WO2015078081A1 - 两亲性含氟纳米微球/含氟环氧树脂杂化体的制法及应用 - Google Patents

两亲性含氟纳米微球/含氟环氧树脂杂化体的制法及应用 Download PDF

Info

Publication number
WO2015078081A1
WO2015078081A1 PCT/CN2013/090697 CN2013090697W WO2015078081A1 WO 2015078081 A1 WO2015078081 A1 WO 2015078081A1 CN 2013090697 W CN2013090697 W CN 2013090697W WO 2015078081 A1 WO2015078081 A1 WO 2015078081A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
epoxy resin
solvent
catalyst
microspheres
Prior art date
Application number
PCT/CN2013/090697
Other languages
English (en)
French (fr)
Inventor
胡继文
邹海良
林树东
李妃
刘国军
苗磊
Original Assignee
中科院广州化学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科院广州化学有限公司 filed Critical 中科院广州化学有限公司
Publication of WO2015078081A1 publication Critical patent/WO2015078081A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/10Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/08Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the wettability is one of the important characteristics of a solid surface.
  • the wettability can be measured by the contact angle of water on the surface.
  • the water contact angle is usually 150.
  • the surface with a rolling angle of less than 10° is called a superhydrophobic surface, and the surface has an oil of more than 150.
  • the contact angle can be considered as a super oleophobic surface. If the static etch angle of water and oil on a surface is greater than 150° and the roll angle is less than 5°, the interface may be referred to as a super-dual interface.
  • the super-hydrophobic surface and the super-double surface have a certain self-cleaning function, that is, surface contaminants such as dust can be carried away by the falling water droplets without leaving any trace. Self-cleaning coatings have the advantages of water saving, energy saving and environmental protection, and have attracted more and more people's attention. It is one of the hotspots in the research of materials science.
  • the roughness of the solid surface and low surface energy are the most critical factors in the preparation of superhydrophobic or super-dual surfaces. Fluorochemicals and fluoropolymers are widely used in this field due to their low surface energy.
  • a common method is to blend inorganic nano/micro particles such as silica, titania, and ferroferric oxide with a fluoropolymer or to nano-Z. The micron-sized particles are fluorinated, and then the fluorinated nano/micron particles are applied to the surface of the material to construct a superhydrophobic or super-dual surface.
  • Patent 20 ⁇ 110 ⁇ 477 477 A preparation of a fluorine-containing bifunctional microsphere and its construction of a super-double surface are proposed.
  • the main method is to prepare a nano- or micro-scale particle containing a plurality of functional groups, such that the surface not only contains a fluorine-containing compound, but also a group capable of reacting with a matrix to form a covalent bond, and the surface is grafted with a
  • a fluorine compound and a nano- or micro-microsphere that can be chemically bonded to the substrate are sprayed on the surface of the substrate to construct a super-dual interface.
  • the coating prepared by the invention has excellent super-double-sparing characteristics, and the coating is bonded to the surface of the substrate by a covalent bond, so that the super-double-sparing property has better durability.
  • the substrate which can be treated by the method has certain limitations and must contain a reactive group (e.g., a hydroxyl group, a carboxyl group, an amino group, etc.), otherwise it does not have cohesiveness, and the fluorine-containing microspheres need to be dispersed in a fluorine-containing solvent.
  • Patent No. 20 110266897.9 proposes a method for assembling a film on a surface containing a reactive group by blending a fluorine-containing silicon-containing copolymer and silica, which can impart excellent super-double-sparing properties to the surface.
  • the fluorine-containing silicon-containing copolymer has a high cost and requires a blending assembly reaction, and the process is complicated, and the substrate needs to contain a reactive group and has no universality.
  • Patent 201110373304.9 proposes the use of atom transfer radical polymerization to graft crosslinkable monomer and fluorine-containing monomer on the surface of amino-modified inorganic microspheres to obtain cross-linkable super-double-crossing microspheres.
  • the fluorine-containing microspheres are assembled into a film. It has excellent super-double surface performance, not only has good hydrophobic oleophobic contact angle, but also has good acid and alkali resistance and good weather resistance.
  • the treatment process of the method is cumbersome, requires high reagents and equipment, and the fluorine-containing microspheres need to be dispersed in a fluorine-containing solvent, and the surface has no cohesive groups, so the adhesion is not very strong.
  • a primary object of the present invention is to provide a method for preparing an amphiphilic fluorine-containing nano microsphere/fluorine-containing epoxy resin hybrid.
  • Another object of the present invention is to provide an amphiphilic fluorine-containing nanosphere/fluorine-containing epoxy resin hybrid obtained by the above production method.
  • a further object of the present invention is to provide an amphiphilic fluorine-containing nanosphere/fluorine obtained by the above preparation method.
  • the present invention is as follows:
  • a method for preparing an amphiphilic fluorine-containing nano microsphere/fluorine-containing epoxy tree hybrid comprising the following steps:
  • step (2) Dissolving the epoxy group-encapsulated microspheres and epoxy resin hybrids obtained in step (1) in solvent E and sonicating at 10() ⁇ 1000 W for 2 ⁇ 5h, then at 80 ⁇ At 120 ° C and a stirring speed of 100 ⁇ '500 rpm, the hydrophilic compound and the catalyst D1 are added, and after reacting for 1.5 to 5 hours, the fluorine-containing compound and the catalyst D2 are further reacted for 1 to 5 hours, and the reaction is concentrated to a solid mass content. 50%, while maintaining the stirring speed, the water is added dropwise at a rate of lm:L/min ⁇ iOmL/miii, and the stirring speed is kept constant after the completion of the dropwise addition, and stirring is continued for 1 to 2 days.
  • the fluorine-containing nano microspheres/fluorine-containing epoxy resin hybrids are obtained in step (1) in solvent E and sonicating at 10() ⁇ 1000 W for 2 ⁇ 5h, then at 80 ⁇ At 120 ° C and a stirring speed of 100 ⁇ '500
  • the ultrasonic treatment power in the step (1) is 100 to 500 W, and the temperature is 35 to 7 () V; the addition speed of the epoxy resin and the catalyst D is 0.5', 0 g Zmi.
  • the mass ratio of the microspheres, solvent B, epoxy resin and catalyst D described in the step (1) is ! : 10 ⁇ ! 00:2 ⁇ 20:0 ⁇ 0.0001.
  • the microspheres in the step (1) are silica microspheres, titanium dioxide microspheres, iron oxide microspheres, calcium oxide microspheres, polyglycidyl methacrylate microspheres, and polystyrene microspheres.
  • the particle size is 50 ⁇ 1000 nm ;
  • the epoxy resin is bisphenol A epoxy resin, bisphenol F epoxy resin, novolac epoxy resin, polyglycidyl methacrylate, poly ortho-glycidyl ether And one of polyphenyl glycidyl esters having a molecular weight of i000 to 100,000;
  • the solvent B is tetrahydrofuran, cyclohexanone, butanone, p-xylene, dimethylformamide, dioxane, dimethyl sulfoxide, dimethylacetamide, N-methylpyrrolidone, diphenyl ether And more than one of anisole;
  • the catalyst D is triethylamine, tetrabutylammonium fluoride, diisopropylethylamine, N,N-dimethylaniline, octadecyldimethylamine, oleyldimethylamine And one or more of dodecylamine, benzyltriethylammonium chloride, triethanolamine, and imidazole.
  • the mass ratio of the epoxy group-bound microspheres to the epoxy resin hybrid, the solvent E, the hydrophilic compound, the catalyst D1, the fluorine-containing compound and the catalyst D2, which are described in the step (2) It is 1:50 500: 20:0.0000 0.001 : 1-20:0.00001-0.001.
  • the hydrophilic compound described in the step (2) has the formula X-R, wherein R is a compound structure containing a polyethylene glycol segment, and X is a carboxyl group, an amino group, a thiol group or a hydroxyl group.
  • the hydrophilic compound has the formula X-(C3 ⁇ 4-C3 ⁇ 4- 0) ⁇ - ⁇ , ⁇ :::: 50 ⁇ 1000, X is a carboxyl group, an amino group, a fluorenyl group or a hydroxyl group, and Y is H or C3 ⁇ 4.
  • the fluorine-containing compound described in the step (2) has the formula X-F, wherein F is a polymer chain containing a fluorine-containing polymer type, and X is a carboxyl group, an amino group, a thiol group or a hydroxyl group;
  • the solvent E is tetrahydrofuran, isopropanol, ethanol, methanol, cyclohexanone, butanone, dimethylformamide, dioxane, dimethyl sulfoxide, dimethylacetamide and N-methylpyrrolidone.
  • the catalysts D1 and D2 are all triethylamine, tetrabutylammonium fluoride, diisopropylethylamine, hydrazine, hydrazine-dimethylaniline, octadecyldimethylamine And one or more of oil-based dimethyl tertiary amine, dodeca-terminated amine, benzyltriethylammonium chloride, triethanolamine, and imidazole.
  • the fluorine-containing compound is 3 perfluorooctylpropanol, 1 1 ⁇ , 2 ⁇ , 2 ⁇ perfluorododecan thiol, 3-perfluorohexyl propanol, perfluorooctylethanol, perfluoro-tert-butyl Alcohol, perfluoro-2,5-dimethyl 3,6-dioxadecanoic acid, undecafluorohexanoic acid, perfluorooctanoic acid, perfluorobutyric acid, perfluoroheptanoic acid, 1 hydrazine, 1 fluorene, 2 fluorene, 2 fluorene, perfluoro ⁇ Amphiphilic fluorine-containing nanospheres/containing ones obtained by the above preparation method, one of thiol, 1H, 1 2H, 2H-perfluorooctyl thiol, perfluorodecylamine and perfluoro
