WO2015078099A1 - 一种具有普适性的超双疏表面及其制备方法 - Google Patents

一种具有普适性的超双疏表面及其制备方法 Download PDF

Info

Publication number
WO2015078099A1
WO2015078099A1 PCT/CN2014/070062 CN2014070062W WO2015078099A1 WO 2015078099 A1 WO2015078099 A1 WO 2015078099A1 CN 2014070062 W CN2014070062 W CN 2014070062W WO 2015078099 A1 WO2015078099 A1 WO 2015078099A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
microspheres
solvent
super
fluorine
Prior art date
Application number
PCT/CN2014/070062
Other languages
English (en)
French (fr)
Inventor
胡继文
李妃
邹海良
林树东
刘国军
涂园园
齐健
Original Assignee
中科院广州化学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科院广州化学有限公司 filed Critical 中科院广州化学有限公司
Publication of WO2015078099A1 publication Critical patent/WO2015078099A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3209Epoxy compounds containing three or more epoxy groups obtained by polymerisation of unsaturated mono-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1681Antifouling coatings characterised by surface structure, e.g. for roughness effect giving superhydrophobic coatings or Lotus effect
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59

Definitions

  • the invention belongs to the field of super double sparse materials, and particularly relates to a universal super double sparse surface and a preparation method thereof. Background technique
  • Wettability is one of the important features of a solid surface. Wettability can be measured by the contact angle of water on the surface. Usually, the surface with a water contact angle of 150° or more and a rolling angle of less than 10° is called a superhydrophobic surface. The surface has a contact angle of more than 150° to the oil and is considered to be a superoleophobic surface. If the static contact angle of water and oil on a surface is greater than 150° and the rolling angle is less than 5 °, the interface can be called a super-dual interface.
  • the super-hydrophobic surface and the super-double surface have a certain self-cleaning function, that is, surface contaminants such as dust can be carried away by the falling water droplets without leaving any trace. Self-cleaning coatings have the advantages of water saving, energy saving and environmental protection, and have attracted more and more people's attention. It is one of the hotspots in the research of materials science.
  • Roughness and low surface energy of solid surfaces are the most critical factors in the preparation of superhydrophobic or super-dual surfaces. Fluoride-containing compounds and fluoropolymers are widely used in this field due to their low surface energy.
  • a common method is to blend inorganic nano/micro particles such as silica, titania, and ferroferric oxide with a fluoropolymer or to nano/ The micron-sized particles are fluorinated and then fluorinated nano/micron particles are applied to the surface of the material to create a superhydrophobic or super-dual surface.
  • Patent 201110131477.X proposes the preparation of a fluorine-containing bifunctional microsphere and its application to construct a super-double sparse surface.
  • the main method is to prepare a nano- or micro-scale particle containing a plurality of functional groups, such that the surface not only contains a fluorine-containing compound, but also a group capable of reacting with a matrix to form a covalent bond, and the surface is grafted with a A fluorine compound and a nano- or micro-microsphere that can be chemically bonded to the substrate are sprayed on the surface of the substrate to construct a super-dual interface.
  • the coating prepared by the invention has excellent super-double-sparing characteristics, and the coating is bonded to the surface of the substrate by a covalent bond, so that the super-double-sparing property has better durability.
  • the substrate that can be treated by this method has certain limitations and must contain reactive groups (such as hydroxyl, carboxyl, ammonia). Base, etc.), otherwise it does not have cohesiveness, and the fluorine-containing microspheres need to be dispersed in a fluorine-containing solvent.
  • Patent 201110266897.9 proposes a method for assembling a film on a surface containing a reactive group by blending a fluorine-containing silicon-containing copolymer and silica, which can impart a super-double-sparing property to the surface, and the method utilizes more
  • the fluorine-containing silicon-containing copolymer has a high cost and requires a blending assembly reaction, and the process is complicated, and the substrate needs to contain a reactive group and has no universality.
  • Patent 201110373304.9 proposes the use of atom transfer radical polymerization to graft crosslinkable monomer and fluorine-containing monomer on the surface of amino-modified inorganic microspheres to obtain cross-linkable super-double-crossing microspheres.
  • the fluorine-containing microspheres are assembled into a film. It has excellent super-double surface performance, not only has good hydrophobic oleophobic contact angle, but also has good acid and alkali resistance and good weather resistance.
  • the treatment process of the method is cumbersome, requires high reagents and equipment, and the fluorine-containing microspheres need to be dispersed in a fluorine-containing solvent, and the surface has no cohesive groups, so the adhesion is not very strong.
  • the fluoropolymer used in the construction of superhydrophobic super oleophobic oil is mainly oil-soluble. This oil-soluble fluoropolymer requires a large amount of organic solvent, which is not only expensive but also pollutes the environment. Conducive to large-scale industrialization.
  • a primary object of the present invention is to provide a universally super-dual surface
  • Another object of the present invention is to provide a method for preparing the above super-double sparse surface
  • a universal super-double surface is obtained by dissolving the N component in the solvent P to obtain an N solution; then dispersing the M component in the N solution, and then adding the catalyst I to obtain a super-bihydrophobic property. Coating; Finally, the super-bi-hydrophobic coating is coated on the surface of the base material, and dried to obtain a universal super-double-repellent surface; the N component is an aqueous fluorine-containing epoxy resin, and the M component is water. Dispersive super double microspheres.
  • the M component is a water-dispersible super-double microsphere, having a particle diameter of 50-1000 nm, and the microsphere is formed by introducing a layer of epoxy resin A on the surface of the base microsphere, and then using the surface of the epoxy resin A.
  • the epoxy group ring-opening reaction is carried out by grafting the hydrophilic compound B and the fluorine-containing compound C, and its structural formula is shown in Fig. 1, wherein g represents grafting.
  • the base microspheres are silica microspheres, alumina microspheres, titanium dioxide microspheres, iron oxide microspheres and surface containing One of the hydroxyl polymer microspheres, preferably silica microspheres; having a particle size of 50-1000 nm.
  • the epoxy resin A is a bisphenol A epoxy resin, a bisphenol F epoxy resin, a novolac epoxy resin, a polyglycidyl methacrylate, a polypropylene glycidyl ether, a poly-o-glycidyl ether
  • One or more of the polyphenyl glycidyl ethers are preferably one or more of polyglycidyl methacrylate, poly-o-tolyl glycidyl ether and polyphenyl glycidyl ether, and have a molecular weight of 1,000 to 100,000.
  • the hydrophilic compound B is methoxy polyethylene glycol, methoxy polyethylene glycol amine, methoxy polyethylene glycol sterol, methoxy polyethylene glycol carboxylic acid, polyethylene glycol amine And more than one of polyethylene glycol thiols, having a molecular weight of 300-2000.
  • the fluorine-containing compound C is 3-perfluorooctylpropanol, 1H, 1H, 2H, 2H-perfluorododecanethiol, 3-perfluorohexylpropanol, perfluorohexylethanol, perfluorooctylethanol , perfluoro-tert-butanol, 1H, 1H, 2H, 2H-perfluorohexan-1-ol, perfluoropropionic acid, perfluorohexanoic acid, perfluorooctanoic acid, perfluorobutyric acid, perfluoroheptanoic acid, 1H, 1H, 2H , 2H-perfluorodecyl mercaptan, 1H, 1H, 2H, 2H-perfluorooctyl mercaptan, 1H, 1H, 2H, 2H-perfluorooctyl mercaptan,
  • the preparation method of the water-dispersible ultra-double microspheres comprises the following steps:
  • the solvents E and G described in the step (1) are tetrahydrofuran, dimethylformamide, dioxane, dimethyl sulfoxide, dimethylacetamide, N-methylpyrrolidone, butanone, cyclohexanone. , one or more of diphenyl ether and anisole.
  • the ultrasonic condition described in the step (1) is an ultrasonic power of 300 W and a temperature of 35 ° C; the heat treatment condition is heat treatment in a 60-13 CTC vacuum oven for 20-90 min; and the number of washings is 4 times.
  • the mass percentage of the epoxy resin A solution and the microsphere dispersion described in the step (1) are 1-10%, 0.2-5%, respectively, and the mass ratio of the base microspheres to the epoxy resin A is 1:2- 10.
  • the catalyst K in the step (2) is triethylamine, trimethylamine, tetrabutylammonium fluoride, hydrazine, hydrazine-diisopropylethylamine, benzyltriethylammonium chloride, imidazole, 1-propene. Imidazole, hydrazine-benzylimidazole, octadecyldimethylamine, oleyl dimethyl tertiary amine, dodecandecylamine, benzyltriethylammonium chloride, triethanolamine, triisopropanolamine and One or more of hydrazine, hydrazine-diethylethanolamine.
  • the solvent Hi and the solvent H 2 in the step (2) are tetrahydrofuran, dimethylformamide, dioxane, dimethyl sulfoxide, dimethylacetamide, N-methylpyrrolidone, butanone, cyclohexyl More than one of a ketone, a diphenyl ether and an anisole.
  • the fluorine-containing compound C solution described in the step (2) is prepared by dissolving the fluorine-containing compound C in the solvent H 2 ; the epoxy resin coated microsphere, the solvent, the solvent H 2 , the fluorine-containing compound C,
  • the mass ratio of hydrophilic compound B to catalyst K is l: (l-50): (l-50): (0.2-10): (0.2-10): (0.001-0.1)
  • the sonication conditions described in the step (2) were an ultrasonic power of 300 W, a temperature of 35 V, and a time of 30 min.
  • the N component is an aqueous fluorine-containing epoxy resin
  • the preparation method comprises the steps of: dissolving the epoxy resin A in a solvent, and adding a pre-dispersed hydrophilic compound B while stirring at 60-120 ° C. , a mixture of fluorine-containing compound C and a catalyst, the dropping rate is 0.1 g / min - 100 g / min, after the end of the dropwise addition, the reaction is continued for 4-10 hours, cooled to room temperature, concentrated, and then precipitated in solvent F, dried , obtained a water-based fluorine-containing epoxy resin.
  • the epoxy resin A is a bisphenol A epoxy resin, a bisphenol F epoxy resin, a novolac epoxy resin, a polyglycidyl methacrylate, a polypropylene glycidyl ether, a poly-o-glycidyl ether
  • One or more of the polyphenyl glycidyl ethers are preferably one or more of polyglycidyl methacrylate, poly-o-tolyl glycidyl ether and polyphenyl glycidyl ether.
  • the hydrophilic compound B is methoxy polyethylene glycol, methoxy polyethylene glycol amine, methoxy polyethylene glycol sterol, methoxy polyethylene glycol carboxylic acid, polyethylene glycol amine And more than one of polyethylene glycol thiols, having a molecular weight of 300-2000.
  • the fluorine-containing compound C is 3-perfluorooctylpropanol, 1 ⁇ , 1 ⁇ , 2 ⁇ , 2 ⁇ -perfluorododecanethiol, 3-perfluorohexylpropanol, perfluorohexylethanol, perfluorooctyl Ethanol, perfluoro-tert-butanol, 1 ⁇ , 1 ⁇ , 2 ⁇ , 2 ⁇ -perfluorohexan-1-ol, perfluoropropionic acid, perfluorohexanoic acid, perfluorooctanoic acid, perfluorobutyric acid, perfluoroheptanoic acid, 1 ⁇ , 1 ⁇ , 2 ⁇ ,2 ⁇ -perfluorodecyl mercaptan, 1 ⁇ ,1 ⁇ ,2 ⁇ ,2 ⁇ -perfluorooctyl mercaptan, 1 ⁇ , 1 ⁇ ,2 ⁇ ,2 ⁇ -perfluorododecanethiol, 4-per
  • the solvent is tetrahydrofuran, dimethylformamide, dioxane, dimethyl sulfoxide, dimethylacetamide, hydrazine-methylpyrrolidone, butanone, cyclohexanone, diphenyl ether and anisole More than one of them.
