TW201311550A - 奈米碳管懸浮液及其所製備之超疏水性薄膜 - Google Patents

奈米碳管懸浮液及其所製備之超疏水性薄膜 Download PDF

Info

Publication number
TW201311550A
TW201311550A TW100133054A TW100133054A TW201311550A TW 201311550 A TW201311550 A TW 201311550A TW 100133054 A TW100133054 A TW 100133054A TW 100133054 A TW100133054 A TW 100133054A TW 201311550 A TW201311550 A TW 201311550A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
nanotube suspension
suspension according
block copolymer
superhydrophobic
Prior art date
Application number
TW100133054A
Other languages
English (en)
Inventor
Jiang-Jen Lin
Chao-Po Hsu
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW100133054A priority Critical patent/TW201311550A/zh
Priority to US13/310,837 priority patent/US20130062577A1/en
Publication of TW201311550A publication Critical patent/TW201311550A/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

本發明係提供一種奈米碳管懸浮液,其包含複數個奈米碳管及一嵌段共聚物分散劑,均勻分散於一溶劑中;其中該嵌段共聚物包含一疏水性嵌段及一官能基嵌段,使該奈米碳管無須經由化學改質,可直接與該官能基嵌段形成共價鍵結。本發明不須經過化學改質或添加含氟化合物,亦能形成超疏水性薄膜,其結構強韌穩定可於長時間的浸水處理、強酸強鹼之環境下或物理性刮磨,仍保有超疏水之特性。