  • the use of the amphiphilic fluorine-containing nano microsphere/fluorine-containing epoxy resin hybrid obtained by the above preparation method for preparing a super-double surface comprises the following steps: The amphiphilic fluorine-containing nanometer obtained by the above preparation method The ball/fluorine-containing epoxy resin hybrid is dissolved in a solvent, i00 ⁇ 1000W is sonicated for 10 ⁇ 60mi and then added at a speed of 100-500 rpm and added at a rate of 5 ⁇ 60 mL/miii to prepare a water dispersion.
  • a fluorine-containing microsphere solution further adding a mass ratio of the amphiphilic fluorine-containing nanosphere/fluoroepoxy wax hybrid, the catalyst to the solvent is 1:0.0001-0.001:0.1-100; solvent and water The mass ratio is 1:10-200;
  • the aqueous super-double-stripe paint obtained in step b is coated on the surface of the substrate pretreated by step a by spraying or dip coating, 20', ⁇ '30 under the film, and finally at 90 ⁇ i40 ° C
  • the super double sparse surface is obtained by combining 2 to 24 hours.
  • the substrate described in the step a is one of a glass piece, a cotton cloth, a filter paper, a wood or a cement substrate; wherein the pretreatment of the filter paper, the wood, the cement substrate and the cotton cloth is: sequentially washing with ethanol and water, Then drying; the pretreatment of the glass piece is: soaking the glass piece in the piranha solution for 1 to 2 days, followed by 3 ⁇ 4 ethanol, water washing, and then drying;
  • the solvent is tetrahydrofuran, isopropanol, ethanol, methanol, cyclohexanone, butanone, dimethylformamide, dioxane, dimethyl sulfoxide, dimethylacetamide and N methyl*rrolane.
  • One or more of the ketones; the catalyst is triethylamine, tetrabutylammonium fluoride, diisopropylethylamine, N,N-dimethylaniline, octadecyldimethylamine, oil More than one of dimethyl tertiary amine, dodecandamine, benzyltriethylammonium chloride, triethanolamine, and imidazole;
  • the piranha solution was a concentrated H 2 S0 4 and 3 ⁇ 40 2 mixture in a volume ratio of 7:3.
  • the above super double sparse surface is protected by the outer layer of the military equipment, the outer layer of the oil pipeline is waterproof and anticorrosive, and the kitchen and bathroom ) 3 ⁇ 4, automotive windshield and aircraft windshield applications.
  • the principle of the present invention is: Two important factors influencing the wettability of a solid surface are that the surface microstructure and surface of the solid are only capable, so two conditions must be met to prepare the super-double sparse material, and one is to construct a rough surface of micro-nano. The other is to introduce a layer of low surface energy material molecules.
  • a one-step method is used to introduce a living polymer coating (mainly an epoxy resin coating) on the surface of the microsphere while retaining part of the epoxy resin which is not grafted onto the surface of the microsphere. Then, through the reaction between epoxy and sulfhydryl, amino, carboxyl or hydroxyl groups, the surface of the nano-microspheres with epoxy polymer grafted on the surface!
  • hydrophilic compound and the fluorine-containing compound Into the hydrophilic compound and the fluorine-containing compound, while also bowing in the free epoxy resin!
  • the hydrophilic compound and the fluorine-containing compound are introduced, whereby the hydrophilic component and the fluorine-containing component can be introduced into the microspheres and the polymer in the same system in one step to obtain a fluorine-containing nanosphere/fluorine-containing epoxy.
  • the introduced microspheres provide conditions for the surface to construct a rough structure, and the surface is grafted with a fluorine-containing compound, so the microsphere itself can also construct a rough surface with low surface energy;
  • a low surface may be further provided, wherein the epoxy contained may also bond the fluorine-containing microspheres to the surface of the substrate, thereby improving the durability of the constructed super double-coating coating.
  • the above-mentioned fluorine-containing microspheres and fluorine-containing epoxy resin both contain a hydrophilic component, so that the above-mentioned fluorine-containing nanosphere/fluorocarbon epoxy hybrid can also achieve water dispersion.
  • the present invention has the following advantages and beneficial effects:
  • the present invention adopts a one-step method to prepare an epoxy type microsphere and an epoxy resin hybrid, and then simultaneously introduces a hydrophilic compound and a fluorine-containing compound into the surface of the epoxy type microsphere and the epoxy resin, thereby obtaining Fluorinated nano microspheres/fluorinated epoxy resin wax hybrids, this method is a simple and feasible preparation method of super double sparse materials, and is expected to be mass produced.
  • the epoxy group in the amphiphilic fluorine-containing nano microsphere/fluorine-containing epoxy resin hybrid prepared by the invention can realize the strong bonding between the fluorine-containing microspheres and the substrate through chemical bonds, and Most substrates are feasible (including textiles, polymers, ceramics, buildings, metal substrates, paper, etc.) and are universal; fluorochemicals provide a low surface interface and the resulting super-double surface is very good Resistant to washing and corrosion resistance.
  • amphiphilic fluorine-containing nano microsphere/fluorine-containing epoxy resin hybrid of the present invention in which a hydrophilic component can be introduced, the water dispersibility of the hybrid can be achieved, thereby avoiding ) 3 ⁇ 4 toxic organic solvents, It is prepared into an environmentally-friendly water-based super-double-coating coating; of course, according to the requirements of the construction process, no hydrophilic component is introduced, and only the fluorine-containing component is incorporated, thereby preparing an oil-soluble super-double-sparse coating.
  • Fig. 1 is a TEM image of the amphiphilic fluorine-containing nano microsphere/fluorine-containing epoxy resin hybrid obtained in Example 1.
  • Fig. 2 is an SEM image of the super-double-glassed glass piece obtained in Example 1.
  • microspheres, the solvent] 3, the epoxy resin C and the catalyst D have a mass ratio of 1:10:2:0; the microspheres are silica, and the particle size thereof is 100 ⁇ m; epoxy resin C Is polyglycidyl methacrylate, its molecular weight is 50,000; solvent B is dimethyl sulfoxide; catalyst D is imidazole;
  • Fluorine-containing nano microspheres/fluorine-containing epoxy resin hybrid TEM FIG. 1 of the microscopic morphology of the hybrid; black sphere unmodified silica microspheres in FIG. 1(a), (b), (c) and (d) are hybrids composed of silica and aqueous fluorine-containing epoxy resin micelles in Figure 1 (a), wherein the spherical material is silica, and the flocculent material contains water. Fluoroepoxy micelles, the results indicate that this hybrid system has been successfully prepared.
  • the mass ratio of the epoxy group-bound microspheres to the epoxy resin hybrid, solvent E, hydrophilic compound F, catalyst Di, fluorine compound G and catalyst D2 is 1:500:1 : 0.00001 : 1:0.00001: Hydrophilic compound: F is X-(CH 2 - CH 2 - 0) n Y, 11-50, X is a carboxyl group, ⁇ is a fluorine-containing compound G is perfluorodecylamine; solvent E is Tetrahydrofuran; catalysts D1 and D2 are flavors;
  • the amphiphilic fluorine-containing nano microsphere/fluorine-containing epoxy resin hybrid obtained in the step (1) is dissolved in the dissolved il El, first ultrasonically treated for 10 min, and stirred at a speed of 100 rpm while being accelerated thereto. Water was added dropwise at a rate of 5 mL/min to prepare a water-dispersible fluorine-containing microsphere solution, and then a catalyst D3 was added to obtain an aqueous super-double-sparse coating;
  • the mass ratio of the catalyst D3 to the solvent E1 is 1:0,0001:0,1, and the mass ratio of the solvent E1 to water is 1:10;
  • the catalyst is a mixture of the fluorine-containing microspheres/fluorine-containing epoxy resin;
  • D3 is imidazole, and solvent E1 is tetrahydrofuran;
  • aqueous super-double-stripe paint prepared in step b is sprayed on the surface of the substrate, formed into a film under 20 ⁇ 30 ,, and then placed in a 14CTC oven for 24 h to obtain a superhydrophobic / oleophobic material;
  • the base material described in the step a is a glass piece
  • the pretreatment of the glass piece is: soaking the glass piece in a piranha solution (a mixture of 7 ⁇ 3 volume and a mixture of 3 ⁇ 4 S0 4 and 3 ⁇ 40 2 in a volume ratio). Then, wash the mixture with ethanol and water in order, and then dry.
  • the microscopic topography of the obtained super double sparse glass piece is as shown in the SEM image. 2: (g) in the figure is the surface observed under low magnification. It can be seen that the surface is relatively smooth, and almost no nano-spheres are visible, but the magnification is further enlarged. As shown in (h) and (i), nano-microspheres attached to the surface thereof were observed, and the nano-spheres were firmly bonded to the glass surface by a fluorine-containing epoxy resin.
  • the mass ratio of the microsphere A, the solvent B, the epoxy resin C and the catalyst D is 1:100:20:0,0001;
  • the microsphere is titanium dioxide microsphere, the particle size is lOOOnm;
  • the epoxy resin C is polymethyl a condensed base oil acrylate having a molecular weight of 20,000;
