WO2015078072A1 - 两亲性含氟环氧树脂及其制备方法与其制备的超双疏表面 - Google Patents

两亲性含氟环氧树脂及其制备方法与其制备的超双疏表面 Download PDF

Info

Publication number
WO2015078072A1
WO2015078072A1 PCT/CN2013/089919 CN2013089919W WO2015078072A1 WO 2015078072 A1 WO2015078072 A1 WO 2015078072A1 CN 2013089919 W CN2013089919 W CN 2013089919W WO 2015078072 A1 WO2015078072 A1 WO 2015078072A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
fluorine
solvent
water
containing epoxy
Prior art date
Application number
PCT/CN2013/089919
Other languages
English (en)
French (fr)
Inventor
胡继文
邹海良
林树东
李妃
刘国军
杨洋
涂园园
Original Assignee
中科院广州化学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科院广州化学有限公司 filed Critical 中科院广州化学有限公司
Publication of WO2015078072A1 publication Critical patent/WO2015078072A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment

Definitions

  • Wettability is one of the important features of a solid surface. Wettability can be measured by the contact angle of water on the surface, usually at a water contact angle of 150. Above, the roll angle is less than 10.
  • the surface is called a superhydrophobic surface, and the surface has a contact angle of more than 150° to the oil, which is considered to be a superoleophobic surface. If the static contact angle of water and oil on a surface is greater than 150° and the roll angle is less than 5°, the interface can be referred to as a super double zonal surface.
  • the super-hydrophobic surface and the super-double surface have a certain self-cleaning function, that is, surface contaminants such as dust can be carried away by the falling water droplets without leaving any trace. Self-cleaning coatings have the advantages of water saving, energy saving and environmental protection, and have attracted more and more people's attention. It is one of the hotspots in the research of materials science.
  • Roughness and low surface energy of solid surfaces are the most critical factors in the preparation of superhydrophobic or super-dual surfaces. Fluoropolymers and fluoropolymers are widely used in this field due to their low surface energy.
  • a common method is to blend inorganic nano/micro particles such as silica, titania, and ferroferric oxide with a fluoropolymer or to nano/ The micron-sized particles are fluorinated, and then the fluorinated nano/micron particles are applied to the surface of the material to construct a superhydrophobic or super-dual surface.
  • Patent 20 110 ⁇ 10 31 477 477 A preparation of a fluorine-containing bifunctional microsphere and its application are used to construct a super-double surface.
  • the main method is to prepare a nano- or micro-scale particle containing a plurality of functional groups, such that the surface not only contains a fluoropolymer, but also a group capable of reacting with a matrix to form a covalent bond, and then grafting the surface
  • the fluoropolymer and nano or micro-microspheres that can be chemically bonded to the substrate are sprayed onto the surface of the substrate to construct a super-dual interface.
  • the coating prepared by the invention has excellent super-double-sparing characteristics, and the coating is bonded to the surface of the substrate by a covalent bond, so that the super-double-sparing property has better durability.
  • the substrate which can be treated by the method has certain limitations and must contain a reactive group (e.g., a hydroxyl group, a carboxyl group, an amino group, etc.), otherwise it does not have cohesiveness, and the fluorine-containing microspheres need to be dispersed in a fluorine-containing solvent.
  • Patent No. 20 110266897.9 proposes a method for assembling a film on a surface containing a reactive group by blending a fluorine-containing silicon-containing copolymer and silica, which can impart excellent super-double-sparing properties to the surface.
  • the fluorine-containing silicon-containing copolymer has a high cost and requires a blending assembly reaction, and the process is complicated, and the substrate needs to contain a reactive group and has no universality.
  • Patent 20 ill 037 330 4.9 proposes the use of atom transfer radical polymerization to graft crosslinkable monomers and fluoromonomers on the surface of amino-modified inorganic microspheres to obtain crosslinkable super-double hydrophobic microspheres.
  • the film formation has excellent super-double surface properties, not only has good hydrophobic oleophobic contact angle, but also has good acid and alkali resistance and good weather resistance.
  • the treatment process of the method is cumbersome, requires high reagents and equipment, and the fluorine-containing microspheres need to be dispersed in a fluorine-containing solvent, and the surface has no cohesive groups, so the adhesion is not very strong.
  • Another object of the present invention is to provide an amphiphilic fluorine-containing epoxy resin prepared by the above method.
  • a further object of the present invention is to provide a super-dual surface of the amphiphilic fluorine-containing epoxy wax prepared by the above method.
  • a method for preparing an amphiphilic fluorine-containing epoxy resin comprising the steps of: dissolving an epoxy resin in a solvent B at a reaction temperature of 60 to 120 ° C and a stirring speed of 10 () to 800 rpm; , adding a hydrophilic compound, a fluorine-containing compound and a catalyst at a rate of 0.1 to 100 g/mi, reacting for 4 to 10 hours, concentrating to a solid content of 50%, reprecipitating into a solvent F, and finally drying to remove the solvent F.
  • the amphiphilic fluorine-containing epoxy resin can be obtained.
  • the mass ratio of the epoxy resin, the solvent B, the hydrophilic compound, the fluorine-containing compound and the catalyst is i: 10 ⁇ i () 0: 10: 1 to 10: 0, 00001 ⁇ (!, 0001.
  • the epoxy resin is bisphenol A epoxy resin, bisphenol F epoxy resin, novolac epoxy resin, polyglycidyl methacrylate, poly-o-tolyl glycidyl ether and polyphenyl shrinkage -
  • the oil esters its molecular weight is lOOO-lOOOOOO
  • the solvent B is tetrahydrofuran, cyclohexanone, butanone, chloroform, acetone, p-xylene, toluene, trifluorotoluene, dimethylformamide, dioxane, dimethyl sulfoxide, dimethyl More than one of acetamide, N-methylpyrrolidone, diphenyl ether and anisole;
  • the solvent F is at least one of n-hexane, anhydrous diethyl ether, petroleum ether, ethyl acetate, methanol, ethanol and water.
  • the catalyst is triethylamine, tetrabutylammonium fluoride, diisopropylethylamine, N,N-dimethylaniline, octadecyldimethylamine, oleyl dimethyl
  • a tertiary amine dodecylamine, benzyltriethylammonium chloride, triethanolamine, and imidazole.
  • the hydrophilic compound has the formula XR, wherein R is a polyglycol-containing segment Structure, X is a carboxyl group, an amino group, a thiol group or a hydroxyl group.
  • the hydrophilic compound has the formula: X CH 2 CH 2 0)nY, wherein ⁇ -50 ⁇ 1000; X is a carboxyl group, an amino group, a fluorenyl group or a hydroxyl group; and hydrazine is hydrazine or CH 3 .
  • the fluorine-containing compound has the formula X-F, wherein F is a fluoropolymer-containing molecular chain, and X is a carboxyl group, an amino group, a thiol group or a hydroxyl group.
  • the fluorine-containing compound is 3-perfluorooctylpropanol, 1H, 1H, 2H, 2H-perfluorodecane:dialkylthiol, 3 perfluorohexylpropanol, perfluorooctylethanol, all Fluorobutanol, perfluoro-2,5-dimethyl-3,6-dioxadecanoic acid, undecafluorohexanoic acid, perfluorooctanoic acid, perfluorobutyric acid, perfluoroheptanoic acid, H, 1H, 2H, 2H One or more of perfluorodecyl mercaptan, 1H, 1H, 2H, 2H-perfluorooctyl mercaptan and perfluorooctylsulfonate.
