WO2022227570A1 - 一种多重交联超亲水织物及其制备方法 - Google Patents

一种多重交联超亲水织物及其制备方法 Download PDF

Info

Publication number
WO2022227570A1
WO2022227570A1 PCT/CN2021/135128 CN2021135128W WO2022227570A1 WO 2022227570 A1 WO2022227570 A1 WO 2022227570A1 CN 2021135128 W CN2021135128 W CN 2021135128W WO 2022227570 A1 WO2022227570 A1 WO 2022227570A1
Authority
WO
WIPO (PCT)
Prior art keywords
pnc
solution
fabric
superhydrophilic
pei
Prior art date
Application number
PCT/CN2021/135128
Other languages
English (en)
French (fr)
Inventor
苏晓竞
吴文剑
杨伟华
李坤泉
谢华理
Original Assignee
东莞理工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞理工学院 filed Critical 东莞理工学院
Publication of WO2022227570A1 publication Critical patent/WO2022227570A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/61Polyamines polyimines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/38Polyurethanes

Definitions

  • the invention relates to the technical field of functionalized super-wetting materials, in particular to a multi-crosslinked super-hydrophilic fabric and a preparation method thereof.
  • inorganic nanoparticles and high surface energy hydrophilic substances are often introduced on the surface of micron fibers.
  • the traditional technology uses silicon dioxide generated by the hydrolysis of ethyl orthosilicate to construct nano-roughness, and the hydrophilic mercapene cross-linked polymer generated by polythiol functional monomer and polyethylene glycol dimethacrylate is coated to obtain Organic/inorganic superhydrophilic fabrics.
  • a superhydrophilic fabric that can be used for heavy metal adsorption and oil-water separation was prepared by sequentially forming aminated carbon nanotubes and silver nanoparticles on the surface of the fabric, and then modifying it with L-cysteine.
  • the superhydrophilic fabrics modified by small molecular substances do not involve the problem of coating swelling, the micro-nano rough structure constructed by inorganic particles has poor bonding force with the fiber substrate, and the fabrics are prone to lose superhydrophilicity after chemical or mechanical treatment. Durability is poor.
  • a method for preparing a multiple cross-linked superhydrophilic fabric is provided, the preparation process is simple and pollution-free, and the controllability is strong, which is suitable for industrial production and popularization and application.
  • a preparation method of multiple cross-linked superhydrophilic fabrics comprises the following steps.
  • the volume concentration of the PEI is 10 mg/mL to 30 mg/mL.
  • the molecular weight of the PEI is 1800-10000.
  • the volume concentration of the 5AC1 solution is 15 mg/mL to 40 mg/mL.
  • the mass ratio of the PEI and the 5AC1 is 1:3 ⁇ 1:6.
  • the volume concentration of the PNC ethanol solution is 3 mg/mL ⁇ 10 mg/mL.
  • the volume concentration of the CS solution is 3 mg/mL to 10 mg/mL.
  • the mass ratio of PNC and CS is 0.5-4.
  • the cross-linking degree of the PNC-CS cross-linked coating is 73%-90%.
  • the fabric is made of polyethylene, polypropylene, polyvinyl chloride, polyacrylonitrile, polymethylmethacrylate, polylactic acid, polyethylene terephthalate, polyurethane or nylon.
  • One or more hydrophobic polymer fibers are used.
  • a multi-crosslinked superhydrophilic fabric prepared by using the above-mentioned preparation method, the fabric has superhydrophilicity, and the PNC-CS crosslinked coating and the fabric substrate are It has strong binding force, and its cross-linking degree can be controlled by the ratio of raw materials, which effectively avoids the peeling damage caused by excessive swelling of the superhydrophilic coating.
  • the contact angle of water droplets on the surface of the multi-crosslinked superhydrophilic fabric reaches 0° at 0.26s-0.63s.
  • reaction system is water/ethanol solution, which has the advantages of simple operation, mild conditions, no toxic solvents, no specific equipment, etc., and can be applied to large-scale of industrial production.
  • the PNC stacking has a rough structure, and the PNC and CS simultaneously form a multi-cross-linked structure through the Michael addition reaction.
  • the degree of cross-linking can be adjusted by the ratio of the reactants. It has a strong bond with the fiber substrate, which can effectively avoid the peeling damage of the superhydrophilic coating caused by excessive swelling.
  • Example 1 is a schematic diagram of the preparation of the re-crosslinked superhydrophilic fabric in Example 1.
  • Example 2 is the total reflection infrared spectrum of the PNC and cross-linked PNC-CS coatings prepared in Example 1.
  • Example 3 is a scanning electron microscope image of the PNC prepared in Example 1.
  • Example 4 is a scanning electron microscope image of the multiple cross-linked superhydrophilic fabric prepared in Example 1.
  • Example 5 is a graph showing the change of the contact angle of 5 ⁇ L water droplets of the multiple crosslinked superhydrophilic fabric on the original spandex fabric and the contact angle of 2 ⁇ L water droplets on the multiple crosslinked superhydrophilic fabric prepared in Example 1 with time.
  • the present application provides a method for preparing a multiple cross-linked superhydrophilic fabric, which includes the following steps.
  • the volume concentration of PEI ranges from 10 mg/mL to 30 mg/mL.
  • the molecular weight of PEI is 1800-10000.
  • the volume concentration of the 5AC1 solution is 15 mg/mL to 40 mg/mL.
  • the mass ratio of PEI and the 5AC1 is 1:3 to 1:6.
  • the volume concentration of the PNC ethanol solution is 3 mg/mL to 10 mg/mL.
  • the CS solution has a volume concentration of 3 mg/mL to 10 mg/mL.
  • the mass ratio of PNC and CS is 0.5-4.
  • the cross-linking degree of the PNC-CS cross-linked coating ranges from 73% to 90%.
  • the fabric is made of polyethylene, polypropylene, polyvinyl chloride, polyacrylonitrile, polymethylmethacrylate, polylactic acid, polyethylene terephthalate, polyurethane, or nylon.
  • One or more hydrophobic polymer fibers are used.
  • a multi-crosslinked superhydrophilic fabric which is prepared by using the above-mentioned preparation method. to 0°.
  • Example 1 PEI and 5ACl with a molecular weight of 10000 were dissolved in ethanol, respectively, to prepare a PEI solution with a volume concentration of 15 mg/mL and a 5ACl solution with a volume concentration of 19.5 mg/mL. Measure 15 mL of PEI solution and 45 mL of 5ACl solution respectively, mix the two evenly, and stir at room temperature for 8 h to prepare PNC. Ethanol was added to the obtained product solution to prepare a PNC ethanol solution with a volume concentration of 4.25 mg/mL.
  • acetic acid was added to 100 mL of water, CS was added to it, stirred for 3 h until it was completely dissolved, and a CS aqueous solution with a volume concentration of 4.25 mg/mL was prepared.
  • the spandex fabric was then placed in it and soaked for 1 min, then the fabric was taken out and placed in an oven at 50°C for heating reaction for 40 min, and the soaking-heating step was repeated 3 times to obtain a cross-linked CS-PNC superhydrophilic fabric.
