an example.
- the presence or absence of nitrogen doping on the wafer is not particularly limited.
- the carbon concentration is not particularly limited. This is because nitrogen and carbon are considered not to contribute particularly to the reaction related to the Si atomic vacancy V.
- the amount of carbon-related defects due to interstitial silicon I varies depending on the number of carbon atoms. Therefore, when the defect evaluation according to the present invention is related to the device characteristics, it is possible to obtain a more accurate evaluation in consideration of the influence.
- the resistivity measurement method it is convenient and preferable to use the four-probe method when an electron beam is used for the subsequent particle beam irradiation, but the measurement method is not limited to this.
- an ion beam other than an electron beam is used as the particle beam, there is a property that defects due to irradiation in the wafer are likely to be localized at a specific depth as compared with an electron beam.
- a measurement method in which a distribution is obtained in the depth direction such as a spread resistance (SR) measurement after angle polishing, is preferable.
- SR spread resistance
- the particle beam is irradiated to the wafer.
- the particle beam can consist of electrons or ions.
- crystal defects such as Frenkel pairs and VV defects caused by the monoatomic vacancies V
- an appropriate amount of Frenkel pair is generated, and the irradiation amount can be appropriately adjusted to the extent that the above-described mechanism is established.
- the irradiation amount is 1 ⁇ 10 16 / cm 2 or less at an acceleration voltage of 2 MV.
- Step 5 Calculation of carrier concentration change rate
- the carrier concentration before and after irradiation is calculated from the resistivity before and after irradiation using an Irvine curve or the like, and the carrier concentration change rate is calculated.
- Step 6 Evaluation of VV defect concentration
- the VV defect concentration is evaluated using the carrier concentration change rate calculated as described above.
- the relationship between the oxygen concentration or the particle beam irradiation amount and the carrier concentration change rate will be described.
- the correlation between the oxygen concentration and the carrier concentration change rate is shown in FIG. This is a result of producing phosphorus-doped N-type wafers (resistivity of about 60 ⁇ cm) with various oxygen concentrations by FZ method and CZ method, and irradiating each with 6 ⁇ 10 14 / cm 2 of electron beam.
- the carrier concentration change rate decreases as the oxygen concentration increases. This indicates that as the oxygen concentration increases, the monoatomic vacancies V are consumed by O as the above-mentioned consideration by the present inventors, and the composite PV of phosphorus and vacancies is less likely to be formed.
- FIG. 3 shows the correlation between the electron beam irradiation amount and the carrier concentration change rate.
- the wafer oxygen concentration is all 6 ⁇ 10 15 atoms / cm 3 . From FIG. 3, it can be said that the number of defects due to irradiation increases and the carrier concentration changes greatly as the electron beam irradiation amount increases.
- the carrier concentration change rate changes depending on the oxygen concentration and the irradiation amount of the particle beam.
- [VP] ⁇ [VV] as described above, it can be indirectly understood that, for example, the higher the carrier concentration change rate, the more VV defects are formed.
- the magnitude of the VV defect concentration can be simply evaluated using the carrier concentration change rate.
- a specific VV defect concentration value is not required, the relative VV defect concentration between various samples can be evaluated.
- the data indicating the relationship between the oxygen concentration and the particle beam irradiation amount and the carrier concentration change rate related to the VV defect concentration is acquired in advance, so that the VV defect concentration is obtained. And their relationship. Thereby, for example, it is possible to estimate the amount of irradiation required to make the irradiation damage equal when the oxygen concentration of the wafer is changed.
- a preliminary test can be performed before evaluating a silicon single crystal substrate to be actually evaluated.
- An example of the process of the second embodiment is shown in FIG. [Preliminary test] (Step 1: Preparation of silicon single crystal substrate for preliminary test)
- a silicon single crystal substrate for preliminary testing hereinafter simply referred to as a preliminary testing wafer
- This preliminary test wafer can be the same as the wafer to be evaluated prepared later, for example, except that the concentration of VV defects has already been evaluated.
- the specific oxygen concentration and the like can be determined in the same manner as in the first embodiment, for example.