  • amphiphilic fluorine-containing epoxy resin obtained by the above method is prepared.
  • a super-double surface is prepared as follows: The amphiphilic fluorine-containing epoxy resin prepared by the above method is dissolved in a solvent, inorganic nanoparticles and a catalyst are added, and uniformly stirred to prepare an amphiphilic fluorine-containing epoxy resin. The solution is then sonicated at 100 ⁇ 1000 W for 10 ⁇ 60 min, and then water is added dropwise at a rate of 5 ⁇ 60 mL/min while stirring at i00 ⁇ 500 rpm/mbi to prepare a water-based fluorine-containing epoxy resin coating;
  • the mass ratio of the amphiphilic fluorine-containing epoxy resin, solvent, inorganic nanoparticles and catalyst is ! :1 ⁇ 10:0 ⁇ 0.5:0.000 0.001; the mass ratio of solvent to water is 1:10 200;
  • the aqueous fluorine-containing epoxy resin coating prepared in step b is coated on the surface of the substrate by spraying or dipping, and formed into a film at 20 to 30 Torr, and then placed in a 90-140 ⁇ oven for crosslinking for 2 to 24 hours, that is, The super double sparse surface can be obtained.
  • the substrate material described in the step a is one of a glass piece, a cotton cloth, a filter paper, a wood and a cement substrate; wherein the pretreatment of the filter paper, the wood, the cement substrate and the cotton cloth is: sequentially washing with ethanol, water, Then drying; the pretreatment of the glass piece is: soaking the glass piece in piranha solution for 2 days, followed by washing with ethanol, water, and then drying;
  • the inorganic nanoparticles are silica microspheres, titanium dioxide microspheres, iron oxide microspheres or oxidation Calcium microspheres with a particle size of 50 40 () 0 mim
  • the solvent is tetrahydrofuran, cyclohexanone, butanone, p-xylene, dimethylformamide, dioxane, dimethyl sulfoxide, dimethylacetamide, N-methylpyrrolidone, diphenyl ether and More than one of anisole;
  • the catalyst is triethylamine, tetrabutylammonium fluoride, diisopropylethylamine, N,N-dimethylaniline, octadecyldimethylamine, oleyldimethylamine, More than one of dodecaamine, benzylethylammonium chloride, triethanolamine and taste;
  • the piranha solution was a concentrated H 2 S0 4 and 3 ⁇ 40 2 mixture in a volume ratio of 7:3.
  • the above super-double surface is applied to the outer layer of military equipment, the waterproof and anti-corrosion of the outer layer of the oil pipeline, the kitchen and bathroom appliances, the windshield of the car and the windshield of the aircraft.
  • the principle of the present invention is: epoxy resin is a broad and powerful cross-linking agent, and fluorine-containing compounds are the most widely used low-surface energy materials in the field of super-double sparse.
  • the epoxy resin is used as a main chain, and a reactive group contained in the fluorine-containing compound is subjected to a ring-opening reaction with a partial epoxy group in the epoxy resin main chain to obtain a fluorine-containing epoxy resin, which contains the resin.
  • the low surface energy fluorine-containing compound further contains an epoxy group having a broad crosslinking effect. Therefore, such fluorine-containing compounds have a very broad application field.
  • inorganic nanoparticles may be added to the above system to adjust the roughness of the final structuring surface.
  • the present invention has the following advantages and beneficial effects:
  • the present invention employs a chemical grafting method to graft a fluorine-containing compound into an epoxy wax while retaining a portion of the epoxy group, thereby ensuring that the fluorine-containing compound is firmly bonded to the polymer form.
  • the surface of the substrate allows the constructed super-double coating to have good durability.
  • the polymer has good affinity with the inorganic nanoparticles, so the addition of the inorganic nanoparticles can flexibly adjust the roughness of the finally constructed super-dual interface, and obtain a better super-double-draining table. Face.
  • the polymer backbone of the present invention may also provide an active point grafted hydrophilic polymer, and thus the polymer provided in the patent may also be prepared as an aqueous super-double-coating coating.
  • Example 1 is a water-based fluorine-containing epoxy resin I (1HNM) spectrum obtained in Example 2.
  • the figure shows that the cotton having the super double effect is obtained in the third embodiment.
  • the mass ratio of epoxy resin, solvent B, hydrophilic compound, fluorine compound D and catalyst E is 1:10:1:1:0.00001; epoxy resin A is bisphenol A epoxy resin, and its molecular weight is 625.
  • aqueous fluorine-containing epoxy resin prepared in the step (1) is dissolved in the solvent B1, and then the inorganic nanoparticle G and the catalyst E1 are added, and the mixture is uniformly stirred to prepare an amphiphilic fluorine-containing epoxy resin solution, first ultrasonic (super) Sound power is 400 W) After 10 min of treatment, water was added dropwise at a rate of 5 mL/miii while stirring at a speed of l () 0: rpm/min to prepare a water-based fluorine-containing epoxy resin coating;
  • the mass ratio of the amphiphilic fluorine-containing epoxy resin, the solvent B1, the inorganic nanoparticle G and the catalyst Ei is hb 0.000, the mass ratio of the solvent B1 to water is 1:10; the solvent B is tetrahydrofuran, and the catalyst E is triethylamine;
  • aqueous fluorine-containing epoxy resin coating prepared in step b is sprayed on the surface of the substrate, formed at 20 ° C, and then placed in a 90-inch oven for 2 h to obtain a Superhydrophobic/oleophobic material;
  • the base material described in the step a is a glass piece
  • the pretreatment process is: immersing the glass piece in a piranha solution (concentration of 7:3 in a concentrated mixture of 3 ⁇ 4 S0 4 and 3 ⁇ 40 2 ) for 2 days, and then Washing with ethanol, water, and then drying to obtain a glass piece with super double-sparing effect
  • aqueous fluorine-containing epoxy resin In the epoxy resin 1 A is dissolved in the solvent B, and a hydrophilic compound is added dropwise at a reaction temperature of 60 Torr and a stirring speed of 100 rpm (:, Fluorine-containing compound D and catalyst E, the dropping rate is 1_00 g/min. After the completion of the dropwise addition, the reaction is continued for 10 hours, and then concentrated to a solid mass content of 50%, and then reprecipitated into solvent F, and dried to obtain the desired Water-based fluorine-containing epoxy resin GMA-r-mPEGMA; the structural formula of the water-based fluorine-containing epoxy resin is as
  • Figure 1 contains 1H NMR images of aqueous epoxy resin P (GMA r-mPEGMA) and fluorinated epoxy resin P (GMA r-mPEGMA)-g-PFDT, respectively, showing P(GMA- r- mPEGMA)- PFDT relative to P(GM A- r- mPEGMA) after grafting of the polymer
  • the fluorine absorption peak is increased in the figure, and the epoxy absorption peak is weakened, thereby indicating that the aqueous fluorine-containing epoxy resin has been successfully synthesized;
  • the mass ratio between the epoxy resin A, the solvent] B, the hydrophilic compound (the fluorine compound D and the catalyst E is: 1: !00:10:10: 0.0001: the epoxy resin A is polymethacrylic acid shrinkage) Glyceryl ester (PGMA) having a molecular weight of 00000; solvent B is cyclohexanone; catalyst E is tetrabutylammonium fluoride; hydrophilic compound C is X-(CH 2 - CH 2 - 0) n - Y, n- 1000, X is an amino group, Y is CH 3 ; the fluorine-containing compound D is 1 1H, 2H, 2H-perfluorodecyl mercaptan (PFDT); solvent: F is anhydrous diethyl ether;