Description

奈米碳管懸浮液及其所製備之超疏水性薄膜
本發明係關於一種奈米碳管懸浮液,特別是有關於形成一種超疏水性薄膜之奈米碳管懸浮液。
自然界許多植物葉面上因具有獨特微結構及表面化性而展露超疏水性(superhydrophobic),如荷花葉或甘藍菜葉,當近似球狀水滴在葉面上滾動,可同時將灰塵帶走並潔淨葉面。這種不需人工清洗,只需經由水的沖刷,就可保持表面的清潔,稱為具有自清潔(self-cleaning)特性或蓮花效應(lotus effect)。造成這種荷葉表面現象的因素有二:低表面張力及高表面粗糙度。
當液體滴在固體表面上時,固體表面及液滴切線的夾角,即所謂的接觸角(θ)。當液-固的界面張力(即固體表面能)越大,接觸角會越小,表示固體表面較易被濕潤;當接觸角為0度時,表示液體能完全的濕潤固體表面。相反地,當液-固的界面張力越低,接觸角會越大,代表固體表面越不易被濕潤;當接觸角為180度時,代表液體形成球狀液滴而完全不能濕潤於固體表面。
此外,當固體表面變得較粗糙時,也會使液體在表面上的接觸角變大。表面粗糙度對濕潤性的效應例如為,奈米尺寸低凹的表面可使吸附之氣體原子穩定存在,巨觀上相當於具有一層穩定氣體薄膜,使液體無法與固體表面直接接觸,即液體與固體的接觸表面為一種混合界面:部分為固體表面,部分為氣體。由於液滴與粗糙孔隙間的空氣無黏著濕潤的現象,使接觸角變大。
自清潔特性可以落實於許多應用,包括建築外牆及玻璃、木(石)材、瓷磚等各種建材、汽車烤漆及玻璃、塑膠等,不但可減少清潔用水,還可隨時保持這些表面的清潔。然而,目前一般所使用之塗料,在塗裝後,表面雖可具有防水的性質,但是灰塵沾上後,水滴不能有效滾動並將灰塵移動清除,所以無自清潔的效果。因此必須開發出低表面能且具有粗糙表面結構的疏水性塗層表面,才可獲得如荷葉般具有超疏水自清潔的效果。
因此,自清潔塗層(或稱為疏水塗層)材料的發展在市場上備受矚目,舉例而言,用於大樓帷幕玻璃、廚房衛浴等之自清潔疏水塗層可降低維護成本;應用於太陽能電池、衛星天線表面、汽車前擋玻璃可提高產品品質及效能;應用於船艦與飛行器外殼上則可降低空氣摩擦力造成之燃料消耗及產生之廢棄污染。現有自清潔塗層材料之技術開發,在設計上多利用多層複合結構達到疏水自清潔功能。該多層結構分別具備黏著性、粗糙表面結構、超低表面能等不同特性,然而,目前開發之自清潔塗層材料多面臨黏著性差、硬度不足、透明性差及耐久性不足之問題。
通常,自清潔塗層材料之特徵在於水的靜態接觸角為90度或以上,而疏水性聚合物材料已經使用數十年,如:聚四氟乙烯(PTFE)或聚丙烯(PP),但這些材料的應用受限於疏水性,且機械性質不及工程材料或高度交聯塗料。例如,PP與水的靜態接觸角僅約100度,PTFE(已知之疏水性最大的聚合材料)與水的靜態接觸角約112度。因此,超疏水性塗料之研究格外受到重視,而超疏水性塗料通常定義為與水的靜態接觸角高於140度者(Nun,Oles and Schleich,Macromol. Symp.,187(2002) 677-682)。
以往奈米碳管應用於超疏水研究方面,必需透過化學改質方式或是複雜的製程,例如使用逐層沉積法(layer-by-layer)或化學氣相沈積法(CVD)來製備,但化學氣相沈積法等製備方法之製程相對繁瑣,對於放大製程並無經濟效應,而化學改質方式多為在碳管表面接枝含氟結構之化合物,其中含氟之化合物具有低表面能特性且有利於碳管穩定分散於溶劑中。中華民國專利公開第200500429號揭露一種包含反應性無機奈米顆粒之疏水性塗料,其藉由於表面上包含具有反應性有機基團及非極性基團的反應性奈米顆粒之塗覆組成物。