- a plurality of preliminary test wafers having the same oxygen concentration, dopant type, resistivity, etc. as the wafer to be evaluated will be described, but the number is not particularly limited.
- the quality of the recovery characteristic represents the magnitude of the VV defect generation amount.
- diodes are manufactured by changing the irradiation amount by the number of preliminary test wafers, and the quality of the recovery characteristics of each diode is obtained as an index of the VV defect concentration in each preliminary test wafer.
- the present invention is not limited to this recovery characteristic, and other parameters correlating with the concentration of VV defects can be used.
- Step 2 to Step 5 Resistivity measurement to calculation of carrier concentration change rate
- step 3 particle beam irradiation
- step 3 particle beam irradiation
- step 3 particle beam irradiation
- step 3 particle beam irradiation
- step 3 particle beam irradiation
- step 3 particle beam irradiation
- step 3 particle beam irradiation
- step 3 particle beam irradiation
- step 3 particle beam irradiation
- step 3 particle beam irradiation
- particle beam irradiation is performed under the same conditions as in the manufacturing process using the diode in step 1 ′ described above.
- the amount of irradiation differs for each preliminary test wafer.
- the specific procedures in these steps can be performed in the same manner as in the first embodiment, for example.
- Step 7 to Step 11 Preparation of the silicon single crystal substrate to be evaluated to calculate the carrier concentration change rate
- this test is conducted. That is, an actual evaluation target wafer is evaluated. Prepare the wafer to be evaluated, measure the resistivity, irradiate the particle beam at a predetermined irradiation dose, measure the resistivity again, and determine the carrier concentration in the wafer to be evaluated before and after irradiation, respectively. Calculate the rate of change.
- Step 12 Evaluation of VV defect concentration using correlation
- the VV defect concentration of the evaluation target wafer here, the quality of the recovery characteristics of the diode
- the calculated carrier concentration change rate is applied to the above correlation, and the corresponding VV defect concentration (recovery characteristic quality) is obtained. In this way, the VV defect concentration can be simply evaluated relative to the preliminary test.
- Example 1 Using a CZ method and an FZ method, a silicon single crystal ingot having a diameter of 200 mm doped with phosphorus was manufactured. When the oxygen concentration in the crystal was measured by the FTIR method, it was 3.5 ⁇ 10 17 atoms / cm 3 for the CZ crystal and 0.3 ⁇ 10 17 atoms / cm 3 for the FZ crystal. Both resistivity values were about 60 ⁇ cm. Note that the carbon concentration was reduced to about 5 ⁇ 10 14 atoms / cm 3 in order to avoid the occurrence of carbon-related defects and affect the device characteristics.
- PW polished wafers
- PN diodes were prepared from these FZ wafers. These diodes are irradiated with five levels of electron beams at an acceleration voltage of 2 MV during the manufacturing process.
- the amount of VV defects generated was indirectly evaluated from the recovery characteristics of the manufactured diode. It is considered that the quality of the recovery characteristics represents the magnitude of the VV defect concentration. The evaluation results are shown in Table 1.
- a PW of the same type as the PW was irradiated with five levels of electron beams under the same conditions as in the diode production, and the resistivity before and after the irradiation was measured by a four-probe method.
- the carrier concentration before and after irradiation is obtained by the measurement, and the change rate of the carrier concentration calculated from them is also shown in Table 1.
- Table 1 shows the correlation between the carrier concentration change rate obtained as described above and the VV defect concentration (recovery property quality). It can be seen that the recovery characteristic is acceptable when the change rate of the carrier concentration is about 29% or more.
- the amount of damage estimated from the change in carrier concentration is an effective index. That is, it can be seen that it is an effective method to evaluate the VV defect concentration from the carrier concentration change rate as in the present invention. Further, as shown in Tables 1 and 2, it is possible to grasp the relationship between the irradiation amount and the VV defect concentration in the oxygen concentration or the like in each of the prepared CZ wafer and FZ wafer.