  • the catalyst is triethylamine, trimethylamine, tetrabutylammonium fluoride, hydrazine, hydrazine-diisopropylethylamine, benzyltriethylammonium chloride, imidazole, 1-propylimidazole, hydrazine- Benzyl imidazole, octadecyl dimethyl tertiary amine, oleyl dimethyl tertiary amine, dodeca tertylamine, benzyl triethyl ammonium chloride, triethanolamine, triisopropanolamine and hydrazine, hydrazine-two More than one of ethylethanolamine.
  • the solvent F is at least one of n-hexane, anhydrous diethyl ether, petroleum ether, ethyl acetate, methanol, ethanol and water.
  • the mass ratio of the epoxy resin, the solvent, the hydrophilic compound ⁇ , the fluorine compound C and the catalyst is: 1: 10-100: 1-10: 1-10: 0.00001-0.0001.
  • the catalyst I is triethylamine, trimethylamine, tetrabutylammonium fluoride, hydrazine, hydrazine-diisopropylethylamine, benzyltriethyl chloride Ammonium, imidazole, 1-propylimidazole, N-benzylimidazole, octadecyldimethylamine, oleyl dimethyl tertiary amine, dodecylamine, benzyltriethylammonium chloride, three More than one of ethanolamine, triisopropanolamine and hydrazine, hydrazine-diethylethanolamine.
  • the solvent hydrazine is one or more selected from the group consisting of tetrahydrofuran, dimethylformamide, dioxane, dimethyl sulfoxide, dimethylacetamide, fluorenyl-methylpyrrolidone, butanone and trifluorotoluene.
  • the preparation method of the above super double sparse surface comprises the following steps:
  • the super-bi-hydrophobic coating prepared in the step (2) is coated on the surface of the substrate in the step (1), formed into a film, and then cross-linked at 90-140 ° C for 2-24 h to obtain superhydrophobic/sparse
  • the material of the oil is a super-double hydrophobic surface.
  • the substrate material described in the step (1) is a glass sheet, a cotton cloth, a filter paper, a film material, a metal sheet, a plastic sheet, a wood or a cement substrate; wherein the filter paper, the metal sheet, the plastic sheet, the film material, the wood, the cement substrate
  • the pretreatment method of the cotton cloth is as follows: The base material is washed successively with ethanol and water, and then dried; the pretreatment method of the glass piece is: placing the glass piece in the pimnha solution (concentrated H 2 S0 4 and 0 2 in a volume ratio of 7:3) Soak for 5 h in the mixture, then wash with ethanol, water, and then dry.
  • the M component of the water-dispersible ultra-double microspheres described in the step (2), the N component of the aqueous fluorine-containing epoxy resin, and the mass ratio of the catalyst I to the solvent p are 1: 5-100: 0.001-0.01 :10-200.
  • the coating method described in the step (3) is coating by spraying or dip coating; the film forming temperature is 30 °C.
  • the material with super-double hydrophobic surface is used in production and life, including the outer layer protection of military equipment, the waterproof and anti-corrosion of the outer layer of the oil pipeline, the kitchen and bathroom appliances, the windshield of automobiles and airplanes.
  • the principle of the invention Two important factors influencing the wettability of the solid surface are that the surface microstructure and surface of the solid are only capable, so two conditions must be met to prepare the super-double sparse material, one is to construct a rough surface of micro-nano, The other is to introduce a layer of low surface energy material molecules.
  • the invention provides water-dispersing ultra-double microspheres as a condition for constructing a rough structure on the surface, and then introduces a water-based fluorine-containing epoxy resin, and the hydrophobic oleophobic performance of the coating is optimized by adjusting the ratio of the two.
  • Both the microspheres and the epoxy resin are hydrophilic, which avoids the use of organic solvents in the process of constructing super-double surface, which is environmentally friendly.
  • a large amount of epoxy groups in the coating can be used for crosslinking with the substrate and the microspheres, that is, by chemical bonding, thereby improving the durability of the material.
  • the present invention has the following advantages and beneficial effects:
  • the invention adopts the provided method for preparing a super-double sparse surface, which is simple and easy to operate, has low cost, and is expected to be mass-produced;
  • the two components for preparing the super-double surface of the present invention have good water dispersibility and can avoid the use of an organic solvent harmful to the environment; a large amount of epoxy groups in the two components can be realized.
  • the fluorine microspheres are firmly bonded to the substrate by chemical bonds; the fluorine-containing compound provides a low surface interface, and the resulting super-double surface has excellent scrub resistance and corrosion resistance.
  • Water-based fluorine-containing epoxy resin and water-dispersible ultra-double microspheres have their own disadvantages when used to construct super-double surface, and water-based fluorine-containing epoxy resin can provide low surface energy but cannot provide roughness. Therefore, the super-double surface can only be constructed on the surface of the rough substrate; the present invention combines the advantages of the water-dispersing ultra-double microspheres and the water-based fluorine-containing epoxy resin, and the water-dispersing ultra-double microspheres can provide surface roughness and water resistance.
  • the fluororesin can compensate for the low surface energy of the water-dispersible ultra-double microspheres, thereby imparting superhydrophobic and super-oleophobic ability to the substrate, by arbitrarily adjusting the ratio of the two components and the epoxy component and hydrophilic single in each component.
  • the body and fluorine-containing components are flexibly adjusted according to the substrate to which the application is applied, and are feasible for most substrates (including textiles, polymers, ceramics, buildings, metal substrates, paper sheets, etc.), thus having Universality.
  • FIG. 1 is a structural formula of a water-dispersible super-double microsphere
  • FIG. 2 and FIG. 3 are TEM photographs of the silica microspheres and the water-dispersible ultra-double microspheres prepared in Example 1;
  • FIG. 4 is a SEM photograph of the water-dispersed ultra-double microspheres prepared in Example 1.
  • Example 5 is an infrared characterization diagram of the water-dispersible ultra-double microspheres prepared in Example 1;
  • Figure 6 is a SEM photograph of the super-double surface of the embodiment 8 constructed on the surface of the glass sheet;
  • Figure 7 is a SEM photograph of the super-double surface of the surface of the glass sheet constructed in Example 9;
  • Figure 8 is a SEM photograph of the super-double sparse surface constructed on the surface of the cotton fabric of Example 10;
  • Figure 9 is a SEM photograph of the super-double sparse surface constructed on the surface of the wood of Example 11. detailed description
  • Example 1 The present invention will be further described in detail below with reference to the embodiments, but the embodiments of the present invention are not limited thereto.
  • Example 1
  • silica microspheres Add 100 ml of absolute ethanol and 3 mL of ammonia water to a 250 mL round bottom flask, then add 4 mL of tetraethyl orthosilicate, and react at 35 ° C for 24 h. The product was washed three times with absolute ethanol, and the obtained silica microspheres were subjected to freeze vacuum drying to obtain a silica microsphere having a particle diameter of 100 ⁇ 5 nm.
  • Solvent E, G is tetrahydrofuran; polymethacrylate glycidyl ether solution and microsphere dispersion mass percentage concentration is 1%, 0.2%; base microsphere and polyglycidyl methacrylate ether mass ratio is 1:2 .
  • the solvent and the solvent are tetrahydrofuran, the catalyst K is triethylamine; the fluorine-containing compound C is 1H, 1H, 2H, 2H-perfluorooctyl mercaptan, and the hydrophilic compound B is methoxypolyethylene glycol sterol, and the molecular weight is 1000.
  • the mass ratio of the microspheres, the solvent, the solvent H 2 , the fluorine-containing compound C, the hydrophilic compound B, and the catalyst K was 1:1:1:0.2:0.2:0.001.
  • FIG. 2 and 3 are TEM photographs of the silica microspheres and the water-dispersible ultra-double microspheres prepared in Example 1, respectively, and FIG. 4 is a SEM photograph of the water-dispersed ultra-double microspheres, which can be obtained from FIG.
  • the silica has a particle size of 100 ⁇ 5 nm and is relatively uniform in size.
  • Figure 3 shows that the particle size of the silica after grafting the polymer is 130 ⁇ 5 nm. It is clearly seen that the silica shell has a polymer wall.
  • the water dispersion is super-double-drained.
  • the surface of the microspheres has a layer of polymer, which is not so smooth, and the particle size is around 130 nm, which corresponds to the TEM results.
  • Example 5 is an infrared characterization diagram of the water-dispersible ultra-double microspheres prepared in Example 1, and a broad absorption peak appearing at 3483 cm 1 corresponding to the anti-symmetric stretching vibration of the -OH group on the surface of the silica.
  • Symmetrical stretching vibration the broad peak at 2968 cm 1 is methoxy polyethylene glycol sterol, perfluorooctyl thiol, CH stretching vibration of -CH3 in polyglycidyl methacrylate; 1726 cm- 1 is poly The C 0 stretching vibration absorption peak of glycidyl methacrylate; the strong absorption peak appearing at 1104 cm - 1222 cm - 1 is attributed to -CF stretching vibration and the antisymmetric stretching vibration absorption peak of Si-0-Si overlaps Together; 804 cm- 1 is a characteristic peak of silica; 935 cm- 1 is a characteristic peak of epoxy, which is an epoxy in polyglycidyl methacrylate.
  • silica microspheres 50 ml of absolute ethanol, 3 ml of deionized water in a 100 ml round bottom flask Water and 3 ml of ammonia water, then 2 ml of tetraethyl orthosilicate were added dropwise, and after reacting at 25 ° C for 24, the product was washed three times with absolute ethanol, and the obtained silica microspheres were subjected to freeze vacuum drying to obtain silica.
  • the microspheres have a particle size of 350 ⁇ 5 nm.
  • Solvent E G is dimethylformamide; poly-o-tolyl glycidyl ether solution and dispersion microspheres are respectively 3%, 2%; base microspheres (silica microspheres) and poly-o-toluene shrinkage
  • the mass ratio of glyceryl ether is 1:6.
  • solvent is dimethylformamide
  • catalyst K is triethylamine
  • fluorine-containing compound C is perfluorobutyric acid
  • hydrophilic compound B is methoxypolyethylene glycol thiol, molecular weight is 1000
  • microspheres solvent The mass ratio of the solvent H 2 , the fluorine-containing compound C, the hydrophilic compound B and the catalyst K is 1:10:20:3:2:0.01.
  • FT-IR a broad absorption peak at 3453 cm- 1 , corresponding to the antisymmetric stretching vibration and symmetric stretching vibration of the -OH group on the silica surface; 2920 cm- 1
  • the broad peak is methoxypolyethylene glycol decyl alcohol, perfluorobutyric acid, CH stretching vibration of -CH3 in poly-o-glycidyl ether; the slightly wide peak at 1745 cm- 1 is poly-o-tolyl glycidol
  • the C 0 stretching vibration absorption peak left after the reaction of ether and perfluorobutyric acid; the strong absorption peak appearing at 1231 cm - 1 , 1305 cm 1 is attributed to -CF stretching vibration and Si-0-Si antisymmetric stretching
  • the vibration absorption peaks overlap; 824 cm- 1 is the characteristic peak of silica; 915 cm- 1 is the characteristic peak of epoxy, which is epoxy in poly-o-glycidyl ether; 860 cm 1 is poly CH characteristic absorption
  • Solvent E G is N-methylpyrrolidone; polyphenyl glycidyl ether solution and microsphere dispersion are 10% by mass, respectively; 5%; base microspheres (polymer microspheres) and polyphenyl glycidol The mass ratio of ether is 1:10;
