CN110565378A - 一种用于油水分离的超疏水改性棉纤维及其制备方法 - Google Patents

一种用于油水分离的超疏水改性棉纤维及其制备方法 Download PDF

Info

Publication number
CN110565378A
CN110565378A CN201910872104.4A CN201910872104A CN110565378A CN 110565378 A CN110565378 A CN 110565378A CN 201910872104 A CN201910872104 A CN 201910872104A CN 110565378 A CN110565378 A CN 110565378A
Authority
CN
China
Prior art keywords
cotton
hydrophobic
cotton fiber
chloride
super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910872104.4A
Other languages
English (en)
Other versions
CN110565378B (zh
Inventor
张建安
王肖
吴明元
吴庆云
杨建军
刘久逸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN201910872104.4A priority Critical patent/CN110565378B/zh
Publication of CN110565378A publication Critical patent/CN110565378A/zh
Application granted granted Critical
Publication of CN110565378B publication Critical patent/CN110565378B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/02Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of natural origin
    • D06M14/04Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of natural origin of vegetal origin, e.g. cellulose or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/31Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated nitriles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic

Abstract

本发明公开了一种用于油水分离的超疏水改性棉纤维的制备方法,包括以下步骤:将原始棉纤维清洗后干燥备用;将干燥后的原始棉纤维浸入由疏水改性剂、卤化试剂、三乙胺和无水二甲基甲酰胺构成的混合溶液中,搅拌制得疏水长链烷烃和卤化共改性的棉纤维,其中,所述疏水改性剂为长链酰溴、长链酰氯中的一种或两种的混合;将所述疏水长链烷烃和卤化共改性的棉纤维通过原子转移自由基聚合法,得到表面接枝聚合物的超疏水改性棉纤维。本发明制得的用于油水分离的超疏水改性棉纤维具有生物可降解性,应用前景广泛。