- Example 2 Further, as a result of the preliminary test, Table 1 and Table 2 show that FZ wafer and CZ wafer prepared separately (oxygen concentration etc. are the same as those prepared for preparation of Table 1 and Table 2), Table 1 When the carrier concentration change rate was calculated by irradiating an electron beam with an irradiation dose different from the irradiation level described in Table 2, both were 29% or more. Therefore, in consideration of the calculation results of the carrier concentration and Tables 1 and 2 of the preliminary test, when a PN diode is produced by irradiating a wafer similar to these wafers with an electron beam at the same dose, the recovery characteristic is Evaluated to pass. When a PN diode was actually fabricated and the recovery characteristics were evaluated, it passed as expected.
- Example 2 The same FZ wafer and CZ wafer as in Example 1 were prepared.
- the FZ wafer is not subjected to resistivity measurement or calculation of the carrier concentration change rate, and is simply irradiated with an electron beam at an irradiation dose (irradiation levels 1 to 5) as shown in Table 1.
- irradiation levels 1 to 5 an electron beam at an irradiation dose (irradiation levels 1 to 5) as shown in Table 1.
- a PN diode was manufactured, and the relationship between the irradiation amount and the quality result of the recovery characteristics was obtained.
- the relationship between the irradiation amount and the quality result of the recovery characteristics is shown in Table 2. That is, unlike the prediction, for example, as can be seen from the pass / fail results at irradiation levels 3 and 4, the FZ wafer failed the CZ wafer even though the recovery characteristics passed. As described above, there are cases where wafer characteristics having different oxygen concentrations cause differences in device characteristics due to differences in irradiation damage even under the same irradiation conditions. As can be seen from the comparison of the evaluation results of the comparative example determined only with such irradiation conditions and the first and second embodiments in which the present invention was implemented, as described above, when evaluating the VV defect concentration, the carrier It can be seen that the present invention considering the density change rate is effective.
- the present invention is not limited to the above embodiment.
