WO2015065121A1 - 역오팔 구조의 다공성 기재를 포함하는 전기화학소자용 다공성 분리막 및 이의 제조 방법 - Google Patents

역오팔 구조의 다공성 기재를 포함하는 전기화학소자용 다공성 분리막 및 이의 제조 방법 Download PDF

Info

Publication number
WO2015065121A1
WO2015065121A1 PCT/KR2014/010392 KR2014010392W WO2015065121A1 WO 2015065121 A1 WO2015065121 A1 WO 2015065121A1 KR 2014010392 W KR2014010392 W KR 2014010392W WO 2015065121 A1 WO2015065121 A1 WO 2015065121A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous substrate
opal structure
polymer
polymer particles
resin
Prior art date
Application number
PCT/KR2014/010392
Other languages
English (en)
French (fr)
Inventor
유형균
김석구
유보경
김종훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201480017640.1A priority Critical patent/CN105051942A/zh
Priority to JP2016526929A priority patent/JP6316417B2/ja
Priority to US14/771,720 priority patent/US10115952B2/en
Priority to EP14858506.0A priority patent/EP2950367B1/en
Publication of WO2015065121A1 publication Critical patent/WO2015065121A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/046Elimination of a polymeric phase
    • C08J2201/0462Elimination of a polymeric phase using organic solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator for an electrochemical device and a manufacturing method thereof. More particularly, the present invention relates to a porous separator for an electrochemical device including a porous substrate having a uniform size and shape of pores, and a method of manufacturing the same.
  • lithium secondary batteries developed in the early 1990s have a higher operating voltage and greater energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries that use an aqueous electrolyte solution. I am in the spotlight.
  • lithium ion batteries have safety problems such as ignition and explosion due to the use of the organic electrolyte, and are difficult to manufacture.
  • the lithium ion polymer battery has been considered as one of the next generation batteries by improving the weakness of the lithium ion battery, but the capacity of the battery is still relatively low compared to the lithium ion battery, and the discharge capacity is improved due to insufficient discharge capacity at low temperatures. This is urgently needed.
  • electrochemical devices are produced by many companies, but their safety characteristics show different aspects. It is very important to evaluate the safety and secure the safety of these electrochemical devices. The most important consideration is that the electrochemical device should not cause injury to the user in case of malfunction. For this purpose, safety standards strictly regulate the ignition and smoke in the electrochemical device. In the safety characteristics of the electrochemical device, there is a high possibility that an explosion occurs when the electrochemical device is overheated to cause thermal runaway or the separator penetrates. In particular, polyolefin-based porous membranes commonly used as separators for electrochemical devices exhibit extreme heat shrinkage behavior at temperatures of 100 ° C. or higher due to material characteristics and manufacturing process characteristics including stretching, resulting in a short circuit between the anode and the cathode. There is a problem that causes.
  • 2008-0109237 discloses a method of manufacturing an electrode that prevents penetration of a binder polymer by first applying a solvent to a surface of an active material layer before forming a porous coating layer, but a packing density according to application of a solvent. There is still a problem of deterioration and rough surface formation.
  • an object of the present invention is to provide a porous separator for an electrochemical device having excellent porosity and ionic conductivity.
  • Another object of the present invention is to provide an environmentally friendly reverse opal structure manufacturing process that does not require hydrofluoric acid treatment and a membrane manufacturing process using the same, unlike a conventional process using silica or titania.
  • the present invention provides a porous substrate for an electrochemical device and a method of manufacturing the same for solving the above technical problem.
  • the porous substrate according to the present invention has a reverse opal structure, and a method for preparing the same includes preparing a colloidal solution including polymer particles (S10); Coating the colloidal solution on a substrate to form a coating layer of polymer particles having an opal structure (S20); Preparing a polymer resin dispersion in which the polymer resin is dispersed in a first organic solvent (S30); Filling the opal structure of the polymer particles with the polymer resin dispersion (S40); And dissolving the polymer particles using the second organic solvent (S50). It includes.