  • the mass ratio of the microspheres to which the epoxy group is grafted to the epoxy group, the solvent E, the hydrophilic compound F, the catalyst D1, the fluorine compound G and the catalyst D2 is 500: 20 : 0,001 : 20 : 0.001.
  • the substance G is 1H, 1H, 2 2H-perfluorododecylmercaptan; the solvent E is dioxane; the catalysts D1 and D2 are diisopropylethylamine;
  • the substrate is a surface pretreatment of the textile; the pretreatment process of the cotton cloth is followed by washing with ethanol, water, and then drying;
  • the amphiphilic fluorine-containing nano microsphere/fluorine-containing epoxy resin hybrid obtained in the step (1) is dissolved in the solvent E1, and the iO mi is first ultrasonically stirred at a speed of 00 rpm while being at a speed of Water is added dropwise at a rate of 60 mL/min to prepare a water-dispersible fluorine-containing microsphere solution, and then a catalyst D3 is added to obtain an aqueous super-double-coating coating;
  • fluorine-containing nanospheres / fluorine-containing epoxy resin hybrid material and the mass ratio of catalyst D3 E1 solvent is 1: 0.00 10, El mass of the solvent to water ratio of 1:? 200
  • Catalyst D3 is diisopropylethylamine An amine, the solvent E1 is dioxane;
  • aqueous super-double-stripe paint prepared in step b is coated on the surface of the substrate by dip coating, formed into a film at 30 ° C, and then placed in an oven at 140 ° C for 24 h to obtain a Superhydrophobic/oleophobic cotton cloth.
  • Example 3
  • the mass ratio of the microsphere A, the solvent B, the epoxy resin C and the catalyst D is 1:80: ! 0: 0.0000b
  • the microspheres are polystyrene microspheres having a particle size of 100 nm; epoxy resin C is a phenolic epoxy tree a lipid having a molecular weight of 20,000; a solvent B being dimethyl sulfoxide; and a catalyst D being an oleyl dimethyl tertiary amine;
  • the mass ratio of the microspheres grafted with epoxy groups to the epoxy tree raft hybrid, solvent E, hydrophilic compound F, catalyst D1, fluorine compound G and catalyst D2 is 100: 5 : 0.00002 : 8: 0,00002;
  • fluorine-containing compound G is 1 1H, 2H, 2H perfluorodecyl group Mercaptan; solvent E is cyclohexanone; catalysts D1 and D2 are oleyl dimethyl tertiary amine;
  • the substrate is pretreated on the surface of the wood; the pretreatment of the wood is followed by washing with ethanol, water, and then drying b.
  • the amphiphilic fluorine-containing nanospheres/fluorine-containing epoxy resin obtained in the step (1) is hybridized.
  • the solution is dissolved in the solvent!
  • the mass ratio of the fluorine-containing nano microsphere/fluorine-containing epoxy resin hybrid, the catalyst D3 to the solvent E1 is 0.0002; 0.9, the mass ratio of the solvent El to water is 1:100; the catalyst D3 is the oil-based dimethyl tertiary amine. , the solvent E1 is cyclohexanone;
  • aqueous super-double-stripe paint prepared in step b is coated on the surface of the substrate by dip coating, 25ITF film formation, and then placed in an oven at 18 ° C for 18 h to obtain a super Hydrophobic Z oleophobic wood.
  • Example 4
  • the mass ratio of the microspheres grafted with epoxy groups to the epoxy resin hybrid, solvent E, hydrophilic compound F, catalyst D1, fluorine compound G and catalyst D2 is 1: 100: 8: 0.0005: 10 : 0,0005.
  • the hydrophilic compound F is X-(CH 2 - CH 2 - 0) n - Y, n-700, X is a fluorenyl group, Y is hydrazine; the fluorine-containing compound G is 1 ⁇ , 1 ⁇ , 2 ⁇ , 2 ⁇ -perfluorooctyl thiol Solvent oxime is butanone; catalysts D1 and D2 are decamethyl dimethyl tertiary amine;
  • the substrate is pretreated on the surface of the cement substrate, and the pretreatment of the cement substrate is in turn 3 ⁇ 4 ethanol, water washing, Then drying;
  • the amphiphilic fluorine-containing nano microsphere/fluorine-containing epoxy resin hybrid obtained in the step (1) is dissolved in the solvent E1, first ultrasonically treated for 40 min, and stirred at a speed of 300 rpm while being accelerated thereto. Water is added dropwise at a rate of 40 mL/min to prepare a water-dispersible fluorine-containing microsphere solution, and then a catalyst D3 is added to obtain an aqueous super-double-sparse coating;
  • the mass ratio of the fluorine-containing nano microsphere/fluorine-containing epoxy resin hybrid, the catalyst D3 to the solvent Ei is 0,001:80, the mass ratio of the solvent E1 to water is 1:200; the catalyst D3 is octadecyldimethyl a tertiary amine, the solvent is butyl ketone;
  • aqueous super-double-stripe paint prepared in step b is sprayed on the surface of the substrate, formed at 20 ° C, and then placed in an oven at 110 ° C for 22 h to obtain a kind of Super oleophobic cement substrate.
  • Example 5 The aqueous super-double-stripe paint prepared in step b is sprayed on the surface of the substrate, formed at 20 ° C, and then placed in an oven at 110 ° C for 22 h to obtain a kind of Super oleophobic cement substrate.
  • the mass ratio of the microsphere A, the solvent B, the epoxy resin C and the catalyst D is 1:100:1 (0.0001; the microsphere is a calcium oxide microsphere having a particle size of 100 iim; the epoxy resin C is a polyphenyl group) Glycidyl ester having a molecular weight of 70,000; solvent B is dimethylformamide; and catalyst D is imidazole.
  • step (1) The surface of the step (1) is grafted with an epoxy group-containing microsphere and an epoxy wax hybrid, dissolved in a solvent E, and after being ultrasonicated for 3 hours, it is placed in a 100-inch oil bath.
  • the stirring was carried out at 200 rpm, and the hydrophilic compound F and the catalyst D1 were further added dropwise. After the completion of the dropwise addition, the reaction was carried out for 5 hours, and the fluorine-containing compound G and the catalyst D2 were further added dropwise. After the completion of the dropwise addition, the reaction was further carried out for 2 hours, and the reaction was completed. Concentrated to solid To the extent of 50%, while maintaining the stirring speed, the water was added dropwise at a rate of 10 mL Zmh. After the completion of the dropwise addition, the stirring speed was kept constant, and stirring was continued for 2 days to obtain the desired two. Affinity fluorine-containing nano microspheres/fluorine-containing epoxy resin hybrids;
  • the mass ratio of the epoxy group-grafted microspheres to the epoxy resin hybrid, solvent E, hydrophilic compound F, catalyst D1, fluorine-containing compound G and catalyst D2 was b 6 : 0.0001 : 9: 0.0001.
  • the hydrophilic compound F is X-(C3 ⁇ 4-C3 ⁇ 4- 0) n - Y , n-800, X is a fluorenyl group, Y is H; the fluorine-containing compound G is perfluoroheptanoic acid; the solvent E is dimethylformamide; D1 and D2 are imidazoles;
  • a superhydrophobic/oleophobic cement substrate prepared by the above amphiphilic fluorine-containing nano microsphere/fluorine-containing epoxy resin hybrid, and the specific preparation process is:
  • the substrate is pretreated on the surface of the cement substrate
  • the amphiphilic fluorine-containing nano microsphere/fluorine-containing epoxy resin hybrid obtained in the step (1) is dissolved in the dissolved ⁇ E1, first ultrasonicated for 30 min, and stirred at a speed of 500 rpm. Water is added dropwise at a rate of 20 niLZmh to prepare a water-dispersible fluorine-containing microsphere solution, and then a catalyst D3 is added to obtain an aqueous super-double-coating coating;
  • fluorine-containing nanospheres fluorinated epoxy resin hybrid body mass / catalyst ratio E1 D3 and the solvent is I: 0.0005: 50, mass ratio of solvent to water E1 one eighty; D3 is imidazole catalyst, the solvent is E1 dimethylformamide;
  • aqueous super-double-stripe paint prepared in step b is coated on the surface of the substrate by dip coating, formed into a film at 28 Torr, and then placed in a 115-inch oven for 16 h to obtain a superhydrophobic / An oleophobic cement substrate.
  • WCA is the water contact angle
  • OCA is the oil contact angle
  • WSA is the water rolling angle.
  • Table i characterizes the adhesion of the super-double surface to the substrate by indicators such as acid and alkali resistance, washing resistance, and ultrasonic resistance.
  • test method for acidity and alkalinity is reference to the literature (Guang Li, Haiting Zheng, Yanxue Wang, Hu Wang, Qibao Dong, Ruke Bai.
  • a facile strategy for the febrication of highly stable superhydroplio ic cotton fabric using amphiphilic fluoriiiated iriblock azide copolymers The method mentioned in Polymer 2010, 51, 1940-1946), namely: soaking the prepared super-double surface separately in a solvent of different pH values, then taking out the sample at intervals, washing off the acid on the surface with water After the alkali, the contact angle is measured by an etching angle instrument.
  • test method for washing resistance is referred to the method mentioned in the literature (Dean Xiong and Guojun Liu. Dibloc-k-copolymer coated Water- and Oil-Repellent Cotton Fabrics. Langmuir 20i2, 28, 6911-69i8).
  • Ultrasonic test method Soak the super double surface in THF, because THF has good solubility for the above super double surface, and then use KQ-218 ultrasonic cleaner (Kunshan Ultrasonic Instrument Co., Ltd. Ultrasound, measuring the contact angle after different ultrasonic times, when the contact angle of water or oil is greater than 150 °, indicating that the hydrophobic or oleophobic properties of the material did not decrease. Until its contact angle is less than 150°, it indicates that the hydrophobic or oleophobic properties of its surface have been declining. Record this time and characterize its resistance to ultrasound by comparing the length of this time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Epoxy Resins (AREA)

