WO2015080268A1 - 亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面処理方法 - Google Patents

亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面処理方法 Download PDF

Info

Publication number
WO2015080268A1
WO2015080268A1 PCT/JP2014/081634 JP2014081634W WO2015080268A1 WO 2015080268 A1 WO2015080268 A1 WO 2015080268A1 JP 2014081634 W JP2014081634 W JP 2014081634W WO 2015080268 A1 WO2015080268 A1 WO 2015080268A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
aluminum
zinc
magnesium alloy
surface treatment
Prior art date
Application number
PCT/JP2014/081634
Other languages
English (en)
French (fr)
Other versions
WO2015080268A8 (ja
Inventor
裕佑 三浦
慎太郎 中村
中野 忠
山本 雅也
博文 武津
Original Assignee
日本ペイント株式会社
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013247677A external-priority patent/JP5647326B1/ja
Priority claimed from JP2014226140A external-priority patent/JP5952877B2/ja
Priority to AU2014355320A priority Critical patent/AU2014355320B2/en
Priority to US15/039,512 priority patent/US10161047B2/en
Priority to PL14866659T priority patent/PL3075879T3/pl
Priority to EA201690867A priority patent/EA028053B1/ru
Priority to KR1020167013859A priority patent/KR102107271B1/ko
Priority to ES14866659.7T priority patent/ES2675151T3/es
Application filed by 日本ペイント株式会社, 日新製鋼株式会社 filed Critical 日本ペイント株式会社
Priority to BR112016011820-0A priority patent/BR112016011820B1/pt
Priority to MX2016006946A priority patent/MX2016006946A/es
Priority to EP14866659.7A priority patent/EP3075879B1/en
Priority to CA2931667A priority patent/CA2931667C/en
Priority to SG11201604271XA priority patent/SG11201604271XA/en
Priority to CN201480065135.4A priority patent/CN105814239B/zh
Publication of WO2015080268A1 publication Critical patent/WO2015080268A1/ja
Publication of WO2015080268A8 publication Critical patent/WO2015080268A8/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/44Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • the present invention relates to a surface treatment method of a zinc-aluminum-magnesium alloy plated steel plate with a chromium-free metal surface treatment agent and a chemical conversion film-treated zinc-aluminum-magnesium alloy plated steel plate obtained by the surface treatment method.
  • Metal materials such as galvanized steel sheet materials and aluminum materials are oxidized and corroded by atmospheric oxygen, moisture, ions contained in moisture, and the like.
  • a method of preventing such corrosion there is a method of forming a chromate film by bringing a treatment liquid containing chromium such as chromate chromate and phosphate chromate into contact with the metal surface.
  • the film formed by the chromate treatment has excellent corrosion resistance and adhesion to the coating film, but contains harmful hexavalent chromium in the treatment liquid, which takes time and cost for wastewater treatment. There's a problem.
  • the film formed by the treatment contains hexavalent chromium, problems in terms of environment and safety have been pointed out.
  • the metal surface treating agent of Patent Document 1 includes a vanadium compound (A), a metal compound (B) containing a metal selected from cobalt, nickel, zinc, magnesium, aluminum, calcium, strontium, barium and lithium, and optionally A chromium-free metal surface treating agent containing a metal compound (C) containing a metal selected from zirconium, titanium, molybdenum, tungsten, manganese, and cerium, and imparting excellent corrosion resistance, alkali resistance, and interlayer adhesion to a metal material is there.
  • the metal surface treatment agent of Patent Document 2 is one or more of four groups selected from a Zr compound that releases zirconyl ions (ZrO 2+ ) in an aqueous solution and a Ti compound that releases titanyl ions (TiO 2+ ) in an aqueous solution.
  • a Zr compound that releases zirconyl ions (ZrO 2+ ) in an aqueous solution and a Ti compound that releases titanyl ions (TiO 2+ ) in an aqueous solution.
  • a metal surface treatment agent that has a high adhesion so that the resin coating film does not peel off even when the resin coating film formed after the formation of the chemical conversion film is subjected to severe molding such as deep drawing. It is a chromium-free metal surface treatment agent that can impart properties. Note that the metal surface treatment agents of Patent Documents 1 and 2 can both contain an aqueous resin that may be water-soluble or water-dispersible.
  • Patent Document 3 since it was proposed in Patent Document 3, it has been known that a hot dip galvanized aluminum-magnesium plated steel sheet using a plating bath containing appropriate amounts of aluminum and magnesium in zinc is excellent in corrosion resistance.
  • Patent Documents 1 and 2 are not necessarily sufficient in corrosion resistance, adhesion, and the like depending on the object to be treated and applications.
  • the present invention provides a chromium-aluminum-magnesium alloy-plated steel sheet with good corrosion resistance, which can form a film having excellent corrosion resistance and high adhesion between the plated steel sheet and a resin film such as a paint film or a laminate film. It is an object of the present invention to provide a method of obtaining a chemical conversion film-treated zinc-aluminum-magnesium alloy plated steel sheet which is treated with a free metal surface treatment agent and has excellent corrosion resistance and adhesion to a resin film.
  • the plating layer contains Al: 1.0 to 10% by mass, Mg: 1.0 to 10% by mass, the balance Zn and inevitable impurities.
  • both an organic phosphorus compound and an inorganic phosphorus compound are contained, and furthermore, a high acid value aqueous acrylic resin and a specific amount of an oxazoline group-containing polymer are included, and the ratio of the inorganic component to the organic component is within a specific range.
  • a method of treating the surface of a zinc-aluminum-magnesium alloy plated steel sheet with a metal surface treatment agent A step of forming a zinc-aluminum-magnesium alloy plating layer on the surface of the steel sheet; and a step of treating the surface of the plating layer with a metal surface treatment agent following the plating layer formation step, the zinc-aluminum
  • the magnesium alloy plating layer is a plating layer containing Al: 1.0 to 10 mass%, Mg: 1.0 to 10 mass%, the balance Zn and inevitable impurities
  • the surface of the zinc-aluminum-magnesium alloy-plated steel sheet having a pH of 3 to 6 is applied to the surface of the metal surface treatment agent. How to handle using.
  • the zinc-aluminum-magnesium alloy plating layer contains Si: 0.001 to 2.0% by mass, Ti: 0.001 to 0.1% by mass, and B: 0.001 to 0.045% by mass.
  • the surface of a zinc-aluminum-magnesium alloy plated steel sheet with good corrosion resistance is treated with a chromium-free metal surface treatment agent that can form a film having excellent corrosion resistance and high adhesion to the plated steel sheet and resin film.
  • a method can be provided.
  • the surface of a zinc-aluminum-magnesium alloy plated steel sheet (hereinafter sometimes referred to as “metal material”) is treated with a specific chromium-free metal surface treatment agent (hereinafter also referred to as “treatment agent”).
  • a specific chromium-free metal surface treatment agent hereinafter also referred to as “treatment agent”.
  • the surface treatment with the chromium-free metal surface treatment agent is also referred to as “chemical conversion treatment”.
  • the plated steel sheet of the present invention is a zinc-aluminum-magnesium alloy plated steel sheet manufactured using a molten Zn—Al—Mg plating bath.
  • the metal surface treatment agent of the present invention contains a fluorine compound, a reaction layer containing Al and Mg fluoride is formed on the plating layer surface of the plated steel sheet by chemical conversion treatment, and the chemical conversion film and the plating layer surface are formed. It is possible to increase the adhesive strength with.
  • a known method can be used to form the zinc-aluminum-magnesium alloy plating layer on the surface of the steel sheet, but 1.0 to 10% by mass of aluminum, 1.0 to 10% by mass of magnesium, the balance Zn and It is preferably produced by a hot dipping method using an alloy plating bath containing inevitable impurities. Further, it is more preferable to add Ti, B, Ti—B alloy or Ti, B-containing compound to the plating bath in order to suppress the formation and growth of Zn 11 Mg 2 phase which adversely affects the appearance and corrosion resistance.
  • the addition amount of these metals or compounds is preferably 0.001 to 0.1% by mass of Ti and 0.001 to 0.045% by mass of B in terms of metal with respect to the plating bath.
  • the zinc-aluminum-magnesium alloy plated steel sheet in the present invention can be obtained by forming a zinc-aluminum-magnesium alloy plated layer on the surface of the steel sheet.
  • This is a plating layer containing 0 to 10% by mass, Mg: 1.0 to 10% by mass, the balance Zn and inevitable impurities.
  • the zinc-aluminum-magnesium alloy plating layer preferably contains 80 to 98% by mass of Zn.
  • the zinc-aluminum-magnesium alloy plating layer is composed of Si: 0.001 to 2.0 mass%, Ti: 0.001 to 0.1 mass%, and B: 0.001 to 0.045 mass%. It is preferable that it further contains 1 type or 2 types or more.
  • the vanadium compound (B) By containing the vanadium compound (B), a film having improved corrosion resistance can be formed, and by containing both the organic phosphorus compound (Da) and the inorganic phosphorus compound (Db), the corrosion resistance can be improved.
  • Zirconyl ammonium sulfate, zirconyl nitrate, zirconyl ammonium nitrate, zirconyl formate, zirconyl acetate, zirconyl propionate, zirconyl butyrate, oxalic acid and zirconyl ion salts, malonic acid and zirconyl ion salts, succinic acid and zirconyl ion salts, oxy Examples include zirconium chloride. By being a compound having a zirconyl ([Zr O] 2+ ) structure, the crosslinkability during film formation is improved, and a film having good corrosion resistance can be formed.
  • the content of the zirconium compound (A) containing a zirconyl group in the treating agent is preferably 0.01 to 10% by mass, more preferably 0.1 to 8% by mass, and 0.2 to 8%. More preferably, it is more preferably 0.5 to 5% by mass. If the content of the zirconium compound (A) containing a zirconyl group is 0.01% by mass or more, corrosion resistance can be sufficiently imparted, and if it is 10% by mass or less, the flexibility of the film becomes sufficient. Excellent processing adhesion.
  • the vanadium compound (B) specifically includes metavanadate and its salt, vanadium oxide, vanadium trichloride, vanadium oxytrichloride, vanadium acetylacetonate, vanadium oxyacetylacetonate.
  • metavanadate and its salt, vanadium oxide, vanadium oxytrichloride, vanadium alkoxide, and vanadium oxyalkoxide are preferable.
  • the content of the vanadium compound (B) in the treating agent is preferably 0.01 to 5% by mass, more preferably 0.1 to 3% by mass. By containing 0.01 to 5% by mass of the vanadium compound (B), the corrosion resistance can be improved.
  • titanium fluoro complex compound (C) used in the metal surface treating agent of the present invention examples include fluorotitanic acid and its salt. Since the titanium fluoro complex compound (C) contains fluorine, etching of the metal surface is likely to occur, so that a film having excellent corrosion resistance and high adhesion to the metal material is formed.
  • the content of the titanium fluoro complex compound (C) in the treating agent is preferably 0.01 to 10% by mass, more preferably 0.1 to 8.5% by mass, and 0.3 to 7%. More preferably, it is mass%.
  • the content of the titanium fluoro complex compound (C) is 0.01% by mass or more, sufficient corrosion resistance can be imparted, and when it is 10% by mass or less, excessive etching is prevented, and an inorganic phosphorus compound (Db The metal cations eluted with respect to ()) are prevented from becoming excessive, so that the corrosion resistance is excellent.
  • the metal surface treating agent of the present invention can further improve the corrosion resistance by containing both an organic phosphorus compound (Da) and an inorganic phosphorus compound (Db) containing a phosphoric acid group and / or a phosphonic acid group. .
  • organic phosphorus compounds (Da) examples include 1-hydroxyethylidene-1,1-diphosphonic acid, 2-phosphonobutane-1,2,4-tricarboxylic acid, ethylenediaminetetramethylenephosphonic acid, aminotrimethylenephosphonic acid, phenyl Examples thereof include phosphonic acids such as phosphonic acid and octylphosphonic acid, and salts thereof. A combination of these organophosphorus compounds can also be used. Of these, 1-hydroxyethylidene-1,1-diphosphonic acid, 2-phosphonobutane-1,2,4-tricarboxylic acid, and aminotrimethylenephosphonic acid are preferred.
  • Examples of such inorganic phosphorus compounds (Db) include phosphoric acids such as phosphoric acid and phosphorous acid and salts thereof, and condensed phosphoric acids such as pyrophosphoric acid and tripolyphosphoric acid and salts thereof.
  • phosphoric acids such as phosphoric acid and phosphorous acid and salts thereof
  • condensed phosphoric acids such as pyrophosphoric acid and tripolyphosphoric acid and salts thereof.
  • a cation for forming a salt of phosphoric acid and a salt of condensed phosphoric acid any one can be used as long as it forms a salt that is easily soluble in water and the aqueous solution can liberate phosphate ions. Sodium, potassium, ammonium, etc. are mentioned. A combination of these inorganic phosphorus compounds can also be used.
  • a salt of phosphoric acid is preferable.
  • “easily soluble in water” means that 1 g of the compound is dissolved in 10 ml of water at 25 ° C.