  • the polymer particles may be a non-crosslinked polymer
  • the polymer resin may be a crosslinked polymer
  • the polymer particles are styrene-butadiene rubber (SBR), polybutadiene rubber, polyfluoroprene (neoprene), nitrile rubber, acrylic rubber, fluorine-based rubber (FKM), PVC, polystyrene, polystyrene, polymethyl methacrylate
  • SBR styrene-butadiene rubber
  • PMMA polybutadiene rubber
  • FKM fluorine-based rubber
  • PVC polystyrene
  • polystyrene polystyrene
  • polymethyl methacrylate One selected from the group consisting of latex (PMMA), acrylonitrile-butadiene-styrene (ABS), polyvinylidene fluoride, polyvinyl fluoride, PTFE, polyvinyl acetate or copolymers thereof, and vinyl acetate-ethylene copolymers Or two or more kinds.
  • PMMA latex
  • ABS acrylonitrile-
  • the diameter of the polymer particles may be 0.1 ⁇ m to 1 ⁇ m.
  • the polymer resin may be a high heat resistance plastic engineering resin.
  • the high heat resistance plastic engineering resin is polysulfone (PSF), polyether sulfone (PES), polyetherimide (PEI), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyarylate (PA) and polyamideimide (PAI), polyimide (PI) may be one or two or more selected from the group consisting of.
  • the first organic solvent may be a chlorine-based organic solvent.
  • the second organic solvent may be one capable of selectively dissolving the polymer particles.
  • the present invention also provides an electrode assembly comprising a cathode, an anode, and a separator interposed between the cathode and the anode, and an electrochemical device comprising the electrode assembly, wherein the separator is a method according to the present invention described above. It includes a porous substrate prepared by.
  • the present invention provides a porous substrate for an electrochemical device having a reverse opal structure, a plurality of pores are present on the surface and the inside of the porous substrate and the standard deviation of the pore diameter is 1% to 35%. .
  • the pores are those having a diameter of 0.1 ⁇ m to 1 ⁇ m.
  • the porous substrate may include a high heat resistance plastic engineering resin.
  • the high heat resistance plastic engineering resin is polysulfone (PSF), polyether sulfone (PES), polyetherimide (PEI), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyarylate (PA) and polyamideimide (PAI), polyimide (PI) may be one or two or more selected from the group consisting of.
  • the high heat resistance plastic engineering resin may have a molecular weight of 100,000 Da to 10,000,000 Da.
  • the high heat resistance plastic engineering resin may be a linear polyimide or an aromatic heterocyclic polyimide containing an imide group in the main chain.
  • the porous substrate may include a crosslinked polymer resin.
  • the separator according to the present invention is formed by the manufacturing process of the reverse opal structure, the size and shape of the pores is uniform and has a high porosity. In addition, the separator has excellent porosity, ionic conductivity and air permeability without problems of pore closure and thickness reduction. Finally, the manufacturing method of the reverse opal structure according to the present invention is environmentally friendly and not harmful to the human body because hydrofluoric acid treatment is not required unlike the prior art.
  • FIG. 1 is a flowchart schematically illustrating a process for preparing a separator having an inverse opal structure according to the present invention.
  • FIG. 2 schematically illustrates a process of forming a conventional inverse opal structure.
  • Figure 3 schematically shows a process for producing a membrane of the reverse opal structure according to the present invention.
  • Figure 4 shows the template of the opal structure prepared in the membrane manufacturing process of the present invention.
  • the present invention relates to a porous substrate having a reverse opal structure and a method of manufacturing the same.
  • the present invention provides a separator comprising the porous substrate and an electrochemical device including the separator.
  • a first aspect of the invention is directed to a method of making a porous substrate having an inverse opal structure.
  • the porous substrate having an inverse opal structure according to the present invention is obtained by forming a template of an opal structure using polymer particles, filling a polymer resin into the template, and then dissolving and removing the polymer particles using an organic solvent. Can lose.
