WO2015075941A1 - 樹脂材料、およびそのフィルム - Google Patents

樹脂材料、およびそのフィルム Download PDF

Info

Publication number
WO2015075941A1
WO2015075941A1 PCT/JP2014/005855 JP2014005855W WO2015075941A1 WO 2015075941 A1 WO2015075941 A1 WO 2015075941A1 JP 2014005855 W JP2014005855 W JP 2014005855W WO 2015075941 A1 WO2015075941 A1 WO 2015075941A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
resin material
polymer
meth
film
Prior art date
Application number
PCT/JP2014/005855
Other languages
English (en)
French (fr)
Inventor
史延 北山
恵介 羽田野
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to EP14864039.4A priority Critical patent/EP3072926A4/en
Priority to CN201480063589.8A priority patent/CN105764982B/zh
Priority to JP2015548996A priority patent/JP6523176B2/ja
Priority to US15/038,310 priority patent/US10174191B2/en
Publication of WO2015075941A1 publication Critical patent/WO2015075941A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/48Isomerisation; Cyclisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • C08G81/025Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/006Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to block copolymers containing at least one sequence of polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2335/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2335/02Characterised by the use of homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer

Definitions

  • the present invention relates to a resin material and a film thereof.
  • Optical members such as films, plates, and lenses used in various optical-related devices (for example, films and substrates used in liquid crystal display devices, prism sheets, etc .; lenses and projections in signal reading lens systems of optical disk devices)
  • a material constituting a screen Fresnel lens, a lenticular lens, and the like a light-transmitting resin is widely used, and such a resin is generally called “optical resin” or “optical polymer”.
  • Birefringence is one of the important optical characteristics that must be taken into account when an optical member is made of an optical resin.
  • liquid crystal display device liquid crystal display device, optical disk device, projection screen, etc.
  • a film having a birefringence, a lens, etc. are present in the optical path, the image quality and signal reading performance are adversely affected.
  • an optical member made of an optical resin having a birefringence as low as possible. Needless to say, it is desirable that the birefringence of a camera lens, a spectacle lens, or the like is small.
  • the birefringence exhibited by the optical polymer includes “orientation birefringence” whose main cause is the orientation of the main chain of the polymer and “photoelastic birefringence” caused by stress.
  • the signs of orientation birefringence and photoelastic birefringence are derived from the chemical structure of the polymer and are unique to each polymer.
  • Oriented birefringence is birefringence that is generally manifested by the orientation of the main chain (polymer chain) of a chain polymer, and the orientation of the main chain is, for example, a process of extrusion or stretching during the production of a polymer film, or This occurs in a process involving material flow, such as an injection molding process frequently used in manufacturing optical members of various shapes, and remains fixed to the optical member.
  • the refractive index increases in the direction parallel to the orientation direction of the polymer chain, it is expressed as "Orientation birefringence is positive", and when the refractive index increases in the orthogonal direction, it is expressed as "Orientation birefringence is negative".
  • Photoelastic birefringence is birefringence caused by elastic deformation (strain) of a polymer.
  • elastic deformation strain
  • strain remains in the material due to volume shrinkage that occurs when the polymer is cooled to a temperature lower than or equal to the glass transition temperature of the polymer.
  • the material is elastically deformed by an external force received in a state where the optical member is fixed to a device used at a normal temperature (below the glass transition temperature), which causes photoelastic birefringence.
  • the photoelastic constant is defined as a coefficient ⁇ of ⁇ when the birefringence difference ⁇ n is caused by the stress difference ⁇ as shown in the following equation.
  • Patent Document 1 discloses a non-birefringent optical resin material by blending two types of polymer resins having opposite signs of orientation birefringence and completely compatible with each other. .
  • due to the difference in the refractive index inherent to the blended polymer resin due to the difference in the refractive index inherent to the blended polymer resin, light scattering occurs due to the non-uniformity of the refractive index, and an optical material excellent in transparency cannot be obtained.
  • photoelastic birefringence Although there is no description about photoelastic birefringence, it is expected that the photoelastic birefringence is considerably increased in the polymer compositions of the examples. Furthermore, mechanical strength, particularly impact resistance is not always sufficient, and there are practical problems such as occurrence of problems such as cracks.
  • non-birefringence is obtained by adding a low-molecular substance exhibiting orientation birefringence that tends to cancel the orientation birefringence of the polymer resin material to a matrix made of a transparent polymer resin.
  • a method for obtaining the optical resin material is disclosed.
  • This low molecular weight substance has a molecular weight of 5000 or less and is good in terms of transparency of the obtained molded article, but it does not describe any improvement in photoelastic birefringence or mechanical strength. Moreover, heat resistance may fall.
  • Patent Document 3 discloses a fine inorganic substance that is oriented in the same direction as the orientation direction of the binding chain as the polymer resin is oriented by an external force and has a birefringence in a transparent polymer resin.
  • a method of obtaining an optical resin material having low orientation birefringence by blending is disclosed. Although this method can suppress orientation birefringence, it does not describe photoelastic birefringence or improvement of mechanical strength.
  • Patent Document 4 for an optical material having a composite component system of three or more components including a copolymer system of two or more components, the optical material indicates the combination and component ratio (composition ratio) of the components of the composite component system.
  • a method of obtaining a non-birefringent optical resin material with small orientation birefringence and photoelastic birefringence by selecting both the orientation birefringence and the photoelastic birefringence simultaneously is disclosed. With this method, both orientation birefringence and photoelastic birefringence, which could not be realized in the past, can be made extremely small simultaneously.
  • Patent Document 5 discloses an acrylic resin having a glass transition temperature of 120 ° C. or higher and a graft copolymer (“core”) obtained by graft polymerization of an acrylic rubbery polymer with a vinyl group polymerizable monomer.
  • Shell "type impact resistance improver, hereinafter also referred to as a core-shell polymer) a resin composition excellent in mechanical strength as a film, particularly in bending resistance, and optical, while having high heat resistance
  • a method for obtaining a film is presented.
  • a graft copolymer is added to improve mechanical strength.
  • no study has been made to improve the birefringence of orientation birefringence or photoelastic birefringence.
  • Patent Document 6 discloses an optical film formed by molding a resin composition containing an acrylic resin (A) and an acrylic rubber (B), wherein the acrylic resin (A) is derived from a methacrylate monomer.
  • a heat-resistant acrylic resin (A-1) containing a repeating unit derived from a vinyl aromatic monomer, a repeating unit derived from a methacrylate monomer having an aromatic group, and a cyclic acid anhydride repeating unit.
  • the optical film characterized by this is disclosed. This document describes that the optical film has high heat resistance, excellent trimming properties, and excellent optical characteristics even during stretching.
  • the graft copolymer (core-shell polymer) as the acrylic rubber (B) is added for the purpose of improving the mechanical strength while maintaining transparency such as haze.
  • the orientation birefringence is larger than the film of the comparative example using only the acrylic resin (A), and the photoelastic coefficient (photoelastic birefringence) is This is equivalent to the comparative example using only the acrylic resin (A).
  • acrylic rubber is added to improve mechanical properties.
  • the addition of acrylic rubber reduces the thermal stability of the heat resistant acrylic resin. It is assumed that the resin stays at a high temperature in the polymer filter for a long time when the polymer filter is used for long-time production in the film forming process, particularly for removing foreign substances. Under such a harsh environment, a resin composition with reduced thermal stability is likely to undergo thermal decomposition, and there is a concern about resin degradation.
  • the obtained film may be subjected to secondary processing such as primer coating and hard coating. It is assumed that the film surface is eroded by the organic solvent used at that time, and appearance defects such as surface unevenness and wrinkles are caused.
  • acrylic resins and resins having an aromatic ring structure are vulnerable to organic solvents such as methyl ethyl ketone, and the risk of occurrence of the trouble is high.
  • the present invention provides a resin material having high transparency, few foreign matter defects, high thermal stability and solvent resistance, excellent surface appearance, and excellent mechanical strength, and the same material. It aims at providing the film which becomes.
  • the multilayer material graft copolymer dispersed in the thermoplastic resin is provided with a polymer layer containing a specific monomer component, whereby a resin material machine.
  • the present invention was completed by discovering that both the mechanical strength and the thermal stability can be achieved and the solvent resistance can be enhanced.
  • the polymer (B) is a graft copolymer obtained by multistage polymerization, At least one stage is polymerization of a monomer mixture containing the monomer represented by the formula (4) and (meth) acrylic acid and / or a salt thereof.
  • R 9 represents a hydrogen atom or a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms.
  • R 10 represents a substituted or unsubstituted alkyl group.
  • the monomer mixture comprises 1 to 99.9% by weight of the monomer represented by the formula (4), 0.1 to 30% by weight of (meth) acrylic acid and / or a salt thereof, 98.9 to 0% by weight of other copolymerizable monomers, and 0 to 2.0 parts by weight of a polyfunctional monomer (monomer represented by the formula (4), (meth) acrylic
  • the cross-linked structure comprises 50 to 100% by weight of an acrylate ester, 50 to 0% by weight of another monomer copolymerizable therewith, and 0.05 to 10 parts by weight of a polyfunctional monomer (described above) 6.
  • the resin material according to claim 4 wherein the resin material is formed by polymerizing an acrylic ester and a total amount of 100 parts by weight of the other monomer copolymerizable therewith.
  • the graft copolymer comprises (B-1) 50 to 100% by weight of an acrylate ester, 50 to 0% by weight of another monomer copolymerizable therewith, Contains a (meth) acrylic crosslinked structure by polymerizing a monomer mixture comprising 05 to 10 parts by weight (with respect to 100 parts by weight of the total amount of the acrylate ester and other monomers copolymerizable therewith) (B-1) a monomer represented by the formula (4), and (meth) acrylic acid and / or a salt thereof in the presence of the (meth) acrylic crosslinked structure-containing polymer.
  • the resin material according to any one of [1] to [6], wherein the resin material is formed by polymerizing a monomer mixture containing.
  • R 9 represents a hydrogen atom or a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms.
  • R 10 represents a substituted or unsubstituted carbon.
  • the polymer layer comprises 1 to 99.9% by weight of the monomer represented by the formula (4), 0.1 to 30% by weight of (meth) acrylic acid and / or a salt thereof, 98.9 to 0% by weight of other polymerizable monomers, and 0 to 2.0 parts by weight of a polyfunctional monomer (monomer represented by the formula (4), the (meth) acrylic acid And / or a salt thereof, and a resin mixture according to [10] or [11], comprising a monomer mixture containing 100 parts by weight of the other monomers copolymerizable with these) .
  • the crosslinked polymer layer comprises 50 to 100% by weight of an acrylate ester, 50 to 0% by weight of another monomer copolymerizable therewith, and 0.05 to 10 parts by weight of a polyfunctional monomer.
  • the multilayer structure graft copolymer comprises (B-1) 50 to 100% by weight of an acrylate ester, 50 to 0% by weight of another monomer copolymerizable therewith, and a polyfunctional monomer.
  • B-2) a monomer represented by formula (4) in the presence of a polymer containing the (meth) acrylic crosslinked polymer layer, and (meth) acrylic
  • the resin material according to any one of [10] to [15], wherein a layer is formed by polymerizing a monomer mixture containing an acid and / or a salt thereof.
  • the monomer represented by the formula (4) is at least selected from the group consisting of benzyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and phenoxyethyl (meth) acrylate.
  • thermoplastic resin (A) is an acrylic resin.
  • thermoplastic resin (A) has a glass transition temperature of 100 ° C. or higher.
  • thermoplastic resin (A) has an acid value of 0.01 to 5 mmol / g.
  • the thermoplastic resin (A) is obtained by polymerizing a glutarimide acrylic resin, a lactone ring-containing acrylic polymer, a styrene monomer and another monomer copolymerizable therewith.
  • a partially hydrogenated styrene polymer obtained by partial hydrogenation of the aromatic ring of the coal, an acrylic polymer containing a cyclic acid anhydride repeating unit, and an N-substituted maleimide compound as a copolymerization component are copolymerized.
  • the thermoplastic resin (A) includes a glutarimide acrylic resin having a unit represented by the following general formula (1) and a unit represented by the following general formula (2): [1] The resin material according to any one of to [23].
  • R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms;
  • R 3 is hydrogen, an alkyl group having 1 to 18 carbon atoms, 3 carbon atoms;
  • R 4 and R 5 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 6 is an alkyl group having 1 to 18 carbon atoms or 3 to 12 carbon atoms. Or a substituent having 5 to 15 carbon atoms including an aromatic ring.
  • R 7 is hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 8 is an aryl group having 6 to 10 carbon atoms.
  • [34] A film made of the resin material according to any one of [1] to [32].
  • [35] A film formed by molding the resin material according to any one of [1] to [32] by a melt extrusion method.
  • [36] The film according to [34] or [35], which is an optical film.
  • [37] The film according to any one of [34] to [36], wherein the film has a thickness of 10 to 500 ⁇ m.
  • [38] The film according to any one of [34] to [37], wherein the orientation birefringence is from ⁇ 1.7 ⁇ 10 ⁇ 4 to 1.7 ⁇ 10 ⁇ 4 .
  • (B-1) a crosslinked polymer layer
  • (B-2) A layer formed by polymerizing a monomer mixture containing the monomer represented by the formula (4) and (meth) acrylic acid and / or a salt thereof.
  • the layer (B-2) contains 1 to 99.9% by weight of the monomer represented by the formula (4), 0.1 to 30% by weight of (meth) acrylic acid and / or a salt thereof, 98.9 to 0% by weight of other monomers copolymerizable with these, and 0 to 2.0 parts by weight of a polyfunctional monomer (the monomer represented by the formula (4),
  • the (B-1) crosslinked polymer layer is at least one selected from the group consisting of a butadiene-based crosslinked polymer layer, a (meth) acrylic crosslinked polymer layer, and an organosiloxane-based crosslinked polymer layer. [43] to [44], the multilayer structure graft copolymer according to any one of [43] to [44]. [46] At least one layer of the (B-1) crosslinked polymer layer comprises 50 to 100% by weight of an acrylate ester, 50 to 0% by weight of another monomer copolymerizable therewith, and a polyfunctional monomer.
  • the monomer represented by the formula (4) is at least selected from the group consisting of benzyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and phenoxyethyl (meth) acrylate.
  • the multilayer graft copolymer is Having a polymer layer containing a monomer structural unit represented by the formula (4) and a glutaric anhydride structural unit, Molded body.
  • the resin material of the present invention can provide a molded article having high transparency, few foreign matter defects, high thermal stability and solvent resistance, excellent surface appearance, and excellent mechanical strength.
  • the resin material of the present invention and the film thereof contain a thermoplastic resin (A) and a polymer (B) as matrix components as essential components.
  • thermoplastic resin (A) is not limited as long as it is a normal thermoplastic resin, but a thermoplastic resin having transparency is preferable.
  • Aromatic vinyl resins and their hydrogenated products amorphous polyolefins, transparent polyolefins with a refined crystal phase, polyolefin resins such as ethylene-methyl methacrylate resin, polymethyl methacrylate, styrene-methyl methacrylate
  • Acrylic resins such as resins, heat-resistant acrylic resins modified by imide cyclization, lactone cyclization, methacrylic acid modification, etc
  • thermoplastic resins having transparency such as oxide resins are exemplified.
  • the total light transmittance of the obtained molded body is 85% or more, more preferably 90%, and further preferably 92% or more. Is preferably selected.
  • the thickness is 125 ⁇ m, it is preferable to select a thermoplastic resin having a total light transmittance of 85% or more, more preferably 90% or more, and further preferably 92% or more.
  • acrylic resins are particularly preferable in terms of excellent optical properties, heat resistance, molding processability, and the like.
  • the acrylic resin can not only reduce both orientation birefringence and photoelastic birefringence, but can also have practical characteristics such as heat resistance, solvent resistance, and mechanical properties.
  • the acrylic resin may be a resin formed by polymerizing a vinyl monomer containing a (meth) acrylic acid ester.
  • methyl methacrylate is 30 to 100% by weight and can be copolymerized therewith.
  • vinyl monomer copolymerizable with methyl methacrylate for example, (meth) acrylic acid ester (excluding methyl methacrylate) having an alkyl residue of 1 to 10 carbon atoms is preferable.
  • vinyl monomers copolymerizable with methyl methacrylate include ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, glycidyl methacrylate, epoxy cyclohexyl methyl methacrylate, methacrylic acid.
  • Methacrylic acid esters such as 2-hydroxyethyl acid, 2-hydroxypropyl methacrylate, dicyclopentanyl methacrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,2-trichloroethyl methacrylate, isobornyl methacrylate Methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, glycidyl acrylate, epoxycyclohexylmethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxy acrylate
  • Acrylic esters such as roxypropyl; carboxylic acids such as methacrylic acid and acrylic acid and esters thereof; vinylcyans such as acrylonitrile and methacrylonitrile; vinyl arenes such as styrene, ⁇ -methylstyrene, monochlorostyrene, dichlorostyrene Maleic acid, fumaric acid and esters thereof; vinyl
  • Methyl methacrylate is preferably contained in an amount of 30 to 100% by weight, more preferably 50 to 99.9% by weight, and still more preferably 50 to 98% by weight from the viewpoint of transparency and appearance characteristic of acrylic resin.
  • % Of the monomer copolymerizable with methyl methacrylate is preferably 70 to 0% by weight, more preferably 50 to 0.1% by weight, and still more preferably 50 to 2% by weight. If the content of methyl methacrylate is less than 30% by weight, the optical characteristics, appearance, weather resistance, and heat resistance unique to acrylic resins tend to be lowered. Moreover, it is desirable not to use a polyfunctional monomer from the viewpoint of processability and appearance.
  • the thermoplastic resin (A) used in the present invention is a resin having an acid group or a cyclized structure (for example, an anhydrous cyclic structure) from the viewpoint of compatibility with the polymer (B) of the present invention. It is preferable.
  • the acid value of the thermoplastic resin is preferably 0.01 to 5 mmol / g, more preferably 0.01 to 3.5 mmol / g, still more preferably 0.01 to 2.5 mmol / g, and 01 to 1.5 mmol / g is even more preferred, and 0.01 to 1 mmol / g is particularly preferred.
  • the acid value can be calculated by, for example, a titration method described in JP-A-2005-23272.
  • the glass transition temperature of the thermoplastic resin (A) used in the present invention can be set according to the conditions and applications to be used.
  • the glass transition temperature is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, further preferably 115 ° C. or higher, and most preferably 120 ° C. or higher.
  • an acrylic resin having a glass transition temperature of 100 ° C. or more specifically, a glutarimide structure, a glutaric anhydride structure, a (meth) acrylic acid unit, a structural unit derived from an N-substituted maleimide compound, or a lactone ring in the molecule
  • An acrylic resin contained in glutarimide acrylic resin, glutaric anhydride acrylic resin, lactone ring-containing acrylic resin, acrylic resin containing hydroxyl and / or carboxyl group, methacrylic resin, acrylic containing cyclic acid anhydride repeating unit
  • examples thereof include an acrylic resin in which an N-substituted maleimide compound is copolymerized as a polymer and a copolymer component.
  • N-substituted maleimide compounds include N-phenylmaleimide, N-benzylmaleimide, N- (2,4,6-tribromophenyl) maleimide, N-cyclohexylmaleimide, N-methylmaleimide, N-ethylmaleimide, N- And isopropylmaleimide.
  • the acrylic resin in which an N-substituted maleimide compound is copolymerized as a copolymer component may be copolymerized with an aromatic vinyl such as styrene as a copolymer component.
  • styrene polymer obtained by polymerizing a styrene monomer and another monomer copolymerizable therewith.
  • Partially hydrogenated styrene-based polymers polymers containing cyclic acid anhydride repeating units, polyethylene terephthalate resins, polybutylene terephthalate resins, and the like can be used. Since the compatibility with the polymer (B) is good, a heat-resistant acrylic resin is preferable in that a film having an extremely excellent appearance can be obtained.
  • glutarimide acrylic resin glutaric anhydride Acrylic resin, lactone ring-containing acrylic resin, acrylic resin containing hydroxyl group and / or carboxyl group, methacrylic resin, acrylic polymer containing cyclic acid anhydride repeating unit, N-substituted maleimide as copolymer component
  • An acrylic resin in which the compound is copolymerized is preferred.
  • the use of the glutarimide acrylic resin described below is particularly preferable because the heat resistance of the obtained film is improved and the optical properties during stretching are also excellent.
  • glutarimide acrylic resin As glutarimide acrylic resin, what contains the unit represented by following General formula (1) and the unit represented by following General formula (2) is preferable.
  • R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 3 is hydrogen, an alkyl group having 1 to 18 carbon atoms, A cycloalkyl group having 3 to 12 carbon atoms, or a substituent having 5 to 15 carbon atoms including an aromatic ring.
  • the unit represented by the general formula (1) is also referred to as “glutarimide unit”.
  • R 1 and R 2 are each independently hydrogen or a methyl group, and R 3 is hydrogen, a methyl group, a butyl group, or a cyclohexyl group, and more preferably, R 1 is a methyl group, R 2 is hydrogen, and R 3 is a methyl group.
  • the glutarimide acrylic resin may contain only a single type as a glutarimide unit, or a plurality of different ones or all of R 1 , R 2 , and R 3 in the general formula (1). The type may be included.
  • the glutarimide unit can be formed by imidizing a (meth) acrylic acid ester unit represented by the following general formula (2). Further, an acid anhydride such as maleic anhydride, a half ester of the acid anhydride and a linear or branched alcohol having 1 to 20 carbon atoms, or an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid (for example, acrylic acid)
  • an acid anhydride such as maleic anhydride, a half ester of the acid anhydride and a linear or branched alcohol having 1 to 20 carbon atoms, or an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid (for example, acrylic acid)
  • the glutarimide unit can also be formed by imidizing methacrylic acid, maleic acid, itaconic acid, crotonic acid, fumaric acid, citraconic acid).
  • the content of the glutarimide unit is not particularly limited, and can be appropriately determined in consideration of, for example, the structure of R 3 .
  • the content of the glutarimide unit is preferably 1.0% by weight or more, more preferably 3.0% by weight to 90% by weight, and more preferably 5.0% by weight to 60% by weight of the total amount of the glutarimide acrylic resin. Further preferred.
  • the content of the glutarimide unit is less than the above range, the resulting glutarimide acrylic resin tends to have insufficient heat resistance or its transparency may be impaired.
  • it exceeds the above range the heat resistance and melt viscosity will be unnecessarily high, the molding processability will be poor, the mechanical strength during film processing will be extremely low, and the transparency will be impaired. Tend.
  • the content of glutarimide unit is calculated by the following method.
  • 1 H-NMR BRUKER Avance III 400 MHz
  • 1 H-NMR measurement of the resin was performed to determine the content (mol%) of each monomer unit such as glutarimide unit or ester unit in the resin.
  • the amount (mol%) is converted to the content (% by weight) using the molecular weight of each monomer unit.
  • a resin comprising a glutarimide unit in which R 3 is a methyl group in the above general formula (1) and a methyl methacrylate unit
  • R 3 is a methyl group in the above general formula (1)
  • a methyl methacrylate unit it is derived from the O—CH 3 proton of methyl methacrylate appearing in the vicinity of 3.5 to 3.8 ppm.
  • the content (% by weight) of the glutarimide unit should be obtained by the following formula. Can do.
  • content (weight%) of a glutarimide unit can be calculated
  • the content of the glutarimide unit is preferably 20% by weight or less, more preferably 15% by weight or less, and more preferably 10% by weight or less because it is easy to suppress birefringence. Is more preferable.
  • R 4 and R 5 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 6 is an alkyl group having 1 to 18 carbon atoms or 3 to 3 carbon atoms. 12 cycloalkyl groups or substituents having 5 to 15 carbon atoms including an aromatic ring.
  • the unit represented by the general formula (2) is also referred to as “(meth) acrylic acid ester unit”.
  • (meth) acryl refers to “methacryl or acrylic”.
  • R 4 and R 5 are each independently hydrogen or a methyl group
  • R 6 is hydrogen or a methyl group
  • 5 is a methyl group
  • R 6 is a methyl group
  • the glutarimide acrylic resin may contain only a single type as a (meth) acrylic acid ester unit, or any or all of R 4 , R 5 and R 6 in the above general formula (2) A plurality of different types may be included.
  • the glutarimide acrylic resin may further contain a unit represented by the following general formula (3) (hereinafter also referred to as “aromatic vinyl unit”) as necessary.
  • R 7 is hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 8 is an aryl group having 6 to 10 carbon atoms.
  • the aromatic vinyl unit represented by the general formula (3) is not particularly limited, and examples thereof include a styrene unit and an ⁇ -methylstyrene unit, and a styrene unit is preferable.
  • the glutarimide acrylic resin may contain only a single type as an aromatic vinyl unit, or may contain a plurality of units in which either or both of R 7 and R 8 are different.
  • the content of the aromatic vinyl unit is not particularly limited, but is preferably 0 to 50% by weight, more preferably 0 to 20% by weight, and more preferably 0 to 15% by weight based on the total amount of the glutarimide acrylic resin. Is particularly preferred. When the content of the aromatic vinyl unit is larger than the above range, sufficient heat resistance of the glutarimide acrylic resin cannot be obtained.
  • the glutarimide acrylic resin does not contain an aromatic vinyl unit from the viewpoints of improving bending resistance and transparency, reducing fisheye, and further improving solvent resistance or weather resistance.
  • the glutarimide acrylic resin may further contain other units other than the glutarimide unit, the (meth) acrylic acid ester unit, and the aromatic vinyl unit, if necessary.
  • Examples of other units include amide units such as acrylamide and methacrylamide, glutar anhydride units, nitrile units such as acrylonitrile and methacrylonitrile, maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide. And maleimide-based units.
  • These other units may be contained in the glutarimide acrylic resin by random copolymerization or by graft copolymerization.
  • These other units may be introduced by copolymerizing the monomer constituting the unit with a resin that is a raw material when producing a glutarimide acrylic resin and / or a glutarimide acrylic resin. Good. Further, when the imidization reaction is performed, these other units may be by-produced and included in the glutarimide acrylic resin.
  • the weight average molecular weight of the glutarimide acrylic resin is not particularly limited, but is preferably in the range of 1 ⁇ 10 4 to 5 ⁇ 10 5 . If it is in the said range, moldability will not fall or the mechanical strength at the time of film processing will not be insufficient. On the other hand, when the weight average molecular weight is smaller than the above range, the mechanical strength when formed into a film tends to be insufficient. Moreover, when larger than the said range, the viscosity at the time of melt-extrusion is high, there exists a tendency for the moldability to fall and for the productivity of a molded object to fall.
  • the glass transition temperature of the glutarimide acrylic resin is preferably 120 ° C. or higher so that the film exhibits good heat resistance. More preferably, it is 125 ° C. or higher. If the glass transition temperature is lower than the above range, the film cannot exhibit sufficient heat resistance.
  • (meth) acrylic acid ester polymer is produced by polymerizing (meth) acrylic acid ester.
  • glutarimide acrylic resin contains an aromatic vinyl unit
  • a (meth) acrylic acid ester and an aromatic vinyl are copolymerized to produce a (meth) acrylic acid ester-aromatic vinyl copolymer.
  • examples of the (meth) acrylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and (meth) acrylic acid t.
  • -Butyl, benzyl (meth) acrylate, and cyclohexyl (meth) acrylate are preferably used, and methyl methacrylate is more preferably used.
  • (Meth) acrylic acid ester may be used alone or in combination of two or more. By using multiple types of (meth) acrylic acid esters, it is possible to include multiple types of (meth) acrylic acid ester units in the finally obtained glutarimide acrylic resin.
  • the structure of the above (meth) acrylic acid ester polymer or the above (meth) acrylic acid ester-aromatic vinyl copolymer is not particularly limited as long as the subsequent imidization reaction is possible. Specific examples include linear polymers, block polymers, branched polymers, ladder polymers, and crosslinked polymers.
  • a block polymer it may be any of AB type, ABC type, ABA type, and other types of block polymers.
  • an imidization reaction is performed by reacting the (meth) acrylic acid ester polymer or the (meth) acrylic acid ester-aromatic vinyl copolymer with an imidizing agent.
  • an imidizing agent is an imidizing agent.
  • the imidizing agent is not particularly limited as long as it can generate the glutarimide unit represented by the general formula (1).
  • ammonia or a primary amine can be used.
  • the primary amine include aliphatic hydrocarbon group-containing primary amines such as methylamine, ethylamine, n-propylamine, i-propylamine, n-butylamine, i-butylamine, tert-butylamine, and n-hexylamine;
  • Examples include aromatic hydrocarbon group-containing primary amines such as aniline, benzylamine, toluidine, and trichloroaniline, and alicyclic hydrocarbon group-containing primary amines such as cyclohexylamine.
  • urea compounds such as urea, 1,3-dimethylurea, 1,3-diethylurea, 1,3-dipropylurea and the like that generate ammonia or primary amine by heating can also be used.
  • imidizing agents ammonia, methylamine, and cyclohexylamine are preferably used, and methylamine is particularly preferably used from the viewpoint of cost and physical properties.
  • a ring closure accelerator may be added as necessary.
  • the content of glutarimide units in the resulting glutarimide acrylic resin can be adjusted by adjusting the ratio of the imidizing agent added.
  • the method for carrying out the imidation reaction is not particularly limited, and a conventionally known method can be used.
  • the imidization reaction can be advanced by using an extruder or a batch type reaction vessel (pressure vessel).
  • the extruder is not particularly limited, and various types of extruders can be used. For example, a single-screw extruder, a twin-screw extruder, a multi-screw extruder, or the like can be used.
  • twin screw extruder mixing of the raw material polymer and the imidizing agent (in the case of using a ring closure accelerator, an imidizing agent and a ring closure accelerator) can be promoted.
  • twin-screw extruder examples include a non-meshing type same-direction rotating type, a meshing type same-direction rotating type, a non-meshing type different direction rotating type, and a meshing type different direction rotating type.
  • the meshing type co-rotating type is preferable. Since the meshing type co-rotating twin-screw extruder can rotate at a high speed, the mixing of the raw material polymer with the imidizing agent (in the case of using a ring closure accelerator, an imidizing agent and a ring closure accelerator) It can be further promoted.
  • the above-explained extruders may be used singly or a plurality may be connected in series.
  • an esterification step of treating with an esterifying agent can be included.
  • the carboxyl group contained in the resin which is by-produced in the imidization step, can be converted into an ester group.
  • the acid value of glutarimide acrylic resin can be adjusted in a desired range.
  • the acid value of the glutarimide acrylic resin is not particularly limited, but is preferably 0.50 mmol / g or less, and more preferably 0.45 mmol / g or less. Although a minimum in particular is not restrict
  • the acid value can be calculated by, for example, a titration method described in JP-A-2005-23272.
  • the esterifying agent is not particularly limited.
  • the amount of the esterifying agent used is not particularly limited, but is 0 to 12 parts by weight with respect to 100 parts by weight of the (meth) acrylic acid ester polymer or the (meth) acrylic acid ester-aromatic vinyl copolymer. It is preferably 0 to 8 parts by weight. If the amount of the esterifying agent used is within the above range, the acid value of the glutarimide acrylic resin can be adjusted to an appropriate range. On the other hand, outside the above range, unreacted esterifying agent may remain in the resin, which may cause foaming or odor generation when molding is performed using the resin.
  • a catalyst can be used in combination.
  • the type of the catalyst is not particularly limited, and examples thereof include aliphatic tertiary amines such as trimethylamine, triethylamine, and tributylamine. Among these, triethylamine is preferable from the viewpoint of cost and reactivity.
  • the esterification step can be advanced by using, for example, an extruder or a batch type reaction vessel, as in the imidization step.
  • This esterification step can be carried out only by heat treatment without using an esterifying agent.
  • the heat treatment can be achieved by kneading and dispersing the molten resin in the extruder.
  • dehydration reaction between the carboxyl groups in the resin by-produced in the imidization step and / or dealcoholization reaction between the carboxyl group in the resin and the alkyl ester group in the resin For example, part or all of the carboxyl group can be converted to an acid anhydride group.
  • a ring closure accelerator catalyst
  • a vent port that can be depressurized to an atmospheric pressure or lower in the extruder to be used. According to such a machine, unreacted imidizing agent, esterifying agent, by-products such as methanol, or monomers can be removed.
  • glutarimide acrylic resin instead of an extruder, for example, a horizontal biaxial reactor such as Violac manufactured by Sumitomo Heavy Industries, Ltd., a vertical biaxial agitation tank such as Super Blend, etc.
  • a high-viscosity reactor can also be suitably used.
  • the structure of the batch type reaction vessel is not particularly limited. Specifically, it has a structure in which the raw material polymer can be melted by heating and stirred, and an imidizing agent (in the case of using a ring closure accelerator, an imidizing agent and a ring closure accelerator) can be added. However, it is preferable to have a structure with good stirring efficiency. According to such a batch-type reaction vessel, it is possible to prevent the polymer viscosity from increasing due to the progress of the reaction and insufficient stirring.
  • a batch type reaction tank having such a structure for example, a stirred tank max blend manufactured by Sumitomo Heavy Industries, Ltd. and the like can be mentioned.
  • a glutarimide acrylic resin in which the content of glutarimide units is controlled to a specific value can be easily produced.
  • thermoplastic resin (A) In the resin material of the present invention, one type of thermoplastic resin (A) may be used, or two or more types may be used in combination.
  • the method for blending two or more thermoplastic resins is not particularly limited, and may be performed by a known method.
  • the polymer (B) used in the present invention is a multilayer structure graft copolymer, wherein at least one layer of the multilayer structure is represented by the following formula (4), and (meth) acrylic acid and And / or a layer formed by polymerizing a monomer mixture containing a salt thereof.
  • R 9 represents a hydrogen atom or a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms.
  • R 10 represents a substituted or unsubstituted carbon.
  • the polymer (B) of the present invention preferably has at least one hard polymer layer.
  • the polymer (B) By having the hard polymer layer, (a) the polymer (B) can be uniformly dispersed in the matrix (thermoplastic resin (A)), and as will be described later, (a) the thermoplastic resin (A). It is also possible to cancel the birefringence of the resin and to increase the optical isotropy of the resin material and film of the present invention.
  • “hard” means that the glass transition temperature of the polymer is 20 ° C. or higher.
  • the polymer (B) of the present invention preferably has a layer formed by polymerizing the monomer mixture as a hard polymer layer, and may further have another hard polymer layer. That is, the layer formed by polymerizing the monomer mixture is preferably a hard polymer layer.
  • the glass transition temperature of the polymer is less than 20 ° C.
  • the heat resistance of the resin material and film blended with the polymer (B) is reduced, or the polymer (B) is produced when the polymer (B) is produced.
  • problems such as coarsening and lumping easily occur.
  • R 9 represents a hydrogen atom or a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms.
  • R 10 is a substituted or unsubstituted aromatic group having 1 to 24 carbon atoms, or a substituted or unsubstituted alicyclic group having 1 to 24 carbon atoms, and has a monocyclic structure or a heterocyclic structure.
  • substituents that R 9 and R 10 may have include, for example, halogen, hydroxyl group, carboxyl group, alkoxy group, carbonyl group (ketone structure), amino group, amide group, epoxy group, and carbon-carbon group.