  • dissolution refers to a state in which it is dissolved in a solvent and is uniform and a state in which it is finely dispersed. Specifically, it means a state in which precipitation does not occur when centrifugation is performed at 12,000 rpm for 30 minutes.
  • the content of the organic phosphorus compound (Da) and the inorganic phosphorus compound (Db) is preferably 0.01 to 10% by mass, and preferably 0.1 to 8% by mass, as the content in the treatment agent. Is more preferably 0.3 to 6% by mass.
  • the mass ratio in terms of phosphorus element means the ratio of the mass of phosphorus element contained in each of the organic phosphorus compound (Da) and the inorganic phosphorus compound (Db).
  • the vanadium compound (B) can be stably dissolved in the treatment agent due to the chelating effect.
  • the treatment agent contains the inorganic phosphorus compound (Db) in the above-described concentration range, it is possible to efficiently form a film having excellent corrosion resistance with the metal cation eluted by etching.
  • the organic phosphorus compound (Da) and the inorganic phosphorus compound (Db) are present in the treatment agent at the above mass ratio, both corrosion resistance and water resistance can be achieved.
  • the aqueous acrylic resin (E) used as the metal surface treating agent of the present invention has a plurality of carboxyl groups obtained by polymerizing monomers having an ethylenically unsaturated double bond, and has a solid content acid value of 300 mgKOH / g or more. It is a polymer.
  • the mass average molecular weight is preferably 1,000 or more and 1,000,000 or less.
  • the mass average molecular weight of the resin can be measured by gel permeation chromatography (GPC) using a polystyrene standard sample standard.
  • the acid value and hydroxyl value of resin solid content in the present invention can be determined by a method based on JIS K 0070.
  • Such aqueous acrylic resins include, as monomers, homopolymers obtained by radical polymerization of acrylic acid and methacrylic acid, and copolymers obtained by radical polymerization of these monomers and other ethylenically unsaturated monomers.
  • a polymer can be used.
  • other ethylenically unsaturated monomers include, for example, ethyl (meth) acrylates, alkyl (meth) acrylates such as butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxy And hydroxyalkyl (meth) acrylates such as propyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate.
  • the acid value of water-based acrylic resin (E) can be adjusted with the monomer composition used for superposition
  • the aqueous acrylic resin (E) can be obtained by polymerizing the above monomer by a usual method.
  • a water-based acrylic resin can be obtained by mixing a monomer mixture with a known polymerization initiator (for example, azobisisobutyronitrile), dropping into a Kolben containing a solvent heated to a polymerizable temperature and aging. it can.
  • a known polymerization initiator for example, azobisisobutyronitrile
  • the aqueous acrylic resin (E) is contained in a concentration of 100 to 30,000 ppm of resin solids in the treating agent. By making it contain in the said density
  • the metal surface treating agent of the present invention further contains an oxazoline group-containing polymer (F) that is a curing agent that reacts with the aqueous acrylic resin (E) to form a crosslinked structure.
  • the oxazoline group-containing polymer (F) as such a curing agent is an oxazoline group-containing polymer containing in the molecule at least two functional groups capable of reacting with the carboxyl group of the aqueous acrylic resin (E). .
  • oxazoline group-containing polymer examples include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2- A monomer comprising an addition-polymerizable oxazoline such as oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and other polymerizable monomers used as necessary.
  • An oxazoline group-containing polymer obtained by polymerizing the monomer composition can be exemplified.
  • Epocross WS-700 (25% active ingredient, water-soluble type, oxazoline group-containing acrylic resin, manufactured by Nippon Shokubai Co., Ltd.
  • Epocross WS-300 (10% active ingredient, water-soluble type, oxazoline) Group-containing acrylic resin, manufactured by Nippon Shokubai Co., Ltd.
  • the curing agent oxazoline group-containing polymer (F) is contained in the treatment agent in a solid content concentration of 50 ppm to 5,000 ppm, and is a curing agent that forms a crosslinked structure with the aqueous acrylic resin (E).
  • the pH of the metal surface treatment agent of the present invention is required to be 3-6.
  • etching becomes insufficient, and the adhesion between the metal material and the chemical conversion film becomes insufficient.
  • the pH is less than 3, the etching becomes excessive and the appearance (powder) of the steel sheet becomes poor.
  • the poor powder property refers to a state in which the steel sheet after chemical conversion treatment has a powder-like appearance, and the film easily falls off by rubbing with a hand or a roll.
  • the compound (Da), the inorganic phosphorus compound (Db), the aqueous acrylic resin (E), and the oxazoline group-containing polymer (F) that is a curing agent can be mixed in predetermined amounts.
  • the solid content concentration of the chromium-free metal surface treatment agent of the present invention is preferably 0.1 to 20% by mass, and more preferably 1 to 15% by mass with respect to the treatment agent.
  • the metal surface treatment agent of the present invention is a chromium-free metal surface treatment agent that substantially does not contain not only hexavalent chromium but also a compound containing trivalent chromium from the viewpoint of environment and safety. “Containing substantially no chromium-containing compound” means that the content of metallic chromium derived from the chromium compound in the metal surface treatment agent is less than 1 ppm.
  • the metal surface treatment agent of the present invention contains a thickener, a leveling agent, a wettability improver, a surfactant, an antifoaming agent, a water-soluble alcohol, a cellosolve solvent, etc., as necessary. May be.
  • the surface treatment (chemical conversion treatment) using the chromium-free metal surface treatment agent of the present invention can be performed as follows. There is no particular limitation on the pre-process of the chemical conversion treatment according to the present invention, but usually, before the chemical conversion treatment, a degreasing treatment with an alkaline degreasing solution is performed to remove oil and dirt adhering to the metal material. Accordingly, the surface is adjusted with acid, alkali, nickel compound, cobalt compound or the like. At this time, it is preferable to wash with water after the treatment so that the degreasing liquid or the like does not remain on the surface of the metal material.
  • the surface treatment agent of the present invention is used on the surface of a zinc-aluminum-magnesium alloy-plated steel plate, roll coating method, air spray method, airless spray method, dipping method, spin coating method, flow coating.
  • the film is formed by a method such as a coating method, a curtain coating method, or a flow coating method, and a chemical conversion film is formed through a drying process.
  • the treatment temperature is preferably in the range of 5 to 60 ° C., and the treatment time is preferably about 1 to 300 seconds.
  • the treatment temperature is more preferably 10 to 40 ° C., and the treatment time is more preferably 2 to 60 seconds.
  • the zinc-aluminum-magnesium alloy-plated steel sheet is used for automobile bodies, automotive parts, building materials such as roofing / outer wall materials and agricultural greenhouse struts, household appliances and parts, guardrails, soundproof walls, drainage grooves, etc. It is applied to sheet coils used in civil engineering products and various molded products.
  • the drying step does not necessarily require heat, and physical removal such as air drying or air blow may be performed, but heat drying may be performed to improve film formation and adhesion to the metal surface.
  • the temperature is preferably 30 to 250 ° C, more preferably 40 to 200 ° C.
  • the amount of the chemical conversion film formed is preferably 0.001 to 1 g / m 2 after drying, and more preferably 0.02 to 0.5 g / m 2 .
  • the amount of the chemical conversion film formed is preferably 0.001 to 1 g / m 2 after drying, and more preferably 0.02 to 0.5 g / m 2 .
  • the chemical film thus formed is excellent in corrosion resistance and also has good adhesion to the following resin film formed on the film.
  • the surface of the metal material (member) to be protected is further improved by forming a resin film layer made of paint, lacquer, laminate film, etc. on the formed chemical film by a known method. Can be protected.
  • the film thickness of the formed resin film layer is preferably 0.3 to 50 ⁇ m after drying.
  • the obtained acrylic resin (1) aqueous solution had a non-volatile content of 20%, a resin solid content acid value of 623 mg KOH / g, a resin solid content hydroxyl value of 43 mg KOH / g, and a mass average molecular weight of 8400.
  • the said non volatile matter is the value calculated
  • Metal fluoro complex compound (C) C1: Titanium ammonium fluoride (anion is TiF 6 2 ⁇ )
  • Db1 monoammonium dihydrogen phosphate
  • Db2 diammonium monohydrogen phosphate
  • E1 Low molecular weight polyacrylic acid (“Julimer AC-10L” manufactured by Nippon Pure Chemicals Co., Ltd., solid content acid value: 779 mg KOH / g, mass average molecular weight: 20,000 to 30,000, nonvolatile content: 40%)
  • E2 High molecular weight polyacrylic acid (“Julimer AC-10H” manufactured by Nippon Pure Chemical Industries, Ltd., solid content acid value 779 mg KOH / g, mass average molecular weight 150,000, nonvolatile content 20%)
  • E3 Acrylic resin (1) (prepared in Production Example 1; solid content acid value 623 mg KOH / g, mass average molecular weight 8400)
  • E4 Adekabon titer HUX-232 (Adeka water-based urethane resin, solid content acid value 30 mgKOH / g, non-volatile content 30%)
  • E5 Acrylic resin (2) (prepared in Production Example 2; solid content acid value 117 mgKOH /
  • F1 Oxazoline group-containing polymer (F) as a curing agent)
  • F2 Oxazoline group-containing acrylic resin (“Epocross WS-500” manufactured by Nippon Shokubai Co., Ltd.)
  • F3 Multivalent carbodiimide (“Carbodilite SW-12G” manufactured by Nisshinbo Chemical Co., Ltd.)
  • Test plate Using a cold-rolled steel sheet having a thickness of 0.5 mm as an original sheet, a hot-dip Zn—Al—Mg alloy-plated steel strip having the plating composition shown in Table 4 below is manufactured, and each steel strip is cut to be 210 mm ⁇ 300 mm plated A steel plate was prepared.
  • the plating adhesion amount was 60 g / m 2 per side.
  • Examples 1 to 68 and Comparative Examples 1 to 23 (Degreasing / Surface treatment)
  • the plated steel sheet was spray degreased at 60 ° C. for 2 minutes using an alkaline degreasing agent (manufactured by Nippon Paint Co., Ltd., Surf Cleaner 155), washed with water, and dried at 80 ° C.
  • the metal surface treatment agent prepared in the above production example was degreased after adjusting the solid content concentration so that the dry film amount (0.2 g / m 2 ) described in Tables 5 to 10 below was obtained.
  • the coated steel sheet was coated with a bar coater and dried using a hot-air circulating oven so that the metal substrate reached a temperature of 80 ° C. to prepare a test plate on which a chemical conversion film was formed.
  • the SST test (salt water spray test) was performed by tape-sealing the four corners of the steel sheet subjected to chemical conversion treatment (before lamination adhesion). Evaluation was performed according to the following criteria, and it was judged as acceptable if no white rust was generated for 24 hours or more. Thereafter, the test is continued for a maximum of 72 hours. The higher the numerical value over a long period, the better.
  • all the metal surface treatment agents according to the examples are better in corrosion resistance and water resistance than the metal surface treatment agents according to the comparative examples, and are zinc-aluminum-magnesium alloy plated steel plates and laminate films. It can be seen that a film having high adhesion to the resin film is formed.
  • Comparative Examples 1 and 12 zircon ammonium fluoride was used instead of titanium ammonium fluoride, but the water resistance and corrosion resistance were poor.
  • Comparative Examples 2 and 13 and Comparative Examples 3 and 14 used an aqueous urethane resin having a low acid value or an aqueous acrylic resin having a low acid value in place of the high acid value aqueous acrylic resin. Was bad.
  • Comparative Examples 6 and 17 did not contain a vanadium compound and had poor corrosion resistance and powder properties. Comparative Examples 7 and 18 did not contain a titanium fluoride compound and had poor corrosion resistance and adhesion. Comparative Examples 8 and 19 did not contain an organic phosphorus compound, the solubility of the vanadium compound was insufficient, and the corrosion resistance and the like were poor. Comparative Examples 9 and 20 did not contain an inorganic phosphorus compound and had poor corrosion resistance. Comparative Examples 10 and 21 did not contain a high acid value aqueous acrylic resin, and the film-forming property was insufficient, resulting in poor adhesion and powder properties.
  • Comparative Examples 11 and 22 another curing agent (carbodiimide) was used in place of the oxazoline group-containing polymer, but sufficient crosslinking was not obtained, resulting in poor water resistance and corrosion resistance.
  • Comparative Example 23 since the Al content of the plated steel sheet was small, the etching was excessive and the powder property was poor.