  • FIG. 1 is a flow chart of the procedure for producing a porous substrate of the reverse opal structure of the present invention. Next, the present invention will be described in detail with reference to FIG. 1.
  • a colloidal solution containing polymer particles is prepared.
  • the polymer particles preferably have a crosslinking degree (or gel fraction) of less than 10%, or less than 5%, or less than 3%, or less than 1%, or an uncrosslinked polymer.
  • a crosslinking degree or gel fraction of less than 10%, or less than 5%, or less than 3%, or less than 1%, or an uncrosslinked polymer.
  • Highly crosslinked polymers swell when contacted with a solvent but do not dissolve well. Therefore, in the steps to be described later, the polymer particles are not crosslinked with the polymer particles in order to dissolve the polymer particles by the solvent to remove the template of the opal structure and form the reverse opal structure.
  • the degree of crosslinking (or gel fraction) may be calculated by the following general formula (1).
  • A is the mass of the polymer used as the polymer particles
  • B is the insoluble fraction collected after 72 hours of immersion in ethyl acetate at room temperature in a 200-mesh mesh.
  • the gel fraction of the polymer particles is less than 10%, or less than 5%, or less than 3%, or less than 1%, or 0% or by using uncrosslinked particles to facilitate removal by dissolution in the steps described below. can do.
  • the polymer particles are styrene-butadiene rubber (SBR), polybutadiene rubber, polyfluoroprene (neoprene), nitrile rubber, acrylic rubber, fluorine-based rubber (FKM), PVC, polystyrene (PS), polymethyl methacrylate ( PMMA), acrylonitrile-butadiene-styrene (ABS), polyvinylidene fluoride, polyvinyl fluoride, PTFE, polyvinyl acetate or copolymers thereof, or vinylacetate-ethylene copolymers It is However, the present invention is not limited thereto, and the polymer particles are not particularly limited as long as they produce stable particles by emulsion polymerization or suspension polymerization.
  • SBR styrene-butadiene rubber
  • polyfluoroprene neoprene
  • nitrile rubber acrylic rubber, fluorine-based rubber (FKM), PVC, polystyrene (PS
  • the polymer particles of SBR can be obtained by low temperature emulsion polymerization while stirring monomers such as 1,3 butadiene and styrene, and additives such as emulsifiers, polymerization initiators, electrolytes, and molecular weight regulators in water at a temperature of about 30 ° C. have.
  • the manufacturing method of the polymer particles is not limited thereto, and an appropriate method may be selected according to the type of the polymer particles.
  • the polymer particles may have an average particle diameter of 0.1 ⁇ m to 1 ⁇ m, or 0.1 ⁇ m to 0.7 ⁇ m, or 0.2 ⁇ m to 0.5 ⁇ m in consideration of the air permeability of the separator. If the average particle diameter of the polymer particles is out of the above-mentioned range, pores may be formed in the porous substrate having an inverse opal structure obtained in the last step, too small or large, so that the air permeability and ionic conductivity when applied to the separator for an electrochemical device There are disadvantages to this.
  • the size of the polymer particles may be appropriately changed according to a predetermined use or characteristics of the porous substrate and the separator including the same.
  • the size of the polymer particles may be appropriately adjusted in consideration of characteristics such as air permeability of the porous substrate, ionic conductivity, diameter of the pores or porosity.
  • the particle diameter of the polymer particles has a monomodal distribution.
  • the standard deviation of the particle size of the polymer particles is 1% to 35% or 1% to 35%.
  • the concentration of the polymer particles in the colloidal solution is 10 to 50% by weight, but is not limited thereto. Since the aqueous medium such as water in the colloidal solution is removed in the drying step described later, it can be appropriately adjusted within a range where excessive drying time or heating temperature is not required.
  • the colloidal solution is applied onto a substrate and dried to form a coating layer of polymer particles.
  • the coating layer serves as a template for forming a porous substrate in a step to be described later as the polymer particles are formed by forming an opal structure.
  • the substrate is not particularly limited to serve as a support for forming the coating layer.