Abstract

本发明公开了一种两亲性含氟纳米微球/含氟环氧树脂杂化体的制法及应用。所述制备方法包括以下步骤:将微球分散在溶剂B中,加入环氧树脂和催化剂D,保温反应,去除溶剂B,再真空干燥,得到表面接枝有环氧基团的微球与环氧树脂杂化体;将得到的产物溶解在溶剂E中,然后加入亲水化合物和催化剂D1,反应后,加入含氟化合物和催化剂D2反应,反应结束后浓缩溶剂E,最后加入水保持搅拌,即可得到所述含氟纳米微球/含氟环氧树脂杂化体。本发明制备的两亲性含氟纳米微球Z含氟环氧树脂杂化体中的环氧基团可实现含氟微球之间及其与基材通过化学键牢固结合,且对大部分基材可行,具有普适性。本发明方法简单可行,有望实现大规模生产。

Description

明 书
Figure imgf000003_0001
Figure imgf000003_0002
表面润湿性是固体表面的重要特征之一, 润湿性可) ¾表面上水的接触角来 衡量, 通常将水接触角在 150。以上、 滚动角小于 10°的表面称为超疏水表面,表 面对油拥有大于 150。的接触角, 可认为是超疏油表面。 若某一表面上的水和油 的静态接蝕角都大于 150°且其滚动角都小于 5°,则该界面可称之为超双疏界面。 超疏水表面和超双疏表面具备一定的自清洁功能, 即表面污染物如灰尘等可以 被滚落的水滴带走而不留下任何痕迹。 自清洁涂层具有节水、 节能、 环保等优 势, 越来越受到人们的广泛关注, 是目前材料学科研究的热点之一。
固体表面的粗糙度和低表面能是制备超疏水或超双疏表面最关键的影响因 素, 含氟化合物和含氟聚合物因其低表面能而广泛应用于该领域。 为了在玻璃、 金属等光滑表面构建超疏水或超双疏表面, 人们常用的方法是将二氧化硅、 二 氧化钛、 四氧化三铁等无机纳米 /微米粒子和含氟聚合物共混或将纳米 Z微米级粒 子氟化, 然后将氟化的纳米 /微米级粒子涂到材料表面从而构建超疏水或超双疏 表面。 这些方法中, 聚合物、 无机粒子和基底之间很难真正通过化学键合作 ^ 粘合在一起, 主要是靠物理吸附作用, 因此超双疏表面的耐久性不是很好。 另 外, 制备氟化无机粒子需要将含氟聚合物接枝到无机粒子表面的这种异相反应, 大部分报道都需要对无机粒子表面进行一系列处理, 步骤较为繁琐导致很难大 规模的产业化。 本研发团 ί认在超双疏领域经过不断的改进, 提出多种相关方面 的产品, 并形成多项相关方面的专利。
专利 20ί 110ί31477.Χ提出一种含氟双功能微球的制备及其应^于构筑超双 疏表面。 主要方法是制备一种含有多种官能团的纳米或微米级粒子, 使其表面 不仅含有含氟化合物, 还有能够与基质反应而形成共价键的基团, 再将这种表 面接枝有含氟化合物和可与基质进行化学键合的纳米或微米微球喷涂在基材表 面, 并以此构筑超双疏界面。 该发明所制备的涂层具有优异的超双疏特性, 且 涂层通过共价键与基材表面进行键合, 从而使得超双疏性能具有较好耐久性。 但是, 该法可处理的基材具有一定的局限性, 必须含有活性基团 (如羟基、 羧基、 氨基等), 否则不具备粘结性, 而且含氟微球需要分散在含氟溶剂中。
专利 20 110266897.9提出了一种利用含氟含硅共聚物和二氧化硅进行共混 后在含有活性基团的表面进行组装成膜, 可赋予表面很好的超双疏性能, 这种 方法利用较多的含氟含硅共聚物, 成本较高, 并且需要共混组装反应, 工艺比 较复杂, 而且基材需含活性基团, 不具有普适性。
专利 201110373304.9提出了利用原子转移自由基聚合在氨基改性无机微球 表面接枝可交联单体和含氟单体得到可交联的超双疏性微球, 该含氟微球组装 成膜得到超双疏表面性能优异, 不仅具有较好的疏水疏油接触角, 同时具有很 好的耐酸碱性, 也有较好的耐候性。 但是该方法的处理过程较为繁琐, 对试剂、 设备要求较高, 而且含氟微球需要分散在含氟溶剂中, 表面也没有粘结性基团, 因此粘接性也不是很强。
尽管上述专利解决了超双疏方面的诸多问题, 然后在大规模生产和实施的 过程中, 依然存在诸多的问题, 如方法复杂, 成本较高等。
因此, 开发一种简单且易于实现的方法制备一种绿色环保的水分散可交联 型含氟微球, 然后利用其构筑超疏水超疏油界面, 成为现代涂料及表面处理领 域日益增长的需求。 发明內容
为解决现有技术的缺点和不足之处, 本发明的首要目的在于提供一种两亲 性含氟纳米微球 /含氟环氧树脂杂化体的制备方法。
本发明的另一目的在于提供上述制备方法得到的两亲性含氟纳米微球 /含氟 环氧树脂杂化体。
本发明的再一目的在于提供上述制备方法得到的两亲性含氟纳米微球 /含氟 为实现上述发明目的, 本发明采) ¾如下技术方案:
一种两亲性含氟纳米微球 /含氟环氧树詣杂化体的制备方法,包括以下步骤:
( 1 )将微球分散在溶剂 B中,超声处理 0,5〜21ι后,在 80〜ί 20Ό下以 100〜500 ipm 的速度搅拌, 加入环氧树脂和催化剂 D, 保温反应 l〜'5li后, 去除溶剂 再将反应体系在 100〜i50°C下真空干燥 0.5〜2h,得到表面接枝有环氧基团的微球 与环氧树脂杂化体;
( 2 ) 将步骤 (1 ) 得到的表面接枝有环氧基团的微球与环氧树脂杂化体溶 解在溶剂 E中并在 10()~1000 W超声 2〜5h, 然后于 80~120 °C和搅拌速度为 100〜'500rpm的条件下, 加入亲水化合物和催化剂 D1 , 反应 i〜5h后, 再加入含 氟化合物和催化剂 D2反应 l〜5h, 反应结束后浓缩到固体质量含量为 50%, 在 保持搅拌速度不变的条件下, 以 lm:L/min〜iO mL/miii的速度滴加水, 滴加结束 之后保持搅拌速度不变, 继续搅拌1〜2天, 即可得到所述含氟纳米微球 /含氟环 氧树脂杂化体。
优选的, 步骤 (1 ) 中所述的超声处理的功率为 100〜500w、 温度为 35〜7() V; 所述环氧树脂和催化剂 D的加入速度为 0.5'、 0gZmi
步骤 (1 ) 中所述的微球、 溶剂 B、 环氧树脂和催化剂 D的质量比为 ! :10〜!00:2〜20:0〜0.0001。
优选的, 步骤 (1 ) 中所述微球为二氧化硅微球、 二氧化钛微球、 三氧化铁 微球、 氧化钙微球、 聚甲基丙烯酸缩水甘油酯微球和聚苯乙烯微球中的一种, 其粒径大小为 50〜1000nm; 所述环氧树脂为双酚 A型环氧树脂、 双酚 F型环氧 树脂、 酚醛环氧树脂、 聚甲基丙烯酸縮水甘油酯、 聚邻甲苯缩水甘油醚和聚苯 基缩水甘油酯中的一种, 其分子量为 i000~100000;
所述溶剂 B为四氢呋喃、 环己酮、 丁酮、 对二甲苯、 二甲基甲酰胺、 二氧 六环、 二甲基亚砜、 二甲基乙酰胺、 N-甲基吡咯烷酮、 二苯醚和苯甲醚中的一 种以上;
所述催化剂 D为三乙胺、 四丁基氟化铵、 二异丙基乙基胺、 N,N-二甲基苯 胺、 十八烷基二甲基叔胺、 油基二甲基叔胺、 十二叔胺、 苄基三乙基氯化铵、 三乙醇胺和咪唑中的一种以上。
优选的,歩骤(2)中所述的表面接枝有环氧基团的微球与环氧树脂杂化体、 溶剂 E、 亲水化合物、 催化剂 Dl、 含氟化合物与催化剂 D2的质量比为 1 :50 500: 20:0.0000 0.001 : 1-20:0.00001-0.001。
优选的, 步骤 (2 ) 中所述的亲水化合物的结构式为 X-R, 其中 R为含聚乙 二醇链段的化合物结构, X为羧基、 氨基、 巯基或羟基。
更优选的, 所述亲水化合物的结构式为 X- (C¾- C¾- 0)η- Υ, η::::50〜1000, X 为羧基、 氨基、 巯基或羟基, Y为 H或 C¾。
优选的, 步骤 (2) 中所述的含氟化合物的结构式为 X-F, 其中 F为含有含 氟聚合物型分子链, X为羧基、 氨基、 巯基或羟基;