  • Examples thereof include at least one selected from the group consisting of a double bond, an ester group (carboxyl group derivative), a mercapto group, a sulfonyl group, a sulfone group, and a nitro group.
  • at least one selected from the group consisting of halogen, hydroxyl group, carboxyl group, alkoxy group, and nitro group is preferable.
  • l represents an integer of 1 to 4, preferably 1 or 2.
  • m is an integer of 0 to 1.
  • n represents an integer of 0 to 10, preferably an integer of 0 to 2, and more preferably 0 or 1.
  • R 9 is preferably a substituted or unsubstituted (meth) acrylate monomer that is a linear or branched alkyl group having 1 carbon atom.
  • R 10 is a substituted or unsubstituted aromatic group having 1 to 24 carbon atoms, or a substituted or unsubstituted alicyclic group having 1 to 24 carbon atoms, and a monocyclic structure More preferably, it is a (meth) acrylate monomer.
  • l is an integer from 1 to 2
  • n is an integer from 0 to 2, more preferably a (meth) acrylate monomer.
  • the monomer represented by the formula (4) include monomers having an alicyclic structure such as dicyclopentanyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, and the like. Is mentioned.
  • Examples of the monomer having an aromatic group include benzyl (meth) acrylate, phenyl (meth) acrylate, phenoxyethyl (meth) acrylate, and the like.
  • Examples of the monomer having a heterocyclic structure include pentamethylpiperidinyl (meth) acrylate, tetramethylpiperidinyl (meth) acrylate, and tetrahydrofurfuryl (meth) acrylate.
  • benzyl (meth) acrylate, dicyclopentanyl (meth) acrylate, (meth) acrylic acid Phenoxyethyl is preferred.
  • benzyl (meth) acrylate is most preferable in terms of optical isotropy, compatibility with the thermoplastic resin (A), and moldability. Furthermore, benzyl methacrylate is preferable in terms of heat resistance because of its high glass transition temperature.
  • the thermoplastic resin (A) is an acrylic resin
  • the photoelastic constant is negative
  • the amount of benzyl methacrylate used is small by using benzyl methacrylate having a relatively large positive photoelastic constant.
  • the degree of freedom in designing the resin material is increased, for example, the amount of the polymer (B) used is small.
  • thermoplastic resin (A) of the present invention when used in combination of two or more kinds of thermoplastic resins, the photoelastic constant and / or orientation with respect to the thermoplastic resin composed of two or more kinds of combinations. What is necessary is just to design a polymer (B) so that birefringence may become a different sign.
  • the amount is from 1 to 99.9% by weight (the total amount of the monomer represented by the formula (4), (meth) acrylic acid and / or a salt thereof, and other monomers copolymerizable therewith) Preferably 5 to 70% by weight, most preferably 5 to 50% by weight.
  • the monomers represented by the formula (4) may be used alone or in combination of two or more.
  • ((Meth) acrylic acid and / or its salt) Use of (meth) acrylic acid and / or a salt thereof is essential for the polymer (B) of the present invention. By using (meth) acrylic acid and / or a salt thereof, the heat resistance of the polymer (B) itself is improved.
  • Examples of (meth) acrylic acid salts include sodium (meth) acrylate, calcium (meth) acrylate, magnesium (meth) acrylate, and ammonium (meth) acrylate.
  • the amount of (meth) acrylic acid and / or salt thereof used is the monomer represented by the formula (4), (meth) acrylic acid and / or salt thereof, and other monomers copolymerizable therewith. 0.1 to 30% by weight is preferable, 100 to 20% by weight is more preferable, 0.1 to 15% by weight is further preferable, and 0.1 to 10% by weight is even more preferable when the total amount of the monomer is 100% by weight. Preferably, 0.1 to 7% by weight is most preferable.
  • the presence of a (meth) acrylic acid structural unit in the polymer layer formed by polymerizing the monomer mixture allows the (meth) acrylic acid structural unit carboxyl group and the (meth) acrylic acid structural unit.
  • the alkyl group of the (meth) acrylic acid derivative structural unit present next to the resin is removed during molding (for example, heat treatment such as heat-melt kneading of the thermoplastic resin (A) and the polymer (B)).
  • Cyclization can be achieved by alkyl alcoholation to form an acid anhydride structure. For example, if (meth) acrylic acid is next to methyl (meth) acrylate, a demethanol reaction occurs and a glutaric anhydride structure can be formed. Furthermore, if benzyl (meth) acrylate is next to (meth) acrylic acid, a debenzyl alcohol reaction occurs and a glutaric anhydride structure can be formed.
  • a salt of a carboxyl group in the structural unit of (meth) acrylate can be dissociated into a free carboxyl group under high temperature conditions during molding, and the carboxyl group and the alkyl group of the (meth) acrylic acid derivative structural unit can be cyclized to form an acid anhydride structure.
  • the carboxyl group of the (meth) acrylic acid structural unit is a salt in the salt coagulation treatment described later. May form.
  • an acid anhydride structure can be formed by dissociating the carboxyl group salt into a free carboxyl group under high temperature conditions during molding.
  • the carboxyl group and / or salt thereof in the polymer layer formed by polymerizing the monomer mixture into an acid anhydride structure the following excellent effects are exhibited.
  • the thermal stability during molding is greatly improved.
  • zipping depolymerization of the polymer (layer) during molding can be suppressed, and thermal stability is improved.
  • the solvent resistance is greatly improved.
  • the polarity of the polymer is increased and the heat resistance is increased, so that the solvent resistance, particularly for an organic solvent such as methyl ethyl ketone, is increased. Improved solvent resistance.
  • Acrylic films containing general acrylic rubber are weak against organic solvents such as ketones. For this reason, for example, a film at the time of application, transportation or drying due to penetration of an organic solvent used for application of a coating layer such as a hard coat layer, an antireflection layer, an anti-fingerprint layer, a prism lens layer, an adhesive layer, etc. May cause troubles such as deformation, tarmi, wrinkles and breakage.
  • a coating layer such as a hard coat layer, an antireflection layer, an anti-fingerprint layer, a prism lens layer, an adhesive layer, etc.
  • the compatibility between the heat-resistant acrylic resin and the polymer (B) is improved, and the dispersibility of the polymer (B) is improved.
  • the thermoplastic resin (A) is a heat-resistant acrylic resin containing a glutarimide group, a glutarimide group, in particular, a carboxyl group by-produced upon modification with glutarimide, and the polymer (layer) Due to the interaction of the carboxyl group and the acid anhydride structure, the compatibility between the thermoplastic resin (A) and the polymer (B) is improved, and the dispersibility of the polymer (B) is greatly improved.
  • the surface properties of the film become good, and even in a wide range of molding conditions and film thickness setting ranges, there is no surface unevenness, and a film with a good appearance can be obtained, such as little variation in film thickness in the MD direction. I can do it.
  • a leaf disk filter or the like it becomes a problem when performing melt film formation while performing melt filtration of the polymer material, due to progress of aggregation, crosslinking, deterioration, etc. of rubber particles in the staying portion inside the filter. An increase in defect points of the film can be suppressed. Moreover, the nonuniformity and fluctuation of the melt viscosity accompanying aggregation are effectively suppressed.
  • the ratio of the structural unit of (meth) acrylic acid and / or salt thereof to an acid anhydride structure that is, the cyclization rate, varies depending on the thermal history such as processing conditions, and not all (meth) acrylic acid and / or salt thereof. It is not necessary for the structural unit to be an acid anhydride structure, and the cyclization rate may be arbitrarily adjusted according to the required characteristics.
  • the cyclization rate is, for example, preferably 5% or more, more preferably 50% or more, and further preferably 80% or more.
  • the cyclization rate can be calculated by the following measurement method. Dissolve 0.3 g of the resin in 37.5 mL of methylene chloride, add 37.5 mL of methanol, add 5 mL of 0.1 mmol% sodium hydroxide aqueous solution and several drops of ethanol solution of phenolphthalein. Back titration is performed using 1 mmol% hydrochloric acid, the acid value is determined from the amount of hydrochloric acid required for neutralization, and the cyclization rate is determined from values before and after processing.
  • the resin material of the present invention is a polymer (B) obtained by previously cyclizing a carboxyl group derived from (meth) acrylic acid and / or a salt thereof and / or a salt thereof into an acid anhydride structure by heat treatment or the like. Alternatively, it may be produced by blending with the thermoplastic resin (A).
  • the monomer mixture contains other monomers copolymerizable therewith. May be.
  • Other monomers that can be copolymerized with these may be monomers having one copolymerizable vinyl group, such as methacrylic acid esters, and methacrylic acid from the viewpoint of polymerizability and cost.
  • Alkyl esters are preferred, specifically those having an alkyl group having 1 to 12 carbon atoms, which may be linear or branched.
  • Specific examples thereof include, for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, ⁇ -hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, methacrylic acid.
  • Examples include glycidyl acid.
  • Acrylic acid esters can also be suitably used. From the viewpoints of polymerization reactivity and cost, acrylic acid alkyl esters are preferable. Specifically, alkyl groups having 1 to 12 carbon atoms are preferable. However, it may be branched.
  • methyl acrylate ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, and ⁇ -acrylate.
  • -Hydroxyethyl dimethylaminoethyl acrylate, glycidyl acrylate and the like.
  • Examples of other copolymerizable monomers include maleic anhydride, citraconic anhydride, dimethyl maleic anhydride, dichloromaleic anhydride, bromomaleic anhydride, dibromomaleic anhydride, phenylmaleic anhydride, and diphenylmaleic anhydride.
  • Unsubstituted and / or substituted maleic anhydrides such as acids, vinyl halides such as vinyl chloride and vinyl bromide, (meth) acrylamides such as acrylamide, methacrylamide and N-methylolacrylamide, and cyanides such as acrylonitrile and methacrylonitrile Vinyl esters such as vinyl fluoride, vinyl formate, vinyl acetate and vinyl propionate, aromatic vinyl such as styrene, vinyltoluene and ⁇ -methylstyrene and derivatives thereof, vinylidene halides such as vinylidene chloride and vinylidene fluoride, 2- ( Hydroxymethyl (Hydroxy) such as methyl acrylate, ethyl 2- (hydroxymethyl) acrylate, isopropyl 2- (hydroxymethyl) acrylate, normal butyl 2- (hydroxymethyl) acrylate, tertiary butyl 2- (hydroxymethyl) acrylate Alkyl) acrylic acid ester and the like.
  • These monomers may be used alone or in combination of two or more.
  • methacrylic acid alkyl esters and acrylic acid alkyl esters are preferable, and methyl methacrylate is more preferable in terms of compatibility with acrylic resins, and methyl acrylate, ethyl acrylate, or acrylic acid is effective in suppressing zipper depolymerization. It is preferable to use n-butyl.
  • a multifunctional monomer having two or more non-conjugated reactive double bonds per molecule may be used.
  • a polyfunctional monomer the polyfunctional monomer which can be used for the crosslinked polymer layer mentioned later can be used similarly.
  • Use amount of polyfunctional monomer in monomer mixture Is preferably 0 to 2.0 parts by weight, more preferably 0 to 1.0 parts by weight, and more preferably 0 to 0.5 parts from the viewpoint of optical isotropy and dispersibility. Part by weight is more preferred, 0 to 0.04 part by weight is even more preferred, and part by weight is most preferred.
  • the polymer (B) of the present invention comprises a monomer represented by the formula (4) and (meth) acrylic acid and / or a salt thereof in the multilayer structure of the multilayer structure graft copolymer. It is preferable to have a hard polymer layer, and when it has a hard outermost layer, the monomer represented by the formula (4) and (meth) acrylic acid and / or a salt thereof are added to the outermost layer. More preferably, the structural unit has a hard polymer layer. Similarly, a graft copolymer obtained by multistage polymerization is formed by polymerizing a monomer mixture containing the monomer represented by the formula (4) and (meth) acrylic acid and / or a salt thereof.
  • the hard polymer is preferably graft-bonded, and the monomer represented by the above formula (4) and the monomer containing (meth) acrylic acid and / or a salt thereof in the final stage of the multistage polymerization It is more preferable that a hard polymer formed by polymerizing the mixture is graft-bonded.
  • the polymer (B) of the present invention may have one or more other hard polymer layers in addition to the hard polymer (layer).
  • the thermoplastic resin (A) is more easily compatible when it is an acrylic resin, the orientation birefringence and the photoelastic constant can be further reduced, and the film is excellent in optical isotropy. It will be easier to get.
  • a soft layer having a (meth) acrylic crosslinked polymer layer ((meth) acrylic rubber) may be adjacent to the inside of the hard outermost layer.
  • the polymer (B) of the present invention preferably has at least one crosslinked polymer layer.
  • the cross-linked polymer layer is not particularly limited, and examples thereof include a butadiene-based cross-linked polymer layer, a (meth) acrylic cross-linked polymer layer, and an organosiloxane-based cross-linked polymer layer, but from the viewpoint of weather resistance and transparency.
  • a (meth) acrylic crosslinked polymer layer is preferred.
  • the (meth) acrylic crosslinked polymer layer is soft in terms of exhibiting excellent mechanical strength.
  • Soft here means that the glass transition temperature of the polymer is less than 20 ° C. From the viewpoint of enhancing the impact absorbing ability of the soft layer and enhancing the impact resistance improving effect such as crack resistance, the glass transition temperature of the polymer is preferably less than 0 ° C, more preferably less than -20 ° C. .
  • the glass transition temperatures of “soft” and “hard” polymers are calculated using the Fox equation using the values described in the Polymer Handbook (Polymer Hand Book (J. Brandrup, Interscience 1989)). The calculated value is used (for example, polymethyl methacrylate is 105 ° C. and polybutyl acrylate is ⁇ 54 ° C.).
  • the (meth) acrylic crosslinked polymer is not particularly limited as long as it is a (meth) acrylic crosslinked polymer. From the viewpoint of impact resistance such as crack resistance, 50 to 100% by weight of acrylic ester, acrylic acid 50 to 0% by weight of other monomers copolymerizable with ester, and 0.05 to 10 parts by weight of polyfunctional monomer (total amount of acrylic acid ester and other monomers copolymerizable with 100% Those formed by polymerizing) with respect to parts by weight are preferred. All the monomer components may be mixed and polymerized in one stage, or the monomer composition may be changed and polymerized in two or more stages.
  • an alkyl acrylate ester is preferable from the viewpoint of polymerization reactivity and cost.
  • an alkyl group having 1 to 12 carbon atoms is preferable, and may be linear or branched. Specific examples thereof include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, benzyl acrylate, and n-octyl acrylate.
  • the acrylic ester is preferably 50 to 100% by weight, more preferably 60 to 100% by weight, based on the entire monofunctional monomer (the total amount of the acrylic ester and other monomers copolymerizable therewith). Most preferred is 70 to 100% by weight. If it is less than 50% by weight, the crack resistance of the film may deteriorate.
  • any monomer having one copolymerizable vinyl group may be used.
  • examples include methacrylic acid esters, and methacrylic acid alkyl esters are preferable from the viewpoint of polymerizability and cost. Specifically, those having 1 to 12 carbon atoms in the alkyl group are preferable, and may be linear or branched. .
  • examples thereof include glycidyl acid.
  • Other copolymerizable monomers include vinyl halides such as vinyl chloride and vinyl bromide, (meth) acrylamides such as acrylamide, methacrylamide and N-methylolacrylamide, acrylonitrile, methacrylonitrile and the like.
  • Vinyl esters such as vinyl cyanide, vinyl formate, vinyl acetate and vinyl propionate, aromatic vinyl such as styrene, vinyltoluene and ⁇ -methylstyrene and derivatives thereof, vinylidene halides such as vinylidene chloride and vinylidene fluoride, acrylic acid And acrylic acid such as sodium acrylate and calcium acrylate and salts thereof, methacrylic acid such as methacrylic acid, sodium methacrylate and calcium methacrylate and salts thereof, and the like. Two or more of these monomers may be used in combination.
  • the polyfunctional monomers used here include allyl methacrylate, allyl acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl maleate, divinyl adipate, divinyl Benzene ethylene glycol dimethacrylate, divinylbenzene ethylene glycol diacrylate, diethylene glycol dimethacrylate, diethylene glycol diacrylate, triethylene glycol dimethacrylate, triethylene glycol diacrylate, trimethylolpropane tri Methacrylate, trimethylolpropane triacrylate, tetramethylol methane tetramethacrylate, tetramethylol methane tetraacrylate, dipropylene glycol dim
  • the addition amount of the polyfunctional monomer with respect to the monofunctional monomer is preferably 0.05 to 10 parts by weight, preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the total amount of the monofunctional monomer. Is more preferable. If the addition amount of the polyfunctional monomer is less than 0.05 parts by weight, there is a tendency that a crosslinked product cannot be formed, and even if it exceeds 10 parts by weight, the crack resistance of the film tends to be lowered.
  • the polymer (B) is a multilayer structure polymer each having at least one crosslinked polymer layer and a hard polymer layer, and at least one layer of the hard polymer layer is a monomer represented by the formula (4), And it is preferable that it is a hard polymer layer which has (meth) acrylic acid and / or its salt in a structural unit.
  • the upper limit of the number of layers in the polymer (B) is not particularly limited as long as it is at least two layers, but it is preferably 6 layers or less from the viewpoint of productivity.
  • the polymer (B) has a soft inner layer and a hard outer layer, the inner layer has a crosslinked polymer layer, and the outer layer is a single layer represented by the formula (4).
  • Examples include a polymer and a hard polymer layer having (meth) acrylic acid and / or a salt thereof as a structural unit. This form is preferable from the viewpoint of productivity.
  • the polymer (B) has a hard inner layer, a soft intermediate layer and a hard outer layer, the inner layer is composed of at least one hard polymer layer, and the intermediate layer is A hard polymer layer comprising a cross-linked polymer layer, and the outer layer comprises a monomer represented by the formula (4) and (meth) acrylic acid and / or a salt thereof as structural units.
  • the form which has a coalescing layer can be mentioned, This form may have a soft innermost layer further. In the present invention, these may be used singly or in combination of two or more.
  • a soft inner layer, a soft intermediate layer, and a soft layer refer to an inner layer, an intermediate layer, and a layer made of at least one soft polymer.
  • the hard (outermost) outer layer and the hard inner layer in the present application refer to the (outermost) outer layer and inner layer made of at least one hard polymer.
  • “soft” and “hard” are the same as “soft” and “hard” described above.
  • the polymer (B) has a hard layer in the innermost layer, such as a multilayer structure graft copolymer comprising a hard inner layer, a soft intermediate layer, and a hard outer layer, as the hard polymer in the innermost layer Is from 40 to 100% by weight of methacrylic acid ester, 0 to 60% by weight of acrylic acid ester, 0 to 60% by weight of aromatic vinyl monomer, and 0 to 0% of polyfunctional monomer from the viewpoint of balance of hardness and crack resistance.
  • a rigid polymer composed of ⁇ 10% by weight and 0 to 20% by weight of other monomers copolymerizable with methacrylic acid esters, acrylic acid esters, and aromatic vinyl monomers can be suitably exemplified.
  • the polymer (B) includes, for example, a soft inner layer having a (meth) acrylic crosslinked polymer layer, a monomer represented by the formula (4), and (meth) acrylic acid and / or a salt thereof.
  • a layer structure in which the outer hard polymer is completely covered with the soft inner layer is generally used.
  • the amount of the hard polymer for forming the layer structure may be insufficient.
  • the volume average particle diameter of the polymer (B) to the crosslinked polymer layer is preferably 20 to 450 nm, more preferably 20 to 300 nm, still more preferably 20 to 150 nm, and most preferably 30 to 80 nm. If it is less than 20 nm, crack resistance may deteriorate. On the other hand, if it exceeds 450 nm, the transparency may decrease. Furthermore, it is preferable to make it less than 80 nm from a viewpoint of bending whitening resistance. From the viewpoint of trimming properties, 20 to 450 nm is preferable, 50 to 450 nm is more preferable, 60 to 450 nm is more preferable, and 100 to 450 nm is still more preferable.
  • the volume average particle diameter can be measured by a dynamic scattering method, for example, by using MICROTRAC UPA150 (manufactured by Nikkiso Co., Ltd.).
  • the volume average particle diameter of the polymer (B) to the crosslinked polymer layer specifically refers to the volume average particle diameter of the particles from the center of the polymer (B) particles to the crosslinked polymer layer.
  • the volume average particle diameter up to the crosslinked polymer layer located on the outermost side with respect to the center is meant.
  • a parameter called graft ratio is used in order to express how much the hard polymer layer is covalently bonded to the crosslinked polymer layer.
  • the graft ratio of the polymer (B) is an index representing the weight ratio of the grafted hard polymer layer to the crosslinked polymer layer, where the weight of the crosslinked polymer layer is 100.
  • the graft ratio is preferably 10 to 250%, more preferably 40 to 230%, and most preferably 60 to 220%. If the graft ratio is less than 10%, the polymer (B) tends to aggregate in the molded product, which may reduce transparency or cause foreign matter. Moreover, there exists a tendency for the elongation at the time of a tensile fracture to fall and to become easy to generate
  • This free polymer is also a polymer (B). To include.
  • the content of the crosslinked polymer in the polymer (B) is preferably 10 to 90% by weight, more preferably 20 to 80% by weight, and more preferably 30 to 60% by weight when the polymer (B) is 100% by weight. Is more preferable, and 35 to 55% by weight is most preferable. If it is less than 10% by weight, the mechanical strength such as crack resistance of the obtained resin material may be lowered. On the other hand, if it exceeds 90% by weight, the dispersibility of the polymer (B) is impaired, the smoothness of the surface of the molded product cannot be obtained, and there is a tendency that appearance defects such as fish eyes occur. Further, the content of the hard polymer is not sufficient, and there is a tendency that optical isotropy cannot be maintained, for example, the birefringence during alignment and the photoelastic constant are increased.
  • the production method of the polymer (B) is not particularly limited, and a known emulsion polymerization method, emulsion-suspension polymerization method, suspension polymerization method, bulk polymerization method or solution polymerization method can be applied.
  • An emulsion polymerization method is particularly preferred for the polymerization of the polymer (B).
  • the polymer (B) is obtained by multistage polymerization, and at least one stage of this multistage polymerization is carried out by adding the monomer represented by the formula (4) and (meth) acrylic acid and / or a salt thereof. It is polymerization of the monomer mixture to contain. In the presence of a polymer containing a crosslinked structure made of a (meth) acrylic crosslinked polymer, the monomer represented by the formula (4) and (meth) acrylic acid and / or a salt thereof are contained.
  • a multi-stage polymerization (meth) acrylic crosslinked structure-containing graft copolymer obtained by polymerizing the monomer mixture can be preferably used.
  • the monomer mixture containing the monomer represented by the formula (4) and (meth) acrylic acid and / or a salt thereof are as described above.
  • the polymer having a crosslinked structure composed of a (meth) acrylic crosslinked polymer may be a multistage polymer containing at least a (meth) acrylic crosslinked polymer, 50 to 100% by weight of acrylic ester, 50 to 0% by weight of other monomer copolymerizable with acrylic ester, and 0.05 to 10 parts by weight of polyfunctional monomer (acrylic ester and copolymer thereof) It is preferable to have a cross-linked structure (rubber part) composed of a (meth) acrylic cross-linked polymer formed by polymerizing a total of 100 parts by weight of other polymerizable monomers.
  • the rubber part may be polymerized in one stage by mixing all the monomer components, or may be polymerized in two or more stages by changing the monomer composition.
  • the (meth) acrylic crosslinked structure-containing polymer is not particularly limited as long as the (meth) acrylic crosslinked polymer (rubber part) is formed as at least one polymerization in the multistage polymerization.
  • the hard polymer may be polymerized before and / or after the polymerization step of the system cross-linked polymer.
  • the polymer (B) is (B-1) 50 to 100% by weight of an acrylate ester, 50 to 0% by weight of other monomers copolymerizable therewith, and polyfunctionality.
  • a crosslinked structure-containing polymer was obtained, and (B-2) a monomer represented by the formula (4) in the presence of the (meth) acrylic crosslinked structure-containing polymer, and (meth) acrylic acid and It is preferable to use what is obtained as a (meth) acrylic crosslinked structure-containing graft copolymer by polymerizing a monomer mixture containing a salt thereof.
  • the monomer mixture in the polymerization stage (B-1) and / or the monomer mixture in the polymerization stage (B-2) may be polymerized in one stage by mixing all the monomer components.
  • the polymerization may be carried out in two or more stages by changing the monomer composition.
  • the acrylic ester, other monomers and polyfunctional monomers copolymerizable therewith, and preferred amounts thereof are the above-mentioned (meth) acrylic acid crosslinked polymer.
  • the components of the monomer mixture and the preferred amounts thereof to be used are as described above for the hard polymer layer.
  • the volume average particle diameter until the (meth) acrylic crosslinked structure of the (meth) acrylic crosslinked structure-containing graft copolymer, which is a preferred form of the polymer (B), is the crosslinking weight of the polymer (B). It is measured in the same manner as the volume average particle diameter up to the coalesced layer, and the preferable range is also applied in the same manner.
  • the polymer (B) When the polymer (B) is produced by emulsion polymerization, it can be produced by ordinary emulsion polymerization using a known emulsifier. Specifically, for example, anionic interfaces such as sodium alkyl sulfonate, sodium alkylbenzene sulfonate, sodium dioctyl sulfosuccinate, sodium lauryl sulfate, fatty acid sodium, polyoxyethylene lauryl ether sodium phosphate, etc. Activators, alkylphenols, nonionic surfactants such as reaction products of aliphatic alcohols with propylene oxide and ethylene oxide are shown. These surfactants may be used alone or in combination of two or more.
  • anionic interfaces such as sodium alkyl sulfonate, sodium alkylbenzene sulfonate, sodium dioctyl sulfosuccinate, sodium lauryl sulfate, fatty acid sodium, polyoxyethylene lau
  • a cationic surfactant such as an alkylamine salt may be used.
  • a phosphate ester salt alkali metal or alkaline earth metal
  • sodium polyoxyethylene lauryl ether phosphate alkali metal or alkaline earth metal
  • the multilayered graft copolymer latex obtained by emulsion polymerization is coagulated by, for example, spray drying, freeze drying, or adding a salt such as calcium chloride or magnesium chloride, or an acid such as hydrochloric acid or sulfuric acid as a coagulant.
  • a powdery multilayer structure polymer can be obtained by treating by a known method such as separation of the resin component solidified by heat treatment or the like from the aqueous phase, washing and drying.
  • a known coagulant such as acid or salt can be used as a coagulant, but the thermal stability during molding of the obtained copolymer is improved. It is particularly preferable to use a magnesium salt, particularly magnesium sulfate, from the viewpoint of making it possible.
  • the polymer (B) is preferably blended so that 1 to 60 parts by weight of the crosslinked polymer is contained in 100 parts by weight of the resin material, more preferably 1 to 30 parts by weight, and even more preferably 1 to 25 parts by weight. . If it is less than 1 part by weight, the crack resistance and vacuum formability of the film may deteriorate, the photoelastic constant may increase, and optical isotropy may deteriorate. On the other hand, when it exceeds 60 parts by weight, the heat resistance, surface hardness, transparency, and bending whitening resistance of the film tend to deteriorate.
  • the blending ratio of the thermoplastic resin (A) and the polymer (B) is not particularly problematic as long as the blending conditions are satisfied, and depends on the amount of the crosslinked polymer contained in the polymer (B).
  • the polymer (B) is preferably 1 to 99% by weight, more preferably 1 to 80% by weight, and more preferably 1 to 60% by weight. % Is more preferable. If it is less than 1% by weight, the crack resistance and vacuum formability of the film may be deteriorated, the photoelastic constant may be increased, and the optical isotropy may be deteriorated. On the other hand, if it exceeds 99% by weight, the heat resistance, surface hardness, transparency and folding whitening resistance of the film tend to deteriorate.
  • the photoelastic constant of the polymer (B) and the photoelastic constant of the thermoplastic resin (A) have different signs. Both the orientation birefringence and the photoelastic constant can be reduced, and a resin material having high optical isotropy can be obtained. In order to make it optically isotropic, it is important how to reduce the orientation birefringence and the photoelastic birefringence. Therefore, here, the concept of “orientation birefringence” and “photoelastic birefringence” of the thermoplastic resin (A), polymer (B), resin material, and film of the present invention will be described first.
  • the molding conditions in which the polymer is oriented or when the raw film is subjected to a stretching process the polymer is oriented in the film, resulting in birefringence.
  • the birefringence in this case is generally called birefringence because it is birefringence generated by the orientation of the polymer.
  • the molding material obtained from the resin material of the present invention in particular, the orientation birefringence of the optical film can be reduced by how to mold the resin material of the present invention and in the case of a film. Therefore, it is necessary to set the orientation birefringence of the polymer (B) and the orientation birefringence of the thermoplastic resin (A).
  • orientation birefringence is a birefringence expressed by the orientation of the polymer chain, but the birefringence (orientation birefringence) in the polymer film varies depending on the degree of orientation of the polymer chain. Therefore, in the present invention, the “alignment birefringence” is defined as measurement under the following conditions.
  • thermoplastic resin (A), the polymer (B), and the resin material need to be some molded body and their orientation birefringence needs to be measured.
  • the molded body is a film or a sheet.
  • melt-extruded film and a press-formed sheet will be described.
  • the polymer (B) is pressed at 190 ° C. to produce a press-formed sheet having a thickness of 500 ⁇ m.
  • a test piece of 25 mm ⁇ 90 mm was cut out from the center part of the obtained press-molded sheet, and both short sides were held and kept at glass transition temperature + 30 ° C. for 2 minutes, which was twice as long (also referred to as 100% stretch).
  • the film is stretched uniaxially at a speed of 200 mm / min in this direction (in this case, both long sides are not fixed). Thereafter, the obtained film is cooled to 23 ° C., the sample central portion is sampled, the birefringence is measured, and the sign of the orientation birefringence is obtained.
  • the stretching temperature is preferably ⁇ 30 ° C. to + 30 ° C., more preferably + 0 ° C. to + 30 ° C. with respect to the glass transition temperature, and may be set as appropriate, for example, within the temperature range of + 5 ° C. to + 30 ° C.
  • photoelastic birefringence is birefringence caused by elastic deformation (strain) of a polymer in a molded body when stress is applied to the molded body.
  • strain elastic deformation
  • the degree of photoelastic birefringence of the material can be evaluated by obtaining a “photoelastic constant” specific to the polymer. First, stress is applied to the polymer material, and birefringence is measured when elastic distortion occurs. The proportional constant between the obtained birefringence and stress is the photoelastic constant. By comparing the photoelastic constants, it is possible to evaluate the birefringence of the polymer when stress is applied.
  • thermoplastic resin (A), the polymer (B) and the resin material must be formed into some molded body, and its photoelastic birefringence needs to be measured.
  • the body is a film or sheet.
  • a melt-extruded film and a press-formed sheet will be described.
  • the polymer (B) is pressed at 190 ° C. to produce a 500 ⁇ m-thick press-molded sheet, and a 25 mm ⁇ 90 mm test piece is cut out from the center of the obtained press-molded sheet.
  • the measurement conditions and calculation method are the same as those for the melt-extruded film described above.
  • photoelastic birefringence is a characteristic characteristic of the polymer structure
  • the photoelastic constant of the polymer (B) is the light of the thermoplastic resin (A). It is necessary to have an opposite sign for the elastic constant.
  • the blending amount of the polymer (B) it is necessary to add an amount of the polymer (B) that can cancel out the photoelastic birefringence of the thermoplastic resin (A). It is known that additivity is established between the photoelastic constant of the polymer (copolymer) obtained and the photoelastic constant of each homopolymer corresponding to the monomer species used for the copolymerization.
  • the polymer (B) has a photoelastic constant different from that of the thermoplastic resin (A) and is large, a resin material composed of the thermoplastic resin (A) and the polymer (B), and The required amount of the polymer (B) for reducing the photoelastic birefringence of the film is small.
  • the orientation birefringence in the molded body made of the resin material of the present invention, particularly in the optical film, the degree of orientation of the polymer in the molded body is not so large, and the orientation birefringence of the molded body is practical
  • orientation birefringence in the design of the polymer (B).
  • the orientation birefringence of the polymer (B) is made different from the orientation birefringence of the thermoplastic resin (A). There is a need.
  • the hard polymer layer (1) uniformly distributes the polymer (B) in the matrix (thermoplastic resin (A)). In addition to the dispersion, (2) the birefringence of the thermoplastic resin (A) can be canceled and the optical isotropy of the resin material and film of the present invention can be increased.
  • the orientation birefringence in the molded body such as a film is not so large and does not become a problem, for example, it does not go through a stretching process, it is hard so that the photoelastic constant of the molded body becomes extremely small.
  • This can be achieved by making the photoelastic constant of the polymer layer different from the matrix (thermoplastic resin (A)).
  • the orientation birefringence in a molded article such as a film is relatively large due to a stretching process or the like, not only the photoelastic constant of the molded article but also the orientation birefringence both become extremely small.
  • each of the thermoplastic resin (A) and the polymer (B) may be selected so as to have different signs.
  • the orientation birefringence of the copolymer polymer is additive with the intrinsic birefringence of each homopolymer corresponding to the monomer species used for the copolymerization.
  • the monomer species used for the hard polymer layer of the polymer (B) and suitable for canceling the orientation birefringence of the thermoplastic resin (A) each of the thermoplastic resin (A) and the polymer (B) is used. What is necessary is just to select so that orientation birefringence may become a different sign.
  • orientation birefringence of the polymer examples of specific monomers to be used as reference (inherent birefringence of homopolymers composed of the monomers) are described below, but are not limited thereto.
  • the intrinsic birefringence is birefringence (orientation birefringence) when the polymer is completely oriented in one direction.
  • Polymer exhibiting positive intrinsic birefringence Polybenzyl methacrylate [+0.002] Polyphenylene oxide [+0.210] Bisphenol A polycarbonate [+0.106] Polyvinyl chloride [+0.027] Polyethylene terephthalate [+0.105] Polyethylene [+0.044] Polymer exhibiting negative intrinsic birefringence: Polymethyl methacrylate [-0.0043] Polystyrene [-0.100]
  • the photoelastic constant and orientation birefringence data of some polymers have been described. Depending on the polymer, the birefringence of both has the same sign, such as “positive” for orientation birefringence and “negative” for photoelastic constant. Not necessarily.
  • Table 1 below shows examples of signs of orientation birefringence and photoelastic birefringence (constant) of some homopolymers.
  • the polymer (B) (especially the hard layer of the outer layer)
  • benzyl methacrylate having positive signs of both orientation birefringence and photoelastic birefringence in the combined layer
  • the resin material of the present invention remains in a granular form or is formed into pellets by an extruder, and then molded into a shape suitable for the application by heating, extrusion molding, injection molding, compression molding, blow molding, spinning molding, etc. It can be.
  • the melting temperature of the resin material at the time of heating and melting is not particularly limited, but is preferably 230 to 300 ° C.
  • a film is particularly useful as the molded body, and it can be satisfactorily processed by, for example, an ordinary melt extrusion method such as an inflation method, a T-die extrusion method, a calendar method, or a solvent casting method. Among them, it is preferable to use a melt extrusion method that does not use a solvent. According to the melt extrusion method, it is possible to reduce the burden on the global environment and the working environment due to manufacturing costs and solvents.
  • the resin material of the present invention has an orientation birefringence value of ⁇ 15 ⁇ 10 ⁇ 4 to 15 ⁇ 10 ⁇ 4 because birefringence during molding does not occur and a molded article having no practical problem can be obtained. More preferably, it is ⁇ 10 ⁇ 10 ⁇ 4 to 10 ⁇ 10 ⁇ 4 , and further preferably ⁇ 5 ⁇ 10 ⁇ 4 to 5 ⁇ 10 ⁇ 4 . Further, from the viewpoint of obtaining stable optical characteristics, it is preferably ⁇ 1.7 ⁇ 10 ⁇ 4 to 1.7 ⁇ 10 ⁇ 4 , and ⁇ 1.6 ⁇ 10 ⁇ 4 to 1.6 ⁇ 10 ⁇ 4.
  • the resin material of the present invention has a photoelastic constant of ⁇ 10 ⁇ 10 ⁇ 12 to 10 ⁇ 10 ⁇ 12 because the birefringence generated even when stress is applied to the molded body in an environment such as high temperature and high humidity. preferably there, more preferably -4 ⁇ 10 -12 ⁇ 4 ⁇ 10 -12, more preferably from -2 ⁇ 10 -12 ⁇ 2 ⁇ 10 -12, -1.5 ⁇ 10 - More preferably, it is 12 to 1.5 ⁇ 10 ⁇ 12 , particularly preferably ⁇ 1 ⁇ 10 ⁇ 12 to 1 ⁇ 10 ⁇ 12 , and ⁇ 0.5 ⁇ 10 ⁇ 12 to 0.5 ⁇ 10 It is particularly preferably ⁇ 12 , most preferably ⁇ 0.3 ⁇ 10 ⁇ 12 to 0.3 ⁇ 10 ⁇ 12 .
  • the photoelastic constant is ⁇ 4 ⁇ 10 ⁇ 12 to 4 ⁇ 10 ⁇ 12 , even if it is made into a film and used in a liquid crystal display device, phase difference unevenness occurs, contrast at the periphery of the display screen decreases, There will be no light leakage.
  • the resin material of the present invention is characterized by high mechanical strength.
  • the mechanical strength can be evaluated by, for example, tensile elongation at break in a tensile test, and the tensile elongation at break is preferably 10% or more, more preferably 20% or more, and 30% or more. More preferably, it is still more preferably 40% or more, further preferably 50% or more, particularly preferably 60% or more, and most preferably 90% or more.
  • the resin material of the present invention exhibiting a tensile elongation at break within the above range is extremely excellent in productivity, for example, a problem such as cracking does not occur during molding. In addition, troubles such as cracks do not occur when actually used as a product.
  • the tensile strength at break at break is correlated with the crackability, and the higher the tensile elongation at break, the better the crack resistance.
  • the resin material of the present invention is also characterized by high thermal stability.
  • the 1% polymerization reduction temperature is preferably 290 ° C. or higher, more preferably 300 ° C. or higher, and most preferably 310 ° C. or higher.
  • the 1% polymerization reduction temperature can be measured using, for example, a thermogravimetric measuring device such as SII EXSTAR 6000, TG / DTA 6300 manufactured by Seiko Instruments Inc. From the obtained measurement results, the 1% weight loss temperature can be calculated as follows.
  • the resin material of the present invention can produce a film without causing contamination of the molding machine and film defects due to scattering of the ultraviolet absorber even under high temperature molding conditions using T-die film formation.
  • melt extrusion film a film formed by the melt extrusion method is distinguished from a film formed by another method such as a solution casting method and is referred to as a “melt extrusion film”.
  • the resin material according to the present invention is formed into a film by a melt extrusion method, first, the resin material according to the present invention is supplied to an extruder, and the resin material is heated and melted.
  • the resin material is preferably pre-dried before being supplied to the extruder. By performing such preliminary drying, foaming of the resin extruded from the extruder can be prevented.
  • the method of preliminary drying is not particularly limited, and for example, the raw material (that is, the resin material according to the present invention) can be formed into pellets or the like and can be performed using a hot air dryer or the like.
  • the extruder for molding the resin material according to the present invention preferably has one or more devolatilizers for removing volatile components generated during heating and melting.
  • a deaeration device By having a deaeration device, it is possible to reduce deterioration of the film appearance due to resin foaming and decomposition degradation reaction.
  • melt extrusion for molding the resin material according to the present invention it is preferable to supply an inert gas such as nitrogen or helium to the cylinder of the extruder along with the supply of the resin material.
  • an inert gas such as nitrogen or helium
  • the resin material heated and melted in the extruder is supplied to the T die through a gear pump and a filter.
  • a gear pump is used, the uniformity of the extrusion amount of the resin can be improved and thickness unevenness can be reduced.
  • a filter is used, the foreign material in a resin material can be removed and the film excellent in the external appearance without a defect can be obtained.
  • the type of filter it is preferable to use a stainless steel leaf disc filter capable of removing foreign substances from the molten polymer, and it is preferable to use a fiber type, a powder type, or a composite type thereof as the filter element.
  • the filter can be suitably used for an extruder or the like used for pelletization or film formation.
  • the non-birefringent resin material supplied to the T die is extruded from the T die as a sheet-like molten resin.
  • the sheet-like molten resin is preferably sandwiched between two cooling rolls and cooled to form a film.
  • One of the two cooling rolls sandwiching the sheet-like molten resin is a rigid metal roll having a smooth surface, and the other has a metal elastic outer cylinder having a smooth surface and capable of elastic deformation.
  • a flexible roll is preferred.
  • cooling roll is used to mean “touch roll” and “cooling roll”.
  • each cooling roll is metal
  • the surfaces of the cooling roll come into contact with each other.
  • the outer surface may be scratched, or the cooling roll itself may be damaged.
  • the film is obtained by sandwiching and cooling the sheet-like molten resin with the two cooling rolls. It is done.
  • the film of the present invention is very tough and rich in flexibility, there is no need to stretch for improving the strength, and there are advantages in terms of productivity and cost by omitting the stretching step.
  • the film of the present invention is highly transparent and can have a thickness of 10 ⁇ m or more with high strength. Furthermore, orientation birefringence due to stretching hardly occurs and is optically isotropic. In addition, shrinkage due to heat during secondary molding such as vacuum molding or during use at high temperatures is small.
  • the film of the present invention exhibits the above-described effects even as an unstretched film, but it can be further stretched, thereby improving strength and improving film thickness accuracy.
  • a film with small thickness unevenness can be easily produced without substantially causing birefringence and without substantially increasing haze.
  • the resin material according to the present invention is once formed into an unstretched film, and then uniaxially stretched or biaxially stretched to obtain a stretched film (uniaxially stretched film or Biaxially stretched film) can be produced.
  • a stretched film uniaxially stretched film or Biaxially stretched film
  • the sheet-like molten resin is sandwiched and cooled by the two cooling rolls, and an unstretched film having a thickness of 150 ⁇ m is once acquired. Thereafter, the film may be stretched by biaxial stretching in the vertical and horizontal directions to produce a film having a thickness of 40 ⁇ m.
  • a film before being stretched after the resin material according to the present invention is formed into a film shape, that is, an unstretched film is referred to as a “raw film”.
  • the raw material film When stretching the raw material film, the raw material film may be stretched immediately after the raw material film is formed, or after the raw material film is molded, the raw material film is temporarily stored or moved to stretch the raw material film. You may go.
  • the state of the raw material film may be stretched in a very short time (in some cases, instantaneously) in the film manufacturing process. May be stretched after a certain period of time.
  • the raw material film When the film of the present invention is used as a stretched film, the raw material film only needs to maintain a film shape sufficient to be stretched, and does not have to be a complete film.
  • the method for stretching the raw material film is not particularly limited, and any conventionally known stretching method may be used. Specifically, for example, transverse stretching using a tenter, longitudinal stretching using a roll, sequential biaxial stretching in which these are sequentially combined, and the like can be used.
  • the raw material film is stretched, it is preferable that the raw material film is once preheated to a temperature 0.5 to 5 ° C., preferably 1 to 3 ° C. higher than the stretching temperature, and then cooled to the stretching temperature and stretched.
  • the thickness of the raw material film can be maintained with high accuracy, and the thickness accuracy of the stretched film does not decrease and thickness unevenness does not occur. Further, the raw material film does not stick to the roll and does not loosen due to its own weight.
  • the preheating temperature of the raw material film is too high, there is a tendency that the raw material film sticks to the roll or loosens due to its own weight.
  • the difference between the preheating temperature and the stretching temperature of the raw material film is small, it tends to be difficult to maintain the thickness accuracy of the raw material film before stretching, the thickness unevenness increases, or the thickness accuracy tends to decrease.
  • the resin material according to the present invention is stretched after being formed into a raw material film, it is difficult to improve the thickness accuracy by utilizing a necking phenomenon. Therefore, in the present invention, it is important to manage the preheating temperature in order to maintain or improve the thickness accuracy of the obtained film.
  • the stretching temperature when stretching the raw material film is not particularly limited, and may be changed according to the mechanical strength, surface property, thickness accuracy, and the like required for the stretched film to be produced.
  • the temperature range is preferably (Tg ⁇ 30 ° C.) to (Tg + 30 ° C.), and (Tg ⁇ 20 ° C.) to (T Tg + 20 ° C. is more preferable, and a temperature range of (Tg) to (Tg + 20 ° C.) is more preferable.
  • the stretching temperature is within the above temperature range, thickness unevenness of the obtained stretched film can be reduced, and further, mechanical properties such as elongation, tear propagation strength, and fatigue resistance can be improved. Moreover, generation
  • the stretching temperature is higher than the above temperature range, the thickness unevenness of the stretched film obtained tends to be large, and the mechanical properties such as elongation, tear propagation strength, and fatigue resistance cannot be improved sufficiently. There is. Furthermore, there is a tendency that troubles such as the film sticking to the roll tend to occur.
  • the stretching temperature is lower than the above temperature range, the resulting stretched film has a large haze, or in extreme cases, the process tends to cause problems such as tearing or cracking of the film. is there.
  • the stretch ratio is not particularly limited, and may be determined according to the mechanical strength, surface property, thickness accuracy, and the like of the stretched film to be produced. Although it depends on the stretching temperature, the stretching ratio is generally preferably selected in the range of 1.1 to 3 times, more preferably in the range of 1.3 to 2.5 times. Preferably, it is more preferably selected in the range of 1.5 times to 2.3 times.
  • the draw ratio is within the above range, the mechanical properties such as the elongation rate of the film, tear propagation strength, and fatigue resistance can be greatly improved. Therefore, it is possible to produce a stretched film having a thickness unevenness of 5 ⁇ m or less, a birefringence of substantially zero, and a haze of 2.0% or less.
  • the film according to the present invention can be used by laminating another film with an adhesive or the like, or by forming a coating layer such as a hard coat layer on the surface, if necessary.
  • the resin material of the present invention has the birefringence described in Japanese Patent No. 3696201 and the inorganic fine particles having the birefringence described in Japanese Patent No. 3648201 and No. 4336586, in the sense of adjusting the orientation birefringence.
  • a low molecular weight compound having a molecular weight of 5000 or less, preferably 1000 or less may be appropriately blended.
  • the resin material of this invention should just contain at least 1 type of a thermoplastic resin (A) and a polymer (B) respectively, and if it is the range which satisfy
  • the other resin include thermoplastic resins mentioned in the thermoplastic resin (A), multilayer structure polymers such as core-shell polymers and graft copolymers, and thermoplastic elastomers such as block polymers.
  • the resin material of the present invention can be used as required in light stabilizers, ultraviolet absorbers, heat stabilizers, matting agents, light diffusing agents, colorants, dyes, pigments, antistatic agents, heat ray reflectors, lubricants, plastics.
  • Known additives such as an agent, ultraviolet absorber, stabilizer, filler, or other resin may be contained.
  • the film of the present invention can reduce the gloss of the film surface by a known method, if necessary. For example, it can be carried out by a method of kneading an inorganic filler or crosslinkable polymer particles in a resin material. Further, the gloss of the film surface can be reduced by embossing the obtained film.
  • the film of the present invention can be used by being laminated on metal, plastic, or the like.
  • a method of laminating films wet lamination, dry lamination, and extrusion lamination, where an adhesive is applied to a metal plate such as a steel plate or the like, and then the film is placed on the metal plate and dried and bonded. And hot melt lamination.
  • the film is placed in a mold and then placed in a mold after insert molding or laminate injection press molding in which resin is filled by injection molding, or after the film is preformed.
  • In-mold molding in which resin is filled by injection molding can be used.
  • the laminated product of the film of the present invention can be used as a substitute for painting such as automobile interior materials and automobile exterior materials, window frames, bathroom equipment, wallpaper, flooring materials and other building materials, household goods, furniture and electrical equipment housings, It can be used for housings of office automation equipment such as facsimiles, notebook computers, copiers, etc., front plates of liquid crystal screens of terminals such as mobile phones, smartphones and tablets, and parts of electrical or electronic devices.
  • office automation equipment such as facsimiles, notebook computers, copiers, etc.
  • front plates of liquid crystal screens of terminals such as mobile phones, smartphones and tablets, and parts of electrical or electronic devices.
  • the film of the present invention can be used for the following various applications by utilizing properties such as heat resistance, transparency and flexibility.
  • Examples of the usage of the molded body other than the resin material film in the present invention include, for example, general camera lenses, video camera lenses, laser pickup objective lenses, diffraction gratings, holograms, collimator lenses, and f ⁇ for laser printers.
  • Lenses cylindrical lenses, condenser lenses and projection lenses for liquid crystal projectors, lenses such as Fresnel lenses, spectacle lenses, compact discs (CD, CD-ROM, etc.), mini discs (MD), disc substrates for DVDs, and liquid crystal Light guide plate, liquid crystal film, LCD substrate, liquid crystal element members such as liquid crystal element bonding adhesive, projector screen, optical filter, optical fiber, optical waveguide, prism, illumination lens, automobile headlight, need for sterilization treatment Medical supplies, electronic len Cooking container, home appliances of the housing, such as a toy or recreational items and the like.
  • lenses such as Fresnel lenses, spectacle lenses, compact discs (CD, CD-ROM, etc.), mini discs (MD), disc substrates for DVDs, and liquid crystal Light guide plate, liquid crystal film, LCD substrate, liquid crystal element members such as liquid crystal element bonding adhesive, projector screen, optical filter, optical fiber, optical waveguide, prism, illumination lens, automobile headlight, need for sterilization treatment Medical supplies, electronic len Cooking container, home appliances
  • the film of the present invention can be used as an optical film by utilizing optical properties such as optical homogeneity and transparency, and can be used as an optical film, such as an optical isotropic film, a polarizer protective film, and a transparent conductive film. It can be particularly suitably used for known optical applications such as the periphery of liquid crystal display devices. Since the film of the present invention has excellent mechanical strength, it is possible to reduce film transportability, crack resistance during actual use, and generation of fine cracks in the film trimming process during production. . In addition, since it has high mechanical strength, it does not require a stretching process necessary to improve the film strength, and thus it is difficult to produce a stretched film, for example, a thick optical film having a thickness of 80 ⁇ m or more is produced. It is also possible.
  • the film of the present invention can be attached to a polarizer and used as a polarizing plate. That is, the film according to the present invention can be used as a polarizer protective film for a polarizing plate.
  • the polarizer is not particularly limited, and any conventionally known polarizer can be used. Specific examples include a polarizer obtained by containing iodine in stretched polyvinyl alcohol.
  • the film of the present invention may be subjected to surface treatment as necessary.
  • a surface treatment such as a coating process or another film is laminated on the surface of the film of the present invention
  • the film of the present invention is preferably subjected to a surface treatment.
  • adhesion between the film of the present invention and the coating material or another film to be laminated can be improved.
  • the film of the present invention has high solvent resistance, when applying various coatings to the film of the present invention, the appearance defect due to the solvent does not occur, so that it can have an excellent surface appearance.
  • the film of this invention can achieve high heat resistance, it can raise the curing temperature of a film coating process, and a drying rate, and can improve productivity.
  • the purpose of the surface treatment for the film of the present invention is not limited to the above.
  • the film of the present invention may be subjected to surface treatment regardless of its use.
  • Such surface treatment is not particularly limited, and examples thereof include corona treatment, plasma treatment, ultraviolet irradiation, and alkali treatment. Of these, corona treatment is preferred.
  • the thickness of the film of the present invention is not particularly limited, but is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and particularly preferably 200 ⁇ m or less. Further, it is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, further preferably 50 ⁇ m or more, and particularly preferably 100 ⁇ m or more. If the thickness of the film is within the above range, there is an advantage that it is difficult to be deformed when vacuum forming is performed using the film, and it is difficult to cause breakage at the deep drawing portion, and the optical characteristics are uniform, A film with good transparency can be produced.
  • the film of the present invention preferably has a haze value of 2.0% or less, more preferably 1.0% or less, further preferably 0.8% or less, and 0.5% or less. It is particularly preferred. If the haze value of the film of the present invention is within the above range, the transparency of the film is sufficiently high, and it is suitable for optical use, decoration use, interior use, or vacuum forming use that requires transparency. .
  • the film of the present invention preferably has a total light transmittance of 85% or more, more preferably 88% or more. If the total light transmittance is within the above range, the transparency of the film is sufficiently high, and it can be suitably used in optical applications, decoration applications, interior applications, or vacuum forming applications that require transparency. .
  • the film of the present invention preferably has a glass transition temperature of 100 ° C. or higher, more preferably 115 ° C. or higher, still more preferably 120 ° C. or higher, and still more preferably 124 ° C. or higher.
  • a glass transition temperature is within the above range, a film having sufficiently excellent heat resistance can be obtained.
  • the film of the present invention preferably has a tensile elongation at break of 10% or more, more preferably 20% or more, further preferably 30% or more, and still more preferably 40% or more. 50% or more is particularly preferable, 60% or more is particularly preferable, and 90% or more is most preferable.
  • the film of the present invention showing the tensile elongation at break within the above range is less likely to crack when trimming the film with a Thomson blade or a cutter blade (trimming property), and when the film is wound on a roll, Or it is hard to fracture
  • the crack resistance when the film is bent is high, and troubles such as cracking do not occur not only in the post-processing process but also in actual use as a product.
  • the tensile strength at break at break is correlated with the crackability, and the higher the tensile elongation at break, the better the crack resistance.
  • the film of the present invention can be used as an optical film as described above.
  • the optical anisotropy is small.
  • both the in-plane retardation and the absolute value of the thickness direction retardation are small.
  • the in-plane retardation is preferably 10 nm or less, more preferably 6 nm or less, more preferably 5 nm or less, and further preferably 3 nm or less.
  • the absolute value of the thickness direction retardation is preferably 50 nm or less, more preferably 20 nm or less, further preferably 10 nm or less, and most preferably 5 nm or less.
  • a film having such a retardation can be suitably used as a polarizer protective film provided in a polarizing plate of a liquid crystal display device.
  • the in-plane retardation of the film exceeds 10 nm or the absolute value of the thickness direction retardation exceeds 50 nm
  • the contrast is increased in the liquid crystal display device. Problems such as degradation may occur.
  • the retardation is an index value calculated based on birefringence, and the in-plane retardation (Re) and the thickness direction retardation (Rth) can be calculated by the following equations, respectively.
  • both the in-plane retardation Re and the thickness direction retardation Rth are zero.
  • nx, ny, and nz are respectively the in-plane stretching direction (polymer chain orientation direction) as the X axis, the direction perpendicular to the X axis as the Y axis, and the thickness direction of the film as the Z axis.
  • And represents the refractive index in the respective axial directions.
  • D represents the thickness of the film
  • nx-ny represents orientation birefringence.
  • the MD direction is the X axis
  • stretch direction is the X axis.
  • the molded body made of the resin material of the present invention preferably has an orientation birefringence value of ⁇ 15 ⁇ 10 ⁇ 4 to 15 ⁇ 10 ⁇ 4 , and ⁇ 10 ⁇ 10 ⁇ 4 to 10 ⁇ 10 ⁇ 4 . More preferably, -5 ⁇ 10 ⁇ 4 to 5 ⁇ 10 ⁇ 4 is more preferable, ⁇ 1.6 ⁇ 10 ⁇ 4 to 1. 6 ⁇ 10 ⁇ 4 is still more preferable, and ⁇ 1 ⁇ 10 4 is more preferable.
  • ⁇ 4 to 1 ⁇ 10 ⁇ 4 is particularly preferably ⁇ 0.5 ⁇ 10 ⁇ 4 to 0.5 ⁇ 10 ⁇ 4 , and ⁇ 0.2 ⁇ 10 ⁇ 4 to 0.2 Most preferably, it is ⁇ 10 ⁇ 4 .
  • the film made of the resin material of the present invention preferably has an orientation birefringence value of ⁇ 1.7 ⁇ 10 ⁇ 4 to 1.7 ⁇ 10 ⁇ 4 , and ⁇ 1.6 ⁇ 10 ⁇ 4 to It is more preferably 1.6 ⁇ 10 ⁇ 4 , further preferably ⁇ 1.5 ⁇ 10 ⁇ 4 to 1.5 ⁇ 10 ⁇ 4 , and ⁇ 1.0 ⁇ 10 ⁇ 4 to 1.0 ⁇ . it is even more preferably 10 -4, particularly preferably from -0.5 ⁇ 10 -4 ⁇ 0.5 ⁇ 10 -4, in -0.2 ⁇ 10 -4 ⁇ 0.2 ⁇ 10 -4 Most preferably it is.
  • the orientation birefringence is within the above range, stable optical characteristics can be obtained without causing birefringence during molding. It is also very suitable as an optical film used for liquid crystal displays and the like.
  • the molded body made of the resin material of the present invention preferably has a photoelastic constant of ⁇ 10 ⁇ 10 ⁇ 12 to 10 ⁇ 10 ⁇ 12 and preferably ⁇ 4 ⁇ 10 ⁇ 12 to 4 ⁇ 10 ⁇ 12. More preferably, it is ⁇ 2 ⁇ 10 ⁇ 12 to 2 ⁇ 10 ⁇ 12 , further preferably ⁇ 1 ⁇ 10 ⁇ 12 to 1 ⁇ 10 ⁇ 12 , and ⁇ 0.5 ⁇ 10 ⁇ 12. ⁇ still more preferably 0.5 ⁇ 10 -12, and most preferably -0.3 ⁇ 10 -12 ⁇ 0.3 ⁇ 10 -12.
  • the film made of the resin material of the present invention preferably has a photoelastic constant of ⁇ 4 ⁇ 10 ⁇ 12 Pa ⁇ 1 to 4 ⁇ 10 ⁇ 12 Pa ⁇ 1 , and ⁇ 1.5 ⁇ 10 ⁇ 12 Pa ⁇ 1 to It is more preferably 1.5 ⁇ 10 ⁇ 12 Pa ⁇ 1 , further preferably ⁇ 1.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 to 1.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 , and ⁇ 0.5 It is even more preferable that it is ⁇ 10 ⁇ 12 Pa ⁇ 1 to 0.5 ⁇ 10 ⁇ 12 Pa ⁇ 1 , and it is ⁇ 0.3 ⁇ 10 ⁇ 12 Pa ⁇ 1 to 0.3 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less. Most preferred.
  • the photoelastic constant is within the above range, even if the film according to the present invention is used in a liquid crystal display device, the birefringence generated even when stress is applied to the molded body in an environment such as high temperature and high humidity is small. There is no occurrence of phase difference unevenness, lowering of the contrast around the display screen, or light leakage.
  • the film of the present invention is excellent in thermal stability, it becomes possible to mold using a polymer filter with high filtration accuracy, preferably less than 100 / m 2 , more preferably less than 50 / m 2 , A film having a small number of foreign matters, such as preferably less than 10 pieces / m 2 , can be obtained.
  • volume average particle diameter to (meth) acrylic crosslinked polymer layer of graft copolymer The volume average particle diameter (volume average particle diameter of acrylic rubber particles) up to the (meth) acrylic crosslinked polymer layer of the graft copolymer was measured in the state of acrylic rubber particle latex. The volume average particle diameter ( ⁇ m) was measured using MICROTRAC UPA150 manufactured by Nikkiso Co., Ltd. as a measuring device.
  • Polymerization conversion rate (%) [(total raw material weight ⁇ solid component ratio ⁇ total raw material weight other than water / monomer) / total monomer weight] ⁇ 100 (Graft rate) 2 g of the obtained polymer (B) was dissolved in 50 ml of methyl ethyl ketone, and centrifuged for 1 hour at 30000 rpm using a centrifuge (manufactured by Hitachi Koki Co., Ltd., CP60E). Minutes were separated (total of 3 sets of centrifugation work). The graft ratio was calculated by the following formula using the obtained insoluble matter.
  • Graft rate (%) ⁇ (weight of methyl ethyl ketone insoluble matter ⁇ weight of crosslinked polymer layer) / weight of crosslinked polymer layer ⁇ ⁇ 100
  • the weight of the crosslinked polymer layer is the charged weight of the monofunctional monomer constituting the crosslinked polymer layer.
  • the Vicat softening point was measured using the obtained polymer (B).
  • the polymer (B) was kneaded for 5 minutes with an 8-inch laboratory test roll (manufactured by Nippon Roll Co., Ltd.) under the conditions of a roll temperature of 180 ° C., a rotation speed of 20 rpm for the front roll and 18 rpm for the rear roll, and a roll sheet (sheet thickness 1.0 mm).
  • the imidation ratio was calculated as follows using IR.
  • the product pellets were dissolved in methylene chloride, and the IR spectrum of the solution was measured at room temperature using a TravelIR manufactured by SensIR Technologies. From the obtained IR spectrum, and the absorption intensity attributable to the ester carbonyl group of 1720cm -1 (Absester), the imidization ratio from the ratio of the absorption intensity attributable to the imide carbonyl group of 1660cm -1 (Absimide) (Im% ( IR)).
  • the “imidation rate” refers to the ratio of the imide carbonyl group in the total carbonyl group.
  • each composition was processed into a sheet shape, and the refractive index (nD) at the sodium D-line wavelength was measured using an Abbe refractometer 2T manufactured by Atago Co., Ltd. according to JIS K7142.
  • Glass-transition temperature Using a differential scanning calorimeter (DSC) SSC-5200 manufactured by Seiko Instruments Inc., the sample was once heated to 200 ° C. at a rate of 25 ° C./minute, held for 10 minutes, and then at a rate of 25 ° C./minute to 50 ° C. Measurement is performed while the temperature is raised to 200 ° C. at a rate of temperature increase of 10 ° C./min through preliminary adjustment to lower the temperature, and an integral value is obtained from the obtained DSC curve (DDSC), and the glass transition temperature is determined from the maximum point. Asked.
  • DSC differential scanning calorimeter
  • Total light transmittance / haze value The total light transmittance and haze value of the film were measured by the method described in JIS K7105 using Nippon Denshoku Industries NDH-300A.
  • the film thickness was measured using a Digimatic Indicator (manufactured by Mitutoyo Corporation).
  • the obtained film was cooled to 23 ° C., the center portion of the sample was sampled, and an automatic birefringence meter (KOBRA-WR manufactured by Oji Scientific Co., Ltd.) was used at a temperature of 23 ⁇ 2 ° C. and a humidity of 50 ⁇ 5%.
  • the birefringence (orientation birefringence) was measured at a wavelength of 590 nm and an incident angle of 0 °.
  • the in-plane retardation Re and the thickness direction retardation Rth (incident angle 40 °) were also measured. (Details of the in-plane retardation Re and the thickness direction retardation Rth will be described later).
  • the polymer (B) alone was pressed at 190 ° C. to prepare a pressed plate having a thickness of 500 ⁇ m.
  • a 25 mm ⁇ 90 mm test piece was cut out from the center of the obtained press plate and measured in the same manner as described above.
  • Resin (A) was prepared in the same manner as in Example 1, and an unstretched film having a thickness of 125 ⁇ m was produced and measured in the same manner as described above.
  • In-plane retardation Re and thickness direction retardation Rth A test piece of 40 mm ⁇ 40 mm was cut out from a film having a thickness of 125 ⁇ m.
  • the in-plane retardation Re of this test piece was measured using an automatic birefringence meter (KOBRA-WR manufactured by Oji Scientific Co., Ltd.) at a temperature of 23 ⁇ 2 ° C. and a humidity of 50 ⁇ 5% at a wavelength of 590 nm and an incident angle of 0 °. It was measured.
  • KOBRA-WR automatic birefringence meter
  • the measured value was multiplied by 100 ( ⁇ m) / film thickness ( ⁇ m) to obtain a converted value of 100 ⁇ m, and is shown in Table 3.
  • a test piece was cut into a strip of 15 mm ⁇ 90 mm in the TD direction from a film having a thickness of 125 ⁇ m (cut out so that the long side comes in the TD direction).
  • the measurement was performed by measuring the birefringence with one of the long sides of the film fixed and the other with a load of 0.5 kgf from no load to 4 kgf. From the obtained results, the amount of change in birefringence due to unit stress was measured. Was calculated.
  • the polymer (B) alone is pressed at 190 ° C. to prepare a press plate having a film thickness of 500 ⁇ m.
  • a test piece of 15 mm ⁇ 90 mm was cut out from the center of the obtained press plate and measured in the same manner as described above.
  • Resin (A) was prepared in the same manner as in Example 1, and an unstretched film having a thickness of 125 ⁇ m was produced and measured in the same manner as described above.
  • Trimming property evaluation A film having a film thickness of 125 ⁇ m was cut with a cutter knife and evaluated as follows. ⁇ : No cracks are observed on the cut surface. ⁇ : Cracks are observed on the cut surface. X: Cracks are remarkably generated on the cut surface.
  • Tensile elongation at break A film having a thickness of 125 ⁇ m was used.
  • the tensile test was based on ISO527-3 (JIS K7127), the test piece was measured at test piece type 5, the test speed was 200 mm / min in the MD direction, the temperature was 23 ⁇ 2 ° C., and the humidity was 50 ⁇ 5%.
  • Thermal stability was measured using melt viscosity reduction rate and thermogravimetry (TGA). Melt viscosity reduction rate The melt viscosity of the obtained resin composition was measured under conditions in accordance with JIS K7199 (die temperature 260 ° C., shear rate 24 sec ⁇ 1 , capillary die diameter 1 mm, residence time 1 hour), The rate of decrease in melt viscosity represented by the following formula for the melt viscosity at 1 hour residence time relative to the melt viscosity at 10 minutes residence time was calculated as an index of thermal stability. Moreover, the presence or absence of foaming derived from the thermal decomposition of the resin was also observed in the strand after the test.
  • Melt viscosity reduction rate (Melt viscosity at a residence time of 10 minutes ⁇ melt viscosity at a residence time of 1 hour) / (melt viscosity at a residence time of 10 minutes) ⁇ 100 (%) Thermal stability and melt viscosity were evaluated according to the following criteria.
  • The melt viscosity is low and extrusion is possible without problems.
  • X The melt viscosity is high, the filter is broken, and the filtration accuracy is not good.
  • Thermogravimetry (TGA) SII EXSTAR 6000 and TG / DTA 6300 manufactured by Seiko Instruments were used. The measurement was carried out at a start temperature of 30 ° C., a final temperature of 460 ° C., a heating rate of 5 ° C./min, and a holding time of 0 minutes. The sample was pellets before film formation, the sample amount was 20 mg, and the purge gas was nitrogen (400 ml / min). The 1% weight loss temperature was calculated as follows.
  • There is no surface unevenness, fine textured roughness, etc., and the variation in thickness in the MD direction of 1 m is 2 ⁇ m or less.
  • X Surface unevenness, fine textured surface roughness, etc., and variation in thickness in the MD direction of 1 m is larger than 2 ⁇ m.
  • the meshing type co-directional twin-screw extruder having a diameter of 75 mm for both the first and second extruders and L / D (ratio of the length L to the diameter D of the extruder) of 74.
  • the raw material resin was supplied to the raw material supply port of the first extruder using a constant weight feeder (manufactured by Kubota Corporation).
  • the decompression degree of each vent in the first extruder and the second extruder was ⁇ 0.095 MPa. Furthermore, the pressure control mechanism in the part connects the first extruder and the second extruder with a pipe having a diameter of 38 mm and a length of 2 m, and connects the resin discharge port of the first extruder and the raw material supply port of the second extruder. Used a constant flow pressure valve.
  • the resin (strand) discharged from the second extruder was cooled with a cooling conveyor and then cut with a pelletizer to form pellets.
  • the discharge port of the first extruder, the first extruder and the first extruder Resin pressure gauges were provided at the center of the connecting parts between the two extruders and at the discharge port of the second extruder.
  • a polymethyl methacrylate resin (Mw: 105,000) was used as a raw material resin, and monomethylamine was used as an imidizing agent to produce an imide resin intermediate 1.
  • the temperature of the highest temperature part of the extruder was 280 ° C.
  • the screw rotation speed was 55 rpm
  • the raw material resin supply amount was 150 kg / hour
  • the addition amount of monomethylamine was 2.0 parts with respect to 100 parts of the raw material resin.
  • the constant flow pressure valve was installed immediately before the raw material supply port of the second extruder, and the monomethylamine press-fitting portion pressure of the first extruder was adjusted to 8 MPa.
  • the imidizing agent and by-products remaining in the rear vent and vacuum vent were devolatilized, and then dimethyl carbonate was added as an esterifying agent to produce an imide resin intermediate 2.
  • each barrel temperature of the extruder was 260 ° C.
  • the screw rotation speed was 55 rpm
  • the addition amount of dimethyl carbonate was 3.2 parts with respect to 100 parts of the raw resin.
  • it was extruded from a strand die, cooled in a water tank, and then pelletized with a pelletizer to obtain a glutarimide acrylic resin (A1).
  • the obtained glutarimide acrylic resin (A1) is an acrylic resin obtained by copolymerizing a glutamylimide unit represented by the general formula (1) and a (meth) acrylic acid ester unit represented by the general formula (2). (A).
  • the imidization rate, the content of glutarimide units, the acid value, the glass transition temperature, and the refractive index were measured according to the above-described methods.
  • the imidation ratio was 13%
  • the content of glutarimide units was 7% by weight
  • the acid value was 0.4 mmol / g
  • the glass transition temperature was 130 ° C.
  • the refractive index was 1.50.
  • the sign of the photoelastic constant of the glutarimide acrylic resin (A1) was ⁇ (minus).
  • the internal temperature was set to 60 ° C., and 0.2 part of sodium formaldehyde sulfoxide was charged. Then, 55.254 parts of the raw material mixture of the hard polymer layer (B-2) shown in Table 2 was added for 165 minutes. Then, the polymerization was continued for 1 hour to obtain a graft copolymer latex. The polymerization conversion rate was 100.0%. The obtained latex was salted out and coagulated with magnesium sulfate, washed with water and dried to obtain a white powdery graft copolymer (B1).
  • the average particle diameter of the rubber particles (polymer of B-1) of the graft copolymer (B1) was 133 nm.
  • the graft ratio of the graft copolymer (B1) was 77%.
  • the Vicat softening point of the graft copolymer (B1) was 81.3 ° C.
  • the average particle size of the rubber particles (polymer of B-1) of the graft copolymer (B2) was 117 nm.
  • the graft ratio of the graft copolymer (B2) was 69%.
  • the Vicat softening point of the graft copolymer (B2) was 86.4 ° C.
  • the internal temperature was set to 60 ° C., and 0.2 part of sodium formaldehyde sulfoxide was charged, and then 55.254 parts of the raw material mixture of the hard polymer layer (B-2) shown in Table 2 was added for 210 minutes. Then, the polymerization was continued for 1 hour to obtain a graft copolymer latex. The polymerization conversion rate was 100.0%.
  • the obtained latex was salted out and coagulated with magnesium sulfate, washed with water and dried to obtain a white powdered graft copolymer (B3).
  • the average particle diameter of the rubber particles (polymer of B-1) of the graft copolymer (B3) was 72 nm.
  • the graft ratio of the graft copolymer (B3) was 87%.
  • Examples 1 to 3, Comparative Examples 1 to 3 Using a single screw extruder using a full flight screw with a diameter of 40 mm, setting temperature of the temperature adjustment zone of the extruder to 255 ° C., screw rotation speed to 52 rpm, acrylic resin (A) and polymer shown in Table 3 The mixture of (B) was supplied at a rate of 10 kg / hr. The resin that came out as a strand from a die provided at the exit of the extruder was cooled in a water tank and pelletized with a pelletizer.
  • the obtained pellet was used with a single-screw extruder equipped with a leaf disk filter with an opening of 5 ⁇ m and a T-die connected to the outlet, the set temperature of the temperature adjustment zone of the extruder was 260 ° C., and the screw rotation speed was 20 rpm.
  • the pellets were supplied at a rate of 10 kg / hr and melt extruded to obtain films having the film thicknesses shown in Table 3. Various physical properties of these films were evaluated.
  • the resin pellets obtained in Examples 1 to 3 were measured using a pyrolysis gas chromatograph-mass spectrometer manufactured by Shimadzu Corporation, methanol (71 ppm) and benzyl alcohol (15 ppm) were detected. Generation of object structure is estimated.
  • the films obtained in Examples 1 to 3 have high heat resistance, high transparency, and excellent mechanical strength such as trimming properties. Further, the orientation birefringence of the film is low, and even when stretched, the orientation birefringence hardly occurs.
  • the photoelastic constant is also a very small value, and it can be seen that the optical anisotropy is extremely small, such that almost no birefringence occurs even when stress is applied to the film.
  • it since it has high thermal stability and low melt viscosity, it can be filtered with a filter having a small opening such as 5 ⁇ m at the time of molding, and a film free from foreign matters such as fish eyes can be obtained. Further, it can be seen that the thermal stability and solvent resistance are high and the film appearance is also excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 透明性が高く、機械的強度に優れ、異物欠陥が少なく、熱安定性、耐溶剤性に優れ、外観が極めて良い成形体を与えうる、樹脂材料、および同材料からなるフィルムを提供する。熱可塑性樹脂(A)、および下記条件を満たす重合体(B)を含有する樹脂材料:前記重合体(B)が多段重合で得られるグラフト共重合体であって、前記多段重合の少なくとも1段が、環構造を有する(メタ)アクリル系単量体および(メタ)アクリル酸および/またはその塩を含有する単量体混合物の重合である。

Description

樹脂材料、およびそのフィルム
 本発明は、樹脂材料、およびそのフィルムに関する。
 各種の光学関連機器で用いられるフィルム状、板状、レンズ状等の光学部材(例えば、液晶表示装置で用いられるフィルムや基板、プリズムシート等;光ディスク装置の信号読み取り用レンズ系中のレンズ、プロジェクションスクリーン用フレネルレンズ、レンチキュラーレンズ等)を構成する材料として、光透過性の樹脂が汎用されており、このような樹脂は一般に「光学樹脂」あるいは「光学ポリマー」と呼ばれている。
 光学樹脂で光学部材を構成する場合に考慮しなければならない重要な光学的特性の1つに複屈折性がある。特に、上記の例示した用途(液晶表示装置、光ディスク装置、プロジェクションスクリーン等)においては、複屈折性を持つフィルム、レンズ等が光路中に存在すると、像質や信号読み取り性能に悪影響を及ぼすため、複屈折性をできるだけ小さく抑えた光学樹脂で構成された光学部材の使用が望まれる。また、カメラ用のレンズ、眼鏡レンズ等においても、複屈折性は小さい方が望ましいことも言うまでもないことである。
 光学ポリマーが示す複屈折には、その主因がポリマーの主鎖の配向にある「配向複屈折」と、応力に起因する「光弾性複屈折」がある。配向複屈折及び光弾性複屈折の符号は、ポリマーの化学構造に由来し、それぞれのポリマーに固有の性質である。
 配向複屈折は、一般に鎖状のポリマーの主鎖(ポリマー鎖)が配向することにより発現する複屈折であり、この主鎖の配向は、例えばポリマーフィルム製造時の押出成形や延伸のプロセス、あるいは、各種形状の光学部材の製造時に多用されている射出成形のプロセスなど、材料の流動を伴うプロセスで生じ、それが光学部材に固定されて残る。ここで、ポリマー鎖の配向方向に対して、平行方向に屈折率が大きくなる場合は「配向複屈折は正」、直交する方向に屈折率が大きくなる場合は「配向複屈折は負」と表現する。
 光弾性複屈折は、ポリマーの弾性的な変形(歪み)に伴って引き起こされる複屈折である。ポリマーを用いた光学部材においては、例えばそのポリマーのガラス転移温度付近からそれ以下の温度に冷却された際に生じる体積収縮により、弾性的な変形(歪み)が材料中に生じて残存し、それが光弾性複屈折の原因となる。また、例えば光学部材が通常温度(ガラス転移温度以下)で使用される機器に固定した状態で受ける外力によっても、材料は弾性的に変形し、それが光弾性複屈折を引き起こす。光弾性定数は、以下式のとおり応力差Δσによって複屈折差Δnが生じた場合のΔσの係数γとして定義される。 
 Δn=γΔσ
 ここで、引張応力がかかっている方向(ポリマー鎖の配向方向)に対して、平行方向に屈折率が大きくなる場合は「光弾性複屈折は正」、直行する方向に屈折率が大きくなる場合は「光弾性複屈折は負」と表現する。
 上記複屈折を抑制する報告は種々検討されている。
 たとえば、特許文献1には、配向複屈折の符号がお互いに逆で、且つ完全に相溶する2種類の高分子樹脂をブレンドすることにより、非複屈折性の光学樹脂材料が開示されている。しかしながら、該特許記載の2種類の高分子樹脂を均一に混合させ、全体的にムラ無く低配向複屈折を示す実用的な高分子樹脂を得ることは困難であり、凝集した高分子樹脂が異物欠陥の原因になりうる。また、それらブレンドされた高分子樹脂が固有に持っている屈折率の違いから、屈折率の不均一性による光散乱が生じ、透明性に優れた光学材料を得ることが出来ない。また、光弾性複屈折についての記載はないが、実施例のポリマー組成では光弾性複屈折がかなり大きくなることが予想される。さらには機械的強度、特には耐衝撃性が必ずしも十分ではなく、割れ等の課題が発生するなど、実用上問題がある。
 特許文献2には、透明な高分子樹脂からなるマトリックスに、前記高分子樹脂材料が有する配向複屈折性を打ち消す傾向の配向複屈折性を示す低分子物質を添加することにより、非複屈折性の光学樹脂材料を得る方法が開示されている。この低分子物質は分子量が5000以下であり、得られた成形体の透明性に関しては良好であるが、光弾性複屈折や機械的強度の改善に関しては記載されていない。また、耐熱性が低下する場合もある。
 特許文献3には、透明な高分子樹脂に、前記高分子樹脂が外力により配向するのに伴ってこの結合鎖の配向方向と同じ方向に配向し、かつ、複屈折性を有する微細な無機物質を配合することにより、低配向複屈折の光学樹脂材料を得る方法が開示されている。この方法においても配向複屈折は抑制できるが、光弾性複屈折や機械的強度の改善に関しては記載されていない。
 特許文献4には、2元系以上の共重合系を含む3成分以上の複合成分系を持つ光学材料について、それら複合成分系の成分の組み合わせ及び成分比(組成比)を、該光学材料が配向複屈折性と光弾性複屈折性の双方が同時に相殺されるように選択することにより、配向複屈折と光弾性複屈折が小さい非複屈折性光学樹脂材料を得る方法が開示されている。この方法では従来実現できなかった配向複屈折、光弾性複屈折の両方を同時に極めて小さくできる。ただし、配向複屈折、光弾性複屈折を同時に相殺できるようにするためには組成がある程度限定されるため、ガラス転移温度が100℃未満と低くなり、また機械的強度も低くなるなどの課題がある。また、溶融押出によるフィルム成形など、高温で滞留するような成形条件において、ポリマーが分解するなどの課題も想定される。
 これら特許文献1~4の光学樹脂材料は複屈折性を改善するものであるが、上述のとおり実用性において問題がある。片や、実用性を備えた光学樹脂材料の提供を目的として、機械的強度や耐熱性を改善する検討が行われている。
 例えば、特許文献5には、ガラス転移温度が120℃以上のアクリル系樹脂と、アクリル系ゴム状重合体にビニル基重合性単量体をグラフト重合させて得られたグラフト共重合体(「コア/シェル」型の耐衝撃性改良剤、以下コアシェルポリマーとも記載する)の組み合わせにより、高い耐熱性を有しながら、フィルムとしての機械的強度、とりわけ耐折り曲げ性に優れた樹脂組成物、並びに光学フィルムを得る方法が提示されている。機械的強度改善のためにグラフト共重合体が添加されている。ただし、配向複屈折や光弾性複屈折の複屈折を改善する検討はなされていない。
 特許文献6には、アクリル系樹脂(A)、及びアクリル系ゴム(B)を含む樹脂組成物を成形してなる光学フィルムであって、前記アクリル系樹脂(A)が、メタクリレート単量体由来の繰り返し単位、ビニル芳香族単量体由来の繰り返し単位、芳香族基を有するメタクリレート単量体由来の繰り返し単位、環状酸無水物繰り返し単位を含有する耐熱アクリル系樹脂(A-1)であることを特徴とする光学フィルムに関して開示されている。当該文献では、高い耐熱性、及び優れたトリミング性を有し、かつ、延伸時においても光学特性に優れる光学フィルムであることが記載されている。アクリル系ゴム(B)たるグラフト共重合体(コアシェルポリマー)は、ヘイズ等の透明性を維持しながら機械的強度を改善することを目的に添加されている。ただし、アクリル系ゴム(B)を添加することで、アクリル樹脂(A)のみを使用した比較例のフィルムに対して配向複屈折が大きくなっており、また光弾性係数(光弾性複屈折)はアクリル樹脂(A)のみを使用した比較例と同等である。
米国特許第4373065号明細書 特許第3696649号公報 特許第3648201号公報 特許第4624845号公報 特開2009-203348号公報 特許第5142938号公報
 上述のとおり、機械的特性を改善するためにアクリル系ゴムを添加することが行われている。しかし、アクリル系ゴムの添加は、耐熱性アクリル系樹脂の熱安定性を下げてしまう。製膜工程における長時間生産、特には異物除去のためにポリマーフィルターを用いてろ過した際、ポリマーフィルター中で長時間にわたり樹脂が高温化で滞留することが想定される。このような過酷な環境下においては、熱安定性が低下した樹脂組成物は熱分解を起こしやすく、樹脂劣化が懸念される。
 また、得られたフィルムをプライマー塗工、ハードコート塗工等の2次加工をすることがある。その際に使用する有機溶剤によりフィルム表面が侵され、表面ムラやシワ等の外観不良を起こすことが想定される。特に、アクリル系樹脂や芳香環構造を有する樹脂に関しては、メチルエチルケトン等の有機溶媒に弱く、該トラブル発生のリスクは高い。
 さらに、一般に幅広い加工範囲において、アクリル系ゴムを配合したアクリル樹脂フィルムの外観を良好にするのは難しく、アクリル系樹脂及びアクリル系ゴムの各組成、および成形条件によってはフィルム表面にムラが発生したり、膜厚変動が大きくなる可能性がある。
 そこで、本発明は、透明性が高く、異物欠陥が少なく、熱安定性、及び、耐溶剤性が高く、表面外観に優れ、且つ、優れた機械的強度を有した樹脂材料、および同材料からなるフィルムを提供することを目的とする。
 上記事情に鑑み、本発明者が鋭意検討を重ねた結果、熱可塑性樹脂に分散させる多層構造グラフト共重合体に特定の単量体成分を含む重合体層を有させることによって、樹脂材料の機械的強度と熱安定性とを両立できるとともに、耐溶剤性も高められることを発見し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
[1] 熱可塑性樹脂(A)、および下記条件を満たす重合体(B)を含有する樹脂材料:前記重合体(B)が多段重合で得られるグラフト共重合体であって、前記多段重合の少なくとも1段が、式(4)で表される単量体、および、(メタ)アクリル酸および/またはその塩を含有する単量体混合物の重合である。
Figure JPOXMLDOC01-appb-C000001
(式(4)中、Rは、水素原子、または、置換もしくは無置換で直鎖状もくしは分岐状の炭素数1~12のアルキル基を表す。R10は、置換もしくは無置換の炭素数1~24の芳香族基、または、置換もしくは無置換の炭素数1~24の脂環式基であり、単素環式構造または複素環式構造を有する。lは1~4の整数を示す。mは0~1の整数を示す。nは0~10の整数を示す。)
[2] 前記単量体混合物の重合体が硬質重合体である、[1]に記載の樹脂材料。
[3] 前記単量体混合物が、前記式(4)で表される単量体1~99.9重量%、(メタ)アクリル酸および/またはその塩0.1~30重量%、これらと共重合可能な他の単量体98.9~0重量%、および多官能性単量体0~2.0重量部(前記式(4)で表される単量体、前記(メタ)アクリル酸および/またはその塩、および前記これらと共重合可能な他の単量体の総量100重量部に対して)を含有する、[1]または[2]に記載の樹脂材料。
[4] 前記グラフト共重合体が架橋構造を有する、[1]~[3]のいずれか一項に記載の樹脂材料。
[5] 前記グラフト共重合体が(メタ)アクリル系架橋重合体からなる架橋構造を有する、[1]~[4]のいずれか一項に記載の樹脂材料。
[6] 前記架橋構造が、アクリル酸エステル50~100重量%、これと共重合可能な他の単量体50~0重量%、および多官能性単量体0.05~10重量部(前記アクリル酸エステルおよび前記これと共重合可能な他の単量体の総量100重量部に対して)を重合して形成される、請求項4または5に記載の樹脂材料。
[7] 前記グラフト共重合体が、(B-1)アクリル酸エステル50~100重量%、これと共重合可能な他の単量体50~0重量%、および多官能性単量体0.05~10重量部(前記アクリル酸エステルおよび前記これと共重合可能な他の単量体の総量100重量部に対して)からなる単量体混合物を重合して(メタ)アクリル系架橋構造含有重合体を得、(B-1)前記(メタ)アクリル系架橋構造含有重合体の存在下に、式(4)で表される単量体、および、(メタ)アクリル酸および/またはその塩を含有する単量体混合物を重合して形成される、[1]~[6]のいずれか一項に記載の樹脂材料。
[8] 前記架橋構造までの体積平均粒子径が20~450nmである、[4]~[7]のいずれか一項に記載の樹脂材料。
[9] 前記架橋構造の含有量が、樹脂材料100重量部において1~60重量部である、[4]~[8]のいずれか一項に記載の樹脂材料。
[10] 熱可塑性樹脂(A)、および下記条件を満たす重合体(B)を含有する樹脂材料:前記重合体(B)が多層構造グラフト共重合体であって、前記多層構造の少なくとも1層が、式(4)で表される単量体構造単位、および、(メタ)アクリル酸および/またはその塩の構造単位を含有する重合体層。
Figure JPOXMLDOC01-appb-C000002
(式(4)中、Rは水素原子、または、置換もしくは無置換で直鎖状もくしは分岐状の炭素数1~12のアルキル基を表す。R10は、置換もしくは無置換の炭素数1~24の芳香族基、または、置換もしくは無置換の炭素数1~24の脂環式基であり、単素環式構造または複素環式構造を有する。lは1~4の整数を示す。mは0~1の整数を示す。nは0~10の整数を示す。)
[11] 前記重合体層が硬質重合体層である、[10]に記載の樹脂材料。
[12] 前記重合体層が、前記式(4)で表される単量体1~99.9重量%、(メタ)アクリル酸および/またはその塩0.1~30重量%、これらと共重合可能な他の単量体98.9~0重量%、および多官能性単量体0~2.0重量部(前記式(4)で表される単量体、前記(メタ)アクリル酸および/またはその塩、および前記これらと共重合可能な他の単量体の総量100重量部に対して)を含有する単量体混合物からなる、[10]または[11]に記載の樹脂材料。
[13] 前記多層構造グラフト共重合体が架橋重合体層を有する、[10]~[12]のいずれか一項に記載の樹脂材料。
[14] 前記多層構造グラフト共重合体が(メタ)アクリル系架橋重合体層を有する、[10]~[13]のいずれか一項に記載の樹脂材料。
[15] 前記架橋重合体層が、アクリル酸エステル50~100重量%、これと共重合可能な他の単量体50~0重量%、および多官能性単量体0.05~10重量部(前記アクリル酸エステルおよび前記これと共重合可能な他の単量体の総量100重量部に対して)を重合して形成される、[13]または[14]に記載の樹脂材料。
[16] 前記多層構造グラフト共重合体が、(B-1)アクリル酸エステル50~100重量%、これと共重合可能な他の単量体50~0重量%、および多官能性単量体0.05~10重量部(前記アクリル酸エステルおよび前記これと共重合可能な他の単量体の総量100重量部に対して)からなる単量体混合物を重合して(メタ)アクリル系架橋重合体層を形成し、(B-2)前記(メタ)アクリル系架橋重合体層を含有する重合体の存在下に、式(4)で表される単量体、および、(メタ)アクリル酸および/またはその塩を含有する単量体混合物を重合して層が形成される、[10]~[15]のいずれか一項に記載の樹脂材料。
[17] 前記架橋重合体層までの体積平均粒子径が20~450nmである、[13]~[16]のいずれか一項に記載の樹脂材料。
[18] 前記架橋重合体の含有量が、樹脂材料100重量部において1~60重量部である、[13]~[17]のいずれか一項に記載の樹脂材料。
[19] 前記式(4)で表される単量体が、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニル、及び(メタ)アクリル酸フェノキシエチルからなる群より選択される少なくとも1種である、[1]~[18]のいずれか一項に記載の樹脂材料。
[20] 前記熱可塑性樹脂(A)がアクリル系樹脂である、[1]~[19]のいずれか一項に記載の樹脂材料。
[21] 前記熱可塑性樹脂(A)が、100℃以上のガラス転移温度を有する、[1]~[20]のいずれか一項に記載の樹脂材料。
[22] 前記熱可塑性樹脂(A)が、酸価が0.01~5mmol/gである、[1]~[21]のいずれか一項に記載の樹脂材料。
[23] 前記熱可塑性樹脂(A)が、グルタルイミドアクリル系樹脂、ラクトン環含有アクリル系重合体、スチレン単量体およびそれと共重合可能な他の単量体を重合して得られるスチレン系重合体の芳香族環を部分水素添加して得られる部分水添スチレン系重合体、環状酸無水物繰り返し単位を含有するアクリル系重合体、共重合成分としてN-置換マレイミド化合物が共重合されているアクリル系樹脂、並びに、水酸基および/またはカルボキシル基を含有するアクリル系重合体からなる群より選択される少なくとも1種を含む、[1]~[22]のいずれか一項に記載の樹脂材料。
[24] 前記熱可塑性樹脂(A)が、下記一般式(1)で表される単位と、下記一般式(2)で表される単位とを有するグルタルイミドアクリル系樹脂を含む、[1]~[23]のいずれか一項に記載の樹脂材料。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、RおよびRは、それぞれ独立して、水素または炭素数1~8のアルキル基であり、Rは、水素、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または、芳香環を含む炭素数5~15の置換基である。)
Figure JPOXMLDOC01-appb-C000004
(式(2)中、RおよびRは、それぞれ独立して、水素または炭素数1~8のアルキル基であり、Rは、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または、芳香環を含む炭素数5~15の置換基である。)
[25] 前記グルタルイミドアクリル系樹脂が下記一般式(3)で表される単位を含まない、[24]に記載の樹脂材料。
Figure JPOXMLDOC01-appb-C000005
(式(3)中、Rは、水素または炭素数1~8のアルキル基であり、Rは、炭素数6~10のアリール基である。)
[26] 1%重量減少温度が290℃以上である、[1]~[25]のいずれか1項に記載の樹脂材料。
[27] 引張破断点伸度が10%以上である、[1]~[26]のいずれか1項に記載の樹脂材料。
[28] 前記熱可塑性樹脂(A)の光弾性定数と前記重合体(B)の光弾性定数とが異符号である、[1]~[27]のいずれか一項に記載の樹脂材料。
[29] 配向複屈折が-1.7×10-4から1.7×10-4である、[1]~[28]のいずれか一項に記載の樹脂材料。
[30] 光弾性定数が-4×10-12から4×10-12Pa-1である、[1]~[29]のいずれか一項に記載の樹脂材料。
[31] 複屈折性を有する無機微粒子をさらに含有する、[1]~[30]のいずれか1項に記載の樹脂材料。
[32] 複屈折性を有する低分子化合物をさらに含有する、[1]~[31]のいずれか1項に記載の樹脂材料。
[33] [1]~[32]のいずれか一項に記載の樹脂材料からなる、成形体。
[34] [1]~[32]のいずれか一項に記載の樹脂材料からなる、フィルム。
[35] [1]~[32]のいずれか一項に記載の樹脂材料を溶融押出法により成形してなる、フィルム。
[36] 光学用フィルムである、請求項[34]または[35]に記載のフィルム。
[37] フィルムの厚みが10~500μmである、請求項[34]~[36]のいずれか一項に記載のフィルム。
[38] 配向複屈折が-1.7×10-4から1.7×10-4である、[34]~[37]のいずれか一項に記載のフィルム。
[39] 光弾性定数が-4×10-12から4×10-12Pa-1である、[34]~[38]のいずれか一項に記載のフィルム。
[40] 引張破断点伸度が10%以上である、[34]~[39]のいずれか1項に記載のフィルム。[41] [1]~[32]のいずれか一項に記載の樹脂材料を加熱溶融して得られる、ペレット。
[42] 前記重合体(B)の式(4)で表される単量体と(メタ)アクリル酸および/またはその塩とを含有する単量体混合物を重合して形成される重合体が、カルボキシル基および/またはその塩を含む構造単位、および/または、酸無水物構造を有する、[1]~[32]のいずれか一項に記載の樹脂材料。
[43] 次の(B-1)層および(B-2)層を有する、多層構造グラフト共重合体。
(B-1)架橋重合体層、
(B-2)前記式(4)で表される単量体と、(メタ)アクリル酸および/またはその塩とを含有する単量体混合物を重合して形成される層。
[44] 前記(B-2)層が、前記式(4)で表される単量体1~99.9重量%、(メタ)アクリル酸および/またはその塩0.1~30重量%、これらと共重合可能な他の単量体98.9~0重量%、および多官能性単量体0~2.0重量部(前記式(4)で表される単量体、前記(メタ)アクリル酸および/またはその塩、および前記これらと共重合可能な他の単量体の総量100重量部に対して)を重合して形成される層である、[43]に記載の多層構造グラフト共重合体。
[45] 前記(B-1)架橋重合体層が、ブタジエン系架橋重合体層、(メタ)アクリル系架橋重合体層、およびオルガノシロキサン系架橋重合体層からなる群から選ばれる少なくとも一種である、[43]~[44]のいずれか一項に記載の多層構造グラフト共重合体。
[46] 前記(B-1)架橋重合体層の少なくとも一層が、アクリル酸エステル50~100重量%、これと共重合可能な他の単量体50~0重量%、および多官能性単量体0.05~10重量部(前記アクリル酸エステルおよび前記これと共重合可能な他の単量体の総量100重量部に対して)からなる単量体混合物を重合して得られる (メタ)アクリル系架橋重合体層である、[43]~[45]のいずれか一項に記載の多層構造グラフト共重合体。
[47] 前記(B-1)架橋重合体層までの体積平均粒子径が20~450nmである、[43]~[46]のいずれか一項に記載の多層構造グラフト共重合体。
[48] 前記式(4)で表される単量体が、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニル、及び(メタ)アクリル酸フェノキシエチルからなる群より選択される少なくとも1種である、[43]~[47]のいずれか一項に記載の多層構造グラフト共重合体。
[49] グラフト率が10~250重量%である、[43]~[48]のいずれか一項に記載の多層構造グラフト共重合体。
[50] 前記(B-1)架橋重合体層が、多層構造グラフト共重合体100重量%において10~90重量%である、[43]~[49]のいずれか一項に記載の多層構造グラフト共重合体。
[51] 前記(B-1)架橋重合体層を内層に有し、前記(B-2)層を外層に有する、[43]~[50]のいずれか一項に記載の多層構造グラフト共重合体。
[52] さらに、最内層に硬質重合体層を有する、[51]の多層構造グラフト共重合体。
[53] 前記(B-2)層が、カルボキシル基および/またはその塩を含む構造単位、および/または、酸無水物構造を有する、[43]~[52]のいずれか一項に記載の樹脂材料。
[54] 熱可塑性樹脂および多層グラフト共重合体を含有する成形体であって、
前記多層グラフト共重合体が、
前記式(4)で表される単量体構造単位、および、グルタル酸無水物構造単位を含有する重合体層を有する、
成形体。
 本発明の樹脂材料は、透明性が高く、異物欠陥が少なく、熱安定性、及び、耐溶剤性が高く、表面外観に優れ、且つ、優れた機械的強度を有する成形体を与えうる。
 以下、本発明の実施形態を詳細に説明するが、本発明はこれら実施形態に限定されない。
 本発明の樹脂材料、およびそのフィルムは、必須成分として、マトリックス成分となる熱可塑性樹脂(A)、および重合体(B)を含有しているものである。
 (熱可塑性樹脂(A))
 本発明において、熱可塑性樹脂(A)には、通常の熱可塑性樹脂であれば限定されないが、透明性を有している熱可塑性樹脂が好ましい。具体的には、ビスフェノールAポリカーボネートに代表されるポリカーボネート樹脂、ポリスチレン、スチレン-アクリロニトリル共重合体、スチレン-無水マレイン酸樹脂、スチレン-マレイミド樹脂、スチレン-(メタ)アクリル酸樹脂、スチレン系熱可塑エラストマー等の芳香族ビニル系樹脂及びその水素添加物、非晶性ポリオレフィン、結晶相を微細化した透明なポリオレフィン、エチレン-メタクリル酸メチル樹脂等のポリオレフィン系樹脂、ポリメタクリル酸メチル、スチレン-メタクリル酸メチル樹脂等のアクリル系樹脂、およびそのイミド環化、ラクトン環化、メタクリル酸変性等により改質された耐熱性のアクリル系樹脂、ポリエチレンテレフタレートあるいはシクロヘキサンジメチレン基やイソフタル酸等で部分変性されたポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等の非晶ポリエステル樹脂あるいは結晶相を微細化した透明なポリエステル樹脂、ポリイミド樹脂、ポリエーテルサルホン樹脂、ポリアミド樹脂、トリアセチルセルロース樹脂等のセルロース系樹脂、ポリフェニレンオキサイド樹脂等の透明性を有する熱可塑性樹脂が幅広く例示される。実使用を考えた場合、得られた成形体(厚み125μm)の全光線透過率が85%以上であることが好ましく、より好ましくは90%、さらに好ましくは92%以上になるように熱可塑性樹脂を選定することが好ましい。具体的には、厚みが125μmである時に全光線透過率が85%以上の熱可塑性樹脂を選択することが好ましく、より好ましくは90%以上、さらに好ましくは92%以上である。
 上記熱可塑性樹脂のなかでも、アクリル系樹脂は、優れた光学特性、耐熱性、成形加工性などの面で特に好ましい。具体的には、アクリル系樹脂は、配向複屈折および光弾性複屈折をともに小さくすることができるだけでなく、耐熱性、耐溶剤性および機械的物性といった実用的な特性をも有することができる。アクリル系樹脂としては、(メタ)アクリル酸エステルを含むビニル系単量体を重合して形成される樹脂であればよいが、例えば、メタクリル酸メチル30~100重量%およびこれと共重合可能なモノマー70~0重量%を重合して得られるアクリル系樹脂等が挙げられる。
 ここで、メタクリル酸メチルと共重合可能な他のビニル系単量体としては、例えばアルキル残基の炭素数1~10である(メタ)アクリル酸エステル(ただしメタクリル酸メチルを除く)が好ましい。メタクリル酸メチルと共重合可能な他のビニル系単量体としては、具体的には、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル、メタクリル酸エポキシシクロヘキシルメチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸ジシクロペンタニル、2,2,2-トリフルオロエチルメタクリレート、2,2,2-トリクロロエチルメタクリレート、メタクリル酸イソボロニル等のメタクリル酸エステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸グリシジル、アクリル酸エポキシシクロヘキシルメチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル等のアクリル酸エステル類;メタクリル酸、アクリル酸などのカルボン酸類およびそのエステル類;アクリロニトニル、メタクリロニトリルなどのビニルシアン類;スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチレン等のビニルアレーン類;マレイン酸、フマール酸およびそれらのエステル等;塩化ビニル、臭化ビニル、クロロプレンなどのハロゲン化ビニル類;酢酸ビニル;エチレン、プロピレン、ブチレン、ブタジエン、イソブチレンなどのアルケン類:ハロゲン化アルケン類;アリルメタクリレート、ジアリルフタレート、トリアリルシアヌレート、モノエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ジビニルベンゼンなどの多官能性モノマーが挙げられる。これらのビニル系単量体は単独でまたは2種類以上を併用して使用することができる。
 アクリル系樹脂特有の透明性、外観性等の点から、メタクリル酸メチルは、30~100重量%含有されることが好ましく、より好ましくは50~99.9重量%、さらに好ましくは50~98重量%含有され、メタクリル酸メチルと共重合可能なモノマーは、好ましくは70~0重量%、より好ましくは50~0.1重量%、さらに好ましくは50~2重量%含有される。メタクリル酸メチルの含有量が30重量%未満ではアクリル系樹脂特有の光学特性、外観性、耐候性、耐熱性が低下してしまう傾向がある。また、加工性、外観性の観点から、多官能性モノマーは使用しないことが望ましい。
 本発明に用いられる熱可塑性樹脂(A)は、本発明の重合体(B)との相溶性の観点から、酸基を有する樹脂または環化した構造(例えば無水環状構造)を有する樹脂であることが好ましい。例えば、熱可塑性樹脂の酸価が0.01~5mmol/gであることが好ましく、0.01~3.5mmol/gがより好ましく、0.01~2.5mmol/gがさらに好ましく、0.01~1.5mmol/gがなおさら好ましく、0.01~1mmol/gが特に好ましい。なお、酸価は、例えば特開2005-23272号公報に記載の滴定法などにより算出することが可能である。
 本発明に用いられる熱可塑性樹脂(A)のガラス転移温度は使用する条件、用途に応じて設定することができる。好ましくはガラス転移温度が100℃以上、より好ましくは110℃以上、さらに好ましくは115℃以上、最も好ましくは120℃以上である。
 ガラス転移温度が100℃以上のアクリル系樹脂として、具体的には、グルタルイミド構造、無水グルタル酸構造、(メタ)アクリル酸単位、N-置換マレイミド化合物由来の構造単位、またはラクトン環を分子中に含むアクリル系樹脂が挙げられる。例えば、グルタルイミドアクリル系樹脂、無水グルタル酸アクリル系樹脂、ラクトン環含有アクリル系樹脂、水酸基および/またはカルボキシル基を含有するアクリル系樹脂、メタクリル系樹脂、環状酸無水物繰り返し単位を含有するアクリル系重合体、共重合成分としてN-置換マレイミド化合物が共重合されているアクリル系樹脂等が挙げられる。N-置換マレイミド化合物としては、N-フェニルマレイミド、N-ベンジルマレイミド、N-(2,4,6―トリブロモフェニル)マレイミド、N-シクロヘキシルマレイミド、N-メチルマレイミド、N-エチルマレイミド、N-イソプロピルマレイミド、などが挙げられる。また、共重合成分としてN-置換マレイミド化合物が共重合されているアクリル系樹脂は、共重合成分としてスチレン等の芳香族ビニルが共重合されていてもよい。ガラス転移温度が100℃以上のその他の樹脂としては、スチレン単量体およびそれと共重合可能な他の単量体を重合して得られるスチレン系重合体の芳香族環を部分水素添加して得られる部分水添スチレン系重合体、環状酸無水物繰り返し単位を含有する重合体、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂等が使用できる。重合体(B)との相溶性が良いために、極めて優れた外観を有するフィルムを得ることが出来る点で、耐熱アクリル系樹脂が好ましく、具体的には、グルタルイミドアクリル系樹脂、無水グルタル酸アクリル系樹脂、ラクトン環含有アクリル系樹脂、水酸基および/またはカルボキシル基を含有するアクリル系樹脂、メタクリル系樹脂、環状酸無水物繰り返し単位を含有するアクリル系重合体、共重合成分としてN-置換マレイミド化合物が共重合されているアクリル系樹脂が好ましい。なかでも、以下に記載するグルタルイミドアクリル系樹脂を用いると、得られるフィルムの耐熱性が向上し、且つ、延伸時の光学特性にも優れるため特に好ましい。