- the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Electrochemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
格子間炭素に起因するCiOi、CiCsといった欠陥はフォトルミネッセンス(PL)やカソードルミネッセンス(CL)によって検出され、結晶中の酸素濃度や炭素濃度に影響されることが知られている(非特許文献1)。
まず、本発明者らが本発明を完成させるに至った経緯について述べる。
前述したように、従来では、粒子線の照射によって形成されたフレンケルペアのうちのV(単原子空孔)の多くがVV欠陥を形成すると考えられていたが、本発明者らが鋭意研究を行ったところ、そのVは(1)V+O→VO、(2)V+X→VX、(3)V+V→VVの3つの反応が主に起こることが分かった。なお、上記の式において、Oは酸素原子、Xはドーパント原子を表す。
本発明者らはこれらのことを見出し、本発明を完成させた。
<第一の実施態様>
本発明のシリコン単結晶基板の欠陥濃度評価方法の工程の一例を図1に示す。
(工程1:評価対象のシリコン単結晶基板の用意)
まず、評価対象となるシリコン単結晶基板(以下、単にウエーハと呼ぶことがある)を用意する。ウェーハの原料となるシリコン単結晶インゴットは浮遊帯溶融法(FZ法)とチョクラルスキー法(CZ法)のいずれにより作られたものでもよい。またウェーハの厚みや表面の加工方法も特に限定されない。
単原子空孔とドーパント原子の反応については、原子径がシリコンと同程度かそれ以上の場合は単原子空孔と複合体を作り安定化する。一方、原子径がシリコンよりも小さい場合は格子間シリコンと複合体を作り安定化する。従って、ホウ素などの比較的原子径の小さい元素よりも上記のリン、ヒ素、アンチモン等の元素であれば、より確実に単原子空孔とドーパント原子とで複合欠陥を作ることができ、上記メカニズムが発生しやすい。
このようにドーパント種やその濃度の範囲として上記例を挙げた理由は、上記の酸素濃度に関する説明と同様、欠陥形成メカニズムがより一層成り立ちやすくなるためである。
なお、以下ではリンドープの場合を例に挙げて説明する。
上記のウェーハについて、抵抗率を測定する。
ただし、ウェーハ中に酸素や窒素が含まれると、サーマルドナーやNOドナーが発生している場合がある。それらによって抵抗率が本来の値からずれることを防ぐために、あらかじめドナー消去熱処理を加えておくことが好ましい。例えば窒素をドープしないCZウェーハの場合は、例えば650℃で20分の熱処理を加えれば十分にサーマルドナーを消去することができる。
次に、ウェーハに粒子線を照射する。
粒子線は電子またはイオンからなるものとすることができる。これらの照射により、シリコン単結晶内に結晶欠陥(フレンケルペアおよびその単原子空孔Vを起因とするVV欠陥等)が生成される。粒子線の照射条件に特別な限定はないが、適当な量のフレンケルペアが生成され、前述のメカニズムが成り立つ程度に照射量を適宜調整することができる。照射量から空孔濃度を算出することは困難ではあるが、電子線照射の場合、例えば加速電圧2MVで照射量1×1016/cm2以下にすることが好ましい。
そして、粒子線を照射した後のウェーハについて、再び抵抗率を測定する。
実際にデバイスとして用いる際には照射後にアニールを行って不要なダメージを除去することが通常行われるが、この場合はダメージ評価を行うことが目的であるため加熱処理は不要である。ただし、当然、必要に応じて加熱処理を行うこともできる。
そして、アービン曲線などを用いて照射前後の抵抗率から、それぞれ、照射前後のキャリア濃度を算出し、さらにキャリア濃度変化率を算出する。なお、キャリア濃度変化率としては、例えば以下の式によって求めることができる。
キャリア濃度変化率=([n]f-[n]i)/[n]i×100
ただし、[n]i:照射前のキャリア濃度、[n]f:照射後のキャリア濃度である。
上記のようにして算出したキャリア濃度変化率を用いてVV欠陥濃度を評価する。
ここで、まず、酸素濃度や粒子線の照射量と、キャリア濃度変化率との関係について説明する。
酸素濃度とキャリア濃度変化率の相関を図2に示す。FZ法とCZ法で各種酸素濃度のリンドープN型ウェーハ(抵抗率約60Ωcm)を作製し、それぞれに6×1014/cm2の電子線照射を行った結果である。
この図2から明らかなように、酸素濃度が高くなるほどキャリア濃度変化率が小さくなる。これは前述の本発明者らによる考察の通り、酸素濃度が高くなるほど単原子空孔VがOに消費され、その分リンと空孔の複合体PVが形成されにくくなることを示している。
この図3から、電子線照射量が増えるほど照射による欠陥数が増加し、キャリア濃度が大きく変化していると言える。
また、本発明の他の実施態様としては、実際の評価対象のシリコン単結晶基板を評価する前に予備試験を行うことができる。第二の実施態様の工程の一例を図4に示す。
[予備試験]
(工程1:予備試験用のシリコン単結晶基板の用意)
まず、予備試験用のシリコン単結晶基板(以下、単に予備試験用ウエーハと呼ぶことがある)を用意する。この予備試験用ウエーハとしては、VV欠陥の濃度が既に評価されているということ以外は、例えば後に用意する評価対象のウエーハと同様のものとすることができる。具体的な酸素濃度等は、例えば第一の実施態様のときと同様にして決定することができる。
ここでは、一例として酸素濃度、ドーパント種、抵抗率等が評価対象のウエーハと同じ予備試験用ウエーハを複数用意する例を挙げて説明するが、その数は特に限定されない。