所述溶剂 E为四氢呋喃、 异丙醇、 乙醇、 甲醇、 环己酮、 丁酮、 二甲基甲 酰胺、 二氧六环、 二甲基亚砜、 二甲基乙酰胺和 N 甲基吡咯烷酮中的一种以上; 所述催化剂 D1和 D2均为三乙胺、 四丁基氟化铵、 二异丙基乙基胺、 Ν,Ν- 二甲基苯胺、 十八垸基二甲基叔胺、 油基二甲基叔胺、 十二叔胺、 苄基三乙基 氯化铵、 三乙醇胺和咪唑中的一种以上。
更优选的, 所述含氟化合物为 3全氟辛基丙醇、 1 1Ή,2Η,2Η全氟十二垸 硫醇、 3-全氟己基丙醇、 全氟辛基乙醇、 全氟叔丁醇、 全氟— 2,5-二甲基 3,6 -二氧 杂壬酸、 十一氟己酸、 全氟辛酸、 全氟丁酸、 全氟庚酸、 1Η,1Η,2Η,2Η-全氟癸 基硫醇、 1H,1 2H,2H-全氟辛硫醇、 全氟壬基胺和全氟辛基磺酸胺中的一种以 上述制备方法得到的两亲性含氟纳米微球 /含氟环氧树脂杂化体。
上述制备方法得到的两亲性含氟纳米微球 /含氟环氧树脂杂化体在制备超双 疏表面中的应用, 包括如下步骤: .将上述制备方法得到的两亲性含氟纳米微球 /含氟环氧树脂杂化体溶解在 溶剂中, i00〜1000W超声处理 10~60mi 然后在 100~500rpm的速度搅拌的同 ^以 5~60mL/miii的速度加入水, 制备成一种水分散性含氟微球溶液; 再加入催 其中两亲性含氟纳米微球 /含氟环氧树腊杂化体、 催化剂与溶剂的质量比为 1 :0.0001-0.001 :0.1-100; 溶剂与水的质量比为 1 :10-200;
C. 将步骤 b得到的水性超双疏涂料通过喷涂或浸涂的方式涂覆在步骤 a预 处理后的基材表面, 20'、·'30Ό下成膜, 最后于 90〜i40°C交联 2〜24h, 得到所述超 双疏表面。
优选的, 步骤 a中所述的基材为玻璃片、 棉布、 滤纸、 木材或水泥基材的 一种; 其中滤纸、 木材、 水泥基材和棉布的预处理是: 依次用乙醇、 水洗涤, 然后干燥; 玻璃片的预处理是: 将玻璃片在 piranha溶液中浸泡 1〜2天, 再依次 )¾乙醇、 水洗涤, 然后千燥;
所述溶剂为四氢呋喃、 异丙醇、 乙醇、 甲醇、 环己酮、 丁酮、 二甲基甲酰 胺、 二氧六环、 二甲基亚砜、 二甲基乙酰胺和 N甲基 *咯烷酮中的一种以上; 所述催化剂为三乙胺、 四丁基氟化铵、 二异丙基乙基胺、 N,N-二甲基苯胺、 十八烷基二甲基叔胺、 油基二甲基叔胺、 十二叔胺、 苄基三乙基氯化铵、 三乙 醇胺和咪唑中的一种以上;
所述 piranha溶液为体积比为 7:3的浓 H2S04和 ¾02混合液。
上述超双疏表面在军工设备的外层防护、 输油管道外层的防水防腐、 厨卫 )¾具、 汽车挡风玻璃和飞机挡风玻璃中的应用。
本发明的原理是: 影响固体表面润湿性的两个重要因素是固体的表面微观 结构和表面只有能, 因此要制备超双疏材料必须满足两个条件, 一是需要构造 微纳米的粗糙表面, 另一是引入低表面能物质分子层。 本发明中利用一步法在 微球表面引入活性聚合物涂层 (主要是环氧树脂涂层), 同时保留部分未接枝到 微球表面上的环氧树脂。 然后再通过环氧与巯基、 氨基、 羧基或羟基之间的反 应, 在表面接枝有环氧聚合物的纳米微球表面弓!入亲水化合物和含氟化合物, 同时也在游离的环氧树脂中弓!入上述亲水化合物和含氟化合物, 从而可一步同 ^在同一个体系中的微球和聚合物中引入亲水性组分和含氟组分, 得到含氟纳 米微球 /含氟环氧树脂杂化体; 引入的微球为表面构筑粗糙结构提供条件, 同 其表面接枝有了含氟化合物, 因此该微球本身也可构筑低表面能的粗糙表面; 而含氟环氧树脂则可进一步提供低表面, 其中含有的环氧还可实现上述含氟微 球与基材表面之间的粘接, 从而提高构筑的超双疏涂层的耐久性。 另外上述含 氟微球和含氟环氧树脂的结构中都含有亲水性组分, 因此上述含氟纳米微球 /含 氟环氧树脂杂化体也可实现水分散。
与现有技术相比, 本发明具有以下优点及有益效果:
(1) 本发明采用一步法制备得到环氧型微球与环氧树脂杂化体,然后再同时 在上述环氧型微球表面和环氧树脂中引入亲水化合物和含氟化合物, 从而得到 含氟纳米微球 /含氟环氧树腊杂化体, 该方法是一种简单可行的超双疏材料的制 备方法, 有望大规模生产。
(2) 本发明制备的两亲性含氟纳米微球 /含氟环氧树脂杂化体中的环氧基团 可实现含氟微球之间及其与基材通过化学键牢固结合,且对大部分基材可行(包 括纺织物、 聚合物、 陶瓷、 建筑物、 金属基材、 纸片等), 具有普适性; 含氟化 合物可提供低表面界面, 所得超双疏表面具有很好的耐檫洗和耐腐蚀性。
(3) 本发明的两亲性含氟纳米微球 /含氟环氧树脂杂化体, 可在其中引入亲 水性组分, 则可实现该杂化体的水分散性, 从而可避免使) ¾有毒的有机溶剂, 制备成环保的水性超双疏涂料; 当然也可以根据施工工艺的需求, 不引入亲水 性组分, 只弓 i入含氟组分, 从而制备成油溶性的超双疏涂料。
图 1为实施例 1-得到的两亲性含氟纳米微球 /含氟环氧树脂杂化体的 TEM 图。
图 2为实施例 1得到的超双疏玻璃片的 SEM图。
下面结合实施例和附图对本发明作进一步详细的描述, 但本发明的实施方 式不限于此。
实施例 1
(一) 两亲性含氟纳米微球 /含氟环氧树脂杂化体的制备:
( 1 )将微球 A分散在溶剂 B中, 超声处理(超声功率为 100W, 温度为 35
V ) 05 h, 后放置在温度为 80°C的油浴锅中以速度为 l OOrpm 的搅拌速度搅拌, 再将环氧树脂 C和催化剂 D滴加到上述体系中(滴加速度为(I5g/min), 滴加结 束后, 保持上述温度反应 1-小时后, 通过减压蒸馏的方式除掉溶剂 再将上述 体系放置在 10(TC下的真空干燥箱中烘 0.5小时, 得到表面接枝有环氧基团的微 球与环氧树脂杂化体;
其中微球 、 溶剂] 3、 环氧树脂 C和催化剂 D的质量比为 1 : 1 0 : 2: 0; 所述的微球为二氧化硅, 其粒径大小为 100 iim; 环氧树脂 C为聚甲基丙烯酸缩 水甘油酯, 其分子量为 50000; 溶剂 B为二甲基亚砜; 催化剂 D为咪唑;
(2)将步骤(. 1 )得到的表面接枝有环氧基团的微球与环氧树脂杂化体溶解在 溶剂 E中, 超声 2小时后, 将其放置在 8CTC下油浴锅中, 搅拌速度为 l iOrpm 下搅拌, 再滴加亲水化合物 F和催化剂: D l, 滴加结束后反应 1小时, 再滴加含 氟化合物 G和催化剂 D2, 滴加结束后再反应 1小^, 反应结束后, 浓縮到固体 质量含量为 50%的程度, 在保持搅拌速度不变的条件下, 以 ImL/min的速度滴 加水, 滴加结束之后保持搅拌速度不变, 继续搅拌 天, 即可得到所需的两亲 性含氟纳米微球 /含氟环氧树脂杂化体; 该杂化体的微观形貌的 TEM图 1所示; 图 1(a)中的黑色圆球未改性的二氧化硅微球 ,(b),(c)和 (d)则图 1 (a)中二氧化硅与 水性含氟环氧树脂胶束所组成的杂化体, 其中球状的为二氧化硅, 絮状物质水 性含氟环氧胶束, 该结果表明这种杂化体系已经成功制备。
所述的表面接枝有环氧基团的微球与环氧树脂杂化体、溶剂 E、亲水化合物 F、催化剂 Di、含氟化合物 G与催化剂 D2的质量比为 1 :500: 1 :0.00001 :1:0.00001: 亲水化合物: F为 X- (CH2- CH2- 0)n Y, 11-50, X为羧基, ¥为 含氟化合物 G 为全氟壬基胺; 溶剂 E为四氢呋喃; 催化剂 D1和 D2为味 ;
(二) 一种超双疏性表面, 由上述两亲性含氟纳米微球 /含氟环氧树脂杂化 体制备得到, 其具体制备工艺是:
a.基材表面预处理;
b.将步骤 (一) 得到的两亲性含氟纳米微球 /含氟环氧树脂杂化体溶解在溶 齐 il El中, 先超声处理 10min, 以 lOOrpm的速度搅拌的同时向其中以速度为 5 mL/min的速度滴加水, 制备成一种水分散性含氟微球溶液, 再加入催化剂 D3 得到水性超双疏涂料;
其中两亲性含氟微球 /含氟环氧树詣杂化体, 催化剂 D3与溶剂 E1的质量比 为 1 :0,0001:0,1, 溶剂 E1与水的质量比 1: 10; 催化剂 D3为咪唑, 溶剂 E1为四 氢呋喃;