Abstract

 耐食性および樹脂皮膜との密着性にきわめて優れた化成皮膜処理亜鉛-アルミニウム-マグネシウム合金めっき鋼板を得る方法を提供する。 亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面を金属表面処理剤を用いて処理する方法であって、金属表面処理剤が、ジルコニル([Zr=O]2+)構造を有する化合物(A)、バナジウム化合物(B)、チタンフルオロ錯体化合物(C)、リン酸基及び/又はホスホン酸基を含有する有機リン化合物(Da)、無機リン化合物(Db)、特定の水性アクリル樹脂(E)、硬化剤としてオキサゾリン基含有ポリマー(F)を所定量含有し、前記金属表面処理剤のpHが3~6である、金属表面処理剤を用いて処理する方法。

Description

亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面処理方法
 本発明は、亜鉛-アルミニウム-マグネシウム合金めっき鋼板のクロムフリー金属表面処理剤による表面処理方法ならびに該表面処理方法によって得られる化成皮膜処理亜鉛-アルミニウム-マグネシウム合金めっき鋼板に関する。
 亜鉛めっき系鋼板材料、アルミニウム系材料等の金属材料は、大気中の酸素や水分、水分中に含まれるイオン等によって酸化され腐食する。このような腐食を防止する方法として、クロム酸クロメート、リン酸クロメート等のクロムを含有する処理液を金属表面に接触させてクロメート皮膜を形成させる方法がある。このクロメート処理により形成された皮膜は、優れた耐食性、塗膜密着性を有しているが、その処理液中に有害な6価クロムを含んでおり、廃水処理に手間やコストがかかってしまう問題がある。また、当該処理によって形成された皮膜中にも6価クロムを含むので環境面、安全面の問題が指摘されている。
 そこで、従来のクロメート化成皮膜と同等の耐食性を有し、クロメートを含まない(クロムフリー)金属表面処理用水性液状組成物、化成処理剤が提案されている(例えば、特許文献1、2参照)。
 特許文献1の金属表面処理剤は、バナジウム化合物(A)、コバルト、ニッケル、亜鉛、マグネシウム、アルミニウム、カルシウム、ストロンチウム、バリウム及びリチウムから選ばれる金属を含む金属化合物(B)、及び、任意的に、ジルコニウム、チタニウム、モリブデン、タングステン、マンガン及びセリウムから選ばれる金属を含む金属化合物(C)を含有する、金属材料に優れた耐食性、耐アルカリ性及び層間密着性を付与するクロムフリー金属表面処理剤である。
 また、特許文献2の金属表面処理剤は、水溶液中でジルコニルイオン(ZrO2+)を放出するZr化合物及び水溶液中でチタニルイオン(TiO2+)を放出するTi化合物から選ばれる1種以上の4族遷移金属化合物(a)と、水酸基、カルボキシル基、ホスホン酸基、リン酸基及びスルホン酸基から選ばれる1種以上の官能基を同一分子内に2個以上有する有機化合物(b)とを含有する金属表面処理剤であって、化成皮膜形成後に形成した樹脂塗膜等に、深絞り加工等の厳しい成形加工を施した場合であっても、その樹脂塗膜等が剥離しないような高い密着性を付与することができるクロムフリー金属表面処理剤である。
 なお、特許文献1、2の金属表面処理剤は、ともに、水溶性であっても水分散性であってもよい水系樹脂を含むことができる。
 一方、特許文献3で提案されて以来、亜鉛中にアルミニウムとマグネシウムを適量含有させためっき浴を用いた溶融亜鉛-アルミニウム-マグネシウムめっき鋼板が耐食性に優れることが知られている。
特開2004-183015号公報 特開2013-23705号公報 米国特許第3,505,043号明細書
 しかし、特許文献1、2の金属表面処理剤は、処理対象や用途によっては、耐食性、密着性等が必ずしも十分とはいえなかった。
 そこで本発明は、耐食性のよい亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面を、耐食性に優れ、かつ該めっき鋼板と、塗膜、ラミネートフィルム等の樹脂皮膜との密着性が高い皮膜を形成できるクロムフリー金属表面処理剤で処理して、耐食性および樹脂皮膜との密着性にきわめて優れた化成皮膜処理亜鉛-アルミニウム-マグネシウム合金めっき鋼板を得る方法を提供することを目的とするものである。
 本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、めっき層がAl:1.0~10質量%、Mg:1.0~10質量%、残部Zn及び不可避的不純物を含む亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面を、ジルコニル([Zr=O]2+)構造を有する化合物、バナジウム化合物と金属表面をエッチングする特定の金属フルオロ錯体化合物とを反応させて、耐食性皮膜を形成する際に、有機リン化合物及び無機リン化合物の両方を含有させ、さらに、高酸価の水性アクリル樹脂、オキサゾリン基含有ポリマーを特定量含有させ、かつ無機成分と有機成分の比を特定範囲とし、特定pH範囲に調整した金属表面処理剤で処理することで、耐食性に優れ、かつ該めっき鋼板との密着性だけでなく、塗膜、ラミネートフィルム等の樹脂皮膜との密着性の高い皮膜を形成した、耐食性および樹脂皮膜との密着性にきわめて優れた化成皮膜処理亜鉛-アルミニウム-マグネシウム合金めっき鋼板を得ることができることを見出した。本発明は、かかる知見に基づいて完成したものである。すなわち、本発明は下記の通りである。
[1] 亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面を金属表面処理剤を用いて処理する方法であって、
 鋼板の表面に亜鉛-アルミニウム-マグネシウム合金めっき層を形成させる工程と、前記めっき層形成工程に続いて金属表面処理剤を用いて前記めっき層の表面を処理する工程とを含み、前記亜鉛-アルミニウム-マグネシウム合金めっき層が、Al:1.0~10質量%、Mg:1.0~10質量%、残部Zn及び不可避的不純物を含むめっき層であり、前記金属表面処理剤が、ジルコニル([Zr=O]2+)構造を有する化合物(A)、バナジウム化合物(B)、チタンフルオロ錯体化合物(C)、リン酸基及び/又はホスホン酸基を含有する有機リン化合物(Da)、無機リン化合物(Db)、水性アクリル樹脂(E)、硬化剤としてオキサゾリン基含有ポリマー(F)を含有し、前記水性アクリル樹脂(E)の固形分酸価が300mgKOH/g以上であり、かつ、前記水性アクリル樹脂(E)の前記金属表面処理剤に対する含有量が樹脂固形分の濃度として100ppm~30,000ppmであり、前記オキサゾリン基含有ポリマー(F)の前記金属表面処理剤に対する含有量が固形分の濃度として50ppm~5,000ppmであり、かつ前記ジルコニル([Zr=O]2+)構造を有する化合物(A)、バナジウム化合物(B)、チタンフルオロ錯体化合物(C)の金属元素換算の質量の合計と水性アクリル樹脂(E)、オキサゾリン基含有ポリマー(F)の固形分との質量比が(A+B+C)/(E+F)=10/1~1/1であり、前記金属表面処理剤のpHが3~6である、亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面を金属表面処理剤を用いて処理する方法。
[2] 前記水性アクリル樹脂(E)と硬化剤であるオキサゾリン基含有ポリマー(F)の固形分の質量比がE/F=20/1~2/3である、上記[1]に記載の亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面を金属表面処理剤を用いて処理する方法。
[3] 前記有機リン化合物(Da)と前記無機リン化合物(Db)の質量比が、リン元素換算で、Da/Db=5/1~1/2である、上記[1]または[2]に記載の亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面を金属表面処理剤を用いて処理する方法。
[4] 前記亜鉛-アルミニウム-マグネシウム合金めっき層が、Si:0.001~2.0質量%、Ti:0.001~0.1質量%、B:0.001~0.045質量%のうち1種または2種以上をさらに含む、上記[1]~[3]のいずれかに記載の、亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面を金属処理剤を用いて処理する方法。
[5] 上記[1]~[4]のいずれかに記載の方法で処理して得られる亜鉛-アルミニウム-マグネシウム合金めっき鋼板。
 本発明によれば、耐食性のよい亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面を、耐食性に優れ、かつ該めっき鋼板、樹脂皮膜との密着性が高い皮膜を形成できるクロムフリー金属表面処理剤で処理する方法を提供することができる。
 本発明は、亜鉛-アルミニウム-マグネシウム合金めっき鋼板(以下、「金属材料」ということもある。)の表面を特定のクロムフリー金属表面処理剤(以下、「処理剤」ということもある。)を用いて処理する方法であり、鋼板の表面に亜鉛-アルミニウム-マグネシウム合金めっき層を形成させる工程と、前記めっき層形成工程に続いて金属表面処理剤を用いて前記めっき層の表面を処理する工程とを含む。(なお、クロムフリー金属表面処理剤による表面処理を、以下、「化成処理」ともいう。)
 本発明のめっき鋼板は、溶融Zn-Al-Mgめっき浴を用いて製造された亜鉛-アルミニウム-マグネシウム合金めっき鋼板である。後述するように、本発明の金属表面処理剤はフッ素化合物を含有するが、化成処理によってめっき鋼板のめっき層表面にAlおよびMgのフッ化物を含む反応層が形成され、化成皮膜とめっき層表面との密着力をより高められる。