  • Figure 1 is a schematic diagram of the formation of PNC and cross-linked PNC-CS.
  • PEI undergoes Michael addition reaction with excess 5ACl to form polymer nanocomposite particles PNC with active double bonds. It further undergoes an addition reaction with the introduced CS to form a multi-crosslinked PNC-CS coating rich in amino and hydroxyl hydrophilic groups.
  • the cross-linking degree of the PNC-CS coating was tested. The specific operation was as follows: the PNC-CS coating was placed in hot water at 60 °C, soaked for 72 hours, and the water was changed every 24 hours. After the test, the PNC-CS coating was placed Drying and weighing, the degree of cross-linking is the ratio of the mass of the PNC-CS coating after hydrothermal treatment to the original mass.
  • Test 5 samples take the average value, and measure the crosslinking degree of the PNC-CS coating prepared in this example to be 83.5%.
  • CS-PNC Due to the further reaction between the PNC double bond and CS amino group, CS-PNC exhibited significant vibrational peaks at 3410 cm- 1 ascribed to OH and NH2 groups, and NC vibrational peaks at 1564 cm -1 , while the peak intensity of vinyl groups corresponded to weakened, indicating the formation of the PNC-CS cross-linked structure.
  • FIG. 3 is a scanning electron microscope image of the PNC prepared in this example at a magnification of 50,000 times. It can be seen from Fig. 3 that the PNCs are spherical with particle sizes ranging from 20 nm to 150 nm, which can effectively construct nano-roughness on the surface of micron-scale fibers.
  • FIG. 4 is a scanning electron microscope image of the multi-crosslinked superhydrophilic fabric prepared in this example at a magnification of 1500 times and 10000 times. It can be seen from Figure 4 that the surface of the spandex fabric fiber is covered with a dense and uniform CS-PNC coating, and the roughness and high surface energy provide the key elements for the superhydrophilic wetting behavior.
  • Figure 5 shows the change of the contact angle of 5 ⁇ L water droplets on the original spandex fabric (a) and the contact angle of 2 ⁇ L water droplets on the multi-crosslinked superhydrophilic fabric prepared in Example 1 (b). It can be seen from Fig. 5 that the original spandex fabric exhibits stable superhydrophobicity, and the contact angle of water droplets on its surface is 132°, while the water droplets are quickly absorbed on the surface of the spandex fabric covered by the PNC-CS coating, and the water contacts It only takes 0.26s for the angle to reach 0°, and the fabric exhibits excellent super hydrophilicity.
  • the contact angle test was carried out with the DSA100 tester of KRUSS Company in Germany, and 5 points were taken for each sample to calculate the average value.
  • the superhydrophilic fabric was placed at room temperature for 2 months, and its water contact was tested.
  • the hydrophilic fabric was placed in hot water at 40°C for 72h, and its water contact angle was tested.
  • Example 2 PEI and 5ACl with a molecular weight of 1800 were dissolved in ethanol, respectively, to prepare a PEI solution with a volume concentration of 10 mg/mL and a 5ACl solution with a volume concentration of 15 mg/mL. Measure 10 mL of PEI solution and 40 mL of 5ACl solution respectively, mix the two evenly, stir at room temperature for 10 h to prepare PNC, and then add ethanol to the obtained product solution to prepare a PNC ethanol solution with a volume concentration of 10 mg/mL .
  • the cross-linking degree of the PNC-CS coating prepared in this example is 73%, and the contact angle of water droplets on the surface of the fabric reaches 0° for 0.45 s, showing super-hydrophilicity.
  • the surface water contact angle still drops to 0° within 11 s, and the fabric has good superhydrophilic stability.
  • Example 3 PEI and 5ACl with a molecular weight of 3000 were dissolved in ethanol, respectively, to prepare a PEI solution with a volume concentration of 30 mg/mL and a 5ACl solution with a volume concentration of 40 mg/mL. Measure 20 mL of PEI solution and 45 mL of 5ACl solution respectively, mix the two evenly, stir at room temperature for 5 h to prepare PNC, and then add ethanol to the obtained product solution to prepare a PNC ethanol solution with a volume concentration of 8 mg/mL .
  • acetic acid was added to 100 mL of water, CS was added to it, stirred for 3 h until it was completely dissolved, and a CS aqueous solution with a volume concentration of 4 mg/mL was prepared.
  • the cross-linking degree of the PNC-CS coating prepared in this example is 90%, and the contact angle of water droplets on the fabric surface reaches 0° for 6.3 s, showing super-hydrophilicity.
  • the surface water contact angle still drops to 0° within 17 s, and the fabric has good superhydrophilic stability.
  • Example 4 PEI and 5ACl with a molecular weight of 10000 were dissolved in ethanol, respectively, to prepare a PEI solution with a volume concentration of 20 mg/mL and a 5ACl solution with a volume concentration of 30 mg/mL. Measure 20 mL of PEI solution and 50 mL of 5ACl solution respectively, mix them evenly, and stir at room temperature for 5 h to prepare PNC. Ethanol was added to the obtained product solution to prepare a PNC ethanol solution with a volume concentration of 5 mg/mL.
  • acetic acid was added to 100 mL of water, CS was added to it, stirred for 3 h until it was completely dissolved, and a CS aqueous solution with a volume concentration of 5 mg/mL was prepared.
  • the cross-linking degree of the PNC-CS coating prepared in this example is 85%, and the contact angle of water droplets on the fabric surface reaches 0° for 1.6 s, showing super-hydrophilicity.
  • the surface water contact angle still drops to 0° within 12.5 s, and the fabric has good superhydrophilic stability.
  • the present application utilizes the Michael addition reaction of PEI and 5ACl to form PNC; the fabric is immersed in a mixed solution of PNC and CS, taken out and then placed in an oven for heating reaction to form a rough PNC-CS cross-linked coating on the surface of the fabric, repeating the immersion
  • the coating-heating steps were performed for several times to obtain multiple cross-linked superhydrophilic fabrics rich in amino and hydroxyl groups on the surface.
  • the fabric of the present application is super-hydrophilic, the surface water droplet contact angle can reach 0° in 0.26 ⁇ 0.63s, and the PNC-CS cross-linked coating has strong bonding force with the fabric substrate, and its cross-linking degree can be determined by the ratio of raw materials.
  • the control can effectively avoid the peeling damage caused by the excessive swelling of the superhydrophilic coating.
  • the superhydrophilic fabric exhibits excellent durability, heat resistance, acid and alkali resistance and resistance to hot water damage, the preparation process is simple, pollution-free, and has strong controllability, and is suitable for industrial production and popularization and application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