  • a glass or silicon wafer can be used as the substrate.
  • the coating method of the colloidal solution is not particularly limited.
  • Non-limiting examples of the coating method are knife coating, roll coating, curtain coating, cast coating, engraved roll coating, spray coating ( spary coating, foam coating, reverse roll coating, calendar coating, extrusion coating, dip coating or air-knife coating coating) can be performed by selecting one of the methods.
  • the coating method according to one specific embodiment of the present invention is preferably carried out by a method of dip coating in which the substrate is immersed in a colloidal solution.
  • the colloidal solution may be dried under atmospheric pressure or pressurized conditions, and may be dried by applying heat or hot air to the substrate as necessary.
  • the drying may be performed using an oven, a gas furnace or an electric furnace.
  • the drying may be performed at a temperature condition of 25 ° C. to 100 ° C., preferably 50 ° C. to 80 ° C., but is not limited thereto.
  • the drying temperature or drying time may be appropriately selected depending on the process conditions such as the concentration of the colloidal solution or the type of the polymer particles.
  • FIG. 3 schematically shows a process diagram of the production of the reverse opal structure of the present invention, schematically showing an example of the polymer particle aggregate of the reverse opal structure obtained after the aqueous medium is dried.
  • the aggregate of the opal structure includes a plurality of pores formed between the polymer particles and is used as a template for forming a porous substrate having an inverse opal structure made of a polymer resin in a step to be described later.
  • the polymer resin is dispersed in a first organic solvent to prepare a polymer resin dispersion.
  • the polymer particles comprise a crosslinked polymer polymer. Since the polymer resin is used as a porous substrate of a separator having an inverse opal structure, it is preferable that the polymer resin is crosslinked to prevent dissolution in a polar solvent or an organic solvent such as an electrolyte after battery assembly. According to one specific embodiment of the present invention, the polymer resin has a crosslinking degree (or gel fraction) of 40% or more, or 50% or more, or 70% or more, or 80% or more, or 90% or more. The measurement of the degree of crosslinking is as described above.
  • the polymer resin is a high heat resistance engineering plastic resin.
  • the engineering plastic resin is characterized in that the heat resistance temperature is 150 °C or more, preferably 180 °C or more, most preferably 200 °C or more.
  • polyolefin resins are extruded, stretched, and relaxed, and are used as separators made of a nonwoven fabric after the polyolefin resin is processed into fibers.
  • a polyolefin resin has a severe heat shrinkage at a high temperature, and has a disadvantage of physically weak.
  • the present inventors applied a high heat-resistant engineering plastic resin having a heat resistance temperature of 150 ° C. or higher to the separator so that it can be used stably even when the electrochemical device is overheated. Provide a separation membrane.
  • the high heat-resistant engineering plastic resin has a disadvantage in processing, such as the use of a high-temperature injection process without a lot of solvent to dissolve in producing a porous membrane by a conventional method.
  • the present invention provides a novel method for producing a porous separator having excellent ion conductivity and air permeability by applying a method for preparing an inverse opal structure to a high heat resistant engineering plastic resin.
  • the high heat resistance engineering plastic resin is not limited thereto, but according to one preferred embodiment of the present invention, polysulfone (PSF), polyethersulfone (PES), polyetherimide (PEI), polyphenylene sulfide (PPS) ), Polyether ether ketone (PEEK), polyarylate (PA) and polyamideimide (PAI), one or a mixture of two or more selected from the group consisting of polyimide (PI).
  • PSF polysulfone
  • PES polyethersulfone
  • PEI polyetherimide
  • PPS polyphenylene sulfide
  • PEEK Polyether ether ketone
  • PA polyarylate
  • PAI polyamideimide
  • PI polyamideimide
  • the high heat resistance engineering plastic resin has a molecular weight of 100,000 Da to 10,000,000 Da, preferably 500,000 Da or more.
  • the high heat resistance engineering plastic resin is a linear polyimide or an aromatic heterocyclic polyimide having an imide group in its main chain. Or a copolymer resin including a monomer including the imide group.