c.将步骤 b中制备得到的水性超双疏涂料通过喷涂的方式涂覆在基材表面, 20〜30Ό下成膜, 再放置在 14CTC烘箱中交联 24 h, 即可得到一种超疏水/疏油材 料;
其中, 歩骤 a中所述的基底材料为玻璃片, 该玻璃片的预处理是: 将玻璃 片在 piranha溶液 (体积比为 7:3的浓 ¾S04和 ¾02混合液)中浸泡一段吋间, 再 依次用乙醇、 水洗络, 然后干燥。 得到的超双疏玻璃片的微观形貌图如 SEM图 2所示: 图中的 (g ) 为低倍数下观察到的表面, 可看到该表面相对来讲还是比 较光滑, 几乎看不到任何纳米微球的存在, 但是进一步放大观察倍数, 如图(h) 和 (i ) 所示, 便可观察到附着在其表面上的纳米微球, 且该纳米微球被含氟环 氧树脂牢固的粘接在玻璃表面。 实施例 2
(一 ) 两亲性含氟纳米微球 Z含氟环氧树脂杂化体的制备:
( 1 )将微球 A分散在溶剂 B中, 超声处理(超声功率为 500W, 温度为 70 V ) 2 h, 后放置在温度为 20Ό的油浴锅中, 以速度为 500 rpm 的搅拌速度搅 拌, 再将环氧树脂 C和催化剂: D滴加到上述体系中 (滴加速度为 10g/miii), 滴 加结束后, 保持上述温度反应 5小时后, 通过减压蒸镏的方式除掉溶剂 再将 上述体系放置在 150Ό下的真空干燥箱中烘 2小时,得到表面接枝有环氧基团的 微球与环氧树脂杂化体;
其中微球 A、溶剂 B、环氧树脂 C和催化剂 D的质量比为 1 : 100 : 20 : 0,0001; 微球为二氧化钛微球, 其粒径大小为 lOOOnm; 环氧树脂 C为聚甲基丙烯酸缩水 油酯, 其分子量为 20000; 溶剂 B为丁酮; 催化剂 D为二异丙基乙基胺;
( 2 ) 将步骤 (1 ) 中的表面接枝有环氧基团的微球与环氧树腊杂化体溶解 在溶剂 E中,超声 5小时后,将其放置在 120Ό下油浴锅中,搅拌速度为 500rpm 下搅拌, 再滴加亲水化合物 F和催化剂 D1 , 滴加结束后反应 5小时, 再滴加含 氟化合物 G和催化剂 D2 , 滴加结束后再反应 5小时, 反应结束后浓缩到固体质 量含量为 50%的程度, 在保持搅拌速度不变的条件下, 以 ImL/mhi的速度滴加 水, 滴加结束之后保持搅拌速度不变, 继续搅拌 1天, 即可得到所需的两亲性 含氟纳米微球含氟环氧树脂杂化体;
表面接枝有环氧基团的微球与环氧树詣杂化体、 溶剂 E、 亲水化合物 F、催 化剂 D1、含氟化合物 G与催化剂 D2的质量比为 500: 20 : 0,001 : 20 : 0.001。 亲水化合物 F为 X- (CH2-CH2- σ)η Y, ii=1000 , X为巯基, Υ为 CH3 ; 含氟化合 物 G为 1H,1H,2 2H-全氟十二垸硫醇; 溶剂 E为二氧六环; 催化剂 D1和 D2 为二异丙基乙基胺;
(二)一种超疏水 /疏油棉布, 由上述两亲性含氟纳米微球 /含氟环氧树脂杂 化体制备得到, 其具体制备工艺是:
a.基材为纺织物的表面预处理; 棉布的预处理工艺是依次 ^乙醇、 水洗涤, 然后干燥;
b.将步骤 (一) 得到的两亲性含氟纳米微球 /含氟环氧树脂杂化体溶解在溶 剂 E1中, 先超声处理 iO mi 以 00 rpm的速度搅拌的同时向其中以速度为 60 mL/min的速度滴加水, 制备成一种水分散性含氟微球溶液, 再加入催化剂 D3 得到一种水性超双疏涂料;
其中含氟纳米微球 /含氟环氧树脂杂化体、催化剂 D3与溶剂 E1的质量比为 1: 0.00 10, 溶剂 El与水的质量比 1 : 200 ? 催化剂 D3为二异丙基乙基胺, 溶剂 E1为二氧六环;
c.将步骤 b中制备得到的水性超双疏涂料通过浸涂的方式涂覆在基材表面, 30°C下成膜, 再放置在 140°C烘箱中交联 24 h, 即可得到一种超疏水 /疏油棉布。 实施例 3
(一) 两亲性含氟纳米微球 /含氟环氧树脂杂化体的制备:
( 1 )将微球 A分散在溶剂 B中, 超声处理(超声功率为 300W, 温度为 60 V ) i i, 后放置在温度为 U0°C的油浴锅中以速度为 500 rpm 的搅拌速度搅拌, 再将环氧树脂 C和催化剂 D滴加到上述体系中 (滴加速度为 2 gZmin), 滴加结 束后, 保持上述温度反应 4小时后, 通过减压蒸馏的方式除掉溶剂13, 再将上述 体系放置在 120°C下的真空干燥箱中烘 L5小时, 得到表面接枝有环氧基团的微 球与环氧树脂杂化体;
微球 A、 溶剂 B、 环氧树脂 C和催化剂 D的质量比为 1 : 80: ! 0: 0.0000b 所述的微球为聚苯乙烯微球, 其粒径大小为 100 nm; 环氧树脂 C为酚醛环氧树 脂, 其分子量为 20000; 溶剂 B为二甲基亚砜; 催化剂 D为油基二甲基叔胺;
(2 ) 将步骤 (1 ) 中的表面接枝有环氧基团的微球与环氧树腊杂化体溶解 在溶剂 E中,超声 3小时后,将其放置在 nO°C下油浴锅中,搅拌速度为 300rpm 下搅拌, 再滴加亲水化合物 F和催化剂 D1 , 滴加结束后反应 3小时, 再滴加含 氟化合物 G和催化剂 D2 , 滴加结束后再反应 3小时, 反应结束后浓缩到固体质 量含量为 50%的程度, 在保持搅拌速度不变的条件下, 以 2 niL/min的速度滴加 水, 滴加结束之后保持搅拌速度不变, 继续搅拌 1天, 即可得到所需的水性含 氟纳米微球 /含氟环氧树脂杂化体;
表面接枝有环氧基团的微球与环氧树詣杂化体、 溶剂 E、 亲水化合物 F、催 化剂 D1、含氟化合物 G与催化剂 D2的质量比为 100: 5 : 0.00002 : 8: 0,00002; 亲水化合物 F为 X- (CH2- CH2- 0)n Y, η=800, X为氨基, Υ为 CH3 ; 含氟化合物 G为 1 1H,2H,2H全氟癸基硫醇; 溶剂 E为环己酮; 催化剂 D1和 D2为油基二 甲基叔胺;
(二)一种超疏水 /疏油木材, 由上述两亲性含氟纳米微球 /含氟环氧树脂杂 化体制备得到, 其具体制备工艺是:
a.基材为木材的表面预处理; 木材的预处理是依次用乙醇、 水洗涤, 然后干 b.将步骤 (一) 得到的两亲性含氟纳米微球 /含氟环氧树脂杂化体溶解在溶 齐 !| E1中, 先超声处理 60 mi 以 400 rpm的速度搅拌的同^向其中以速度为 50 mL/min的速度滴加水, 制备成一种水分散性含氟微球溶液, 再加入催化剂 D3 得到一种水性超双疏涂料;
其中含氟纳米微球 /含氟环氧树脂杂化体、催化剂 D3与溶剂 E1的质量比为 0.0002; 0.9, 溶剂 El与水的质量比 1 : 100; 催化剂 D3为油基二甲基叔胺, 溶剂 E1为环己酮;
c.将步骤 b中制备得到的水性超双疏涂料通过浸涂的方式涂覆在基材表面, 25ITF成膜, 再放置在 i l5°C烘箱中交联 18 h, 即可得到一种超疏水 Z疏油木材。 实施例 4
(一 ) 两亲性含氟纳米微球 /含氟环氧树脂杂化体的制备:
( 1 )将微球 A分散在溶剂 B中, 超声处理(超声功率为 500W , 温度为 70 °C ) l h, 后放置在温度为 120°C的油浴锅中搅拌以速度为 300 rpm 的搅拌速度 搅拌, 再将环氧树脂 C和催化剂 D滴加到上述体系中 (滴加速度为 iOg/min ) , 滴加结束后, 保持上述温度反应 5小时后, 通过减压蒸馏的方式除掉溶剂 B,再 将上述体系放置在 120Ό下的真空干燥箱中烘 1小^,得到表面接枝有环氧基团 的微球与环氧树脂杂化体;
微球 A、 溶剂 B、 环氧树脂 C和催化剂 D的质量比为 1 : 100: 2: 0; 微 球为二氧化硅微球, 其粒径大小为 50 nm; 环氧树脂 C为双酚 A型环氧树脂, 其分子量为 80000; 溶剂 B为二甲基亚砜; 催化剂 D为十八烷基二甲基叔胺;