一种多重交联超亲水织物及其制备方法,利用枝化PEI和5ACl的迈克尔加成反应形成PNC;将织物浸入PNC和CS的混合溶液中,取出后置于烘箱加热反应,在织物表面形成粗糙的PNC-CS交联涂层,重复该浸涂-加热步骤多次,制得表面富含氨基和羟基的多重交联超亲水织物。

Description

一种多重交联超亲水织物及其制备方法
相关申请的交叉引用。
本申请要求于2021 年04月29日提交中国专利局、申请号为“202110475172.4”、发明名称为“一种多重交联超亲水织物及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及功能化超浸润材料技术领域,特别是涉及一种多重交联超亲水织物及其制备方法。
背景技术
为了在织物表面构造超亲水涂层,常在微米级纤维表面引入无机纳米颗粒和高表面能亲水物质。传统技术利用正硅酸乙酯水解生成的二氧化硅构造纳米粗糙度,多巯基功能单体和聚乙二醇二甲基丙烯酸酯生成的亲水巯烯交联聚合物进行包覆,制得有机/无机超亲水织物。
然而,无机纳米颗粒与亲水聚合物间缺乏化学结合力,涂层吸水溶胀后易与颗粒分离,导致聚合物与纤维间的剥离损坏。针对该问题,通过依次在织物表面形成氨基化碳纳米管和银纳米颗粒,再采用L-半胱氨酸进行修饰,制得可用于重金属吸附和油水分离的超亲水织物。
技术问题
虽然小分子物质修饰制得的超亲水织物不涉及涂层溶胀问题,但无机颗粒构造的微纳粗糙结构与纤维基底间结合力差,织物易在化学或力学处理后失去超亲水性,耐用性较差。
技术解决方案
根据本申请的各种实施例,提供一种多重交联超亲水织物的制备方法,备工艺简单无污染,可控性强,适合工业化生产和推广应用。
一种多重交联超亲水织物的制备方法,包括如下步骤。
S1、将PEI和5ACl分别溶于乙醇中,配制成PEI溶液和5ACl溶液;两者按一定质量比进行混合,并在室温下搅拌5h~10h,之后反应制得PNC产物溶液;再向PNC产物溶液中加入乙醇稀释,得到PNC乙醇溶液待用。
S2、将乙酸加入水中配制成质量分数为1wt%的乙酸水溶液中,再向其加入CS,搅拌直至其完全溶解得到CS溶液;将PNC乙醇溶液和CS溶液混合搅拌均匀得到PNC/CS混合溶液;将织物放入PNC/CS混合溶液中浸泡1min~5min;随后取出织物置于烘箱中30℃~60℃加热反应0.5h~1h,在织物表面形成粗糙的PNC-CS交联涂层;再重复该浸泡-加热步骤2次~4次,制得多重交联超亲水织物。
在其中一个实施例中,所述PEI的体积浓度为10mg/mL~30mg/mL。
在其中一个实施例中,所述PEI的分子量为1800~10000。
在其中一个实施例中,所述5ACl溶液的体积浓度为15mg/mL~40mg/mL。
在其中一个实施例中,所述PEI和所述5ACl的质量比为1:3~1:6。
在其中一个实施例中,所述PNC乙醇溶液的体积浓度为3mg/mL~10mg/mL。
在其中一个实施例中,所述CS溶液的体积浓度为3mg/mL~10mg/mL。
在其中一个实施例中,在所述PNC/CS混合溶液中,PNC和CS的质量比为0.5~4。
在其中一个实施例中,所述PNC-CS交联涂层的交联度为73%~90%。
在其中一个实施例中,所述织物由聚乙烯、聚丙烯、聚氯乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚乳酸、聚对苯二甲酸乙二醇酯、聚氨酯或者尼龙中的一种或多种疏水性聚合物纤维构成。
根据本申请的各种实施例,还提供一种多重交联超亲水织物,使用上述所述的制备方法制得,该织物具有超亲水性,且PNC-CS交联涂层与织物基底具有强结合力,其交联度可通过原料配比进行调控,有效避免了超亲水涂层因溶胀过大导致的剥离损坏。
在其中一个实施例中,所述多重交联超亲水织物表面的水滴接触角在0.26s~0.63s时达到0°。
有益效果
本申请通过反复浸涂-加热方式制备出多重交联超亲水织物,反应体系为水/乙醇溶液,具有操作简单、条件温和、无有毒溶剂、无特定仪器设备等优点,可应用于大规模的工业生产。
本申请制备的多重交联超亲水织物具有优良的稳定性,其在室温环境下放置2个月、80℃环境下放置72h、pH=1和pH=13的溶液中浸泡72h、40℃热水中处理72h后,表面水接触角仍在17s内降为0°。在多重交联超亲水织物中,PNC堆积构造粗糙结构,PNC同时与CS通过迈克尔加成反应形成多重交联结构,交联度可通过反应物配比调控,所得PNC-CS交联涂层与纤维基底间具有强结合力,可有效避免超亲水涂层因溶胀过大导致的剥离损坏。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为实施例1制备重交联超亲水织物的示意图。