 鋼板の表面に亜鉛-アルミニウム-マグネシウム合金めっき層を形成させる工程は公知の方法を用いることができるが、アルミニウムを1.0~10質量%、マグネシウムを1.0~10質量%、残部Zn及び不可避的不純物を含む合金めっき浴を用いた溶融めっき法で製造されることが好ましい。また、外観および耐食性に悪影響を与えるZn11Mg相の生成・成長を抑制するためにTi、B、Ti-B合金またはTi、B含有化合物をめっき浴に添加することがより好ましい。これらの金属または化合物の添加量は、めっき浴に対し、金属換算にして、Tiが0.001~0.1質量%、Bが0.001~0.045質量%とすることが好ましい。Ti、Bが当該範囲内であると、めっき層にZn11Mg相が生成することを抑制できる。さらに、加工時の素地鋼とめっき層との密着性を向上させるため、めっき層と素地鋼との界面におけるAl-Fe合金層の成長を抑制する作用のあるSiを0.001~2.0質量%の範囲で添加することが好ましい。
 したがって、本発明における亜鉛-アルミニウム-マグネシウム合金めっき鋼板は、鋼板の表面に亜鉛-アルミニウム-マグネシウム合金めっき層を形成させることで得られ、該亜鉛-アルミニウム-マグネシウム合金めっき層は、Al:1.0~10質量%、Mg:1.0~10質量%、残部Zn及び不可避的不純物を含むめっき層である。該亜鉛-アルミニウム-マグネシウム合金めっき層は、Znを80~98質量%含むことが好ましい。
 そして、該亜鉛-アルミニウム-マグネシウム合金めっき層は、Si:0.001~2.0質量%、Ti:0.001~0.1質量%、B:0.001~0.045質量%のうち1種または2種以上をさらに含むものであることが好ましい。
 本発明の金属表面処理剤は、ジルコニル([Zr=O]2+)構造を有する化合物(A)、バナジウム化合物(B)、チタンフルオロ錯体化合物(C)、有機リン化合物(Da)及び無機リン化合物(Db)、水性アクリル樹脂(E)、硬化剤としてオキサゾリン基含有ポリマー(F)を含有し、金属化合物(A)、(B)、(C)と水性アクリル樹脂(E)、硬化剤であるオキサゾリン基含有ポリマー(F)とが特定の質量比であるクロムフリーの水性金属表面処理剤である。
 チタンフルオロ錯体化合物(C)から遊離したフッ素イオンが、金属材料の表面をエッチングすることで表面近傍のpHが上がり、チタンフルオロ錯体のアニオンがジルコニウム化合物(A)から生じるジルコニル([Zr=O]2+)カチオンおよびエッチングにより溶出した金属基材由来の金属カチオンと反応して表面に析出し、耐食性に優れ、かつ当該金属材料との密着性の高い皮膜が形成される。バナジウム化合物(B)を含有させることで、耐食性が向上した皮膜を形成でき、有機リン化合物(Da)及び無機リン化合物(Db)を両方含有させることで、耐食性を向上させることができる。
 そして、固形分酸価が300mgKOH/g以上の水性アクリル樹脂(E)、硬化剤であるオキサゾリン基含有ポリマー(F)を金属化合物(A)、(B)、(C)に対し特定の質量比で含有させることにより、金属材料との密着性、樹脂皮膜との密着性、耐食性をさらに向上させるものである。
 本発明の金属表面処理剤で用いるジルコニウム化合物(A)は、ジルコニル([Zr=O]2+)構造を有する化合物であって、そのようなジルコニウム化合物(A)としては、炭酸ジルコニルアンモニウム、硫酸ジルコニル、硫酸ジルコニルアンモニウム、硝酸ジルコニル、硝酸ジルコニルアンモニウム、ギ酸ジルコニル、酢酸ジルコニル、プロピオン酸ジルコニル、酪酸ジルコニル、シュウ酸とジルコニルイオンの塩、マロン酸とジルコニルイオンの塩、コハク酸とジルコニルイオンの塩、オキシ塩化ジルコニウム等が挙げられる。ジルコニル([Zr=O]2+)構造を有する化合物であることにより、皮膜形成時の架橋性が向上し、良好な耐食性を有する皮膜を形成することができる。
 ジルコニル基を含むジルコニウム化合物(A)の処理剤中の含有量は、0.01~10質量%であることが好ましく、0.1~8質量%であることがより好ましく、0.2~8質量%であることがさらに好ましく、0.5~5質量%であることがよりさらに好ましい。ジルコニル基を含むジルコニウム化合物(A)の含有量が0.01質量%以上であると、耐食性を十分に付与でき、10質量%以下であると、皮膜の柔軟性が十分となるため、樹脂皮膜の加工密着性に優れる。
 本発明の金属表面処理剤において、バナジウム化合物(B)としては、具体的には、メタバナジン酸及びその塩、酸化バナジウム、三塩化バナジウム、オキシ三塩化バナジウム、バナジウムアセチルアセトネート、バナジウムオキシアセチルアセトネート、硫酸バナジル、硫酸バナジウム、硝酸バナジウム、リン酸バナジウム、酢酸バナジウム、重リン酸バナジウム、バナジウムアルコキシド、バナジウムオキシアルコキシド等が挙げられる。これらの中でも、バナジウムの酸化数が5価の化合物を用いるのが好ましく、具体的には、メタバナジン酸及びその塩、酸化バナジウム、オキシ三塩化バナジウム、バナジウムアルコキシド、バナジウムオキシアルコキシドが好ましい。
 バナジウム化合物(B)の処理剤中の含有量は、0.01~5質量%含有することが好ましく、0.1~3質量%含有することがより好ましい。バナジウム化合物(B)を0.01~5質量%含有することで、耐食性を向上させることができる。
 本発明の金属表面処理剤で用いるチタンフルオロ錯体化合物(C)としては、フルオロチタン酸とその塩が挙げられる。チタンフルオロ錯体化合物(C)がフッ素を含んでいることにより、金属表面のエッチングが起こりやすくなるため、耐食性に優れ、かつ当該金属材料との密着性の高い皮膜が形成される。
 チタンフルオロ錯体化合物(C)の処理剤中の含有量は、0.01~10質量%であることが好ましく、0.1~8.5質量%であることがより好ましく、0.3~7質量%であることがさらに好ましい。チタンフルオロ錯体化合物(C)の含有量が0.01質量%以上であると、耐食性を十分に付与でき、10質量%以下であると、エッチング過多になることが防止され、無機リン化合物(Db)に対して溶出した金属カチオンが過剰となることが防止されるため、耐食性に優れる。
 本発明の金属表面処理剤は、リン酸基及び/又はホスホン酸基を含有する有機リン化合物(Da)及び無機リン化合物(Db)の両方を含有することで、耐食性をより向上させることができる。
 そのような有機リン化合物(Da)としては、1-ヒドロキシエチリデン-1,1-ジホスホン酸、2-ホスホノブタン-1,2,4-トリカルボン酸、エチレンジアミンテトラメチレンホスホン酸、アミノトリメチレンホスホン酸、フェニルホスホン酸、オクチルホスホン酸などのホスホン酸類及びその塩が挙げられる。これら有機リン化合物を組み合わせて用いることも可能である。これらのうち、1-ヒドロキシエチリデン-1,1-ジホスホン酸、2-ホスホノブタン-1,2,4-トリカルボン酸、アミノトリメチレンホスホン酸が好ましい。
 そのような無機リン化合物(Db)としては、リン酸、亜リン酸などのリン酸類及びその塩、ピロリン酸、トリポリリン酸などの縮合リン酸及びその塩が挙げられる。ここで、リン酸類の塩および縮合リン酸の塩を形成するためのカチオンとしては、水に対して易溶解性でその水溶液がリン酸イオンを遊離しうる塩を形成するものであればよく、ナトリウム、カリウム、アンモニウムなどが挙げられる。これら無機リン化合物を組み合わせて用いることも可能である。無機リン化合物(Db)としては、リン酸の塩が好ましい。なお、本明細書において、水に対して易溶解性であるとは、その化合物1gが25℃の水10mlに溶解するものをいう。ここで、溶解とは溶媒に溶けて均一となっている状態および微分散している状態をいう。具体的には、12000rpmで30分間遠心分離した際に沈殿しない状態をいう。
 有機リン化合物(Da)、無機リン化合物(Db)の含有量は、それぞれ、処理剤中の含有量として0.01~10質量%であることが好ましく、0.1~8質量%であることがより好ましく、0.3~6質量%であることがさらに好ましい。
 また、有機リン化合物(Da)と無機リン化合物(Db)の質量比は、リン元素換算で、Da/Db=5/1~1/2であることが好ましい。ここでリン元素換算の質量比とは、有機リン化合物(Da)および無機リン化合物(Db)それぞれが含有するリン元素の質量の比を意味する。
 前記の濃度範囲で有機リン化合物(Da)を含有することで、キレート効果により処理剤中にバナジウム化合物(B)を安定して溶解させることが可能となる。また、処理剤が前記の濃度範囲で無機リン化合物(Db)を含有することにより、エッチングにより溶出した金属カチオンと効率よく耐食性に優れる皮膜を形成させることが可能となる。さらには、有機リン化合物(Da)と無機リン化合物(Db)とが前記質量比で処理剤中に存在することにより、耐食性と耐水性との両立を図ることができる。
 本発明の金属表面処理剤として用いる水性アクリル樹脂(E)は、エチレン性不飽和二重結合を有する単量体を重合させたカルボキシル基を複数個有する、固形分酸価が300mgKOH/g以上の重合体である。また、質量平均分子量は1,000以上1,000,000以下であることが好ましい。本明細書において、樹脂の質量平均分子量は、ポリスチレン標準サンプル基準を用いたゲルパーミエーションクロマトグラフィ(GPC)で測定することができる。また、本発明における樹脂固形分の酸価および水酸基価はJIS  K  0070に準拠した方法により決定することができる。
 このような水性アクリル樹脂としては、単量体として、アクリル酸、メタクリル酸をラジカル重合させた単独重合体、及び、これらの単量体と、他のエチレン性不飽和モノマーをラジカル重合させた共重合体を用いることができる。共重合体の場合、他のエチレン性不飽和モノマーとしては、例えば、エチル(メタ)アクリレート、ブチル(メタ)アクリレートなどのアルキル(メタ)アクリレート類、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート類が挙げられる。水性アクリル樹脂(E)の酸価は、重合に用いるモノマー組成により調整することができる。