  • the solvent and the solvent H 2 are N-methylpyrrolidone
  • the catalyst K is ruthenium, ⁇ -diisopropylethylamine
  • the fluorine-containing compound C is ruthenium, ⁇ -perfluorooctylamine
  • the hydrophilic compound ⁇ is a methoxy group.
  • Polyethylene glycol carboxylic acid having a molecular weight of 1500; mass ratio of microspheres, solvent, solvent, fluorine-containing compound C, hydrophilic compound B and catalyst K is 1:50:50:10:10:0.1.
  • FT-IR a broad absorption peak at 3452 cm-1, corresponding to the antisymmetric stretching vibration and symmetric stretching vibration of the -OH group on the surface of the polymer microsphere; 3321 cm-1
  • the strong broad absorption peak is attributed to -CF stretching vibration absorption peak; 922 cm- 1 is the characteristic peak of epoxy, which is epoxy in polyphenyl glycidyl ether; 890 cm- 1 is polyphenyl gly
  • Epoxy resin A is dissolved in a solvent, and a mixture of pre-dispersed hydrophilic compound B, fluoropolymer C and catalyst is added dropwise at 120 °0 with stirring. After 100 g/min, after the completion of the dropwise addition, the reaction is continued for 4 h, cooled to room temperature, concentrated, and then precipitated into solvent F.
  • an aqueous fluorine-containing epoxy resin can be obtained; wherein epoxy resin A, solvent , the hydrophilic compound B, the mass ratio between the fluoropolymer C and the catalyst is 1:100:10:10:0.0001; the epoxy resin A is poly ortho-glycidyl ether, the solvent E is cyclohexanone, hydrophilic
  • the compound B is a polyethylene glycol amine (molecular weight 300), the fluoropolymer C is perfluorohexylethanol, the catalyst is 1-propylimidazole, and the solvent F is n-hexane.
  • Preparation of water-based fluorine-containing epoxy resin The epoxy resin A is dissolved in a solvent, and a pre-dispersed hydrophilic substance 3, a mixture of the fluoropolymer C and the catalyst is added dropwise at 60 ° C with stirring. The acceleration is 0.1 g/min. After the completion of the dropwise addition, the reaction is continued for 10 h, cooled to room temperature, concentrated, and then precipitated into solvent F.
  • an aqueous fluorine-containing epoxy resin can be obtained; wherein epoxy resin A, Solvent E, hydrophilic substance B, mass ratio between fluoropolymer C and catalyst: 1:10:1:1:0.00001; epoxy resin A is polyphenyl glycidyl ether, solvent is dioxane
  • the hydrophilic compound B is methoxy polyethylene glycol thiol (molecular weight 500)
  • the fluoropolymer C is 1H, 1H, 2H, 2H-perfluorooctyl thiol
  • the catalyst is benzyl triethyl chloride.
  • Ammonium solvent F is petroleum ether.
  • Preparation of water-based fluorine-containing epoxy resin The epoxy resin A is dissolved in a solvent, and a pre-dispersed hydrophilic substance B, a mixture of the fluorine-containing polymer C and the catalyst is added dropwise at 100 ° while stirring. The acceleration is 50g/min. After the completion of the dropwise addition, the reaction is continued for 7 hours, then cooled to room temperature, concentrated, and then precipitated into solvent F.
  • an aqueous fluorine-containing epoxy resin can be obtained; wherein epoxy resin A, solvent , the hydrophilic material B, the mass ratio between the fluoropolymer C and the catalyst is 1:60:5:5:0.00008, the epoxy resin A is polyglycidyl methacrylate, the solvent is tetrahydrofuran, hydrophilic Compound B is methoxypolyethylene glycol carboxylic acid (molecular weight 2000), fluoropolymer C is hydrazine, fluorene-perfluorooctylamine, catalyst is hydrazine, hydrazine-diisopropylethylamine, solvent F For methanol.
  • Ppm and 2.92 ppm are the two absorption peaks of -CH2- in the epoxy ring, 3.2 ppm is the absorption peak of the methine group (-CH-) in the epoxy ring, between 3.5 and 3.85 ppm
  • the series of absorption peaks are the absorption peak of -CH2 in methoxypolyethylene glycol carboxylic acid
  • 4.65 ppm and 2.67 ppm are the two -CH2 absorption peaks on perfluorooctylamine, indicating methoxypolyethyl
  • the diol carboxylic acid and perfluorooctylamine have been bonded to the main chain polyglycidyl methacrylate and a portion of the epoxy remains.
  • a super double sparse surface prepared by the following method:
  • the super-bi-hydrophobic paint prepared in the step 2 is coated on the surface of the substrate by spraying or dip coating, and formed into a film at 30 ° C, and then placed in an oven at 90 ° C for 24 h to obtain a cross-linking for 24 h.
  • a superhydrophobic/oleophobic material is coated on the surface of the substrate by spraying or dip coating, and formed into a film at 30 ° C, and then placed in an oven at 90 ° C for 24 h to obtain a cross-linking for 24 h.
  • a super double sparse surface prepared by the following method:
  • Example 4 The aqueous fluorine-containing epoxy resin prepared in Example 4 was dissolved in a solvent P to obtain an aqueous fluorine-containing epoxy resin solution, and the water-dispersible ultra-double microspheres prepared in Example 1 were dispersed in an aqueous fluorine-containing solvent.
  • the microspheres are uniformly dispersed by stirring or sonication, and then the catalyst I is added to obtain a super-bi-hydrophobic coating; aqueous super-double microspheres, water-based fluorine-containing epoxy resin, catalyst I and solvent
  • the mass ratio of P is 1: 5: 0.001: 10; the solvent P is trifluorotoluene, and the catalyst I is triethylamine;
  • Example 6 is a super-double-sparing surface constructed on the surface of the glass sheet of Example 8.
  • the aqueous fluorine-containing epoxy resin is added less, and the structure of the microsphere is also relatively clear, and the epoxy on the surface of the microsphere is partially cross-linked.
  • the nanostructure of the microsphere provides a super-double sparse The required roughness of the surface.
  • a super double sparse surface prepared by the following method:
  • Example 4 The aqueous fluorine-containing epoxy resin prepared in Example 4 was dissolved in a solvent P to obtain an aqueous fluorine-containing epoxy resin solution, and the water-dispersible ultra-double microspheres prepared in Example 1 were dispersed in an aqueous fluorine-containing solvent.
  • the microspheres are uniformly dispersed by stirring or sonication, and then the catalyst I is added to obtain a super-bi-hydrophobic coating; water-dispersible ultra-double microspheres, water-based fluorine-containing epoxy resin, catalyst I
  • the mass ratio to the solvent P is 1:10: 0.003:20; the solvent P is dioxane, and the catalyst I is hydrazine, hydrazine-diisopropylethylamine;
  • the super-bi-hydrophobic paint prepared in the step 2 was applied to the surface of the substrate by spraying or dip coating at 30 °.
  • the film was formed into a film and then placed in a 10 CTC oven for 10 hours to obtain a superhydrophobic/oleophobic material, that is, a super-double surface.
  • Example 7 is a SEM photograph of the super-double surface of the surface of the glass sheet of Example 9.
  • the water-containing fluorine-containing epoxy resin partially encapsulates the ultra-double microspheres, and has good adhesion.
  • the surface of the coating forms a multi-layered micro-nano structure during the film formation process. With the participation of water-based fluorine-containing epoxy resin, the hydrophobic oleophobic property is improved.
  • a super-double hydrophobic surface prepared by the following method:
  • Example 6 The aqueous fluorine-containing epoxy resin prepared in Example 6 was dissolved in a solvent P to obtain an aqueous fluorine-containing epoxy resin solution, and the water-dispersible ultra-double microspheres prepared in Example 2 were dispersed in an aqueous fluorine-containing solvent.
  • the microspheres are uniformly dispersed by stirring or sonication, and then the catalyst I is added to obtain a super-bi-hydrophobic coating; water-dispersible ultra-double microspheres, water-based fluorine-containing epoxy resin, catalyst I
  • the mass ratio to the solvent P is 1:100:0.01:200; the solvent P is butanone, and the catalyst I is tetrabutylammonium fluoride;
  • the super-bi-hydrophobic paint prepared in the step 2 was applied to the surface of the substrate by spraying or dip coating at 30 °.
  • the film was formed and crosslinked in a 14 CTC oven for 2 h to obtain a superhydrophobic/oleophobic material, that is, a super-double surface.
  • Figure 8 is a SEM photograph of the super-double surface of the Example 10 constructed on the surface of a cotton cloth.
  • Example 11
  • a super-double hydrophobic surface prepared by the following method:
  • the microspheres are uniformly dispersed by stirring or sonication, and then a catalyst I is added to obtain a super-bi-hydrophobic coating; water-dispersible ultra-double microspheres, water-based fluorine-containing epoxy resin, catalyst I and solvent
  • the mass ratio of P is 1:50: 0.005:50; the solvent P is dimethylacetamide, and the catalyst I is benzyltriethylammonium chloride;
  • Figure 9 is a SEM photograph of the super-double surface of the surface of the wood constructed in Example 11. Since the proportion of the aqueous fluorine-containing epoxy resin added is high, most of the super-double microspheres are coated in the polymer, so that the coating is applied. The roughness of the layer is not very good, but the fluorine-containing segment in the aqueous fluorine-containing epoxy resin compensates for the roughness defect to some extent, so the hydrophobic oleophobic property of the coating is also good.
  • Example 12
  • a super-double hydrophobic surface prepared by the following method:
  • Example 6 The aqueous fluorine-containing epoxy resin prepared in Example 6 was dissolved in a solvent P to obtain an aqueous fluorine-containing epoxy resin solution, and the water-dispersible ultra-double microspheres prepared in Example 3 were dispersed in an aqueous fluorine-containing solvent.
  • the microspheres are uniformly dispersed by stirring or sonication, and then the catalyst I is added to obtain a super-bi-hydrophobic coating; water-dispersible ultra-double microspheres, water-based fluorine-containing epoxy resin, catalyst I
  • the mass ratio to the solvent P is 1:20: 0.008:100; the solvent P is N-methylpyrrolidone, and the catalyst I is N-benzylimidazole;
  • WCA is the water contact angle
  • OCA is the oil contact angle
  • SA1 is the water rolling angle
  • SA2 is the oil rolling angle according to the literature (Dean Xiong and Guojun Liu. Diblock-copolymer-coated Water-and Oil-Repellent Cotton Fabrics The method mentioned in Langmuir 2012, 28, 6911-6918) was tested.
  • Table 1 shows the adhesion of the super-double surface to the substrate by indicators such as acid and alkali resistance, washing resistance, and ultrasonic resistance.
  • the test method for acid and alkali resistance is the reference literature (Guang Li, Haiting Zheng, Yanxue Wang, Hu Wang, Qibao Dong, uke Bai.
  • Ultrasonic test method Soak the super double surface in THF, because THF has good solubility for the above super double surface, then use KQ-218 ultrasonic cleaner (Kunshan Ultrasonic Instrument Co., Ltd.) Ultrasound, Measuring the contact angle after different ultrasonic times, when the contact angle of water or oil is greater than 150°, it indicates that the hydrophobic or oleophobic property of the material does not decrease. Until its contact angle is less than 150°, it indicates that the hydrophobic or oleophobic properties of its surface have been declining. Record this time and characterize its resistance to ultrasound by comparing the length of this time.
  • the super-double surface of the examples 7-12 is firmly bonded to the substrate, has strong adhesion, is resistant to friction and is resistant to washing; and the super-double sparse surface phase prepared by separately adding the aqueous fluorine-containing resin
  • the super-double surface effect prepared by the water-dispersible ultra-double microspheres and the aqueous fluorine-containing resin is better.