图2为实施例1制备的PNC和交联PNC-CS涂层的全反射红外谱图。
图3为实施例1制备的PNC的扫描电镜图。
图4为实施例1制备的多重交联超亲水织物的扫描电镜图。
图5为多重交联超亲水织物的5μL水滴滴在原始氨纶织物的接触角和2μL水滴滴在实施例1制备的多重交联超亲水织物上的接触角随时间的变化图。
本发明的实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
本申请提供一种一种多重交联超亲水织物的制备方法,包括如下步骤。
S1、将PEI(PEI的中文全称为:枝化聚乙烯亚胺)和5ACl(5ACl的中文全称为:季戊四醇五丙烯酸酯)分别溶于乙醇中,配制成PEI溶液和5ACl溶液;两者按一定质量比进行混合,并在室温下搅拌5h~10h,之后反应制得PNC(PNC的中文全称为:聚合物纳米复合颗粒)产物溶液;再向PNC产物溶液中加入乙醇稀释,得到PNC乙醇溶液待用。
S2、将乙酸加入水中配制成质量分数为1wt%的乙酸水溶液中,再向其加入CS(CS的中文全称为:壳聚糖),搅拌直至其完全溶解得到CS溶液;将PNC乙醇溶液和CS溶液混合搅拌均匀得到PNC/CS混合溶液;将织物放入PNC/CS混合溶液中浸泡1min~5min;随后取出织物置于烘箱中30℃~60℃加热反应0.5h~1h,在织物表面形成粗糙的PNC-CS交联涂层;再重复该浸泡-加热步骤2次~4次,制得多重交联超亲水织物。
在一个或多个实施例中,PEI的体积浓度为10mg/mL~30mg/mL。
在一个或多个实施例中,PEI的分子量为1800~10000。
在一个或多个实施例中,5ACl溶液的体积浓度为15mg/mL~40mg/mL。
在一个或多个实施例中,PEI和所述5ACl的质量比为1:3~1:6。
在一个或多个实施例中,PNC乙醇溶液的体积浓度为3mg/mL~10mg/mL。
在一个或多个实施例中,CS溶液的体积浓度为3mg/mL~10mg/mL。
在一个或多个实施例中,在PNC/CS混合溶液中,PNC和CS的质量比为0.5~4。
在一个或多个实施例中,PNC-CS交联涂层的交联度为73%~90%。
在一个或多个实施例中,织物由聚乙烯、聚丙烯、聚氯乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚乳酸、聚对苯二甲酸乙二醇酯、聚氨酯或者尼龙中的一种或多种疏水性聚合物纤维构成。
根据本申请的各种实施例,还提供一种多重交联超亲水织物,使用上述所述的制备方法制得,多重交联超亲水织物表面的水滴接触角在0.26s~0.63s时达到0°。
以下为各个实施例说明。
实施例1:将分子量为10000的PEI和5ACl分别溶于乙醇中,配制成体积浓度为15mg/mL的PEI溶液和体积浓度为19.5mg/mL的5ACl溶液。分别量取15mL的PEI溶液和45mL的5ACl溶液,将两者混合均匀,室温搅拌8h,制得PNC。再向制得的产物溶液中加入乙醇,配制成体积浓度为4.25mg/mL的PNC乙醇溶液。然后,将1g乙酸加入100mL水中,再向其加入CS,搅拌3h直至其完全溶解,配制成体积浓度为4.25mg/mL的CS水溶液。分别量取10mL 的PNC乙醇溶液和5mL 的CS水溶液,将两者混合搅拌均匀。再将氨纶织物置入其中浸泡1min,随后取出织物置于烘箱中50℃加热反应40min,重复该浸泡-加热步骤3次,制得交联CS-PNC超亲水织物。
图1为PNC和交联PNC-CS的形成示意图。PEI与过量5ACl发生迈克尔加成反应,形成带活性双键的聚合物纳米复合颗粒PNC。其进一步与引入的CS发生加成反应,形成富含氨基和羟基亲水基团的多重交联PNC-CS涂层。
对PNC-CS涂层的交联度进行测试,具体操作为:将PNC-CS涂层置于60℃热水中,浸泡72h,每隔24h换一次水,测试完毕后将PNC-CS涂层烘干称重,交联度即为PNC-CS涂层水热处理后的质量与原始质量之比。
测试5个样品,取其平均值,测得本实施例制备的PNC-CS涂层的交联度为83.5%。