なお、VV欠陥の濃度を直接定量することは難しい。そこで、例えば、該予備試験用ウエーハと同様のウエーハを用い、製造工程において、後述する予備試験での工程3の粒子線照射工程と同様の条件で粒子線を照射して作製したダイオードのリカバリー特性から、間接的に予備試験用ウエーハにおけるVV欠陥の濃度を評価しておくことができる。ウェーハ内のVV欠陥はキャリアの再結合中心として働くため、VV欠陥が多いほどキャリアが消滅するまでの時間が短くなり、リカバリー特性は向上する。従って、リカバリー特性の良否がVV欠陥生成量の大小を表すと考えられる。
ここでは、予備試験用ウエーハの数だけ照射量を変えてダイオードを製造し、それぞれの予備試験用ウエーハにおけるVV欠陥濃度の指標として、各ダイオードにおけるリカバリー特性の良否を求めておく。
当然、このリカバリー特性に限定されず、VV欠陥の濃度と相関する他のパラメータを利用することができる。
各々の予備試験用ウエーハに対して、抵抗率の測定、粒子線の照射、再度の抵抗率の測定を行い、照射前後における予備試験用ウエーハ中のキャリア濃度を各々求め、キャリア濃度変化率を算出する。
なお、工程3(粒子線照射)では、前述した工程1’のダイオードでの製造工程と同様の条件で粒子線の照射を行う。ここでは、予備試験用ウエーハごとに照射量が異なっている。
その他、これらの工程における具体的な手順等は、例えば第一の実施態様と同様にして行うことができる。
上記のようにして算出した各々の予備試験用ウエーハにおけるキャリア濃度変化率と、VV欠陥の濃度(ここではダイオードにおけるリカバリー特性の良否)との相関関係を求める。これにより、酸素濃度等が同条件の場合での、各キャリア濃度変化率に対応するVV欠陥の濃度(リカバリー特性の良否)を得ることができる。
(工程7~工程11:評価対象のシリコン単結晶基板の用意~キャリア濃度変化率の算出)
次に本試験を行う。すなわち、実際の評価対象のウエーハの評価を行う。評価対象のウエーハを用意し、抵抗率の測定、所定の照射量での粒子線の照射、再度の抵抗率の測定を行い、照射前後における評価対象のウエーハ中のキャリア濃度を各々求め、キャリア濃度変化率を算出する。
上記のようにして算出したキャリア濃度変化率と、予備試験で求めた相関関係を用い、評価対象のウエーハのVV欠陥濃度(ここではダイオードにおけるリカバリー特性の良否)を評価する。すなわち、算出したキャリア濃度変化率を上記相関関係に当てはめ、対応するVV欠陥濃度(リカバリー特性の良否)を求める。このようにして、予備試験を利用して簡便にVV欠陥濃度を相対評価することができる。
(実施例1)
CZ法とFZ法をそれぞれ用い、リンをドープした直径200mmのシリコン単結晶インゴットを製造した。FTIR法により結晶中の酸素濃度を測定すると、CZ結晶では3.5×1017atoms/cm3であり、FZ結晶では0.3×1017atoms/cm3であった。抵抗率はどちらも約60Ωcmだった。なお、炭素関連欠陥ができてデバイス特性に影響を与えてしまうことを避けるため、炭素濃度は5×1014atoms/cm3程度まで低減した。
ここで、前述したようにVV欠陥の生成量を直接定量することは難しいので、作製したダイオードのリカバリー特性から間接的にVV欠陥の生成量を評価した。リカバリー特性の良否がVV欠陥濃度の大小を表すと考えられる。この評価結果を表1に示す。
一方、前記PWと同種のPWに、ダイオード製造時と同じ条件で5水準の電子線照射を行い、照射前後の抵抗率を四探針法により測定した。該測定により照射前後のキャリア濃度を求め、それらから算出したキャリア濃度の変化率を同じく表1に示す。
さらに、これらの表1、表2を予備試験の結果として、別に用意したFZウエーハおよびCZウエーハ(酸素濃度等は表1、表2の作成のために用意したものと同様)に対し、表1、表2に記載の照射水準とは異なる照射量で電子線を照射してキャリア濃度変化率を算出したところ、どちらも29%以上であった。したがって、このキャリア濃度の算出結果および予備試験の表1、表2を考慮し、これらのウエーハと同様のウエーハにPNダイオードを同様の照射量で電子線を照射して作製した場合、リカバリー特性は合格になると評価した。
そして実際にPNダイオードを作製してリカバリー特性を評価したところ予想通り合格となった。
実施例1と同様のFZウエーハおよびCZウエーハを用意した。
まず、FZウエーハに対し、実施例1とは異なって抵抗率測定やキャリア濃度変化率の算出等は行わず、単純に表1のような照射量(照射水準1~5)で電子線を照射してPNダイオードを作製し、照射量とリカバリー特性の良否結果の関係を得た。これらの関係は表1に示すものと同様であった。
そこで、CZウエーハに対し、FZウエーハのときと同様にしてPNダイオードを作製した場合、同様の照射量では同様のリカバリー特性が得られ、良否結果はFZウエーハのときと同様になると評価した。
このような照射条件のみで判断した比較例と、本発明を実施した実施例1、2との評価結果を比較しても分かるように、前述の通り、VV欠陥濃度を評価する際に、キャリア濃度変化率を考慮する本発明が有効であることが分かる。
Claims (4)
- 粒子線の照射によりシリコン単結晶基板中に生成した欠陥濃度を評価する方法であって、
前記シリコン単結晶基板の抵抗率を測定した後、該シリコン単結晶基板に前記粒子線を照射し、該照射後、前記シリコン単結晶基板の抵抗率を再度測定し、
前記粒子線の照射前後の抵抗率の測定結果から、照射前後におけるシリコン単結晶基板中のキャリア濃度を各々求めてキャリア濃度の変化率を算出し、
該キャリア濃度の変化率から、前記粒子線の照射により前記シリコン単結晶基板中に生成し、シリコン原子空孔より成るVV欠陥の濃度を評価することを特徴とするシリコン単結晶基板の欠陥濃度評価方法。 - 前記照射する粒子線を電子またはイオンからなるものとすることを特徴とする請求項1に記載のシリコン単結晶基板の欠陥濃度評価方法。