 水性アクリル樹脂(E)は、上記モノマーを通常の方法で重合することにより得られる。例えば、モノマー混合物を公知の重合開始剤(例えばアゾビスイソブチロニトリル等)と混合し、重合可能な温度に加熱した溶剤を含むコルベン中へ滴下、熟成することにより水性アクリル樹脂を得ることができる。
 市販の水性アクリル樹脂として、「ジュリマーAC-10L」(ポリアクリル酸、日本純薬社製)、「PIA728」(ポリイタコン酸、磐田化学社製)、及び「アクアリックHL580」(ポリアクリル酸、日本触媒社製)等が挙げられる。
 また、複数種の水性アクリル樹脂を組み合わせて用いることも可能である。
 水性アクリル樹脂(E)は、処理剤中の樹脂固形分の濃度として100ppm~30,000ppm含有させるものである。
 前記の濃度範囲で含有させることにより、金属材料との密着性だけでなく、樹脂皮膜との密着性、及び耐食性をさらに向上させる。特に、樹脂皮膜との密着性を向上させる効果が著しい。
 本発明の金属表面処理剤は、さらに、前記水性アクリル樹脂(E)と反応して架橋構造を形成する硬化剤であるオキサゾリン基含有ポリマー(F)を含有する。
 このような硬化剤であるオキサゾリン基含有ポリマー(F)は、水性アクリル樹脂(E)のカルボキシル基と反応しうる官能基を、分子内に少なくとも2個以上含有しているオキサゾリン基含有ポリマーである。
 オキサゾリン基含有ポリマーとして、具体的には、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン等の付加重合性オキサゾリン及び必要に応じて使用するその他の重合性単量体からなる単量体組成物を重合してなるオキサゾリン基含有ポリマーを挙げることができる。市販品としては、「エポクロスWS-700」(有効成分25%、水溶性タイプ、オキサゾリン基含有アクリル樹脂、日本触媒社製)、「エポクロスWS-300」(有効成分10%、水溶性タイプ、オキサゾリン基含有アクリル樹脂、日本触媒社製)、等を挙げることができる。
 硬化剤であるオキサゾリン基含有ポリマー(F)は、処理剤中に固形分濃度として50ppm~5,000ppm含有させるものであり、かつ水性アクリル樹脂(E)と架橋構造を形成する硬化剤であるオキサゾリン基含有ポリマー(F)の固形分の質量比がE/F=20/1~2/3であることが好ましい。
 前記の濃度範囲及び質量比で含有させることにより、水性アクリル樹脂(E)と架橋構造を形成し、金属材料との密着性、樹脂皮膜との密着性、及び耐食性をさらに向上させる。
 また、上記ジルコニル([Zr=O]2+)構造を有する化合物(A)、バナジウム化合物(B)、チタンフルオロ錯体化合物(C)の金属元素換算の質量の合計と水性アクリル樹脂(E)、オキサゾリン基含有ポリマーとの質量比は(A+B+C)/(E+F)=10/1~1/1である。金属元素換算とは、ジルコニウム化合物(A)が含有するジルコニウム元素、バナジウム化合物(B)が含有するバナジウム元素、チタンフルオロ錯体化合物(C)が含有するチタン元素の質量をもとに計算することを意味する。
 (A+B+C)/(E+F)が10/1以上の無機物過多の組成になると、密着性と耐食性が不良な化成皮膜となり、(A+B+C)/(E+F)が1/1以下の有機物が多い組成になると、耐食性が劣る化成皮膜となる。
 本発明の金属表面処理剤のpHは、3~6であることを要する。pHが6より上であるとエッチング不足となり、金属材料と化成皮膜との密着性が不十分となる。一方、pHが3を下回るとエッチング過多となり、鋼板の外観(パウダー性)が不良となる。ここで、パウダー性不良とは、化成処理後の鋼板が粉をふいたような外観となり、手やロール等で擦ることで容易に皮膜が脱落してしまう状態のことを言う。
 本発明の金属表面処理剤は、水に、少なくとも本発明に係るジルコニル([Zr=O]2+)構造を有する化合物(A)、バナジウム化合物(B)、チタンフルオロ錯体化合物(C)、有機リン化合物(Da)及び無機リン化合物(Db)、水性アクリル樹脂(E)、硬化剤であるオキサゾリン基含有ポリマー(F)を所定量混合することで作製することができる。ここで、本発明のクロムフリー金属表面処理剤の固形分濃度は、処理剤に対して0.1~20質量%であることが好ましく、1~15質量%であることがより好ましい。
 本発明の金属表面処理剤は、環境面、安全面から、6価クロムのみならず3価クロムを含有する化合物も実質的に含まないクロムフリー金属表面処理剤である。クロムを含有する化合物を実質的に含有しないとは、金属表面処理剤中のクロム化合物に由来する金属クロムの含有量が1ppm未満であることを意味する。
 さらに、本発明の金属表面処理剤は、必要に応じて、増粘剤、レベリング剤、濡れ性向上剤、界面活性剤、消泡剤、水溶性のアルコール類、セロソルブ系溶剤などを含有していてもよい。
 本発明のクロムフリー金属表面処理剤による表面処理(化成処理)は、以下のようにして行うことができる。
 本発明による化成処理の前工程については特に制限はないが、通常、化成処理を行う前に、金属材料に付着した油分や汚れを取り除くためにアルカリ脱脂液による脱脂処理を行い、その後、必要に応じて酸、アルカリ、ニッケル化合物やコバルト化合物等による表面調整を行う。この時、脱脂液等が金属材料の表面になるべく残留しないよう、処理後に水洗することが好ましい。
 本発明による化成処理は、亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面に、本発明の表面処理剤を用いて、ロールコート法、エアスプレー法、エアレススプレー法、浸漬法、スピンコート法、フローコート法、カーテンコート法、流し塗りなどの手段により皮膜形成処理を行い、乾燥工程を経て化成皮膜を形成する。この際、処理温度は5~60℃の範囲が好ましく、処理時間は1~300秒間程度であることが好ましい。処理温度及び処理時間が上記範囲にあれば、所望の皮膜が良好に形成されると共に、経済的にも有利である。処理温度はより好ましくは10~40℃であり、処理時間はより好ましくは2~60秒間である。
 なお、上記亜鉛-アルミニウム-マグネシウム合金めっき鋼板は、自動車ボディー、自動車部品、屋根材・外壁材や農業用ビニールハウスの支柱などの建材、家電製品及びその部品、ガードレール、防音壁、排水溝等の土木製品に使用されるシートコイル、各種の成形加工品等に適用される。
 乾燥工程は、必ずしも熱を必要とはせず、風乾、エアーブロー等の物理的な除去でも構わないが、皮膜形成性、金属表面との密着性を向上させるために加熱乾燥してもよい。その場合の温度は、30~250℃が好ましく、40~200℃がより好ましい。
 形成される化成皮膜の付着量は乾燥後で0.001~1g/mであることが好ましく、0.02~0.5g/mがより好ましい。0.001~1g/mであることで、十分な耐食性、樹脂皮膜との密着性を維持し、皮膜にクラックが生じることを防ぐことができる。
 このようにして形成された化成皮膜は、耐食性に優れ、かつ当該皮膜上に形成される下記の樹脂皮膜との密着性も良好である。
 なお、次の工程において、形成された化成皮膜上に塗料、ラッカー、ラミネートフィルム等からなる樹脂皮膜層を公知の方法により形成することで、保護されるべき金属材料(部材)の表面をさらに効果的に保護することができる。
 形成される樹脂皮膜層の膜厚は乾燥後で0.3~50μmであることが好ましい。
 以下本発明について実施例を挙げてさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
〔製造例1〕
アクリル樹脂(1)の調製
 イオン交換水775部を、加熱・攪拌装置付き4ツ口ベッセルに仕込み、攪拌・窒素還流しながら、内容液を80℃に加熱した。次いで、加熱、攪拌、窒素還流を行いながら、アクリル酸160部、アクリル酸エチル20部及びメタクリル酸2-ヒドロキシエチル20部の混合モノマー液、並びに、過硫酸アンモニウム1.6部及びイオン交換水23.4部の混合液を、それぞれ滴下漏斗を用いて、3時間かけて滴下した。滴下終了後、加熱、攪拌、窒素還流を2時間継続した。加熱・窒素還流を止め、溶液を攪拌しながら30℃まで冷却し、200メッシュ櫛にて濾過して、無色透明の水溶性アクリル樹脂(1)水溶液を得た。得られたアクリル樹脂(1)水溶液は、不揮発分20%、樹脂固形分酸価623mgKOH/g、樹脂固形分水酸基価43mgKOH/g、質量平均分子量8400であった。なお、前記不揮発分は、得られたアクリル樹脂(1)水溶液2gを150℃のオーブンにて1時間加熱後の残存質量から求めた値である。
〔製造例2〕
アクリル樹脂(2)の調製
 アクリル樹脂のモノマー組成を、アクリル酸30部、アクリル酸エチル70部、メタクリル酸2-ヒドロキシエチル100部としたことのほかは、製造例1と同様の手順にて、アクリル樹脂合成を行った。合成樹脂をベッセル中で冷却中、約60℃近傍で液が白濁したため、攪拌しながら中和剤として25%アンモニア28.3部を添加した。30℃まで冷却し、淡赤褐色のアクリル樹脂(2)水溶液を得た。得られたアクリル樹脂(2)水溶液は、不揮発分19.4%、樹脂固形分酸価117、樹脂固形分水酸基価216、質量平均分子量11,600であった。
〔製造例3~37〕
 水に、ジルコニウム化合物(A)、バナジウム化合物(B)、金属フルオロ錯体化合物(C)、有機リン化合物(Da)、無機リン化合物(Db)、水性アクリル樹脂(E)及び硬化剤であるオキサゾリン基含有ポリマー(F)を下記表1~3に示した所定量加え(比較例では無添加成分ある場合あり)、総量を1000質量部として金属表面処理剤1~35を調製した。
Figure JPOXMLDOC01-appb-T000001
 