  • the mass ratio of the aqueous fluorine-containing epoxy resin, the solvent Bi, the inorganic nanoparticle G and the catalyst El is: h 10: 0.5 0,001; the mass ratio of the solvent B1 to water is 1 : 200; the inorganic nanoparticle G is the silica micro a ball having a particle size of 1000 ⁇ m; a solvent B1 being cyclohexanone; and a catalyst E1 being tetrabutylammonium fluoride;
  • aqueous fluorine-containing epoxy resin coating prepared in step b is coated on the surface of the substrate by dip coating, formed into a film at 30 Torr, and then placed in an oven at 140 ° C for 24 hours to obtain a kind of Super hydrophobic Z oleophobic wood.
  • Example 3
  • the mass ratio between the epoxy resin A, the solvent B, the hydrophilic compound C, the fluorine-containing compound D and the catalyst E is: i: 100:0: l : 0.00001;
  • the epoxy resin A is a poly-o-toluene oil-ether ether, Its molecular weight is 90000;
  • solvent B is dimethyl sulfoxide;
  • catalyst E is octadecyl dimethyl tertiary amine;
  • fluorochemical D is iH, l 23 ⁇ 42H-perfluorodecyl mercaptan;
  • solvent F is petroleum ether;
  • aqueous fluorine-containing epoxy resin prepared in the step (1) is dissolved in the solvent B1, and then the inorganic nanoparticle G and the catalyst E1 are added, and the mixture is uniformly stirred to prepare an aqueous fluorine-containing epoxy resin solution, first ultrasonically (the ultrasonic power is 300 W) was treated with 30 mm, stirred at 300 rpm/min, and water was added dropwise at a rate of 40 mL/miii to prepare a water-based fluorine-containing epoxy resin coating;
  • the mass ratio of the aqueous fluorine-containing epoxy wax, the solvent B1, the inorganic nanoparticle G and the catalyst E1 is 1: 7: 0, 2: 0.0005; the mass ratio of the solvent B1 to water is h 100; the inorganic nanoparticle G is the titanium dioxide micro
  • the ball has a particle size of 700 mM; the solvent Bi is dimethyl sulfoxide, and the catalyst Ei is octadecane e.
  • the aqueous fluorochemical epoxy resin coating prepared in step b is coated by dip coating. On the surface of the substrate, filming at 25 ° C, and then placed in an oven at 20 ° C for 18 h, a superhydrophobic / oleophobic cloth was obtained.
  • the obtained cotton cloth with super double sparse effect is shown in Fig. 2.
  • the modified cotton cloth prepared by the method in the present embodiment has a good hydrophobicity, and the unmodified cotton cloth is completely impregnated with the liquid. Therefore, the surface method can effectively realize the construction of the super double absorbent cotton cloth.
  • the epoxy resin A, the solvent] B, the hydrophilic compound (the mass ratio between the fluorine compound D and the catalyst E are: 1:80:8:9:0.00009; the epoxy resin A is poly-o-tolyl glycidyl ether) , the molecular weight is 9000; solvent B is a mixture of dimethylacetamide and N methyl il than fluorenone; the catalyst is oleyl dimethyl tertiary amine; the hydrophilic compound C is X- (C3 ⁇ 4-C3 ⁇ 4- 0 n - Y, n-900, X is a hydroxyl group, Y is C3 ⁇ 4; the fluorine-containing compound D is perfluorooctanoic acid; the solvent F is ethanol;
  • glass sheet pretreatment is: the glass sheet is immersed in piranha solution (concentrated H 2 S0 4 and 3 ⁇ 40 2 in a volume ratio of 7:3) for a period of time, and then Wash with ethanol, water, and then dry;
  • piranha solution concentrated H 2 S0 4 and 3 ⁇ 40 2 in a volume ratio of 7:3
  • aqueous fluorine-containing epoxy resin prepared in the step (1) is dissolved in the solvent B1, and then the inorganic nanoparticle G and the catalyst E1 are added, and the mixture is uniformly stirred to prepare an aqueous fluorine-containing epoxy resin solution, first ultrasonic (ultrasonic power) 100W) was treated for 10 min, and water was added dropwise at a rate of 10 mL/min while stirring at 100 rpm/min to prepare a water-based fluorine-containing epoxy resin coating;
  • the mass ratio of the aqueous fluorine-containing epoxy resin, the solvent B1, the inorganic nanoparticle G and the catalyst m is I: 8: 0.3: 0.0006; the mass ratio of the solvent B1 to water is 1 : 100; the inorganic nanoparticle G is the calcium oxide microsphere. , the particle size is 1000 nm; the solvent B1 is a mixture of dimethylacetamide and N-methylpyrrolidone, and the catalyst E1 is an oleyl dimethyl tertiary amine;
  • aqueous fluorine-containing epoxy resin coating prepared in step b is coated on the surface of the substrate by spraying, formed into a film at 25 Tf, and then placed in a 110 ⁇ oven for crosslinking for 10 h to obtain a superhydrophobic / oleophobic glass.
  • Example 5 The aqueous fluorine-containing epoxy resin coating prepared in step b is coated on the surface of the substrate by spraying, formed into a film at 25 Tf, and then placed in a 110 ⁇ oven for crosslinking for 10 h to obtain a superhydrophobic / oleophobic glass.
  • the particles G and the catalyst E are uniformly mixed to prepare an aqueous fluorine-containing epoxy resin solution, and the ultrasonic (ultrasonic power is 1000 W) is first treated at 40 miri, and stirred at 400 rpm/rain while the speed is 50 mL/mm. Water is added dropwise to prepare a water-based fluorine-containing epoxy resin coating;
  • the mass ratio of the aqueous fluorine-containing epoxy resin, the solvent B1, the inorganic nanoparticle G and the catalyst El is 1: 8: 0.4: 0.0008; the mass ratio of the solvent ⁇ to water is 1: 150; the inorganic nanoparticle G is the iron trioxide micro
  • the ball has a particle size of 800 nm; the solvent Bi is dioxane, and the catalyst E1 is triethanolamine; c. the aqueous fluorine-containing epoxy resin coating prepared in the step b is applied to the surface of the substrate by dip coating. The film was formed under 20 ,, and then placed in an oven at 120 ° C for 12 h to obtain a superhydrophobic Z oleophobic wood.
  • WCA is the water contact angle
  • OCA is the oil contact angle
  • WSA is the water rolling angle.
  • Table 1 shows the acid and alkali resistance of the super-double surface in the substrate by means of acid and alkali resistance, washing resistance, and ultrasonic resistance.
  • the hydrophobic or oleophobic properties did not decrease. Until the contact angle is less than 150°, it indicates that the hydrophobic or oleophobic properties of the surface have been declining. Record this time and characterize its acid and alkali resistance by comparing the length of this time.
  • Ultrasonic test method Soak the super double surface in THF, because THF has good solubility for the above super double surface, then use KQ-218 ultrasonic cleaner (Kunshan Ultrasonic Instrument Co., Ltd.) Ultrasound, measuring the contact angle after different ultrasonic times, when the contact angle of water or oil is greater than 150 °, indicating that the hydrophobic or oleophobic properties of the material did not decrease. Until its contact angle is less than 150°, it indicates that the hydrophobic or oleophobic properties of its surface have been declining. Record this time and characterize its resistance to ultrasound by comparing the length of this time.
  • the super-double surface of the embodiment 1 - 5 is firmly bonded to the substrate, has strong adhesion, is resistant to rubbing, and is resistant to washing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Paints Or Removers (AREA)

Abstract

 本发明公开了一种两亲性含氟环氧树脂及其制备方法与其制备的超双疏表面。所述方法包括以下步骤:将环氧树脂溶于溶剂 B中,然后在60~120℃及搅拌的条件下以0.1~100g/min的速度加入亲水化合物、含氟化合物和催化剂,再反应4~10h,冷却至室温,浓缩,再沉淀到溶剂F中,最后干燥即可得到所述两亲性含氟环氧树脂。本发明采用化学接枝的方法,将含氟化合物接枝到环氧树脂中,同时保留了部分环氧集团,从而确保含氟化合物以聚合物的形式牢固地粘接到基材表面,使得所构筑的超双疏涂层具有良好的耐久性。本发明方法实用性强,同时其合成方法也十分简单,因此本发明中得到的新型含氟环氧树脂的成本也较低。

Description

说 明 书
Figure imgf000003_0001
表面润湿性是固体表面的重要特征之一, 润湿性可以用表面上水的接触角 来衡量, 通常将水接触角在 150。以上、 滚动角小于 10。的表面称为超疏水表面, 表面对油拥有大于 150°的接触角, 可认为是超疏油表面。 若某一表面上的水和 油的静态接触角都大于 150°且其滚动角都小于 5° , 则该界面可称之为超双疏界 面。 超疏水表面和超双疏表面具备一定的自清洁功能, 即表面污染物如灰尘等 可以被滚落的水滴带走而不留下任何痕迹。 自清洁涂层具有节水、 节能、 环保 等优势, 越来越受到人们的广泛关注, 是目前材料学科研究的热点之一。
固体表面的粗糙度和低表面能是制备超疏水或超双疏表面最关键的影响因 素, 含氟聚合物和含氟聚合物因其低表面能而广泛应用于该领域。 为了在玻璃、 金属等光滑表面构建超疏水或超双疏表面, 人们常用的方法是将二氧化硅、 二 氧化钛、 四氧化三铁等无机纳米 /微米粒子和含氟聚合物共混或将纳米 /微米级粒 子氟化, 然后将氟化的纳米 /微米级粒子涂到材料表面从而构建超疏水或超双疏 表面。 这些方法中, 聚合物、 无机粒子和基底之间很难真正通过化学键合作用 粘合在一起, 主要是靠物理吸附作用, 因此超双疏表面的耐久性不是很好。 另 外, 制备氟化无机粒子需要将含氟聚合物接枝到无机粒子表面的这种异相反应, 大部分报道都需要对无机粒子表面进行一系列处理, 步骤较为繁琐导致很难大 规模的产业化。 本研发团队在超双疏领域经过不断的改进, 提出多种相关方面 的产品, 并形成多项相关方面的专利。
专利 20ί110ί31477.Χ提出一种含氟双功能微球的制备及其应用亍构筑超双 疏表面。 主要方法是制备一种含有多种官能团的纳米或微米级粒子, 使其表面 不仅含有含氟聚合物, 还有能够与基质反应而形成共价键的基团, 再将这种表 面接枝有含氟聚合物和可与基质进行化学键合的纳米或微米微球喷涂在基材表 面, 并以此构筑超双疏界面。 该发明所制备的涂层具有优异的超双疏特性, 且 涂层通过共价键与基材表面进行键合, 从而使得超双疏性能具有较好耐久性。 但是, 该法可处理的基材具有一定的局限性, 必须含有活性基团 (如羟基、羧基、 氨基等), 否则不具备粘结性, 而且含氟微球需要分散在含氟溶剂中。
专利 20 110266897.9提出了一种利用含氟含硅共聚物和二氧化硅进行共混 后在含有活性基团的表面进行组装成膜, 可赋予表面很好的超双疏性能, 这种 方法利用较多的含氟含硅共聚物, 成本较高, 并且需要共混组装反应, 工艺比 较复杂, 而且基材需含活性基团, 不具有普适性。
专利 20ill0373304.9提出了利用原子转移自由基聚合在氨基改性无机微球 表面接枝可交联单体和含氟单体得到可交联的超双疏性微球, 该含氟微球组装 成膜得到超双疏表面性能优异, 不仅具有较好的疏水疏油接触角, 同时具有很 好的耐酸碱性, 也有较好的耐候性。 但是该方法的处理过程较为繁琐, 对试剂、 设备要求较高, 而且含氟微球需要分散在含氟溶剂中, 表面也没有粘结性基团, 因此粘接性也不是很强。
尽管上述专利解决了超双疏方面的诸多问题, 然后在大规模生产和实施的 过程中, 依然存在诸多的问题, 如方法复杂, 成本较高等。
因此, 开发一种简单且易于实现的方法制备一种绿色环保的水分散可交联 型含氟微球, 然后利 ^其构筑超疏水超疏油界面, 成为现代涂料及表面处理领 域日益增长的需求。 为解决现有技术的缺点和不足之处, 本发明的首要目的在于提供一种制备 两亲性含氟环氧树脂的方法。
本发明的另一目的在于提供上述方法制备得到的两亲性含氟环氧树脂。 本发明的再一目的在亍提供由上述方法制备得到的两亲性含氟环氧树腊制 备的超双疏表面。
为实现上述发明目的, 本发明采用如下技术方案:
一种制备两亲性含氟环氧树脂的方法, 包括以下步骤: 将环氧树脂溶于溶 剂 B中, 在反应温度为 60〜120 °C, 搅拌速度为 10()~800 rpm的条件下, 以 0. i〜100g/m i的速度加入亲水化合物、 含氟化合物和催化剂, 反应 4~10h, 浓縮 到固含量为 50%日寸, 再沉淀到溶剂 F中, 最后干燥去除溶剂 F即可得到所述两 亲性含氟环氧树脂。
优选的, 所述环氧树脂、溶剂 B、 亲水化合物、 含氟化合物和催化剂的质量 比为 i: 10〜 i () 0: 10: 1〜 10: 0, 00001〜(! , 0001。
优选的, 所述环氧树脂为双酚 A型环氧树脂、 双酚 F型环氧树脂、 酚醛环 氧树脂、 聚甲基丙烯酸缩水甘油酯、 聚邻甲苯縮水甘油醚和聚苯基缩水— '油酯 中的一种; 其分子量为 lOOO-lOOOOOo
优选的, 所述溶剂 B为四氢呋喃、 环己酮、 丁酮、 氯仿、 丙酮、 对二甲苯、 甲苯、 三氟甲苯、 二甲基甲酰胺、 二氧六环、 二甲基亚砜、 二甲基乙酰胺、 N 甲基吡咯烷酮、 二苯醚和苯甲醚中的一种以上;
所述溶剂 F为正己垸、 无水乙醚、 石油醚、 乙酸乙酯、 甲醇、 乙醇和水中 的一种以上。
优选的, 所述催化剂为三乙胺、 四丁基氟化铵、 二异丙基乙基胺、 N,N -二 甲基苯胺、 十八垸基二甲基叔胺、 油基二甲基叔胺、 十二叔胺、 苄基三乙基氯 化铵、 三乙醇胺和咪唑中的一种以上。
优选的, 所述亲水化合物的结构式为 X-R, 其中 R为含聚乙二醇链段的化 合物结构, X为羧基、 氨基、 巯基或羟基。
更优选的, 所述亲水化合物的结构式为: X CH2 CH2 0)n-Y, 其中 η-50~1000; X为羧基、 氨基、 巯基或羟基; Υ为 Η或者 CH3
优选的,所述含氟化合物的结构式为 X- F,其中 F为含有含氟聚合物型分子 链, X为羧基、 氨基、 巯基或羟基。
更优选的, 所述含氟化合物为 3-全氟辛基丙醇、 1H,1H,2H,2H-全氟十:二烷 硫醇、 3全氟己基丙醇、 全氟辛基乙醇、 全氟叔丁醇、 全氟- 2,5二甲基 -3,6-二氧 杂壬酸、 十一氟己酸、 全氟辛酸、 全氟丁酸、 全氟庚酸、 H,1H,2H,2H全氟癸 基硫醇、 1H,1H,2H,2H-全氟辛硫醇和全氟辛基磺酸胺中的一种以上。
上述方法制备得到的两亲性含氟环氧树脂。
一种超双疏表面, 制备方法如下: . 将上述方法制备得到的两亲性含氟环氧树脂溶解在溶剂中, 加入无机纳 米粒子和催化剂, 搅拌均匀制备成两亲性含氟环氧树脂溶液, 然后 100〜1000 W 超声处理 10〜60min, 再以 i00〜500rpm/mbi的速度搅拌的同时向其中以 5~60 mL/min的速度滴加水, 制备成水性含氟环氧树脂涂料;
其中两亲性含氟环氧树詣、 溶剂、 无机纳米粒子与催化剂的质量比为 ! :1~10:0~0.5:0.000 0.001 ; 溶剂与水的质量比为 1 :10 200;
C . 将步骤 b制备得到的水性含氟环氧树脂涂料通过喷涂或浸润的方式覆盖 在基材表面, 20~30Ό下成膜, 再放置在 90〜140Ό烘箱中交联 2~24 h, 即可得到 所述超双疏表面。
优选的, 步骤 a中所述的基底材料为玻璃片、 棉布、 滤纸、 木材和水泥基 材的一种; 其中滤纸、 木材、 水泥基材和棉布的预处理是: 依次用乙醇、 水洗 涤, 然后干燥; 玻璃片的预处理是: 将玻璃片在 piranha溶液中浸泡 2天, 再依 次用乙醇、 水洗涤, 然后干燥;
所述无机纳米粒子为二氧化硅微球、 二氧化钛微球、 三氧化铁微球或氧化 钙微球, 其粒径为 50 40()0mim
所述溶剂为四氢呋喃、 环己酮、 丁酮、 对二甲苯、 二甲基甲酰胺、 二氧六 环、 二甲基亚砜、 二甲基乙酰胺、 N-甲基吡咯烷酮、 二苯醚和苯甲醚中的一种 以上;
所述催化剂为为三乙胺、 四丁基氟化铵、 二异丙基乙基胺、 N,N二甲基苯 胺、 十八烷基二甲基叔胺、 油基二甲基叔胺、 十二叔胺、 苄基 乙基氯化铵、 三乙醇胺和味 中的一种以上;
所述 piranha溶液为体积比为 7:3的浓 H2S04和 ¾02混合液。
上述超双疏表面在军工设备的外层防护、 输油管道外层的防水防腐、 厨卫 用具、 汽车挡风玻璃和飞机挡风玻璃中的应) ¾。
本发明的原理是: 环氧树脂是一种具有广泛而又强有力的交联剂, 而含氟 化合物则是超双疏领域中用到的最为广泛的低表面能物质, 在本专利中主要以 环氧树脂为主链, 利用含氟化合物中含有的活性基团与环氧树脂主链中的部分 环氧基团进行开环反应, 得到一种含氟环氧树脂, 该树脂中即含有低表面能的 含氟化合物, 又含有具有广泛交联效果的环氧基团。 因此, 这种含氟化合物具 有十分广阔的应用领域。 另外, 还可在上述体系中加入无机纳米粒子调节最终 构筑表面的粗糙度。
与现有技术相比, 本发明具有以下优点及有益效果:
(.1 ) 本发明采用化学接枝的方法, 将含氟化合物接枝到环氧树腊中, 同时 保留了部分环氧基团, 从而确保含氟化合物以聚合物的形式牢固地粘接到基材 表面, 使得所构筑的超双疏涂层具有良好的耐久性。
(2 )本发明中环氧组分和含氟组分可随意根据所需应用到的基材进行灵活 的调节, 因此实用性强。 同时其合成方法也十分简单, 因此本发明中得到的新
(3 ) 该聚合物与无机纳米粒子有很好的相亲性, 因此可通过添加无机纳米 粒子来灵活地调节最终构筑的超双疏界面的粗糙度, ^而获得更好的超双疏表 面。
(4) 本发明中的聚合物主链还可提供活性点接枝亲水性聚合物, 因此该专 利中提供的聚合物还可在制备成水性超双疏涂料。
图 1为实施例 2得到的水性含氟环氧树脂 I (1HNM ) 谱图
图 为实施例 3得到具有超双疏效果的棉
Figure imgf000008_0001
下面结合实施例和附图对本发明作进一步详细的描述, 但本发明的实施方 式不限于此。
实施例 1
(1)油性含氟环氧树脂的制备: 在环氧树脂 A溶于溶剂 B中, 在反应温度 为 60 , 搅拌速度为 100 rpm的条件下, 边滴加亲水化合物、 含氟化合物 D及 催化剂 E, 滴加速度为 O.lg/mi 滴加结束后, 继续反应 4小时后, 浓縮至固体 质量含量为 50%, 再沉淀到溶剂 F中, 千燥后即可得到所需的油性含氟环氧树 脂;
其中环氧树脂、 溶剂 B、 亲水化合物、 含氟化合物 D和催化剂 E的质量比 为 1:10:1:1:0.00001; 环氧树脂 A为双酚 A型环氧树脂, 其分子量为 625; 溶剂 B为四氢呋喃; 含氟化合物 D为十一氟己酸; 催化剂 E为三乙胺; 溶剂 F为正 己烷; 所述亲水化合物的结构式为: X- (CH2- C¾- 0)n- Y, 其中 IF=50; X为巯基; Y为 Ιί。
(2) 超双疏性表面的制备:
a.基材表面预处理;
b.将步骤(1)制备的水性含氟环氧树脂溶解在溶剂 B1中, 再加入无机纳米 粒子 G和催化剂 E1, 搅拌均匀后制备成两亲性含氟环氧树脂溶液, 先超声 (超 声功率为 400 W ) 处理 10min, 以 l ()0:rpm/min的速度搅拌的同时向其中以速度 为 5mL/miii的速度滴加水, 制备成水性含氟环氧树脂涂料;
其中两亲性含氟环氧树脂、 溶剂 Bl、 无机纳米粒子 G与催化剂 Ei的质量 比为 h b 0.000 溶剂 B1与水的质量比 1 : 10; 溶剂 B】为四氢呋喃, 催化 剂 E 为三乙胺;
e.将步骤 b中制备得到的水性含氟环氧树詣涂料通过喷涂的方式涂覆在基 材表面, 20°C下成膜, 再放置在 90Ό烘箱中交联 2 h, 即可得到一种超疏水 /疏 油材料;
其中, 步骤 a中所述的基底材料为玻璃片, 其预处理工艺是: 将玻璃片在 piranha溶液 (体积比为 7:3的浓 ¾S04和 ¾02混合液)中浸泡 2天, 再依次用乙 醇、 水洗涤, 然后干燥, 得到具有超双疏效果的玻璃片 实施倒 2
( 1 )水性含氟环氧树脂的制备: 在环氧树) 1 A溶于溶剂 B中, 在反应温度 为 60Ό , 搅拌速度为 100 rpm的条件下, 边分别滴加亲水化合物(:、 含氟化合 物 D及催化剂 E, 滴加速度为 1_00g/min, 滴加结束后, 继续反应 10小时后,浓 缩至固体质量含量为 50%, 再沉淀到溶剂 F中, 千燥后即可得到所需的水性含 氟环氧树脂 GMA- r- mPEGMA ; 该水性含氟环氧树脂的结构式如—
Figure imgf000009_0001
图 1中分别含有水性环氧树脂 P(GMA r- mPEGMA)和经过氟化之后的含氟 环氧树脂 P(GMA r- mPEGMA)-g- PFDT的 1H NMR图, 图中显示, 经过含氟聚 合物接枝后, 相对于 P(GM A- r- mPEGMA)来讲, P(GMA- r- mPEGMA)- PFDT 的图中多了含氟的吸收峰, 同时环氧吸收峰减弱, 从而表明该水性含氟环氧树 脂己经成功合成;
其中环氧树脂 A、 溶剂] B、 亲水化合物(、 含氟化合物 D及催化剂 E之间 的质量比为: 1: !00:10:10: 0.0001: 环氧树脂 A为聚甲基丙烯酸缩水甘油酯 (PGMA), 其分子量为 00000; 溶剂 B为环己酮; 催化剂 E为四丁基氟化铵; 亲水化合物 C为 X- (CH2- CH2- 0)n- Y, n-1000, X为氨基, Y为 CH3; 含氟化合 物 D为 1 1H,2H,2H-全氟癸基硫醇 (PFDT); 溶剂: F为无水乙醚;
(2) 超双疏性表面的制备:
a.基材 (木材)表面预处理; 木材是依次用乙醇、 水洗涤, 然后干燥;
b.将歩骤(1)制备的水性含氟环氧树脂溶解在溶剂 B1中, 再加入无机纳米 粒子 G和催化剂 Εί, 搅拌均匀后制备成水性含氟环氧树脂溶液, 先超声 (超声 功率为 200W)处理 6()min, 以 500 rpm/min的速度搅拌的同时向其中以速度为 60 mL/mi-π的速度滴加水, 制备成水性含氟环氧树脂涂料;
其中水性含氟环氧树脂、 溶剂 Bi、 无机纳米粒子 G与催化剂 El的质量比 为 ] h 10: 0.5 0,001; 溶剂 B1与水的质量比 1: 200; 无机纳米粒子 G为为二 氧化硅微球, 其粒径大小为 1000 iim; 溶剂 B1为环己酮, 催化剂 E1为四丁基 氟化铵;
c.将步骤 b中制备得到的水性含氟环氧树脂涂料通过浸涂的方式涂覆在基 材表面, 30Ό下成膜, 再放置在 140°C烘箱中交联 24h, 即可得到一种超疏水 Z 疏油木材。 实施例 3
(1)一种水性含氟环氧树脂的制备: 在环氧树脂 A溶于溶剂 B中, 在反应 温度为 120°C, 搅拌速度为 800 rpm的条件下, 边分别滴加亲水化合物(:, 含氟 化合物 D及催化剂£, 滴加速度为 80 g/min, 滴加结束后, 继续反应 8小时后, 浓縮至固体质量含量为 50%, 再沉淀到溶剂 F中, 干燥后即可得到所需的水性 含氟环氧树脂;
其中环氧树脂 A, 溶剂 B, 亲水化合物 C, 含氟化合物 D及催化剂 E之间 的质量比为: i : 100:0: l :0.00001 ;环氧树脂 A为聚邻甲苯缩水 油醚,其分子量为 90000; 溶剂 B为二甲基亚砜; 催化剂 E为十八垸基二甲基叔胺; 亲水化合物 C 为 X- (CH2 C¾ 0)η- Y , Ώ=800, X为巯基, 羟基, Υ为 C¾; 含氟化合物 D为 iH,l 2¾2H-全氟癸基硫醇; 溶剂 F为石油醚;
( 2 ) 一种超双疏性表面, 由以下方法制备得到:
a.基材 (棉布)表面预处理; 棉布是依次 ffl乙醇、 水洗涤, 然后干燥;
b.将步骤(1 )制备的水性含氟环氧树脂溶解在溶剂 B1中, 再加入无机纳米 粒子 G和催化剂 El, 搅拌均匀后制备成水性含氟环氧树脂溶液, 先超声 (超声 功率为 300 W)处理 30 mm, 以 300 rpm/min的速度搅拌的同时向其中以速度为 40 mL/miii的速度滴加水, 制备成水性含氟环氧树脂涂料;
其中水性含氟环氧树腊、 溶剂 Bl、 无机纳米粒子 G与催化剂 E1的质量比 为 1 : 7: 0,2: 0.0005; 溶剂 B1与水的质量比 h 100; 无机纳米粒子 G为二氧 化钛微球, 其粒径大小为 700 !im; 溶剂 Bi为二甲基亚砜, 催化剂 Ei为十八烷 e.将步骤 b中制备得到的水性含氟环氧树詣涂料通过浸涂的方式涂覆在基 材表面, 25°C下成膜, 再放置在 i 20°C烘箱中交联 18 h, 即可得到一种超疏水/ 疏油棉布。 得到的具有超双疏效果的棉布, 其效果图如图 2所示。 图中经过本 实施案例中方法制备的改性棉布具有良好疏水, 而未经过改性的棉布则被液体 完全浸渍掉。 从而表面该方法可有效地实现超双疏棉布的构筑。 实施例 4
( 1 )一种水性含氟环氧树脂的制备: 在环氧树脂 A溶于溶剂 B中, 在反应 温度为 110Ό , 搅拌速度为 200rpm的条件下, 边分别滴加亲水化合物(:、 含氟 化合物 D及催化剂 E, 滴加速度为 90g/min, 滴加结束后, 继续反应 8小时后, 浓缩至固体质量含量为 50%, 再沉淀到溶剂 F中, 干燥后即可得到所需的水性 含氟环氧树脂;
其中环氧树脂 A、 溶剂] B、 亲水化合物(、 含氟化合物 D及催化剂 E之间 的质量比为: 1 :80:8:9:0.00009; 环氧树脂 A为聚邻甲苯缩水甘油醚, 其分子量为 9000; 溶剂 B为二甲基乙酰胺和 N甲基 il比咯垸酮的混合物; 催化剂 Ε为油基二 甲基叔胺; 亲水化合物 C为 X- (C¾- C¾- 0)n- Y, n-900, X为羟基, Y为 C¾; 含氟化合物 D为全氟辛酸; 溶剂 F为乙醇;
(2 ) 一种超双疏性表面的制备:
a.基材(玻璃)表面预处理;玻璃片的预处理是:将玻璃片在 piranha溶液 (体 积比为 7:3的浓 H2S04和 ¾02混合液)中浸泡一段时间,再依次用乙醇、水洗涤, 然后干燥;
b.将步骤(1 )制备的水性含氟环氧树詣溶解在溶剂 B1中, 再加入无机纳米 粒子 G和催化剂 E1 , 搅拌均匀后制备成水性含氟环氧树脂溶液, 先超声 (超声 功率为 100W ) 处理 10 min, 以 lOO rpm/min的速度搅拌的同时向其中以速度为 lO mL/min的速度滴加水, 制备成水性含氟环氧树脂涂料;
其中水性含氟环氧树脂、 溶剂 Bl、 无机纳米粒子 G与催化剂 m的质量比 为 I: 8: 0.3 : 0.0006; 溶剂 B1与水的质量比 1 : 100; 无机纳米粒子 G为氧化 钙微球, 其粒径大小为 1000 nm; 溶剂 B1为二甲基乙酰胺和 N-甲基吡咯烷酮的 混合物, 催化剂 E1为油基二甲基叔胺;
c.将步骤 b中制备得到的水性含氟环氧树脂涂料通过喷涂的方式涂覆在基 材表面, 25 Tf成膜, 再放置在 110Ό烘箱中交联 10 h, 即可得到一种超疏水 / 疏油玻璃。 实施例 5
( 1 )一种水性含氟环氧树脂的制备: 在环氧树脂 Α溶于溶剂 Β中, 在反应 温度为 100Ό , 搅拌速度为 600 rpm的条件下, 边分别滴加亲水化合物 C、 含氟 化合物 D及催化剂 E, 滴加速度为 0.5g/min, 滴加结束后, 继续反应 5小时后, 浓缩至固体质量含量为 50%, 再沉淀到溶剂 F中, 干燥后即可得到所需的水性 含氟环氧树脂;
其中环氧树脂 A、 溶剂 B、 亲水化合物(:、 含氟化合物 D及催化剂 E之间 的质量比为: 1 :50:7:8:0.00009; 环氧树脂 A为聚邻甲苯缩水 1†油醚, 其分子量为 80000; 溶剂 B为二氧六环; 催化剂 E为三乙醇胺; 亲水化合物 C的结构式子 为 X (C¾- CH2- 0)η- Υ, ιι=700, X为羟基, Υ为 CH3;含氟化合物 D为 1H,1H,2H,2H- 全氟十二烷硫醇; 溶剂 F为石油醚;
(2 ) 一种超双疏性表面, 由以下方法制备得到:
a.基材 (木材) 预处理; 木材的预处理是依次用乙醇、 水洗涤, 然后干燥; b.将步骤(ί )制备的水性含氟环氧树脂溶解在溶剂 B1中, 再加入无机纳米 粒子 G和催化剂 El, 搅拌均匀后制备成水性含氟环氧树脂溶液, 先超声 (超声 功率为 1000 W) 处理 40 miri, 以 400 rpm/rain速度搅拌的同时向其中以速度为 50 mL/mm的速度滴加水, 制备成水性含氟环氧树脂涂料;
其中水性含氟环氧树脂、 溶剂 Bl、 无机纳米粒子 G与催化剂 El的质量比 为 1 : 8: 0.4: 0.0008; 溶剂 Βί与水的质量比 1 : 150; 无机纳米粒子 G为三氧 化铁微球, 其粒径大小为 800nm; 溶剂 Bi为二氧六环, 催化剂 E1为三乙醇胺; c.将步骤 b中制备得到的水性含氟环氧树脂涂料通过浸涂的方式涂覆在基 材表面, 20Ό下成膜, 再放置在 120°C烘箱中交联 12 h, 即可得到一种超疏水 Z 疏油木材。
Figure imgf000013_0001
Figure imgf000013_0002
表 1中, WCA为水接触角, OCA为油接触角, WSA为水滚动角度, (Den Xiong and Guojun Liu, Diblock; copolymer- coated Water-and Oil-Repeiieiii Cotton Fabrics. Langmuir 2012,28,69i 1-6918)中提到的方法进行测试。
表 1通过耐酸碱性、 耐洗涤性、 耐超声性等指标来表征超双疏表面在基材 其中耐酸碱性的测试方法是参照文献 (Guang Li,Haiting Zheng, Yanxue Wang, Hu Wang,Qibao Dong,Ruke Bai . A facile strategy for the fabrication of highly stable superhydrophobic cotton fabric using ampliiphilic iluorinated triblock azide copolymers. Polymer 2010, 51,1940 1946)中提到的方法, 即: 将制备好的超双疏 表面分别浸泡在不同 pH 值的溶剂中, 然后每隔一段时间取出样品, 用水洗掉 表面的酸碱之后, 再用接触角仪器测试其接触角, 当水或油的接触角大于 150°, 表示该材料的疏水或疏油性能没有下降。 直到其接触角小于 150° , 表示其表面 的疏水或疏油性能已经在下降了。 记录该时间, 通过比较这个时间的长短, 来 表征其耐酸碱性。
耐洗涤性的测试方法是参照文献(Dean Xiong and Guojun Liu. Diblock-copolymer-coated Water~and Oil-Repellent Cotton Fabrics. Langmuir 2012,28,6911- 6918)中提到的方法。
耐超声性的测试方法: 将超双疏表面浸泡在 THF 中, 因为 THF 对于上述 的超双疏表面都具有良好的溶解性, 然后采用 KQ- 218 型超声波清洗器 (昆山 市超声仪器有限公司) 超声, 测量不同超声时间后的接触角, 当水或油的接触 角大于 150°,表示该材料的疏水或疏油性能没有下降。直到其接触角小于 150°, 表示其表面的疏水或疏油性能已经在下降了。 记录该时间, 通过比较这个时间 的长短, 来表征其耐超声性。
由表 可看出: 实施例 1 -5的超双疏表面与基材键合牢靠、 粘结力强、 耐 摩檫、 耐洗涤。
上述实施倒为本发明较佳的实施方式, 但本发明的实施方式并不受上述实
Figure imgf000015_0001
替代、 组合、 简化, 均应为 置换方式, 都包含在本发明的保护范围之内

Claims

求. 书
1、 一种制备两亲性含氟环氧树脂的方法, 其特征在于, 包括以下步骤: 将 环氧树脂溶于溶剂 B中, 在反应温度为 60〜i2(TC, 搅拌速度为 i 00 800 rpm的 条件下, 以 0.1~100g/min的速度加入亲水化合物、 含氟化合物和催化剂, 反应 4~10h, 浓縮到固体质量含量为 50%时, 再沉淀到溶剂 F中, 最后干燥去除溶剂 F即可得到所述两亲性含氟环氧树脂。
2、 根据权利要求 1所述的方法, 其特征在于, 所述环氧树脂、 溶剂: B、 亲 水化合物、含氟化合物和催化剂的质量比为 I : i0〜100: l'、'i0: l~10:0.0000i~0,000i。
3、 根据权利要求 i所述的方法, 其特征在于, 所述环氧树脂为双酚 A型环 氧树脂、 双酚 F型环氧树脂、 酚醛环氧树脂、 聚甲基丙烯酸縮水 1†油酯、 聚邻 甲苯縮水 油醚和聚苯基縮水甘油酯中的一种; 其分子量为 1000400000;
所述溶剂 B为四氢呋喃、 环己酮、 丁酮、 氯仿、 丙酮、 对二甲苯、 甲苯、 三氟甲苯、 二甲基甲酰胺、 二氧六环、 二甲基亚砜、 二甲基乙酰胺、 N甲基吡 咯烷酮、 二苯醚和苯甲醚中的一种以上;
所述溶剂 F为正己烷、 无水乙醚、 石油醚、 乙酸乙酯、 甲醇、 乙醇和水中 的一种以上。
4、 根据权利要求 i所述的方法, 其特征在于, 所述催化剂为三乙胺、 四丁 基氟化铵、 二异丙基乙基胺、 N,N二甲基苯胺、 十八垸基二甲基叔胺、 油基二 甲基叔胺、 十二叔胺、 苄基三乙基氯化铵、 三乙醇胺和眯唑中的一种以上; 所述亲水化合物的结构式为 X-R,其中 R为含聚乙二醇链段的化合物结构, X为羧基、 氨基、 巯基或羟基。
5、根据权利要求 4所述的方法, 其特征在于,所述亲水化合物的结构式为: X- (C¾- CH2- 0)fi- Y , 其中 n=50〜i00( X为羧基、 氨基、 巯基或羟基; Y为 H 或者 C¾。
6、 根据权利要求 1所述的方法, 其特征在于, 所述含氟化合物的结构式为 ^基、 ¾L3«.
7、 根据权利要求 6所述的方法,
Figure imgf000017_0001
基丙醇、 iH,l 2H,2H-全氟十二垸硫醇、 3-全氟己基丙醇、 全氟辛基乙醇、 全氟 叔丁醇、 全氟 2,5 -二甲基 3,6-二氧杂壬酸、 十一氟己酸、 全氟辛酸、 全氟丁酸、 全氟庚酸、 1Η,ίΗ,2Η,2Η -全氟癸基硫醇、 1Η,1Η,2Η,2Η-全氟辛硫醇和全氟辛基 磺酸胺中的一种以上。
8、 权利要求 任一项方法制备得到的两亲性含氟环氧树脂。
9、 一种超双疏表面, 其特征在于, 由以下制备方法得到:
a. 基材表面预处理;
b, 将权利要求 1〜7任一项方法制备得到的两亲性含氟环氧树脂溶解在溶剂 中, 加入无机纳米粒子和催化剂, 搅拌均匀制备成两亲性含氟环氧树脂溶液, 然后 10()〜10()0 W超声处理 10〜60min, 再以 l()0〜500rpm/min的速度搅拌的同时 向其中以 5〜60 mL/min的速度滴加水, 制备成水性含氟环氧树脂涂料;
其中两亲性含氟环氧树脂、 溶剂、 无机纳米粒子与催化剂的质量比为 i :l〜i():0〜0,5:0.000 0.001 ; 溶剂与水的质量比为 1 :10-200:
c 将步骤 b制备得到的水性含氟环氧树脂涂料通过喷涂或浸润的方式覆盖 在基材表面, 20〜30°C下成膜, 再放置在 90〜140°C烘箱中交联 2〜24 h, 即可得到 所述超双疏表面。
10、 根据权利要求 9所述的超双疏表面, 其特征在于, 步骤 a中所述的基 底材料为玻璃片、 棉布、 滤纸、 木材和水泥基材的一种; 其中滤纸、 木材、 水 泥基材和棉布的预处理是: 依次用乙醇、 水洗涤, 然后干燥; 玻璃片的预处理 是: 将玻璃片在 piranha溶液中浸泡 2天, 再依次用乙醇、 水洗涤, 然后干燥; 所述无机纳米粒子为二氧化硅微球、 二氧化钛微球、 三氧化铁微球或氧化 钙微球, 其粒径为 50〜'1000sim;
;溶剂为四氢呋喃、 环己酮、 丁酮、 对二甲苯、 二甲基甲酰胺、 二氧六 环、 二甲基亚砜、 二甲基乙酰胺、 N甲基吡咯垸酮、 二苯醚和苯甲醚中的 以上;
所述催化剂为为 乙胺、 四丁基氟化铵、 二异丙基乙基胺、 Ν,Ν -二甲基苯 胺、 十八烷基二甲基叔胺、 油基二甲基叔胺、 十二叔胺、 苄基三乙基氯化铵、 三乙醇胺和眯唑中的一种以上;
所述 pira i 溶液为体积比为 7:3的浓 ¾S04和 ¾02混合液。
PCT/CN2013/089919 2013-11-29 2013-12-19 两亲性含氟环氧树脂及其制备方法与其制备的超双疏表面 WO2015078072A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310629124.1A CN103626957B (zh) 2013-11-29 2013-11-29 两亲性含氟环氧树脂及其制备方法与其制备的超双疏表面
CN201310629124.1 2013-11-29