Abstract

本发明属于超双疏材料领域,公开了一种具有普适性的超双疏表面及其制备方法,该具有普适性的超双疏表面由以下方法制备得到:将一种水性含氟环氧树脂的N组分溶解于溶剂P中,得到N溶液;再将一种水分散性超双疏微球的M组分分散于N溶液中,随后加入催化剂I,得到一种超双疏水性涂料;最后将超双疏水性涂料涂覆在经过预处理的基底材料表面,干燥,得到具有普适性的超双疏表面。本发明具有良好的耐擦洗和耐腐蚀性,并结合水分散超双疏微球和水性含氟环氧树脂各自的优点,赋予基底超疏水和超疏油能力,且对大部分基材可行,具有普适性。

Description

一种具有普适性的超双疏表面及其制备方法
技术领域
本发明属于超双疏材料领域, 具体涉及一种具有普适性的超双疏表面及其制备方法。 背景技术
表面润湿性是固体表面的重要特征之一, 润湿性可以用表面上水的接触角来衡量, 通常 将水接触角在 150° 以上、 滚动角小于 10° 的表面称为超疏水表面, 表面对油拥有大于 150° 的接触角, 可认为是超疏油表面。 若某一表面上的水和油的静态接触角都大于 150° 且其滚 动角都小于 5 ° , 则该界面可称之为超双疏界面。 超疏水表面和超双疏表面具备一定的自清 洁功能, 即表面污染物如灰尘等可以被滚落的水滴带走而不留下任何痕迹。 自清洁涂层具有 节水、 节能、 环保等优势, 越来越受到人们的广泛关注, 是目前材料学科研究的热点之一。
相对于构筑超疏水界面来讲, 超双疏材料的制备和构筑显得更难, 主要是涉及到的科学 和技术问题更多, 因此在这方面还是处于研发阶段, 很少有关于超双疏材料工业化产品的报 道出现。
固体表面的粗糙度和低表面能是制备超疏水或超双疏表面最关键的影响因素, 含氟化合 物和含氟聚合物因其低表面能而广泛应用于该领域。 为了在玻璃、 金属等光滑表面构建超疏 水或超双疏表面, 人们常用的方法是将二氧化硅、 二氧化钛、 四氧化三铁等无机纳米 /微米粒 子和含氟聚合物共混或将纳米 /微米级粒子氟化,然后将氟化的纳米 /微米级粒子涂到材料表面 从而构建超疏水或超双疏表面。 这些方法中, 聚合物、 无机粒子和基底之间很难真正通过化 学键合作用粘合在一起, 主要是靠物理吸附作用, 因此超双疏表面的耐久性不是很好。 另外, 制备氟化无机粒子需要将含氟聚合物接枝到无机粒子表面的这种异相反应, 大部分报道都需 要对无机粒子表面进行一系列处理, 步骤较为繁琐导致很难大规模的产业化。
专利 201110131477.X提出一种含氟双功能微球的制备及其应用于构筑超双疏表面。 主要 方法是制备一种含有多种官能团的纳米或微米级粒子, 使其表面不仅含有含氟化合物, 还有 能够与基质反应而形成共价键的基团, 再将这种表面接枝有含氟化合物和可与基质进行化学 键合的纳米或微米微球喷涂在基材表面, 并以此构筑超双疏界面。 该发明所制备的涂层具有 优异的超双疏特性, 且涂层通过共价键与基材表面进行键合, 从而使得超双疏性能具有较好 耐久性。 但是, 该法可处理的基材具有一定的局限性, 必须含有活性基团 (如羟基、 羧基、氨 基等), 否则不具备粘结性, 而且含氟微球需要分散在含氟溶剂中。
专利 201110266897.9提出了一种利用含氟含硅共聚物和二氧化硅进行共混后在含有活性 基团的表面进行组装成膜, 可赋予表面很好的超双疏性能, 这种方法利用较多的含氟含硅共 聚物, 成本较高, 并且需要共混组装反应, 工艺比较复杂, 而且基材需含活性基团, 不具有 普适性。
专利 201110373304.9提出了利用原子转移自由基聚合在氨基改性无机微球表面接枝可交 联单体和含氟单体得到可交联的超双疏性微球, 该含氟微球组装成膜得到超双疏表面性能优 异, 不仅具有较好的疏水疏油接触角, 同时具有很好的耐酸碱性, 也有较好的耐候性。 但是 该方法的处理过程较为繁琐, 对试剂、 设备要求较高, 而且含氟微球需要分散在含氟溶剂中, 表面也没有粘结性基团, 因此粘接性也不是很强。
近年来, 利用含氟聚合物构筑超疏水超疏油表面的文献和专利较多, 但是目前文献报道 的大部分还存在以下几个问题: (1 ) 含氟聚合物与基材表面之间的粘接力不强导致涂层的耐 摩擦, 耐洗涤性不强; (2) 大多数方法条件苛刻、 步骤繁琐、 成本高, 而且不具备普适性;
(3 )构筑超疏水超疏油所采用的含氟聚合物主要是油溶性的, 这种油溶性含氟聚合物, 需要 用到大量的有机溶剂, 不仅价格昂贵而且会对环境造成污染, 不利于大规模的产业化。
因此, 开发一种简单且易于实现且绿色环保的方法构筑超疏水超疏油表面, 成为现代涂 料及表面处理领域日益增长的需求。 发明内容 为了克服现有技术的缺点与不足, 本发明的首要目的在于提供一种具有普适性的超双疏 表面;
本发明的另一目的在于提供上述超双疏表面的制备方法;
本发明的目的通过下述技术方案实现:
一种具有普适性的超双疏表面, 是将 N组分溶解于溶剂 P中, 得到 N溶液; 再将 M组 分分散于 N溶液中, 随后加入催化剂 I, 得到一种超双疏水性涂料; 最后将超双疏水性涂料 涂覆在基底材料表面, 干燥, 即得到具有普适性的超双疏性表面; 所述的 N组分为水性含氟 环氧树脂, M组分为水分散性超双疏微球。
所述的 M组分为水分散性的超双疏微球, 粒径为 50-1000nm, 该微球是通过在基底微球 表面引入一层环氧树脂 A,再利用环氧树脂 A表面的环氧基团开环反应接枝亲水化合物 B和 含氟化合物 C得到, 其结构式如图 1所示, 式中 g表示接枝。
所述的基底微球为二氧化硅微球、 氧化铝微球、 二氧化钛微球、 氧化铁微球和表面含有 羟基的聚合物微球中的一种, 优选二氧化硅微球; 粒径为 50-1000 nm。
所述的环氧树脂 A为双酚 A型环氧树脂, 双酚 F型环氧树脂, 酚醛环氧树脂, 聚甲基丙 烯酸缩水甘油醚, 聚丙烯基缩水甘油醚, 聚邻甲苯缩水甘油醚和聚苯基缩水甘油醚中的一种 以上, 优选聚甲基丙烯酸缩水甘油醚, 聚邻甲苯缩水甘油醚和聚苯基缩水甘油醚中的一种以 上, 其分子量为 1000-100000。
所述的亲水化合物 B为甲氧基聚乙二醇, 甲氧基聚乙二醇胺, 甲氧基聚乙二醇巯醇, 甲 氧基聚乙二醇羧酸, 聚乙二醇胺和聚乙二醇硫醇中的一种以上, 分子量为 300-2000。
所述含氟化合物 C为 3-全氟辛基丙醇, 1H,1H,2H,2H-全氟十二烷硫醇, 3-全氟己基丙醇, 全氟己基乙醇, 全氟辛基乙醇, 全氟叔丁醇, 1H, 1H,2H,2H-全氟己 -1-醇, 全氟丙酸, 全氟己 酸, 全氟辛酸, 全氟丁酸, 全氟庚酸, 1H, 1H,2H,2H-全氟癸基硫醇, 1H,1H,2H,2H-全氟辛硫 醇, 1H, 1H,2H,2H-全氟十二烷硫醇, 4-全氟辛基苯胺, ΙΗ, ΙΗ-全氟辛基胺和全氟辛基磺酸胺 中的一种以上。
所述的水分散性超双疏微球的制备方法, 包括以下步骤:
( 1 )将环氧树脂 Α溶解在溶剂 E中配置环氧树脂 A溶液,将基底微球分散在溶剂 G中, 超声 lh,得到微球分散液,继续边超声边将环氧树脂溶液以 0.2-5 mL/min的速度滴加到微球分 散液中, 再继续超声 30-180 min, 旋蒸除去溶剂, 热处理, 冷却, 加入溶剂 E重分散, 离心 洗涤, 干燥, 得到环氧树脂包覆微球;
(2 )将步骤(1 )制备的环氧树脂包覆微球分散在溶剂 中, 超声处理, 再加入催化剂 K并加热至 60-12CTC, 然后在搅拌的条件下先后加入含氟化合物 C溶液和亲水化合物 B, 反 应 2-24 h, 最后去除反应体系中的溶剂, 得到水分散性超双疏微球。
步骤 (1 ) 中所述的溶剂 E、 G为四氢呋喃, 二甲基甲酰胺, 二氧六环, 二甲基亚砜, 二 甲基乙酰胺, N-甲基吡咯烷酮, 丁酮, 环己酮, 二苯醚和苯甲醚中的一种以上。
步骤(1 ) 中所述的超声条件为超声功率为 300W, 温度为 35 °C ; 所述的热处理条件为于 60-13CTC真空烘箱中热处理 20-90 min; 所述洗涤次数为 4次。
步骤 (1 ) 中所述的环氧树脂 A溶液和微球分散液质量百分浓度分别为 1-10%, 0.2-5%, 基底微球和环氧树脂 A的质量比为 1 :2-10。
步骤 (2 ) 中所述催化剂 K为三乙胺, 三甲胺, 四丁基氟化铵, Ν,Ν-二异丙基乙基胺, 苄基三乙基氯化铵, 咪唑, 1-丙基咪唑, Ν-苄基咪唑, 十八烷基二甲基叔胺, 油基二甲基叔 胺, 十二叔胺, 苄基三乙基氯化铵, 三乙醇胺, 三异丙醇胺和 Ν,Ν-二乙基乙醇胺中的一种以 上。 步骤(2 ) 中所述溶剂 Hi、 溶剂 H2为四氢呋喃, 二甲基甲酰胺, 二氧六环, 二甲基亚砜, 二甲基乙酰胺, N-甲基吡咯烷酮, 丁酮, 环己酮, 二苯醚和苯甲醚中的一种以上。
步骤 (2 ) 中所述的含氟化合物 C溶液是由含氟化合物 C溶于溶剂 H2制备得到的; 所述 的环氧树脂包覆微球、 溶剂 、 溶剂 H2、 含氟化合物 C、 亲水化合物 B和催化剂 K的质量 比为 l :(l-50):(l-50):(0.2-10):(0.2-10):(0.001-0.1
步骤 (2 ) 中所述的超声处理条件为超声功率为 300W, 温度为 35 V, 时间为 30min。 所述的 N组分为水性含氟环氧树脂,制备方法包括以下步骤:将环氧树脂 A溶于溶剂中, 在 60-120 °C下边搅拌边滴加预先分散均匀的亲水性化合物 B、 含氟化合物 C及催化剂的混 合液, 滴加速度为 0.1 g/min-100 g/min, 滴加结束后, 继续反应 4-10小时, 冷却至室温, 浓 缩, 再于溶剂 F中沉淀, 干燥, 得到水性含氟环氧树脂。
所述的环氧树脂 A为双酚 A型环氧树脂, 双酚 F型环氧树脂, 酚醛环氧树脂, 聚甲基丙 烯酸缩水甘油醚, 聚丙烯基缩水甘油醚, 聚邻甲苯缩水甘油醚和聚苯基缩水甘油醚中的一种 以上, 优选聚甲基丙烯酸缩水甘油醚, 聚邻甲苯缩水甘油醚和聚苯基缩水甘油醚中的一种以 上。
所述的亲水化合物 B为甲氧基聚乙二醇, 甲氧基聚乙二醇胺, 甲氧基聚乙二醇巯醇, 甲 氧基聚乙二醇羧酸, 聚乙二醇胺和聚乙二醇硫醇中的一种以上, 分子量为 300-2000。
所述的含氟化合物 C为 3-全氟辛基丙醇, 1Η, 1Η,2Η,2Η-全氟十二烷硫醇, 3-全氟己基丙 醇, 全氟己基乙醇, 全氟辛基乙醇, 全氟叔丁醇, 1Η, 1Η,2Η,2Η-全氟己 -1-醇, 全氟丙酸, 全 氟己酸, 全氟辛酸, 全氟丁酸, 全氟庚酸, 1Η,1Η,2Η,2Η-全氟癸基硫醇, 1Η,1Η,2Η,2Η-全氟 辛硫醇, 1Η, 1Η,2Η,2Η-全氟十二烷硫醇, 4-全氟辛基苯胺, ΙΗ, ΙΗ-全氟辛基胺和全氟辛基磺 酸胺中的一种以上。
所述的溶剂为四氢呋喃, 二甲基甲酰胺, 二氧六环, 二甲基亚砜, 二甲基乙酰胺, Ν-甲 基吡咯烷酮, 丁酮, 环己酮, 二苯醚和苯甲醚中的一种以上。
所述的催化剂为三乙胺, 三甲胺, 四丁基氟化铵, Ν,Ν-二异丙基乙基胺, 苄基三乙基氯 化铵, 咪唑, 1-丙基咪唑, Ν-苄基咪唑, 十八烷基二甲基叔胺, 油基二甲基叔胺, 十二叔胺, 苄基三乙基氯化铵, 三乙醇胺, 三异丙醇胺和 Ν,Ν-二乙基乙醇胺中的一种以上。
所述的溶剂 F为正己烷, 无水乙醚, 石油醚, 乙酸乙酯, 甲醇, 乙醇和水中的一种以上。 所述的环氧树脂 Α, 溶剂, 亲水性化合物 Β, 含氟化合物 C及催化剂之间的质量比 为: 1 : 10-100: 1-10: 1-10:0.00001-0.0001。 所述催化剂 I为三乙胺, 三甲胺, 四丁基氟化铵, Ν,Ν-二异丙基乙基胺, 苄基三乙基氯 化铵, 咪唑, 1-丙基咪唑, N-苄基咪唑, 十八烷基二甲基叔胺, 油基二甲基叔胺, 十二叔胺, 苄基三乙基氯化铵, 三乙醇胺, 三异丙醇胺和 Ν,Ν-二乙基乙醇胺中的一种以上。
所述溶剂 Ρ为四氢呋喃, 二甲基甲酰胺, 二氧六环, 二甲基亚砜, 二甲基乙酰胺, Ν-甲 基吡咯烷酮, 丁酮和三氟甲苯中的一种以上。 上述超双疏表面的制备方法包括以下步骤:
( 1 ) 基材表面预处理;
(2)将 Ν组分溶解于溶剂 Ρ中, 得到 Ν溶液; 再将 Μ组分分散于 Ν溶液中, 搅拌或超 声处理使微球均匀分散, 再加入催化剂 I, 得到一种超双疏水性涂料; 其中, Ν组分为水性含 氟环氧树脂, Μ组分为水分散性超双疏微球;
(3 )将步骤(2)制备的超双疏水性涂料涂覆在步骤(1 )中基材表面,成膜, 再于 90-140 °C下交联 2-24 h, 得到超疏水 /疏油的材料, 即为一种超双疏性表面。
步骤 (1 ) 中所述的基底材料为玻璃片、 棉布、 滤纸、 薄膜材料、 金属片、 塑料片、 木材 或水泥基材; 其中滤纸、 金属片、 塑料片、 薄膜材料、 木材、 水泥基材和棉布的预处理方法 为: 基底材料依次用乙醇、 水洗涤, 然后干燥; 玻璃片的预处理方法为: 将玻璃片在 pimnha 溶液 (体积比为 7:3的浓 H2S04和 02混合液)中浸泡 5 h,再依次用乙醇、水洗涤,然后干燥。
步骤 (2) 中所述的水分散性超双疏微球的 M组分, 水性含氟环氧树脂的 N组分, 催化 剂 I与溶剂 p的质量比为 1 : 5-100: 0.001-0.01:10-200。
步骤 (3 ) 中所述的涂覆方式为通过喷涂或浸涂的方式进行涂覆; 成膜温度为 30°C。 所述的具有超双疏性表面的材料应用于生产生活方面, 包括军工设备的外层防护、 输油 管道外层的防水防腐、 厨卫用具、 汽车和飞机的挡风玻璃。 本发明的原理: 影响固体表面润湿性的两个重要因素是固体的表面微观结构和表面只有 能, 因此要制备超双疏材料必须满足两个条件, 一是需要构造微纳米的粗糙表面, 另一是引 入低表面能物质分子层。 本发明以水分散性超双疏微球为在表面构筑粗糙结构提供条件, 再 引入水性含氟环氧树脂, 通过调整两者的比例使得涂层的疏水疏油性能达到最佳。 微球和环 氧树脂都是亲水的, 避免了构筑超双疏表面过程中有机溶剂的使用, 有利于环保。 另外, 涂 料中大量环氧基团, 可用于与基材以及微球之间的交联即通过化学键牢固的结合, 从而得到 提高材料的耐久性。 与现有技术相比, 本发明具有以下优点及有益效果:
( 1 )本发明采用提供的制备超双疏表面的方法,简单易行,成本较低,有望大规模生产; (2)本发明涉及到的制备超双疏表面的两种组分都具有良好的水分散性, 可避免使用对 环境有害的有机溶剂; 两个组分中大量的环氧基团可实现含氟微球之间及其与基材通过化学 键牢固结合; 含氟化合物可提供低表面界面, 所得超双疏表面具有很好的耐擦洗和耐腐蚀性。
(3 )水性含氟环氧树脂和水分散性超双疏微球单独用于构筑超双疏表面时, 有各自的缺 点, 水性含氟环氧树脂能提供低表面能却不能提供粗糙度, 因此只能在粗糙的基材表面构筑 超双疏表面; 本发明结合水分散超双疏微球和水性含氟环氧树脂各自的优点, 水分散超双疏 微球可以提供表面粗糙度, 水性含氟树脂可以弥补水分散性超双疏微球的低表面能, 从而赋 予基底超疏水和超疏油能力, 通过随意调整两组分的比例以及各组分中环氧组分、 亲水单体 和含氟组分根据所需应用到的基材进行灵活的调节, 且对大部分基材可行 (包括纺织物、 聚 合物、 陶瓷、 建筑物、 金属基材、 纸片等), 因此具有普适性。 附图说明 图 1为水分散性的超双疏微球的结构通式;
图 2,图 3分别为实施例 1制备的二氧化硅微球和水分散性超双疏微球的 TEM照片; 图 4为实施例 1制备的水分散超双疏微球的 SEM照片;
图 5为实施例 1制备得到的水分散性超双疏微球的红外表征图;
图 6为实施例 8在玻璃片表面构筑的超双疏表面的 SEM照片;
图 7为实施例 9在玻璃片表面构筑的超双疏表面的 SEM照片;
图 8为实施例 10在棉布表面构筑的超双疏表面的 SEM照片;
图 9为实施例 11在木材表面构筑的超双疏表面的 SEM照片。 具体实施方式
下面结合实施例对本发明作进一步详细的描述, 但本发明的实施方式不限于此。 实施例 1
水分散性的超双疏微球的制备:
( 1 )二氧化硅微球的制备:在 250 mL的圆底烧瓶中加入 100 ml 无水乙醇和 3 mL氨水, 然后滴加 4 mL正硅酸四乙酯, 35 °C下反应 24 h后, 产物用无水乙醇离心洗涤三次, 得到的 二氧化硅微球进行冷冻真空干燥, 最终所得二氧化硅微球粒径为 100±5 nm。
(2)环氧树脂包覆微球的制备:将聚甲基丙烯酸缩水甘油醚溶解在溶剂 E中配置环氧树 脂溶液, 将步骤 (1 ) 制备的基底微球 (二氧化硅微球) 分散在溶剂 G中, 超声处理 l h, 得 到微球分散液, 继续边超声边将环氧树脂溶液以 0.2 mL/min的速度滴加到微球分散液中, 再 继续超声 30 min, 旋蒸除去大部分溶剂后将产物置于 60 °C真空烘箱中热处理 90 min, 待产 物冷却后加入溶剂 E重分散, 离心洗涤 4次, 产物在室温真空干燥, 即得到环氧树脂包覆微 球。
溶剂 E、 G为四氢呋喃; 聚甲基丙烯酸缩水甘油醚溶液和微球分散液质量百分浓度分别 为 1%, 0.2%; 基底微球和聚甲基丙烯酸缩水甘油醚的质量比为 1:2。
(3 ) 水分散性超双疏微球的制备: 将步骤 (2) 制备的环氧树脂包覆微球分散在溶剂 中, 超声处理 30 min, 再加入催化剂 K并加热至 60 °C, 然后在搅拌的条件下先后加入溶于溶 剂 H2的含氟化合物 C溶液和亲水性化合物 B反应 24 h, 最后去除反应体系中的溶剂, 得到 所述的水分散性超双疏微球。
溶剂 、 溶剂 为四氢呋喃, 催化剂 K为三乙胺; 含氟化合物 C为 1H,1H,2H,2H-全氟 辛硫醇, 亲水化合物 B为甲氧基聚乙二醇巯醇, 分子量为 1000; 微球、 溶剂 、 溶剂 H2、 含氟化合物 C、 亲水化合物 B和催化剂 K的质量比为 1:1:1:0.2:0.2:0.001。
结构表征如图 2,3,4,5所示:
图 2和 3分别为实施例 1制备的二氧化硅微球和水分散性超双疏微球的 TEM照片, 图 4 为水分散超双疏微球的 SEM照片, 由图 2可得到未改性的二氧化硅粒径为 100±5nm, 大小 比较均匀。 图 3可得到接枝了聚合物后的二氧化硅粒径为 130±5nm, 图中清晰可见二氧化硅 外壳有一层聚合物壁, 同样的在图 4中也可以看到水分散超双疏微球的表面有一层聚合物, 没那么光滑了, 粒径在 130nm左右, 和 TEM的结果正好对应。
图 5为实施例 1制备得到的水分散性超双疏微球的红外表征图, 3483 cm 1处出现的较宽 的吸收峰, 对应于二氧化硅表面的 -OH基的反对称伸缩振动和对称伸缩振动; 2968 cm 1处的 宽峰为甲氧基聚乙二醇巯醇, 全氟辛硫醇, 聚甲基丙烯酸缩水甘油醚中的 -CH3的 C-H伸缩 振动; 1726 cm- 1为聚甲基丙烯酸缩水甘油醚的 C=0的伸缩振动吸收峰; 1104 cm- 1222 cm-1 处出现的强吸收峰归属为 -C-F伸缩振动和 Si-0-Si的反对称伸缩振动吸收峰重叠在一起; 804 cm- 1处是二氧化硅的特征峰; 935 cm- 1处为环氧的特征峰,是聚甲基丙烯酸缩水甘油醚中的环 氧。 实施例 2
水分散性的超双疏微球的制备:
( 1 ) 二氧化硅微球的制备: 在 100ml 的圆底烧瓶中加入 50ml 无水乙醇、 3ml 去离子 水和 3ml氨水, 然后滴加 2ml 正硅酸四乙酯, 25°C下反应 24 后, 产物用无水乙醇离心洗涤 三次, 得到的二氧化硅微球进行冷冻真空干燥, 最终所得二氧化硅微球粒径为 350 ±5nm。
(2)环氧树脂包覆微球的制备:将聚邻甲苯缩水甘油醚溶解在溶剂 E中配置环氧树脂溶 液, 将二氧化硅微球分散在溶剂 G中, 超声处理 l h, 得到微球分散液, 继续边超声边将环 氧树脂溶液以 3 mL/min的速度滴加到微球分散液中, 再继续超声 lOO min, 旋蒸除去大部分 溶剂后将产物置于 90°C真空烘箱中热处理 40 min, 待产物冷却后加入溶剂 E重分散, 离心洗 涤 4次, 产物在室温真空干燥, 即可得到环氧树脂包覆微球。
溶剂 E、 G为二甲基甲酰胺; 聚邻甲苯缩水甘油醚溶液和分散液微球质量百分浓度分别 为 3%, 2%; 基底微球 (二氧化硅微球) 和聚邻甲苯缩水甘油醚的质量比为 1:6。
(3 ) 水分散性超双疏微球的制备: 将步骤 (2) 制备的环氧树脂包覆微球分散在溶剂 中, 超声处理 30 min, 再加入催化剂 K并加热至 80°C, 然后在搅拌的条件下先后加入溶于溶 剂 H2的含氟化合物 C溶液和亲水化合物 B反应 8 h,最后去除反应体系中的溶剂, 得到所述 的水分散超双疏微球。
溶剂 、 溶剂 为二甲基甲酰胺, 催化剂 K为三乙胺; 含氟化合物 C为全氟丁酸, 亲 水化合物 B为甲氧基聚乙二醇硫醇, 分子量为 1000; 微球、 溶剂 、 溶剂 H2、 含氟化合物 C, 亲水化合物 B和催化剂 K的质量比为 1:10:20:3:2:0.01。
对产物的波谱分析如下: FT-IR: 3453 cm- 1处出现的较宽的吸收峰, 对应于二氧化硅表面 的 -0H基的反对称伸缩振动和对称伸缩振动; 2920 cm- 1处的宽峰为甲氧基聚乙二醇巯醇, 全 氟丁酸, 聚邻甲苯缩水甘油醚中的 -CH3的 C-H伸缩振动; 1745 cm- 1处的稍微宽点的峰是聚 邻甲苯缩水甘油醚和全氟丁酸反应后留下的 C=0的伸缩振动吸收峰; 1231 cm-1 , 1305 cm 1 处出现的强吸收峰归属为 -C-F伸缩振动和 Si-0-Si的反对称伸缩振动吸收峰重叠在一起; 824 cm- 1处是二氧化硅的特征峰; 915 cm- 1处为环氧的特征峰, 是聚邻甲苯缩水甘油醚中的环氧; 860 cm 1处为聚邻甲苯缩水甘油醚的苯环上的 C-H特征吸收峰。 实施例 3
水分散性的超双疏微球的制备:
( 1 )表面含有羟基的聚合物微球的制备:搅拌下在 500mL的三口烧瓶中逐步加入 130 mL 蒸馏水, 4.80 g甲基丙烯酸甲酯和 0.4 g二甲基丙烯酸乙二醇酯的混合物, 以及 41 mg过二硫 酸钾水溶液 (5mL), 反应体系在 25 °0下鼓氮气 30 min以去除体系中的氧气, 再置于预热到 90°C的油浴中继续反应 2h, 反应结束后离心, 先后用水和甲醇重分散离心洗涤, 产物室温真 空干燥过夜, 得到的聚合物微球粒径为 220±5nm。 (2)环氧树脂包覆微球的制备:将聚苯基缩水甘油醚溶解在溶剂 E中配置环氧树脂溶液, 将步骤 (1 ) 制备的基底微球 (聚合物微球) 分散在溶剂 G中, 超声处理 l h, 得到微球分散 液, 继续边超声边将环氧树脂溶液以 5 mL/min的速度滴加到微球分散液中, 再继续超声 180 min, 旋蒸除去大部分溶剂后将产物置于 130°C真空烘箱中热处理 20 min, 待产物冷却后加入 溶剂 E重分散, 离心洗涤 4次, 产物在室温真空干燥, 即可得到环氧树脂包覆微球;
溶剂 E、 G为 N-甲基吡咯烷酮; 聚苯基缩水甘油醚溶液和微球分散液质量百分浓度分别 为 10%, 5%; 基底微球 (聚合物微球) 和聚苯基缩水甘油醚的质量比为 1:10;
(3 ) 水分散性超双疏微球的制备: 将步骤 (2) 制备的环氧树脂包覆微球分散在溶剂 中, 超声处理 30 min, 再加入催化剂 K并加热至 120 °C, 然后在搅拌的条件下先后加入溶于 溶剂 H2的含氟化合物 C溶液和亲水化合物 B反应 2 h, 最后去除反应体系中的溶剂, 得到水 分散性超双疏微球。
溶剂 、 溶剂 H2为 N-甲基吡咯烷酮,催化剂 K为 Ν,Ν-二异丙基乙基胺; 含氟化合物 C 为 ΙΗ,ΙΗ-全氟辛基胺, 亲水化合物 Β为甲氧基聚乙二醇羧酸, 分子量为 1500; 微球、 溶剂 、 溶剂 、 含氟化合物 C、 亲水化合物 B和催化剂 K的质量比为 1:50:50:10:10:0.1。
对产物的波谱分析如下: FT-IR: 3452 cm-1处出现的较宽的吸收峰, 对应于聚合物微球 表面的 -OH基的反对称伸缩振动和对称伸缩振动; 3321 cm-1处的弱吸收峰为全氟辛基胺反应 后剩下的 N-H伸缩振动吸收; 2931 cm- 1处的宽峰为甲氧基聚乙二醇羧酸, 全氟辛基胺, 聚苯 基缩水甘油醚中的 -CH3的 C-H伸缩振动; 1725 cm 1处是聚苯基缩水甘油醚和甲氧基聚乙二 醇羧酸反应后留下的 C=0的伸缩振动吸收峰; 1300 cm 1处出现的强宽吸收峰归属为 -C-F伸 缩振动吸收峰; 922 cm-1处为环氧的特征峰, 是聚苯基缩水甘油醚中的环氧; 890 cm-1处为聚 苯基缩水甘油醚的苯环上的 C-H特征吸收峰。 实施例 4
水性含氟环氧树脂的制备: 将环氧树脂 A溶于溶剂中, 在 120 °0下边搅拌边滴加预先分 散好的亲水化合物 B、含氟聚合物 C及催化剂的混合液,滴加速度为 100 g/min,滴加结束后, 继续反应 4 h后, 冷却至室温后, 浓缩, 再沉淀到溶剂 F中, 干燥后即可得到水性含氟环氧 树脂; 其中环氧树脂 A, 溶剂, 亲水化合物 B, 含氟聚合物 C及催化剂之间的质量比为 1:100:10:10:0.0001; 环氧树脂 A为聚邻甲苯缩水甘油醚, 溶剂 E为环己酮, 亲水性化合物 B 为聚乙二醇胺(分子量为 300), 含氟聚合物 C为全氟己基乙醇, 催化剂为 1-丙基咪唑, 溶剂 F为正己烷。
对产物的波谱分析如下: 1H-NMR(CDC13做溶剂): 3.75 ppm和 4.25 ppm是聚邻甲苯缩 水甘油醚单体中介于环氧环与酯键之间的 -CH2-的两个吸收峰, 2.57 ppm和 2.85 ppm是环氧 环中的 -CH2-的两个吸收峰, 3.2 ppm为环氧环中次甲基(-CH-) 的吸收峰, 3.4-3.ppm之间的 一系列吸收峰则为聚乙二醇胺中 -CH2的吸收峰, 可明显看到全氟己基乙醇的亚甲基(-CH2-) 吸收峰, 分别在 4.77 ppm和 2.33 ppm处,可表明聚乙二醇胺和全氟己基乙醇已经键合到主链 聚邻甲苯缩水甘油醚上, 并且还保留了一部分的环氧。 实施例 5
水性含氟环氧树脂的制备: 将环氧树脂 A溶于溶剂中, 在 60°C下边搅拌边滴加预先分散 好的亲水性物质3、 含氟聚合物 C及催化剂的混合液, 滴加速度为 0.1 g/min, 滴加结束后, 继续反应 10 h后, 冷却至室温后, 浓缩, 再沉淀到溶剂 F中, 干燥后即可得到水性含氟环氧 树脂; 其中环氧树脂 A, 溶剂 E, 亲水性物质 B, 含氟聚合物 C及催化剂之间的质量比为 1:10:1:1:0.00001; 环氧树脂 A为聚苯基缩水甘油醚, 溶剂为二氧六环, 亲水性化合物 B为甲 氧基聚乙二醇硫醇(分子量为 500), 含氟聚合物 C为 1H,1H,2H,2H-全氟辛硫醇, 催化剂为苄 基三乙基氯化铵, 溶剂 F为石油醚。
对产物的波谱分析如下: 1H-NMR(CDC13做溶剂): 3.69 ppm和 4.31 ppm是聚苯基缩水 甘油醚介于环氧环与酯键之间的 -CH2-的两个吸收峰, 2.62 ppm和 2.95 ppm是环氧环中的 -CH2-的两个吸收峰, 3.32 ppm为环氧环中次甲基 (-CH-) 的吸收峰, 3.4-3.65 ppm之间的一 系列吸收峰则为甲氧基聚乙二醇硫醇中 -CH2的吸收峰, 4.89 ppm和 2.51 ppm为全氟辛硫醇 上的两个 -CH2吸收峰,可表明甲氧基聚乙二醇硫醇和全氟辛硫醇已经键合到主链聚苯基缩水 甘油醚上, 并且还保留了一部分的环氧。 实施例 6
水性含氟环氧树脂的制备: 将环氧树脂 A溶于溶剂中, 在 100 °0下边搅拌边滴加预先分 散好的亲水性物质 B、 含氟聚合物 C及催化剂的混合液, 滴加速度为 50g/min, 滴加结束后, 继续反应 7 h后, 冷却至室温后, 浓缩, 再沉淀到溶剂 F中, 干燥后即可得到水性含氟环氧 树脂; 其中环氧树脂 A, 溶剂, 亲水性物质 B, 含氟聚合物 C及催化剂之间的质量比为 1:60:5:5:0.00008, 环氧树脂 A为聚甲基丙烯酸缩水甘油醚, 溶剂为四氢呋喃, 亲水性化合物 B为甲氧基聚乙二醇羧酸(分子量为 2000), 含氟聚合物 C为 ΙΗ,ΙΗ-全氟辛基胺 , 催化剂为 Ν,Ν-二异丙基乙基胺, 溶剂 F为甲醇。
对产物的波谱分析如下: 1H-NMR(CDC13做溶剂): 3.52 ppm和 4.26 ppm是聚甲基丙烯 酸缩水甘油醚介于环氧环与酯键之间的 -CH2-的两个吸收峰, 2.60 ppm和 2.92 ppm是环氧环 中的 -CH2-的两个吸收峰, 3.2 ppm为环氧环中次甲基 (-CH-) 的吸收峰, 3.5-3.85 ppm之间 的一系列吸收峰则为甲氧基聚乙二醇羧酸中 -CH2的吸收峰, 4.65 ppm和 2.67 ppm为全氟辛 基胺上的两个 -CH2吸收峰,可表明甲氧基聚乙二醇羧酸和全氟辛基胺已经键合到主链聚甲基 丙烯酸缩水甘油醚上, 并且还保留了一部分的环氧。 实施例 7 (对比例)
一种超双疏表面, 由以下方法制备得到:
( 1 )将玻璃片在 piranha溶液 (体积比为 7:3的浓 H2S04和 02混合液)中浸泡 5 h, 再依 次用乙醇、 水洗涤, 然后干燥;
(2) 将实施例 4制备的水性含氟环氧树脂溶解在溶剂 P中, 加入催化剂 I, 即可得到一 种超双疏水性涂料, 水性含氟环氧树脂, 催化剂 I与溶剂 P的质量比为 5: 0.001:10; 溶剂 P 为三氟甲苯, 催化剂 I为三乙胺;
(3 )将步骤 2中制备得到的超双疏水性涂料通过喷涂或浸涂的方式涂覆在基材表面, 30 °C下成膜, 再放置在 90°C烘箱中交联 24 h, 得到一种超疏水 /疏油的材料。
该实施例制备的超双疏表面的性能参数如表 1所示。 实施例 8
一种超双疏表面, 由以下方法制备得到:
( 1 )将玻璃片在 piranha溶液 (体积比为 7:3的浓 H2S04和 02混合液)中浸泡 5h, 再依 次用乙醇、 水洗涤, 然后干燥;
(2)将实施例 4制备的水性含氟环氧树脂溶解在溶剂 P中,得到水性含氟环氧树脂溶液, 再将实施例 1制备的水分散性超双疏微球分散在水性含氟环氧树脂溶液中, 搅拌或超声处理 使微球均匀分散, 再加入催化剂 I, 即可得到一种超双疏水性涂料; 水性超双疏微球, 水性含 氟环氧树脂, 催化剂 I与溶剂 P的质量比为 1 : 5: 0.001:10; 溶剂 P为三氟甲苯, 催化剂 I 为三乙胺;
(3 )将步骤 2中制备得到的超双疏水性涂料通过喷涂或浸涂的方式涂覆在基材表面, 30 °。下成膜, 再放置在 90°C烘箱中交联 24 h, 得到一种超疏水 /疏油的材料, 即超双疏表面。
该实施例制备的超双疏表面的性能参数如表 1所示。
结构表征如图 6所示:
图 6为实施例 8在玻璃片表面构筑的超双疏表面, 水性含氟环氧树脂加的比较少, 微球 的结构看着也比较清晰, 微球表面的环氧有少部分交联, 微球的纳米结构提供了构筑超双疏 表面必需的粗糙度。 实施例 9
一种超双疏表面, 由以下方法制备得到:
( 1 )将玻璃片在 piranha溶液 (体积比为 7:3的浓 H2S04和 02混合液)中浸泡 5h, 再依 次用乙醇、 水洗涤, 然后干燥;
(2)将实施例 4制备的水性含氟环氧树脂溶解在溶剂 P中,得到水性含氟环氧树脂溶液, 再将实施例 1制备的水分散性超双疏微球分散在水性含氟环氧树脂溶液中, 搅拌或超声处理 使微球均匀分散, 再加入催化剂 I, 即可得到一种超双疏水性涂料; 水分散性超双疏微球,水 性含氟环氧树脂, 催化剂 I与溶剂 P的质量比为 1 : 10: 0.003:20; 溶剂 P为二氧六环, 催化 剂 I为 Ν,Ν-二异丙基乙基胺;
(3 )将步骤 2中制备得到的超双疏水性涂料通过喷涂或浸涂的方式涂覆在基材表面, 30 °。下成膜, 再放置在 10CTC烘箱中交联 10h, 得到一种超疏水 /疏油的材料, 即超双疏表面。
该实施例制备的超双疏表面的性能参数如表 1所示。
结构表征如图 7所示:
图 7为实施例 9在玻璃片表面构筑的超双疏表面的 SEM照片, 由图中可以看出,水性含 氟环氧树脂将超双疏微球部分包覆成一体, 粘结性较好, 涂层表面在成膜过程中形成了多层 的微纳米结构, 加上水性含氟环氧树脂的参与, 疏水疏油性能得到了提高。 实施例 10
一种超双疏性表面, 由以下方法制备得到:
( 1 ) 棉布依次用乙醇、 水洗涤, 然后干燥;
(2)将实施例 6制备的水性含氟环氧树脂溶解在溶剂 P中,得到水性含氟环氧树脂溶液, 再将实施例 2制备的水分散性超双疏微球分散在水性含氟环氧树脂溶液中, 搅拌或超声处理 使微球均匀分散, 再加入催化剂 I, 即可得到一种超双疏水性涂料; 水分散性超双疏微球,水 性含氟环氧树脂, 催化剂 I与溶剂 P的质量比为 1 : 100: 0.01:200; 溶剂 P为丁酮, 催化剂 I 为四丁基氟化铵;
(3 )将步骤 2中制备得到的超双疏水性涂料通过喷涂或浸涂的方式涂覆在基材表面, 30 °。下成膜, 再放置在 14CTC烘箱中交联 2 h, 得到一种超疏水 /疏油的材料, 即超双疏表面。
该实施例制备的超双疏表面的性能参数如表 1所示。 结构表征如图 8所示:
图 8为实施例 10在棉布表面构筑的超双疏表面的 SEM照片。 实施例 11
一种超双疏性表面, 由以下方法制备得到:
( 1 ) 木材依次用乙醇、 水洗涤, 然后干燥;
(2) 将实施 5制备的水性含氟环氧树脂溶解在溶剂 P中, 得到水性含氟环氧树脂溶液, 再将实施 3制备的水分散性超双疏微球分散在水性含氟环氧树脂溶液中, 搅拌或超声处理使 微球均匀分散, 再加入催化剂 I, 即可得到一种超双疏水性涂料; 水分散性超双疏微球, 水性 含氟环氧树脂, 催化剂 I与溶剂 P的质量比为 1 : 50: 0.005:50; 溶剂 P为二甲基乙酰胺, 催 化剂 I为苄基三乙基氯化铵;
(3 )将步骤 2中制备得到的超双疏水性涂料通过喷涂或浸涂的方式涂覆在基材表面, 30 °。下成膜, 再放置在 12CTC烘箱中交联 8 h, 得到一种超疏水 /疏油的材料, 即超双疏表面。
该实施例制备的超双疏表面的性能参数如表 1所示。
结构表征如图 9所示:
图 9为实施例 11在木材表面构筑的超双疏表面的 SEM照片, 由于加入的水性含氟环氧 树脂比例较高, 大部分超双疏微球都被包覆在聚合物里面, 使得涂层的粗糙度并不是很好, 但是水性含氟环氧树脂中的含氟链段在一定程度上弥补了粗糙度的缺陷, 因此该涂层的疏水 疏油性能也还行。 实施例 12
一种超双疏性表面, 由以下方法制备得到:
( 1 ) 金属片依次用乙醇、 水洗涤, 然后干燥;
(2)将实施例 6制备的水性含氟环氧树脂溶解在溶剂 P中,得到水性含氟环氧树脂溶液, 再将实施例 3制备的水分散性超双疏微球分散在水性含氟环氧树脂溶液中, 搅拌或超声处理 使微球均匀分散, 再加入催化剂 I, 即可得到一种超双疏水性涂料; 水分散性超双疏微球,水 性含氟环氧树脂, 催化剂 I与溶剂 P的质量比为 1 : 20: 0.008:100; 溶剂 P为 N-甲基吡咯烷 酮, 催化剂 I为 N-苄基咪唑;
(3 )将步骤 2中制备得到的超双疏水性涂料通过喷涂或浸涂的方式涂覆在基材表面, 30 °。下成膜, 再放置在 13CTC烘箱中交联 5 h, 得到一种超疏水 /疏油的材料, 即超双疏表面。 该实施例制备的超双疏表面的性能参数如表 1所示. 表 1 实施例 7-12制备的超双疏表面的性能参数
Figure imgf000016_0001
表 1中, WCA为水接触角, OCA为油接触角, SA1为水滚动角度, SA2为油滚动角度 均按照文献 (Dean Xiong and Guojun Liu. Diblock-copolymer-coated Water-and Oil-Repellent Cotton Fabrics. Langmuir 2012,28,6911-6918)中提到的方法进行测试。