- 前記シリコン単結晶基板に含まれるドーパント不純物を、リン、ヒ素、アンチモンのうちのいずれかとすることを特徴とする請求項1または請求項2に記載のシリコン単結晶基板の欠陥濃度評価方法。
- 前記評価対象のシリコン単結晶基板とは別に、VV欠陥の濃度が既に評価されている予備試験用のシリコン単結晶基板を予め用意し、
該予備試験用のシリコン単結晶基板に関して、前記粒子線の照射前後におけるキャリア濃度の変化率と、前記既に評価されているVV欠陥の濃度とから相関関係を求めておき、
該相関関係を用いて、前記評価対象のシリコン単結晶基板に粒子線を照射してVV欠陥の濃度を評価することを特徴とする請求項1から請求項3のいずれか一項に記載のシリコン単結晶基板の欠陥濃度評価方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480066875.XA CN105814676B (zh) | 2013-12-10 | 2014-11-12 | 单晶硅基板的缺陷浓度评价方法 |
KR1020167014761A KR102029647B1 (ko) | 2013-12-10 | 2014-11-12 | 실리콘 단결정 기판의 결함 농도 평가 방법 |
DE112014005230.2T DE112014005230T5 (de) | 2013-12-10 | 2014-11-12 | Verfahren zur Auswertung der Konzentration eines Defekts in einem Silizium-Einkristall-Substrat |
US15/036,915 US9773710B2 (en) | 2013-12-10 | 2014-11-12 | Method for evaluating concentration of defect in silicon single crystal substrate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-255250 | 2013-12-10 | ||
JP2013255250A JP6036670B2 (ja) | 2013-12-10 | 2013-12-10 | シリコン単結晶基板の欠陥濃度評価方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015087485A1 true WO2015087485A1 (ja) | 2015-06-18 |
Family
ID=53370819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/005680 WO2015087485A1 (ja) | 2013-12-10 | 2014-11-12 | シリコン単結晶基板の欠陥濃度評価方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9773710B2 (ja) |
JP (1) | JP6036670B2 (ja) |
KR (1) | KR102029647B1 (ja) |
CN (1) | CN105814676B (ja) |
DE (1) | DE112014005230T5 (ja) |
WO (1) | WO2015087485A1 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6036670B2 (ja) * | 2013-12-10 | 2016-11-30 | 信越半導体株式会社 | シリコン単結晶基板の欠陥濃度評価方法 |
WO2017002619A1 (ja) * | 2015-06-30 | 2017-01-05 | 富士電機株式会社 | 半導体装置及びその製造方法 |
JP6531729B2 (ja) * | 2016-07-19 | 2019-06-19 | 株式会社Sumco | シリコン試料の炭素濃度評価方法、シリコンウェーハ製造工程の評価方法、シリコンウェーハの製造方法およびシリコン単結晶インゴットの製造方法 |
JP6805015B2 (ja) * | 2017-02-10 | 2020-12-23 | グローバルウェーハズ・ジャパン株式会社 | 検量線の作成方法、炭素濃度測定方法及びシリコンウェハの製造方法 |
JP6844561B2 (ja) * | 2018-03-09 | 2021-03-17 | 信越半導体株式会社 | 酸素濃度評価方法 |
JP6852703B2 (ja) * | 2018-03-16 | 2021-03-31 | 信越半導体株式会社 | 炭素濃度評価方法 |
JP7006517B2 (ja) * | 2018-06-12 | 2022-01-24 | 信越半導体株式会社 | シリコン単結晶基板中の欠陥密度の制御方法 |
CN112034008A (zh) * | 2020-09-11 | 2020-12-04 | 电子科技大学 | 一种石墨烯晶体结构质量评价方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0955415A (ja) * | 1995-08-16 | 1997-02-25 | Nippon Telegr & Teleph Corp <Ntt> | 半導体中に発生した欠陥の評価方法 |
JP2008177296A (ja) * | 2007-01-17 | 2008-07-31 | Toyota Central R&D Labs Inc | 半導体装置、pnダイオード、igbt、及びそれらの製造方法 |