 
Figure JPOXMLDOC01-appb-T000002
 
 
Figure JPOXMLDOC01-appb-T000003
 
 
 なお、上記表1~3中の凡例は下記の通りである。
(ジルコニウム化合物(A))
A1:硝酸ジルコニル(カチオンは、ZrO2+
A2:酢酸ジルコニル(カチオンは、ZrO2+
A3:硫酸ジルコニル(カチオンは、ZrO2+
A4:炭酸ジルコニルアンモニウム(カチオンは、ZrO2+
(バナジウム化合物(B))
B1:メタバナジン酸アンモニウム
B2:メタバナジン酸ナトリウム
(金属フルオロ錯体化合物(C))
C1:チタンフッ化アンモニウム(アニオンは、TiF 2-
C2:ジルコンフッ化アンモニウム(アニオンは、ZrF 2-
(有機リン化合物(Da))
Da1:1-ヒドロキシエチリデン-1,1-ジホスホン酸
Da2:アミノトリメチレンホスホン酸
Da3:2-ホスホノブタン-1,2,4-トリカルボン酸
(無機リン化合物(Db))
Db1:リン酸二水素一アンモニウム
Db2:リン酸一水素二アンモニウム
(水性アクリル樹脂(E))
E1:低分子量ポリアクリル酸(日本純薬社製「ジュリマーAC-10L」、固形分酸価 779mgKOH/g、質量平均分子量 20,000~30,000、不揮発分 40%)
E2:高分子量ポリアクリル酸(日本純薬社製「ジュリマーAC-10H」、固形分酸価 779mgKOH/g、質量平均分子量 150,000、不揮発分20%)
E3:アクリル樹脂(1)(製造例1で調製したもの;固形分酸価 623mgKOH/g、質量平均分子量 8400)
E4:アデカボンタイター HUX-232(ADEKA社製水性ウレタン樹脂、固形分酸価 30mgKOH/g、不揮発分30%)
E5:アクリル樹脂(2)(製造例2で調製したもの;固形分酸価 117mgKOH/g、質量平均分子量 11,600)
(硬化剤であるオキサゾリン基含有ポリマー(F))
F1:オキサゾリン基含有アクリル樹脂(日本触媒社製「エポクロスWS-300」)
F2:オキサゾリン基含有アクリル樹脂(日本触媒社製「エポクロスWS-500」)
F3:多価カルボジイミド(日清紡ケミカル社製「カルボジライトSW-12G」)
(試験板)
 板厚0.5mmの冷延鋼板を原板として、下記の表4に示すめっき組成を有する溶融Zn-Al-Mg合金めっき鋼帯を製造し、それぞれの鋼帯を切断して210mm×300mmのめっき鋼板を準備した。めっき付着量は、片面あたり60g/mとした。
Figure JPOXMLDOC01-appb-T000004
 
 
[実施例1~68および比較例1~23]
(脱脂・表面処理)
 上記めっき鋼板を、アルカリ脱脂剤(日本ペイント社製、サーフクリーナー155)を用いて60℃で2分間スプレー脱脂し、水洗後、80℃で乾燥した。続いて、上記の製造例にて調製した金属表面処理剤を、下記表5~10記載の乾燥皮膜量(0.2g/m)となるように固形分濃度を調整した後、脱脂した上記めっき鋼板にバーコーターで塗布し、熱風循環型オーブンを用いて金属基材の到達温度が80℃となるよう乾燥させ、化成皮膜が形成された試験板を作製した。
(樹脂皮膜層形成)
 試験板表面にエポキシ系接着剤を塗布し、塩化ビニルフィルムを貼り合わせ、ラミネート鋼板を得た。
 上記で作製した各化成処理鋼板、および各ラミネート鋼板から適宜試験片を切り出して試験板とし、下記に示す評価試験を行った。結果を下記表5~10に示す。
(フィルム加工密着性)
 まず、フィルムを接着したラミネート鋼板からJIS 13号A試験片を切り出し、その試験片に引張試験機により18%の伸びを付与した。続いて、試験片の平行部のフィルムに対し、試験片の長手方向に15mmの間隔を隔てて2本の平行な切れ目を入れ、その平行線の間のフィルムを強制的に剥離させて、その時の剥離強度を測定した。下記基準に準じて評価を行った。評点3以上をもって合格とした。
<評価基準>
4:剥離強度50N/15mm以上
3:剥離強度37.5N/15mm以上50N/15mm未満
2:剥離強度15N/15mm以上37.5N/15mm未満
1:剥離強度15N/15mm未満
(耐水性)
 フィルムを接着したラミネート鋼板からJIS 13号A試験片を切り出し、沸騰水中に4時間浸漬後、上記フィルム加工密着性試験と同様の手法にて平面部のフィルム剥離強度(N/15mm)を測定した。評価は下記の判定基準に準じて行った。評点3以上をもって合格とした。
<評価基準>
4:剥離強度50N/15mm以上
3:剥離強度37.5N/15mm以上50N/15mm未満
2:剥離強度15N/15mm以上37.5N/15mm未満
1:剥離強度15N/15mm未満
(外観(パウダー性))
 化成処理後の各試験板の外観(粉を噴いた様な外観になるか否か)を目視評価した。評価は下記の判定基準に準じて行った。評点3をもって合格とした。
<評価基準>
3:手やロールで擦っても粉(=皮膜)に脱落が見られない
1:手やロールで擦ると粉(=皮膜)に脱落が見られる
(浴安定性)
 作製した各金属表面処理剤を40℃及び5℃の恒温槽中に一定期間(1ヶ月)保存し、増粘や沈降物の有無を評価した。評価は下記の判定基準に準じて行った。評点3をもって合格とした。
<評価基準>
3:40℃および5℃の恒温槽中に1ヶ月静置後、増粘も沈降物も見られない
1:40℃および5℃の恒温槽中に1ヶ月静置後、増粘または沈降物が認められる
(耐食性(一時防錆))
 化成処理した鋼板(ラミネート接着前)の4隅をテープシールしてSST試験(塩水噴霧試験)を行った。評価は下記の判定基準に準じて行い、24時間以上白錆の発生がないことをもって合格とした。それ以降最大72時間まで試験を継続するが、長期間にわたって数値が高ければ高いほど良好である。
<評価基準>
時間:平面部に白錆が発生しなかった時間
-:SST試験24時間で平面部に白錆発生
Figure JPOXMLDOC01-appb-T000005
 
 
Figure JPOXMLDOC01-appb-T000006
 
 
Figure JPOXMLDOC01-appb-T000007
 
 
Figure JPOXMLDOC01-appb-T000008
 
 
Figure JPOXMLDOC01-appb-T000009
 
 
Figure JPOXMLDOC01-appb-T000010
 
 
なお、上記表5~10中の凡例は下記の通りである。
(表面調整剤)
Ni:ニッケル系表面調整剤(日本ペイント社製、NPコンディショナー710)
― :表面調整なし
Niの付着量は、5mg/mとした。
 表5~10から、実施例に係る金属表面処理剤はすべて、比較例に係る金属表面処理剤よりも、耐食性、耐水性に優れ、かつ亜鉛-アルミニウム-マグネシウム合金めっき鋼板と、ラミネートフィルムである樹脂皮膜との密着性が高い皮膜を形成していることがわかる。
 なお、比較例1、12は、チタンフッ化アンモニウムに代えてジルコンフッ化アンモニウムを使用したが、耐水性、耐食性が不良であった。
 比較例2、13および比較例3、14は、高酸価の水性アクリル樹脂に代えて、それぞれ酸価の低い水性ウレタン樹脂、もしくは酸価の低い水性アクリル樹脂を使用したが、いずれも密着性が不良であった。
 比較例4、15は、pHが6より高いためエッチング不足となり、密着性などが不良であった。
 比較例5、16は、(A+B+C)/(E+F)=10/1より大きい(無機物が多い)ため、密着性、耐食性が不良であった。
 比較例6、17は、バナジウム化合物を含有しておらず、耐食性、パウダー性が不良であった。
 比較例7、18は、チタンフッ化化合物を含有しておらず、耐食性、密着性が不良であった。
 比較例8、19は、有機リン化合物を含有しておらず、バナジウム化合物の溶解性が不十分となり、耐食性などが不良であった。
 比較例9、20は、無機リン化合物を含有しておらず、耐食性が不良であった。
 比較例10、21は、高酸価の水性アクリル樹脂を含有しておらず、造膜性が不足して密着性、パウダー性が不良であった。
 比較例11、22は、オキサゾリン基含有ポリマーに代えて、別の硬化剤(カルボジイミド)を使用したが、十分な架橋が得られず、耐水性、耐食性が不良であった。
 比較例23は、めっき鋼板のAl含有量が少ないため、エッチング過剰となりパウダー性が不良であった。

Claims (5)

  1.  亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面を金属表面処理剤を用いて処理する方法であって、
     鋼板の表面に亜鉛-アルミニウム-マグネシウム合金めっき層を形成させる工程と、
    前記めっき層形成工程に続いて金属表面処理剤を用いて前記めっき層の表面を処理する工程とを含み、
     前記亜鉛-アルミニウム-マグネシウム合金めっき層が、Al:1.0~10質量%、Mg:1.0~10質量%、残部Zn及び不可避的不純物を含むめっき層であり、
    前記金属表面処理剤が、
     ジルコニル([Zr=O]2+)構造を有する化合物(A)、
     バナジウム化合物(B)、
     チタンフルオロ錯体化合物(C)、
     リン酸基及び/又はホスホン酸基を含有する有機リン化合物(Da)、
     無機リン化合物(Db)、
     水性アクリル樹脂(E)、
     硬化剤としてオキサゾリン基含有ポリマー(F)を含有し、
     前記水性アクリル樹脂(E)の酸価が300mgKOH/g以上であり、かつ、前記水性アクリル樹脂(E)の前記金属表面処理剤に対する含有量が樹脂固形分の濃度として100ppm~30,000ppmであり、
     前記オキサゾリン基含有ポリマー(F)の前記金属表面処理剤に対する含有量が固形分の濃度として50ppm~5,000ppmであり、
     かつ前記ジルコニル([Zr=O]2+)構造を有する化合物(A)、バナジウム化合物(B)、チタンフルオロ錯体化合物(C)の金属元素換算の質量の合計と水性アクリル樹脂(E)、オキサゾリン基含有ポリマー(F)の固形分との質量比が(A+B+C)/(E+F)=10/1~1/1であり、
     前記金属表面処理剤のpHが3~6である、
    亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面を金属表面処理剤を用いて処理する方法。
  2.  前記水性アクリル樹脂(E)と前記硬化剤であるオキサゾリン基含有ポリマー(F)の固形分の質量比がE/F=20/1~2/3である、請求項1に記載の亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面を金属表面処理剤を用いて処理する方法。
  3.  前記有機リン化合物(Da)と前記無機リン化合物(Db)の質量比が、リン元素換算で、Da/Db=5/1~1/2である、請求項1または2に記載の亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面を金属表面処理剤を用いて処理する方法。
  4.  前記亜鉛-アルミニウム-マグネシウム合金めっき層が、Si:0.001~2.0質量%、Ti:0.001~0.1質量%、B:0.001~0.045質量%のうち1種または2種以上をさらに含む、請求項1~3のいずれか1項に記載の、亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面を金属処理剤を用いて処理する方法。
  5.  請求項1~4のいずれか1項に記載の方法で処理して得られる亜鉛-アルミニウム-マグネシウム合金めっき鋼板。
PCT/JP2014/081634 2013-11-29 2014-11-28 亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面処理方法 WO2015080268A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
SG11201604271XA SG11201604271XA (en) 2013-11-29 2014-11-28 Method for treating surface of zinc-aluminum-magnesium alloy-plated steel sheet
CN201480065135.4A CN105814239B (zh) 2013-11-29 2014-11-28 锌-铝-镁合金镀覆钢板的表面处理方法
BR112016011820-0A BR112016011820B1 (pt) 2013-11-29 2014-11-28 Método para tratar superfície de chapa de aço laminado de uma liga de zinco-alumínio- magnésio
PL14866659T PL3075879T3 (pl) 2013-11-29 2014-11-28 Sposób obróbki powierzchni blachy stalowej platerowanej stopem cynk-aluminium-magnez
EA201690867A EA028053B1 (ru) 2013-11-29 2014-11-28 Способ обработки поверхности покрытого цинк-алюминий-магниевым сплавом стального листа
KR1020167013859A KR102107271B1 (ko) 2013-11-29 2014-11-28 아연-알루미늄-마그네슘 합금 도금 강판의 표면 처리 방법
ES14866659.7T ES2675151T3 (es) 2013-11-29 2014-11-28 Método para tratar la superficie de una chapa de acero revestida con aleación de cinc-aluminio-magnesio
AU2014355320A AU2014355320B2 (en) 2013-11-29 2014-11-28 Method for treating surface of zinc-aluminum-magnesium alloy-plated steel sheet
US15/039,512 US10161047B2 (en) 2013-11-29 2014-11-28 Method for treating surface of zinc-aluminum-magnesium alloy-plated steel sheet
MX2016006946A MX2016006946A (es) 2013-11-29 2014-11-28 Metodo para el tratamiento de la superficie de una lamina de acero de aleacion de chapado en zinc-aluminio-magnesio.
EP14866659.7A EP3075879B1 (en) 2013-11-29 2014-11-28 Method for treating surface of zinc-aluminum-magnesium alloy-plated steel sheet
CA2931667A CA2931667C (en) 2013-11-29 2014-11-28 Method for treating surface of zinc-aluminum-magnesium alloy-plated steel sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-247677 2013-11-29
JP2013247677A JP5647326B1 (ja) 2013-11-29 2013-11-29 亜鉛−アルミニウム−マグネシウム合金めっき鋼板の表面処理方法
JP2014226140A JP5952877B2 (ja) 2014-11-06 2014-11-06 亜鉛−アルミニウム−マグネシウム合金めっき鋼板の表面処理方法
JP2014-226140 2014-11-06

Publications (2)

Publication Number Publication Date
WO2015080268A1 true WO2015080268A1 (ja) 2015-06-04
WO2015080268A8 WO2015080268A8 (ja) 2016-05-06

Family

ID=53199203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081634 WO2015080268A1 (ja) 2013-11-29 2014-11-28 亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面処理方法

Country Status (13)