該反應性基團及非極性基團以化學方式接枝至奈米顆粒表面,例如具丙烯酸酯基(反應性基團)及全氟烷基鏈(非極性基團)的奈米顆粒。其中,該反應性基團使奈米顆粒具有部分交聯網絡,而該非極性基團使塗料具有疏水性表面特性。然而,含氟化合物具有毒性且金額昂貴,在合成上也需要相當複雜的程序。近年來在全球環保議題的發酵下,開發符合環保與經濟效應之製備法的奈米碳管超疏水性材料乃當務之急。因此,如何使超疏水性塗料更易使用,且具有經控制之疏水性及良好持久性(硬度、耐刮性及耐酸鹼性),存在強烈之需求。
因此,如何發明出一種奈米碳管懸浮液,其不須經過化學改質或添加含氟化合物,亦能形成超疏水性薄膜,其結構強韌穩定可於長時間的浸水處理、強酸強鹼之環境下或物理性刮磨,仍保有超疏水之特性,將是本發明所欲積極揭露之處。
有鑑於上述習知技術之缺憾,發明人有感其未臻於完善,遂竭其心智悉心研究克服,憑其從事該項產業多年之累積經驗,進而研發出一種奈米碳管懸浮液,以期達到形成超疏水性薄膜的目的。
本發明之主要目的在提供一種奈米碳管懸浮液,其不須經過化學改質或添加含氟化合物,亦能形成超疏水性薄膜,其結構強韌穩定可於長時間的浸水處理、強酸強鹼之環境下或物理性刮磨,仍保有超疏水之特性。
為達上述目的,本發明提供一種奈米碳管懸浮液,其包含複數個奈米碳管及一嵌段共聚物分散劑,均勻分散於一溶劑中;其中該嵌段共聚物包含一疏水性嵌段及一官能基嵌段,使該奈米碳管無須經由化學改質,可直接與該官能基嵌段形成共價鍵結。
上述之奈米碳管懸浮液,其進一步包含一熱固性樹脂。
上述之奈米碳管懸浮液,其中該熱固性樹脂係環氧樹脂。
上述之奈米碳管懸浮液,其中該環氧樹脂係雙酚A二縮水甘油醚(bisphenol-A diglycidyl ether)。
上述之奈米碳管懸浮液,其中該官能基係具有孤對電子之官能基。
上述之奈米碳管懸浮液,其中該官能基係胺基。
上述之奈米碳管懸浮液,其中該疏水性嵌段係碳數為10至30個碳之聚烯烴。
上述之奈米碳管懸浮液,其中該聚烯烴係聚異丁烯。
上述之奈米碳管懸浮液,其中該嵌段共聚物係聚異丁烯胺共聚物。
上述之奈米碳管懸浮液,其中該聚異丁烯胺共聚物係由聚異丁烯接枝丁二酸酐共聚物(polyisobutylene-g-maleic anhydride)及聚氧化丙烯三胺(poly(oxypropylene)-triamine)反應所製得。
上述之奈米碳管懸浮液,其不含氟化物。
上述之奈米碳管懸浮液,其中該嵌段共聚物分散劑及該溶劑之重量比為5 wt%以下。
上述之奈米碳管懸浮液,其中該奈米碳管及該溶劑之重量比為1 wt%以下。
上述之奈米碳管懸浮液,其中該嵌段共聚物分散劑、該奈米碳管及該熱固性樹脂之重量比為0.1~100:1:20~500。
本發明之另一目的在提供一種超疏水性薄膜,其係由上述之奈米碳管懸浮液,經塗佈後乾燥所製得,其與水的靜態接觸角為140至160度。
上述之超疏水性薄膜,其導電度為10-4~101(S/cm)。
上述之超疏水性薄膜,其可藉由調整該嵌段共聚物分散劑及該奈米碳管之重量比,以調控疏水性或導電度。
先前技術中常見之奈米碳管超疏水性薄膜,多透過含氟或長烷基鏈等低表面能物質,進行化學改質或化學沈積法排列奈米碳管來製備,其製程相對較為繁瑣。本發明之奈米碳管懸浮液,僅需透過嵌段共聚物分散劑將奈米碳管均勻分散於溶劑中,透過簡易塗膜及溶液揮發方法,將懸浮液塗佈於基材上即可製備超疏水性薄膜。其中該嵌段共聚物包含一疏水性嵌段及一官能基嵌段,使該奈米碳管無須經由化學改質,可直接與該官能基嵌段形成共價鍵結,而該疏水性嵌段由於其低表面能之特性,可良好地分散奈米碳管於溶劑中,且保有疏水之特性。本發明可解決以往含氟材料帶來的環境污染、高額費用及製程加工複雜等問題,可應用在目前泛用的電子材料、建築塗料、航太科技等領域,並具有實用價值。