Description

一种用于油水分离的超疏水改性棉纤维及其制备方法
技术领域
本发明属于功能材料领域,具体涉及一种用于油水分离的超疏水改性棉纤维及其制备方法。
背景技术
自然界中的一些生物,如荷叶、蝉翼和蚊子的眼睛,具有超疏水性,也就是说,水滴在表面上几乎可以保持球形,很容易滚落,从而清除路径上的脏物。尤其是结合超疏水性和超亲油性的功能材料,在油水分离中具有很好的效果,可以对溢油事故和工业含油废水的增加起到重要作用。目前通过模仿自然界中生物,采用仿生的方法,将低表面能物质和分级微/纳米结构表面的结合起来,已经开发出碳纳米管海绵、金属网和聚合物等各种人工超疏水/超亲油材料。
而随着人们对可再生资源和生物可降解材料的关注,利用纤维素制备超疏水和超亲油性材料引起了人们的广泛兴趣。这是由于纤维素是自然界中最常见的聚合物之一,被认为是一种几乎取之不尽的原材料来源,可满足对涂料、层压板、光学薄膜、吸附介质、制药、食品和化妆品等环保和生物相容性产品日益增长的需求。然而,由于棉纤维表面含有大量的羟基,纤维素具有亲水性,易被水润湿。目前有通过涂覆、乙酰化反应、硅基化反应和接枝聚合反应等物理或化学改性方法,改变纤维素表面的亲水性,赋予其超疏水性能,以满足实际应用。而以上方法中,接枝聚合技术一直是研究的热点,其是将疏水性聚合物共价结合到纤维素,纤维素与聚合物之间形成的共价键增强了超疏水性的稳定性,延长了超疏水材料的使用寿命。
Liu等(Liu F,Ma M,Zang D,et al.Carbohydrate Polymers.2014,103:480–487)使用溶胶-凝胶法生成硅纳米颗粒涂覆在原始棉花上,然后再用十八烷基三氯硅烷(OTS)对其改性制备超疏水棉,其可以选择性从水中吸附油。但其易于被低表面能油污染,会导致其特殊表面润湿性和分离性能的丧失;此外,含硅化合物无法避免,最终将被生物累积并对环境和生物体有害;含有硅纳米颗粒提升接触角,使得其不具有耐久性。
尹等(尹承伟,颜黎栋.云南化工.2019,46(4):126-127)使用浸渍法把氧化石墨烯(GO)包覆在三聚氰胺海绵(MS)骨架之上,使用还原剂将GO还原为还原氧化石墨烯(RGO),同时将其紧密覆与三聚氰胺海绵骨架之上,制备了超疏水的RGO-MS吸附材料。但氧化石墨烯制备工艺复杂,生产成本较高。
王等(王凤平,郭亦菲,李彦昕.辽宁师范大学学报(自然科学版).2019,42(02):204-209)采用涂层法,以含硅聚四氟乙烯为成膜物质,以疏水纳米SiO2为填料,成功制备出含有微/纳米复合结构的超疏水表面。但其超疏水涂层的水接触角只有153°,且不能多次循环利用。依靠SiO2填料提升接触角,不具有耐久性。
公开号为CN109046037A的中国专利公开了一种疏水纤维素基油水分离膜的制备方法。将纤维素基材置于含硅烷的经乙醇溶解的正硅酸四乙酯溶液中,滴加氨水,对其表面进行疏水改性,制备疏水纤维素基油水分离膜。但其水接触角最大仅有125°,且其中含有含硅化合物和固体颗粒,对环境和生物体有害,耐久性差。
发明内容
有鉴于此,本发明有必要提供一种用于油水分离的超疏水改性棉纤维及其制备方法,本发明中采用一步法制备出改性棉纤维,再将改性棉纤维经过原子转移自由基聚合反应,从而得到聚合物接枝的超疏水改性棉纤维,从而解决了现有技术中改性方法对环境、生物体有害、接触角提升有限且耐久性差的技术问题。
为了实现上述目的,本发明采用以下技术方案:
一种用于油水分离的超疏水改性棉纤维的制备方法,包括以下步骤:
S1、将原始棉纤维清洗后干燥备用;这里的原始棉纤维采用市售的棉纤维,清洗主要是除去其表面的杂质;
S2、将干燥后的原始棉纤维浸入由疏水改性剂、卤化试剂、三乙胺和无水二甲基甲酰胺构成的混合溶液中,搅拌,所述疏水改性剂及卤化试剂的卤原子与棉纤维上的羟基反应,制得疏水长链烷烃和卤化共改性的棉纤维,可标记为Cn-Cellulose-g-X;,其中,所述疏水改性剂为长链酰溴、长链酰氯中的至少一种;
S3、将所述疏水长链烷烃和卤化共改性的棉纤维通过原子转移自由基聚合法,得到表面接枝聚合物的超疏水改性棉纤维,可标记为Cn-Cellulose-g-Polymer。