JP2012199299A (ja) * | 2011-03-18 | 2012-10-18 | Shin Etsu Handotai Co Ltd | ライフタイム値の測定方法及びこれを用いたウエーハの選別方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08102545A (ja) | 1994-09-30 | 1996-04-16 | Meidensha Corp | 半導体素子のライフタイム制御方法 |
JP3984521B2 (ja) * | 2002-09-20 | 2007-10-03 | 松下電器産業株式会社 | 透過型電子顕微鏡による観察方法 |
WO2004035879A1 (ja) * | 2002-10-18 | 2004-04-29 | Sumitomo Mitsubishi Silicon Corporation | シリコン単結晶インゴットの点欠陥分布を測定する方法 |
WO2006134662A1 (ja) * | 2005-06-17 | 2006-12-21 | Topcon Corporation | 薄膜測定装置、薄膜測定方法および薄膜製造方法 |
WO2007100155A1 (ja) * | 2006-03-03 | 2007-09-07 | Niigata University | シリコンウェーハ中に存在する原子空孔の定量評価装置および方法 |
JP4358889B1 (ja) * | 2008-06-27 | 2009-11-04 | 日本エレクトロセンサリデバイス株式会社 | ウエーハ欠陥検査装置 |
US8771415B2 (en) * | 2008-10-27 | 2014-07-08 | Sumco Corporation | Method of manufacturing silicon single crystal, silicon single crystal ingot, and silicon wafer |
JP5515406B2 (ja) * | 2009-05-15 | 2014-06-11 | 株式会社Sumco | シリコンウェーハおよびその製造方法 |
WO2011010724A1 (ja) * | 2009-07-23 | 2011-01-27 | 住友電気工業株式会社 | 半導体結晶の製造方法、半導体結晶の製造装置および半導体結晶 |
JP5519305B2 (ja) * | 2010-01-25 | 2014-06-11 | トヨタ自動車株式会社 | 炭化珪素単結晶の欠陥検出方法 |
JP5678846B2 (ja) * | 2011-09-08 | 2015-03-04 | 信越半導体株式会社 | シリコン単結晶中窒素濃度算出方法および抵抗シフト量算出方法 |
JP5772553B2 (ja) * | 2011-12-06 | 2015-09-02 | 信越半導体株式会社 | シリコン単結晶の評価方法およびシリコン単結晶の製造方法 |
JP6036670B2 (ja) * | 2013-12-10 | 2016-11-30 | 信越半導体株式会社 | シリコン単結晶基板の欠陥濃度評価方法 |
US9759689B2 (en) * | 2014-05-02 | 2017-09-12 | The Regents Of The University Of Michigan | Real-time detection and imaging of terahertz pulse radiation by using photoacoustic conversion |
-
2013
- 2013-12-10 JP JP2013255250A patent/JP6036670B2/ja active Active
-
2014
- 2014-11-12 US US15/036,915 patent/US9773710B2/en active Active
- 2014-11-12 CN CN201480066875.XA patent/CN105814676B/zh active Active
- 2014-11-12 KR KR1020167014761A patent/KR102029647B1/ko active IP Right Grant
- 2014-11-12 WO PCT/JP2014/005680 patent/WO2015087485A1/ja active Application Filing
- 2014-11-12 DE DE112014005230.2T patent/DE112014005230T5/de active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0955415A (ja) * | 1995-08-16 | 1997-02-25 | Nippon Telegr & Teleph Corp <Ntt> | 半導体中に発生した欠陥の評価方法 |
JP2008177296A (ja) * | 2007-01-17 | 2008-07-31 | Toyota Central R&D Labs Inc | 半導体装置、pnダイオード、igbt、及びそれらの製造方法 |
JP2012199299A (ja) * | 2011-03-18 | 2012-10-18 | Shin Etsu Handotai Co Ltd | ライフタイム値の測定方法及びこれを用いたウエーハの選別方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20160097200A (ko) | 2016-08-17 |