(2 ) 将步骤 (1 ) 中的表面接枝有环氧基团的微球与环氧树詣杂化体溶解 在溶剂 E中,超声 3小时后,将其放置在 120Ό下油浴锅中,搅拌速度为 500rpm 下搅拌, 再滴加亲水化合物 F和催化剂 D1, 清加结束后反应 3小时, 再滴加含 氟化合物 G和催化剂 D2, 滴加结束后再反应 2小时, 反应结束后浓缩到固体质 量含量为 50%的程度, 在保持搅拌速度不变的条件下, 以 8 mL/min的速度滴加 水, 滴加结束之后保持搅拌速度不变, 继续搅拌 1天,, 即可得到所需的两亲性 含氟纳米微球 /含氟环氧树脂杂化体;
表面接枝有环氧基团的微球与环氧树脂杂化体、 溶剂 E、 亲水化合物 F、催 化剂 D1、含氟化合物 G与催化剂 D2的质量比为 1: 100: 8: 0.0005: 10: 0,0005。 亲水化合物 F为 X- (CH2- CH2- 0)n- Y, n-700, X为巯基, Y为 Η; 含氟化合物 G 为 1Η,1Ή,2Η,2Η-全氟辛硫醇; 溶剂 Ε为丁酮; 催化剂 D1和 D2为十 Λ垸基二甲 基叔胺;
(:: ) 一种超疏油水泥基材, 由上述两亲性含氟纳米微球 /含氟环氧树脂杂 化体制备得到, 其具体制备工艺是:
a.基材为水泥基材表面预处理, 水泥基材的预处理是依次) ¾乙醇、 水洗涤, 然后干燥;
b.将步骤 (一) 得到的两亲性含氟纳米微球 /含氟环氧树脂杂化体溶解在溶 剂 E1中, 先超声处理 40 min, 以 300 rpm的速度搅拌的同时向其中以速度为 40 mL/min的速度滴加水, 制备成一种水分散性含氟微球溶液, 再加入催化剂 D3 得到一种水性超双疏涂料;
其中含氟纳米微球 /含氟环氧树脂杂化体、催化剂 D3与溶剂 Ei的质量比为 0,001 : 80, 溶剂 E1与水的质量比 1 : 200; 催化剂 D3为十八烷基二甲基叔 胺, 溶剂 Εί为丁酮;
c.将步骤 b中制备得到的水性超双疏涂料通过喷涂的方式涂覆在基材表面, 20°C下成膜, 再放置在 110°C烘箱中交联 22 h, 即可得到一种超疏油水泥基材。 实施例 5
(一) 两亲性含氟纳米微球 Z含氟环氧树脂杂化体的制备:
( 1 )将微球 A分散在溶剂 B中, 超声处理(超声功率为 500W, 温度为 70 °C ) lh, 后放置在温度为 i lCTC的油浴锅中搅拌以速度为 200 rpm 的搅拌速度搅 拌, 再将环氧树脂 C和催化剂 D滴加到上述体系中 (滴加速度为 3g/min), 滴 加结束后, 保持上述温度反应 2小时后, 通过减压蒸镏的方式除掉溶剂 B, 再将 上述体系放置在 110Ό下的真空干燥箱中烘 1小^,得到表面接枝有环氧基团的 微球与环氧树脂杂化体;
微球 A、 溶剂 B、 环氧树脂 C和催化剂 D的质量比为 1 : 100: l( 0.0001; 微球为氧化钙微球, 其粒径大小为 100 iim; 环氧树脂 C为聚苯基缩水甘油酯, 其分子量为 70000; 溶剂 B为二甲基甲酰胺; 催化剂 D为咪唑。
(2 ) 将步骤 (1 ) 中的表面接枝有环氧基团的微球与环氧树腊杂化体, 溶 解在溶剂 E中,超声 3小时后,将其放置在 100Ό下油浴锅中,搅拌速度为 200rpm 下搅拌, 再滴加亲水化合物 F和催化剂 D1 , 滴加结束后反应 5小时, 再滴加含 氟化合物 G和催化剂 D2 , 滴加结束后再反应 2小时, 反应结束后浓缩到固体质 量含量为 50%的程度, 在保持搅拌速度不变的条件下, 以 l O mLZmh 的速度滴 加水, 滴加结束之后保持搅拌速度不变, 继续搅拌 2天,, 即可得到所需的两亲 性含氟纳米微球 /含氟环氧树脂杂化体;
表面接枝有环氧基团的微球与环氧树脂杂化体、 溶剂 E、 亲水化合物 F、催 化剂 D1、含氟化合物 G与催化剂 D2的质量比为 b 6: 0.0001 : 9: 0.0001。 亲水化合物 F为 X- (C¾- C¾- 0)n- Y , n-800, X为巯基, Y为 H; 含氟化合物 G 为全氟庚酸; 溶剂 E为二甲基甲酰胺; 催化剂 D1和 D2为咪唑;
(二)一种超疏水 /疏油水泥基材, 由上述两亲性含氟纳米微球 /含氟环氧树 脂杂化体制备得到, 其具体制备工艺是:
a.基材为水泥基材表面预处理;
b.将步骤 (一) 得到的两亲性含氟纳米微球 /含氟环氧树脂杂化体溶解在溶 齐 ϋ E1中, 先超声处理 30 min, 以 500 rpm的速度搅拌的同^向其中以速度为 20 niLZmh 的速度滴加水, 制备成一种水分散性含氟微球溶液, 再加入催化剂 D3 得到一种水性超双疏涂料;
其中含氟纳米微球 /含氟环氧树脂杂化体、催化剂 D3与溶剂 E1的质量比为 I: 0.0005 : 50, 溶剂 E1与水的质量比 1 : 80; 催化剂 D3为咪唑, 溶剂 E1为 二甲基甲酰胺;
c.将步骤 b中制备得到的水性超双疏涂料通过浸涂的方式涂覆在基材表面, 28Ό下成膜, 再放置在 115Ό烘箱中交联 16 h, 即可得到一种超疏水 /疏油水泥 基材。
Figure imgf000016_0001
Figure imgf000016_0002
表 1中, WCA为水接触角, OCA为油接触角, WSA为水滚动角度, (Dean Xiong and Guojmi Liu. Di'block- copolymer- coated Water- and Oil-Repellent Cotton Fabrics. Langmuir 201— 2,28,6911— - 6918)中提到的方法进 测试。
表 i通过耐酸碱性、 耐洗涤性、 耐超声性等指标来表征超双疏表面在基材 上的粘接力。
其中而才酸碱性的测试方法是参照文献 (Guang Li,Haiting Zheng, Yanxue Wang, Hu Wang,Qibao Dong,Ruke Bai. A facile strategy for the febrication of highly stable superhydroplio ic cotton fabric using amphiphilic fluoriiiated iriblock azide copolymers. Polymer 2010, 51,1940-1946)中提到的方法, 即: 将制备好的超双疏 表面分别浸泡在不同 pH值的溶剂中, 然后每隔一段时间取出样品, 用水洗掉 表面的酸碱之后, 再用接蝕角仪器测试其接触角, 当水或油的接触角大于 150°, 表示该材料的疏水或疏油性能没有下降。 直到其接触角小于 150°, 表示其表面 的疏水或疏油性能已经在下降了。 记录该时间, 通过比较这个时间的长短, 来 表征其耐酸碱性。
耐洗涤性的测试方法是参照文献(Dean Xiong and Guojun Liu. Dibloc—k- copolymer coated Water- and Oil-Repellent Cotton Fabrics. Langmuir 20i2,28,6911- 69i8)中提到的方法。
耐超声性的测试方法: 将超双疏表面浸泡在 THF 中, 因为 THF 对于上述 的超双疏表面都具有良好的溶解性, 然后釆用 KQ-218 型超声波清洗器 (昆山 市超声仪器有限公司) 超声, 测量不同超声时间后的接触角, 当水或油的接触 角大于 150°,表示该材料的疏水或疏油性能没有下降。直到其接触角小于 150°, 表示其表面的疏水或疏油性能已经在下降了。 记录该时间, 通过比较这个时间 的长短, 来表征其耐超声性。
由表 1 可以看出: 实施例 1 5的超双疏表面与基材键合牢靠、 粘结力强、
上述实施例为本发明较佳的实施方式, 但本发明的实施方式并不受上述实 施例的限制, 其他的任何未背离本发明的精神实质与原理下所作的改变、 修饰、 替代、 组合、 简化, 均应为等效的置换方式, 都包含在本发明的保护范围之内。