进一步的,步骤S1中所述的清洗为将所述原始棉纤维置于乙醇或丙酮中超声处理。本发明优选的采用乙醇或丙酮对原始棉纤维进行超声处理,以达到除去表面杂质的目的,超声时间可根据需要进行调整,只要能去除杂质即可,在本发明的一些实施例中,以超声5min为宜。同时去除杂质后,需进行干燥,这里的干燥为本领域常规的烘干,烘干温度也是本领域技术人员可以做出的常规选择,这里不再详细赘述,在本发明的一些实施例中50℃烘干即可。
优选的,步骤S2中,所述的疏水改性剂中的碳链长度不低于15。一般来说,烷烃链越长,疏水改性的效果越好,因此为达到超疏水效果,本发明中疏水改性剂中的碳链长度不低于15,也就是说长链的C原子数在15以上为佳。
优选的,所述长链酰溴为十八烷酰溴,所述长链酰氯为十八烷酰氯、十六烷酰氯、十五烷酰氯、十七烷酰氯的一种或两种以上的混合。
进一步的,步骤S2中,所述卤化试剂为2-溴-2-甲基丙酰溴、2-溴异丁酰溴、2-溴丙酰氯、4-溴丁基氯酸中的一种或两种以上的混合。
优选的,步骤S2中,所述混合溶液中,所述疏水改性剂、卤化试剂、三乙胺和无水二甲基甲酰胺的体积比为1:1:2:50。
进一步的,步骤S3中,所述原子转移自由基聚合法的具体工艺为:将所述疏水长链烷烃和卤化共改性的棉纤维干燥后,与有机溶剂、乙烯基单体、卤化铜和有机配体混合充分搅拌,然后通保护气体,排出空气,经液氮冷冻、真空除氧处理后,加入卤化亚铜,加热反应后,再经过分离、洗涤、干燥后,得到超疏水改性棉纤维,其中,所述保护气体为氮气或惰性气体。在本发明的一些实施例中,优选的,将所述疏水长链烷烃和卤化共改性的棉纤维干燥后,与有机溶剂、乙烯基单体、卤化铜和有机配体混合充分搅拌,然后通保护气体,排出空气,经液氮冷冻、真空除氧处理后,加入卤化亚铜,在60℃水浴锅中加热反应后,乙烯基单体在表面含卤素的棉纤维表面发生接枝反应,当达到所需的聚合物分子量时(在反应时加入牺牲的引发剂,用注射器从Schlenk瓶取样,采用GPC测试聚合物的分子量),即打开瓶口,终止聚合反应,再经过分离、洗涤、在40℃烘箱中干燥后,得到超疏水改性棉纤维。可以理解的是,这里原子自由基聚合反应的反应时间不做具体的限定,可以根据单体体系的不同,以及所需的聚合物的分子量大小进行调整,在本发明的一些实施例中优选的反应时间为5-48h,而其中的加工参数也属于原子自由基聚合反应的常规调整,本领域技术人员可以根据需要进行调整,这里也不再具体的限定。
进一步的,所述有机溶剂包括二甲基甲酰胺、二甲基亚砜、环丁砜、硝酸亚乙基酯一种;
所述乙烯基单体包括丙烯酸甲酯、苯乙烯、甲基丙烯酸甲酯、丙烯酸丁酯、丙烯酸叔丁酯、丙烯腈、甲基丙烯腈、乙二醇二甲基丙烯酸酯、2-甲基-2-丙烯酸-2-(2-甲氧基乙氧基)乙酯、甲基丙烯酸N,N-二甲氨基乙酯中的一种;
所述卤化铜为氯化铜或溴化铜;
所述有机配体包括4,4'-二壬基-2,2'-联吡啶、2,2'-联吡啶、三(2-吡啶基甲基)胺、三(2-二甲氨基乙基)胺、五甲基二乙烯三胺中的一种;
所述卤化亚铜为氯化亚铜或溴化亚铜。
进一步的,所述疏水长链烷烃和卤化共改性的棉纤维、所述乙烯基单体、所述卤化铜、所述卤化亚铜和所述有机配体的摩尔比为1:(200-600):(0.1-1.0):(0.9-10):(2-20)。本发明中优选其范围是由于这样反应更加有效及快速,且使得药品得到最大程度的利用。
本发明还提供了一种用于油水分离的超疏水改性棉纤维,采用上述制备方法制得。
与现有技术相比,本发明具有以下有益效果:
本发明采用一步法制备出疏水长链烷烃和卤化共改性的棉纤维Cn-Cellulose-g-X,避免了二次表面修饰的工序,同时采用原子转移自由基聚合方法实现了聚合物在Cn-Cellulose-g-X改性棉纤维的接枝,获得疏水长链烷烃和聚合物共同改性的棉纤维,其具有工艺简单,反应条件温和易于控制和成本低等特点,适合于工业化生产。
本发明中由于聚合物和疏水长链烷烃是化学键合在棉纤维上,因此制备的超疏水改性棉纤维,具有耐化学稳定性,可以重复使用。
本发明中用于油水分离的超疏水改性棉纤维具有生物可降解性,且由于不添加固体纳米粒子,不含氟硅等低表面能聚合物,可消除环境和生物体危害。
本发明中得到的超疏水改性纤维Cn-Cellulose-g-Polymer的水接触角在155°以上,油水分离效率在99%以上,回收性能好,且在恶劣的环境条件下具有显着的机械耐久性。
附图说明
图1为实施例1中原始棉花、C18-Cotton-Br、C18-Cotton-g-PSAN的扫描电镜图;