Country Link
US (1) US10161047B2 (ja)
EP (1) EP3075879B1 (ja)
KR (1) KR102107271B1 (ja)
CN (1) CN105814239B (ja)
AU (1) AU2014355320B2 (ja)
CA (1) CA2931667C (ja)
EA (1) EA028053B1 (ja)
ES (1) ES2675151T3 (ja)
MX (1) MX2016006946A (ja)
MY (1) MY179848A (ja)
PL (1) PL3075879T3 (ja)
SG (1) SG11201604271XA (ja)
WO (1) WO2015080268A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191806B1 (ja) * 2016-03-09 2017-09-06 新日鐵住金株式会社 表面処理鋼板および表面処理鋼板の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109642324A (zh) * 2016-09-01 2019-04-16 美国圣戈班性能塑料公司 转化涂层及其制备方法
US10988573B2 (en) * 2017-12-15 2021-04-27 Ppg Industries Ohio, Inc. Polymeric polyoxazolines
CN111683811B (zh) * 2018-05-25 2022-06-14 日本制铁株式会社 表面处理钢板
CN108588625B (zh) * 2018-07-31 2021-02-26 中研智能装备有限公司 一种钢结构用ZnAlMgSiB防腐涂层及其制备方法
CN111733410B (zh) * 2020-07-07 2022-08-02 奎克化学(中国)有限公司 一种用于锌铝镁钢板的无铬钝化液及其制备方法
KR20220041590A (ko) 2020-09-25 2022-04-01 비피시 주식회사 도금밀착성을 향상한 마그네슘 도금계 고내식 패스너 및 그 제조방법
CN113621852B (zh) * 2021-07-13 2023-02-17 株洲冶炼集团股份有限公司 一种锌铝镁涂镀材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505043A (en) 1969-01-08 1970-04-07 Inland Steel Co Al-mg-zn alloy coated ferrous metal sheet
JP2000239854A (ja) * 1999-02-15 2000-09-05 Kawasaki Steel Corp 高耐食性燃料タンク用鋼板
JP2004183015A (ja) 2002-11-29 2004-07-02 Nippon Parkerizing Co Ltd 金属表面処理剤、金属表面処理方法及び表面処理金属材料
JP2009084516A (ja) * 2007-10-02 2009-04-23 Nippon Paint Co Ltd 金属表面処理組成物、この組成物を用いたアルミニウム系金属基材の表面処理方法、及びこの方法を用いて製造されたアルミニウム系金属表面処理基材
JP2009287079A (ja) * 2008-05-28 2009-12-10 Jfe Steel Corp 高耐食性表面処理鋼板
JP2012212512A (ja) * 2011-03-30 2012-11-01 Nisshin Steel Co Ltd 電池外装用積層体および二次電池
JP2012224889A (ja) * 2011-04-18 2012-11-15 Jfe Steel Corp 表面処理剤および有機被覆鋼材
JP2013023705A (ja) 2011-07-15 2013-02-04 Nippon Parkerizing Co Ltd 金属表面処理剤及びその処理剤で処理してなる金属材料

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6736908B2 (en) * 1999-12-27 2004-05-18 Henkel Kommanditgesellschaft Auf Aktien Composition and process for treating metal surfaces and resulting article
JP3844643B2 (ja) * 2000-08-21 2006-11-15 日本パーカライジング株式会社 下地処理剤、及び下地処理方法
GB0028341D0 (en) 2000-11-21 2001-01-03 Cytec Tech Corp Thermally stable resin binder composition and method for binding fibres
JP4652592B2 (ja) 2001-03-15 2011-03-16 日本ペイント株式会社 金属表面処理剤
TWI445785B (zh) * 2005-01-26 2014-07-21 Nitto Denko Corp 黏著型光學薄膜
JP4776458B2 (ja) 2005-07-22 2011-09-21 新日本製鐵株式会社 耐食性、耐熱性、耐指紋性、導電性、塗装性および加工時の耐黒カス性に優れたクロメートフリー表面処理金属材
US9499697B2 (en) * 2007-10-02 2016-11-22 Ppg Industries Ohio, Inc. Coating composition and a reflective coating system including same
JP4377955B2 (ja) * 2007-12-27 2009-12-02 新日本製鐵株式会社 亜鉛めっき鋼板溶接用ステンレス鋼フラックス入り溶接ワイヤおよびこれを用いた亜鉛めっき鋼板のアーク溶接方法
JP2012062565A (ja) 2010-09-20 2012-03-29 Jfe Steel Corp 亜鉛系めっき鋼板用水系表面処理液および表面処理亜鉛系めっき鋼板
JP2012212511A (ja) 2011-03-30 2012-11-01 Nisshin Steel Co Ltd 電池外装用積層体および二次電池
JP5341270B1 (ja) 2012-04-25 2013-11-13 日新製鋼株式会社 黒色めっき鋼板の製造方法および黒色めっき鋼板の成形体の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505043A (en) 1969-01-08 1970-04-07 Inland Steel Co Al-mg-zn alloy coated ferrous metal sheet
JP2000239854A (ja) * 1999-02-15 2000-09-05 Kawasaki Steel Corp 高耐食性燃料タンク用鋼板
JP2004183015A (ja) 2002-11-29 2004-07-02 Nippon Parkerizing Co Ltd 金属表面処理剤、金属表面処理方法及び表面処理金属材料
JP2009084516A (ja) * 2007-10-02 2009-04-23 Nippon Paint Co Ltd 金属表面処理組成物、この組成物を用いたアルミニウム系金属基材の表面処理方法、及びこの方法を用いて製造されたアルミニウム系金属表面処理基材
JP2009287079A (ja) * 2008-05-28 2009-12-10 Jfe Steel Corp 高耐食性表面処理鋼板
JP2012212512A (ja) * 2011-03-30 2012-11-01 Nisshin Steel Co Ltd 電池外装用積層体および二次電池
JP2012224889A (ja) * 2011-04-18 2012-11-15 Jfe Steel Corp 表面処理剤および有機被覆鋼材
JP2013023705A (ja) 2011-07-15 2013-02-04 Nippon Parkerizing Co Ltd 金属表面処理剤及びその処理剤で処理してなる金属材料

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191806B1 (ja) * 2016-03-09 2017-09-06 新日鐵住金株式会社 表面処理鋼板および表面処理鋼板の製造方法
WO2017155028A1 (ja) * 2016-03-09 2017-09-14 新日鐵住金株式会社 表面処理鋼板および表面処理鋼板の製造方法
AU2017231516B2 (en) * 2016-03-09 2019-07-18 Nippon Steel Corporation Surface-treated steel sheet and process for producing surface-treated steel sheet
TWI679303B (zh) * 2016-03-09 2019-12-11 日商日本製鐵股份有限公司 表面處理鋼板及表面處理鋼板的製造方法
US11091839B2 (en) 2016-03-09 2021-08-17 Nippon Steel Corporation Surface-treated steel sheet and method for producing surface-treated steel sheet

Also Published As

Publication number Publication date
MX2016006946A (es) 2016-08-19
SG11201604271XA (en) 2016-07-28
WO2015080268A8 (ja) 2016-05-06
AU2014355320A1 (en) 2016-06-16
EP3075879A4 (en) 2017-08-16
ES2675151T3 (es) 2018-07-09
MY179848A (en) 2020-11-18
EA028053B1 (ru) 2017-10-31
EP3075879A1 (en) 2016-10-05
KR20160091906A (ko) 2016-08-03
CN105814239A (zh) 2016-07-27
CA2931667A1 (en) 2015-06-04
BR112016011820A2 (pt) 2017-09-19
KR102107271B1 (ko) 2020-05-06
CA2931667C (en) 2020-03-24
CN105814239B (zh) 2018-11-27
EA201690867A1 (ru) 2016-09-30
PL3075879T3 (pl) 2018-07-31
AU2014355320B2 (en) 2017-08-24
US10161047B2 (en) 2018-12-25
EP3075879B1 (en) 2018-04-18
US20170211188A1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP5952877B2 (ja) 亜鉛−アルミニウム−マグネシウム合金めっき鋼板の表面処理方法
WO2015080268A1 (ja) 亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面処理方法
JP5588058B1 (ja) クロムフリー金属表面処理剤
JP4607969B2 (ja) 金属材料用表面処理剤、表面処理方法及び表面処理金属材料
KR101918879B1 (ko) 아연 도금 강판용 표면 처리제
JP5075321B2 (ja) 金属表面の水系処理薬剤
JP2012017524A (ja) 無機系クロムフリー金属表面処理剤
TW201420810A (zh) 水性金屬表面處理劑及使用其之金屬表面處理方法
JP5647326B1 (ja) 亜鉛−アルミニウム−マグネシウム合金めっき鋼板の表面処理方法
JP4970773B2 (ja) 金属表面処理剤、金属材の表面処理方法及び表面処理金属材
CA2509460C (en) Method for coating metal substrates with a radically polymerizable coating agent and coated substrates
JP5103111B2 (ja) 塗装鋼板
TW201839075A (zh) 水系處理液、化學轉化處理方法和化學轉化處理鋼板
JP6367462B2 (ja) 亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用の金属表面処理剤、被覆方法及び被覆鋼材
JP5130484B2 (ja) 表面処理金属板及びその製造方法
JP2007182634A (ja) 金属表面処理剤、金属表面処理方法及び表面処理金属材料
JP2007321224A (ja) 耐食性に優れたクロメートフリー表面処理Al−Zn系合金めっき鋼板及びその製造方法
TWI586835B (zh) 用於金屬表面處理之水性組成物、表面處理方法、保護膜及表面處理鍍鋅鋼板
JPS6187878A (ja) 親水性耐食皮膜を形成する方法
JP2005290436A (ja) 耐食性に優れたクロメートフリー表面処理Al−Zn系合金めっき鋼板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2931667

Country of ref document: CA

Ref document number: 20167013859

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014866659

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201690867

Country of ref document: EA

Ref document number: 2014866659

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15039512

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201603583

Country of ref document: ID

Ref document number: MX/A/2016/006946

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016011820

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2014355320

Country of ref document: AU

Date of ref document: 20141128

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016011820

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160524