WO2015068527A1 - 保護膜形成用スパッタリングターゲットおよび積層配線膜 - Google Patents

保護膜形成用スパッタリングターゲットおよび積層配線膜 Download PDF

Info

Publication number
WO2015068527A1
WO2015068527A1 PCT/JP2014/077195 JP2014077195W WO2015068527A1 WO 2015068527 A1 WO2015068527 A1 WO 2015068527A1 JP 2014077195 W JP2014077195 W JP 2014077195W WO 2015068527 A1 WO2015068527 A1 WO 2015068527A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
protective film
film
sputtering target
forming
Prior art date
Application number
PCT/JP2014/077195
Other languages
English (en)
French (fr)
Inventor
曉 森
小見山 昌三
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US14/914,091 priority Critical patent/US10443113B2/en
Priority to KR1020167006552A priority patent/KR101885443B1/ko
Priority to CN201480046016.4A priority patent/CN105473760B/zh
Publication of WO2015068527A1 publication Critical patent/WO2015068527A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12882Cu-base component alternative to Ag-, Au-, or Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/1291Next to Co-, Cu-, or Ni-base component

Definitions

  • the present invention includes a protective film-forming sputtering target used when forming a protective film for protecting a Cu wiring film made of copper or a copper alloy, and a protective film formed by the protective film-forming sputtering target.
  • the present invention relates to a laminated wiring film.
  • Al is widely used as a flat panel display such as a liquid crystal or an organic EL panel, or a wiring film such as a touch panel.
  • miniaturization (narrowing) and thinning of the wiring film have been attempted, and a wiring film having a lower specific resistance than before has been demanded.
  • a wiring film using copper or a copper alloy, which is a material having a specific resistance lower than that of Al, is provided.
  • Patent Document 1 proposes a laminated film in which a protective film made of a Ni—Cu— (Cr, Ti) alloy is formed on a Cu wiring film, and a sputtering target for forming this protective film. Has been. Since this protective film has higher weather resistance than copper, it is possible to suppress discoloration of the surface even when stored in the atmosphere.
  • an etching solution containing iron chloride is used.
  • a laminated film having a protective film made of the Ni—Cu— (Cr, Ti) alloy described above is etched with an etching solution containing iron chloride, a part of the protective film is undissolved and remains as a residue. There was a thing. Since this residue may cause a short circuit between the wirings, it was difficult to use as a wiring film.
  • the sputtering target is manufactured through, for example, casting and hot rolling processes, but if a crack occurs during hot rolling, abnormal discharge occurs at the cracked portion, so it can be used as a sputtering target. Disappear.
  • the size of a glass substrate on which a wiring film is formed has been increased, and along with this, the sputtering target itself tends to increase in size.
  • a sputtering target having a predetermined size cannot be obtained. Therefore, in order to efficiently produce a large sputtering target, excellent hot rollability is required.
  • the present invention has been made in view of the circumstances described above, and can form a protective film that has excellent weather resistance and can suppress surface discoloration and has good etching properties. Furthermore, it aims at providing the laminated wiring film provided with the protective film formation sputtering target which consists of a copper alloy excellent in hot workability, and the protective film formed with this sputtering film formation sputtering target.
  • a protective film-forming sputtering target is used for forming a protective film on one or both sides of a Cu wiring film.
  • the target contains Ni or Ni and Al in a total of 5 mass% to 15 mass% (however, Ni is contained in an amount of 0.5 mass% or more), and Mn is 0.1 mass% to 5.0 mass%, Fe 0.5 mass% or more and 7.0 mass% or less, and the balance consists of Cu and inevitable impurities.
  • Ni or Ni and Al are contained in a total amount of 5 mass% to 15 mass% (however, Ni is contained in an amount of 0.5 mass% or more), It contains Mn in the range of 0.1 mass% to 5.0 mass%, Fe in the range of 0.5 mass% to 7.0 mass%, and the balance is composed of Cu and inevitable impurities, and is a Cu-based alloy. ing. For this reason, even when the formed protective film is etched with an etching solution containing iron chloride, it is etched in the same manner as the Cu wiring film, and the generation of undissolved residues can be suppressed. It becomes. Furthermore, since it does not contain Cr, waste liquid treatment after etching can be performed at low cost.
  • the Ni content or the total of the Ni content and the Al content is relatively small at 15 mass% or less, the manufacturing cost of the sputtering target and the protective film can be greatly reduced. Moreover, hot workability and machinability can be ensured. Furthermore, since the Ni content is 0.5 mass% or more, the hot rolling property can be improved, and the occurrence of cracks during hot rolling can be suppressed.
  • Al is an element that is selectively added to replace a part of Ni, and may be appropriately added according to the Ni content. That is, when the Ni content is 5 mass% or more, Al does not necessarily have to be added, so that the total of the Al content and the Ni content is in the range of 5 mass% to 15 mass%. What is necessary is just to add Al as needed.
  • the laminated wiring film according to the second aspect of the present invention is a laminated wiring film comprising a Cu wiring film and a protective film formed on one side or both sides of the Cu wiring film, wherein the protective film comprises:
  • the film is formed using the above-described sputtering target for forming a protective film.
  • the laminated wiring film of the present invention having such a configuration has a protective film formed by the protective film-forming sputtering target having the above-described composition, the weather resistance is improved and the film is exposed to the atmosphere. Even when stored, discoloration can be suppressed.
  • the protective film is composed of a Cu-based alloy, it is possible to suppress the generation of undissolved residues even when etching is performed with an etching solution containing iron chloride. Furthermore, since it does not contain Cr, waste liquid treatment after etching can be performed at low cost. Furthermore, since the Ni content is at most 15 mass% or less, the manufacturing cost of the laminated wiring film can be greatly reduced.
  • the sputtering target for forming a protective film of the present invention it is possible to form a protective film that has excellent weather resistance, can suppress surface discoloration, and has good etching properties. Furthermore, it is possible to provide a sputtering target for forming a protective film made of a copper alloy excellent in hot workability, and a laminated wiring film provided with a protective film formed by this sputtering target for forming a protective film.
  • the sputtering target for protective film formation which is this embodiment is used when forming a protective film on Cu wiring film which consists of copper or a copper alloy.
  • This protective film-forming sputtering target contains Ni or Ni and Al in a total of 5 mass% to 15 mass% (however, Ni is contained in an amount of 0.5 mass% or more), and Mn is 0.1 mass% to 5.0 mass%. %, Fe is contained in an amount of 0.5 mass% to 7.0 mass%, and the balance is composed of Cu and inevitable impurities.
  • this sputtering target for protective film formation is manufactured through processes, such as casting, hot rolling, cold rolling, heat processing, and machining.
  • Ni is an element having an effect of improving the weather resistance of Cu.
  • Al is an element having an effect of improving the weather resistance of Cu. Even if Al is added as a substitute for a part of Ni, discoloration of the formed protective film can be suppressed. Since Al is an element cheaper than Ni, it can be added as needed because it can reduce costs by adding it as a substitute for Ni.
  • the Ni content or the total of the Ni content and the Al content is less than 5 mass%, the weather resistance is not sufficiently improved, and the discoloration of the formed protective film may not be sufficiently suppressed. There is.
  • the Ni content or the total of the Ni content and the Al content is set within a range of 0.5 mass% to 15 mass%.
  • the Ni content or the total of the Ni content and the Al content is preferably 6.3 mass% or more and 12.0 mass% or less, and more preferably 7.8 mass% or more and 10.4 mass% or less. However, it is not limited to this.
  • Ni 0.5 mass% or more
  • Hot workability is improved by adding an appropriate amount of Ni.
  • the Ni content is set to 0.5 mass% or more.
  • the upper limit of the Ni content may be 11.5 mass%.
  • the Ni content is preferably 0.7 mass% or more and 11.5 mass% or less, and more preferably 1.0 mass% or more and 10.2 mass% or less, but is not limited thereto.
  • Mn is an element having an effect of improving the hot workability by improving the fluidity of the molten metal.
  • the content of Mn is less than 0.1 mass%, the fluidity of the molten metal is not sufficiently improved, cracking occurs during hot rolling, and there is a possibility that a large sputtering target cannot be manufactured with a high yield. is there.
  • the Mn content exceeds 5.0 mass%, the etching property is deteriorated, and an undissolved residue may be generated when etching is performed with an etching solution containing iron chloride.
  • the Mn content is set within a range of 0.1 mass% to 5.0 mass%.
  • the Mn content is preferably 0.3 mass% or more and 3.5 mass% or less, more preferably 0.5 mass% or more and 2.5 mass% or less, but is not limited thereto.
  • Fe 0.5 mass% or more and 7.0 mass% or less
  • Fe is an element having an effect of improving hot workability by refining the metal structure.
  • the Fe content is less than 0.5 mass%, the improvement in hot workability due to the refinement of the metal structure becomes insufficient, cracking occurs during hot rolling, and a large sputtering target is obtained. There is a possibility that it cannot be manufactured well.
  • the Fe content exceeds 7.0 mass%, hot workability and weather resistance may be deteriorated.
  • the Fe content is set in the range of 0.5 mass% to 7.0 mass%.
  • the Fe content is preferably 0.8 mass% or more and 5.0 mass% or less, and more preferably 1.0 mass% or more and 4.0 mass% or less, but is not limited thereto.
  • the laminated wiring film 10 which is this embodiment is demonstrated.
  • the laminated wiring film 10 according to the present embodiment includes a Cu wiring film 11 formed on the substrate 1 and a protective film 12 formed on the Cu wiring film 11.
  • substrate 1 is not specifically limited, What consists of glass, a resin film, etc. which can permeate
  • the Cu wiring film 11 is made of copper or a copper alloy, and preferably has a specific resistance of 4.0 ⁇ cm or less (temperature 25 ° C.). In this embodiment, the Cu wiring film 11 is made of oxygen-free copper having a purity of 99.99 mass% or more, and has a specific resistance of 3.5 ⁇ cm or less (temperature 25 ° C.). The Cu wiring film 11 is formed using a sputtering target made of oxygen-free copper having a purity of 99.99 mass% or higher.
  • the thickness A of the Cu wiring film 11 is preferably in the range of 50 nm ⁇ A ⁇ 800 nm, and more preferably in the range of 100 nm ⁇ A ⁇ 300 nm.
  • the protective film 12 is formed using the protective film-forming sputtering target according to this embodiment, and has the same composition as the above-described protective film-forming sputtering target.
  • the thickness B of the protective film 12 is preferably in the range of 5 nm ⁇ B ⁇ 100 nm, and more preferably in the range of 10 nm ⁇ B ⁇ 50 nm.
  • the ratio B / A between the thickness A of the Cu wiring film 11 and the thickness B of the protective film 12 is preferably in the range of 0.02 ⁇ B / A ⁇ 1.0. .1 ⁇ B / A ⁇ 0.3 is preferable.
  • Ni or Ni and Al in total 5 mass% or more and 15 mass% or less (however, Ni is contained in an amount of 0.5 mass% or more), Mn is contained in an amount of 0.1 mass% to 5.0 mass%, Fe is contained in an amount of 0.5 mass% to 7.0 mass%, and the balance is Cu and inevitable impurities. And a Cu-based alloy. For this reason, even if it is a case where the protective film formed into a film is etched with the etching liquid containing iron chloride, it will etch favorably and it will become possible to suppress generation
  • the sputtering target for protective film formation and the protective film 12 contain Ni and Al in the above-mentioned range, the weather resistance is improved and the surface discoloration of the laminated wiring film 10 can be reliably suppressed. . Furthermore, since the sputtering target for protective film formation and the protective film 12 do not have Cr, waste liquid treatment after etching can be performed at low cost.
  • the Ni content or the sum of the Ni content and the Al content is 15 mass% or less, and the Ni content is at most 15 mass% or less, sputtering for forming a protective film is performed.
  • the manufacturing cost of the target and the laminated wiring film 10 can be greatly reduced.
  • Al is added as a partial substitute for Ni
  • the Ni content can be further reduced, and the manufacturing cost of the protective film forming sputtering target and the laminated wiring film 10 can be further reduced. It becomes.
  • the Ni content or the total of the Ni content and the Al content is 15 mass% or less, hot workability and machinability can be ensured.
  • the hot workability can be sufficiently improved.
  • Mn is contained in the range of 0.1 mass% or more and 5.0 mass% or less, hot workability can be improved by improving the hot water flow property during casting.
  • Fe is contained in the range of 0.5 mass% or more and 7.0 mass% or less, the metal structure is sufficiently refined, and hot workability can be improved.
  • the hot workability is sufficiently improved, so that the generation of cracks during hot rolling can be suppressed, and a large sputtering target can be produced with a high yield. can do.
  • the Cu wiring film 11 is made of oxygen-free copper having a specific resistance of 3.5 ⁇ cm or less (at a temperature of 25 ° C.), and the thickness A of the Cu wiring film 11 is within a range of 50 nm ⁇ A ⁇ 800 nm. Therefore, the Cu wiring film 11 can be energized satisfactorily. Furthermore, in this embodiment, the thickness B of the protective film 12 is in the range of 5 nm ⁇ B ⁇ 100 nm, and the ratio B / A between the thickness A of the Cu wiring film 11 and the thickness B of the protective film 12 However, since 0.02 ⁇ B / A ⁇ 1.0, the discoloration of the Cu wiring film 11 can be reliably suppressed.
  • this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
  • the structure in which the laminated wiring film is formed on the substrate has been described as an example.
  • the present invention is not limited to this, and a transparent conductive film such as an ITO film or an AZO film is formed on the substrate. And a laminated wiring film may be formed thereon.
  • the Cu wiring film has been described as being composed of oxygen-free copper having a purity of 99.99 mass% or more, but the present invention is not limited to this.
  • pure copper such as tough pitch copper or copper containing a small amount of additive elements It may be composed of an alloy.
  • the thickness A of the Cu wiring film, the thickness B of the protective film, and the thickness ratio B / A are not limited to those described in the present embodiment, and may have other configurations. .
  • ⁇ Pure copper target for forming Cu wiring film An ingot of oxygen-free copper with a purity of 99.99 mass% is prepared, and hot rolling, strain relief annealing and machining are performed on the ingot, and a Cu wiring having a size of outer diameter: 100 mm ⁇ thickness: 5 mm A pure copper target for film formation was produced. Next, an oxygen-free copper backing plate was prepared, and the above-mentioned pure copper target for forming a Cu wiring film was superimposed on the oxygen-free copper backing plate, and a target with a backing plate was produced by indium soldering at a temperature of 200 ° C. .
  • ⁇ Sputtering target for protective film formation As melting raw materials, oxygen-free copper (purity 99.99 mass% or more), low carbon nickel (purity 99.9 mass% or more), electrolytic metal manganese (purity 99.9 mass% or more), electrolytic iron (purity 99.95 mass% or more) These melting raw materials were melted at high frequency in a high-purity graphite crucible, and the components were adjusted to a molten metal having the composition shown in Table 1. Thereafter, the molten metal with adjusted components was cast into a cooled carbon mold to obtain an ingot having a size of 50 mm ⁇ 50 mm ⁇ 30 mm.
  • the ingot was hot-rolled to a thickness of 15 mm at a temperature of 750 to 850 ° C. and a reduction rate of about 10%.
  • surface oxides and wrinkles were removed by chamfering, cold rolling at a reduction rate of 10%, rolling to a thickness of 10 mm, and strain relief annealing.
  • the surface of the obtained rolled plate was machined to produce protective film-forming sputtering targets of Examples 1 to 9 of the present invention and Comparative Examples 1 to 9 having dimensions of an outer shape of 100 mm and a thickness of 5 mm.
  • a sputtering target was prepared which was made of Ni: 64 mass%, Ti: 4 mass%, and the balance being Cu and inevitable impurities.
  • a backing plate made of oxygen-free copper was prepared, a sputtering target for forming a protective film was superimposed on the backing plate made of oxygen-free copper, and a target with a backing plate was produced by indium soldering at a temperature of 200 ° C. .
  • the sputtering target for forming a protective film of Invention Examples 1 to 9 and Comparative Examples 1 to 9 the presence or absence of cracks was confirmed during hot rolling. The results are also shown in Table 1.
  • the distance between the pure copper target for forming the Cu wiring film and the glass substrate is 70 mm. I set it. Sputtering was performed under the conditions of power source: DC method, sputtering power: 150 W, ultimate vacuum: 5 ⁇ 10 ⁇ 5 Pa, atmospheric gas composition: pure Ar, sputtering gas pressure: 0.67 Pa, substrate heating: none, and glass A Cu wiring film having a thickness of 150 nm was formed on the surface of the substrate.
  • ⁇ Weather resistance> Perform a constant temperature and humidity test (exposure for 250 hours at a temperature of 60 ° C. and a relative humidity of 90%), and visually inspect the glass substrate from the back side (the surface on which the laminated wiring film is not formed). It was confirmed. In addition, the thing in which the black point generate
  • Photoresist solution (Tokyo Ohka Kogyo Co., Ltd .: OFPR-8600LB) is applied to the laminated wiring film formed on the glass substrate 13, exposed and developed to form a resist film with a 30 ⁇ m line and space.
  • a wiring was formed by immersing in a 4% FeCl 3 aqueous solution maintained at a temperature of 30 ° C. ⁇ 1 ° C. and etching the laminated wiring film. Using a Ar ion beam, the cross section of this wiring was irradiated perpendicularly to the sample exposed from the shielding plate, ion etching was performed, and the resulting cross section was observed with a secondary electron microscope to check for the presence of etching residues.
  • the residue remains after etching. It was. Moreover, the etching rate was slow and the etching property was inferior.
  • the protective film-forming sputtering target was successfully manufactured. Furthermore, the laminated wiring films of Invention Examples 11 to 19 in which the protective film was formed by the protective film forming sputtering target of Invention Examples 1 to 9 were excellent in adhesion, weather resistance, and etching properties.
  • the sputtering target for forming a protective film of the example of the present invention it is possible to form a protective film having excellent weather resistance and suppressing surface discoloration and having good etching properties. Further, it is possible to provide a sputtering target for forming a protective film that has excellent hot workability and can suppress abnormal discharge without cracking, and a laminated wiring film provided with a protective film formed by the sputtering target for forming a protective film. confirmed.
  • the sputtering target for forming a protective film of the present invention even when the formed protective film is etched with an etching solution containing iron chloride, it can be etched in the same manner as the Cu wiring film, and an undissolved residue is generated. Can be suppressed. Furthermore, since it does not contain Cr, waste liquid treatment after etching can be performed at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 Cu配線膜の片面または両面に保護膜を成膜する際に使用される保護膜形成用スパッタリングターゲットであって、Ni、又はNi及びAlを合計で5mass%以上15mass%以下(但し、Niを0.5mass%以上含む)含有するとともに、Mnを0.1mass%以上5.0mass%以下、Feを0.5mass%以上7.0mass%以下、含有し、残部がCuと不可避不純物とからなる。

Description

保護膜形成用スパッタリングターゲットおよび積層配線膜
 本発明は、銅または銅合金からなるCu配線膜を保護する保護膜を形成する際に用いられる保護膜形成用スパッタリングターゲット、および、この保護膜形成用スパッタリングターゲットによって成膜された保護膜を備えた積層配線膜に関する。
 本願は、2013年11月6日に、日本に出願された特願2013-230301号に基づき優先権を主張し、その内容をここに援用する。
 従来、液晶や有機ELパネルなどのフラットパネルディスプレイや、タッチパネル等の配線膜としてAlが広く使用されている。最近では、配線膜の微細化(幅狭化)および薄膜化が図られており、従来よりも比抵抗の低い配線膜が求められている。
 上述の配線膜の微細化および薄膜化にともない、Alよりも比抵抗の低い材料である銅または銅合金を用いた配線膜が提供されている。
 しかし、比抵抗の低い銅または銅合金からなるCu配線膜は、湿度を有する雰囲気中で変色しやすいといった問題があった。なお、耐候性を向上させるために、添加元素を多く含有する銅合金を用いた場合には、比抵抗が上昇してしまう。
 そこで、例えば特許文献1には、Cu配線膜の上に、Ni-Cu-(Cr,Ti)合金からなる保護膜を形成した積層膜、及び、この保護膜を形成するためのスパッタリングターゲットが提案されている。この保護膜は、銅よりも耐候性が高いことから、大気中で保管しても表面の変色を抑制することが可能となる。
特開2012-193444号公報
 ところで、銅または銅合金からなるCu配線膜をエッチングによってパターニングする場合には、塩化鉄を含むエッチング液が使用される。上述のNi-Cu-(Cr,Ti)合金からなる保護膜を有する積層膜を、塩化鉄を含むエッチング液でエッチングした場合には、保護膜の一部が未溶解となって残渣として残存することがあった。この残渣により、配線間が短絡するおそれがあることから、配線膜として使用することが困難であった。
 また、Crを含有した場合には、エッチング後の廃液にCrが含有されることになり、廃液処理にコストが掛かるといった問題があった。
 さらに、比較的高価なNiを35mass%以上84.5mass%以下と多く含有していることから、スパッタリングターゲットおよび積層配線膜の製造コストが増加するといった問題があった。
 また、スパッタリングターゲットは、例えば鋳造、熱間圧延の工程を経て製造されているが、熱間圧延時に割れが生じると、割れの部分で異常放電が発生するためにスパッタリングターゲットとして使用することができなくなる。最近では、配線膜を形成するガラス基板の大型化が進んでおり、これに伴って、スパッタリングターゲット自体も大型化する傾向にある。ここで、大型のスパッタリングターゲットを製造する際に、熱間圧延材の一部に割れが生じると、所定サイズのスパッタリングターゲットを得ることができなくなってしまう。よって、大型のスパッタリングターゲットを効率良く生産するためには、優れた熱間圧延性が必要となる。
 この発明は、前述した事情に鑑みてなされたものであって、耐候性に優れ表面変色を抑制でき、かつ、良好なエッチング性を有する保護膜を成膜可能である。さらに熱間加工性に優れた銅合金からなる保護膜形成用スパッタリングターゲット、および、この保護膜形成用スパッタリングターゲットによって成膜された保護膜を備えた積層配線膜を提供することを目的とする。
 上記の課題を解決するために、本発明の第一の態様である保護膜形成用スパッタリングターゲットは、Cu配線膜の片面または両面に保護膜を成膜する際に使用される保護膜形成用スパッタリングターゲットであって、Ni、又はNi及びAlを合計で5mass%以上15mass%以下(但し、Niを0.5mass%以上含む)含有するとともに、Mnを0.1mass%以上5.0mass%以下、Feを0.5mass%以上7.0mass%以下、含有し、残部がCuと不可避不純物とからなる。
 このような構成とされた本発明の保護膜形成用スパッタリングターゲットにおいては、Ni、又はNi及びAlを合計で5mass%以上15mass%以下(但し、Niを0.5mass%以上含む)含有するとともに、Mnを0.1mass%以上5.0mass%以下、Feを0.5mass%以上7.0mass%以下、含有し、残部がCuと不可避不純物とからなる組成を有しており、Cu基合金とされている。このため、成膜した保護膜を、塩化鉄を含むエッチング液でエッチングした場合であっても、Cu配線膜と同等にエッチングされることになり、未溶解の残渣の発生を抑制することが可能となる。
 さらに、Crを有していないことから、エッチング後の廃液処理を低コストで行うことができる。
 また、Niの含有量又はNiの含有量とAlの含有量の合計が15mass%以下と比較的少ないことから、このスパッタリングターゲットおよび保護膜の製造コストを大幅に削減することができる。また、熱間加工性、被削性を確保することができる。
 さらに、Niの含有量が0.5mass%以上とされていることから、熱間圧延性を向上させることができ、熱間圧延時の割れの発生を抑制することができる。
 なお、Alは、Niの一部を代替するために選択的に添加される元素であり、Niの含有量に応じて適宜添加すればよい。すなわち、Niの含有量が5mass%以上の場合にはAlを必ずしも添加しなくてもよく、Alの含有量とNiの含有量の合計が5mass%以上15mass%以下の範囲内となるように、必要に応じてAlを添加すればよい。
 本発明の第二の態様である積層配線膜は、Cu配線膜と、このCu配線膜の片面または両面に形成された保護膜と、を備えた積層配線膜であって、前記保護膜が、上述の保護膜形成用スパッタリングターゲットを用いて成膜されている。
 このような構成とされた本発明の積層配線膜は、上述の組成とされた保護膜形成用スパッタリングターゲットによって成膜された保護膜を有しているので、耐候性が向上し、大気中に保管した場合であっても、変色を抑制することができる。
 また、保護膜がCu基合金で構成されることになるため、塩化鉄を含むエッチング液でエッチングした場合であっても、未溶解の残渣の発生を抑制することが可能となる。
 さらに、Crを有していないことから、エッチング後の廃液処理を低コストで行うことができる。さらに、Niの含有量が最大でも15mass%以下と比較的少ないことから、積層配線膜の製造コストを大幅に削減することができる。
 以上のように、本発明の保護膜形成用スパッタリングターゲットによれば、耐候性に優れ表面変色を抑制でき、かつ、良好なエッチング性を有する保護膜を成膜可能である。さらに熱間加工性に優れた銅合金からなる保護膜形成用スパッタリングターゲット、および、この保護膜形成用スパッタリングターゲットによって成膜された保護膜を備えた積層配線膜を提供することができる。
本発明の一実施形態である積層配線膜の断面説明図である。 実施例におけるエッチング残渣の評価基準を説明する写真である。
 以下に、本発明の一実施形態である保護膜形成用スパッタリングターゲット、および、積層配線膜について説明する。
 本実施形態である保護膜形成用スパッタリングターゲットは、銅または銅合金からなるCu配線膜の上に保護膜を成膜する際に使用される。
 この保護膜形成用スパッタリングターゲットは、Ni、又はNi及びAlを合計で5mass%以上15mass%以下(但し、Niを0.5mass%以上含む)含有するとともに、Mnを0.1mass%以上5.0mass%以下、Feを0.5mass%以上7.0mass%以下、含有し、残部がCuと不可避不純物とからなる組成を有している。
 なお、この保護膜形成用スパッタリングターゲットは、鋳造、熱間圧延、冷間圧延、熱処理、機械加工といった工程を経て製造される。
 以下に、本実施形態である保護膜形成用スパッタリングターゲットの組成を上述のように規定した理由について説明する。
(Niの含有量又はNiの含有量とAlの含有量の合計:5mass%以上15mass%以下)
 Niは、Cuの耐候性を改善する作用効果を有する元素である。Niを含有することにより、成膜した保護膜の変色を抑制することが可能となる。
 Alは、Niと同様にCuの耐候性を改善する作用効果を有する元素である。Niの一部の代替としてAlを添加しても、成膜した保護膜の変色を抑制することが可能となる。
 なお、Alは、Niに比べて安価な元素であることから、Niの代替として添加することでコストの削減を図ることができるため、必要に応じて添加することができる。
 ここで、Niの含有量又はNiの含有量とAlの含有量の合計が5mass%未満の場合には、耐候性が十分に向上せず、成膜した保護膜の変色を十分に抑制できないおそれがある。一方、Niの含有量又はNiの含有量とAlの含有量の合計が15mass%を超える場合には、エッチング性が劣化し、塩化鉄を含有するエッチング液でエッチングした際に、未溶解の残渣が生成するおそれがある。また、熱間加工性、被削性も低下する。
 このような理由から、Niの含有量又はNiの含有量とAlの含有量の合計を、0.5mass%以上15mass%以下の範囲内に設定している。なお、Niの含有量又はNiの含有量とAlの含有量の合計は、好ましくは6.3mass%以上12.0mass%以下であり、より好ましくは7.8mass%以上10.4mass%以下であるが、これに限定されることはない。
(Ni:0.5mass%以上)
 Niを適量添加することにより、熱間加工性が向上する。
 ここで、Niの含有量が0.5mass%未満の場合には、熱間加工性が十分に向上せず、熱間圧延時に割れが生じ、大型のスパッタリングターゲットの製造が困難となるおそれがある。
 このような理由から、Niの含有量を、0.5mass%以上に設定している。なお、Niの含有量の上限値は11.5mass%であってもよい。Niの含有量は、好ましくは0.7mass%以上11.5mass%以下であり、より好ましくは1.0mass%以上10.2mass%以下であるが、これに限定されることはない。
(Mn:0.1mass%以上5.0mass%以下)
 Mnは、溶湯の流動性を改善させることによって熱間加工性を向上させる作用効果を有する元素である。
 ここで、Mnの含有量が0.1mass%未満の場合には、溶湯の流動性が十分に向上せず、熱間圧延時に割れが発生し、大型のスパッタリングターゲットを歩留良く製造できないおそれがある。一方、Mnの含有量が5.0mass%を超えた場合には、エッチング性が劣化し、塩化鉄を含有するエッチング液でエッチングした際に未溶解の残渣が生成するおそれがある。
 このような理由から、Mnの含有量を、0.1mass%以上5.0mass%以下の範囲内に設定している。なお、Mnの含有量は、好ましくは0.3mass%以上3.5mass%以下であり、より好ましくは0.5mass%以上2.5mass%以下であるが、これに限定されることはない。
(Fe:0.5mass%以上7.0mass%以下)
 Feは、金属組織を微細化させることによって熱間加工性を向上させる作用効果を有する元素である。
 ここで、Feの含有量が0.5mass%未満の場合には、金属組織微細化による熱間加工性の向上が不十分となり、熱間圧延時に割れが発生し、大型のスパッタリングターゲットを歩留良く製造できないおそれがある。一方、Feの含有量が7.0mass%を超えた場合には、熱間加工性、耐候性が劣化するおそれがある。
 このような理由から、Feの含有量を、0.5mass%以上7.0mass%以下の範囲内に設定している。なお、Feの含有量は、好ましくは0.8mass%以上5.0mass%以下であり、より好ましくは1.0mass%以上4.0mass%以下であるが、これに限定されることはない。
 次に、本実施形態である積層配線膜10について説明する。
 本実施形態である積層配線膜10は、図1に示すように、基板1の上に成膜されたCu配線膜11と、Cu配線膜11の上に成膜された保護膜12と、を備えている。
 ここで、基板1は、特に限定されるものではないが、フラットパネルディスプレイやタッチパネル等においては、光を透過可能なガラス、樹脂フィルム等からなるものが用いられている。
 Cu配線膜11は、銅または銅合金で構成されており、その比抵抗が4.0μΩcm以下(温度25℃)とされていることが好ましい。本実施形態では、Cu配線膜11は、純度99.99mass%以上の無酸素銅で構成されており、比抵抗が3.5μΩcm以下(温度25℃)とされている。なお、このCu配線膜11は、純度99.99mass%以上の無酸素銅からなるスパッタリングターゲットを用いて成膜されている。
 また、このCu配線膜11の厚さAは、50nm≦A≦800nmの範囲内とすることが好ましく、さらには、100nm≦A≦300nmの範囲内とすることが好ましい。
 保護膜12は、本実施形態である保護膜形成用スパッタリングターゲットを用いて成膜されたものであり、上述した保護膜形成用スパッタリングターゲットと同様の組成を有している。
 この保護膜12の厚さBは、5nm≦B≦100nmの範囲内とすることが好ましく、さらには、10nm≦B≦50nmの範囲内とすることが好ましい。
 また、Cu配線膜11の厚さAと保護膜12の厚さBとの比B/Aは、0.02<B/A<1.0の範囲内であることが好ましく、さらには、0.1<B/A<0.3の範囲内とすることが好ましい。
 以上のような構成とされた本実施形態である保護膜形成用スパッタリングターゲットおよび積層配線膜10においては、上述のように、Ni、又はNi及びAlを合計で5mass%以上15mass%以下(但し、Niを0.5mass%以上含む)含有するとともに、Mnを0.1mass%以上5.0mass%以下、Feを0.5mass%以上7.0mass%以下、含有し、残部がCuと不可避不純物とからなる組成を有しており、Cu基合金とされている。このため、成膜した保護膜に塩化鉄を含むエッチング液でエッチングした場合であっても、良好にエッチングさせることになり、未溶解の残渣の発生を抑制することが可能となる。
 また、保護膜形成用スパッタリングターゲットおよび保護膜12が、Ni及びAlを、上述の範囲で含有しているので、耐候性が向上し、積層配線膜10の表面変色を確実に抑制することができる。
 さらに、保護膜形成用スパッタリングターゲットおよび保護膜12が、Crを有していないことから、エッチング後の廃液処理を低コストで行うことができる。
 また、Niの含有量又はNiの含有量とAlの含有量の合計が15mass%以下とされ、Niの含有量が最大でも15mass%以下と比較的少なくされていることから、保護膜形成用スパッタリングターゲットおよび積層配線膜10の製造コストを大幅に削減することができる。さらに、Niの一部の代替としてAlを添加した場合には、Niの含有量をさらに低減することができ、保護膜形成用スパッタリングターゲットおよび積層配線膜10の製造コストをさらに削減することが可能となる。
 また、Niの含有量又はNiの含有量とAlの含有量の合計が15mass%以下とされていることから、熱間加工性、被削性を確保することができる。
 また、Niの含有量が0.5mass%以上とされているので、熱間加工性を十分に向上させることができる。
 さらに、Mnを0.1mass%以上5.0mass%以下の範囲内で含有しているので、鋳造時の湯流れ性の向上により熱間加工性を向上させることができる。
 また、Feを0.5mass%以上7.0mass%以下の範囲内で含有しているので、金属組織が十分に微細化されることになり、熱間加工性を向上させることができる。
 このように、本発明の保護膜形成用スパッタリングターゲットにおいては、熱間加工性が十分に向上されているので、熱間圧延時の割れの発生を抑制でき、大型のスパッタリングターゲットを歩留良く製造することができる。
 また、本実施形態では、Cu配線膜11は、比抵抗が3.5μΩcm以下(温度25℃)の無酸素銅で構成され、Cu配線膜11の厚さAが50nm≦A≦800nmの範囲内とされているので、このCu配線膜11によって通電を良好に行うことができる。
 さらに、本実施形態では、保護膜12の厚さBが5nm≦B≦100nmの範囲内とされており、Cu配線膜11の厚さAと保護膜12の厚さBとの比B/Aが、0.02<B/A<1.0の範囲内とされているので、Cu配線膜11の変色を確実に抑制することができる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、基板の上に積層配線膜を形成した構造を例に挙げて説明したが、これに限定されることはなく、基板の上にITO膜、AZO膜等の透明導電膜を形成し、その上に積層配線膜を形成してもよい。
 また、Cu配線膜を、純度99.99mass%以上の無酸素銅で構成したものとして説明したが、これに限定されることはなく、例えばタフピッチ銅等の純銅や少量の添加元素を含有する銅合金で構成したものであってもよい。
 さらに、Cu配線膜の厚さA、保護膜の厚さB、厚さ比B/Aは、本実施形態に記載されたものに限定されるものではなく、他の構成とされていてもよい。
 以下に、本発明に係る保護膜形成用スパッタリングターゲットおよび積層配線膜の作用効果について評価した評価試験の結果について説明する。
<Cu配線膜形成用純銅ターゲット>
 純度99.99mass%の無酸素銅の鋳塊を準備し、この鋳塊に対して熱間圧延、歪取焼鈍、機械加工を行い、外径:100mm×厚さ:5mmの寸法を有するCu配線膜形成用純銅ターゲットを作製した。
 次に、無酸素銅製バッキングプレートを用意し、この無酸素銅製バッキングプレートに前述のCu配線膜形成用純銅ターゲットを重ね合わせ、温度:200℃でインジウムはんだ付けすることによりバッキングプレート付きターゲットを作製した。
<保護膜形成用スパッタリングターゲット>
 溶解原料として、無酸素銅(純度99.99mass%以上)、低カーボンニッケル(純度99.9mass%以上)、電解金属マンガン(純度99.9mass%以上)、電解鉄(純度99.95mass%以上)を準備し、これらの溶解原料を高純度グラファイトるつぼ内で高周波溶解し、表1に示される組成を有する溶湯に成分を調整した。その後、成分を調整した溶湯を冷却されたカーボン鋳型に鋳造し、50mm×50mm×30mm厚の大きさの鋳塊を得た。
 次いで、鋳塊に対して、温度750~850℃、圧下率約10%で15mm厚まで熱間圧延した。熱間圧延後、表面の酸化物や疵を面削で除去し、さらに圧下率10%で冷間圧延して10mm厚まで圧延し、歪取焼鈍した。得られた圧延板の表面を機械加工して、外形:100mm、厚さ:5mmの寸法を有する本発明例1~9および比較例1~9の保護膜形成用スパッタリングターゲットを作製した。さらに、従来例1として、Ni:64mass%、Ti:4mass%、残部がCuおよび不可避不純物からなるスパッタリングターゲットを準備した。
 次に、無酸素銅製バッキングプレートを用意し、この無酸素銅製バッキングプレートに得られた保護膜形成用スパッタリングターゲットを重ね合わせ、温度:200℃でインジウムはんだ付けすることによりバッキングプレート付きターゲットを作製した。
 ここで、本発明例1~9および比較例1~9の保護膜形成用スパッタリングターゲットにおいては、熱間圧延時に割れの有無を確認した。結果を表1に併せて示す。
<積層配線膜>
 Cu配線膜形成用純銅ターゲットをガラス基板(縦:20mm、横:20mm、厚さ:0.7mmの寸法を有するコーニング社製1737のガラス基板)との距離が70mmとなるようにスパッタ装置内にセットした。電源:直流方式、スパッタパワー:150W、到達真空度:5×10-5Pa、雰囲気ガス組成:純Ar、スパッタガス圧:0.67Pa、基板加熱:なし、の条件でスパッタリングを実施し、ガラス基板の表面に、厚さ:150nmを有するCu配線膜を形成した。
 これに引き続き、同条件で、表1に記載した保護膜形成用スパッタリングターゲットを用いてスパッタリングを実施し、Cu配線膜の上に、厚さ:30nmの保護膜を形成した。これにより、表2に示される本発明例11~19および比較例11~19の積層配線膜を形成した。
 なお、従来例11として、上述した従来例1のスパッタリングターゲットを用いて、Cu配線膜の上に保護膜を成膜した積層配線膜を作製した。
<密着性>
 JIS-K5400に準じ、1mm間隔で積層配線膜に格子状に切れ目を入れた後、3M社製スコッチテープで引き剥がし、ガラス基板中央部の10mm角内でガラス基板に付着していた積層配線膜のガラス基板に対する面積率(%)を測定する碁盤目付着試験を実施した。評価結果を表2に示す。
<耐候性>
 恒温恒湿試験(温度60℃、相対湿度90%で250時間暴露)を行い、ガラス基板の裏面(積層配線膜を形成していない面)側から目視で観察し、Cu配線膜の変色の有無を確認した。なお、黒色の点が発生しているものを変色と判断した。変色が認められたものを「NG」、変色が確認できなかったものを「OK」とした。評価結果を表2に示す。
<エッチング残渣>
 ガラス基板13の上に成膜した積層配線膜に、フォトレジスト液(東京応化工業株式会社製:OFPR-8600LB)を塗布、感光、現像して、30μmのラインアンドスペースでレジスト膜形成し、液温30℃±1℃に保持した4%FeCl水溶液に浸漬して積層配線膜をエッチングして配線を形成した。
 この配線の断面を、Arイオンビームを用い、遮蔽板から露出した試料に対して垂直にビームを当て、イオンエッチングを行い、得られた断面を二次電子顕微鏡で観察し、エッチング残渣の有無を調べた。エッチング残渣の観察結果の一例を図2に示す。ここで、残渣14の長さLが300nm以上のものをB、残渣14の長さLが300nm未満のものをAとして評価した。評価結果を表2に示す。
<エッチングレート>
 保護膜形成用スパッタリングターゲットを用いて前述と同じ条件でスパッタリングを実施し、前述のガラス基板13の上に、厚さ:150nmの保護膜12を形成した。この保護膜単層のみを成膜したガラス基板13を、液温30℃±1℃に保持した4%FeCl水溶液に浸漬して保護膜12をエッチングし、目視観察により保護膜12がなくなるまでの時間を測定してエッチングレートを求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 Niの含有量とAlの含有量の合計が5mass%未満とされた比較例1、7の保護膜形成用スパッタリングターゲットによって保護膜が成膜された比較例11、17の積層配線膜においては、恒温恒湿試験で変色が認められており、耐候性が不十分であった。
 Niの含有量が本発明例よりも多い比較例2の保護膜形成用スパッタリングターゲットにおいては、熱間圧延時に割れが確認された。また、この比較例2の保護膜形成用スパッタリングターゲットによって保護膜が成膜された比較例12の積層配線膜においては、エッチング後に残渣が残存していた。
 Mnの含有量が本発明例よりも少ない比較例3の保護膜形成用スパッタリングターゲットにおいては、熱間圧延時に割れが確認された。
 Mnの含有量が本発明例よりも多い比較例4の保護膜形成用スパッタリングターゲットによって保護膜が成膜された比較例14の積層配線膜においては、エッチング後に残渣が残存していた。
 Feの含有量が本発明例よりも少ない比較例5の保護膜形成用スパッタリングターゲットにおいては、熱間圧延時に割れが確認された。
 Feの含有量が本発明例よりも多い比較例6の保護膜形成用スパッタリングターゲットによって保護膜が成膜された比較例16の積層配線膜においては、恒温恒湿試験で変色が認められており、耐候性が不十分であった。
 Niの含有量とAlの含有量の合計が15mass%を超えた比較例8の保護膜形成用スパッタリングターゲットにおいては、熱間圧延時に割れが確認された。また、この比較例8の保護膜形成用スパッタリングターゲットによって保護膜が成膜された比較例18の積層配線膜においては、エッチング後に残渣が残存していた。
 Niを添加せずにAlを15mass%含有した比較例9の保護膜形成用スパッタリングターゲットにおいては、熱間圧延時に割れが確認された。
 さらに、Ni:64mass%、Ti:4mass%、残部がCuおよび不可避不純物からなる従来例1のスパッタリングターゲットによって保護膜が成膜された従来例11の積層配線膜においては、エッチング後に残渣が残存していた。また、エッチングレートが遅く、エッチング性に劣っていた。
 これに対して、Ni、Mn、Fe、Alの含有量が本発明の範囲内とされた本発明例1~9の保護膜形成用スパッタリングターゲットにおいては、熱間加工時に割れは確認されておらず、良好に保護膜形成用スパッタリングターゲットを製造することができた。
 さらに、本発明例1~9の保護膜形成用スパッタリングターゲットによって保護膜が成膜された本発明例11~19の積層配線膜においては、密着性、耐候性、エッチング性に優れていた。
 以上のことから、本発明例の保護膜形成用スパッタリングターゲットによれば、耐候性に優れ表面変色を抑制でき、かつ、良好なエッチング性を有する保護膜を成膜可能である。さらに熱間加工性に優れ、割れ等のなく異常放電を抑制できる保護膜形成用スパッタリングターゲット、および、この保護膜形成用スパッタリングターゲットによって成膜された保護膜を備えた積層配線膜を提供できることが確認された。
 本発明の保護膜形成用スパッタリングターゲットによれば、成膜した保護膜を、塩化鉄を含むエッチング液でエッチングした場合であっても、Cu配線膜と同等にエッチングでき、未溶解の残渣の発生を抑制することが可能となる。さらに、Crを有していないことから、エッチング後の廃液処理を低コストで行うことができる。
1 基板
10 積層配線膜
11 Cu配線膜
12 保護膜
13 ガラス基板
14 残渣

Claims (2)

  1.  Cu配線膜の片面または両面に保護膜を成膜する際に使用される保護膜形成用スパッタリングターゲットであって、
     Ni、又はNi及びAlを合計で5mass%以上15mass%以下(但し、Niを0.5mass%以上含む)含有するとともに、Mnを0.1mass%以上5.0mass%以下、Feを0.5mass%以上7.0mass%以下、含有し、
     残部がCuと不可避不純物とからなる保護膜形成用スパッタリングターゲット。
  2.  Cu配線膜と、このCu配線膜の片面または両面に形成された保護膜と、を備えた積層配線膜であって、
     前記保護膜が、請求項1に記載の保護膜形成用スパッタリングターゲットを用いて成膜されている積層配線膜。
PCT/JP2014/077195 2013-11-06 2014-10-10 保護膜形成用スパッタリングターゲットおよび積層配線膜 WO2015068527A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/914,091 US10443113B2 (en) 2013-11-06 2014-10-10 Sputtering target for forming protective film and multilayer wiring film
KR1020167006552A KR101885443B1 (ko) 2013-11-06 2014-10-10 보호막 형성용 스퍼터링 타깃 및 적층 배선막
CN201480046016.4A CN105473760B (zh) 2013-11-06 2014-10-10 保护膜形成用溅射靶及层叠配线膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-230301 2013-11-06
JP2013230301A JP5757318B2 (ja) 2013-11-06 2013-11-06 保護膜形成用スパッタリングターゲットおよび積層配線膜

Publications (1)

Publication Number Publication Date
WO2015068527A1 true WO2015068527A1 (ja) 2015-05-14

Family

ID=53041310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077195 WO2015068527A1 (ja) 2013-11-06 2014-10-10 保護膜形成用スパッタリングターゲットおよび積層配線膜

Country Status (6)

Country Link
US (1) US10443113B2 (ja)
JP (1) JP5757318B2 (ja)
KR (1) KR101885443B1 (ja)
CN (1) CN105473760B (ja)
TW (1) TWI554619B (ja)
WO (1) WO2015068527A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051820A1 (ja) * 2015-09-25 2017-03-30 株式会社アルバック スパッタリングターゲット、ターゲット製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6435981B2 (ja) * 2015-04-28 2018-12-12 三菱マテリアル株式会社 銅合金スパッタリングターゲット
CN107858555A (zh) * 2017-11-09 2018-03-30 河南科技大学 一种海洋工程用高强高耐蚀铜合金及其制备方法
CN107779660A (zh) * 2017-11-09 2018-03-09 河南科技大学 一种高强高耐蚀铜合金及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241587A (ja) * 2005-03-01 2006-09-14 ▲らい▼寳科技股▲ふん▼有限公司 導電薄膜及びその保護層用の合金ターゲット材料及びその製造方法
JP2012193444A (ja) * 2010-08-30 2012-10-11 Daido Steel Co Ltd Cu電極保護膜用NiCu合金ターゲット材及び積層膜
JP2013133489A (ja) * 2011-12-26 2013-07-08 Sumitomo Metal Mining Co Ltd Cu合金スパッタリングターゲット、この製造方法及び金属薄膜

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE650931C (de) 1932-08-02 1937-10-05 Osnabruecker Kupfer Und Drahtw Fuer elektrische Heizwiderstaende bestimmte Kupferlegierung
US2430419A (en) 1945-02-02 1947-11-04 Walter W Edens Welding rod
US2901692A (en) 1956-11-14 1959-08-25 Gen Aniline & Film Corp Testing device for cameras and flashlamps
US3901692A (en) 1969-08-29 1975-08-26 Tsuneaki Mikawa Corrosion resistant copper alloy and the method of forming the alloy
US3721535A (en) 1971-01-25 1973-03-20 Olin Corp Composite copper alloy
DE3116135C2 (de) * 1981-04-23 1983-02-10 Metallgesellschaft Ag, 6000 Frankfurt Verwendung einer Kupferlegierung als Werkstoff für goldfarbene Münzen
JPH01222047A (ja) 1988-03-01 1989-09-05 Nippon Mining Co Ltd 銅又は銅合金製バッキングプレート
JPH01252516A (ja) 1988-04-01 1989-10-09 Nippon Steel Corp 微結晶シリコン極薄膜の作成方法
JP3152307B2 (ja) 1991-07-30 2001-04-03 日本電池株式会社 リチウム二次電池
JPH05222472A (ja) 1992-02-15 1993-08-31 Kyocera Corp リード付き電子部品
AU7381594A (en) * 1993-07-29 1995-02-28 Institute Of Physics Academy Of Sciences Of The Czech Republic Method and device for magnetron sputtering
US5422150A (en) 1993-12-23 1995-06-06 Hycomp, Inc. Substrate clad with fiber-reinforced polymer composite
DE19908107C2 (de) 1999-02-25 2003-04-10 Man B & W Diesel As Kopenhagen Verfahren zur Erzeugung einer verschleißfesten Oberfläche bei aus Stahl bestehenden Bauteilen sowie Maschine mit wenigstens einem derartigen Bauteil
EP1337376B1 (de) 2000-09-07 2005-10-12 Infineon Technologies AG Lotmittel zur verwendung bei diffusionslotprozessen
JP2002294437A (ja) 2001-04-02 2002-10-09 Mitsubishi Materials Corp 銅合金スパッタリングターゲット
JP4829485B2 (ja) 2003-06-10 2011-12-07 有限会社真空実験室 真空部品用材料、真空部品、真空装置、真空部品用材料の製造方法、真空部品の処理方法及び真空装置の処理方法
KR20060037247A (ko) 2003-08-21 2006-05-03 허니웰 인터내셔널 인코포레이티드 Cu-함유 PDⅤ 타겟과 그 제조방법
US20050061857A1 (en) 2003-09-24 2005-03-24 Hunt Thomas J. Method for bonding a sputter target to a backing plate and the assembly thereof
JP2005206861A (ja) 2004-01-21 2005-08-04 Chuetsu Metal Works Co Ltd 無鉛銅合金製重錘
DE102006003724A1 (de) * 2006-01-26 2007-08-02 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Kraftfahrzeug-Antriebsstrangs
JP5234483B2 (ja) 2007-06-12 2013-07-10 三菱マテリアル株式会社 密着性に優れた配線下地膜およびこの配線下地膜を形成するためのスパッタリングターゲット
EP2219193A4 (en) 2007-11-01 2012-07-04 Furukawa Electric Co Ltd LADDER MATERIAL FOR AN ELECTRONIC ARRANGEMENT AND ELECTRICAL WIRING FOR WIRING USING THEREOF
AT506897B1 (de) * 2008-05-29 2010-03-15 Gebauer & Griller Metallwerk G Metallischer verbunddraht mit wenigstens zwei metallischen schichten
JP5420328B2 (ja) 2008-08-01 2014-02-19 三菱マテリアル株式会社 フラットパネルディスプレイ用配線膜形成用スパッタリングターゲット
CN101698207B (zh) 2009-10-20 2011-07-20 无锡隆达金属材料有限公司 铜合金盘管的生产方法
WO2012008346A1 (ja) 2010-07-14 2012-01-19 アルプス電気株式会社 入力装置及びその製造方法
TWI537400B (zh) 2011-12-06 2016-06-11 神戶製鋼所股份有限公司 觸控面板感測器用銅合金配線膜及其之製造方法、以及觸控面板感測器、以及濺鍍靶
CN102560187B (zh) 2012-03-10 2013-04-10 甘肃大鑫铜业有限责任公司 用于电气化铁路接触网的铜合金的制备方法
JP5979034B2 (ja) * 2013-02-14 2016-08-24 三菱マテリアル株式会社 保護膜形成用スパッタリングターゲット
JP6135275B2 (ja) * 2013-04-22 2017-05-31 三菱マテリアル株式会社 保護膜形成用スパッタリングターゲット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241587A (ja) * 2005-03-01 2006-09-14 ▲らい▼寳科技股▲ふん▼有限公司 導電薄膜及びその保護層用の合金ターゲット材料及びその製造方法
JP2012193444A (ja) * 2010-08-30 2012-10-11 Daido Steel Co Ltd Cu電極保護膜用NiCu合金ターゲット材及び積層膜
JP2013133489A (ja) * 2011-12-26 2013-07-08 Sumitomo Metal Mining Co Ltd Cu合金スパッタリングターゲット、この製造方法及び金属薄膜

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051820A1 (ja) * 2015-09-25 2017-03-30 株式会社アルバック スパッタリングターゲット、ターゲット製造方法
CN107109635A (zh) * 2015-09-25 2017-08-29 株式会社爱发科 溅射靶、靶制备方法
JPWO2017051820A1 (ja) * 2015-09-25 2017-09-21 株式会社アルバック スパッタリングターゲット、ターゲット製造方法

Also Published As

Publication number Publication date
KR20160032276A (ko) 2016-03-23
JP5757318B2 (ja) 2015-07-29
CN105473760B (zh) 2017-09-01
JP2015089954A (ja) 2015-05-11
US20160201188A1 (en) 2016-07-14
KR101885443B1 (ko) 2018-08-03
US10443113B2 (en) 2019-10-15
CN105473760A (zh) 2016-04-06
TW201529872A (zh) 2015-08-01
TWI554619B (zh) 2016-10-21

Similar Documents

Publication Publication Date Title
JP6135275B2 (ja) 保護膜形成用スパッタリングターゲット
KR101358529B1 (ko) 전자부품용 적층 배선막 및 피복층 형성용 스퍼터링 타겟재
WO2016024615A1 (ja) 積層膜、積層配線膜及び積層配線膜の製造方法
JP5979034B2 (ja) 保護膜形成用スパッタリングターゲット
JP2013133489A (ja) Cu合金スパッタリングターゲット、この製造方法及び金属薄膜
WO2015068527A1 (ja) 保護膜形成用スパッタリングターゲットおよび積層配線膜
JP5724998B2 (ja) 保護膜形成用スパッタリングターゲットおよび積層配線膜
JP2017091491A (ja) 透明導電配線、及び、透明導電配線の製造方法
JP2005171378A (ja) 配線膜用Al合金膜および配線膜形成用スパッタリングターゲット材
JP6398594B2 (ja) スパッタリングターゲット
JP6011700B2 (ja) Cu合金スパッタリングターゲット、この製造方法
JP6750512B2 (ja) 保護膜形成用スパッタリングターゲット
WO2016136953A1 (ja) 透明導電配線、及び、透明導電配線の製造方法
WO2016132578A1 (ja) 銅基合金スパッタリングターゲット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046016.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859986

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14914091

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167006552

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14859986

Country of ref document: EP

Kind code of ref document: A1