图2为实施例1中原始棉花、C18-Cotton-Br、C18-Cotton-g-PSAN的红外光谱图;
图3为实施例1中原始棉花、C18-Cotton-Br、C18-Cotton-g-PSAN的X射线光电子能谱图;
图4为实施例1中原始棉花、C18-Cotton-Br、C18-Cotton-g-PSAN的接触角图片;
图5为实施例1中随循环次数的增加C18-Cotton-g-PSAN吸油量的变化图。
具体实施方式
为了便于理解本发明,下面将结合具体的实施例对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。
实施例1
用乙醇对1g原始棉花进行超声处理5分钟,置于50℃烘箱中干燥6h。将干燥后的棉花浸入含有2-溴异丁酰溴(6mL)、十八烷酰溴(6mL)、三乙胺(12mL)和无水二甲基甲酰胺(300mL)的混合溶液中,室温下搅拌24h,制备出2-溴异丁酰溴和十八烷酰溴共改性的棉花,记为C18-Cotton-g-Br,将C18-Cotton-g-Br用乙醇和水彻底清洗,去除残余反应物,并在50℃真空下干燥。
将干燥后的C18-Cotton-g-Br浸入含有苯乙烯和丙烯腈单体、二甲基甲酰胺、2,2'-联吡啶、溴化铜、2-溴代异丁酸(作为牺牲的引发剂,用于测GPC)的Schlenk瓶中,然后通氮气,排出空气,经液氮冷冻、真空除氧处理后,加入溴化亚铜,于60℃进行反应,其中,C18-Cotton-g-Br、苯乙烯、丙烯腈、溴化铜、溴化亚铜和2,2'-联吡啶的摩尔比为1:500:300:0.5:2.5:9,苯乙烯和丙烯腈在C18-Cotton-g-Br表面发生接枝反应,当达到所需的聚合物分子量(4.7×104)时,终止反应,分离后,用苯甲醚和乙醇洗涤以除去未反应的单体,于40℃的烘箱中干燥24h,得到表面接枝聚合物的超疏水改性面纤维,记为C18-Cotton-g-PSAN。
实施例2
用乙醇对1g原始棉进行超声处理5分钟,置于50℃烘箱中干燥6h。将干燥后的棉花浸入含有2-溴-2-甲基丙酰溴(6mL)、十八烷酰氯(6mL)、三乙胺(12mL)和无水二甲基甲酰胺(300mL)的混合溶液中,于室温下搅拌24h,制备出2-溴-2-甲基丙酰溴和十八烷酰氯共改性的棉花,记为C18-Cotton-g-Br,将C18-Cotton-g-Br用乙醇和水彻底清洗,去除残余反应物,并在50℃真空下干燥。
将干燥后的C18-Cotton-g-Br浸入含有苯乙烯单体、二甲基亚砜、五甲基二乙烯三胺、溴化铜、2-溴代异丁酸(作为牺牲的引发剂,用于测GPC)的Schlenk瓶中,然后通氮气,排出空气,经液氮冷冻、真空除氧处理后,加入溴化亚铜,于60℃进行反应,其中,C18-Cotton-g-Br、苯乙烯、溴化铜、溴化亚铜和五甲基二乙烯三胺的摩尔比为1:600:1.0:10:20,苯乙烯在C18-Cotton-g-Br表面发生接枝反应,当达到所需的聚合物分子量(3.8×104)时,终止反应,收集所得棉花,用苯甲醚和乙醇洗涤以除去未反应的单体。将所得材料在40℃的烘箱中干燥24h,记为C18-Cotton-g-PS。
实施例3
用乙醇对1g原始棉花进行超声处理5分钟,置于50℃烘箱中干燥6h。将干燥后的棉花浸入含有2-溴丙酰氯(6mL)、十六烷酰氯(6mL)、三乙胺(12mL)和无水二甲基甲酰胺(300mL)的溶液中。将溶液在室温下搅拌24h,制备出2-溴丙酰氯和十六烷酰氯共改性的棉花,记为C16-Cotton-g-Br。将C16-Cotton-g-Br用乙醇和水彻底清洗,去除残余反应物,并在50℃真空下干燥。
将干燥后的C16-Cotton-g-Br浸入含有甲基丙烯酸N,N-二甲基氨基乙酯单体、环丁砜、三(2-二甲氨基乙基)胺、溴化铜、2-溴代异丁酸(作为牺牲的引发剂,用于测GPC)的Schlenk瓶中,然后通氮气,排出空气,经液氮冷冻、真空除氧处理后,加入溴化亚铜,于60℃进行反应,其中,C16-Cotton-g-Br、甲基丙烯酸N,N-二甲基氨基乙酯、溴化铜、溴化亚铜和三(2-二甲氨基乙基)胺的摩尔比为1:200:0.1:0.9:2,甲基丙烯酸N,N-二甲基氨基乙酯在C16-Cotton-g-Br表面发生接枝反应,当达到所需的聚合物分子量(2.1×104)时,终止反应,收集所得棉花,用苯甲醚和乙醇洗涤以除去未反应的单体。将所得材料在40℃的烘箱中干燥24h,记为C16-Cotton-g-PDMAEMA。