藉此,本發明之一種奈米碳管懸浮液,不須經過化學改質或添加含氟化合物,亦能形成超疏水性薄膜,其結構強韌穩定可於長時間的浸水處理、強酸強鹼之環境下或物理性刮磨,仍保有超疏水之特性。
為充分瞭解本發明之目的、特徵及功效,茲藉由下述具體之實施例,並配合所附之圖式,對本發明做一詳細說明,說明如後:
原料:
(1)奈米碳管(carbon nanotubes,下簡寫為CNTs),購自Seedchem Company Pty.,Ltd.,純度為95%且包含5%觸媒(鐵、鈷及鎳),直徑為10~60 nm,長度為0.5~10μm。
(2)聚異丁烯接枝丁二酸酐共聚物(polyisobutylene-g-maleic anhydride下簡寫為PIB-MA),購自Chevron Corp.,分子量為950。
(3)聚氧化丙烯三胺(poly(oxypropylene)-triamine下簡寫為T403),購自Huntsman Chemical Co.,分子量為440。
(4)雙酚A二縮水甘油醚(bisphenol-A diglycidyl ether)型環氧樹脂,購自長春人造樹脂廠股份有限公司,商品名為BE-188,環氧當量為188。
製備例1:合成聚異丁烯胺共聚物
將聚氧化丙烯三胺及聚異丁烯接枝丁二酸酐共聚物,以莫爾數比1:1之比例合成,其步驟如下。
步驟1:於100 mL之反應器中加入聚氧化丙烯三胺(4.4 g,0.01 mol)並加入溶劑THF。
步驟2:將聚異丁烯接枝丁二酸酐共聚物(9.5 g,0.01 mol)溶於溶劑THF中。
步驟3:將步驟2之溶液緩緩滴入步驟1之反應器中並以機械攪拌,於室溫下反應3小時。
步驟4:反應以FT-IR光譜儀監控,每隔一段時間取樣,直至FT-IR光譜儀觀察其酸酐(anhydride)官能基峰(peak)消失且醯胺(amide)官能基峰生成並不再增加,得到反應完全產物為橘紅色黏稠液體。整體之反應流程圖如下所示。
實施例1:製備奈米碳管超疏水性薄膜
步驟1:將聚異丁烯胺共聚物溶於溶劑中,於試管中攪拌約5分鐘。
步驟2:取奈米碳管加入步驟1之試管中,並利用超音波震盪分散,每次10分鐘,共震盪5次。
步驟3:取雙酚A二縮水甘油醚型環氧樹脂加入步驟2之試管中,攪拌分散約5分鐘。其中聚異丁烯胺共聚物、奈米碳管及環氧樹脂之重量比以0.1~100:1:20~500的比例自由調配。
步驟4:將步驟3形成之懸浮液塗佈於一玻璃基板上,再升溫至150℃加熱3小時加以硬化形成超疏水性薄膜。
第1圖顯示利用穿透式電子顯微鏡(TEM),觀察奈米碳管在溶劑中的分散性,利用聚異丁烯胺共聚物作為分散劑,可以使奈米碳管穩定分散於溶劑之中。從第1a圖及第1b圖可得知無添加分散劑之奈米碳管溶液中,奈米碳管呈現聚集糾結的現象;第1c圖及第1d圖為添加聚異丁烯接枝丁二酸酐共聚物的溶液,奈米碳管有部份聚集有部份分散,整體而言分散效果亦不佳;而第1e圖及第1f圖中可看出,聚異丁烯胺共聚物作為分散劑,能使奈米碳管穩定分散於溶劑中。奈米碳管為sp2共軛結構所組成之管狀材料,其管徑約為1~100 nm,長度為數微米之間;由於聚異丁烯胺共聚物結構上,分別有一端強疏水鏈段與另一端胺基官能基,強疏水鏈段間能互相排斥,而胺基官能基含有孤對電子能與奈米碳管表面產生共價鍵結。