图2为本实施制备的PNC和PNC-CS涂层的全反射红外谱图。从图2可以看出,PNC在1625cm -1和1726cm -1处分别出现了归属于C=C和C=O键的伸缩振动峰,PNC在1406cm -1处和810cm -1、989cm -1处出现了归属于=C-H键的面内和面外弯曲变形振动峰,这表明PEI和5ACl发生反应,生成的PNC富含乙烯基团。由于PNC双键和CS氨基的进一步反应,CS-PNC在3410cm -1处出现了归属于OH和NH2基团的显著振动峰,在1564cm -1处出现N-C振动峰,而乙烯基的峰强相应削弱,表明PNC-CS交联结构的形成。
图3为本实施例制备的PNC放大50000倍的扫描电镜图。从图3可以看出,PNC呈现球状,颗粒尺寸在20nm~150nm之间,可以在微米级纤维表面有效构造纳米粗糙度。
图4为本实施例制备的多重交联超亲水织物放大1500倍和10000倍的扫描电镜图。从图4可以看出,氨纶织物纤维表面包覆了致密均匀的CS-PNC涂层,粗糙度和高表面能为超亲水润湿行为提供了关键要素。
图5为5μL水滴滴在原始氨纶织物的接触角(a)和2μL水滴滴在实施例1制备的多重交联超亲水织物上的接触角随时间的变化图(b)。从图5可以看出,原始氨纶织物呈现稳定的超疏水性,水滴在其表面的接触角为132°,而水滴滴在PNC-CS涂层包覆的氨纶织物表面时被快速吸收,水接触角达到0°仅需0.26s,织物呈现优异的超亲水性。接触角测试采用德国KRUSS公司的DSA100测试仪进行测试,每个样品取5个点计算平均值。
为了评价本实施例制备的多重交联超亲水织物的耐久性、耐温性、耐酸碱性和抗水热破坏能力,将超亲水织物放置于室温环境2个月,测试其水接触角;将超亲水织物放置于烘箱中80℃处理72h,测试其水接触角;将超亲水织物置入pH=1和pH=13的溶液中处理72h,测试其水接触角;将超亲水织物置入40℃的热水中处理72h,测试其水接触角。测试结果表明,本实施例制备的多重交联超亲水织物在室温环境下放置2个月、80℃环境下放置72h、pH=1和pH=13的溶液中浸泡72h、40℃热水中处理72h后,表面水接触角仍在9.5s内迅速降为0°,织物保持良好的超亲水稳定性,这主要归因于PNC和CS形成的全有机亲水性多重交联网络结构。
实施例2:将分子量为1800的PEI和5ACl分别溶于乙醇中,配制成体积浓度为10mg/mL的PEI溶液和体积浓度为15mg/mL的5ACl溶液。分别量取10mL的PEI溶液和40mL的5ACl溶液,将两者混合均匀,室温搅拌10h,制得PNC,再向制得的产物溶液中加入乙醇,配制成体积浓度为10mg/mL的PNC乙醇溶液。然后,将1g乙酸加入100mL水中,再向其加入CS,搅拌3h直至其完全溶解,配制成体积浓度为3mg/mL的CS水溶液。分别量取1.5mL的PNC乙醇溶液和10mL的CS水溶液,将两者混合搅拌均匀,再将聚酯织物置入其中浸泡5min,随后取出织物置于烘箱中60℃加热反应0.5h,重复该浸泡-加热步骤4次,制得交联CS-PNC超亲水织物。
本实施例制备的PNC-CS涂层的交联度为73%,水滴在织物表面0.45s时接触角达到0°,表现出超亲水性。
本实施例制备的多重交联超亲水织物在室温环境下放置2个月、80℃环境下放置72h、pH=1和pH=13的溶液中浸泡72h、40℃热水中处理72h后,表面水接触角仍在11s内降为0°,织物具有良好的超亲水稳定性。
实施例3:将分子量为3000的PEI和5ACl分别溶于乙醇中,配制成体积浓度为30mg/mL的PEI溶液和体积浓度为40mg/mL的5ACl溶液。分别量取20mL的PEI溶液和45mL的5ACl溶液,将两者混合均匀,室温搅拌5h,制得PNC,再向制得的产物溶液中加入乙醇,配制成体积浓度为8mg/mL的PNC乙醇溶液。然后,将1g乙酸加入100mL水中,再向其加入CS,搅拌3h直至其完全溶解,配制成体积浓度为4mg/mL的CS水溶液。分别量取10mL 的PNC乙醇溶液和5mL的CS水溶液,将两者混合搅拌均匀,再将聚乳酸织物置入其中浸泡2min,随后取出织物置于烘箱中30℃加热反应1h,重复该浸泡-加热步骤2次,制得交联CS-PNC超亲水织物。
本实施例制备的PNC-CS涂层的交联度为90%,水滴在织物表面6.3s时接触角达到0°,表现出超亲水性。
本实施例制备的多重交联超亲水织物在室温环境下放置2个月、80℃环境下放置72h、pH=1和pH=13的溶液中浸泡72h、40℃热水中处理72h后,表面水接触角仍在17s内降为0°,织物具有良好的超亲水稳定性。
实施例4:将分子量为10000的PEI和5ACl分别溶于乙醇中,配制成体积浓度为20mg/mL的PEI溶液和体积浓度为30mg/mL的5ACl溶液。分别量取20mL的PEI溶液和50mL的5ACl溶液,将两者混合均匀,室温搅拌5h,制得PNC。再向制得的产物溶液中加入乙醇,配制成体积浓度为5mg/mL的PNC乙醇溶液。然后,将1g乙酸加入100mL水中,再向其加入CS,搅拌3h直至其完全溶解,配制成体积浓度为5mg/mL的CS水溶液。分别量取15mL的PNC乙醇溶液和5mL的CS水溶液,将两者混合搅拌均匀,再将聚乳酸织物置入其中浸泡2min,随后取出织物置于烘箱中40℃加热反应1h,重复该浸泡-加热步骤3次,制得交联CS-PNC超亲水织物。
本实施例制备的PNC-CS涂层的交联度为85%,水滴在织物表面1.6s时接触角达到0°,表现出超亲水性。
本实施例制备的多重交联超亲水织物在室温环境下放置2个月、80℃环境下放置72h、pH=1和pH=13的溶液中浸泡72h、40℃热水中处理72h后,表面水接触角仍在12.5s内降为0°,织物具有良好的超亲水稳定性。
本申请利用PEI和5ACl的迈克尔加成反应形成PNC;将织物浸入PNC和CS的混合溶液中,取出后置于烘箱加热反应,在织物表面形成粗糙的PNC-CS交联涂层,重复该浸涂-加热步骤多次,制得表面富含氨基和羟基的多重交联超亲水织物。本申请的织物具有超亲水性,表面水滴接触角在0.26~0.63s即可达到0°,且PNC-CS交联涂层与织物基底具有强结合力,其交联度可通过原料配比进行调控,有效避免了超亲水涂层因溶胀过大导致的剥离损坏。超亲水织物呈现优良的耐久性、耐热性、耐酸碱性和抵抗热水破坏能力,制备工艺简单无污染,可控性强,适合工业化生产和推广应用。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的一种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种多重交联超亲水织物的制备方法,包括如下步骤:
    S1、将PEI和5ACl分别溶于乙醇中,配制成PEI溶液和5ACl溶液;两者按一定质量比进行混合,并在室温下搅拌5h~10h,之后反应制得PNC产物溶液;再向PNC产物溶液中加入乙醇稀释,得到PNC乙醇溶液待用;
    S2、将乙酸加入水中配制成质量分数为1wt%的乙酸水溶液中,再向其加入CS,搅拌直至其完全溶解得到CS溶液;将PNC乙醇溶液和CS溶液混合搅拌均匀得到PNC/CS混合溶液;将织物放入PNC/CS混合溶液中浸泡1min~5min;随后取出织物置于烘箱中30℃~60℃加热反应0.5h~1h,在织物表面形成粗糙的PNC-CS交联涂层;再重复该浸泡-加热步骤2次~4次,制得多重交联超亲水织物。
  2. 根据权利要求1所述的方法,所述PEI的体积浓度为10mg/mL~30mg/mL。
  3. 根据权利要求1所述的方法,所述PEI的分子量为1800~10000。
  4. 根据权利要求1所述的方法,所述5ACl溶液的体积浓度为15mg/mL~40mg/mL。
  5. 根据权利要求1所述的方法,所述PEI和所述5ACl的质量比为1:3~1:6。
  6. 根据权利要求1所述的方法,所述PNC乙醇溶液的体积浓度为3mg/mL~10mg/mL。
  7. 根据权利要求1所述的方法,所述CS溶液的体积浓度为3mg/mL~10mg/mL。
  8. 根据权利要求1所述的方法,在所述PNC/CS混合溶液中,PNC和CS的质量比为0.5~4。
  9. 根据权利要求1所述的方法,所述PNC-CS交联涂层的交联度为73%~90%。
  10. 根据权利要求1所述的方法,所述织物由聚乙烯、聚丙烯、聚氯乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚乳酸、聚对苯二甲酸乙二醇酯、聚氨酯或者尼龙中的一种或多种疏水性聚合物纤维构成。
  11. 一种多重交联超亲水织物,使用如权利要求1-10任一项所述的制备方法制得。
  12. 根据权利要求11所述的多重交联超亲水织物,所述多重交联超亲水织物表面的水滴接触角在0.26s~0.63s时达到0°。
PCT/CN2021/135128 2021-04-29 2021-12-02 一种多重交联超亲水织物及其制备方法 WO2022227570A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110475172.4A CN113265879B (zh) 2021-04-29 2021-04-29 一种多重交联超亲水织物及其制备方法
CN202110475172.4 2021-04-29

Publications (1)

Publication Number Publication Date
WO2022227570A1 true WO2022227570A1 (zh) 2022-11-03

Family

ID=77230099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135128 WO2022227570A1 (zh) 2021-04-29 2021-12-02 一种多重交联超亲水织物及其制备方法

Country Status (2)

Country Link
CN (1) CN113265879B (zh)
WO (1) WO2022227570A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113265879B (zh) * 2021-04-29 2022-09-09 东莞理工学院 一种多重交联超亲水织物及其制备方法
CN115475413B (zh) * 2022-08-23 2023-08-04 东莞理工学院 一种用于油水分离的超亲水铜网及其制备方法
CN115785813B (zh) * 2022-11-25 2023-08-15 东莞理工学院 一种透明度可转变的超亲水多孔涂层及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3686024A (en) * 1970-02-24 1972-08-22 Dow Chemical Co Process of making a water-absorbent coated article and resultant product
CN103316507A (zh) * 2013-06-06 2013-09-25 华南理工大学 超亲水及水下超疏油的油水分离网膜及其制备方法和应用
CN103623709A (zh) * 2013-11-11 2014-03-12 华南理工大学 氧化石墨烯改性超亲水超疏油油水分离膜及制备方法和应用
CN103893999A (zh) * 2014-03-31 2014-07-02 华南理工大学 一种超亲水及水下超疏油的油水分离网膜及其制备方法
CN105568556A (zh) * 2015-12-15 2016-05-11 上海洁晟环保科技有限公司 超疏水或超亲水且具备抗菌性能的纳米纤维膜的制备方法
CN106049057A (zh) * 2016-05-31 2016-10-26 东华大学 一种亲水、抗静电聚酯纤维的制备方法
CN111087556A (zh) * 2019-11-26 2020-05-01 南京源泉环保科技股份有限公司 一种油水分离材料及其制备方法
CN113265879A (zh) * 2021-04-29 2021-08-17 东莞理工学院 一种多重交联超亲水织物及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005062606A1 (de) * 2005-12-23 2007-07-05 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Nanoskalige Teilchen auf der Basis von SiO2 und Mischoxiden hiervon, deren Herstellung und Verwendung zur Behandlung textiler Materialien
US10259191B2 (en) * 2013-09-12 2019-04-16 Sri Lanka Institute of Nanotechnology (Pvt) Ltd. Moisture management fabric

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3686024A (en) * 1970-02-24 1972-08-22 Dow Chemical Co Process of making a water-absorbent coated article and resultant product
CN103316507A (zh) * 2013-06-06 2013-09-25 华南理工大学 超亲水及水下超疏油的油水分离网膜及其制备方法和应用
CN103623709A (zh) * 2013-11-11 2014-03-12 华南理工大学 氧化石墨烯改性超亲水超疏油油水分离膜及制备方法和应用
CN103893999A (zh) * 2014-03-31 2014-07-02 华南理工大学 一种超亲水及水下超疏油的油水分离网膜及其制备方法
CN105568556A (zh) * 2015-12-15 2016-05-11 上海洁晟环保科技有限公司 超疏水或超亲水且具备抗菌性能的纳米纤维膜的制备方法
CN106049057A (zh) * 2016-05-31 2016-10-26 东华大学 一种亲水、抗静电聚酯纤维的制备方法
CN111087556A (zh) * 2019-11-26 2020-05-01 南京源泉环保科技股份有限公司 一种油水分离材料及其制备方法
CN113265879A (zh) * 2021-04-29 2021-08-17 东莞理工学院 一种多重交联超亲水织物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RATHER ADIL M., SHOME ARPITA, KUMAR SURESH, BHUNIA BIBHAS K., MANDAL BIMAN B., SRIVASTAVA HEMANT KUMAR, MANNA UTTAM: "Alkali metal-ion assisted Michael addition reaction in controlled tailoring of topography in a superhydrophobic polymeric monolith", JOURNAL OF MATERIALS CHEMISTRY A, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 6, no. 35, 1 January 2018 (2018-01-01), GB , pages 17019 - 17031, XP055981273, ISSN: 2050-7488, DOI: 10.1039/C8TA06329J *

Also Published As

Publication number Publication date
CN113265879A (zh) 2021-08-17
CN113265879B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2022227570A1 (zh) 一种多重交联超亲水织物及其制备方法
Anjum et al. Fabrication of coral-reef structured nano silica for self-cleaning and super-hydrophobic textile applications
Huang et al. Water-based polyurethane formulations for robust superhydrophobic fabrics
CN110144158B (zh) 一种单组分聚合物纳米复合超疏水涂层材料及其制备方法
Liu et al. Zwitterionic hydrogel-coated cotton fabrics with underwater superoleophobic, self-healing and anti-fouling performances for oil-water separation
Ye et al. Novel dual-functional coating with underwater self-healing and anti-protein-fouling properties by combining two kinds of microcapsules and a zwitterionic copolymer
He et al. Fabrication of durable superhydrophobic surfaces of polyester fabrics via fluorination-induced grafting copolymerization
CN103709815B (zh) 一种水分散性超双疏微球及其制备方法与应用
Parvinzadeh Surface modification of synthetic fibers to improve performance: recent approaches
WO2015078099A1 (zh) 一种具有普适性的超双疏表面及其制备方法
CN112144287B (zh) 一种改性空心微球接枝润滑油制备超滑防污表面的方法
Jiang et al. Synthesis of superhydrophobic fluoro-containing silica sol coatings for cotton textile by one-step sol–gel process
CN110644240A (zh) 一种多功能耐久性和自修复超疏水织物表面的制备方法
CN111286068B (zh) 一种表面接枝两性离子制备亲水-疏水复合膜的方法
MXPA00011781A (es) Metodo para reformar la superficie de un elemento, elemento con superficie reformada, metodo para la fabricacion de un elemento con superficie reformada, liquido de tratamiento de superficie para formar una superficie reformada, y metodo de fabricaci
Ding et al. Excellent performance of novel superhydrophobic composite hollow membrane in the vacuum membrane distillation
CN111632504A (zh) 一种自清洁的超疏水纳米纤维膜及其制备方法
CN109536006A (zh) 一种聚砜超疏水表面的制备方法
CN108079798B (zh) 一种基于纳米类水滑石的超亲水有机膜制备方法
CN110527293A (zh) 一种玄武岩鳞片纤维改性的聚酰亚胺薄膜及其制备方法
Xing et al. Poly (methacrylic acid)‐modified chitosan for enhancement adsorption of water‐soluble cationic dyes
Xu et al. Nanoparticle-free, fluorine-free, and robust superhydrophobic cotton fabric fabricated using a combination of etching method and mist polymerization technology
CN113385393A (zh) 一种仿沙漠甲虫结构复合材料及其制备方法
CN106930107B (zh) 包覆无机钛层的uhmwpe复合材料及其制备方法
CN107083680A (zh) 碳纤维表面原位聚合吡咯的修饰方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939029

Country of ref document: EP

Kind code of ref document: A1