实施例4
用乙醇对1g原始棉布进行超声处理5分钟,置于50℃烘箱中干燥6h。将干燥后的棉花浸入含有2-溴异丁酰溴(6mL)、十七烷酰氯(6mL)、三乙胺(12mL)和无水二甲基甲酰胺(300mL)的溶液中。将溶液在室温下搅拌24h,制备出2-溴异丁酰溴和十七烷酰氯共改性的棉花,记为C17-Cotton-g-Br。将C17-Cotton-g-Br用乙醇和水彻底清洗,去除残余反应物,并在50℃真空下干燥。
将干燥后的C17-Cotton-g-Br浸入含有苯乙烯单体、二甲基亚砜、三(2-二甲氨基乙基)胺、氯化铜、2-溴代异丁酸(作为牺牲的引发剂,用于测GPC)的Schlenk瓶中,然后通氮气,排出空气,经液氮冷冻、真空除氧处理后,加入氯化亚铜,于60℃进行反应,其中,C17-Cotton-g-Br、苯乙烯、氯化铜、氯化亚铜和三(2-二甲氨基乙基)胺的摩尔比为1:500:0.3:1.5:3.6,苯乙烯在C17-Cotton-g-Br表面发生接枝反应,当达到所需的聚合物分子量(3.2×104)时,终止反应,收集所得棉布,用苯甲醚和乙醇洗涤以除去未反应的单体,将所得材料在40℃的烘箱中干燥24h,记为C17-Cotton-g-PS。
实施例5
用乙醇对1g原始棉布进行超声处理5分钟,置于50℃烘箱中干燥6h。将干燥后的棉花浸入含有2-溴-2-甲基丙酰溴(6mL)、十八烷酰溴(6mL)、三乙胺(12mL)和无水二甲基甲酰胺(300mL)的溶液中。将溶液在室温下搅拌24h,制备出2-溴-2-甲基丙酰溴和十八烷酰溴共改性的棉花,记为C18-Cotton-g-Br。将C18-Cotton-g-Br用乙醇和水彻底清洗,去除残余反应物,并在50℃真空下干燥。
将干燥后的C18-Cotton-g-Br浸入含有5-溴代戊酸(0.012g)、甲基丙烯酸N,N-二甲基氨基乙酯单体、环丁砜、4,4'-二壬基-2,2'-联吡啶、氯化铜、2-溴代异丁酸(作为牺牲的引发剂,用于测GPC)的Schlenk瓶中,然后通氮气,排出空气,经液氮冷冻、真空除氧处理后,加入氯化亚铜,于60℃进行反应,其中,C18-Cotton-g-Br、甲基丙烯酸N,N-二甲基氨基乙酯、氯化铜、氯化亚铜和4,4'-二壬基-2,2'-联吡啶的摩尔比为1:300:0.6:4.5:7,甲基丙烯酸N,N-二甲基氨基乙酯在C18-Cotton-g-Br表面发生接枝反应,当达到所需的聚合物分子量(2.8×104)时,终止反应,收集所得棉布,用苯甲醚和乙醇洗涤以除去未反应的单体。将所得材料在40℃的烘箱中干燥24h,记为C18-Cotton-g-PDMAEMA。
实施例6
用丙酮对1g原始棉布进行超声处理5分钟,置于50℃烘箱中干燥6h。将干燥后的棉花浸入含有4-溴丁基氯酸(6mL)、十五烷酰氯(6mL)、三乙胺(12mL)和无水二甲基甲酰胺(300mL)的溶液中。将溶液在室温下搅拌24h,制备出4-溴丁基氯酸和十五烷酰氯共改性的棉花,记为C15-Cotton-g-Br。将C15-Cotton-g-Br用乙醇和水彻底清洗,去除残余反应物,并在50℃真空下干燥。
将干燥后的C15-Cotton-g-Br浸入含有7-溴-2-氧代庚酸(0.012g)、苯乙烯和丙烯腈单体、二甲基甲酰胺、三(2-二甲氨基乙基)胺、氯化铜、2-溴代异丁酸(作为牺牲的引发剂,用于测GPC)的Schlenk瓶中,然后通氮气,排出空气,经液氮冷冻、真空除氧处理后,加入氯化亚铜,于60℃进行反应,其中,C15-Cotton-g-Br、苯乙烯、丙烯腈、氯化铜、氯化亚铜和三(2-二甲氨基乙基)胺的摩尔比为1:500:300:0.8:7.5:8。苯乙烯和丙烯腈在C15-Cotton-g-Br表面发生接枝反应,当达到所需的聚合物分子量(4.1×104)时,终止反应,收集所得棉布,用苯甲醚和乙醇洗涤以除去未反应的单体。将所得材料在40℃的烘箱中干燥24h,记为C15-Cotton-g-PSAN。
测试例