第2圖顯示利用掃描式電子顯微鏡(SEM),觀察將不同的分散劑/奈米碳管重量比之懸浮液製成薄膜後,透過量測與水之接觸角及SEM來觀察重量比之相對關係,顯示表面結構與接觸角之結果。第2a圖及第2b圖分別顯示原始奈米碳管表面與單純高分子表面及其接觸角。原始奈米碳管表面看出許多獨立糾結之碳管,而單純高分子為一平滑表面。第2c圖至第2f圖分別顯示,隨著改變分散劑/奈米碳的重量比為1/4、1/2、2/1及4/1,接觸角分別為152度、158度、144度及118度。在分散劑/奈米碳的重量比為1/2時,有最佳之接觸角為158度,從第2d圖之SEM圖可看出其具備奈米及微米尺寸的粗糙度,結構類似荷葉的表面結構,加上聚異丁烯本身疏水的化學性質,使其具有超疏水之特性。
第3圖顯示不同的分散劑含量對於接觸角及電阻的影響,當分散劑/奈米碳(PIB-MA-T403/CNTs)的重量比為1/2時,可以得到最佳的158度接觸角。隨著分散劑的增加而接觸角下降,電阻也隨著分散劑的增加而增加,證實可透過調整分散劑/奈米碳的重量比,來調整超疏水性薄膜之表面形態,進而控制接觸角及導電度。
第4a及4b圖顯示透過接觸角長時間監控及強酸鹼環境測試,可以進一步確定超疏水性薄膜的耐用性及穩定性。第4a圖顯示接觸角長時間監控,僅塗佈原始奈米碳管(pristine CNTs)之薄膜的接觸角,在30分鐘內便從120度降至75度;而塗佈未加入環氧樹酯之聚異丁烯胺及奈米碳管懸浮液(PIB-MA-T403/CNTs),或塗佈加入環氧樹酯硬化之聚異丁烯胺及奈米碳管懸浮液(PIB-MA-T403/CNTs cured with epoxy),其經長時間測試後接觸角依舊保持在150度以上,達到超疏水的標準,表示超疏水性薄膜具有長效穩定之特性。第4b圖顯示在不同酸鹼值水滴之接觸角,而在pH值1~13環境下接觸角的變動不大,表示在酸鹼環境下之超疏水性薄膜依舊保有超疏水之性質。
實施例1利用聚異丁烯接枝丁二酸酐共聚物及聚氧化丙烯三胺,反應合成之聚異丁烯胺共聚物作為分散劑,經過超音波震盪能穩定分散奈米碳管。將聚異丁烯胺及奈米碳管懸浮液塗佈於基材上所製備之薄膜,由於奈米碳管聚集產生之粗糙度及聚異丁烯胺之低表面能化學特性,可使薄膜具備超疏水的特性,與水的靜態接觸角可調控為140至160度。進一步,聚異丁烯胺可同時當硬化劑與雙酚A二縮水甘油醚型環氧樹脂進行硬化反應,製備成強度佳之奈米碳管/聚異丁烯胺/環氧樹脂複材薄膜,其結構強韌穩定並在長時間的浸水處理、強酸強鹼之環境下或物理性刮磨依然能保有超疏水之特性。
本發明製備之奈米碳管超疏水性薄膜,為奈米碳管經由自嵌段共聚物分散劑,經由脫層分散穩定於有機溶劑中,透過簡易塗膜及溶液揮發方法,形成超疏水性並具有強度及抗刮性。本發明可解決以往含氟材料帶來的環境污染及高額費用及製程加工複雜等問題,於防水性、自清潔性、減低水流阻力、抗電磁波、抗靜電表面等具有實用經濟價值。
如上所述,本發明完全符合專利三要件:新穎性、進步性和產業上的可利用性。以新穎性和進步性而言,本發明之奈米碳管懸浮液,不須經過化學改質或添加含氟化合物,亦能形成超疏水性薄膜,其結構強韌穩定可於長時間的浸水處理、強酸強鹼之環境下或物理性刮磨,仍保有超疏水之特性;就產業上的可利用性而言,利用本發明所衍生的產品,當可充分滿足目前市場的需求。
本發明在上文中已以較佳實施例揭露,然熟習本項技術者應理解的是,該實施例僅用於描繪本發明,而不應解讀為限制本發明之範圍。應注意的是,舉凡與該實施例等效之變化與置換,均應設為涵蓋於本發明之範疇內。因此,本發明之保護範圍當以下文之申請專利範圍所界定者為準。
第1圖顯示利用TEM觀察奈米碳管在溶劑中的分散性。
第2圖顯示利用SEM將不同的分散劑/奈米碳管重量比之懸浮液製成薄膜後,觀察表面結構與接觸角之結果。
第3圖顯示不同的分散劑含量對於接觸角及電阻的影響。
第4a圖顯示接觸角長時間監控。
第4b圖顯示在不同酸鹼值水滴之接觸角。

Claims (17)

  1. 一種奈米碳管懸浮液,其包含複數個奈米碳管及一嵌段共聚物分散劑,均勻分散於一溶劑中;其中該嵌段共聚物包含一疏水性嵌段及一官能基嵌段,使該奈米碳管無須經由化學改質,可直接與該官能基嵌段形成共價鍵結。
  2. 如申請專利範圍第1項所述之奈米碳管懸浮液,其進一步包含一熱固性樹脂。
  3. 如申請專利範圍第1項所述之奈米碳管懸浮液,其中該熱固性樹脂係環氧樹脂。
  4. 如申請專利範圍第3項所述之奈米碳管懸浮液,其中該環氧樹脂係雙酚A二縮水甘油醚(bisphenol-A diglycidyl ether)。
  5. 如申請專利範圍第1項所述之奈米碳管懸浮液,其中該官能基係具有孤對電子之官能基。
  6. 如申請專利範圍第5項所述之奈米碳管懸浮液,其中該官能基係胺基。
  7. 如申請專利範圍第1項所述之奈米碳管懸浮液,其中該疏水性嵌段係碳數為10至30個碳之聚烯烴。
  8. 如申請專利範圍第7項所述之奈米碳管懸浮液,其中該聚烯烴係聚異丁烯。
  9. 如申請專利範圍第1項所述之奈米碳管懸浮液,其中該嵌段共聚物係聚異丁烯胺共聚物。
  10. 如申請專利範圍第9項所述之奈米碳管懸浮液,其中該聚異丁烯胺共聚物係由聚異丁烯接枝丁二酸酐共聚物(polyisobutylene-g-maleic anhydride)及聚氧化丙烯三胺(poly(oxypropylene)-triamine)反應所製得。
  11. 如申請專利範圍第1項所述之奈米碳管懸浮液,其不含氟化物。
  12. 如申請專利範圍第1項所述之奈米碳管懸浮液,其中該嵌段共聚物分散劑及該溶劑之重量比為5 wt%以下。
  13. 如申請專利範圍第1項所述之奈米碳管懸浮液,其中該奈米碳管及該溶劑之重量比為1 wt%以下。
  14. 如申請專利範圍第2項所述之奈米碳管懸浮液,其中該嵌段共聚物分散劑、該奈米碳管及該熱固性樹脂之重量比為0.1~100:1:20~500。
  15. 一種超疏水性薄膜,其係由如申請專利範圍第1至14項中任一項之奈米碳管懸浮液,經塗佈後乾燥所製得,其與水的靜態接觸角為140至160度。
  16. 如申請專利範圍第15項所述之超疏水性薄膜,其導電度為10-4~101(S/cm)。
  17. 如申請專利範圍第15或16項所述之超疏水性薄膜,其可藉由調整該嵌段共聚物分散劑及該奈米碳管之重量比,以調控疏水性或導電度。
TW100133054A 2011-09-14 2011-09-14 奈米碳管懸浮液及其所製備之超疏水性薄膜 TW201311550A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100133054A TW201311550A (zh) 2011-09-14 2011-09-14 奈米碳管懸浮液及其所製備之超疏水性薄膜
US13/310,837 US20130062577A1 (en) 2011-09-14 2011-12-05 Carbon nanotube suspension and superhydrophobic film prepared therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100133054A TW201311550A (zh) 2011-09-14 2011-09-14 奈米碳管懸浮液及其所製備之超疏水性薄膜

Publications (1)

Publication Number Publication Date
TW201311550A true TW201311550A (zh) 2013-03-16

Family

ID=47828999

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100133054A TW201311550A (zh) 2011-09-14 2011-09-14 奈米碳管懸浮液及其所製備之超疏水性薄膜

Country Status (2)

Country Link
US (1) US20130062577A1 (zh)
TW (1) TW201311550A (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601846B (zh) * 2013-11-04 2015-11-11 上海金兆节能科技有限公司 聚异丁烯丁烯二酰胺及其制备方法和用该酰胺制备微量润滑剂
JP6923445B2 (ja) * 2015-02-27 2021-08-18 アンハイザー−ブッシュ インベブ エセ.アー. 透明チャンバ内で飲料を調製するための器具および容器
CN107325718B (zh) * 2016-07-22 2022-11-08 中国石油化工股份有限公司 含纳米改性材料
CA3066290A1 (en) 2017-07-05 2019-01-10 National Research Council Of Canada Methods for preparing superhydrophobic nano-microscale patterned films
RU2677156C1 (ru) * 2017-08-23 2019-01-15 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Композиция для получения электропроводящего гидрофобного покрытия на основе лака с углеродными нанотрубками и способ ее изготовления
US10815125B2 (en) 2018-01-05 2020-10-27 Wisconsin Alumni Research Foundation Removable non-conjugated polymers for dispersing carbon nanotubes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7989619B2 (en) * 2005-07-14 2011-08-02 Innovative Surface Technoloiges, Inc. Nanotextured surfaces
US8211969B2 (en) * 2007-10-10 2012-07-03 University Of Central Florida Research Foundation, Inc. Dispersions of carbon nanotubes in copolymer solutions and functional composite materials and coatings therefrom
US9062219B2 (en) * 2009-01-21 2015-06-23 Xerox Corporation Superhydrophobic nano-fabrics and coatings

Also Published As

Publication number Publication date
US20130062577A1 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
Zhang et al. Robust superhydrophobic epoxy composite coating prepared by dual interfacial enhancement
Qing et al. A facile method to prepare superhydrophobic fluorinated polysiloxane/ZnO nanocomposite coatings with corrosion resistance
Liu et al. A superhydrophobic TPU/CNTs@ SiO2 coating with excellent mechanical durability and chemical stability for sustainable anti-fouling and anti-corrosion
Wang et al. Superhydrophobic coatings fabricated with polytetrafluoroethylene and SiO2 nanoparticles by spraying process on carbon steel surfaces
Zhang et al. A multifunctional super-hydrophobic coating based on PDA modified MoS2 with anti-corrosion and wear resistance
TW201311550A (zh) 奈米碳管懸浮液及其所製備之超疏水性薄膜
Xu et al. Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification
Zhang et al. A facile method to fabricate superhydrophobic cotton fabrics
Wankhede et al. Development of water-repellent organic–inorganic hybrid sol–gel coatings on aluminum using short chain perfluoro polymer emulsion
Wang et al. One-step synthesis of unique silica particles for the fabrication of bionic and stably superhydrophobic coatings on wood surface
Zheng et al. Facile fabrication of robust, biomimetic and superhydrophobic polymer/graphene-based coatings with self-cleaning, oil-water separation, anti-icing and corrosion resistance properties
Tong et al. TMES-modified SiO2 matrix non-fluorinated superhydrophobic coating for long-term corrosion resistance of aluminium alloy
CN110499073B (zh) 一种以纳米纤维素和纳米颗粒为原料在水溶液中无氟改性剂改性制备超疏水涂料的方法
CN103965745A (zh) 一种环氧树脂复合涂层溶液、其制备方法及使用方法
Qu et al. Bioinspired durable superhydrophobic materials with antiwear property fabricated from quartz sands and organosilane
CN107353766A (zh) 一种纳米氧化锌环氧树脂复合超疏水涂层的制备方法
JP2013231129A (ja) カーボンナノチューブ含有塗料の製造方法、カーボンナノチューブ含有被覆層の形成方法、カーボンナノチューブ含有被覆層及び該被覆層を備える積層体
US20190112494A1 (en) Aqueous composition and a method of producing durable and extremely efficient water repelling superhydrophobic materials at ambient condition thereof
WO2015078099A1 (zh) 一种具有普适性的超双疏表面及其制备方法
WO2019079882A9 (en) Modified boron nitride nanotubes and solutions thereof
Yang et al. Fabrication of biomimetic slippery liquid‐infused porous surface on 5086 aluminum alloy with excellent antifouling performance
Xin et al. Superhydrophobic self-assembled monolayers of long-chain fluorinated imidazolium ionic liquids
Yuan et al. Facile fabrication approach for a novel multifunctional superamphiphobic coating based on chemically grafted montmorillonite/Al 2 O 3-polydimethylsiloxane binary nanocomposite
Saharudin et al. Preparation of a polydimethylsiloxane (PDMS)/graphene-based super-hydrophobic coating
Shang et al. A simple method for the fabrication of silica-based superhydrophobic surfaces