 (グルタルイミドアクリル系樹脂)
 グルタルイミドアクリル系樹脂としては、下記一般式(1)で表される単位と、下記一般式(2)で表される単位とを含むものが好ましい。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(1)中、RおよびRは、それぞれ独立して、水素または炭素数1~8のアルキル基であり、Rは、水素、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または、芳香環を含む炭素数5~15の置換基である。上記一般式(1)で表される単位を、以下、「グルタルイミド単位」ともいう。
 上記一般式(1)において、好ましくは、RおよびRはそれぞれ独立して水素またはメチル基であり、Rは、水素、メチル基、ブチル基、シクロヘキシル基であり、より好ましくは、Rはメチル基であり、Rは水素であり、Rはメチル基である。
 グルタルイミドアクリル系樹脂は、グルタルイミド単位として、単一の種類のみを含んでいてもよいし、上記一般式(1)におけるR、R、およびRのいずれか又は全てが異なる複数の種類を含んでいてもよい。
 グルタルイミド単位は、下記一般式(2)で表される(メタ)アクリル酸エステル単位をイミド化することにより形成することができる。また、無水マレイン酸等の酸無水物、当該酸無水物と炭素数1~20の直鎖または分岐のアルコールとのハーフエステル、または、α,β-エチレン性不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、クロトン酸、フマル酸、シトラコン酸)をイミド化することによっても、上記グルタルイミド単位を形成することができる。
 グルタルイミドアクリル系樹脂において、グルタルイミド単位の含有量は特に限定されず、例えば、Rの構造等を考慮して適宜決定することができる。しかしながら、グルタルイミド単位の含有量は、グルタルイミドアクリル系樹脂全量のうち1.0重量%以上が好ましく、3.0重量%~90重量%がより好ましく、5.0重量%~60重量%がさらに好ましい。グルタルイミド単位の含有量が上記範囲より少ないと、得られるグルタルイミドアクリル系樹脂の耐熱性が不足したり、透明性が損なわれたりする傾向がある。逆に上記範囲よりも多いと、不必要に耐熱性および溶融粘度が高くなり、成形加工性が悪くなったり、フィルム加工時の機械的強度が極端に低くなったり、透明性が損なわれたりする傾向がある。
 グルタルイミド単位の含有量は以下の方法により算出される。
 H-NMR BRUKER AvanceIII(400MHz)を用いて、樹脂のH-NMR測定を行い、樹脂中のグルタルイミド単位またはエステル単位などの各モノマー単位それぞれの含有量(mol%)を求め、当該含有量(mol%)を、各モノマー単位の分子量を使用して含有量(重量%)に換算する。
 例えば、上記一般式(1)においてRがメチル基であるグルタルイミド単位とメチルメタクリレート単位からなる樹脂の場合、3.5から3.8ppm付近に現れるメタクリル酸メチルのO-CHプロトン由来のピークの面積aと、3.0から3.3ppm付近に現れるグルタルイミドのN-CHプロトン由来のピークの面積bから、以下の計算式によりグルタルイミド単位の含有量(重量%)を求めることができる。
[メチルメタクリレート単位の含有量A(mol%)]=100×a/(a+b)
[グルタルイミド単位の含有量B(mol%)]=100×b/(a+b)
[グルタルイミド単位の含有量(重量%)]=100×(b×(グルタルイミド単位の分子量))/(a×(メチルメタクリレート単位の分子量)+b×(グルタルイミド単位の分子量))
 なお、モノマー単位として上記以外の単位を含む場合においても、樹脂中の各モノマー単位の含有量(mol%)と分子量から、同様にグルタルイミド単位の含有量(重量%)を求めることができる。
 本発明の樹脂材料を例えば偏光子保護フィルムに使用する場合、グルタルイミド単位の含有量は、複屈折を抑制しやすいため20重量%以下が好ましく、15重量%以下がより好ましく、10重量%以下がさらに好ましい。
Figure JPOXMLDOC01-appb-C000007
 上記一般式(2)中、RおよびRは、それぞれ独立して、水素または炭素数1~8のアルキル基であり、Rは、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または芳香環を含む炭素数5~15の置換基である。上記一般式(2)で表される単位を、以下、「(メタ)アクリル酸エステル単位」ともいう。なお、本願において「(メタ)アクリル」とは、「メタクリルまたはアクリル」を指すものとする。
 上記一般式(2)において、好ましくは、RおよびRはそれぞれ独立して水素またはメチル基であり、Rは水素またはメチル基であり、より好ましくは、Rは水素であり、Rはメチル基であり、Rはメチル基である。
 グルタルイミドアクリル系樹脂は、(メタ)アクリル酸エステル単位として、単一の種類のみを含んでいてもよいし、上記一般式(2)におけるR、RおよびRのいずれか又は全てが異なる複数の種類を含んでいてもよい。
 グルタルイミドアクリル系樹脂は、必要に応じて、下記一般式(3)で表される単位(以下、「芳香族ビニル単位」ともいう)をさらに含んでいてもよい。
Figure JPOXMLDOC01-appb-C000008
 上記一般式(3)中、Rは、水素または炭素数1~8のアルキル基であり、Rは、炭素数6~10のアリール基である。
 上記一般式(3)で表される芳香族ビニル単位としては特に限定されないが、スチレン単位、α-メチルスチレン単位が挙げられ、スチレン単位が好ましい。
 グルタルイミドアクリル系樹脂は、芳香族ビニル単位として、単一の種類のみを含んでいてもよいし、RおよびRのいずれか又は双方が異なる複数の単位を含んでいてもよい。
 グルタルイミドアクリル系樹脂において、芳香族ビニル単位の含有量は特に限定されないが、グルタルイミドアクリル系樹脂全量のうち0~50重量%が好ましく、0~20重量%がより好ましく、0~15重量%が特に好ましい。芳香族ビニル単位の含有量が上記範囲より多いと、グルタルイミドアクリル系樹脂の十分な耐熱性を得ることができない。
 しかし本発明では、耐折り曲げ性および透明性の向上、フィッシュアイの低減、さらに耐溶剤性または耐候性の向上といった観点から、グルタルイミドアクリル系樹脂は芳香族ビニル単位を含まないことが好ましい。
 グルタルイミドアクリル系樹脂には、必要に応じ、グルタルイミド単位、(メタ)アクリル酸エステル単位、および芳香族ビニル単位以外のその他の単位がさらに含まれていてもよい。
 その他の単位としては、例えば、アクリルアミド、メタクリルアミド等のアミド系単位、グルタル無水物単位、アクリロニトリル、メタクリロニトリル等のニトリル系単位、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等のマレイミド系単位等が挙げられる。
 これらのその他の単位は、グルタルイミドアクリル系樹脂中に、ランダム共重合により含まれていてもよいし、グラフト共重合により含まれていてもよい。
 これらのその他の単位は、その単位を構成する単量体を、グルタルイミドアクリル系樹脂及び/又はグルタルイミドアクリル系樹脂を製造する際の原料となる樹脂に対し共重合することで導入したものでもよい。また、前記のイミド化反応を行う際に、これらその他の単位が副生してグルタルイミドアクリル系樹脂に含まれることとなったものでもよい。
 グルタルイミドアクリル系樹脂の重量平均分子量は特に限定されないが、1×10~5×10の範囲にあることが好ましい。上記範囲内であれば、成形加工性が低下したり、フィルム加工時の機械的強度が不足したりすることがない。一方、重量平均分子量が上記範囲よりも小さいと、フィルムにした場合の機械的強度が不足する傾向がある。また、上記範囲よりも大きいと、溶融押出時の粘度が高く、成形加工性が低下し、成形体の生産性が低下する傾向がある。
 グルタルイミドアクリル系樹脂のガラス転移温度は、フィルムが良好な耐熱性を発揮するよう、120℃以上であることが好ましい。より好ましくは125℃以上である。ガラス転移温度が上記範囲よりも低いと、フィルムが十分な耐熱性を発揮することができない。
 次に、グルタルイミドアクリル系樹脂の製造方法の一例を説明する。
 まず、(メタ)アクリル酸エステルを重合することにより、(メタ)アクリル酸エステル重合体を製造する。グルタルイミドアクリル系樹脂が芳香族ビニル単位を含む場合には、(メタ)アクリル酸エステルと芳香族ビニルとを共重合させ、(メタ)アクリル酸エステル-芳香族ビニル共重合体を製造する。
 この工程において、上記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸シクロヘキシルを用いることが好ましく、メタクリル酸メチルを用いることがより好ましい。
 (メタ)アクリル酸エステルは、単独で用いてもよいし、複数種を組み合わせて用いてもよい。複数種の(メタ)アクリル酸エステルを用いることにより、最終的に得られるグルタルイミドアクリル系樹脂に複数種の(メタ)アクリル酸エステル単位を含ませることができる。
 上記(メタ)アクリル酸エステル重合体または上記(メタ)アクリル酸エステル-芳香族ビニル共重合体の構造は、続くイミド化反応が可能なものであれば、特に限定されない。具体的には、線状ポリマー、ブロックポリマー、分岐ポリマー、ラダーポリマー、架橋ポリマー等が挙げられる。
 ブロックポリマーの場合、A-B型、A-B-C型、A-B-A型、およびこれら以外のタイプのブロックポリマーのいずれであってもよい。
 次に、上記(メタ)アクリル酸エステル重合体または上記(メタ)アクリル酸エステル-芳香族ビニル共重合体に、イミド化剤を反応させることで、イミド化反応を行う。これにより、グルタルイミドアクリル系樹脂を製造することができる。
 上記イミド化剤は特に限定されず、上記一般式(1)で表されるグルタルイミド単位を生成できるものであればよい。具体的には、アンモニア又は一級アミンを用いることができる。上記一級アミンとしては、例えば、メチルアミン、エチルアミン、n-プロピルアミン、i-プロピルアミン、n-ブチルアミン、i-ブチルアミン、tert-ブチルアミン、n-ヘキシルアミン等の脂肪族炭化水素基含有一級アミン、アニリン、ベンジルアミン、トルイジン、トリクロロアニリン等の芳香族炭化水素基含有一級アミン、シクロヘキシルアミン等の脂環式炭化水素基含有一級アミンが挙げられる。
 上記イミド化剤としては、尿素、1,3-ジメチル尿素、1,3-ジエチル尿素、1,3-ジプロピル尿素等の、加熱によりアンモニア又は一級アミンを発生する尿素系化合物を用いることもできる。
 上記イミド化剤のうち、コスト、物性の面から、アンモニア、メチルアミン、シクロヘキシルアミンを用いることが好ましく、メチルアミンを用いることが特に好ましい。
 このイミド化の工程においては、上記イミド化剤に加えて、必要に応じて、閉環促進剤を添加してもよい。
 このイミド化の工程では、上記イミド化剤の添加割合を調整することにより、得られるグルタルイミドアクリル系樹脂におけるグルタルイミド単位の含有量を調整することができる。
 上記イミド化反応を実施するための方法は特に限定されず、従来公知の方法を用いることができる。例えば、押出機、又は、バッチ式反応槽(圧力容器)を用いることでイミド化反応を進行させることができる。
 上記押出機としては特に限定されず、各種押出機を使用できるが、例えば、単軸押出機、二軸押出機または多軸押出機等を用いることができる。
 中でも、二軸押出機を用いることが好ましい。二軸押出機によれば、原料ポリマーとイミド化剤(閉環促進剤を用いる場合は、イミド化剤および閉環促進剤)との混合を促進することができる。
 二軸押出機としては、例えば、非噛合い型同方向回転式、噛合い型同方向回転式、非噛合い型異方向回転式、および噛合い型異方向回転式等が挙げられる。中でも、噛合い型同方向回転式が好ましい。噛合い型同方向回転式の二軸押出機は、高速回転可能であるため、原料ポリマーとイミド化剤(閉環促進剤を用いる場合は、イミド化剤および閉環促進剤)との混合を、より一層促進することができる。
 上記例示した押出機は単独で用いてもよいし、複数を直列に連結して用いてもよい。
 グルタルイミドアクリル系樹脂を製造するにあたっては、上記イミド化工程に加えて、エステル化剤で処理するエステル化工程を含むことができる。このエステル化工程によって、イミド化工程にて副生した、樹脂中に含まれるカルボキシル基を、エステル基に変換することができる。これにより、グルタルイミドアクリル系樹脂の酸価を所望の範囲内に調整することができる。
 グルタルイミドアクリル系樹脂の酸価は特に限定されないが、0.50mmol/g以下であることが好ましく、0.45mmol/g以下であることがより好ましい。下限は特に制限されないが、0mmol/g以上が好ましく、0.05mmol/g以上が好ましく、0.10mmol/g以上が特に好ましい。酸価が上記範囲内であれば、耐熱性、機械物性、および成形加工性のバランスに優れたグルタルイミドアクリル系樹脂を得ることができる。一方、酸価が上記範囲より大きいと、フィルム成形のための溶融押出時に樹脂の発泡が起こりやすくなり、成形加工性が低下し、成形体の生産性が低下する傾向がある。なお、酸価は、例えば特開2005-23272号公報に記載の滴定法などにより算出することが可能である。
 上記エステル化剤としては特に限定されず、例えば、ジメチルカーボネート、2,2-ジメトキシプロパン、ジメチルスルホキシド、トリエチルオルトホルメート、トリメチルオルトアセテート、トリメチルオルトホルメート、ジフェニルカーボネート、ジメチルサルフェート、メチルトルエンスルホネート、メチルトリフルオロメチルスルホネート、メチルアセテート、メタノール、エタノール、メチルイソシアネート、p-クロロフェニルイソシアネート、ジメチルカルボジイミド、ジメチル-t-ブチルシリルクロライド、イソプロペニルアセテート、ジメチルウレア、テトラメチルアンモニウムハイドロオキサイド、ジメチルジエトキシシラン、テトラ-N-ブトキシシラン、ジメチル(トリメチルシラン)フォスファイト、トリメチルフォスファイト、トリメチルフォスフェート、トリクレジルフォスフェート、ジアゾメタン、エチレンオキサイド、プロピレンオキサイド、シクロヘキセンオキサイド、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、ベンジルグリシジルエーテルなどが挙げられる。これらの中でも、コスト、反応性などの観点から、ジメチルカーボネート、およびトリメチルオルトアセテートが好ましく、コストの観点から、ジメチルカーボネートが特に好ましい。
 上記エステル化剤の使用量は特に限定されないが、上記(メタ)アクリル酸エステル重合体または上記(メタ)アクリル酸エステル-芳香族ビニル共重合体100重量部に対して0~12重量部であることが好ましく、0~8重量部であることがより好ましい。エステル化剤の使用量が上記範囲内であれば、グルタルイミドアクリル系樹脂の酸価を適切な範囲に調整できる。一方、上記範囲を外れると、未反応のエステル化剤が樹脂中に残存する可能性があり、当該樹脂を使って成形を行った際に、発泡または臭気発生の原因となることがある。
 上記エステル化剤に加え、触媒を併用することもできる。触媒の種類は特に限定されないが、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン等の脂肪族3級アミンが挙げられる。これらの中でもコスト、反応性などの観点からトリエチルアミンが好ましい。
 エステル化工程は、上記イミド化工程と同様、例えば、押出機、又は、バッチ式反応槽を用いることで進行させることができる。
 このエステル化工程は、エステル化剤を使用せずに、加熱処理のみによって実施することもできる。当該加熱処理は、押出機内で溶融樹脂を混練および分散することで達成することができる。エステル化工程として加熱処理のみを行なう場合、イミド化工程にて副生した樹脂中のカルボキシル基同士の脱水反応、および/または、樹脂中のカルボキシル基と樹脂中のアルキルエステル基との脱アルコール反応等により、前記カルボキシル基の一部または全部を酸無水物基とすることができる。この時、閉環促進剤(触媒)を使用することも可能である。
 エステル化剤を用いたエステル化工程においても、並行して、加熱処理による酸無水物基化を進行させることが可能である。
 イミド化工程およびエステル化工程ともに、使用する押出機には、大気圧以下に減圧可能なベント口を装着することが好ましい。このような機械によれば、未反応のイミド化剤、エステル化剤、メタノール等の副生物、または、モノマー類を除去することができる。
 グルタルイミドアクリル系樹脂の製造には、押出機に代えて、例えば住友重機械(株)製のバイボラックのような横型二軸反応装置や、スーパーブレンドのような竪型二軸撹拌槽などの、高粘度対応の反応装置も好適に用いることができる。
 グルタルイミドアクリル系樹脂をバッチ式反応槽(圧力容器)を用いて製造する場合、そのバッチ式反応槽(圧力容器)の構造は特に限定されない。具体的には、原料ポリマーを加熱により溶融させ、撹拌することができ、イミド化剤(閉環促進剤を用いる場合は、イミド化剤および閉環促進剤)を添加することができる構造を有していればよいが、撹拌効率が良好な構造を有するものであることが好ましい。このようなバッチ式反応槽によれば、反応の進行によりポリマー粘度が上昇し、撹拌が不十分となることを防止することができる。このような構造を有するバッチ式反応槽としては、例えば、住友重機械(株)製の撹拌槽マックスブレンド等が挙げられる。
 以上により、グルタルイミド単位の含有量が特定の数値に制御されたグルタルイミドアクリル系樹脂を容易に製造することができる。
 本発明の樹脂材料は、熱可塑性樹脂(A)は1種でもよいが、2種以上を組み合わせて使用してもよい。2種以上の熱可塑性樹脂をブレンドする方法は特に限定されず、公知の方法で行ってよい。
 (重合体(B))
 本発明に用いられる重合体(B)は、多層構造グラフト共重合体であって、当該多層構造の少なくとも1層が下記式(4)で示される単量体、並びに、(メタ)アクリル酸および/またはその塩を含有する単量体混合物を重合して形成される層を有することを特徴とする。
Figure JPOXMLDOC01-appb-C000009
(式(4)中、Rは水素原子、または、置換もしくは無置換で直鎖状もくしは分岐状の炭素数1~12のアルキル基を表す。R10は、置換もしくは無置換の炭素数1~24の芳香族基、または、置換もしくは無置換の炭素数1~24の脂環式基であり、単素環式構造または複素環式構造を有する。lは1~4の整数を示す。mは0~1の整数を示す。nは0~10の整数を示す。)
 本発明の重合体(B)は硬質重合体層を少なくとも1層有することが好ましい。硬質重合体層を有することにより、(ア)重合体(B)をマトリックス(熱可塑性樹脂(A))中に均一に分散させることができ、後述するように(イ)熱可塑性樹脂(A)が有している複屈折を打ち消し、本発明の樹脂材料およびフィルムの光学的等方性を高めるよう作用させることもできる。ここでいう「硬質」とは、重合体のガラス転移温度が20℃以上であることを意味する。本発明の重合体(B)は、硬質重合体層として、上記単量体混合物を重合して形成される層を有することが好ましく、その他の硬質重合体層を更に有していても良い。つまり、上記単量体混合物を重合して形成される層が硬質重合体層であることが好ましい。重合体のガラス転移温度が20℃未満の場合、重合体(B)を配合した樹脂材料、およびフィルムの耐熱性が低下したり、また重合体(B)を製造する際に重合体(B)の粗大化や塊状化が起こり易くなるなどの問題が発生する場合がある。
 (式(4)で表される単量体)
 本発明の重合体(B)には、下記式(4)で表される単量体が使用される。
Figure JPOXMLDOC01-appb-C000010
 式(4)中、Rは、水素原子、または、置換もしくは無置換で直鎖状もしくは分岐状の炭素数1~12のアルキル基を表す。R10は、置換もしくは無置換の炭素数1~24の芳香族基、または、置換もしくは無置換の炭素数1~24の脂環式基であり、単素環式構造または複素環式構造を有する。RおよびR10が有していてもよい置換基としては、例えば、ハロゲン、水酸基、カルボキシル基、アルコキシ基、カルボニル基(ケトン構造)、アミノ基、アミド基、エポキシ基、炭素-炭素間の二重結合、エステル基(カルボキシル基の誘導体)、メルカプト基、スルホニル基、スルホン基、及びニトロ基からなる群より選択される少なくとも1種が挙げられる。なかでも、ハロゲン、水酸基、カルボキシル基、アルコキシ基、及びニトロ基からなる群より選択される少なくとも1種が好ましい。lは1~4の整数を示し、好ましくは1または2である。mは0~1の整数である。nは0~10の整数を示し、好ましくは0~2の整数を示し、より好ましくは0または1である。
 式(4)において、Rは、置換もしくは無置換で直鎖状または分岐状の炭素数1のアルキル基である、(メタ)アクリレート系単量体であることが好ましい。式(4)において、R10は、置換もしくは無置換の炭素数1~24の芳香族基、または、置換もしくは無置換の炭素数1~24の脂環式基であり、単素環式構造を有する、(メタ)アクリレート系単量体であることがより好ましい。
 式(4)において、lは1~2の整数である、nは0~2の整数である、(メタ)アクリレート系単量体であることがより好ましい。
 式(4)で表される単量体の具体例を挙げると、脂環式構造を有する単量体としては(メタ)アクリル酸ジシクロペンタニル、ジシクロペンテニルオキシエチル(メタ)アクリレート、などが挙げられる。また、芳香族基を有する単量体としては、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニル、(メタ)アクリル酸フェノキシエチル等を挙げることができる。複素環式構造を有する単量体としては、ペンタメチルピペリジニル(メタ)アクリレート、テトラメチルピペリジニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート等を挙げることができる。
 式(4)で表される単量体の中でも、耐熱性、光弾性複屈折、相溶性の観点から、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェノキシエチルが好ましい。
 前記式(4)で表される単量体のなかでも、(メタ)アクリル酸ベンジルが光学的等方性、熱可塑性樹脂(A)との相溶性、成形性の面で最も好ましい。さらには、メタクリル酸ベンジルのほうが、ガラス転移温度が高く、耐熱性の面で好ましい。たとえば、熱可塑性樹脂(A)がアクリル系樹脂の場合、光弾性定数が負であるため、比較的大きな正の光弾性定数を有するメタクリル酸ベンジルを用いることで、メタクリル酸ベンジルの使用量が少なくて済み、また重合体(B)の使用量も少なくて済むなど、樹脂材料の設計自由度が増えるなどのメリットがある。また、成形体の配向複屈折が大きく、実用上問題となるケースにおいても、アクリル系樹脂が配向複屈折/光弾性複屈折ともに負であるのに対して、メタクリル酸ベンジルは配向複屈折/光弾性複屈折ともに正であるため、樹脂材料およびフィルムの光弾性複屈折を小さくしながら、同時に配向複屈折も小さくすることが可能である。
 なお、本発明の熱可塑性樹脂(A)が2種以上の熱可塑性樹脂を組み合わせて使用される場合は、2種以上の組み合わせからなる熱可塑性樹脂に対して、光弾性定数、および/または配向複屈折が異符号となるように、重合体(B)を設計すればよい。
 優れた光学的等方性を維持しながら、重合体(B)の分散性を良好にし、フィッシュアイ等の外観欠陥を低減させる観点から、前記式(4)で表される単量体の使用量は、1~99.9重量%(前記式(4)で表される単量体、(メタ)アクリル酸および/またはその塩、およびこれらと共重合可能な他の単量体の総量100重量%に対して)が好ましく、5~70重量%がより好ましく、5~50重量%が最も好ましい。
 本発明においては、前記式(4)で表される単量体を1種、もしくは2種以上を併用して使用してもよい。
 ((メタ)アクリル酸および/またはその塩)
 本発明の重合体(B)には、(メタ)アクリル酸および/またはその塩の使用が必須である。(メタ)アクリル酸および/またはその塩を使用することで、重合体(B)自体の耐熱性が向上する。
 (メタ)アクリル酸の塩としては、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸カルシウム、(メタ)アクリル酸マグネシウム、(メタ)アクリル酸アンモニウムなどが挙げられる。(メタ)アクリル酸および/またはその塩の使用量は、前記式(4)で表される単量体、(メタ)アクリル酸および/またはその塩、および、これらと共重合可能な他の単量体の総量100重量%において0.1~30重量%が好ましく、0.1~20重量%がより好ましく、0.1~15重量%がさらに好ましく、0.1~10重量%がよりさらに好ましく、0.1~7重量%が最も好ましい。
 前記単量体混合物を重合して形成される重合体層中に(メタ)アクリル酸の構造単位が存在することにより、(メタ)アクリル酸構造単位のカルボキシル基と、(メタ)アクリル酸構造単位の隣に存在する(メタ)アクリル酸誘導体構造単位のアルキル基とが、成形加工時(例えば、熱可塑性樹脂(A)と重合体(B)との加熱溶融混練のような加熱処理)に脱アルキルアルコール化することにより環化し、酸無水物構造が形成され得る。たとえば、(メタ)アクリル酸の隣が(メタ)アクリル酸メチルであれば、脱メタノール反応が起こり、グルタル酸無水物構造が形成され得る。さらに、(メタ)アクリル酸の隣が(メタ)アクリル酸ベンジルであれば、脱ベンジルアルコール反応が起こり、グルタル酸無水物構造が形成され得る。
 また、前記単量体混合物を重合して形成される重合体層中に(メタ)アクリル酸塩の構造単位が存在する場合には、(メタ)アクリル酸塩の構造単位中のカルボキシル基の塩が成形加工時の高温条件下で遊離のカルボキシル基に解離し、このカルボキシル基と、(メタ)アクリル酸誘導体構造単位のアルキル基とが環化して酸無水物構造が形成され得る。
 さらに、単量体混合物を重合して形成される重合体層中に(メタ)アクリル酸の構造単位が存在する場合において、後述する塩凝固処理において(メタ)アクリル酸構造単位のカルボキシル基が塩を形成することがある。その場合も、カルボキシル基の塩が成形加工時の高温条件下で遊離のカルボキシル基に解離することで酸無水物構造が形成され得る。
 このように、前記単量体混合物を重合して形成される重合体層に有するカルボキシル基および/またはその塩が酸無水物構造に形成されることにより、以下の優れた効果を発揮することになる。
(1)成形加工時の熱安定性が大幅に向上する。
前記重合体(層)中に酸無水物構造を有することにより、成形加工時における重合体(層)のジッピング解重合を抑制することができ、熱安定性が向上する。
(2)耐溶剤性が大幅に向上する。
前記重合体(層)中にカルボキシル基および/または酸無水物構造を有することにより、ポリマーの極性があがり、また耐熱性が上がることから、耐溶剤性、特にメチルエチルケトンなどの有機溶媒に対しての耐溶剤性が向上する。一般的なアクリル系ゴムを含有するアクリルフィルムはケトン系などの有機溶媒に対して弱い。このため、例えば、ハードコート層、反射防止層、耐指紋付着層、プリズムレンズ層、接着層等のコーティング層の塗布の際に用いられる有機溶媒の浸透により、塗布時ないし搬送時や乾燥時にフィルムの変形、タルミ、シワ、破断等のトラブルを起こす可能性がある。
(3)熱可塑性樹脂(A)が耐熱アクリル系樹脂、特にはグルタルイミド基を含有する耐熱アクリル系樹脂である場合、重合体(B)の分散性が大幅に向上する。
前記重合体(層)中にカルボキシル基および/または酸無水物構造を有することにより、耐熱アクリル系樹脂と重合体(B)の相溶性が向上し、重合体(B)の分散性が向上する。特に、熱可塑性樹脂(A)がグルタルイミド基を含有する耐熱アクリル系樹脂である場合、グルタルイミド基、特には、グルタルイミド変性する際に副生するカルボキシル基と、前記重合体(層)中のカルボキシル基、および酸無水物構造による相互作用により、熱可塑性樹脂(A)と重合体(B)の相溶性が向上し、重合体(B)の分散性が大幅に向上する。このことにより、たとえばフィルムの表面性が良好となり、幅広い成形条件、膜厚設定範囲においても、表面ムラがなく、MD方向での膜厚の変動が少ないなど、外観が良好なフィルムを得ることが出来る。このことにより、たとえばリーフディスクフィルター等を用いて、ポリマー材料の溶融濾過を行いながら溶融製膜を行う場合に問題となる、フィルター内部の滞留部におけるゴム粒子の凝集や架橋、劣化等の進行によるフィルムの欠陥点の増加が抑制できる。また、凝集に伴う熔融粘度の不均一化や変動が効果的に抑制される。このため幅広い成膜条件においても、また長時間の成膜を行った場合にも、フィルムの表面性が良好となり、異物欠陥や表面ムラがなく、MD方向での膜厚の変動が少ないなど、外観が良好なフィルムを得ることが容易になる。
 (メタ)アクリル酸および/またはその塩の構造単位が酸無水物構造になる割合、すなわち環化率は、加工条件等の熱履歴で変わり、必ずしも全ての(メタ)アクリル酸および/またはその塩の構造単位が酸無水物構造になる必要はなく、環化率は必要な特性に応じて任意に調整すればよい。環化率は、例えば、5%以上であることが好ましく、50%以上であることがより好ましく、80%以上であることがさらに好ましい。ここで、環化率は次の測定方法によって算出できる。樹脂0.3gを塩化メチレン37.5mLに溶解し、さらにメタノール37.5mLを加えた後、0.1mmol%の水酸化ナトリウム水溶液5mLとフェノールフタレインのエタノール溶液数滴を加え、次に0.1mmol%の塩酸を用いて逆滴定を行い、中和に要する塩酸の量から酸価を求め、加工前後の値から環化率を求める。
環化率=(加工前の樹脂の酸価-加工後の樹脂の酸価)×100/(加工前の樹脂の酸価)

 なお、本発明の樹脂材料は、予め、加熱処理等によって(メタ)アクリル酸および/またはその塩由来のカルボキシル基および/またはその塩を酸無水物構造に環化させた重合体(B)を、熱可塑性樹脂(A)と配合することで製造してもよい。
 前記単量体混合物には、前記式(4)で表される単量体、および、(メタ)アクリル酸および/またはその塩のほかに、これらと共重合可能な他の単量体を含有してもよい。これらと共重合可能な他の単量体としては、共重合可能なビニル基を1つ有する単量体であればよく、例えば、メタクリル酸エステルが挙げられ、重合性やコストの点よりメタクリル酸アルキルエステルが好ましく、具体的にはアルキル基の炭素数1~12であるものが好ましく、直鎖状でも分岐状でもよい。その具体例としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸n-オクチル、メタクリル酸β-ヒドロキシエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸グリシジル等が挙げられる。また、アクリル酸エステルも好適に用いることができ、重合反応性やコストの点からアクリル酸アルキルエステルが好ましく、具体的にはアルキル基の炭素数が1~12であるものが好ましく、直鎖状でも分岐状でもよい。その具体例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸-2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸β-ヒドロキシエチル、アクリル酸ジメチルアミノエチル、アクリル酸グリシジル等があげられる。また、共重合可能な他の単量体としては、無水マレイン酸、無水シトラコン酸、ジメチル無水マレイン酸、ジクロロ無水マレイン酸、ブロモ無水マレイン酸、ジブロモ無水マレイン酸、フェニル無水マレイン酸、ジフェニル無水マレイン酸等の無置換及び/又は置換無水マレイン酸類、塩化ビニル、臭化ビニル等のハロゲン化ビニル、アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド等の(メタ)アクリルアミド類、アクリロニトリル、メタクリロニトリル等のシアン化ビニル、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル等のビニルエステル、スチレン、ビニルトルエン、α-メチルスチレン等の芳香族ビニルおよびその誘導体、塩化ビニリデン、弗化ビニリデン等のハロゲン化ビニリデン、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチル、2-(ヒドロキシメチル)アクリル酸イソプロピル、2-(ヒドロキシメチル)アクリル酸ノルマルブチル、2-(ヒドロキシメチル)アクリル酸ターシャリーブチル等の(ヒドロキシアルキル)アクリル酸エステル等があげられる。これらの単量体は単独、もしくは2種以上が併用されてもよい。なかでも、メタクリル酸アルキルエステル、アクリル酸アルキルエステルが好ましく、さらにはアクリル系樹脂との相溶性の点でメタクリル酸メチル、ジッパー解重合を抑制する点でアクリル酸メチル、アクリル酸エチル、もしくはアクリル酸n-ブチルを用いるのが好ましい。
 前記単量体混合物には、1分子あたり2個以上の非共役な反応性二重結合を有する多官能性単量体を使用してもよい。ここで、多官能性単量体としては、後述する架橋重合体層に使用され得る多官能性単量体を同様に使用することができる。単量体混合物における多官能性単量体の使用量(前記式(4)で表される単量体、(メタ)アクリル酸および/またはその塩、並びにこれと共重合可能な他の単量体の総量100重量部に対して)は、光学的等方性および分散性の観点から、0~2.0重量部が好ましく、0~1.0重量部がより好ましく、0~0.5重量部がさらに好ましく、0~0.04重量部がなおさら好ましく、0重量部が最も好ましい。
 本発明の重合体(B)は、多層構造グラフト共重合体の多層構造中に、前記式(4)で表される単量体、および、(メタ)アクリル酸および/またはその塩を構成単位に有する硬質重合体層を有することが好ましく、硬質の最外層を有する場合には、この最外層に前記式(4)で表される単量体並びに(メタ)アクリル酸および/またはその塩を構成単位に有する硬質重合体層を有することがより好ましい。同様に、多段重合で得られるグラフト共重合体においても、前記式(4)で表される単量体並びに(メタ)アクリル酸および/またはその塩を含有する単量体混合物を重合して形成される硬質重合体がグラフト結合されていることが好ましく、多段重合の最終段階で前記式(4)で表される単量体並びに(メタ)アクリル酸および/またはその塩を含有する単量体混合物を重合して形成される硬質重合体がグラフト結合されてなることがより好ましい。本発明の重合体(B)は、当該硬質重合体(層)の他に、他の硬質重合体層を1層以上有していてもよい。硬質の最外層に有することにより、熱可塑性樹脂(A)がアクリル系樹脂である場合により相溶しやすくなり、配向複屈折および光弾性定数をより小さくでき、さらに光学的等方性に優れるフィルムを得やすくなる。この硬質の最外層の内側に、(メタ)アクリル系架橋重合体層((メタ)アクリル系ゴム)を有する軟質層が隣接していてもよい。
 本発明の重合体(B)は、架橋重合体層を少なくとも1層有することが好ましい。
 架橋重合体層は、特に限定されないが、ブタジエン系架橋重合体層、(メタ)アクリル系架橋重合体層、オルガノシロキサン系架橋重合体層などが例示されるが、耐侯性、透明性の点から(メタ)アクリル系架橋重合体層であることが好ましい。
 優れた機械的強度を発現する点から、(メタ)アクリル系架橋重合体層は軟質であることが好ましい。ここでいう「軟質」とは、重合体のガラス転移温度が20℃未満であることを意味する。軟質層の衝撃吸収能力を高め、耐割れ性などの耐衝撃性改良効果を高める観点から、重合体のガラス転移温度が0℃未満であることが好ましく、-20℃未満であることがより好ましい。
 本願において、「軟質」および「硬質」の重合体のガラス転移温度は、ポリマ-ハンドブック[Polymer Hand Book(J.Brandrup,Interscience1989)]に記載されている値を使用してFoxの式を用いて算出した値を用いることとする(例えば、ポリメチルメタクリレートは105℃であり、ポリブチルアクリレートは-54℃である)。
 (メタ)アクリル系架橋重合体は、(メタ)アクリル系の架橋重合体であれば特に限定されないが、耐割れ性などの耐衝撃性の観点から、アクリル酸エステル50~100重量%、アクリル酸エステルと共重合可能な他の単量体50~0重量%、ならびに多官能性単量体0.05~10重量部(アクリル酸エステルおよびこれと共重合可能な他の単量体の総量100重量部に対して)を重合して形成されるものが好ましい。単量体成分を全部混合して1段で重合してもよいし、単量体組成を変化させて2段以上で重合してもよい。
 アクリル酸エステルとしては、重合反応性やコストの点からアクリル酸アルキルエステルが好ましく、具体的にはアルキル基の炭素数が1~12であるものが好ましく、直鎖状でも分岐状でもよい。その具体例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸-2-エチルヘキシル、アクリル酸ベンジル、アクリル酸n-オクチル、アクリル酸β-ヒドロキシエチル、アクリル酸ジメチルアミノエチル、アクリル酸グリシジル等があげられ、これらの単量体は1種または2種以上が併用されてもよい。アクリル酸エステルは、単官能性単量体全体(アクリル酸エステルおよびこれと共重合可能な他の単量体の総量)に対し50~100重量%が好ましく、60~100重量%がより好ましく、70~100重量%が最も好ましい。50重量%未満ではフィルムの耐割れ性が悪化する場合がある。
 アクリル酸エステルと共重合可能な単量体(以下、「共重合可能な単量体」と称することがある。)としては、共重合可能なビニル基を1つ有する単量体であればよく、例えば、メタクリル酸エステルがあげられ、重合性やコストの点よりメタクリル酸アルキルエステルが好ましく、具体的にはアルキル基の炭素数1~12であるものが好ましく、直鎖状でも分岐状でもよい。その具体例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ベンジル、アクリル酸オクチル、メタクリル酸β-ヒドロキシエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸グリシジル等があげられる。また、他の共重合可能な単量体としては、塩化ビニル、臭化ビニル等のハロゲン化ビニル、アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド等の(メタ)アクリルアミド類、アクリロニトリル、メタクリロニトリル等のシアン化ビニル、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル等のビニルエステル、スチレン、ビニルトルエン、α-メチルスチレン等の芳香族ビニルおよびその誘導体、塩化ビニリデン、弗化ビニリデン等のハロゲン化ビニリデン、アクリル酸、アクリル酸ナトリウム、アクリル酸カルシウム等のアクリル酸およびその塩、メタクリル酸、メタクリル酸ナトリウム、メタクリル酸カルシウム等のメタクリル酸およびその塩等があげられる。これらの単量体は2種以上が併用されてもよい。
 上述の単官能性単量体は、1分子あたり2個以上の非共役な反応性二重結合を有する多官能性単量体と共重合されるため、得られる重合体が架橋体(ゴム)となる。ここで用いられる多官能性単量体としては、アリルメタクリレ-ト、アリルアクリレ-ト、トリアリルシアヌレ-ト、トリアリルイソシアヌレ-ト、ジアリルフタレ-ト、ジアリルマレ-ト、ジビニルアジペ-ト、ジビニルベンゼンエチレングリコ-ルジメタクリレ-ト、ジビニルベンゼンエチレングリコ-ルジアクリレ-ト、ジエチレングリコ-ルジメタクリレ-ト、ジエチレングリコ-ルジアクリレ-ト、トリエチレングリコ-ルジメタクリレ-ト、トリエチレングリコ-ルジアクリレ-ト、トリメチロ-ルプロパントリメタクリレ-ト、トリメチロ-ルプロパントリアクリレ-ト、テトラメチロ-ルメタンテトラメタクリレ-ト、テトラメチロ-ルメタンテトラアクリレ-ト、ジプロピレングリコ-ルジメタクリレ-トおよびジプロピレングリコ-ルジアクリレ-ト等があげられ、これらは2種以上が併用されてもよい。
 単官能性単量体に対する多官能性単量体の添加量は、単官能性単量体の総量100重量部に対して、0.05~10重量部が好ましく、0.1~5重量部がより好ましい。多官能性単量体の添加量が0.05重量部未満では、架橋体を形成できない傾向があり、10重量部を超えても、フィルムの耐割れ性が低下する傾向がある。
 重合体(B)は、架橋重合体層および硬質重合体層を各々少なくとも一層有する多層構造重合体であり、硬質重合体層の少なくとも一層が、前記式(4)で表される単量体、および、(メタ)アクリル酸および/またはその塩を構成単位に有する硬質重合体層であることが好ましい。重合体(B)における層の数は、少なくとも二層であれば上限は特に限定されないが、生産性の観点から6層以下であることが好ましい。重合体(B)の好ましい一形態を例示すれば、軟質の内層および硬質の外層を有し、上記内層が架橋重合体層を有し、上記外層が、前記式(4)で表される単量体、および、(メタ)アクリル酸および/またはその塩を構成単位に有する硬質重合体層を有する形態を挙げることができる。この形態は生産性の観点から好ましい。その他の好ましい一形態を例示すれば、重合体(B)が、硬質の内層、軟質の中間層および硬質の外層を有し、上記内層が少なくとも一種の硬質重合体層からなり、上記中間層が架橋重合体層からなる軟質重合体層を有し、上記外層が、前記式(4)で表される単量体、および、(メタ)アクリル酸および/またはその塩を構成単位に有する硬質重合体層を有する形態を挙げることができ、この形態はさらに軟質の最内層を有していてもよい。本発明においては、これらを適宜1種、または2種以上を組合せて使用することができる。
 本願における、軟質の内層、軟質の中間層および軟質層(以下、軟質層)は、少なくとも1種の軟質重合体からなる内層、中間層および層のことをいう。
 一方、本願における、硬質の(最)外層および硬質の内層は、少なくとも1種の硬質重合体からなる(最)外層および内層のことをいう。ここでいう「軟質」および「硬質」とは、上述した「軟質」および「硬質」と同様である。
 重合体(B)が、例えば、硬質の内層、軟質の中間層および硬質の外層からなる多層構造グラフト共重合体のように、最内層に硬質層を有する場合は、最内層の硬質重合体としては、硬度や耐割れ性バランスの観点から、メタクリル酸エステル40~100重量%、アクリル酸エステル0~60重量%、芳香族ビニル系単量体0~60重量%、多官能性単量体0~10重量%、ならびにメタクリル酸エステル、アクリル酸エステル、および芳香族ビニル系単量体と共重合可能な他の単量体0~20重量%からなる硬質重合体が好適に例示されうる。
 重合体(B)は、例えば、(メタ)アクリル系架橋重合体層を有する軟質の内層と、前記式(4)で表される単量体、および、(メタ)アクリル酸および/またはその塩を構成単位に有する重合体層を有する硬質の外層とからなる多層構造体である場合、軟質の内層を外層の硬質重合体が完全に被覆した層構造が一般的であるが、軟質の内層と硬質の外層の重量比等によっては、層構造を形成するための硬質重合体量が不充分な場合もありうる。そのような場合は、完全な層構造である必要はなく、軟質の内層の一部を外部となる硬質重合体が被覆した構造、或いは軟質の内層の一部に外部となる硬質重合体がグラフト重合した構造も好適に用いることができる。なお、その他形態の多層構造グラフト共重合体についても同様のことが当てはまる。
 重合体(B)の架橋重合体層までの体積平均粒子径は、20~450nmが好ましく、20~300nmがより好ましく、20~150nmが更に好ましく、30~80nmが最も好ましい。20nm未満では耐割れ性が悪化する場合がある。一方、450nmを超えると透明性が低下する場合がある。さらに、耐折り曲げ白化性の観点から、80nm未満にすることが好ましい。また、トリミング性の観点からは、20~450nmが好ましく、50~450nmがより好ましく、60~450nmがより好ましく、100~450nmが更に好ましい。なお、体積平均粒子径は、動的散乱法により、例えば、MICROTRAC UPA150(日機装株式会社製)を用いることにより測定することができる。ここで、重合体(B)の架橋重合体層までの体積平均粒子径とは、具体的には、重合体(B)粒子の中心から架橋重合体層までの粒子の体積平均粒子径を指す。重合体(B)が架橋重合体層を2層以上有する場合は、中心に対して最も外側に位置する架橋重合体層までの体積平均粒子径をいうものとする。本願では、重合体(B)に関して、架橋重合体層に対して、硬質重合体層がどの程度共有結合しているかを表すために、グラフト率というパラメーターを使う。
 重合体(B)のグラフト率とは、架橋重合体層の重量を100とした場合の、架橋重合体層に対して、グラフトされた硬質重合体層の重量比率を表す指標である。このグラフト率は10~250%が好ましく、より好ましくは40~230%、最も好ましくは60~220%である。グラフト率が10%未満では、成形体中で重合体(B)が凝集しやすく、透明性が低下したり、異物原因となる恐れがある。また引張破断時の伸びが低下しフィルム切断時にクラックが発生しやすくなったりする傾向がある。250%以上では成形時、たとえばフィルム成形時の溶融粘度が高くなり、フィルムの成形性が低下する傾向がある。算出式は実施例の項にて説明する。
 なお、硬質重合体層の一部には架橋重合体層と結合していない(グラフトしていない)ポリマー(フリーポリマーとも言う)も存在する場合があるが、このフリーポリマーも重合体(B)に含むものとする。
 重合体(B)中の架橋重合体の含有量は、重合体(B)を100重量%とした場合、10~90重量%が好ましく、20~80重量%がより好ましく、30~60重量%がさらに好ましく、35~55重量%が最も好ましい。10重量%未満では、得られる樹脂材料の耐割れ性等の機械的強度が低くなる場合がある。一方、90重量%を上回ると、重合体(B)の分散性が損なわれ、成形体の表面の平滑性が得られず、フィッシュアイ等の外観不良が発生する傾向がある。また、硬質重合体の含有量が十分ではなく、配向時の複屈折や光弾性定数が大きくなるなど光学的等方性を保てなくなる傾向がある。
 重合体(B)の製造方法は特に限定されず、公知の乳化重合法、乳化-懸濁重合法、懸濁重合法、塊状重合法または溶液重合法が適用可能である。重合体(B)の重合については乳化重合法が特に好ましい。
 重合体(B)は、多段重合により得られ、この多段重合の少なくとも1段の重合が、前記式(4)で表される単量体、および、(メタ)アクリル酸および/またはその塩を含有する単量体混合物の重合である。(メタ)アクリル系架橋重合体からなる架橋構造を含有する重合体の存在下において、前記式(4)で表される単量体、および、(メタ)アクリル酸および/またはその塩を含有する単量体混合物を重合することによって得られる、多段重合の(メタ)アクリル系架橋構造含有グラフト共重合体を好ましく使用できる。
 前記式(4)で表される単量体、および、(メタ)アクリル酸および/またはその塩を含有する単量体混合物は、前述のとおりである。
 (メタ)アクリル系架橋重合体からなる架橋構造を有する重合体((メタ)アクリル系架橋構造含有重合体)は、少なくとも(メタ)アクリル系架橋重合体を含有する多段重合体であればよく、アクリル酸エステル50~100重量%、アクリル酸エステルと共重合可能な他の単量体50~0重量%、ならびに多官能性単量体0.05~10重量部(アクリル酸エステルおよびこれと共重合可能な他の単量体の総量100重量部に対して)を重合して形成される(メタ)アクリル系架橋重合体からなる架橋構造(ゴム部)を有することが好ましい。ゴム部は、単量体成分を全部混合して1段で重合してもよいし、単量体組成を変化させて2段以上で重合してもよい。
 (メタ)アクリル系架橋構造含有重合体は、多段重合における少なくとも1段の重合として(メタ)アクリル系架橋重合体(ゴム部)が形成されるものであれば特に限定されず、(メタ)アクリル系架橋重合体の重合段階の前および/または後に、硬質重合体の重合を行なっても良い。
 中でも、生産性の点から、重合体(B)が、(B-1)アクリル酸エステル50~100重量%、これと共重合可能な他の単量体50~0重量%、および多官能性単量体0.05~10重量部(アクリル酸エステルおよびこれと共重合可能な他の単量体の総量100重量部に対して)からなる単量体混合物を重合して(メタ)アクリル系架橋構造含有重合体を得、(B-2)上記(メタ)アクリル系架橋構造含有重合体の存在下に、前記式(4)で表される単量体、および、(メタ)アクリル酸および/またはその塩を含有する単量体混合物を重合して、(メタ)アクリル系架橋構造含有グラフト共重合体として得られるものを使用するのが好ましい。ここで、(B-1)重合段階の単量体混合物、および/または(B-2)重合段階の単量体混合物は、単量体成分を全部混合して1段で重合してもよいし、単量体組成を変化させて2段以上で重合してもよい。また、(B-1)における、アクリル酸エステル、これと共重合可能な他の単量体および多官能性単量体、並びにこれらの好ましい使用量は、上述の(メタ)アクリル酸架橋重合体層において記載したとおりである。(B-2)における、単量体混合物の成分およびこれらの好ましい使用量は、上述の硬質重合体層において記載したとおりである。
 重合体(B)の好ましい一形態である、(メタ)アクリル系架橋構造含有グラフト共重合体の(メタ)アクリル系架橋構造までの体積平均粒子径は、上述の重合体(B)の架橋重合体層までの体積平均粒子径と同様に測定されるものであり、好ましい範囲も同様に適用される。
 重合体(B)を乳化重合により製造する場合には、公知の乳化剤を用いて通常の乳化重合により製造することができる。具体的には、例えばアルキルスルフォン酸ナトリウム、アルキルベンゼンスルフォン酸ナトリウム、ジオクチルスルフォコハク酸ナトリウム、ラウリル硫酸ナトリウム、脂肪酸ナトリウム、ポリオキシエチレンラウリルエーテルリン酸ナトリウムなどのリン酸エステル塩等の陰イオン性界面活性剤や、アルキルフェノール類、脂肪族アルコール類とプロピレンオキサイド、エチレンオキサイドとの反応生成物等の非イオン性界面活性剤等が示される。これらの界面活性剤は単独で用いてもよく、2種以上併用してもよい。更に要すれば、アルキルアミン塩等の陽イオン性界面活性剤を使用してもよい。このうち、得られた重合体(B)の熱安定性を向上させる観点から、特にはポリオキシエチレンラウリルエーテルリン酸ナトリウムなどのリン酸エステル塩(アルカリ金属、又はアルカリ土類金属)を用いて重合することが好ましい。
 乳化重合により得られる多層構造グラフト共重合体ラテックスは、例えば、噴霧乾燥、凍結乾燥、あるいは塩化カルシウム、塩化マグネシウム等の塩、または塩酸、硫酸等の酸を凝固剤として添加することで凝固を行ない、適宜加熱処理等により凝固した樹脂分を水相より分離して、洗浄、乾燥を行なう、等の既知の方法により処理することで、粉末状の多層構造重合体が得られる。重合体ラテックスの凝固により多層構造重合体を得る場合には、凝固剤としては、酸や塩などの公知の凝固剤が使用できるが、得られた共重合体の成形時の熱安定性を向上させる観点からマグネシウム塩、特には硫酸マグネシウムを用いることが特に好ましい。
 重合体(B)は、樹脂材料100重量部において架橋重合体が1~60重量部含まれるように配合されることが好ましく、1~30重量部がより好ましく、1~25重量部がさらに好ましい。1重量部未満ではフィルムの耐割れ性、真空成形性が悪化したり、また光弾性定数が大きくなり、光学的等方性に劣ったりする場合がある。一方、60重量部を越えるとフィルムの耐熱性、表面硬度、透明性、耐折曲げ白化性が悪化する傾向がある。
 熱可塑性樹脂(A)と重合体(B)の配合比率については、前記配合条件を満たしていれば特に問題はなく、また、重合体(B)に含まれる架橋重合体の量にもよるが、熱可塑性樹脂(A)と重合体(B)の合計を100重量%とした場合、重合体(B)が1~99重量%が好ましく、1~80重量%がより好ましく、1~60重量%がさらに好ましい。1重量%未満ではフィルムの耐割れ性、真空成形性が悪化したり、また光弾性定数が大きくなり、光学的等方性に劣ったりする場合がある。一方、99重量%を越えるとフィルムの耐熱性、表面硬度、透明性、耐折曲げ白化性が悪化する傾向がある。
 本発明の樹脂材料は、重合体(B)の光弾性定数と、熱可塑性樹脂(A)の光弾性定数とが異符号であることが好ましい。配向複屈折および光弾性定数をともに小さくでき、光学的等方性の高い樹脂材料とすることができる。光学的に等方にするためには、配向複屈折と光弾性複屈折をいかに小さくするかというのが重要である。そのため、ここではまず本発明の熱可塑性樹脂(A)、重合体(B)、樹脂材料、およびフィルムの「配向複屈折」「光弾性複屈折」の考え方について説明する。
 (配向複屈折に関する考え方)
 高吐出条件、フィルム引取条件、低温成形など、フィルム中でポリマーが配向するような成形以外の、通常の溶融押出成形にてフィルムを作成した場合、フィルム中のポリマーの配向はそれほど大きくない。実際にPMMAで代表されるアクリル系樹脂であれば、意図的な延伸工程がない溶融押出フィルム(以下、原反フィルム、原料フィルムとも呼ぶ)の複屈折はそれほど大きくなく、用途にもよるが実用上問題が無い場合もある。もちろん、ポリマーが配向するような成形条件や、原反フィルムを延伸工程させた場合には、フィルム中でポリマーが配向し、その結果複屈折が発生する。この場合の複屈折は、ポリマーが配向することによって発生する複屈折であるため、一般に配向複屈折と呼ばれる。以上、本発明の樹脂材料をどのように成形するか、またフィルムの場合には延伸させるのか、ということによって、本発明の樹脂材料から得られる成形体、特には光学フィルムの配向複屈折を小さくするため、重合体(B)の配向複屈折と熱可塑性樹脂(A)の配向複屈折を設定する必要がある。逆に、フィルム等の成形体中でポリマーがほとんど配向せず、複屈折が十分に小さい場合には、重合体(B)の配向複屈折に関してはそれほど考慮する必要が無く、樹脂設計上、特に制限を受けないことになる。
 ここで、本発明のいうところの「配向複屈折」の測定条件の定義づけをしておきたい。配向複屈折は、ポリマー鎖が配向することにより発現する複屈折であることは先に述べたとおりであるが、ポリマー鎖の配向度によってポリマーフィルム中の複屈折(配向複屈折)は変化する。よって、本発明では、「配向複屈折」を求める際には以下の条件で測定することと定義する。
 熱可塑性樹脂(A)、重合体(B)および樹脂材料はなんらかの成形体にして、その配向複屈折を測定する必要があり、本発明では当該成形体をフィルムまたはシートとする。ここでは、溶融押出成形フィルムとプレス成形シートとを挙げて説明する。
 ・フィルムでの「配向複屈折」測定
 まず、膜厚125μmのフィルム(原反フィルム)から、25mm×90mmの試験片を切り出し(MD方向に長辺が来るように切り出す)、両短辺を保持してガラス転移温度+30℃にて2分保ち、2倍(100%に延伸とも言う)に長さ方向へ200mm/分の速度で一軸に延伸する(この際、両長辺は固定なし)。その後、得られたフィルムを23℃に冷却し、サンプル中央部分をサンプリングし、複屈折を測定する。
 ・シートでの「配向複屈折」測定
 重合体(B)が少なくとも架橋構造を有する場合、その構造によっては単独でフィルム化することは困難となる。よって、重合体(B)は、プレス成形シートを作製して「配向複屈折」を測定する。また、熱可塑性樹脂(A)などが、重合体(B)と同様に、フィルム化が困難である場合にも、プレス成形シートを作製して配向複屈折を測定する。
 以下に、プレス成形シートを用いた場合の「配向複屈折」の測定条件について説明する。
 重合体(B)を190℃でプレスし、膜厚500μmのプレス成形シートを作製する。得られたプレス成形シートの中央部から、25mm×90mmの試験片を切り出し、両短辺を保持してガラス転移温度+30℃にて2分保ち、2倍(100%に延伸とも言う)に長さ方向へ200mm/分の速度で一軸に延伸する(この際、両長辺は固定なし)。その後、得られたフィルムを23℃に冷却し、サンプル中央部分をサンプリングし、複屈折を測定し、配向複屈折の符号を得る。
 上記の「配向複屈折」は、ポリマーの配向度に依存するため、延伸条件を含め、種々のサンプル作成条件により影響を受けるため、上記のように評価条件を明示した。たとえば延伸温度はガラス転移温度に対して-30℃~+30℃、+0℃~+30℃がより好ましく、+5℃~+30℃の温度範囲にするなど、適宜設定すればよい。ただし、各サンプル間での複屈折性の符号、相対的な大小関係を定量的に得るためには、延伸条件等の測定条件がほぼ同じところでの測定値を用いることが重要である。
 (光弾性複屈折(光弾性定数)に関する考え方)
 先に説明したとおり、光弾性複屈折は成形体に応力が加わった場合に成形体中のポリマーの弾性的な変形(歪)に伴って引き起こされる複屈折である。実際には、そのポリマーに固有の「光弾性定数」を求めることで、その材料の光弾性複屈折の度合いを評価することができる。まずポリマー材料に応力を印加し、弾性的な歪みが生じた際の複屈折を測定する。得られた複屈折と応力との比例定数が光弾性定数である。この光弾性定数を比較することにより、ポリマーの応力印加時の複屈折性を評価することができる。
 上述の「配向複屈折」と同様に、熱可塑性樹脂(A)、重合体(B)および樹脂材料はなんらかの成形体にして、その光弾性複屈折を測定する必要があり、本発明では当該成形体をフィルムまたはシートとする。ここでは、溶融押出成形フィルムとプレス成形シートとを挙げて説明する。
 ・フィルムでの「光弾性定数」測定
 上記「配向複屈折」の項の記載同様、膜厚125μmのフィルム(原反フィルム)から、TD方向に15mm×90mmの短冊状に試験片を切断する(TD方向に長辺がくるように切り出す)。次に、23℃において、試験片フィルムの長辺の一方を固定し、他方は無荷重から4kgfまで0.5kgfずつ荷重をかけた状態で、各々の印加時の複屈折を測定し、得られた結果から、単位応力による複屈折の変化量を算出し、光弾性定数を算出する。
 ・シートでの「光弾性定数」測定
 重合体(B)については、上記の「配向複屈折」の項と同様にプレス成形シートを作製し、この複屈折を測定することにより、光弾性定数を求める。また、熱可塑性樹脂(A)などが、重合体(B)と同様に、フィルム化が困難である場合にも、プレス成形シートにより光弾性複屈折を測定する。
 以下、プレス成形シートを用いた場合の「光弾性定数」の測定について説明する。
 重合体(B)を190℃でプレスし、膜厚500μmのプレス成形シートを作製し、得られたプレス成形シートの中央部から25mm×90mmの試験片を切り出す。測定条件および算出法は、前述の溶融押出成形フィルムの場合と同じとする。
 フィルム又はシートでの光弾性複屈折の測定においては、比較するサンプル間の厚み差が大きい場合、サンプル中での応力のかかり方が変わってくる可能性があり、光弾性定数の厳密な比較が難しい場合がある。ただし、本発明で説明している膜厚125μmのフィルム、膜厚500μmのプレス成形シートに関して、この程度の厚み差であれば、両サンプル間での応力のかかり方に大差はなく、光弾性定数の比較をすることが可能である。したがって、前記フィルムでも、プレス成形シートでも光弾性定数(複屈折)を測定するのに好適に使用できるが、フィルムを用いて測定することがより好ましい。本発明では、重合体(B)の光弾性定数の符号を確認する手段として、膜厚500μmのプレス成形シートを使用する。配向複屈折についても同様である。
 光弾性複屈折は、そのポリマー構造に固有の特性であることから、熱可塑性樹脂(A)の光弾性定数が大きい場合、重合体(B)の光弾性定数は熱可塑性樹脂(A)の光弾性定数に対して異符号である必要がある。また、重合体(B)の配合量に関して言えば、熱可塑性樹脂(A)の光弾性複屈折を打ち消すことができるだけの量の重合体(B)を添加する必要がある。得られるポリマー(共重合体)の光弾性定数と、共重合に用いたモノマー種に対応するそれぞれのホモポリマーの光弾性定数との間には、加成性が成り立つことが知られている。このことから、重合体(B)が熱可塑性樹脂(A)に対して光弾性定数が異符号であり、且つ大きければ、熱可塑性樹脂(A)と重合体(B)からなる樹脂材料、およびそのフィルムの光弾性複屈折を小さくするための重合体(B)の必要量は少なくて済む。
 配向複屈折に関しては、先述のように、本発明の樹脂材料からなる成形体、特には光学フィルムにおいて、成形体中でポリマーの配向度がそれほど大きくなく、その成形体の配向複屈折が実用上問題が無い場合には、重合体(B)の設計において配向複屈折の考慮をする必要は特にない。ただし、得られた成形体中の配向複屈折が実用上問題となる場合には、重合体(B)の配向複屈折を、熱可塑性樹脂(A)の配向複屈折に対して異符号にする必要がある。
 以上が、本発明で提供する樹脂材料、およびフィルムにおいて、低複屈折化を実現する場合の重要な技術思想である。
 本発明の重合体(B)が架橋重合体層および硬質重合体層を有する場合、硬質重合体層は、(1)重合体(B)をマトリックス(熱可塑性樹脂(A))中に均一に分散させることに加えて、(2)熱可塑性樹脂(A)が有している複屈折を打ち消して、本発明の樹脂材料およびフィルムの光学的等方性を高めるよう作用させることができる。
 上記(2)に関しては、延伸工程を経ないなど、フィルム等の成形体中の配向複屈折があまり大きくなく、課題とならない場合には、成形体の光弾性定数が極めて小さくなるように、硬質重合体層の光弾性定数をマトリックス(熱可塑性樹脂(A))に対して異符号にすることで達成することができる。また、延伸工程を経るなど、フィルム等の成形体中の配向複屈折が比較的大きく、課題となる場合には、成形体の光弾性定数だけでなく、配向複屈折の両方とも極めて小さくなるように、硬質重合体層の光弾性定数、配向複屈折の両方をマトリックス(熱可塑性樹脂(A))に対して異符号にすることで達成することができる。
 重合体(B)の硬質重合体層に使用され、熱可塑性樹脂(A)の光弾性複屈折を打ち消すのに適したモノマー種に関しては、熱可塑性樹脂(A)と重合体(B)の各々の光弾性定数が異符号となるように選択すればよい。
 ポリマーの光弾性定数を設定する上で、参考になる具体的なモノマーの例を以下に記すが、これらに限定されるわけではない。([ ]内は対応するホモポリマーの光弾性定数)
 正の光弾性複屈折を示すモノマー:
 ベンジルメタクリレート [48.4×10-12Pa-1
 ジシクロペンタニルメタクリレート [6.7×10-12Pa-1
 スチレン [10.1×10-12Pa-1
 パラクロロスチレン [29.0×10-12Pa-1
 負の光弾性複屈折を示すモノマー:
 メチルメタクリレート [-4.3×10-12Pa-1
 2,2,2-トリフルオロエチルメタクリレート [-1.7×10-12Pa-1
 2,2,2-トリクロロエチルメタクリレート [-10.2×10-12Pa-1
 イソボルニルメタクリレート [-5.8×10-12Pa-1
 共重合体ポリマーの光弾性定数は、共重合に用いたモノマー種に対応するそれぞれのホモポリマーの光弾性定数との間に加成性が成り立つことが知られている。例えば、メチルメタクリレート(MMA)とベンジルメタクリレート(BzMA)の2元共重合系については、poly-MMA/BzMA=92/8(wt%)にて光弾性複屈折がほぼゼロになることが報告されている。また、2種以上のポリマー混合(アロイ)についても同様であり、各ポリマーが有する光弾性定数との間に加成性が成り立つ。以上のことから、本発明の樹脂材料、およびフィルムの光弾性複屈折が小さくなるように、熱可塑性樹脂(A)と重合体(B)の光弾性定数を異符号にし、且つその配合量(wt%)を調整することが好ましい。
 また、共重合体ポリマーの配向複屈折は、共重合に用いたモノマー種に対応するそれぞれのホモポリマーの固有複屈折との間に加成性が成り立つことが知られている。また、2種以上のポリマー混合(アロイ)についても同様であり、各ポリマーが有する固有複屈折との間に加成性が成り立つ。重合体(B)の硬質重合体層に使用され、熱可塑性樹脂(A)の配向複屈折を打ち消すのに適したモノマー種に関しては、熱可塑性樹脂(A)と重合体(B)の各々の配向複屈折が異符号となるように選択すればよい。ポリマーの配向複屈折を設定する上で、参考になる具体的なモノマー(そのモノマーからなるホモポリマーの固有複屈折)の例を以下に記すが、これらに限定されるわけではない。なお、固有複屈折とは、ポリマーが完全に一方向に配向した状態のときの複屈折(配向複屈折)である。
 正の固有複屈折を示すポリマー:
 ポリベンジルメタクリレート [+0.002]
 ポリフェニレンオキサイド [+0.210]
 ビスフェノールAポリカーボネート [+0.106]
 ポリビニルクロライド [+0.027]
 ポリエチレンテレフタレート [+0.105]
 ポリエチレン [+0.044]
 負の固有複屈折を示すポリマー:
 ポリメチルメタクリレート [-0.0043]
 ポリスチレン [-0.100]
 以上、一部のポリマーの光弾性定数、配向複屈折のデータを記載したが、ポリマーによっては配向複屈折は「正」、光弾性定数は「負」など、両方の複屈折が同じ符号であるとは限らない。次の表1に一部のホモポリマーの配向複屈折と光弾性複屈折(定数)の符号の例を示す。
Figure JPOXMLDOC01-appb-T000001
 たとえば、ポリ(MMA/BzMA=82/18(wt%))付近の組成は配向複屈折がほぼゼロとなること、poly(MMA/BzMA=92/8(wt%))付近の組成は光弾性複屈折(定数)がほぼゼロとなることが知られている。このように、熱可塑性樹脂(A)がアクリル系樹脂の場合は、配向複屈折、光弾性定数の両方がともに負になることが多いため、重合体(B)(特には外層の硬質の重合体層)に、配向複屈折も光弾性複屈折の両方の符号が正であるベンジルメタクリレートを使用することで、光弾性複屈折も打ち消しながら、配向複屈折も打ち消すことができ、好適であることがわかる。
 本発明の樹脂材料は、粒状のままで、または押出機によりペレット状としたのち、加熱しながら押出成形や射出成形、圧縮成形、ブロー成形、紡糸成形等により、用途に適した形状の成形体とすることができる。加熱溶融時の樹脂材料の溶融温度は、特に限定されるわけではないが、230~300℃であることが好ましい。成形体としては特にフィルムが有用であり、例えば、通常の溶融押出法であるインフレーション法やTダイ押出法、あるいはカレンダー法、更には溶剤キャスト法等により良好に加工される。中でも、溶剤を使用しない溶融押出法を用いることが好ましい。溶融押出法によれば、製造コストや溶剤による地球環境や作業環境への負荷を低減することができる。
 本発明の樹脂材料は、成形加工時の複屈折が生じず、実用上問題のない成形体を得られる点から、配向複屈折の値が-15×10-4~15×10-4であること好ましく、-10×10-4~10×10-4であることがより好ましく、-5×10-4~5×10-4であることがさらに好ましい。さらに、安定した光学特性が得られる点から、-1.7×10-4~1.7×10-4であることが好ましく、-1.6×10-4~1.6×10-4であることがより好ましく、-1.5×10-4~1.5×10-4であることがさらに好ましく、-1.0×10-4~1.0×10-4であることがとりわけ好ましく、-0.5×10-4~0.5×10-4であることが特に好ましく、-0.2×10-4~0.2×10-4であることが最も好ましい。
 本発明の樹脂材料は、高温高湿などの環境下において成形体に応力がかかった際にも生じる複屈折が小さい点から、光弾性定数が-10×10-12~10×10-12であることが好ましく、-4×10-12~4×10-12であることがより好ましく、-2×10-12~2×10-12であることがさらに好ましく、-1.5×10-12~1.5×10-12であることがよりさらに好ましく、-1×10-12~1×10-12であることがとりわけ好ましく、-0.5×10-12~0.5×10-12であることが特に好ましく、-0.3×10-12~0.3×10-12であることが最も好ましい。光弾性定数が-4×10-12~4×10-12であれば、フィルム化して液晶表示装置に用いても、位相差ムラが発生したり、表示画面周辺部のコントラストが低下したり、光漏れが発生したりすることがない。
 また、本発明の樹脂材料は機械的強度が高いことが特徴である。機械的強度は、たとえば引張試験における引張破断点伸度で評価することができ、引張破断点伸度が10%以上であることが好ましく、20%以上であることがより好ましく、30%以上であることがさらに好ましく、40%以上であることがなおさら好ましく、50%以上であることがことさら好ましく、60%以上であることが特に好ましく、90%以上であることが最も好ましい。上記範囲内の引張破断点伸度を示す本発明の樹脂材料は、成形加工時に割れ等の問題が発生しないなど、生産性に極めて優れる。また、実際に製品として使用する際にも割れ等のトラブルがおこらない。この割れ性については特に引張破断点伸度が相関しており、引張破断点伸度が高いほど、耐割れ性に優れる。
 さらに、本発明の樹脂材料は熱安定性が高いことも特徴である。たとえば、熱重量測定(TGA)において、1%重合減少温度が290℃以上であることが好ましく、300℃以上であることがより好ましく、310℃以上であることが最も好ましい。1%重合減少温度は、たとえば、セイコーインスツルメンツ製のSII EXSTAR 6000、TG/DTA 6300などの熱重量測定装置を用いて測定することができる。得られた測定結果より、1%重量減少温度は以下のように算出できる。
  重量減少率=((wt-wt0)/wt0)×100%
  wt=その温度の試料重量
  wt0=基準重量(40℃の試料の重量)
  重量減少率が-1%となった時の温度=1%重量減少温度と定義
 必要に応じて、フィルムを成形する際、フィルム両面をロールまたは金属ベルトに同時に接触させる(挟み込む)ことにより、特にガラス転移温度付近の温度に加熱したロールまたは金属ベルトに同時に接触させることにより、表面性のより優れたフィルムを得ることも可能である。また、目的に応じて、フィルムの積層成形や、二軸延伸によるフィルムの改質も可能である。
 本発明の樹脂材料はTダイ製膜を用いるような高温での成形条件下でも、紫外線吸収剤の飛散による成形機の汚染やフィルム欠陥を発生させることなく、フィルムを製造することができる。
 以下、本発明に係るフィルムの製造方法の一実施形態として、本発明に係る樹脂材料を溶融押出法により成形してフィルムを製造する方法について詳細に説明する。
 なお、以下の説明では、溶融押出法で成形されたフィルムを、溶液流延法等の他の方法で成形されたフィルムと区別して、「溶融押出フィルム」と称する。
 本発明に係る樹脂材料を溶融押出法によりフィルムに成形する場合、まず、本発明に係る樹脂材料を、押出機に供給し、該樹脂材料を加熱溶融させる。
 樹脂材料は、押出機に供給する前に、予備乾燥することが好ましい。このような予備乾燥を行うことにより、押出機から押し出される樹脂の発泡を防ぐことができる。
 予備乾燥の方法は特に限定されるものではないが、例えば、原料(すなわち、本発明に係る樹脂材料)をペレット等の形態にして、熱風乾燥機等を用いて行うことができる。
 また、本発明に係る樹脂材料を成形するための押出機は、好ましくは加熱溶融時に発生する揮発分を除去するための脱揮装置を一つ以上有しているものが好ましい。脱気装置を有する事により、樹脂の発泡や分解劣化反応によるフィルム外観の悪化を軽減することができる。
 更に、本発明に係る樹脂材料を成形するための溶融押出に際しては、押出機のシリンダに、樹脂材料の供給とともに、窒素やヘリウムなどの不活性ガスを供給する事が好ましい。不活性ガスの供給により、系中の酸素の濃度を低下させ、酸化劣化に伴う分解、架橋、黄変等の外観や品質の劣化を軽減することができる。
 次に、押出機内で加熱溶融された樹脂材料を、ギアポンプやフィルターを通して、Tダイに供給する。このとき、ギアポンプを用いれば、樹脂の押出量の均一性を向上させ、厚みムラを低減させることができる。一方、フィルターを用いれば、樹脂材料中の異物を除去し、欠陥の無い外観に優れたフィルムを得ることができる。
 フィルターの種類としては、溶融ポリマーからの異物除去が可能なステンレス製のリーフディスクフィルターを使用するのが好ましく、フィルターエレメントとしてはファイバータイプ、パウダータイプ、あるいはそれらの複合タイプを使用するのが好ましい。フィルターはペレット化時、もしくはフィルム化時に使用する押出機等に好適に使用することができる。
 次に、Tダイに供給された非複屈折性樹脂材料を、シート状の溶融樹脂として、Tダイから押し出す。そして、該シート状の溶融樹脂を2つの冷却ロールで挟み込んで冷却し、フィルムを成膜することが好ましい。
 上記シート状の溶融樹脂を挟み込む2つの冷却ロールの内、一方は、表面が平滑な剛体性の金属ロールであり、もう一方は、表面が平滑な弾性変形可能な金属製弾性外筒を備えたフレキシブルロールであることが好ましい。
 このような剛体性の金属ロールと金属製弾性外筒を備えたフレキシブルロールとで、上記シート状の溶融樹脂を挟み込んで冷却して成膜することにより、表面の微小な凹凸やダイライン等が矯正されて、表面が平滑で厚みムラが5μm以下であるフィルムを得ることができる。
 なお、本明細書において、「冷却ロール」とは、「タッチロール」および「冷却ロール」を包含する意味で用いられる。
 上記剛体性の金属ロールとフレキシブルロールとを用いる場合であっても、何れの冷却ロールも表面が金属であるため、成膜するフィルムが薄いと、冷却ロールの面同士が接触して、冷却ロールの外面に傷が付いたり、冷却ロールそのものが破損したりすることがある。
 そのため、上説したような2つの冷却ロールでシート状の溶融樹脂を挟み込んで成膜する場合、まず、該2つの冷却ロールで、シート状の溶融樹脂を挟み込んで冷却することで、フィルムが得られる。
 本発明のフィルムは、非常に靭性が高く柔軟性に富むため、強度向上のために延伸をする必要がなく、延伸工程を省略することによる生産性の向上、コスト面でのメリットがある。本発明のフィルムは、透明性が高く、高い強度を有した10μm以上の厚みを有することが可能である。さらに、延伸による配向複屈折がほぼ発生せず、さらに光学的に等方である。また、真空成形等の2次成形時、高温での使用時等の熱による収縮も小さい。
 本発明のフィルムは未延伸状態のフィルムとしても上記効果を奏するものであるが、さらに延伸することも可能であり、これにより、強度の向上、膜厚精度の向上を図ることができる。また、適切な延伸条件を選択することにより、実質的に複屈折を生じさせることなく、かつ、ヘイズの増大を実質的に伴うことなく、厚みムラの小さなフィルムを容易に製造することができる。
 本発明に係るフィルムが延伸フィルムである場合、本発明に係る樹脂材料を一旦、未延伸状態のフィルムに成形し、その後、一軸延伸または二軸延伸を行うことにより、延伸フィルム(一軸延伸フィルムまたは二軸延伸フィルム)を製造することができる。例えば、上記2つの冷却ロールで、シート状の溶融樹脂を挟み込んで冷却し、一旦、厚み150μmの未延伸状態のフィルムを取得する。その後、該フィルムを縦横二軸延伸により延伸させ、厚み40μmのフィルムを製造すればよい。
 本明細書では、説明の便宜上、本発明に係る樹脂材料をフィルム状に成形した後、延伸を施す前のフィルム、すなわち未延伸状態のフィルムを「原料フィルム」と称する。
 原料フィルムを延伸する場合、原料フィルムを成形後、直ちに、該原料フィルムの延伸を連続的に行ってもよいし、原料フィルムを成形後、一旦、保管または移動させて、該原料フィルムの延伸を行ってもよい。
 なお、原料フィルムに成形後、直ちに該原料フィルムを延伸する場合、フィルムの製造工程において、原料フィルムの状態が非常に短時間(場合によっては、瞬間)にて延伸してもよく、一旦原料フィルムを製造したのち、時間を開けて延伸してもよい。
 本発明のフィルムを延伸フィルムとする場合は、上記原料フィルムは延伸されるのに充分な程度のフィルム状を維持していればよく、完全なフィルムの状態である必要はない。
 原料フィルムを延伸する方法は、特に限定されるものではなく、従来公知の任意の延伸方法を用いればよい。具体的には、例えば、テンターを用いた横延伸、ロールを用いた縦延伸、及びこれらを逐次組み合わせた逐次二軸延伸等を用いることができる。
 また、縦と横とを同時に延伸する同時二軸延伸方法を用いたり、ロール縦延伸を行った後、テンターによる横延伸を行う方法を用いたりすることもできる。
 原料フィルムを延伸するとき、原料フィルムを一旦、延伸温度より0.5℃~5℃、好ましくは1℃~3℃高い温度まで予熱した後、延伸温度まで冷却して延伸することが好ましい。
 上記範囲内で予熱することにより、原料フィルムの厚みを精度よく保つことができ、また、延伸フィルムの厚み精度が低下したり、厚みムラが生じたりすることがない。また、原料フィルムがロールに貼り付いたり、自重で弛んだりすることがない。
 一方、原料フィルムの予熱温度が高すぎると、原料フィルムがロールに貼り付いたり、自重で弛んだりするといった弊害が発生する傾向にある。また、原料フィルムの予熱温度と延伸温度との差が小さいと、延伸前の原料フィルムの厚み精度を維持しにくくなったり、厚みムラが大きくなったり、厚み精度が低下したりする傾向がある。
 なお、本発明に係る樹脂材料は、原料フィルムに成形後、延伸する際、ネッキング現象を利用して、厚み精度を改善することが困難である。したがって、本発明では、上記予熱温度の管理を行うことは、得られるフィルムの厚み精度を維持したり、改善したりするためには重要となる。
 原料フィルムを延伸するときの延伸温度は、特に限定されるものではなく、製造する延伸フィルムに要求される機械的強度、表面性、および厚み精度等に応じて、変更すればよい。
 一般的には、DSC法によって求めた原料フィルムのガラス転移温度をTgとした時に、(Tg-30℃)~(Tg+30℃)の温度範囲とすることが好ましく、(Tg-20℃)~(Tg+20℃)の温度範囲とすることがより好ましく、(Tg)~(Tg+20℃)の温度範囲とすることがさらに好ましい。
 延伸温度が上記温度範囲内であれば、得られる延伸フィルムの厚みムラを低減し、さらに、伸び率、引裂伝播強度、および耐揉疲労等の力学的性質を良好なものとすることができる。また、フィルムがロールに粘着するといったトラブルの発生を防止することができる。
 一方、延伸温度が上記温度範囲よりも高くなると、得られる延伸フィルムの厚みムラが大きくなったり、伸び率、引裂伝播強度、および耐揉疲労等の力学的性質が十分に改善できなかったりする傾向がある。さらに、フィルムがロールに粘着するといったトラブルが発生しやすくなる傾向がある。
 また、延伸温度が上記温度範囲よりも低くなると、得られる延伸フィルムのヘイズが大きくなったり、極端な場合には、フィルムが裂けたり、割れたりするといった工程上の問題が発生したりする傾向がある。
 上記原料フィルムを延伸する場合、その延伸倍率もまた、特に限定されるものではなく、製造する延伸フィルムの機械的強度、表面性、および厚み精度等に応じて、決定すればよい。延伸温度にも依存するが、延伸倍率は、一般的には、1.1倍~3倍の範囲で選択することが好ましく、1.3倍~2.5倍の範囲で選択することがより好ましく、1.5倍~2.3倍の範囲で選択することがさらに好ましい。
 延伸倍率が上記範囲内であれば、フィルムの伸び率、引裂伝播強度、および耐揉疲労等の力学的性質を大幅に改善することができる。それゆえ、厚みムラが5μm以下であり、複屈折が実質的にゼロであり、さらに、ヘイズが2.0%以下である延伸フィルムを製造することもできる。
 本発明に係るフィルムは、必要に応じて、粘着剤等により別のフィルムをラミネートしたり、表面にハードコート層等のコーティング層を形成させたりして用いることができる。
 本発明の樹脂材料は、配向複屈折を調整する意味合いで、特許第3648201号や特許第4336586号に記載の複屈折性を有する無機微粒子や、特許第3696649号に記載の複屈折性を有する、分子量5000以下、好ましくは1000以下の低分子化合物を適宜配合してもよい。
 また、本発明の樹脂材料は、熱可塑性樹脂(A)と重合体(B)を各々少なくとも1種類含むものであればよく、本発明の目的を満たす範囲であれば、1種以上の他の樹脂を特に制限なく添加することができる。他の樹脂としては、たとえば、熱可塑性樹脂(A)で挙げられた熱可塑性樹脂、コアシェルポリマー、グラフト共重合体などの多層構造重合体、ブロックポリマーなどの熱可塑性エラストマー、などが挙げられる。
 本発明の樹脂材料は、必要に応じて、光安定剤、紫外線吸収剤、熱安定剤、艶消し剤、光拡散剤、着色剤、染料、顔料、帯電防止剤、熱線反射材、滑剤、可塑剤、紫外線吸収剤、安定剤、フィラー等の公知の添加剤、または、その他の樹脂を含有しても良い。
 本発明のフィルムは、必要に応じて、公知の方法によりフィルム表面の光沢を低減させることができる。例えば、樹脂材料に無機充填剤または架橋性高分子粒子を混練する方法等で実施することが可能である。また、得られるフィルムをエンボス加工により、フィルム表面の光沢を低減させることも可能である。
 本発明のフィルムは、金属、プラスチックなどに積層して用いることができる。フィルムの積層方法としては、積層成形や、鋼板などの金属板に接着剤を塗布した後、金属板にフィルムを載せて乾燥させ貼り合わせるウエットラミネ-トや、ドライラミネ-ト、エキストル-ジョンラミネ-ト、ホットメルトラミネ-トなどがあげられる。
 プラスチック部品にフィルムを積層する方法としては、フィルムを金型内に配置しておき、射出成形にて樹脂を充填するインサート成形またはラミネートインジェクションプレス成形や、フィルムを予備成形した後に金型内に配置し、射出成形にて樹脂を充填するインモールド成形などがあげられる。
 本発明のフィルムの積層品は、自動車内装材,自動車外装材などの塗装代替用途、窓枠、浴室設備、壁紙、床材などの建材用部材、日用雑貨品、家具や電気機器のハウジング、ファクシミリ、ノートパソコン、コピー機などのOA機器のハウジング、携帯電話、スマートフォン、タブレットなどの端末の液晶画面の前面板や、電気または電子装置の部品などに使用することができる。
 本発明のフィルムは、その耐熱性、透明性、柔軟性等の性質を利用して、以下の各種用途に使用することができる。具体的には、自動車内外装、パソコン内外装、携帯内外装、太陽電池内外装、太陽電池バックシート;カメラ、VTR、プロジェクター用の撮影レンズ、ファインダー、フィルター、プリズム、フレネルレンズなどの映像分野、CDプレイヤー、DVDプレイヤー、MDプレイヤーなどにおける光ディスク用ピックアップレンズなどのレンズ分野、CD、DVD、MDなどの光ディスク用の光記録分野、液晶用導光板、拡散板、バックシート、反射シート、偏光子保護フィルム、偏光フィルム透明樹脂シート,位相差フィルム,光拡散フィルム、プリズムシートなどの液晶ディスプレイ用フィルム、表面保護フィルムなどの情報機器分野、光ファイバ、光スイッチ、光コネクターなどの光通信分野、自動車ヘッドライト、テールランプレンズ、インナーレンズ、計器カバー、サンルーフなどの車両分野、眼鏡、コンタクトレンズ、内視鏡用レンズ、滅菌処理の必要な医療用品などの医療機器分野、道路標識、浴室設備、床材、道路透光板、ペアガラス用レンズ、採光窓、カーポート、照明用レンズ、照明カバー、建材用サイジングなどの建築・建材分野、電子レンジ調理容器(食器)、家電製品のハウジング、玩具、サングラス、文房具などに使用することができる。また、転写箔シートを使用した成形体の代替用途としても使用できる。
 本発明における樹脂材料のフィルム以外の成形体の使用用途としては、例えば、一般カメラ用レンズ,ビデオカメラ用レンズ,レーザーピックアップ用の対物レンズ,回折格子,ホログラム,及びコリメータレンズ,レーザープリンター用のfθレンズ,シリンドリカルレンズ,液晶プロジェクター用のコンデンサーレンズや投射レンズ,フレネルレンズ,眼鏡用レンズ等のレンズ、コンパクトディスク(CD,CD-ROM等)、ミニディスク(MD)、DVD用のディスク基板、液晶用導光板、液晶用フィルム、LCD用基板,液晶素子結合用接着剤等の液晶素子用部材、プロジェクター用スクリーン、光学フィルター、光ファイバー、光導波路、プリズム、照明用レンズ、自動車ヘッドライト、滅菌処理の必要な医療用品、電子レンジ調理容器、家電製品のハウジング、玩具またはレクリエーション品目などが挙げられる。
 本発明のフィルムは、光学的均質性、透明性等の光学特性に優れる光学特性を利用して、光学用フィルムとして使用することができ、光学的等方フィルム、偏光子保護フィルムや透明導電フィルム等液晶表示装置周辺等の公知の光学的用途に特に好適に用いることができる。本発明のフィルムは優れた機械的強度を有しているため、フィルム搬送性、実使用時の耐割れ性、製造時のフィルムのトリミング工程における微細なクラックの発生を低減することが可能である。また、高い機械的強度を有するので、フィルム強度を向上させるために必要な延伸工程が不要であるため、延伸フィルムでは生産するのが困難な、たとえば80μm以上の膜厚の厚い光学フィルムを生産することも可能である。
 本発明のフィルムは、偏光子に貼り合わせて、偏光板として用いることができる。すなわち、本発明に係るフィルムは、偏光板の偏光子保護フィルムとして用いることができる。上記偏光子は、特に限定されるものではなく、従来公知の任意の偏光子を用いることができる。具体的には、例えば、延伸されたポリビニルアルコールにヨウ素を含有させて得た偏光子等を挙げることができる。
 本発明のフィルムは、必要に応じて、表面処理が施されたものであってもよい。例えば、本発明のフィルムの表面にコーティング加工等の表面加工を施したり、本発明のフィルムの表面に別のフィルムをラミネートしたりして用いる場合、本発明のフィルムに表面処理を施すことが好ましい。このような表面処理を施すことにより、本発明のフィルムと、コーティング材またはラミネートされる別のフィルムとの間の密着性を向上させることができる。本発明のフィルムは、耐溶剤性が高いため、本発明のフィルムに種々のコーティングを施す際、溶媒による外観不良が発生しないため、優れた表面外観を有することができる。また、本発明のフィルムは、高い耐熱性を達成できるため、フィルムコーティング工程の硬化温度、および乾燥速度を高めることができ、生産性を向上させることが可能である。
 なお、本発明のフィルムに対する表面処理の目的は上記に限定されない。本発明のフィルムは、その用途に関係なく、表面処理が施されていてもよい。このような表面処理は特に限定されないが、例えば、コロナ処理、プラズマ処理、紫外線照射、アルカリ処理等を挙げることができる。中でも、コロナ処理が好ましい。
 本発明のフィルムの厚みは特に限定されないが、500μm以下であることが好ましく、300μm以下であることがさらに好ましく、200μm以下であることが特に好ましい。また、10μm以上であることが好ましく、30μm以上であることがより好ましく、50μm以上であることがさらに好ましく、100μm以上であることが特に好ましい。フィルムの厚みが上記範囲内であれば、当該フィルムを用いて真空成形を実施する際に変形しにくく、深絞り部での破断が発生しにくいという利点があり、さらに、光学特性が均一で、透明性が良好なフィルムを製造することができる。一方、フィルムの厚みが上記範囲を越えると、成形後のフィルムの冷却が不均一になり、光学的特性が不均一になる傾向がある。また、フィルムの厚みが上記範囲を下回ると、フィルムの取扱が困難になることがある。
 本発明のフィルムは、ヘイズ値が2.0%以下であることが好ましく、1.0%以下であることがより好ましく、0.8%以下であることがさらに好ましく、0.5%以下であることが特に好ましい。本発明のフィルムのヘイズ値が上記範囲内であれば、フィルムの透明性を十分に高く、透明性が要求される光学用途、加飾用途、インテリアー用途、または、真空成形用途で好適である。
 本発明のフィルムは、全光線透過率が85%以上であることが好ましく、88%以上であることがより好ましい。全光線透過率が上記範囲内であれば、フィルムの透明性を十分に高く、透明性が要求される光学用途、加飾用途、インテリアー用途、または、真空成形用途で好適に用いることができる。
 本発明のフィルムは、ガラス転移温度が100℃以上が好ましく、115℃以上であることがより好ましく、120℃以上であることがさらに好ましく、124℃以上であることがなおさら好ましい。ガラス転移温度が上記範囲内であれば、十分に耐熱性が優れたフィルムを得ることができる。
 本発明のフィルムは、引張破断点伸度が10%以上であることが好ましく、20%以上であることがより好ましく、30%以上であることがさらに好ましく、40%以上であることがなおさら好ましく、50%以上であることがとりわけ好ましく、60%以上であることが特に好ましく、90%以上であることが最も好ましい。上記範囲内の引張破断点伸度を示す本発明のフィルムは、当該フィルムをトムソン刃またはカッター刃で切り抜く時にクラックが発生しにくいこと(トリミング性)、および、当該フィルムをロールに巻き取る時、または、当該フィルムの表面に対しコーティング、蒸着、スパッタリング、保護フィルムの貼り合わせ等の後加工をする時に、破断しにくい。またフィルムを折り曲げたときの耐割れ性が高く、後加工工程のみならず、実際に製品として使用する際にも割れ等のトラブルがおこらない。この割れ性については特に引張破断点伸度が相関しており、引張破断点伸度が高いほど、耐割れ性に優れる。
 本発明のフィルムは上述のとおり光学フィルムとして使用することができる。この場合、特に偏光子保護フィルムとして使用する場合、光学異方性が小さいことが好ましい。特に、フィルムの面内方向(長さ方向、幅方向)の光学異方性だけでなく、厚み方向の光学異方性についても小さいことが好ましい。換言すれば、面内位相差、および、厚み方向位相差の絶対値がともに小さいことが好ましい。より具体的には、面内位相差は10nm以下であることが好ましく、6nm以下であることがより好ましく、5nm以下であることがより好ましく、3nm以下であることがさらに好ましい。また、厚み方向位相差の絶対値は50nm以下であることが好ましく、20nm以下であることがより好ましく、10nm以下であることがさらに好ましく、5nm以下であることが最も好ましい。このような位相差を有するフィルムは、液晶表示装置の偏光板が備える偏光子保護フィルムとして好適に使用することができる。一方、フィルムの面内位相差が10nmを超えたり、厚み方向位相差の絶対値が50nmを超えたりすると、液晶表示装置の偏光板が備える偏光子保護フィルムとして用いる場合、液晶表示装置においてコントラストが低下するなどの問題が発生する場合がある。
 位相差は複屈折をベースに算出される指標値であり、面内位相差(Re)および厚み方向位相差(Rth)は、それぞれ、以下の式により算出することができる。3次元方向について完全光学等方である理想的なフィルムでは、面内位相差Re、厚み方向位相差Rthがともに0となる。
 Re=(nx-ny)×d
 Rth=((nx+ny)/2-nz)×d
 上記式中において、nx、ny、およびnzは、それぞれ、面内において伸張方向(ポリマー鎖の配向方向)をX軸、X軸に垂直な方向をY軸、フィルムの厚さ方向をZ軸とし、それぞれの軸方向の屈折率を表す。また、dはフィルムの厚さを表し、nx-nyは配向複屈折を表す。なお、溶融押出フィルムの場合は、MD方向がX軸、さらに延伸フィルムの場合は延伸方向がX軸となる。
 本発明の樹脂材料からなる成形体は、配向複屈折の値が、-15×10-4~15×10-4であることが好ましく、-10×10-4~10×10-4であることがより好ましく、-5×10-4~5×10-4であることがさらに好ましく、-1.6×10-4~1。6×10-4であることがなおさら好ましく-1×10-4~1×10-4であることがとりわけ好ましく、-0.5×10-4~0.5×10-4であることが特に好ましく、-0.2×10-4~0.2×10-4であることが最も好ましい。配向複屈折が上記範囲内であれば、成形加工時の複屈折が生じることなく、実用上問題ない成形体を得ることができる。
 また、本発明の樹脂材料からなるフィルムは、配向複屈折の値が、-1.7×10-4~1.7×10-4であることが好ましく、-1.6×10-4~1.6×10-4であることがより好ましく、-1.5×10-4~1.5×10-4であることがさらに好ましく、-1.0×10-4~1.0×10-4であることがなおさら好ましく、-0.5×10-4~0.5×10-4であることが特に好ましく、-0.2×10-4~0.2×10-4であることが最も好ましい。配向複屈折が上記範囲内であれば、成形加工時の複屈折が生じることなく、安定した光学特性を得ることができる。また液晶ディスプレイ等に使用される光学フィルムとしても非常に適している。
 本発明の樹脂材料からなる成形体は、光弾性定数が、-10×10-12~10×10-12であることが好ましく、-4×10-12~4×10-12であることがより好ましく、-2×10-12~2×10-12であることがさらに好ましく、-1×10-12~1×10-12であることがよりさらに好ましく、-0.5×10-12~0.5×10-12であることがさらに好ましく、-0.3×10-12~0.3×10-12であることが最も好ましい。光弾性定数が上記範囲内であれば、高温高湿などの環境下において成形体に応力がかかった際にも生じる複屈折が小さく、実用上問題ない成形体を得ることができる。
 また、本発明の樹脂材料からなるフィルムは、光弾性定数が、-4×10-12Pa-1~4×10-12Pa-1が好ましく、-1.5×10-12Pa-1~1.5×10-12Pa-1であることがより好ましく、-1.0×10-12Pa-1~1.0×10-12Pa-1であることがさらに好ましく、-0.5×10-12Pa-1~0.5×10-12Pa-1であることがなおさら好ましく、-0.3×10-12Pa-1~0.3×10-12Pa-1以下であることが最も好ましい。光弾性定数が上記範囲内であれば、本発明に係るフィルムを液晶表示装置に用いても、高温高湿などの環境下において成形体に応力がかかった際にも生じる複屈折が小さく、位相差ムラが発生したり、表示画面周辺部のコントラストが低下したり、光漏れが発生したりすることがない。
 本発明のフィルムは、熱安定性に優れるため、ろ過精度の高いポリマーフィルターを使用した成形をすることが可能となり、好ましくは100個/m未満、より好ましくは50個/m未満、さらに好ましくは10個/m未満など、異物数が少ないフィルムを得ることができる。
 以下、本発明を実施例にて具体的に説明するが、本発明はこれら実施例に限定されるものではない。以下で「部」および「%」は、特記ない限り、「重量部」および「重量%」を意味する。
 (グラフト共重合体の(メタ)アクリル系架橋重合体層までの体積平均粒子径)
 グラフト共重合体の(メタ)アクリル系架橋重合体層までの体積平均粒子径(アクリル系ゴム粒子の体積平均粒子径)は、アクリル系ゴム粒子ラテックスの状態で測定した。測定装置として、日機装株式会社製のMICROTRAC UPA150を用いて体積平均粒子径(μm)を測定した。
 (重合転化率)
 まず、得られたスラリーの一部を採取・精秤し、それを熱風乾燥器中で120℃、1時間乾燥し、その乾燥後の重量を固形分量として精秤した。次に、乾燥前後の精秤結果の比率をスラリー中の固形成分比率として求めた。最後に、この固形成分比率を用いて、以下の計算式により重合転化率を算出した。なお、この計算式において、連鎖移動剤は仕込み単量体として取り扱った。
  重合転化率(%)=〔(仕込み原料総重量×固形成分比率-水・単量体以外の原料総重量)/仕込み単量体重量〕×100
 (グラフト率)
 得られた重合体(B)2gをメチルエチルケトン50mlに溶解させ、遠心分離機(日立工機(株)製、CP60E)を用い、回転数30000rpmにて1時間遠心分離を行い、不溶分と可溶分とを分離した(遠心分離作業を合計3セット)。得られた不溶分を用いて、次式によりグラフト率を算出した。
 グラフト率(%)={(メチルエチルケトン不溶分の重量-架橋重合体層の重量)/架橋重合体層の重量}×100
 なお、架橋重合体層の重量は、架橋重合体層を構成する単官能性単量体の仕込み重量である。
 (ビカット軟化点)
 ビカット(Vicat)軟化点の測定は、得られた重合体(B)を用いて行った。重合体(B)を、8インチラボテストロール(日本ロール社製)で、ロール温度180℃、回転数が前ロール20rpm、後ロール18rpmの条件で5分間混練し、ロールシート(シート厚1.0mm、幅35cm)を得た。このロールシートを4~5枚重ねて、190℃で10分間プレスし、5mm厚の板を作製した。この板について、HDT.VSPT.TESTER(型番S-6M;東洋精機製作所製)を使用し、JIS K7206に準じて、昇温速度0.8℃/min、1kgf荷重にて測定を行った。
 (イミド化率)
 イミド化率の算出は、IRを用いて下記の通り行った。生成物のペレットを塩化メチレンに溶解し、その溶液について、SensIR Tecnologies社製TravelIRを用いて、室温にてIRスペクトルを測定した。得られたIRスペクトルより、1720cm-1のエステルカルボニル基に帰属する吸収強度(Absester)と、1660cm-1のイミドカルボニル基に帰属する吸収強度(Absimide)との比からイミド化率(Im%(IR))を求めた。ここで、「イミド化率」とは、全カルボニル基中のイミドカルボニル基の占める割合をいう。
 (グルタルイミド単位の含有量)
 H-NMR BRUKER AvanceIII(400MHz)を用いて、樹脂のH-NMR測定を行い、樹脂中のグルタルイミド単位またはエステル単位などの各モノマー単位それぞれの含有量(mol%)を求め、当該含有量(mol%)を、各モノマー単位の分子量を使用して含有量(重量%)に換算した。
 (酸価)
 得られたグルタルイミドアクリル系樹脂0.3gを37.5mlの塩化メチレンおよび37.5mlのメタノールの混合溶媒の中で溶解した。フェノールフタレインエタノール溶液を2滴加えた後に、0.1Nの水酸化ナトリウム水溶液を5ml加えた。過剰の塩基を0.1N塩酸で滴定し、酸価を、添加した塩基と中和に達するまでに使用した塩酸との間のミリ当量で示す差で算出した。
 (屈折率)
 各組成物の屈折率は、それぞれの組成物をシート状に加工し、JIS K7142に準じて、アタゴ社製アッベ屈折計2Tを用いて、ナトリウムD線波長における屈折率(nD)を測定した。
 (ガラス転移温度)
 セイコーインスツルメンツ製の示差走査熱量分析装置(DSC)SSC-5200を用い、試料を一旦200℃まで25℃/分の速度で昇温した後10分間ホールドし、25℃/分の速度で50℃まで温度を下げる予備調整を経て、10℃/分の昇温速度で200℃まで昇温する間の測定を行い、得られたDSC曲線から積分値を求め(DDSC)、その極大点からガラス転移温度を求めた。
 (全光線透過率・ヘイズ値)
 フィルムの全光線透過率、ヘイズ値は、(株)日本電色工業 NDH-300Aを用い、JIS K7105に記載の方法にて測定した。
 (膜厚)
 フィルムの膜厚は、デジマティックインジケーター(株式会社ミツトヨ製)を用いて測定した。
 (一軸延伸フィルム(2倍延伸)の作製、および配向複屈折の測定)
 未延伸の膜厚125μmの原反フィルムから、25mm×90mmの試験片を切り出し(MD方向に長辺が来るように切り出す)、両短辺を保持してガラス転移温度+30℃にて2分保ち、2倍(100%に延伸とも言う)に長さ方向へ200mm/分の速度で一軸に延伸した(この際、両長辺は固定なし)。その後、得られたフィルムを23℃に冷却し、サンプル中央部分をサンプリングし、自動複屈折計(王子計測株式会社製 KOBRA-WR)を用いて、温度23±2℃、湿度50±5%において、波長590nm、入射角0°にて複屈折(配向複屈折)を測定した。同時に、面内位相差Re、厚み方向位相差Rth(入射角40°)も測定した。(面内位相差Re、厚み方向位相差Rthに関しては、その詳細を後述する)
 なお、重合体(B)単体の一軸延伸フィルム、および配向複屈折の測定に関しては、重合体(B)単品を、190℃でプレスし、膜厚500μmのプレス板を作成した。得られたプレス板中央部から、25mm×90mmの試験片を切り出し、上記記載と同様に測定した。
 樹脂(A)は、実施例1と同様にして未延伸の膜厚125μmの原反フィルムを製造し、上記記載と同様に測定した。
 (原反フィルムの配向複屈折)
 未延伸の原反フィルム(膜厚125μm)から40mm×40mmの試験片を切り出し、自動複屈折計(王子計測株式会社製 KOBRA-WR)を用いて、温度23±2℃、湿度50±5%において、波長590nm、入射角0°にて測定した。同時に、面内位相差Re、厚み方向位相差Rth(入射角40°)も測定した。(面内位相差Re、厚み方向位相差Rthに関しては、その詳細を後述する)
 (面内位相差Reおよび厚み方向位相差Rth)
 膜厚125μmのフィルムから、40mm×40mmの試験片を切り出した。この試験片の面内位相差Reを、自動複屈折計(王子計測株式会社製 KOBRA-WR)を用いて、温度23±2℃、湿度50±5%において、波長590nm、入射角0゜で測定した。
 デジマティックインジケーター(株式会社ミツトヨ製)を用いて測定した試験片の厚みd、アッベ屈折計(株式会社アタゴ製 3T)で測定した屈折率n、自動複屈折計で測定した波長590nmでの面内位相差Reおよび40°傾斜方向の位相差値から3次元屈折率nx、ny、nzを求め、厚み方向位相差 Rth=((nx+ny)/2-nz)×d を計算した。なお、測定値に、100(μm)/フィルム厚さ(μm)を掛けて、100μm厚換算値とし、表3に記載した。
 (光弾性定数)
 膜厚125μmのフィルムからTD方向に15mm×90mmの短冊状に試験片を切断した(TD方向に長辺がくるように切り出す)。自動複屈折計(王子計測株式会社製 KOBRA-WR)を用いて、温度23±2℃、湿度50±5%において、波長590nm、入射角0°にて測定した。測定は、フィルムの長辺の一方を固定し、他方は無荷重から4kgfまで0.5kgfずつ荷重をかけた状態で複屈折を測定し、得られた結果から、単位応力による複屈折の変化量を算出した。
 なお、重合体(B)単体の光弾性定数の測定に関しては、重合体(B)単品を、190℃でプレスし、膜厚500μmのプレス板を作成する。得られたプレス板中央部から、15mm×90mmの試験片を切り出し、上記記載と同様に測定した。
 樹脂(A)は、実施例1と同様にして未延伸の膜厚125μmの原反フィルムを製造し、上記記載と同様に測定した。
 (異物評価)
 得られたフィルムから1m分を切り出し、20μm以上の異物数をマイクロスコープ観察などでカウントし、合計して異物数とした。
○:100個/m未満
×:100個/m以上
 (機械的強度の評価)
 機械的強度は、トリミング性評価と、耐割れ性の指標である引張破断点伸度(引張伸び:%)で評価した。
 トリミング性評価:膜厚125μmのフィルムを、カッターナイフを用いて切断し、次の評価をした。
○:切断面にクラック発生が認められない。
△:切断面にクラック発生が認められる。
×:切断面にクラック発生が著しく認められる。
 引張破断点伸度:膜厚125μmのフィルムを用いた。引張試験はISO527-3(JIS K7127)に準拠し、試験片は試験片タイプ5、試験速度はMD方向にて200mm/min、温度23±2℃、湿度50±5%で測定した。
 (熱安定性)
 熱安定性は、溶融粘度低下率と熱重量測定(TGA)を用いて測定した。
・溶融粘度低下率
 得られた樹脂組成物を、JIS K7199に準拠した条件下(ダイス温度260℃、剪断速度24sec-1、キャピラリーダイ径1mm、滞留時間1時間)にて溶融粘度を測定し、滞留時間10分時における溶融粘度に対する滞留時間1時間時における溶融粘度の下記計算式に表される溶融粘度低下率を算出し、熱安定性の指標とした。また、試験後のストランド中に、樹脂の熱分解に由来する発泡の有無も観察した。
溶融粘度低下率=
(滞留時間10分時における溶融粘度-滞留時間1時間時における溶融粘度)/(滞留時間10分時における溶融粘度)×100(%)
 熱安定性および溶融粘度を以下の基準で評価した。
熱安定性:
○:溶融粘度低下率が20%未満で、ストランド中に発泡なし
×:溶融粘度低下率が20%以上で、ストランド中に発泡あり
溶融粘度:
○:溶融粘度が低く、問題なく押出可能である。
×:溶融粘度が高く、フィルターが破損し、ろ過精度がでない。
 ・熱重量測定(TGA)
セイコーインスツルメンツ製のSII EXSTAR 6000、TG/DTA 6300を用いた。スタート温度は30℃、最終温度は460℃、昇温速度は5℃/分、保持時間0分で測定を実施した。試料はフィルム化前のペレットを用い、試料量は20mg、パージガスは窒素(400ml/分)で行った。
1%重量減少温度は以下のように算出した。
  重量減少率=((wt-wt0)/wt0)×100%
  wt=その温度の試料重量
  wt0=基準重量(40℃の試料の重量)
  重量減少率が-1%となった時の温度=1%重量減少温度と定義
 (耐溶剤性)
 膜厚125μmのフィルムを用いた。23℃の雰囲気下、パスツールピペットを用いて0.5ml滴下し、完全に揮発するまで1時間放置した(N=10で実施)。
○:表面にシワ、凹凸の発生などの変形が起こらない。
×:表面にシワ、凹凸の発生等の変形が起こる。
 (成形体の外観評価)
 膜厚60μmのフィルムを用い、以下のように判定した。
○:表面ムラ、微細な梨地状の荒れなどがなく、MD方向1mの厚みのバラつきが2μm以下である。
×:表面ムラ、微細な梨地状の荒れなどがあり、MD方向1mの厚みのバラつきが2μmよりも大きい。
 (製造例1)
 <グルタルイミドアクリル系樹脂(A1)の製造>
 原料樹脂としてポリメタクリル酸メチル、イミド化剤としてモノメチルアミンを用いて、グルタルイミドアクリル系樹脂(A1)を製造した。
 この製造においては、押出反応機を2台直列に並べたタンデム型反応押出機を用いた。
 タンデム型反応押出機に関しては、第1押出機、第2押出機共に直径が75mm、L/D(押出機の長さLと直径Dの比)が74の噛合い型同方向二軸押出機を使用し、定重量フィーダー(クボタ(株)製)を用いて、第1押出機の原料供給口に原料樹脂を供給した。
 第1押出機、第2押出機における各ベントの減圧度は-0.095MPaとした。更に、直径38mm、長さ2mの配管で第1押出機と第2押出機を接続し、第1押出機の樹脂吐出口と第2押出機の原料供給口を接続する部品内圧力制御機構には定流圧力弁を用いた。
 第2押出機から吐出された樹脂(ストランド)は、冷却コンベアで冷却した後、ペレタイザでカッティングしペレットとした。ここで、第1押出機の樹脂吐出口と第2押出機の原料供給口を接続する部品内圧力調整、又は押出変動を見極めるために、第1押出機の吐出口、第1押出機と第2押出機間の接続部品の中央部、および、第2押出機の吐出口に樹脂圧力計を設けた。
 第1押出機において、原料樹脂としてポリメタクリル酸メチル樹脂(Mw:10.5万)を使用し、イミド化剤として、モノメチルアミンを用いてイミド樹脂中間体1を製造した。この際、押出機の最高温部の温度は280℃、スクリュー回転数は55rpm、原料樹脂供給量は150kg/時間、モノメチルアミンの添加量は原料樹脂100部に対して2.0部とした。定流圧力弁は第2押出機の原料供給口直前に設置し、第1押出機のモノメチルアミン圧入部圧力を8MPaになるように調整した。
 第2押出機において、リアベント及び真空ベントで残存しているイミド化剤及び副生成物を脱揮したのち、エステル化剤として炭酸ジメチルを添加しイミド樹脂中間体2を製造した。この際、押出機の各バレル温度は260℃、スクリュー回転数は55rpm、炭酸ジメチルの添加量は原料樹脂100部に対して3.2部とした。更に、ベントでエステル化剤を除去した後、ストランドダイから押し出し、水槽で冷却した後、ペレタイザでペレット化することで、グルタルイミドアクリル系樹脂(A1)を得た。
 得られたグルタルイミドアクリル系樹脂(A1)は、一般式(1)で表されるグルタミルイミド単位と、一般式(2)で表される(メタ)アクリル酸エステル単位が共重合したアクリル系樹脂(A)である。
 グルタルイミドアクリル系樹脂(A1)について、上記の方法に従って、イミド化率、グルタルイミド単位の含有量、酸価、ガラス転移温度、および、屈折率を測定した。その結果、イミド化率は13%、グルタルイミド単位の含有量は7重量%、酸価は0.4mmol/g、ガラス転移温度は130℃、屈折率は1.50であった。グルタルイミドアクリル系樹脂(A1)の光弾性定数の符号は-(マイナス)であった。
 (製造例2)
 <グラフト共重合体(B1)の製造>
 撹拌機付き8L重合装置に、以下の物質を仕込んだ。
脱イオン水                     200部
ポリオキシエチレンラウリルエーテルリン酸ナトリウム   0.05部
ソディウムホルムアルデヒドスルフォキシレ-ト    0.11部
エチレンジアミン四酢酸-2-ナトリウム       0.004部
硫酸第一鉄                       0.001部
 重合機内を窒素ガスで充分に置換し実質的に酸素のない状態とした後、内温を40℃にし、表2に示したアクリル系ゴム粒子(B-1)の原料混合物45.266部を135分かけて連続的に添加した。(B-1)追加開始から12分後、24分後、36分後にポリオキシエチレンラウリルエーテルリン酸ナトリウム(ポリオキシエチレンラウリルエーテルリン酸(東邦化学工業株式会社製、商品名:フォスファノールRD-510Yのナトリウム塩)0.2部ずつ重合機に添加した。添加終了後、さらに0.5時間重合を継続し、アクリル系ゴム粒子((B-1)の重合物)を得た。重合転化率は99.4%であった。
 その後、内温を60℃にし、ソディウムホルムアルデヒドスルフォキシレ-ト0.2部を仕込んだ後、表2に示した硬質重合体層(B-2)の原料混合物55.254部を165分間かけて連続的に添加し、さらに1時間重合を継続し、グラフト共重合体ラテックスを得た。重合転化率は100.0%であった。得られたラテックスを硫酸マグネシウムで塩析、凝固し、水洗、乾燥を行い、白色粉末状のグラフト共重合体(B1)を得た。
 グラフト共重合体(B1)のゴム粒子(B-1の重合物)の平均粒子径は133nmであった。グラフト共重合体(B1)のグラフト率は77%であった。グラフト共重合体(B1)のビカット軟化点は、81.3℃であった。
 (製造例3)
 <グラフト共重合体(B2)の製造>
 撹拌機付き8L重合装置に、以下の物質を仕込んだ。
脱イオン水                     200部
ポリオキシエチレンラウリルエーテルリン酸ナトリウム   0.05部
ソディウムホルムアルデヒドスルフォキシレ-ト    0.11部
エチレンジアミン四酢酸-2-ナトリウム       0.004部
硫酸第一鉄                       0.001部
 重合機内を窒素ガスで充分に置換し実質的に酸素のない状態とした後、内温を40℃にし、表2に示したアクリル系ゴム粒子(B-1)の原料混合物45.266部を135分かけて連続的に添加した。(B-1)追加開始から12分後、37分後、62分後、87分後にポリオキシエチレンラウリルエーテルリン酸ナトリウム(ポリオキシエチレンラウリルエーテルリン酸(東邦化学工業株式会社製、商品名:フォスファノールRD-510Yのナトリウム塩)を、0.21部、0.21部、0.21部、0.11部ずつ重合機に添加した。添加終了後、さらに0.5時間重合を継続し、アクリル系ゴム粒子((B-1)の重合物)を得た。重合転化率は99.9%であった。
 その後、内温を60℃にし、ポリオキシエチレンラウリルエーテルリン酸ナトリウム(ポリオキシエチレンラウリルエーテルリン酸(東邦化学工業株式会社製、商品名:フォスファノールRD-510Yのナトリウム塩)を0.11部、続けてソディウムホルムアルデヒドスルフォキシレ-ト0.2部を仕込んだ後、表2に示した硬質重合体層(B-2)の原料混合物55.309部を165分間かけて連続的に添加し、さらに1時間重合を継続し、グラフト共重合体ラテックスを得た。重合転化率は100.0%であった。得られたラテックスを硫酸マグネシウムで塩析、凝固し、水洗、乾燥を行い、白色粉末状のグラフト共重合体(B2)を得た。
 グラフト共重合体(B2)のゴム粒子(B-1の重合物)の平均粒子径は117nmであった。グラフト共重合体(B2)のグラフト率は69%であった。グラフト共重合体(B2)のビカット軟化点は、86.4℃であった。
 (製造例4)
 <グラフト共重合体(B3)の製造>
 撹拌機付き8L重合装置に、以下の物質を仕込んだ。
脱イオン水                      200部
ポリオキシエチレンラウリルエーテルリン酸ナトリウム   0.45部
ソディウムホルムアルデヒドスルフォキシレ-ト    0.11部
エチレンジアミン四酢酸-2-ナトリウム       0.004部
硫酸第一鉄                       0.001部
 重合機内を窒素ガスで充分に置換し実質的に酸素のない状態とした後、内温を40℃にし、表2に示したアクリル系ゴム粒子(B-1)の原料混合物46.391部を225分かけて連続的に添加した。(B-1)追加開始から50分後にポリオキシエチレンラウリルエーテルリン酸ナトリウム(ポリオキシエチレンラウリルエーテルリン酸(東邦化学工業株式会社製、商品名:フォスファノールRD-510Yのナトリウム塩)0.2部を重合機に添加した。添加終了後、さらに0.5時間重合を継続し、アクリル系ゴム粒子((B-1)の重合物)を得た。重合転化率は99.7%であった。
 その後、内温を60℃にし、ソディウムホルムアルデヒドスルフォキシレ-ト0.2部を仕込んだ後、表2に示した硬質重合体層(B-2)の原料混合物55.254部を210分間かけて連続的に添加し、さらに1時間重合を継続し、グラフト共重合体ラテックスを得た。重合転化率は100.0%であった。得られたラテックスを硫酸マグネシウムで塩析、凝固し、水洗、乾燥を行い、白色粉末状のグラフト共重合体(B3)を得た。
 グラフト共重合体(B3)のゴム粒子(B-1の重合物)の平均粒子径は72nmであった。グラフト共重合体(B3)のグラフト率は87%であった。
Figure JPOXMLDOC01-appb-T000002
 (実施例1~3、比較例1~3)
 直径40mmのフルフライトスクリューを用いた単軸押出機を用い、押出機の温度調整ゾーンの設定温度を255℃、スクリュー回転数を52rpmとし、表3に示すアクリル系樹脂(A)、および重合体(B)の混合物を、10kg/hrの割合で供給した。押出機出口に設けられたダイスからストランドとして出てきた樹脂を水槽で冷却し、ペレタイザでペレット化した。
 得られたペレットを、目開き5μmのリーフディスクフィルターを備えた、出口にTダイを接続した単軸押出機を用い、押出機の温度調整ゾーンの設定温度を260℃、スクリュー回転数を20rpmとし、ペレットを10kg/hrの割合で供給し、溶融押出することにより、表3に示す膜厚のフィルムを得た。これらフィルムについて各種物性を評価した。
 実施例1~3で得られた樹脂ペレットを、島津製作所社製熱分解ガスクロマトグラフ-質量分析装置を用いて測定したところ、メタノール(71ppm)およびベンジルアルコール(15ppm)が検出されたため、グルタル酸無水物構造の生成が推定される。
Figure JPOXMLDOC01-appb-T000003
 表3で示すように、実施例1~3で得られたフィルムは、耐熱性が高く、透明性も高く、トリミング性などの機械的強度にも優れる。またフィルムの配向複屈折も低く、延伸しても配向複屈折はほとんど発生しない。その上、光弾性定数も極めて小さい値であり、フィルムに応力がかかった際にも複屈折がほぼ発生しないなど、光学異方性が極めて小さいことがわかる。また、熱安定性も高く、溶融粘度が低いために、成形時に5μmなどの目開きの小さいフィルターでのろ過が可能であり、フィッシュアイなどの異物がないフィルムを得ることが可能である。さらに、熱安定性、耐溶剤性も高く、フィルム外観も優れることがわかる。

Claims (54)

  1.  熱可塑性樹脂(A)、および下記条件を満たす重合体(B)を含有する樹脂材料:
    前記重合体(B)が多段重合で得られるグラフト共重合体であって、前記多段重合の少なくとも1段が、式(4)で表される単量体、および、(メタ)アクリル酸および/またはその塩を含有する単量体混合物の重合である。 
    Figure JPOXMLDOC01-appb-C000011

    (式(4)中、Rは、水素原子、または、置換もしくは無置換で直鎖状もくしは分岐状の炭素数1~12のアルキル基を表す。R10は、置換もしくは無置換の炭素数1~24の芳香族基、または、置換もしくは無置換の炭素数1~24の脂環式基であり、単素環式構造または複素環式構造を有する。lは1~4の整数を示す。mは0~1の整数を示す。nは0~10の整数を示す。)
  2.  前記単量体混合物の重合体が硬質重合体である、請求項1に記載の樹脂材料。
  3.  前記単量体混合物が、前記式(4)で表される単量体1~99.9重量%、(メタ)アクリル酸および/またはその塩0.1~30重量%、これらと共重合可能な他の単量体98.9~0重量%、および多官能性単量体0~2.0重量部(前記式(4)で表される単量体、前記(メタ)アクリル酸および/またはその塩、および前記これらと共重合可能な他の単量体の総量100重量部に対して)を含有する、請求項1または2に記載の樹脂材料。
  4.  前記グラフト共重合体が架橋構造を有する、請求項1~3のいずれか一項に記載の樹脂材料。
  5.  前記グラフト共重合体が(メタ)アクリル系架橋重合体からなる架橋構造を有する、請求項1~4のいずれか一項に記載の樹脂材料。
  6.  前記架橋構造が、アクリル酸エステル50~100重量%、これと共重合可能な他の単量体50~0重量%、および多官能性単量体0.05~10重量部(前記アクリル酸エステルおよび前記これと共重合可能な他の単量体の総量100重量部に対して)を重合して形成される、請求項4または5に記載の樹脂材料。
  7.  前記グラフト共重合体が、(B-1)アクリル酸エステル50~100重量%、これと共重合可能な他の単量体50~0重量%、および多官能性単量体0.05~10重量部(前記アクリル酸エステルおよび前記これと共重合可能な他の単量体の総量100重量部に対して)からなる単量体混合物を重合して(メタ)アクリル系架橋構造含有重合体を得、(B-1)前記(メタ)アクリル系架橋構造含有重合体の存在下に、式(4)で表される単量体、および、(メタ)アクリル酸および/またはその塩を含有する単量体混合物を重合して形成される、請求項1~6のいずれか一項に記載の樹脂材料。
  8.  前記架橋構造までの体積平均粒子径が20~450nmである、請求項4~7のいずれか一項に記載の樹脂材料。
  9.  前記架橋構造の含有量が、樹脂材料100重量部において1~60重量部である、請求項4~8のいずれか一項に記載の樹脂材料。
  10.  熱可塑性樹脂(A)、および下記条件を満たす重合体(B)を含有する樹脂材料:
    前記重合体(B)が多層構造グラフト共重合体であって、前記多層構造の少なくとも1層が、式(4)で表される単量体構造単位、および、(メタ)アクリル酸および/またはその塩構造単位を含有する重合体層。
    Figure JPOXMLDOC01-appb-C000012

    (式(4)中、Rは水素原子、または、置換もしくは無置換で直鎖状もくしは分岐状の炭素数1~12のアルキル基を表す。R10は、置換もしくは無置換の炭素数1~24の芳香族基、または、置換もしくは無置換の炭素数1~24の脂環式基であり、単素環式構造または複素環式構造を有する。lは1~4の整数を示す。mは0~1の整数を示す。nは0~10の整数を示す。)
  11.  前記重合体層が硬質重合体層である、請求項10に記載の樹脂材料。
  12.  前記重合体層が、前記式(4)で表される単量体1~99.9重量%、(メタ)アクリル酸および/またはその塩0.1~30重量%、これらと共重合可能な他の単量体98.9~0重量%、および多官能性単量体0~2.0重量部(前記式(4)で表される単量体、前記(メタ)アクリル酸および/またはその塩、および前記これらと共重合可能な他の単量体の総量100重量部に対して)を含有する単量体混合物からなる、請求項10または11に記載の樹脂材料。
  13.  前記多層構造グラフト共重合体が架橋重合体層を有する、請求項10~12のいずれか一項に記載の樹脂材料。
  14.  前記多層構造グラフト共重合体が(メタ)アクリル系架橋重合体層を有する、請求項10~13のいずれか一項に記載の樹脂材料。
  15.  前記架橋重合体層が、アクリル酸エステル50~100重量%、これと共重合可能な他の単量体50~0重量%、および多官能性単量体0.05~10重量部(前記アクリル酸エステルおよび前記これと共重合可能な他の単量体の総量100重量部に対して)を重合して形成される、請求項13または14に記載の樹脂材料。
  16.  前記多層構造グラフト共重合体が、(B-1)アクリル酸エステル50~100重量%、これと共重合可能な他の単量体50~0重量%、および多官能性単量体0.05~10重量部(前記アクリル酸エステルおよび前記これと共重合可能な他の単量体の総量100重量部に対して)からなる単量体混合物を重合して(メタ)アクリル系架橋重合体層を形成し、(B-2)前記(メタ)アクリル系架橋重合体層を含有する重合体の存在下に、式(4)で表される単量体、および、(メタ)アクリル酸および/またはその塩を含有する単量体混合物を重合して層が形成される、請求項10~15のいずれか一項に記載の樹脂材料。
  17.  前記架橋重合体層までの体積平均粒子径が20~450nmである、請求項13~16のいずれか一項に記載の樹脂材料。
  18.  前記架橋重合体の含有量が、樹脂材料100重量部において1~60重量部である、請求項13~17のいずれか一項に記載の樹脂材料。
  19.  前記式(4)で表される単量体が、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニル、及び(メタ)アクリル酸フェノキシエチルからなる群より選択される少なくとも1種である、請求項1~18のいずれか一項に記載の樹脂材料。
  20.  前記熱可塑性樹脂(A)がアクリル系樹脂である、請求項1~19のいずれか一項に記載の樹脂材料。
  21.  前記熱可塑性樹脂(A)が、100℃以上のガラス転移温度を有する、請求項1~20のいずれか一項に記載の樹脂材料。
  22.  前記熱可塑性樹脂(A)が、酸価が0.01~5mmol/gである、請求項1~21のいずれか一項に記載の樹脂材料。
  23.  前記熱可塑性樹脂(A)が、グルタルイミドアクリル系樹脂、ラクトン環含有アクリル系重合体、スチレン単量体およびそれと共重合可能な他の単量体を重合して得られるスチレン系重合体の芳香族環を部分水素添加して得られる部分水添スチレン系重合体、環状酸無水物繰り返し単位を含有するアクリル系重合体、共重合成分としてN-置換マレイミド化合物が共重合されているアクリル系樹脂、並びに、水酸基および/またはカルボキシル基を含有するアクリル系重合体からなる群より選択される少なくとも1種を含む、請求項1~22のいずれか一項に記載の樹脂材料。
  24.  前記熱可塑性樹脂(A)が、下記一般式(1)で表される単位と、下記一般式(2)で表される単位とを有するグルタルイミドアクリル系樹脂を含む、請求項1~23のいずれか一項に記載の樹脂材料。
    Figure JPOXMLDOC01-appb-C000013

    (式(1)中、RおよびRは、それぞれ独立して、水素または炭素数1~8のアルキル基であり、Rは、水素、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または、芳香環を含む炭素数5~15の置換基である。)
    Figure JPOXMLDOC01-appb-C000014

    (式(2)中、RおよびRは、それぞれ独立して、水素または炭素数1~8のアルキル基であり、Rは、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または、芳香環を含む炭素数5~15の置換基である。)
  25.  前記グルタルイミドアクリル系樹脂が下記一般式(3)で表される単位を含まない、請求項24に記載の樹脂材料。
    Figure JPOXMLDOC01-appb-C000015

    (式(3)中、Rは、水素または炭素数1~8のアルキル基であり、Rは、炭素数6~10のアリール基である。)
  26.  1%重量減少温度が290℃以上である、請求項1~25のいずれか1項に記載の樹脂材料。
  27.  引張破断点伸度が10%以上である、請求項1~26のいずれか1項に記載の樹脂材料。
  28.  前記熱可塑性樹脂(A)の光弾性定数と前記重合体(B)の光弾性定数とが異符号である、請求項1~27のいずれか一項に記載の樹脂材料。
  29.  配向複屈折が-1.7×10-4から1.7×10-4である、請求項1~28のいずれか一項に記載の樹脂材料。
  30.  光弾性定数が-4×10-12から4×10-12Pa-1である、請求項1~29のいずれか一項に記載の樹脂材料。
  31.  複屈折性を有する無機微粒子をさらに含有する、請求項1~30のいずれか1項に記載の樹脂材料。
  32.  複屈折性を有する低分子化合物をさらに含有する、請求項1~31のいずれか1項に記載の樹脂材料。
  33.  請求項1~32のいずれか一項に記載の樹脂材料からなる、成形体。
  34.  請求項1~32のいずれか一項に記載の樹脂材料からなる、フィルム。
  35.  請求項1~32のいずれか一項に記載の樹脂材料を溶融押出法により成形してなる、フィルム。
  36.  光学用フィルムである、請求項34または35に記載のフィルム。
  37.  フィルムの厚みが10~500μmである、請求項34~36のいずれか一項に記載のフィルム。
  38.  配向複屈折が-1.7×10-4から1.7×10-4である、請求項34~37のいずれか一項に記載のフィルム。
  39.  光弾性定数が-4×10-12から4×10-12Pa-1である、請求項34~38のいずれか一項に記載のフィルム。
  40.  引張破断点伸度が10%以上である、請求項34~39のいずれか1項に記載のフィルム。
  41.  請求項1~32のいずれか一項に記載の樹脂材料を加熱溶融して得られる、ペレット。
  42.  前記重合体(B)の式(4)で表される単量体と(メタ)アクリル酸および/またはその塩とを含有する単量体混合物を重合して形成される重合体が、カルボキシル基および/またはその塩を含む構造単位、および/または、酸無水物構造単位を有する、請求項1~32のいずれか一項に記載の樹脂材料。
  43.  次の(B-1)層および(B-2)層を有する、多層構造グラフト共重合体。
    (B-1)架橋重合体層、
    (B-2)式(4)で表される単量体と、(メタ)アクリル酸および/またはその塩とを含有する単量体混合物を重合して形成される層。
    Figure JPOXMLDOC01-appb-C000016

    (式(4)中、Rは水素原子、または、置換もしくは無置換で直鎖状もくしは分岐状の炭素数1~12のアルキル基を表す。R10は、置換もしくは無置換の炭素数1~24の芳香族基、または、置換もしくは無置換の炭素数1~24の脂環式基であり、単素環式構造または複素環式構造を有する。lは1~4の整数を示す。mは0~1の整数を示す。nは0~10の整数を示す。)
  44.  前記(B-2)層が、前記式(4)で表される単量体1~99.9重量%、(メタ)アクリル酸および/またはその塩0.1~30重量%、これらと共重合可能な他の単量体98.9~0重量%、および多官能性単量体0~2.0重量部(前記式(4)で表される単量体、前記(メタ)アクリル酸および/またはその塩、および前記これらと共重合可能な他の単量体の総量100重量部に対して)を重合して形成される層である、請求項43に記載の多層構造グラフト共重合体。
  45.  前記(B-1)架橋重合体層が、ブタジエン系架橋重合体層、(メタ)アクリル系架橋重合体層、およびオルガノシロキサン系架橋重合体層からなる群から選ばれる少なくとも一種である、請求項43~44のいずれか一項に記載の多層構造グラフト共重合体。
  46.  前記(B-1)架橋重合体層の少なくとも一層が、アクリル酸エステル50~100重量%、これと共重合可能な他の単量体50~0重量%、および多官能性単量体0.05~10重量部(前記アクリル酸エステルおよび前記これと共重合可能な他の単量体の総量100重量部に対して)からなる単量体混合物を重合して得られる (メタ)アクリル系架橋重合体層である、請求項43~45のいずれか一項に記載の多層構造グラフト共重合体。
  47.  前記(B-1)架橋重合体層までの体積平均粒子径が20~450nmである、請求項43~46のいずれか一項に記載の多層構造グラフト共重合体。
  48.  前記式(4)で表される単量体が、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニル、及び(メタ)アクリル酸フェノキシエチルからなる群より選択される少なくとも1種である、請求項43~47のいずれか一項に記載の多層構造グラフト共重合体。
  49.  グラフト率が10~250重量%である、請求項43~48のいずれか一項に記載の多層構造グラフト共重合体。
  50.  前記(B-1)架橋重合体層が、多層構造グラフト共重合体100重量%において10~90重量%である、請求項43~49のいずれか一項に記載の多層構造グラフト共重合体。
  51.  前記(B-1)架橋重合体層を内層に有し、前記(B-2)層を外層に有する、請求項43~50のいずれか一項に記載の多層構造グラフト共重合体。
  52.  さらに、最内層に硬質重合体層を有する、請求項51の多層構造グラフト共重合体。
  53.  前記(B-2)層が、カルボキシル基および/またはその塩を含む構造単位、および/または、酸無水物構造を有する、請求項43~52のいずれか一項に記載の樹脂材料。
  54. 熱可塑性樹脂および多層グラフト共重合体を含有する成形体であって、
    前記多層グラフト共重合体が、
    式(4)で表される単量体構造単位、および、グルタル酸無水物構造単位を含有する重合体層を有する、
    成形体。
    Figure JPOXMLDOC01-appb-C000017

    (式(4)中、Rは水素原子、または、置換もしくは無置換で直鎖状もくしは分岐状の炭素数1~12のアルキル基を表す。R10は、置換もしくは無置換の炭素数1~24の芳香族基、または、置換もしくは無置換の炭素数1~24の脂環式基であり、単素環式構造または複素環式構造を有する。lは1~4の整数を示す。mは0~1の整数を示す。nは0~10の整数を示す。)
PCT/JP2014/005855 2013-11-22 2014-11-21 樹脂材料、およびそのフィルム WO2015075941A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14864039.4A EP3072926A4 (en) 2013-11-22 2014-11-21 Resin material and film thereof
CN201480063589.8A CN105764982B (zh) 2013-11-22 2014-11-21 树脂材料及其膜
JP2015548996A JP6523176B2 (ja) 2013-11-22 2014-11-21 樹脂材料、およびそのフィルム
US15/038,310 US10174191B2 (en) 2013-11-22 2014-11-21 Resin material and film thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-242278 2013-11-22
JP2013242278 2013-11-22

Publications (1)

Publication Number Publication Date
WO2015075941A1 true WO2015075941A1 (ja) 2015-05-28

Family

ID=53179223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005855 WO2015075941A1 (ja) 2013-11-22 2014-11-21 樹脂材料、およびそのフィルム

Country Status (6)

Country Link
US (1) US10174191B2 (ja)
EP (1) EP3072926A4 (ja)
JP (1) JP6523176B2 (ja)
CN (1) CN105764982B (ja)
TW (1) TWI644962B (ja)
WO (1) WO2015075941A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015079693A1 (ja) * 2013-11-29 2017-03-16 株式会社カネカ 光学用樹脂組成物、およびフィルム
WO2019202992A1 (ja) * 2018-04-19 2019-10-24 東洋紡株式会社 折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルムとその用途

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10578773B2 (en) 2013-11-29 2020-03-03 Kaneka Corporation Optical resin composition and film
EP3088473A4 (en) 2013-12-25 2017-08-30 Kaneka Corporation Optical resin composition and molded article
KR102321555B1 (ko) * 2016-08-10 2021-11-03 파나소닉 아이피 매니지먼트 가부시키가이샤 봉지용 아크릴 조성물, 시트재, 적층 시트, 경화물, 반도체 장치 및 반도체 장치의 제조 방법

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4373065A (en) 1981-02-17 1983-02-08 Xerox Corporation Optically isotropic devices
JP2002023363A (ja) * 2000-07-13 2002-01-23 Dainippon Ink & Chem Inc フォトリソグラフィー用樹脂組成物
JP2005023272A (ja) 2003-07-02 2005-01-27 Kaneka Corp イミドポリマーの製造方法
JP3648201B2 (ja) 1999-10-05 2005-05-18 康博 小池 非複屈折性の光学樹脂材料
JP3696649B2 (ja) 1994-08-18 2005-09-21 康博 小池 非複屈折性の光学樹脂材料及びその製造方法並びに光学樹脂材料を用いた液晶素子用の部材
JP2007254727A (ja) * 2006-02-22 2007-10-04 Nippon Shokubai Co Ltd 有機微粒子、樹脂組成物、光学フィルムおよび光学フィルムの製造方法
JP2008179778A (ja) * 2006-12-25 2008-08-07 Kao Corp インクジェット記録用インクセット
JP2009203434A (ja) * 2008-02-29 2009-09-10 Toray Ind Inc 多層構造重合体粒子からなる高耐熱ゴムフィルム、およびその製造方法
JP2009203435A (ja) * 2008-02-29 2009-09-10 Toray Ind Inc 耐熱性多層構造重合体粒子からなる光学フィルムの製造方法
JP2009203348A (ja) 2008-02-28 2009-09-10 Kaneka Corp 樹脂組成物、フィルムおよび偏光板
JP4336586B2 (ja) 2002-03-12 2009-09-30 康博 小池 非複屈折性光学樹脂材料からなる射出成形物並びに非複屈折性光学樹脂材料の製造方法
JP2009269975A (ja) * 2008-05-02 2009-11-19 Mitsubishi Rayon Co Ltd 樹脂組成物およびその製造方法、塗料組成物、積層体
JP2010096919A (ja) * 2008-10-15 2010-04-30 Asahi Kasei Chemicals Corp 光学フィルム
JP2010202798A (ja) * 2009-03-04 2010-09-16 Fujifilm Corp 水性インク組成物、インクセット、及び画像形成方法
WO2010119730A1 (ja) * 2009-04-15 2010-10-21 コニカミノルタオプト株式会社 光学素子
JP4624845B2 (ja) 2005-04-26 2011-02-02 康博 小池 非複屈折性光学樹脂材料及び光学部材
WO2012141413A1 (en) * 2011-04-13 2012-10-18 Lg Chem, Ltd. Resin composition for optical film and optical film using the same
JP2012255128A (ja) * 2011-05-18 2012-12-27 Fujifilm Corp 組成物、並びに、これを用いた透明膜、マイクロレンズ、固体撮像素子、透明膜の製造方法、マイクロレンズの製造方法、及び、固体撮像素子の製造方法
JP2013040325A (ja) * 2011-07-20 2013-02-28 Nippon Shokubai Co Ltd 成形材料
JP2013204025A (ja) * 2012-03-29 2013-10-07 Mimaki Engineering Co Ltd インクジェット用インク、反応液、インクセット、インクカートリッジ、インクジェット記録方法及びインクジェット記録装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916171A (en) * 1984-07-25 1990-04-10 Rohm And Haas Company Polymers comprising alkali-insoluble core/alkali-soluble shell and copositions thereof
JPS63122748A (ja) 1986-11-12 1988-05-26 Mitsubishi Rayon Co Ltd メタクリル樹脂組成物
JP3376283B2 (ja) * 1998-07-14 2003-02-10 三菱レイヨン株式会社 アクリルゴム系衝撃強度改質剤およびこれを用いた硬質塩化ビニル系樹脂組成物
US6348542B1 (en) 1999-10-12 2002-02-19 Kuraray Co., Ltd. Multiphase structured polymer particles, method of manufacturing same, and uses thereof
CN100473668C (zh) * 2003-12-02 2009-04-01 株式会社钟化 酰亚胺树脂、及其制造方法和利用
CN1946794A (zh) * 2004-04-28 2007-04-11 东丽株式会社 丙烯酸酯类树脂薄膜及其制备方法
JP2006124592A (ja) 2004-10-29 2006-05-18 Kaneka Corp イミド樹脂及びその樹脂組成物
JP2007191706A (ja) 2005-12-22 2007-08-02 Toray Ind Inc 熱可塑性共重合体、その製造方法、およびそれから成る熱可塑性樹脂組成物
JP2008276207A (ja) 2007-04-02 2008-11-13 Asahi Kasei Chemicals Corp 光学フィルム
JP5074956B2 (ja) 2008-02-27 2012-11-14 康博 小池 低複屈折性光学樹脂材料及び光学部材
JP2009293021A (ja) 2008-05-09 2009-12-17 Sanyo Chem Ind Ltd 光学材料用透明樹脂組成物
CN103380175B (zh) 2011-02-21 2015-11-25 株式会社钟化 丙烯酸类树脂膜
CN104334635B (zh) 2012-06-26 2017-11-10 株式会社钟化 非双折射性树脂材料及膜
CN105102534B (zh) 2013-04-05 2019-08-23 株式会社钟化 树脂组合物及其膜
US10578773B2 (en) 2013-11-29 2020-03-03 Kaneka Corporation Optical resin composition and film
JP6594207B2 (ja) 2013-11-29 2019-10-23 株式会社カネカ 光学用樹脂組成物、およびフィルム
EP3088473A4 (en) 2013-12-25 2017-08-30 Kaneka Corporation Optical resin composition and molded article

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4373065A (en) 1981-02-17 1983-02-08 Xerox Corporation Optically isotropic devices
JP3696649B2 (ja) 1994-08-18 2005-09-21 康博 小池 非複屈折性の光学樹脂材料及びその製造方法並びに光学樹脂材料を用いた液晶素子用の部材
JP3648201B2 (ja) 1999-10-05 2005-05-18 康博 小池 非複屈折性の光学樹脂材料
JP2002023363A (ja) * 2000-07-13 2002-01-23 Dainippon Ink & Chem Inc フォトリソグラフィー用樹脂組成物
JP4336586B2 (ja) 2002-03-12 2009-09-30 康博 小池 非複屈折性光学樹脂材料からなる射出成形物並びに非複屈折性光学樹脂材料の製造方法
JP2005023272A (ja) 2003-07-02 2005-01-27 Kaneka Corp イミドポリマーの製造方法
JP4624845B2 (ja) 2005-04-26 2011-02-02 康博 小池 非複屈折性光学樹脂材料及び光学部材
JP2007254727A (ja) * 2006-02-22 2007-10-04 Nippon Shokubai Co Ltd 有機微粒子、樹脂組成物、光学フィルムおよび光学フィルムの製造方法
JP2008179778A (ja) * 2006-12-25 2008-08-07 Kao Corp インクジェット記録用インクセット
JP2009203348A (ja) 2008-02-28 2009-09-10 Kaneka Corp 樹脂組成物、フィルムおよび偏光板
JP2009203435A (ja) * 2008-02-29 2009-09-10 Toray Ind Inc 耐熱性多層構造重合体粒子からなる光学フィルムの製造方法
JP2009203434A (ja) * 2008-02-29 2009-09-10 Toray Ind Inc 多層構造重合体粒子からなる高耐熱ゴムフィルム、およびその製造方法
JP2009269975A (ja) * 2008-05-02 2009-11-19 Mitsubishi Rayon Co Ltd 樹脂組成物およびその製造方法、塗料組成物、積層体
JP2010096919A (ja) * 2008-10-15 2010-04-30 Asahi Kasei Chemicals Corp 光学フィルム
JP5142938B2 (ja) 2008-10-15 2013-02-13 旭化成ケミカルズ株式会社 光学フィルム
JP2010202798A (ja) * 2009-03-04 2010-09-16 Fujifilm Corp 水性インク組成物、インクセット、及び画像形成方法
WO2010119730A1 (ja) * 2009-04-15 2010-10-21 コニカミノルタオプト株式会社 光学素子
WO2012141413A1 (en) * 2011-04-13 2012-10-18 Lg Chem, Ltd. Resin composition for optical film and optical film using the same
JP2012255128A (ja) * 2011-05-18 2012-12-27 Fujifilm Corp 組成物、並びに、これを用いた透明膜、マイクロレンズ、固体撮像素子、透明膜の製造方法、マイクロレンズの製造方法、及び、固体撮像素子の製造方法
JP2013040325A (ja) * 2011-07-20 2013-02-28 Nippon Shokubai Co Ltd 成形材料
JP2013204025A (ja) * 2012-03-29 2013-10-07 Mimaki Engineering Co Ltd インクジェット用インク、反応液、インクセット、インクカートリッジ、インクジェット記録方法及びインクジェット記録装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3072926A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015079693A1 (ja) * 2013-11-29 2017-03-16 株式会社カネカ 光学用樹脂組成物、およびフィルム
WO2019202992A1 (ja) * 2018-04-19 2019-10-24 東洋紡株式会社 折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルムとその用途
JPWO2019202992A1 (ja) * 2018-04-19 2021-03-11 東洋紡株式会社 折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルムとその用途
US11845841B2 (en) 2018-04-19 2023-12-19 Toyobo Co., Ltd. Polyester film for surface protection film of foldable display and use thereof
JP7490958B2 (ja) 2018-04-19 2024-05-28 東洋紡株式会社 折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルムとその用途

Also Published As

Publication number Publication date
EP3072926A1 (en) 2016-09-28
US20160297958A1 (en) 2016-10-13
TWI644962B (zh) 2018-12-21
CN105764982B (zh) 2019-05-03
TW201525045A (zh) 2015-07-01
EP3072926A4 (en) 2017-09-27
CN105764982A (zh) 2016-07-13
JPWO2015075941A1 (ja) 2017-03-16
US10174191B2 (en) 2019-01-08
JP6523176B2 (ja) 2019-05-29

Similar Documents

Publication Publication Date Title
JP6069435B2 (ja) 樹脂組成物、およびそのフィルム
JP6236002B2 (ja) 非複屈折性樹脂材料、およびフィルム
JP6637313B2 (ja) 光学用樹脂組成物、およびフィルム
JP5666751B1 (ja) 光学樹脂材料および光学フィルム
WO2017171008A1 (ja) 樹脂組成物、その成形体及びフィルム
WO2016139927A1 (ja) アクリル系樹脂組成物、その成形体及びフィルム
JP6594207B2 (ja) 光学用樹脂組成物、およびフィルム
US10391694B2 (en) Method of producing film
JP6523176B2 (ja) 樹脂材料、およびそのフィルム
JP2015123618A (ja) 光学フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015548996

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15038310

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014864039

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014864039

Country of ref document: EP