图1是(a,b)原始棉花、(c,d)C18-Cotton-Br、(e,f)C18-Cotton-g-PSAN的扫描电镜图,如图1(a,b)所示,原始棉花表面光滑,这对保持高吸水能力至关重要。十八烷基束缚后,C18-Cotton-Br的表面上出现大量凹槽(图1c,d)。在C18-Cotton-Br表面接枝PSAN链后,C18-Cotton-g-PSAN的表面上观察到微纳米级突起结构,证实了PSAN在棉花表面成功接枝,众所周知,微/纳米粗糙表面是实现超疏水性的关键。与原始棉花相比,C18-Cotton-g-PSAN增加的表面粗糙度,有效地增强了C18-Cotton-g-PSAN的疏水性。
图2是(a)原始棉花、(b)C18-Cotton-Br、(c)C18-Cotton-g-PSAN的红外光谱图。与图2a中原始棉花的光谱相比,在2919和2850cm-1处的吸收峰为十八烷酰溴的长烃链上的CH2基团;同时吸收峰在1817和1704cm-1处属于C=O伸缩振动和十八烷酰溴的CH变形振动;622cm-1处的新峰对应于2-溴异丁酰溴的C-Br伸缩振动。证实了十八烷酰溴和2-溴异丁酰溴在棉花表面的成功改性。与图2b中所示的C18-Cotton-Br的光谱相比,图2c中出现的3026和2236cm-1处的新振动峰分别对应于苯乙烯的苯环中的CH基团和丙烯腈中的CN基团。这证明了棉花表面成功接枝丙烯腈和苯乙烯。
图3是(a)原始棉花、(b)C18-Cotton-Br、(c)C18-Cotton-g-PSAN的X射线光电子能谱图。如图3a所示,原始棉的XPS测量光谱显示出286.39eV和533.04eV的结合能,属于棉花的C1s和O1s。经过表面改性和聚合物接枝后,出现了68.26eV的新的Br3d峰(图3b),在C18-Cotton-g-PSAN光谱上出现了399.91eV的N1s峰(图3c),这意味着成功实现了棉花的表面改性及随后的PSAN接枝。
图4是(a)原始棉花、(b)C18-Cotton-Br、(c)C18-Cotton-g-PSAN的接触角照片、C18-Cotton-g-PSAN上的水(用亚甲基蓝染色)和果汁,茶,牛奶和咖啡液滴的光学图像(d)及C18-Cotton-g-PSAN上的氯仿(用苏丹III染色)和水滴的光学图像(e)。如图4a所示,当棉花接近水滴时,原始棉花接触角为36°,并且在3秒后迅速吸收水。对于C18-Cotton-Br,棉表面用硬脂酰氯改性,在棉纤维上形成长烃链的酯键,导致其润湿性从亲水性变为超疏水性。因此,C18-Cotton-Br的接触角为154°,显示出良好的超疏水性(图4b)。在用C18-Cotton-Br接枝PSAN后,由于C18-Cotton-g-PSAN的表面粗糙度增加,接触角从154°增加到159°(图4c)。
图5是随循环次数的增加C18-Cotton-g-PSAN吸油量的变化图。吸附剂的可重复使用性在实际应用中的溢油清理中起主要作用。为了进一步研究C18-Cotton-g-PSAN在油/水分离应用中的可重复使用性,在每个油吸附和释放循环中测量吸附容量。C18-Cotton-g-PSAN在油的吸收方面表现出优异的可回收性。图5显示了回收的超疏水棉对甲苯的吸收能力。可以看出,第一次对甲苯的吸油量高达26g/g,随着循环次数的增加,平均吸收能力下降速度仅为2%左右。吸收能力的降低是由于每个循环中棉花的重量损失。即使在第7次循环后,样品仍保持154°的高接触角和22.4g的吸油能力。证实了C18-Cotton-g-PSAN具有高回收性能。
使用实施例1中的C18-Cotton-g-PSAN做油水分离实验:将C18-Cotton-g-PSAN固定在玻璃柱的底部。将二氯甲烷(10mL)和水(10mL)的混合物倒入玻璃容器中。水用甲基蓝染色成蓝色,二氯甲烷及甲苯用苏丹红III染色成红色,以便清楚地观察到分离现象。在分离过程中,二氯甲烷液滴渗透到超疏水棉表面并在不需要外力的情况下落入烧杯中。最后,成功分离出水和二氯甲烷,分离效率达到99.2%。
再使用实施例1中的C18-Cotton-g-PSAN从水表面捕获甲苯和从水下捕获二氯甲烷:取少量超疏水棉放入水中并靠近密度低于水(甲苯)的油层时,油在几秒钟内立即被吸收留下干净的水面。同时,棉花变成了红色。对于密度大于水(二氯甲烷)的油的情况,用镊子夹取少量超疏水棉放入水中,棉花一接触油表面就会迅速捕获油。因此,这些结果表明,超疏水棉有望在各种条件下(例如浮油层,水下油滴或油/水混合物)进行多种油/水分离。