Claims

1、一种两亲性含氟纳米微球 /含氟环氧树脂杂化体的制备方法,其特征在于, 包括以下步骤:
( 1 )将微球分散在溶剂 B中,超声处理 0,5~2h后,在 80〜120 C下以 100 500 rpm 的速度搅拌, 加入环氧树腊和催化剂 D, 保温反应 5h后, 去除溶剂 B, 再将反应体系在 100〜15(TC下真空干燥 0.5〜2h,得到表面接枝有环氧基团的微球 与环氧树脂杂化体;
(2 ) 将步骤 (1 ) 得到的表面接枝有环氧基团的微球与环氧树脂杂化体溶 解在溶剂 E中并在 100 1000 W超声 2〜5h , 然后于 80 120 °C和搅拌速度为 i i)0〜500rpni的条件下, 加入亲水化合物和催化剂 D】, 反应 5h后, 再加入含 氟化合物和催化剂 D2反应 〜5h, 反应结束后浓缩到固体质量含量为 50%, 在 保持搅拌速度不变的条件下, 以 ImL/mii!〜 lO mL/miri的速度滴加水, 滴加结束 之后保持搅拌速度不变, 继续搅拌】〜 2天, 即可得到所述含氟纳米微球 /含氟环 氧树脂杂化体。
2、 根据权利要求 i所述的制备方法, 其特征在于, 步骤 (1 ) 中所述的超 声处理的功率为 100〜500w、 温度为 35〜70Ό ; 所述环氧树脂和催化剂 D的加入 速度为 0.5〜10g/min;
步骤 (1 ) 中所述的微球、 溶剂 B、 环氧树脂和催化剂 D的质量比为 I: 10-100:2-20:0-0.0001
3、 根据权利要求 1所述的制备方法, 其特征在于, 步骤 (υ 中所述微球 为二氧化硅微球、 二氧化钛微球、 三氧化铁微球、 氧化钙微球、 聚甲基丙烯酸 縮水 油酯微球和聚苯乙烯微球中的一种, 其粒径大小为 50'、 000nm; 所述环 氧树脂为双酚 A型环氧树脂、 双酚 F型环氧树脂、 酚醛环氧树脂、 聚甲基丙烯 酸缩水甘油酯、 聚邻甲苯缩水甘—油醚和聚苯基缩水甘油酯中的一种, 其分子量 为 1000-100000; 所述溶剂 B为四氢呋喃、 环己酮、 丁酮、 对二甲苯、 二甲基甲酰胺、 二氧 六环、 二甲基亚砜、 二甲基乙酷胺、 N-甲基吡咯垸酮、 二苯醚和苯甲醚中的一 种以上;
所述催化剂 D为三乙胺、 四丁基氟化铵、 二异丙基乙基胺、 N,N -二甲基苯 胺、 十八垸基二甲基叔胺、 油基二甲基叔胺、 十二叔胺、 苄基三乙基氯化铵、 三乙醇胺和眯唑中的一种以上。
4、 根据权利要求 1所述的制备方法, 其特征在于, 步骤 (2 ) 中所述的表 面接枝有环氧基团的微球与环氧树脂杂化体、 溶剂 E、 亲水化合物、催化剂 Di、 含 氟 化 合 物 与 催 化 剂 D2 的 质 量 比 为 1 :50-500: 1-20:0.00001-0.001 : 1-20:0.00001 -0.001;
步骤(2 ) 中所述的亲水化合物的结构式为 其中 R为含聚乙二醇链段 的化合物结构, X为羧基、 氨基、 巯基或羟基。
5、 根据权利要求 4所述的制备方法, 其特征在于, 所述亲水化合物的结构 式为 X- (CH2- C¾ 0)n- Υ, Ώ=50〜1000, X为羧基、 氨基、 巯基或羟基, Υ为 Η 或 C¾。
6、 根据权利要求 1-所述的制备方法, 其特征在于, 步骤 (2 ) 中所述的含 氟化合物的结构式为 X- F,其中 F为含有含氟聚合物型分子链, X为羧基、氨基、 巯基或羟基;
所述溶剂 E为四氢呋喃、 异丙醇、 乙醇、 甲醇、 环己酮、 丁酮、 二甲基甲 酰胺、 二氧六环、 二甲基亚砜、 二甲基乙酰胺和 N 甲基吡咯烷酮中的一种以上; 所述催化剂 D1和 D2均为三乙胺、 四丁基氟化铵、 二异丙基乙基胺、 Ν,Ν- 二甲基苯胺、 十八垸基二甲基叔胺、 油基二甲基叔胺、 十二叔胺、 苄基三乙基 氯化铵、 三乙醇胺和咪唑中的一种以上。
7、 根据权利要求 6所述的制备方法, 其特征在于, 所述含氟化合物为 3全 氟辛基丙醇、 lH,m,2H,2H -全氟十二垸硫醇、 3全氟己基丙醇、 全氟辛基乙醇、 全氟叔丁醇、 全氟- 2,5-二甲基 - 3,6-二氧杂壬酸、 十 氟己酸、 全氟辛酸、 全氟丁 酸、 全氟庚酸、 1 H,1H,2 2H-全氟癸基硫醇、 1 H,1H,2H,2H全氟辛硫醇、 全氟 壬基胺和全氟辛基磺酸胺中的一种以上。
8、权利要求 i〜7任一项所述制备方法得到的两亲性含氟纳米微球 /含氟环氧 树脂杂化体。
9、权利要求 1〜7任一项所述制备方法得到的两亲性含氟纳米微球 /含氟环氧 树脂杂化体在制备超双疏表面中的应用, 其特征在于, 包括如下步骤:
a. 基材表面预处理;
b.将权利要求 1〜7任一项制备方法得到的两亲性含氟纳米微球 /含氟环氧树 脂杂化体溶解在溶剂中, 100〜1000W超声处理 10~60min, 然后在 i00〜500rpm 的速度搅拌的同^以 5〜60mL/niin的速度加入水,制备成一种水分散性含氟微球 溶液; 再加入催化剂得到水性超双疏涂料;
其中两亲性含氟纳米微球 /含氟环氧树脂杂化体、 催化剂与溶剂的质量比为 1 :0.0001 -0.001 :0.1-100; 溶剂与水的质量比为 1 : 10-200;
c 将步骤 b得到的水性超双疏涂料通过喷涂或浸涂的方式涂覆在步骤 a预 处理后的基材表面, 20〜30°C下成膜, 最后于 90〜14(TC交联 2〜24h, 得到所述超 双疏表面。
10、 根据权利要求 9所述的应用, 其特征在于, 步骤 a中所述的基材为玻 璃片、 棉布、 滤纸、 木材或水泥基材的一种; 其中滤纸、 木材、 水泥基材和棉 布的预处理是: 依次用乙醇、 水洗涤, 然后干燥; 玻璃片的预处理是: 将玻璃 片在 piranha溶液中浸泡 天, 再依次 ffl乙醇、 水洗涤, 然后干燥;
所述溶剂为四氢呋喃、 异丙醇、 乙醇、 甲醇、 环己酮、 丁酮、 二甲基甲酰 胺、 二氧六环、 二甲基亚砜、 二甲基乙酰胺和 N甲基 itt咯垸酮中的一种以上; 所述催化剂为三乙胺、 四丁基氟化铵、 二异丙基乙基胺、 N,N -二甲基苯胺、 十八垸基二甲基叔胺、 油基二甲基叔胺、 十二叔胺、 苄基三乙基氯化铵、 三乙 醇胺和咪唑中的一种以上;
所述 piranha溶液为体积比为 7:3的浓 ¾S04和 02混合液。
PCT/CN2013/090697 2013-11-29 2013-12-27 两亲性含氟纳米微球/含氟环氧树脂杂化体的制法及应用 WO2015078081A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310628895.9 2013-11-29
CN201310628895.9A CN103613693B (zh) 2013-11-29 2013-11-29 两亲性含氟纳米微球/含氟环氧树脂杂化体的制法及应用

Publications (1)

Publication Number Publication Date
WO2015078081A1 true WO2015078081A1 (zh) 2015-06-04

Family

ID=50164420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090697 WO2015078081A1 (zh) 2013-11-29 2013-12-27 两亲性含氟纳米微球/含氟环氧树脂杂化体的制法及应用

Country Status (2)

Country Link
CN (1) CN103613693B (zh)
WO (1) WO2015078081A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11578066B1 (en) 2019-12-20 2023-02-14 Tenaya Therapeutics, Inc. Fluoroalkyl-oxadiazoles and uses thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106519111A (zh) * 2016-09-22 2017-03-22 东莞市标塑新材料有限公司 抗菌防指纹高分子微球及其制备方法和应用、抗菌防指纹涂层及其制备方法和应用
CN111393942B (zh) * 2020-04-29 2022-05-10 美盈森集团股份有限公司 一种超疏水涂层剂、透明超疏水涂层及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103408709A (zh) * 2013-08-08 2013-11-27 中科院广州化学有限公司 水性含氟聚合物和二氧化硅杂化材料及其制备而成的透明超双疏涂层
CN103408707A (zh) * 2013-08-08 2013-11-27 中科院广州化学有限公司 两亲性可交联氟硅树脂、水性涂料及其制备的超双疏涂层
CN103408705A (zh) * 2013-08-08 2013-11-27 中科院广州化学有限公司 一种水性环氧树脂及超双疏涂层及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495624B1 (en) * 1997-02-03 2002-12-17 Cytonix Corporation Hydrophobic coating compositions, articles coated with said compositions, and processes for manufacturing same
WO2007101174A2 (en) * 2006-02-27 2007-09-07 Arizona Board Of Regents For And On Behalf Of Arizona State University Digital magnetofluidic devices and methods
EP2342246A1 (en) * 2008-10-03 2011-07-13 Chamelic Ltd Ab diblock copolymers and applications for their use
CN102977291A (zh) * 2012-11-01 2013-03-20 中科院广州化学有限公司 一种可交联型含氟聚合物及其在制备超双疏表面中的应用
CN102911308B (zh) * 2012-11-19 2014-04-16 陕西科技大学 一种含氟聚丙烯酸酯/双尺寸纳米SiO2复合乳液的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103408709A (zh) * 2013-08-08 2013-11-27 中科院广州化学有限公司 水性含氟聚合物和二氧化硅杂化材料及其制备而成的透明超双疏涂层
CN103408707A (zh) * 2013-08-08 2013-11-27 中科院广州化学有限公司 两亲性可交联氟硅树脂、水性涂料及其制备的超双疏涂层
CN103408705A (zh) * 2013-08-08 2013-11-27 中科院广州化学有限公司 一种水性环氧树脂及超双疏涂层及其制备方法与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11578066B1 (en) 2019-12-20 2023-02-14 Tenaya Therapeutics, Inc. Fluoroalkyl-oxadiazoles and uses thereof
US11926622B2 (en) 2019-12-20 2024-03-12 Tenaya Therapeutics, Inc. Fluoroalkyl-oxadiazoles and uses thereof

Also Published As

Publication number Publication date
CN103613693B (zh) 2015-10-07
CN103613693A (zh) 2014-03-05

Similar Documents

Publication Publication Date Title
WO2015078072A1 (zh) 两亲性含氟环氧树脂及其制备方法与其制备的超双疏表面
WO2015078099A1 (zh) 一种具有普适性的超双疏表面及其制备方法
Zhang et al. High-adhesive superhydrophobic litchi-like coatings fabricated by in-situ growth of nano-silica on polyethersulfone surface
Zhou et al. Superhydrophobic and slippery liquid-infused porous surfaces formed by the self-assembly of a hybrid ABC triblock copolymer and their antifouling performance
CN103588955B (zh) 一种含氟环氧树脂及其制备方法与其制备的超双疏表面
CN110144158B (zh) 一种单组分聚合物纳米复合超疏水涂层材料及其制备方法
Chen et al. Preparation of superhydrophobic membranes by electrospinning of fluorinated silane functionalized poly (vinylidene fluoride)
CN104448960A (zh) 纳米二氧化钛/氧化锌超疏水复合涂层的制备方法
CN107033718A (zh) 一种适于广泛基体的超疏水/超疏油涂层及其制备方法
JP2014513174A (ja) 両疎媒性ブロックコポリマーおよびその用途
Schlaich et al. Fluorine-free superwetting systems: construction of environmentally friendly superhydrophilic, superhydrophobic, and slippery surfaces on various substrates
CN103709815B (zh) 一种水分散性超双疏微球及其制备方法与应用
CN105419627A (zh) 一种超疏油涂层及其制备方法
CN110922862A (zh) 一种纳米SiO2/改性环氧树脂超疏水涂层材料的制备方法
CN104073116A (zh) 一种超双疏涂层的制备方法
CN103665280B (zh) 一种多功能性含氟微球及其制备方法与应用
WO2015078081A1 (zh) 两亲性含氟纳米微球/含氟环氧树脂杂化体的制法及应用
Liu et al. Design and synthesis of robust superhydrophobic coating based on epoxy resin and polydimethylsiloxane interpenetrated polymer network
CN103724558A (zh) 一种草莓型结构的无机/有机含氟微球及其制备方法与应用
Zhu et al. Superhydrophobic coating with multiscale structure based on crosslinked silanized polyacrylate and nanoparticles
CN109536006B (zh) 一种聚砜超疏水表面的制备方法
CN105860120A (zh) 一种超疏水聚丙烯薄膜及其制备方法
CN103601891B (zh) 一种可交联氟硅树脂及其制备与在超双疏材料上的应用
Jiang et al. Synthesis of superhydrophobic fluoro-containing silica sol coatings for cotton textile by one-step sol–gel process
TW201311550A (zh) 奈米碳管懸浮液及其所製備之超疏水性薄膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898098

Country of ref document: EP

Kind code of ref document: A1