Publications (1)

Publication Number Publication Date
WO2015078072A1 true WO2015078072A1 (zh) 2015-06-04

Family

ID=50208428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089919 WO2015078072A1 (zh) 2013-11-29 2013-12-19 两亲性含氟环氧树脂及其制备方法与其制备的超双疏表面

Country Status (2)

Country Link
CN (1) CN103626957B (zh)
WO (1) WO2015078072A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104558619A (zh) * 2014-12-29 2015-04-29 中科院广州化学有限公司 一种两亲性氟硅树脂和制备方法及其制成的超双疏表面材料
CN105153357B (zh) * 2015-10-27 2017-06-09 临沂大学 一种氟封端的环氧聚合物和制备方法及其在制备疏水表面的应用
CN106496521B (zh) * 2016-09-28 2019-01-11 顺德职业技术学院 可交联型含氟聚醚化合物的制备方法及其应用
CN111138938B (zh) * 2018-11-05 2021-04-23 北京化工大学 一种以氟化环氧树脂为基体的超疏水复合材料、制备方法及超疏水表面
CN114163648B (zh) * 2020-09-11 2022-08-05 海洋化工研究院有限公司 一种有机氟改性环氧树脂、制备方法及防腐涂料
CN112646483A (zh) * 2020-11-04 2021-04-13 泗县钧科新材料科技有限公司 一种环保水性漆及其制备方法
CN114381027B (zh) * 2022-03-10 2023-03-28 中国科学院兰州化学物理研究所 一种氟化环氧树脂黏土矿物超双疏防水透气膜的制备方法
CN114752292A (zh) * 2022-04-24 2022-07-15 扬州工业职业技术学院 一种用于自清洁玻璃的高分子镀膜液及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364923A (en) * 1992-09-30 1994-11-15 Dow Corning Toray Silicone Co., Ltd. Organopolysiloxane graft epoxy resins and a method for the preparation thereof
WO2000040634A2 (en) * 1998-12-30 2000-07-13 Hercules Incorporated Modified epoxies for paper sizing
DE10332197A1 (de) * 2003-07-15 2005-02-10 Synthopol Chemie Dr.Rer.Pol. Koch Gmbh & Co Kg Harze mit chemisch gekoppelten Perfluoralkylverbindung(en) und Verfahren zu ihrer Herstellung
CN102977292A (zh) * 2012-11-07 2013-03-20 中科院广州化学有限公司 两亲性可交联含氟聚合物及其在制备超双疏表面中的应用
CN103408692A (zh) * 2013-08-08 2013-11-27 中科院广州化学有限公司 一种水分散可交联性无规含氟聚合物及构筑的超双疏涂层

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585244B (zh) * 2012-01-13 2013-08-07 中科院广州化学有限公司 一种具有高分散性和粘结性的含氟纳米微球及超双疏表面
CN102585243B (zh) * 2012-01-13 2013-06-12 中科院广州化学有限公司 一种功能性含氟微球及由其构筑的自清洁表面
CN102604467B (zh) * 2012-01-13 2013-12-25 中科院广州化学有限公司 一种高分散型含氟纳米微球和环氧树脂超双疏性表面
CN102977291A (zh) * 2012-11-01 2013-03-20 中科院广州化学有限公司 一种可交联型含氟聚合物及其在制备超双疏表面中的应用
CN103408707B (zh) * 2013-08-08 2016-06-01 中科院广州化学有限公司 两亲性可交联氟硅树脂、水性涂料及其制备的超双疏涂层
CN103408705B (zh) * 2013-08-08 2016-06-01 中科院广州化学有限公司 一种水性环氧树脂及超双疏涂层及其制备方法与应用
CN103408709B (zh) * 2013-08-08 2016-01-20 中科院广州化学有限公司 水性含氟聚合物和二氧化硅杂化材料及其制备而成的透明超双疏涂层

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364923A (en) * 1992-09-30 1994-11-15 Dow Corning Toray Silicone Co., Ltd. Organopolysiloxane graft epoxy resins and a method for the preparation thereof
WO2000040634A2 (en) * 1998-12-30 2000-07-13 Hercules Incorporated Modified epoxies for paper sizing
DE10332197A1 (de) * 2003-07-15 2005-02-10 Synthopol Chemie Dr.Rer.Pol. Koch Gmbh & Co Kg Harze mit chemisch gekoppelten Perfluoralkylverbindung(en) und Verfahren zu ihrer Herstellung
CN102977292A (zh) * 2012-11-07 2013-03-20 中科院广州化学有限公司 两亲性可交联含氟聚合物及其在制备超双疏表面中的应用
CN103408692A (zh) * 2013-08-08 2013-11-27 中科院广州化学有限公司 一种水分散可交联性无规含氟聚合物及构筑的超双疏涂层

Also Published As

Publication number Publication date
CN103626957A (zh) 2014-03-12
CN103626957B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2015078072A1 (zh) 两亲性含氟环氧树脂及其制备方法与其制备的超双疏表面
Anjum et al. Fabrication of coral-reef structured nano silica for self-cleaning and super-hydrophobic textile applications
WO2015078099A1 (zh) 一种具有普适性的超双疏表面及其制备方法
Zhou et al. Superhydrophobic and slippery liquid-infused porous surfaces formed by the self-assembly of a hybrid ABC triblock copolymer and their antifouling performance
Huang et al. Water-based polyurethane formulations for robust superhydrophobic fabrics
Li et al. Fast preparation of mechanically stable superhydrophobic surface by UV cross-linking of coating onto oxygen-inhibited layer of substrate
CN103588955B (zh) 一种含氟环氧树脂及其制备方法与其制备的超双疏表面
Schlaich et al. Fluorine-free superwetting systems: construction of environmentally friendly superhydrophilic, superhydrophobic, and slippery surfaces on various substrates
CN103709815B (zh) 一种水分散性超双疏微球及其制备方法与应用
JP2014513174A (ja) 両疎媒性ブロックコポリマーおよびその用途
CN103665280B (zh) 一种多功能性含氟微球及其制备方法与应用
US20120296029A1 (en) Fluorine-containing multifunctional microspheres and uses thereof
CN107033718A (zh) 一种适于广泛基体的超疏水/超疏油涂层及其制备方法
CN102964544B (zh) 水分散性可交联型含氟聚合物及在制备超双疏表面的应用
CN104448960A (zh) 纳米二氧化钛/氧化锌超疏水复合涂层的制备方法
Li et al. Synthesis of fluorinated block copolymer and superhydrophobic cotton fabrics preparation
CN103724558A (zh) 一种草莓型结构的无机/有机含氟微球及其制备方法与应用
Zhu et al. Superhydrophobic coating with multiscale structure based on crosslinked silanized polyacrylate and nanoparticles
CN110144158A (zh) 一种单组分聚合物纳米复合超疏水涂层材料及其制备方法
Wu et al. Fabrication of robust and room-temperature curable superhydrophobic composite coatings with breathable and anti-icing performance
Liu et al. Design and synthesis of robust superhydrophobic coating based on epoxy resin and polydimethylsiloxane interpenetrated polymer network
CN103601891B (zh) 一种可交联氟硅树脂及其制备与在超双疏材料上的应用
WO2015078081A1 (zh) 两亲性含氟纳米微球/含氟环氧树脂杂化体的制法及应用
TW201311550A (zh) 奈米碳管懸浮液及其所製備之超疏水性薄膜
Li et al. Study on the anti-abrasion resistance of superhydrophobic coatings based on fluorine-containing acrylates with different T g and SiO 2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898069

Country of ref document: EP

Kind code of ref document: A1