使用实施例1中的C18-Cotton-g-PSAN做磨损和拉伸试验:使用400目砂纸作为磨损表面的磨损试验。在C18-Cotton-g-PSAN上放置重量为250g的铁块,超疏水棉与砂纸保持紧密接触,然后将C18-Cotton-g-PSAN沿一个方向拖动,磨损长度为20cm,发现在20次刮擦循环后接触角保持157°。这些结果表明C18-Cotton-g-PSAN具有优异的耐磨性。然后施加由轴向拉力引起的一定应力时,即使在10次拉伸后,严重断裂的C18-Cotton-g-PSAN在破碎处仍然具有超疏水性,接触角接近155°。机械拉伸不破坏棉纤维的微观结构和表面组分,因此几乎不影响它们的表面疏水性以实现机械稳定性。具有强大的疏水耐久性,棉纤维可以进一步编织成棉织物,以展示其多功能性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种用于油水分离的超疏水改性棉纤维的制备方法,其特征在于,包括以下步骤:
S1、将原始棉纤维清洗后干燥备用;
S2、将干燥后的原始棉纤维浸入由疏水改性剂、卤化试剂、三乙胺和无水二甲基甲酰胺构成的混合溶液中,搅拌制得疏水长链烷烃和卤化共改性的棉纤维,其中,所述疏水改性剂为长链酰溴、长链酰氯中的至少一种;
S3、将所述疏水长链烷烃和卤化共改性的棉纤维通过原子转移自由基聚合法,得到表面接枝聚合物的超疏水改性棉纤维。
2.如权利要求1所述的制备方法,其特征在于,步骤S1中所述的清洗为将所述原始棉纤维置于乙醇或丙酮中超声处理。
3.如权利要求1所述的制备方法,其特征在于,步骤S2中,所述的疏水改性剂中的碳链长度不低于15。
4.如权利要求3所述的制备方法,其特征在于,所述长链酰溴为十八烷酰溴,所述长链酰氯为十八烷酰氯、十六烷酰氯、十五烷酰氯、十七烷酰氯的一种或两种以上的混合。
5.如权利要求1所述的制备方法,其特征在于,步骤S2中,所述卤化试剂为2-溴-2-甲基丙酰溴、2-溴异丁酰溴、2-溴丙酰氯、4-溴丁基氯酸中的一种或两种以上的混合。
6.如权利要求1所述的制备方法,其特征在于,步骤S2中,所述混合溶液中,所述疏水改性剂、卤化试剂、三乙胺和无水二甲基甲酰胺的体积比为1:1:2:50。
7.如权利要求1所述的制备方法,其特征在于,步骤S3中,所述原子转移自由基聚合法的具体工艺为:将所述疏水长链烷烃和卤化共改性的棉纤维干燥后,与有机溶剂、乙烯基单体、卤化铜和有机配体混合充分搅拌,然后通入保护气体,排出空气,经液氮冷冻、真空除氧处理后,加入卤化亚铜,加热反应后,再经过分离、洗涤、干燥后,得到超疏水改性棉纤维,其中,所述保护气体为氮气或惰性气体。
8.如权利要求7所述的制备方法,其特征在于,所述有机溶剂包括二甲基甲酰胺、二甲基亚砜、环丁砜、硝酸亚乙基酯一种;
所述乙烯基单体包括丙烯酸甲酯、苯乙烯、甲基丙烯酸甲酯、丙烯酸丁酯、丙烯酸叔丁酯、丙烯腈、甲基丙烯腈、乙二醇二甲基丙烯酸酯、2-甲基-2-丙烯酸-2-(2-甲氧基乙氧基)乙酯、甲基丙烯酸N,N-二甲氨基乙酯中的一种;
所述卤化铜为氯化铜或溴化铜;
所述有机配体包括4,4'-二壬基-2,2'-联吡啶、2,2'-联吡啶、三(2-吡啶基甲基)胺、三(2-二甲氨基乙基)胺、五甲基二乙烯三胺中的一种;
所述卤化亚铜为氯化亚铜或溴化亚铜。
9.如权利要求7所述的制备方法,其特征在于,所述疏水长链烷烃和卤化共改性的棉纤维、所述乙烯基单体、所述卤化铜、所述卤化亚铜和所述有机配体的摩尔比为1:(200-600):(0.1-1.0):( 0.9-10):( 2-20)。
10.一种用于油水分离的超疏水改性棉纤维,其特征在于,采用如权利要求1-9任一项所述的制备方法制得。
CN201910872104.4A 2019-09-16 2019-09-16 一种用于油水分离的超疏水改性棉纤维及其制备方法 Active CN110565378B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910872104.4A CN110565378B (zh) 2019-09-16 2019-09-16 一种用于油水分离的超疏水改性棉纤维及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910872104.4A CN110565378B (zh) 2019-09-16 2019-09-16 一种用于油水分离的超疏水改性棉纤维及其制备方法