JP2015115404A (ja) | 2015-06-22 |
DE112014005230T5 (de) | 2016-08-18 |
US20160300768A1 (en) | 2016-10-13 |
JP6036670B2 (ja) | 2016-11-30 |
CN105814676B (zh) | 2018-08-28 |
CN105814676A (zh) | 2016-07-27 |
KR102029647B1 (ko) | 2019-10-08 |
US9773710B2 (en) | 2017-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6036670B2 (ja) | シリコン単結晶基板の欠陥濃度評価方法 | |
JP6075307B2 (ja) | シリコン単結晶中の炭素濃度評価方法及び半導体デバイスの製造方法 | |
JP6083412B2 (ja) | 再結合ライフタイムの制御方法及びシリコン基板の製造方法 | |
JP6048381B2 (ja) | シリコン単結晶中の炭素濃度評価方法、及び、半導体デバイスの製造方法 | |
JP6292131B2 (ja) | シリコン基板の選別方法 | |
JP6056772B2 (ja) | エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ | |
JP2007176725A (ja) | 中性子照射シリコン単結晶の製造方法 | |
EP3121837B1 (en) | Semiconductor substrate evaluation method | |
EP3808879B1 (en) | Method for controlling defect density in silicon single crystal substrate | |
Zhang et al. | Evolution of defects in silicon carbide implanted with helium ions | |
JP2019121657A (ja) | 再結合ライフタイムの制御方法 | |
JP7218733B2 (ja) | シリコン試料の酸素濃度評価方法 | |
EP3675155A1 (en) | Recombination lifetime control method | |
JP5737202B2 (ja) | 半導体素子、及びその形成方法 | |
Sagara et al. | Residual defects in low-dose arsenic-implanted silicon after high-temperature annealing | |
JP7259791B2 (ja) | シリコンウェーハへのクラスターイオン注入による白傷欠陥低減効果の評価方法及びエピタキシャルシリコンウェーハの製造方法 | |
CN111801782B (zh) | 碳浓度评价方法 | |
JP7310727B2 (ja) | シリコン試料中の酸素濃度測定方法 | |
Kras’ko et al. | Influence of divacancy-oxygen defects on recombination properties of n-Si subjected to irradiation and subsequent annealing | |
Slotte | Positron annihilation spectroscopy of vacancy complexes in SiGe | |
JP2024085819A (ja) | 半導体エピタキシャルウェーハの製造方法 | |
Jelinek et al. | A DLTS study of hydrogen doped czochralski-grown silicon | |
MARTIN JR | EFFECTS OF ULTRA-THIN GERMANIUM LAYERS AT THE SILICON-OXIDE INTERFACE DURING OXIDATION REACTIONS ON INJECTION OF INTERSTITIALS | |
Phinney et al. | Defect mitigation by ion induced amorphousization and solid-phase epitaxy | |
Kamaev et al. | Stable silicon resistors at 20-160 degrees C due to divacancy involving high purity neutron doped Si |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14869729 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15036915 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20167014761 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120140052302 Country of ref document: DE Ref document number: 112014005230 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14869729 Country of ref document: EP Kind code of ref document: A1 |