表 1通过耐酸碱性、 耐洗涤性、 耐超声性等指标来表征超双疏表面在基材上的粘接力。 其中耐酸碱性的测试方法是参照文献(Guang Li,Haiting Zheng,Yanxue Wang, Hu Wang,Qibao Dong, uke Bai. A facile strategy for the fabrication of highly stable superhydrophobic cotton fabric using amphiphilic fluorinated triblock azide copolymers. Polymer 2010, 51,1940-1946) 中提到的方法, 即: 将制备好的超双疏表面分别浸泡在不同 pH值的溶剂中, 然后每隔一段 时间取出样品, 用水洗掉表面的酸碱之后, 再用接触角仪器测试其接触角, 当水或油的接触 角大于 150°, 表示该材料的疏水或疏油性能没有下降。 直到其接触角小于 150°, 表示其表面 的疏水或疏油性能已经在下降了。 记录该时间, 通过比较这个时间的长短, 来表征其耐酸碱 性。
耐洗涤性的测试方法是参照文献 (Dean Xiong and Guojun Liu. Diblock-copolymer-coated Water-and Oil-Repellent Cotton Fabrics. Langmuir 2012,28,6911-6918)中提到的方法。
耐超声性的测试方法: 将超双疏表面浸泡在 THF 中, 因为 THF 对于上述的超双疏表面 都具有良好的溶解性, 然后采用 KQ-218 型超声波清洗器(昆山市超声仪器有限公司)超声, 测量不同超声时间后的接触角, 当水或油的接触角大于 150° , 表示该材料的疏水或疏油性 能没有下降。 直到其接触角小于 150°, 表示其表面的疏水或疏油性能已经在下降了。 记录该 时间, 通过比较这个时间的长短, 来表征其耐超声性。
由表 1 可以看出: 实施例 7-12的超双疏表面与基材键合牢靠、粘结力强、 耐摩擦、 耐洗 涤; 与单独添加水性含氟树脂所制备的超双疏表面相比, 由水分散性超双疏微球和水性含氟 树脂所制备的超双疏表面效果更好。
上述实施例为本发明较佳的实施方式, 但本发明的实施方式并不受上述实施例的限制, 其他的任何未背离本发明的精神实质与原理下所作的改变、 修饰、 替代、 组合、 简化, 均应 为等效的置换方式, 都包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种具有普适性的超双疏表面, 其特征在于: 是将 N组分溶解于溶剂 P中, 得到 N 溶液; 再将 M组分分散于 N溶液中, 随后加入催化剂 I, 得到一种超双疏水性涂料; 最后将 超双疏水性涂料涂覆在基底材料表面, 干燥, 即得到具有普适性的超双疏性表面; 所述的 N 组分为水性含氟环氧树脂; 所述的 M组分为水分散性超双疏微球。
2、 根据权利要求 1所述具有普适性的超双疏表面, 其特征在于: 所述的 M组分为水分散 性的超双疏微球, 该微球是通过在基底微球表面引入一层环氧树脂 A, 再利用环氧树脂 A表面 的环氧基团开环反应接枝亲水化合物 B和含氟化合物 C得到。
3、 根据权利要求 2所述具有普适性的超双疏表面, 其特征在于: 所述的基底微球为二氧 化硅微球、 氧化铝微球、 二氧化钛微球、 氧化铁微球或表面含有羟基的聚合物微球;
所述的环氧树脂 A为双酚 A型环氧树脂, 双酚 F型环氧树脂, 酚醛环氧树脂, 聚甲基丙 烯酸缩水甘油醚, 聚丙烯基缩水甘油醚, 聚邻甲苯缩水甘油醚和聚苯基缩水甘油醚中的一种 以上;
所述的亲水化合物 B为甲氧基聚乙二醇, 甲氧基聚乙二醇胺, 甲氧基聚乙二醇巯醇, 甲 氧基聚乙二醇羧酸, 聚乙二醇胺和聚乙二醇硫醇中的一种以上;
所述含氟化合物 C为 3-全氟辛基丙醇, 1H,1H,2H,2H-全氟十二烷硫醇, 3-全氟己基丙醇, 全氟己基乙醇, 全氟辛基乙醇, 全氟叔丁醇, 1H, 1H,2H,2H-全氟己 -1-醇, 全氟丙酸, 全氟己 酸, 全氟辛酸, 全氟丁酸, 全氟庚酸, 1H,1H,2H,2H-全氟癸基硫醇, 1H, 1H,2H,2H-全氟辛硫 醇, 1H,1H,2H,2H-全氟十二焼硫醇, 4-全氟辛基苯胺, ΙΗ, ΙΗ-全氟辛基胺和全氟辛基磺酸胺 中的一种以上。
4、 根据权利要求 1或 2所述具有普适性的超双疏表面, 其特征在于: 所述的水分散性超 双疏微球的制备方法, 包括以下步骤:
( 1 )将环氧树脂 Α溶解在溶剂 E中配置环氧树脂 A溶液,将基底微球分散在溶剂 G中, 超声 1 h,得到微球分散液, 继续边超声边将环氧树脂 A溶液以 0.2-5 mL/min的速度滴加到微 球分散液中, 再继续超声 30-180 min, 旋蒸除去溶剂, 热处理, 冷却, 加入溶剂 E重分散, 离心洗涤, 干燥, 得到环氧树脂包覆微球;
(2 )将步骤(1 )制备的环氧树脂包覆微球分散在溶剂 中, 超声处理, 再加入催化剂 K并加热至 60-12CTC, 然后在搅拌的条件下先后加入含氟化合物 C溶液和亲水化合物 B, 反 应 2-24 h, 最后去除反应体系中的溶剂, 得到水分散性超双疏微球; 所述的含氟化合物 C溶 液是将含氟化合物 C溶于溶剂 H2制备得到。
5、 根据权利要求 4所述具有普适性的超双疏表面, 其特征在于:
步骤 (1 ) 中所述的溶剂 E、 G为四氢呋喃, 二甲基甲酰胺, 二氧六环, 二甲基亚砜, 二 甲基乙酰胺, N-甲基吡咯烷酮, 丁酮, 环己酮, 二苯醚和苯甲醚中的一种以上;
步骤(1 ) 中所述的超声处理条件为超声功率为 300W, 温度为 35 °C ; 所述的热处理条件 为于 60-130°C真空烘箱中热处理 20-90 min; 所述洗涤次数为 4次;
步骤 (1 ) 中所述的环氧树脂 A溶液和微球分散液质量百分浓度分别为 1-10%, 0.2-5%, 基底微球和环氧树脂 A的质量比为 1 :2-10;
步骤 (2 ) 中所述催化剂 K为三乙胺, 三甲胺, 四丁基氟化铵, Ν,Ν-二异丙基乙基胺, 苄基三乙基氯化铵, 咪唑, 1-丙基咪唑, Ν-苄基咪唑, 十八烷基二甲基叔胺, 油基二甲基叔 胺, 十二叔胺, 苄基三乙基氯化铵, 三乙醇胺, 三异丙醇胺和 Ν,Ν-二乙基乙醇胺中的一种以 上;
步骤 (2) 中所述的超声处理条件为超声功率为 300W, 温度为 35 V, 时间为 30min; 步骤 (2) 中所述的溶剂 、 为四氢呋喃, 二甲基甲酰胺, 二氧六环, 二甲基亚砜, 二甲基乙酰胺, N-甲基吡咯烷酮, 丁酮, 环己酮, 二苯醚和苯甲醚中的一种以上;
步骤 (2) 中所述环氧树脂包覆微球, 溶剂 , 溶剂 H2, 含氟化合物 C, 亲水化合物 B 和催化剂 K的质量比为 1 :(1-50):(1-50):(0.2-10):(0.2-10):(0.001-0.1)。
6、 根据权利要求 1所述具有普适性的超双疏表面, 其特征在于: 所述的 N组分为水性 含氟环氧树脂, 制备方法包括以下步骤: 将环氧树脂 A溶于溶剂中, 在 60-120 °0下边搅拌 边滴加预先分散均匀的亲水性化合物3、 含氟化合物 C及催化剂的混合液, 滴加速度为 0.1 g/min-100 g/min, 滴加结束后, 继续反应 4-10小时, 冷却至室温, 浓缩, 再于溶剂 F中沉淀, 干燥, 得到水性含氟环氧树脂。
7、 根据权利要求 6所述具有普适性的超双疏表面, 其特征在于: 所述的环氧树脂 A为 双酚 A型环氧树脂, 双酚 F型环氧树脂, 酚醛环氧树脂, 聚甲基丙烯酸缩水甘油醚, 聚丙烯 基缩水甘油醚, 聚邻甲苯缩水甘油醚和聚苯基缩水甘油醚中的一种以上;
所述的亲水化合物 B为甲氧基聚乙二醇, 甲氧基聚乙二醇胺, 甲氧基聚乙二醇巯醇, 甲 氧基聚乙二醇羧酸, 聚乙二醇胺和聚乙二醇硫醇中的一种以上;
所述含氟化合物 C为 3-全氟辛基丙醇, 1H,1H,2H,2H-全氟十二烷硫醇, 3-全氟己基丙醇, 全氟己基乙醇, 全氟辛基乙醇, 全氟叔丁醇, 1H,1H,2H,2H-全氟己 -1-醇, 全氟丙酸, 全氟己 酸, 全氟辛酸, 全氟丁酸, 全氟庚酸, 1H,1H,2H,2H-全氟癸基硫醇, 1H,1H,2H,2H-全氟辛硫 醇, 1H,1H,2H,2H-全氟十二烷硫醇, 4-全氟辛基苯胺, ΙΗ,ΙΗ-全氟辛基胺和全氟辛基磺酸胺 中的一种以上;
所述的催化剂为三乙胺, 三甲胺, 四丁基氟化铵, Ν,Ν-二异丙基乙基胺, 苄基三乙基氯 化铵, 咪唑, 1-丙基咪唑, Ν-苄基咪唑, 十八烷基二甲基叔胺, 油基二甲基叔胺, 十二叔胺, 苄基三乙基氯化铵, 三乙醇胺, 三异丙醇胺和 Ν,Ν-二乙基乙醇胺中的一种以上;
所述的溶剂为四氢呋喃, 二甲基甲酰胺, 二氧六环, 二甲基亚砜, 二甲基乙酰胺, Ν-甲 基吡咯烷酮, 丁酮, 环己酮, 二苯醚和苯甲醚中的一种以上;
所述的环氧树脂 Α, 溶剂, 亲水性化合物 Β, 含氟化合物 C及催化剂之间的质量比 为: 1:10-100:1-10:1-10:0.00001-0.0001;
所述的溶剂 F为正己烷, 无水乙醚, 石油醚, 乙酸乙酯, 甲醇, 乙醇和水中的一种以上。
8、根据权利要求 1所述具有普适性的超双疏表面,其特征在于:所述催化剂 I为三乙胺, 三甲胺, 四丁基氟化铵, Ν,Ν-二异丙基乙基胺, 苄基三乙基氯化铵, 咪唑, 1-丙基咪唑, Ν- 苄基咪唑, 十八烷基二甲基叔胺, 油基二甲基叔胺, 十二叔胺, 苄基三乙基氯化铵, 三乙醇 胺, 三异丙醇胺和 Ν,Ν-二乙基乙醇胺中的一种以上;
所述溶剂 Ρ为四氢呋喃, 二甲基甲酰胺, 二氧六环, 二甲基亚砜, 二甲基乙酰胺, Ν-甲 基吡咯烷酮, 丁酮和三氟甲苯中的一种以上。
9、 根据权利要求 1所述的具有普适性的超双疏表面的制备方法, 其特征在于: 包括以下 步骤:
( 1 ) 基材表面预处理;
(2)将 Ν组分溶解于溶剂 Ρ中, 得到 Ν溶液; 再将 Μ组分分散于 Ν溶液中, 搅拌或超 声处理使微球均匀分散, 再加入催化剂 I, 得到一种超双疏水性涂料; 所述的 Ν组分为含水 性含氟环氧树脂, 所述的 Μ组分为水分散性超双疏微球;
(3 )将步骤(2)制备的超双疏水性涂料涂覆在步骤(1 )中基材表面,成膜, 再于 90-140 °C下交联 2-24 h, 得到超疏水 /疏油的材料, 即为一种超双疏表面;
步骤 (1 ) 中所述的基底材料为玻璃片、 棉布、 滤纸、 薄膜材料、 金属片、 塑料片、 木材 或水泥基材;
所述滤纸、 金属片、 塑料片、 薄膜材料、 木材、 水泥基材和棉布的预处理方法为: 将各 基底材料依次用乙醇、 水洗涤, 然后干燥;
玻璃片的预处理方法为: 将玻璃片在 piranha溶液中浸泡 5 h, 再依次用乙醇、 水洗涤, 然后干燥;
步骤 (2) 中所述的水分散性超双疏微球的 M组分, 水性含氟环氧树脂的 N组分, 催化 剂 I与溶剂 P的质量比为 1 : 5-100: 0.001-0.01:10-200;
步骤 (3 ) 中所述的涂覆方式为通过喷涂或浸涂的方式进行涂覆; 成膜温度为 30°C。
10、 根据权利要求 1所述的具有普适性的超双疏表面的应用, 其特征在于: 所述的具有 超双疏性表面的材料应用于生产生活方面, 包括军工设备的外层防护、 输油管道外层的防水 防腐、 厨卫用具、 汽车和飞机的挡风玻璃。
PCT/CN2014/070062 2013-11-29 2014-01-03 一种具有普适性的超双疏表面及其制备方法 WO2015078099A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310633591.1A CN103709882B (zh) 2013-11-29 2013-11-29 一种具有普适性的超双疏表面及其制备方法
CN201310633591.1 2013-11-29

Publications (1)

Publication Number Publication Date
WO2015078099A1 true WO2015078099A1 (zh) 2015-06-04

Family

ID=50403252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070062 WO2015078099A1 (zh) 2013-11-29 2014-01-03 一种具有普适性的超双疏表面及其制备方法

Country Status (2)

Country Link
CN (1) CN103709882B (zh)
WO (1) WO2015078099A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019010300A1 (en) * 2017-07-05 2019-01-10 Saudi Arabian Oil Company HYDROPHOBIC COATING FOR CORROSION PROTECTION AND METHOD OF MANUFACTURE
CN112538621A (zh) * 2020-11-09 2021-03-23 东南大学 一种荷叶状生物质超疏水仿生材料及其制备方法
CN113072855A (zh) * 2021-04-02 2021-07-06 昆山予蓝新材料科技有限公司 一种疏水表面稳定性强的疏水涂料及其制备方法
CN114477788A (zh) * 2022-01-27 2022-05-13 常州大学 多层次孔结构的超滑表面材料的简易制备方法及其制得的超滑表面材料

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106496521B (zh) * 2016-09-28 2019-01-11 顺德职业技术学院 可交联型含氟聚醚化合物的制备方法及其应用
US10400136B2 (en) * 2017-01-24 2019-09-03 Hrl Laboratories, Llc Multiphase waterborne coatings and methods for fabricating the same
CN108906547A (zh) * 2018-08-17 2018-11-30 西安交通大学 一种超双疏纳米复合涂层的喷涂制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004037812B4 (de) * 2004-08-04 2007-07-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verwendung eines ausgehärteten Gemisches enthaltend ein Matrixpolymer und eine hydrophobe und/oder oleophobe Komponente als schmutzabweisende Schutzschicht
CN102585244A (zh) * 2012-01-13 2012-07-18 中科院广州化学有限公司 一种具有高分散性和粘结性的含氟纳米微球及超双疏表面
CN102585245A (zh) * 2012-01-13 2012-07-18 中科院广州化学有限公司 一种高分散性超双疏微球及其制备的自清洁环氧树脂涂料
CN102604467A (zh) * 2012-01-13 2012-07-25 中科院广州化学有限公司 一种高分散型含氟纳米微球和环氧树脂超双疏性表面
CN102964544A (zh) * 2012-11-02 2013-03-13 中科院广州化学有限公司 水分散性可交联型含氟聚合物及在制备超双疏表面的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199280A (zh) * 2011-04-08 2011-09-28 浙江大学 一种含氟聚酯树脂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004037812B4 (de) * 2004-08-04 2007-07-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verwendung eines ausgehärteten Gemisches enthaltend ein Matrixpolymer und eine hydrophobe und/oder oleophobe Komponente als schmutzabweisende Schutzschicht
CN102585244A (zh) * 2012-01-13 2012-07-18 中科院广州化学有限公司 一种具有高分散性和粘结性的含氟纳米微球及超双疏表面
CN102585245A (zh) * 2012-01-13 2012-07-18 中科院广州化学有限公司 一种高分散性超双疏微球及其制备的自清洁环氧树脂涂料
CN102604467A (zh) * 2012-01-13 2012-07-25 中科院广州化学有限公司 一种高分散型含氟纳米微球和环氧树脂超双疏性表面
CN102964544A (zh) * 2012-11-02 2013-03-13 中科院广州化学有限公司 水分散性可交联型含氟聚合物及在制备超双疏表面的应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019010300A1 (en) * 2017-07-05 2019-01-10 Saudi Arabian Oil Company HYDROPHOBIC COATING FOR CORROSION PROTECTION AND METHOD OF MANUFACTURE
US11634593B2 (en) 2017-07-05 2023-04-25 Saudi Arabian Oil Company Method for fabricating a hydrophobic coating for corrosion protection
CN112538621A (zh) * 2020-11-09 2021-03-23 东南大学 一种荷叶状生物质超疏水仿生材料及其制备方法
CN113072855A (zh) * 2021-04-02 2021-07-06 昆山予蓝新材料科技有限公司 一种疏水表面稳定性强的疏水涂料及其制备方法
CN114477788A (zh) * 2022-01-27 2022-05-13 常州大学 多层次孔结构的超滑表面材料的简易制备方法及其制得的超滑表面材料
CN114477788B (zh) * 2022-01-27 2023-08-22 常州大学 多层次孔结构的超滑表面材料的简易制备方法及其制得的超滑表面材料

Also Published As

Publication number Publication date
CN103709882A (zh) 2014-04-09
CN103709882B (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2015078099A1 (zh) 一种具有普适性的超双疏表面及其制备方法
Anjum et al. Fabrication of coral-reef structured nano silica for self-cleaning and super-hydrophobic textile applications
WO2015078072A1 (zh) 两亲性含氟环氧树脂及其制备方法与其制备的超双疏表面
CN102304204B (zh) 一种含氟双功能性微球及其应用
CN110144158B (zh) 一种单组分聚合物纳米复合超疏水涂层材料及其制备方法
CN103709815B (zh) 一种水分散性超双疏微球及其制备方法与应用
Li et al. Water-based acrylate copolymer/silica hybrids for facile preparation of robust and durable superhydrophobic coatings
CN103588955A (zh) 一种含氟环氧树脂及其制备方法与其制备的超双疏表面
CN103665280B (zh) 一种多功能性含氟微球及其制备方法与应用
CN111019485B (zh) 一种耐摩擦的防覆冰涂层的制备方法
CN107033718A (zh) 一种适于广泛基体的超疏水/超疏油涂层及其制备方法
JP2014513174A (ja) 両疎媒性ブロックコポリマーおよびその用途
CN103724558A (zh) 一种草莓型结构的无机/有机含氟微球及其制备方法与应用
US11945957B2 (en) Aqueous composition and a method of producing durable and extremely efficient water repelling superhydrophobic materials at ambient condition thereof
CN112144287B (zh) 一种改性空心微球接枝润滑油制备超滑防污表面的方法
CN109536006B (zh) 一种聚砜超疏水表面的制备方法
WO2022227570A1 (zh) 一种多重交联超亲水织物及其制备方法
Jiang et al. Synthesis of superhydrophobic fluoro-containing silica sol coatings for cotton textile by one-step sol–gel process
Shen et al. Fabrication of UV curable coating for super hydrophobic cotton fabrics
CN103601891A (zh) 一种可交联氟硅树脂及其制备与在超双疏材料上的应用
CN114479089A (zh) 一种全氟聚醚嵌段改性聚己内酯及其微球薄膜与制备的疏水织物
Yang et al. Preparation of nano-silica with radial wrinkle structures for self-cleaning and superhydrophobic coatings
TW201311550A (zh) 奈米碳管懸浮液及其所製備之超疏水性薄膜
CN110565378A (zh) 一种用于油水分离的超疏水改性棉纤维及其制备方法
WO2015078081A1 (zh) 两亲性含氟纳米微球/含氟环氧树脂杂化体的制法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865326

Country of ref document: EP

Kind code of ref document: A1