Publications (2)

Publication Number Publication Date
CN110565378A true CN110565378A (zh) 2019-12-13
CN110565378B CN110565378B (zh) 2022-04-05

Family

ID=68780078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910872104.4A Active CN110565378B (zh) 2019-09-16 2019-09-16 一种用于油水分离的超疏水改性棉纤维及其制备方法

Country Status (1)

Country Link
CN (1) CN110565378B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111501201A (zh) * 2020-04-20 2020-08-07 陕西科技大学 一种超疏水裂片型超细纤维非织造布及其制备方法
CN111893630A (zh) * 2020-08-17 2020-11-06 智科通用技术研究(广州)有限公司 一种易透气排汗的亲肤面料及其制备方法
CN113308008A (zh) * 2021-06-01 2021-08-27 安徽英科医疗用品有限公司 一种疏水性丁腈手套及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1970876A (zh) * 2006-12-01 2007-05-30 陕西师范大学 一种制备具有亲水或疏水性纤维的方法
CN102174737A (zh) * 2010-12-30 2011-09-07 中国科学院上海应用物理研究所 超疏水织物或超疏水无纺布,及其制备方法
CN102924744A (zh) * 2012-11-26 2013-02-13 中国科学院长春应用化学研究所 一种改性聚合物泡沫材料及其制备方法
CN104725662A (zh) * 2013-12-18 2015-06-24 中国科学院宁波材料技术与工程研究所 一种亲油性聚氨酯海绵及其制备方法
CN106750480A (zh) * 2016-12-20 2017-05-31 福建农林大学 纤维素基油水分离薄膜的制备方法
CN109295714A (zh) * 2018-09-27 2019-02-01 圣华盾防护科技股份有限公司 一种棉织物疏水改性的方法
CN109763316A (zh) * 2019-01-11 2019-05-17 中北大学 一种耐久高效快速的超疏水油水分离棉织物的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1970876A (zh) * 2006-12-01 2007-05-30 陕西师范大学 一种制备具有亲水或疏水性纤维的方法
CN102174737A (zh) * 2010-12-30 2011-09-07 中国科学院上海应用物理研究所 超疏水织物或超疏水无纺布,及其制备方法
CN102924744A (zh) * 2012-11-26 2013-02-13 中国科学院长春应用化学研究所 一种改性聚合物泡沫材料及其制备方法
CN104725662A (zh) * 2013-12-18 2015-06-24 中国科学院宁波材料技术与工程研究所 一种亲油性聚氨酯海绵及其制备方法
CN106750480A (zh) * 2016-12-20 2017-05-31 福建农林大学 纤维素基油水分离薄膜的制备方法
CN109295714A (zh) * 2018-09-27 2019-02-01 圣华盾防护科技股份有限公司 一种棉织物疏水改性的方法
CN109763316A (zh) * 2019-01-11 2019-05-17 中北大学 一种耐久高效快速的超疏水油水分离棉织物的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YONGGUI WANG: "Superhydrophobic surfaces from surface-hydrophobized", 《CELLULOSE》 *
ZHENG LI等: "Preparation of hydrophobically modified cotton", 《RSC ADVANCES》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111501201A (zh) * 2020-04-20 2020-08-07 陕西科技大学 一种超疏水裂片型超细纤维非织造布及其制备方法
CN111893630A (zh) * 2020-08-17 2020-11-06 智科通用技术研究(广州)有限公司 一种易透气排汗的亲肤面料及其制备方法
CN113308008A (zh) * 2021-06-01 2021-08-27 安徽英科医疗用品有限公司 一种疏水性丁腈手套及其制备方法

Also Published As

Publication number Publication date
CN110565378B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
CN110565378B (zh) 一种用于油水分离的超疏水改性棉纤维及其制备方法
Su et al. A magnetic superhydrophilic/oleophobic sponge for continuous oil-water separation
Liu et al. Superhydrophobic and superoleophilic modified EPDM foam rubber fabricated by a facile approach for oil/water separation
Wang et al. Super-wetting, photoactive TiO2 coating on amino-silane modified PAN nanofiber membranes for high efficient oil-water emulsion separation application
Xu et al. Superhydrophobic cotton fabric with excellent healability fabricated by the “grafting to” method using a diblock copolymer mist
Arslan et al. Superhydrophobic, hybrid, electrospun cellulose acetate nanofibrous mats for oil/water separation by tailored surface modification
Chen et al. UV-cured fluoride-free polyurethane functionalized textile with pH-induced switchable superhydrophobicity and underwater superoleophobicity for controllable oil/water separation
Wu et al. Self-cleaning pH/thermo-responsive cotton fabric with smart-control and reusable functions for oil/water separation
Zhang et al. Polymer brush-grafted ZnO-modified cotton for efficient oil/water separation with abrasion/acid/alkali resistance and temperature “switch” property
Zhao et al. Poly (dimethylsiloxane)/graphene oxide composite sponge: a robust and reusable adsorbent for efficient oil/water separation
Bashar et al. Superhydrophobic surfaces with fluorinated cellulose nanofiber assemblies for oil–water separation
García et al. Mussel-inspired hydrophobic coatings for water-repellent textiles and oil removal
Rasouli et al. Design, fabrication, and characterization of a facile superhydrophobic and superoleophilic mesh-based membrane for selective oil-water separation
Yu et al. Fabrication of hydrophobic cellulosic materials via gas–solid silylation reaction for oil/water separation
He et al. Fabrication of durable superhydrophobic surfaces of polyester fabrics via fluorination-induced grafting copolymerization
US11306164B2 (en) Water purification material for petrochemicals
Yu et al. Biomimetic fabrication of superhydrophobic loofah sponge: robust for highly efficient oil–water separation in harsh environments
CN111888800B (zh) 一种接枝改性棉材料及其制备方法与应用
WO2015078099A1 (zh) 一种具有普适性的超双疏表面及其制备方法
Zhao et al. Preparation of super-hydrophobic films based on waterborne polyurethane and their hydrophobicity characteristics
Wang et al. Hydrophilic PVDF membrane with versatile surface functions fabricated via cellulose molecular coating
Gu et al. Electrostatic-modulated interfacial crosslinking and waterborne emulsion coating toward waterproof, breathable, and antifouling fibrous membranes
Suradi et al. Impact of carboxylation and hydrolysis functionalisations on the anti-oil staining behaviour of textiles grafted with poly (N-isopropylacrylamide) hydrogel
Che et al. Preparation of fluorine-free robust superhydrophobic fabric via diazonium radical graft polymerization
Wu et al. Solvent-free processing of eco-friendly magnetic and superhydrophobic absorbent from all-plant-based materials for efficient oil and organic solvent sorption

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant