WO2015078120A1 - 高一致性低功耗阻变存储器及制备方法 - Google Patents

高一致性低功耗阻变存储器及制备方法 Download PDF

Info

Publication number
WO2015078120A1
WO2015078120A1 PCT/CN2014/074369 CN2014074369W WO2015078120A1 WO 2015078120 A1 WO2015078120 A1 WO 2015078120A1 CN 2014074369 W CN2014074369 W CN 2014074369W WO 2015078120 A1 WO2015078120 A1 WO 2015078120A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistive switching
layer
resistive
resistance value
layer structure
Prior art date
Application number
PCT/CN2014/074369
Other languages
English (en)
French (fr)
Inventor
黄如
余牧溪
蔡一茂
张镇星
李强
黎明
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Priority to US14/916,950 priority Critical patent/US9525133B2/en
Priority to DE112014002344.2T priority patent/DE112014002344T5/de
Publication of WO2015078120A1 publication Critical patent/WO2015078120A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/023Formation of switching materials, e.g. deposition of layers by chemical vapor deposition, e.g. MOCVD, ALD
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices

Definitions

  • the present application claims priority to Chinese Patent Application (201310618361.8) filed on Nov. 28, 2013, the entire content of BACKGROUND OF THE INVENTION 1.
  • the present invention relates to a resistive memory (RRAM), and more particularly to a high-consistency, low-power 2-bit resistive memory cell design and a method for fabricating the same, which are non-volatile in CMOS Very Large Scale Integrated Circuit (ULSI) Nonvolatile memory performance optimization and its manufacturing technology.
  • CMOS Very Large Scale Integrated Circuit
  • CTM charge trap memory
  • FeRAM ferroelectric memory
  • MRAM magnetic memory
  • PRAM phase change memory
  • resistive memory resistive memory
  • CTM charge trap memory
  • FeRAM ferroelectric memory
  • MRAM magnetic memory
  • PRAM phase change memory
  • resistive memory resistive memory
  • the resistive memory structure is simple, mainly composed of a top electrode, a resistive material film and a bottom electrode three-layer structure (MIM); and the resistive material generally uses a metal oxide having a simple structure.
  • the resistance mechanism it is generally considered to be caused by the movement of oxygen vacancies (or oxygen ions).
  • the set operation is to generate oxygen vacancies in the resistive material film under the action of an electric field and to move and accumulate under the action of an electric field, and finally form a low-resistance conductive channel (CF) in the local area, and the device is converted into a low-resistance state (LRS).
  • CF low-resistance conductive channel
  • the reset process can be divided into two types, unipolar and bipolar, according to the action of heat or electric field: the unipolar reset is a combination of oxygen ions and oxygen vacancies around the CF under the action of heat, so that the channel is disconnected, and the device is transformed into High-impedance state (HRS); bipolar reset is mainly the effect of the electric field opposite to the set process The reverse movement of the oxygen ions is combined with the oxygen vacancies to break the CF (or create a gap) and convert to HRS.
  • HRS High-impedance state
  • bipolar reset is mainly the effect of the electric field opposite to the set process
  • the reverse movement of the oxygen ions is combined with the oxygen vacancies to break the CF (or create a gap) and convert to HRS.
  • people implement multi-value storage by regulating the set or reset process.
  • one method is to adjust the thickness of the CF (or the oxygen vacancy concentration in CF) by adjusting the current limit (CC) during the set process to achieve different LRS resistance values; the other method is in the bipolar reset
  • different HRS resistance values are realized by adjusting the stop voltage and then regulating the length of the gap.
  • one HRS and three different resistance LRSs or one LRS and three different resistance HRSs can constitute 2-bit storage of a single device, and so on, 3-bit can be realized by appropriate regulation. Even higher density storage.
  • the switching of CF in the ordinary resistive memory occurs in the single-layer resistive layer. Since the thickness of CF (or the oxygen vacancy concentration in CF) and the regulation of gap are large, the consistency problem is serious.
  • the present invention can realize the complete on-off of the oxygen vacancy channel (CF) in each layer by dividing the film of the same metal oxide resistive material into four layers according to different oxygen concentrations, thereby accurately controlling the resistance. Value, to achieve high consistency 2-bit storage.
  • the resistance of each layer in the 4-layer structure low-current operation can be performed, thereby achieving low power consumption.
  • we can further realize 3-bit and higher density storage.
  • a resistive memory structure comprising a substrate, an insulating layer, a bottom electrode, a resistive material film, and a top electrode in sequence from bottom to top, wherein the resistive material film is The four-layer structure consisting of the same metal oxide; the four-layer structure is sequentially increased by at least 10 times from the bottom-up resistance; the four-layer structure is sequentially increased from the bottom to the top, and the thickness is sequentially decreased.
  • the resistive memory device is characterized in that: the four-layer structure, from bottom to top, the resistance of the first layer is
  • the resistive memory is characterized in that the substrate is a Si substrate and a crossbar structure (or other common MIM structure) is used.
  • the resistive memory device is characterized in that the bottom electrode and the top electrode material are conductive metals or metal nitrides.
  • the resistive memory device is characterized in that the resistive material is made of a transition metal oxide material.
  • the resistive memory device is characterized in that the transition metal oxide is HfOx, TaOx, ZrOx or WOx.
  • step (2) Prepare and pattern the top electrode by PVD sputtering (or electron beam evaporation) on the resistive material film to define the device size.
  • step (2) four layers of the resistive material are sequentially deposited by the sputtering method in the same chamber by adjusting the oxygen partial pressure to prepare a resistive material film.
  • step (2) four layers of resistive materials are sequentially deposited by thermal oxidation to adjust the oxygen ratio, oxidation time, oxidation temperature and the like in the atmosphere to prepare a resistive material film.
  • step (2) four layers of the resistive material are sequentially deposited by an ALD method to adjust the ratio of the reducing atmosphere, and a resistive material film is prepared.
  • the resistive memory design proposed by the present invention has the following three advantages:
  • the resistance values of MOx -3 and MOx -4 are Rl, R2, R3 and R4 respectively, where R1 «R2 «R3 «R4, then the resistance value of high resistance is determined by R4, that is, HRS R4; Small voltage, and set the current limit value to the current value corresponding to the R3 resistance of MOx -3, so that the conductive filament CF can be generated only in the uppermost layer MOx -4, as shown in Fig. 4, and thus after the set
  • the resistance is determined by R3, that is, LRS3 R3; similarly, when the set is continued, and the current value corresponding to the R2 resistance of the current limit of MOx -2 is set, the conductive filament CF can continue in the third layer MOx -3.
  • Figure 1 is a schematic cross-sectional view showing the structure of the RRAM of the present invention.
  • Figure 2 is a top plan view of the crossbar structure of the device of the RRAM of the present invention.
  • Figure 3 is a schematic diagram of a four-layer resistive film.
  • Figure 4 - Figure 6 Schematic diagram of the 2-bit resistive process in sequence during electrical operation.
  • 7 to FIG. 13 are schematic diagrams showing the structure of an RRAM assisted in the preparation process of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be further described with reference to the accompanying drawings, but the scope of the present invention is not limited thereto.
  • the invention provides a resistive memory, the structure of which is shown in Figure 1, and the main resistance resistive memory structure
  • the main difference of (MIM) is that the resistive material film is composed of four layers of metal oxide (MOx) having an oxygen concentration gradient, and the bottom four layers are abbreviated as MOx -1, MOx -2, and MOx -3, respectively.
  • MOx -4 the oxygen concentration from MOx -1 to MOx -4 is sequentially increased, the thickness is sequentially decreased, and the gradient between the resistance values of each layer is realized by relevant experimental control (in experiments, the oxygen concentration or film thickness is adjusted every time) Then, measure the resistance once, and select the corresponding oxygen concentration range or film thickness according to the set resistance range.
  • MOx -1 resistance is 10 3 ⁇ 10 4 ⁇
  • MOx -2 resistance is about 10 5 ⁇ 10 6 ⁇
  • MOx -3 resistance is about 10 7 ⁇ 10 8 ⁇
  • MOx -4 resistance is about 10 9 ⁇ 10 10 ⁇ .
  • the substrate is a Si substrate; a conventional crossbar structure is used as shown in Fig. 2; (2)
  • the bottom electrode and the top electrode material are conductive metals or metal nitrides such as Pt, Al, Ti or TiN,
  • the resistive material can be preferentially selected from the current mainstream transition metal oxide materials (such as HfOx, TaOx, ZrOx, WOx, etc.), and each oxide can select a suitable oxygen content gradient according to the respective resistance values of the respective oxygen contents, and then press The oxygen content is sequentially increased, and the thickness is sequentially decreased to sequentially deposit 4 layers; the preparation process of the resistive memory of the present invention is as follows:
  • bottom electrode preparation PVD sputtering (or electron beam evaporation) on the substrate, metal Ti/M, wherein Ti is used as an adhesion layer, M is a bottom electrode, and a bottom electrode is patterned by a stripping or etching process;
  • Preparation method of resistive film By sputtering method, four layers of resistive materials are sequentially deposited by adjusting oxygen partial pressure in the same chamber (according to the commonly used experimental parameters of the RRAM device according to the material, the film is first tested, Then, the resistance is measured. If the resistance of the experimental film is smaller than the set resistance range, the oxygen concentration is increased, or the thickness is slightly increased.
  • the experimental conditions for the four layers are set to prepare a film of the resistive material; Two: through the thermal oxidation method, adjusting the oxygen ratio, oxidation time, oxidation temperature, etc.
  • Method 3 depositing four layers of resistive materials by ALD method, adjusting the proportion of the reducing atmosphere (the same method, the experimental conditions corresponding to different resistance values are to be debugged in advance), and preparing a film of the resistive material;
  • Top electrode preparation PVD sputtering (or electron beam evaporation) Prepare and pattern the top electrode to define the device dimensions.
  • Embodiment 1 The following is a detailed description of the present invention by taking a TaOx resistive memory as an example, in conjunction with the accompanying drawings and specific embodiments.
  • the process for preparing a high-consistent and low-power 2-bit resistive memory cell of the present invention is as follows:
  • a first layer of resistive material film Preparation of the first layer of TaOx resistive material by PVD magnetron sputtering Film 4-1, thickness 30nm, oxygen partial pressure 3%, film resistance about 10 3 ⁇ (here given oxygen partial pressure and thickness are reference values, the corresponding corresponding thickness and oxygen partial pressure corresponding resistance needs to be determined experimentally in advance
  • the following three steps are the same; the experiment includes: adjusting the oxygen concentration and the film thickness, and then measuring the resistance, according to the resistance ratio set to a larger or smaller resistance range, and then adjusting the oxygen concentration and thickness, for example, if the experimental film The resistance value is smaller than the set resistance range, and the oxygen concentration is increased, or the film thickness is increased, as shown in FIG. 9;
  • the oxygen partial pressure is regulated in the sputtering chamber, and the fourth layer of TaOx resistive material film 4-4 is further prepared, having a thickness of 5 nm and an oxygen partial pressure of 50%. (ibid., oxygen partial pressure and thickness are reference values)
  • the sheet resistance is about 10 9 ⁇ , as shown in Figure 12;
  • the top electrode is prepared. Prepare and pattern the top electrode 5 by PVD sputtering to define the device size range (2 ⁇ > ⁇ 2 ⁇
  • the invention directly prepares a four-layer resistive material film by adjusting the oxygen component of the sputtering process without adding an additional process step, thereby preparing a 2-bit resistive memory with high consistency and low power consumption.
  • the process is simple and the performance is improved significantly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

一种阻变存储器,其结构自下而上依次包括衬底、绝缘层、底电极、阻变材料薄膜、顶电极,其特征是,所述的阻变材料薄膜为由同种金属氧化物构成四层结构;所述的四层结构自下而上阻值依次提高10倍以上;所述四层结构自下而上氧浓度依次提高,厚度依次减小。通过将同种金属氧化物阻变材料薄膜按不同氧浓度分为四层结构,可实现氧空位通道在各层中的完全通断,从而精确控制阻值,实现高一致性的2-bit存储。另外,通过合理调控4层结构中每层的阻值,即可进行低电流操作,进而实现低功耗。

Description

高一致性低功耗阻变存储器及制备方法 相关申请的交叉引用
本申请要求于 2013年 11月 28日提交的中国专利申请 (201310618361.8) 的优 先权, 其全部内容通过引用合并于此。 技术领域 本发明涉及阻变存储器 (RRAM), 具体涉及一种高一致性低功耗的 2-bit 阻变 存储器单元设计方案及其制备方法, 属于 CMOS 超大规模集成电路(ULSI) 中的非 挥发存储器 (Nonvolatile memory) 性能优化及其制造技术领域。 背景技术 近年来,随着器件尺寸不断缩小,尤其是进入纳米尺寸节点后,目前主流的 NVM 器件如 Flash的缩小能力 (scaling) 将达到极限, 随机涨落显著增加, 可靠性问题日 益严峻。基于此,研究人员相继提出电荷陷阱存储器(CTM)、铁电存储器(FeRAM)、 磁存储器 (MRAM)、 相变存储器 (PRAM)、 阻变存储器等新型存储器件。 其中, 阻变 存储器(RRAM) 以其结构简单、 性能优异及显著的可缩小特性, 在近几年引发了广 泛的研发热潮, 并在 ITRS (半导体国际技术路线图) 中被正式列为未来重点发展的 新兴存储器。尽管如此, 阻变存储器的进一步发展仍面临很多挑战, 突出体现为操作 电压和阻态的一致性问题、 耐久性及保持特性等可靠性问题、 reset 电流较大影响低 功耗的实现、 以及如何实现更高密度的集成等方面。本发明即针对以上相关问题提出 解决方案。 如上所说, 阻变存储器结构简单, 主要由顶电极、 阻变材料薄膜和底电极三层 结构(MIM)组成; 而阻变材料一般选用结构简单的金属氧化物。 关于阻变机制, 一 般认为是氧空位 (或氧离子) 移动导致。 具体而言, set操作是在电场作用下, 阻变 材料薄膜中产生氧空位并在电场作用下移动和堆积, 最终在局域形成低阻导电通道 (CF), 器件转变为低阻态 (LRS); 而 reset过程按热或者电场作用占主导可分为单 极和双极两种:单极 reset是在热的作用下 CF周围的氧离子与氧空位复合从而使通道 断开, 器件转变为高阻态 (HRS); 双极 reset则主要是在与 set过程反向电场的作用 下使氧离子反向移动与氧空位复合从而使 CF断开(或称为产生一个 gap),转为 HRS。 另外,为了提高存储密度,人们通过调控 set或者 reset过程实现多值存储。具体而言, 一种方法是在 set过程中通过调节限流 (CC) 进而调控 CF的粗细 (或者说 CF中氧 空位浓度) 来实现不同的 LRS阻值; 另一种方法是在双极 reset过程中通过调节 stop 电压进而调控 gap的长度来实现不同的 HRS阻值。 这样, 1个 HRS和 3种不同阻值 的 LRS或者 1个 LRS和 3种不同阻值的 HRS即可构成单个器件的 2-bit存储, 以此 类推, 通过合适的调控还可以实现 3-bit甚至更高密度的存储。 然而, 普通的阻变存 储器中 CF的通断在单层阻变层中发生, 由于 CF的粗细 (或者说 CF中氧空位浓度) 以及 gap的调控随机涨落较大, 故一致性问题严重, 使不同阻态间出现交叠。 发明内容 基于以上问题, 本发明通过将同种金属氧化物阻变材料薄膜按不同氧浓度分为 四层结构, 可实现氧空位通道 (CF) 在各层中的完全通断, 从而精确控制阻值, 实 现高一致性的 2-bit存储。 另外, 通过合理调控 4层结构中每层的阻值, 即可进行低 电流操作, 进而实现低功耗。 同时, 按照本发明的思路, 我们可以进一步实现 3-bit 及更高密度的存储。 本发明的技术方案如下: 一种阻变存储器, 其结构自下而上依次包括衬底、 绝缘层、 底电极、 阻变材料 薄膜、顶电极,其特征是,所述的阻变材料薄膜为由同种金属氧化物构成的四层结构; 所述的四层结构自下而上阻值依次提高至少 10倍; 所述四层结构自下而上氧浓度依 次提高, 厚度依次减小。 所述的阻变存储器, 其特征是, 所述的四层结构, 自下而上, 第一层的阻值为
103Ω~104Ω、第二次的阻值为 105~106Ω、第三层的阻值为 107~108Ω、第四层的阻值为 109~1010Ω。 所述的阻变存储器,其特征是,所述的衬底采用 Si衬底,采用 crossbar结构(或 其他常用 MIM结构)。 所述的阻变存储器, 其特征是, 所述的底电极和顶电极材料为导电金属或金属 氮化物。 所述的阻变存储器, 其特征是, 所述的阻变材料选用过渡金属氧化物材料。 所述的阻变存储器, 其特征是, 所述的过渡金属氧化物为 HfOx、 TaOx、 ZrOx 或 WOx。 本发明同时提供一种制备阻变存储器的方法, 包括如下步骤:
( 1 ) 制备底电极: 在衬底上 PVD溅射 (或电子束蒸发) 金属 Ti/M, 其中 Ti作 为粘附层, M为底电极, 通过剥离或腐蚀工艺图形化形成底电极;
(2) 在底电极上自下而上制备四层阻变材料薄膜, 所述的阻变材料薄膜同种金 属氧化物构成; 所述的四层结构自下而上阻值依次提高 10倍(含 10倍) 以上; 所述 四层结构自下而上氧浓度依次提高, 厚度依次减小;
(3 )在阻变材料薄膜上 PVD溅射(或电子束蒸发)制备并图形化顶电极, 定义 器件尺寸。 所述步骤 (2), 通过溅射方法, 在同一腔室内通过调控氧分压依次淀积四层阻 变材料, 制备阻变材料薄膜。 所述步骤 (2), 通过热氧化方法, 调节气氛中氧气比例、 氧化时间、 氧化温度 等热氧化条件依次淀积四层阻变材料, 制备阻变材料薄膜。 所述步骤(2), 通过 ALD方法, 调节通入还原性气氛的比例依次淀积四层阻变 材料, 制备阻变材料薄膜。 本发明提出的阻变存储器设计主要有以下三点优势:
( 1 ) 制作工艺与 CMOS工艺兼容, 且相较于一般的 RRAM而言并未增加新的 工艺步骤, 操作简单, 容易实现。 (2) 通过采用不同氧浓度的四层结构阻变材料薄膜能实现高一致性的 2-bit存 储: 如图 3示, 设从下往上四层阻变薄膜 MOx -1、 MOx -2、 MOx -3、 MOx -4的阻 值分别为 Rl、 R2、 R3、 R4, 其中 R1«R2«R3«R4, 则高阻态阻值由 R4决定, 即 HRS R4; set操作时, 加一个较小电压, 并把限流值设为与 MOx -3的 R3阻值相对 应的电流值, 这样可以使导电细丝 CF仅在最上层 MOx -4中产生, 如图 4示, 从而 set之后的电阻即由 R3决定, 即 LRS3 R3 ; 同理当继续 set, 并设置限流值为 MOx -2 的 R2阻值相对应的电流值, 这样可以使导电细丝 CF继续在第 3层 MOx -3中产生, 如图 5示, 从而 set之后的电阻即由 R2决定, 即 LRS2 R2; 进一步的, 继续 set并 设置限流值为 MOx -1的 R1阻值相对应的电流值,这样可以使导电细丝 CF继续在第 2层 MOx -2中产生,如图 6示,从而 set之后的电阻即由 R1决定,即 LRS1 R1 ; reset 时通过调节合适的 reset电压, 即可将器件状态依次从 LRS1 reset到 LRS2,进而 reset 至 lj LRS3、 HRS。 如上所述,通过使导电细丝每次在相应的一层中发生完全的通断,可以精确控制 相应的 4个组态, 从而实现高一致性的 2-bit存储。 (3 ) 进一步的, 由于每一层的电阻值可以通过工艺调控, 所以当我们把每层电 阻值设置的较大时, 相应器件阻态的电流也较大, 即可实现低功耗存储。 附图说明
图 1本发明所述 RRAM的结构截面示意图。 图 2本发明所述 RRAM的器件 crossbar结构俯视图。 图 3四层阻变薄膜示意图。 图 4-图 6电学操作时, 依次实现 2-bit阻变过程示意图。 图 7-图 13为本发明制备工艺流程中辅助说明的 RRAM结构示意图。 具体实施方式 下面结合附图对本发明做进一步说明, 但本发明的保护范围并不仅限于此。 本发明提供了一种阻变存储器, 其结构如图 1 示, 其与主流阻变存储器结构
(MIM) 的主要区别在于在阻变材料薄膜为 4 层形成了氧浓度梯度的金属氧化物 (MOx) 构成, 由下往上 4层分别简记为 MOx -1、 MOx -2、 MOx -3、 MOx -4, 从 MOx -1到 MOx -4氧浓度依次提高, 厚度依次减小, 且通过相关实验控制实现每层 阻值间的梯度(在实验上, 就是每调一下氧浓度或薄膜厚度, 然后测一次电阻, 根据 设定的电阻范围, 来选定相应的氧浓度范围或者薄膜的厚度), 如 MOx -1 阻值为 103Ω~104Ω、 MOx -2阻值约 105~106Ω、 MOx -3阻值约 107~108Ω、 MOx -4阻值约 109~1010Ω。 图示结构的具体描述如下:
( 1 ) 衬底采用 Si衬底; 采用常规的 crossbar结构, 如图 2所示; (2) 底电极和顶电极材料为导电金属或金属氮化物, 如 Pt 、 Al 、 Ti或 TiN、
TaN、 WNx ^o (3 ) 重点在于中间阻变层的四层结构。 阻变材料可以优先选用现在主流的过渡 金属氧化物材料 (如 HfOx, TaOx, ZrOx, WOx等), 每种氧化物可以根据各自的氧 含量相应的阻值选择合适的含氧量梯度,进而按含氧量依次提高, 厚度依次减小的顺 序依次淀积 4层; 本发明的阻变存储器制备流程如下:
( 1 ) 底电极制备, 在衬底上 PVD溅射 (或电子束蒸发) 金属 Ti/M, 其中 Ti作 为粘附层, M为底电极, 通过剥离或腐蚀工艺图形化形成底电极;
(2) 阻变薄膜制备 方法一: 通过溅射方法, 在同一腔室内通过调控氧分压依次淀积四层阻变材料 (根据该种材料做 RRAM器件的常用实验参数, 先试验一次薄膜, 然后测其电阻, 如果实验薄膜的阻值比设定阻值范围小,就增加氧浓度,或稍微增加厚度。以此类推, 完成对四层的实验条件设置), 制备阻变材料薄膜; 方法二: 通过热氧化方法, 调节气氛中氧气比例、 氧化时间、 氧化温度等依次 淀积四层阻变材料 (同方法一, 要事先调试不同阻值对应的实验条件), 制备阻变材 料薄膜; 方法三:通过 ALD方法,调节通入还原性气氛的比例依次淀积四层阻变材料(同 方法一, 要事先调试不同阻值对应的实验条件), 制备阻变材料薄膜;
(3 ) 顶电极制备, PVD溅射 (或电子束蒸发) 制备并图形化顶电极, 定义器件 尺寸。
实施例 1 : 下面以 TaOx阻变存储器为例,结合附图和具体实施方式对本发明作进一步详细 描述: 本发明制备高一致性低功耗的 2-bit阻变存储器单元的工艺如下:
1 ) 制备绝缘层。 在衬底硅片 1上生长 Si02 作为绝缘层 2, 如图 7所示; 2) 制备底电极。 溅射金属 Ti/M, 其中 Ti作为粘附层, M为底电极 3, 如图 8 所示, M为导电金属或金属氮化物, 如 Pt、 Ag、 Ir、 Ru、 Au、 Pd、 W、 Ni Cu、 Ti、 TiN TaN、 WNx等;
3 ) 制备第一层阻变材料薄膜。 通过 PVD磁控溅射方法制备第一层 TaOx阻变材 料薄膜 4-1, 厚度 30nm, 氧分压 3%, 薄膜电阻约 103Ω (这里所给氧分压及厚度为参 考值, 具体相应厚度和氧分压对应的阻值需要提前做实验确定, 以下三步与之相同; 所述实验包括: 调节氧浓度和薄膜厚度, 之后测电阻, 根据电阻比设定的电阻范围大 或者小,再反过来调节氧浓度和厚度, 比如,如果实验薄膜的阻值比设定阻值范围小, 就增加氧浓度, 或增加薄膜厚度), 如图 9所示;
4) 制备第二层阻变材料薄膜。 紧接上一步, 在溅射腔室内调控氧分压, 继续制 备第二层 TaOx阻变材料薄膜 4-2, 厚度 20nm, 氧分压 7%, (同上, 氧分压及厚度为 参考值) 薄膜电阻约 105Ω, 如图 10所示;
5 ) 制备第三层阻变材料薄膜。 紧接上一步, 在溅射腔室内调控氧分压, 继续制 备第三层 TaOx阻变材料薄膜 4-3, 厚度 10nm, 氧分压 15%, (同上, 氧分压及厚度 为参考值) 薄膜电阻约 107Ω, 如图 11所示;
6) 制备第四层阻变材料薄膜。 紧接上一步, 在溅射腔室内调控氧分压, 继续制 备第四层 TaOx阻变材料薄膜 4-4, 厚度 5nm, 氧分压 50%, (同上, 氧分压及厚度为 参考值) 薄膜电阻约 109Ω, 如图 12所示; 7) 制备顶电极。 PVD溅射制备并图形化顶电极 5,定义器件尺寸范围(2μιη><2μιη
~100μιηχ 100μιη), 如图 13所示, 完成工艺流程。 本发明直接通过调控溅射过程的氧组分, 不用增加额外的工艺步骤, 即可以实 现四层结构的阻变材料薄膜, 进而制备出高一致性低功耗的 2-bit阻变存储器。 工艺 简单, 且性能改善明显。

Claims

权 利 要 求
1. 一种阻变存储器, 其结构自下而上依次包括衬底、 绝缘层、 底电极、 阻 变材料薄膜、顶电极, 其特征是, 所述的阻变材料薄膜为由同种金属氧化物构成 的四层结构; 所述的四层结构自下而上阻值依次提高至少 10倍; 所述四层结构 自下而上氧浓度依次提高, 厚度依次减小。
2. 如权利要求 1 所述的阻变存储器, 其特征是, 所述的四层结构, 自下而 上, 第一层的阻值为 103Ω~104Ω、 第二次的阻值为 105~106Ω、 第三层的阻值为 107~108Ω、 第四层的阻值为 109~101()Ω。
3. 如权利要求 1所述的阻变存储器, 其特征是, 所述的衬底采用 Si衬底, 采用 crossbar结构。
4. 如权利要求 1 所述的阻变存储器, 其特征是, 所述的底电极和顶电极材 料为导电金属或金属氮化物。
5. 如权利要求 1 所述的阻变存储器, 其特征是, 所述的阻变材料选用过渡 金属氧化物材料。
6. 如权利要求 1 所述的阻变存储器, 其特征是, 所述的过渡金属氧化物为
HfOx TaOx、 ZrOx或 WOxo
7. 一种制备阻变存储器的方法, 其特征是, 包括如下步骤:
( 1 ) 制备底电极: 在衬底上 PVD溅射或电子束蒸发金属 Ti/M, 其中 Ti作 为粘附层, M为底电极, 通过剥离或腐蚀工艺图形化形成底电极;
(2) 在底电极上自下而上制备四层阻变材料薄膜, 所述的阻变材料薄膜由 同种金属氧化物构成; 所述的四层结构自下而上阻值依次提高至少 10倍; 所述 四层结构自下而上氧浓度依次提高, 厚度依次减小;
(3 )在阻变材料薄膜上 PVD溅射或电子束蒸发制备并图形化顶电极, 定义 器件尺寸。
8. 如权利要求 7所述的制备阻变存储器的方法, 其特征是, 所述步骤 (2), 通过溅射方法, 在同一腔室内通过调控氧分压依次淀积四层阻变材料, 制备阻变 材料薄膜。
9. 如权利要求 7所述的制备阻变存储器的方法, 其特征是, 所述步骤 (2), 通过热氧化方法, 调节气氛中氧气比例、氧化时间、氧化温度这些热氧化条件依 次淀积四层阻变材料, 制备阻变材料薄膜。
10. 如权利要求 7所述的制备阻变存储器的方法,其特征是,所述步骤(2), 通过 ALD方法, 调节通入还原性气氛的比例依次淀积四层阻变材料, 制备阻变 材料薄膜。
PCT/CN2014/074369 2013-11-28 2014-03-31 高一致性低功耗阻变存储器及制备方法 WO2015078120A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/916,950 US9525133B2 (en) 2013-11-28 2014-03-31 Resistive random access memory with high uniformity and low power consumption and method for fabricating the same
DE112014002344.2T DE112014002344T5 (de) 2013-11-28 2014-03-31 Hochkonsistenter und energiesparender resistiver speicher und verfahren zu dessen herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310618361.8A CN103606625B (zh) 2013-11-28 2013-11-28 高一致性低功耗阻变存储器及制备方法
CN201310618361.8 2013-11-28

Publications (1)

Publication Number Publication Date
WO2015078120A1 true WO2015078120A1 (zh) 2015-06-04

Family

ID=50124839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074369 WO2015078120A1 (zh) 2013-11-28 2014-03-31 高一致性低功耗阻变存储器及制备方法

Country Status (4)

Country Link
US (1) US9525133B2 (zh)
CN (1) CN103606625B (zh)
DE (1) DE112014002344T5 (zh)
WO (1) WO2015078120A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606625B (zh) * 2013-11-28 2016-04-06 北京大学 高一致性低功耗阻变存储器及制备方法
WO2016105407A1 (en) * 2014-12-24 2016-06-30 Intel Corporation Resistive memory cells and precursors thereof, methods of making the same, and devices including the same
CN106571289B (zh) * 2015-10-13 2020-01-03 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制备方法、电子装置
CN108807668B (zh) * 2018-06-25 2020-07-10 华中科技大学 基于金属氧化物氧浓度梯度的高性能忆阻器件及其制备
CN109935685B (zh) * 2019-01-31 2020-08-18 华中科技大学 一种调控材料中空位缺陷的方法
CN109888092B (zh) * 2019-03-06 2023-05-02 天津理工大学 一种基于氧化钽/二维黒砷磷/氧化钽的三层异质阻变存储器及其制备方法
KR20210083933A (ko) * 2019-12-27 2021-07-07 삼성전자주식회사 가변 저항 메모리 소자
CN113611722A (zh) 2020-05-12 2021-11-05 联芯集成电路制造(厦门)有限公司 电阻式存储装置以及其制作方法
CN111564555B (zh) * 2020-05-20 2022-04-12 浙江大学 一种改善工作稳定性及存储窗口的阻变存储器及制备方法
CN112331768B (zh) * 2020-11-13 2023-02-03 上海华力集成电路制造有限公司 制造rram器件及制备渐变绝缘层结构的方法
CN113346016A (zh) * 2021-05-20 2021-09-03 华中科技大学 一种忆阻器及其制备方法
CN113363382A (zh) * 2021-05-31 2021-09-07 中国科学院微电子研究所 一种射频开关器件、射频电路及电子设备
CN114068808A (zh) * 2021-11-03 2022-02-18 厦门半导体工业技术研发有限公司 一种半导体集成电路器件及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621114A (zh) * 2009-07-21 2010-01-06 中国科学院上海硅酸盐研究所 一类氧化物多层梯度薄膜及其构建的rram元器件
CN101960595A (zh) * 2009-02-04 2011-01-26 松下电器产业株式会社 非易失性存储元件
CN102194995A (zh) * 2011-05-10 2011-09-21 天津理工大学 一种基于氧化锌的极性可控阻变存储器及其制备方法
CN202308073U (zh) * 2010-10-08 2012-07-04 松下电器产业株式会社 非易失性存储元件
CN103348472A (zh) * 2011-12-02 2013-10-09 松下电器产业株式会社 非易失性存储元件和非易失性存储装置
CN103606625A (zh) * 2013-11-28 2014-02-26 北京大学 高一致性低功耗阻变存储器及制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8154003B2 (en) * 2007-08-09 2012-04-10 Taiwan Semiconductor Manufacturing Company, Ltd. Resistive non-volatile memory device
US8658997B2 (en) * 2012-02-14 2014-02-25 Intermolecular, Inc. Bipolar multistate nonvolatile memory
US8975727B2 (en) * 2012-02-28 2015-03-10 Intermolecular, Inc. Memory cell having an integrated two-terminal current limiting resistor
US9130167B2 (en) * 2012-03-29 2015-09-08 Panasonic Intellectual Property Management Co., Ltd. Method of manufacturing a nonvolatile memory device having a variable resistance element whose resistance value changes reversibly upon application of an electric pulse

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960595A (zh) * 2009-02-04 2011-01-26 松下电器产业株式会社 非易失性存储元件
CN101621114A (zh) * 2009-07-21 2010-01-06 中国科学院上海硅酸盐研究所 一类氧化物多层梯度薄膜及其构建的rram元器件
CN202308073U (zh) * 2010-10-08 2012-07-04 松下电器产业株式会社 非易失性存储元件
CN102194995A (zh) * 2011-05-10 2011-09-21 天津理工大学 一种基于氧化锌的极性可控阻变存储器及其制备方法
CN103348472A (zh) * 2011-12-02 2013-10-09 松下电器产业株式会社 非易失性存储元件和非易失性存储装置
CN103606625A (zh) * 2013-11-28 2014-02-26 北京大学 高一致性低功耗阻变存储器及制备方法

Also Published As

Publication number Publication date
CN103606625A (zh) 2014-02-26
CN103606625B (zh) 2016-04-06
US9525133B2 (en) 2016-12-20
DE112014002344T5 (de) 2016-01-21
US20160225987A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
WO2015078120A1 (zh) 高一致性低功耗阻变存储器及制备方法
WO2016123881A1 (zh) 非挥发性阻变存储器件及其制备方法
US8847192B2 (en) Resistive switching devices having alloyed electrodes and methods of formation thereof
JP5687978B2 (ja) 抵抗変化型不揮発記憶装置、半導体装置及び抵抗変化型不揮発記憶装置の動作方法
TW201013920A (en) Resistive memory device and method of fabricating the same
TWI529988B (zh) 具有摻雜物來源之憶阻器結構
WO2016123882A1 (zh) 非挥发性阻变存储器件及其制备方法
JP2005175457A (ja) Rramメモリセル電極
WO2014121618A1 (zh) 一种高可靠性非挥发存储器及其制备方法
JP5648126B2 (ja) 抵抗変化素子及びその製造方法
CN101159309A (zh) 一种低功耗电阻存储器的实现方法
TW201828516A (zh) 導電橋接式隨機存取記憶體及其製造方法
TWI559518B (zh) 電阻式隨機存取記憶體及其製造方法
JP2007288016A (ja) メモリ素子およびメモリ素子の製造方法
KR20170089726A (ko) 스위칭 소자, 이의 제조 방법, 스위칭 소자를 선택 소자로서 포함하는 저항 변화 메모리 장치
WO2010073897A1 (ja) 抵抗変化素子
KR101416243B1 (ko) 상보적 저항 스위칭 메모리 소자 및 그 제조방법
JP2010040728A (ja) 半導体装置及びその製造方法
JP5568950B2 (ja) 抵抗変化型メモリ素子、及び、抵抗変化型不揮発性メモリ、並びに、抵抗変化型メモリ素子制御方法
JP5874905B2 (ja) アルミナ抵抗変化型メモリ素子の製造方法
WO2013003978A1 (zh) 包含钌掺杂的氧化钽基电阻型存储器及其制备方法
Lee et al. Bottom electrode modification of ZrO2 resistive switching memory device with Au nanodots
KR20130013213A (ko) 가변 저항 메모리 장치 및 그 제조 방법
KR101568234B1 (ko) 저항 변화 소자 및 그 제조 방법
KR101469711B1 (ko) 저항 스위칭 메모리 소자 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866227

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014002344

Country of ref document: DE

Ref document number: 1120140023442

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14916950

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.09.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14866227

Country of ref document: EP

Kind code of ref document: A1