  • the first organic solvent may be a chlorine-based organic solvent.
  • the chlorine-based organic solvent one or a mixture of two or more selected from the group consisting of chloroform, methylene chloride, carbon tetrachloride, carbon dichloride, ethane trichloride, vinyl chloride, ethylene dichloride, ethylene trichloride and ethylene tetrachloride can be used. Can be.
  • the opal structure formed in the polymer substrate is filled with the polymer dispersion liquid obtained above.
  • the filling may be performed by immersing the substrate coated with the template of the polymer particles in the polymer dispersion.
  • the substrate coated with the template of the opal structure is immersed in a container containing a polymer dispersion.
  • the substrate is immersed in the dispersion and left for a few minutes to several hours so that the polymer dispersion is evenly infiltrated into the interparticle pores formed in the opal structure.
  • the immersion may be performed under pressurized conditions so that the penetration of the dispersion into the voids occurs effectively.
  • the substrate is taken out of the dispersion and dried to cure the polymer resin dispersion.
  • the drying may be performed at atmospheric pressure or pressurized conditions, and drying may be performed by applying heat or wind or hot air to the substrate as necessary. Since the polymer particles used in the template of the opal structure have high solubility, the polymer particles are not dissolved by the solvent contained in the polymer dispersion and the template is firmly maintained so that the reverse opal structure can be effectively produced. Therefore, the polymer dispersion is preferably dried quickly using heat or hot air. According to one preferred embodiment of the invention the drying may use an oven, gas furnace or electric furnace. The drying temperature may be performed at a temperature of 30 °C to 80 °C, preferably 50 °C to 80 °C. When the temperature exceeds 80 ° C, the polymer may be heated above the glass transition temperature to cause a change in shape.
  • the second organic solvent is a solvent capable of dissolving only the polymer particles without dissolving the polymer resin, and a solvent having high selectivity to the polymer particles is used.
  • the second organic solvent may be appropriately selected in consideration of the polymer particles or polymer resin used.
  • toluene, chloroform, NMP, or the like can be used as the second organic solvent.
  • dissolution of the polymer particles is performed by immersing the substrate filled with the polymer resin in a second organic solvent.
  • this step can be carried out under heating conditions in order for the dissolution to be carried out effectively.
  • the heating may be carried out at a temperature of 30 °C to 50 °C, preferably 30 °C to 40 °C.
  • the second solvent is selective to the polymer particles, only the polymer particles are dissolved in the coating layer of the polymer particles, and the polymer resin is not dissolved. Therefore, only the polymer particles forming the opal structure are dissolved and removed to finally form a porous substrate of a polymer resin having an inverse opal structure.
  • a second aspect of the present invention is a separator for an electrochemical device comprising the porous substrate and the porous substrate by the above method.
  • the thickness or pore distribution must be uniform. For example, if the thickness of a specific part of the membrane is thinner than other parts, or if the porosity of the specific part of the membrane is higher than that of other parts, the ion conductivity of the part is increased and current is concentrated in that part during charging and discharging.
  • the active material at the site reacts preferentially to generate a large distribution in both directions in the state of charge (SOC). This distribution accelerates the deterioration of the cell, which reduces the stability and reliability of the cell. In particular, it shows insufficient performance such as current leakage in instantaneous high current instantaneous discharge (10 seconds).
  • the porous substrate for a separator according to the present invention is obtained from a template having an opal structure in which polymer particles have a predetermined rule. Therefore, the porous substrate prepared according to the method of the present invention has a considerably high uniformity in terms of the shape, size and distribution of the pores according to the regularity of the opal structure. Therefore, the battery using this as a separator has excellent resistance characteristics and high output characteristics, and even in the case of high current instantaneous discharge (10 seconds), there is an effect of preventing leakage of current.
  • the separator substrate may have a pore diameter of 0.1 ⁇ m to 1 ⁇ m, or 0.1 ⁇ m to 0.7 ⁇ m, or 0.2 ⁇ m to 0.5 ⁇ m.
  • the pores in the porous substrate may be defined as having a standard deviation within a range of 1% or more and less than 30%, preferably, within a range of 1% or more and 20% or less. . Since the pore diameter depends on the particle diameter of the polymer particles used as a template, the particle diameter of the polymer particles preferably exhibits a monomodal distribution so that a uniform pore distribution can be obtained.
  • the porous substrate may have a breathability of 50 sec / 100 cc to 800 sec / 100 cc or 100 sec / 100 cc to 500 sec / 100. In one specific embodiment of the present invention, the porous substrate has a thickness of 10 ⁇ m to 40 ⁇ m.
  • a third aspect of the present invention is a separator comprising a porous substrate prepared by the above method, an electrode assembly comprising the separator and an electrochemical device comprising the electrode assembly. That is, in the electrochemical device, the separator according to the present invention can be usefully used as the separator interposed between the cathode and the anode.
  • the separator comprises a porous substrate according to the present invention.
  • the separator may be one layer of the separator substrate or may be a laminate of the separator substrate in a plurality of layers.
  • the porous film in which the polyolefin-based polymer resin is formed by a dry method or a wet method and the porous substrate according to the present invention may be laminated in multiple layers.
  • the separator may further include an organic / inorganic composite porous coating layer formed by mixing inorganic particles and a binder resin on at least one surface of the separator.
  • the composite porous coating layer is the inorganic particles are fixed to each other by the point bonding between the particles and / or surface bonding through the binder polymer resin to maintain the physical shape of the coating layer, by the interstitial volume of the inorganic particles It is a porous structure having a plurality of fine pores formed.
  • the porous coating layer has a thickness of 1 ⁇ m to 30 ⁇ m or 1 to 1 ⁇ m to 20 ⁇ m or 1 ⁇ m to 15 ⁇ m.
  • the size of the inorganic particles is not limited, but in order to form a uniform film thickness and proper porosity, it is preferable that the range of 0.001 ⁇ m to 10 ⁇ m, in a specific embodiment of the present invention, the content of the inorganic particles is the porous More preferably from 50% to 99% by weight or from 60% to 95% by weight per 100% by weight of the coating layer.
  • An electrochemical device includes all devices that undergo an electrochemical reaction, and specific examples include capacitors such as all kinds of primary cells, secondary cells, fuel cells, solar cells, or supercapacitor elements.
  • the secondary battery may include a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
  • the electrode to be applied together with the separator according to the present invention is not particularly limited, and according to a conventional method known in the art, the electrode active material may be prepared in a form bound to the electrode current collector.
  • the positive electrode active material of the electrode active material may be a conventional positive electrode active material that can be used for the positive electrode of the conventional electrochemical device, in particular lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron oxide or a combination thereof
  • One lithium composite oxide can be used.
  • Non-limiting examples of the negative electrode active material may be a conventional negative electrode active material that can be used in the negative electrode of the conventional electrochemical device, in particular lithium metal or lithium alloys, carbon, petroleum coke, activated carbon, Lithium adsorbents such as graphite or other carbons can be used.
  • Non-limiting examples of the positive electrode current collector is a foil made by aluminum, nickel or a combination thereof, and non-limiting examples of the negative electrode current collector by copper, gold, nickel or copper alloy or a combination thereof Foils produced.
  • Electrolyte that may be used in the electrochemical device in accordance with one aspect of the present invention is A + B - A salt of the structure, such as, A + is Li +, Na +, an alkali metal cation or an ion composed of a combination thereof, such as K + It includes and B a - is PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2) 3 - anion, or a salt containing an ion composed of a combination of propylene carbonate (PC) such as, ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC ), Dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran
  • the electrolyte injection may be performed at an appropriate stage of the battery manufacturing process, depending on the manufacturing process and the required physical properties of the final product. That is, it may be applied before the battery assembly or at the end of battery assembly.
  • a lamination (stacking) and folding (folding) process of the separator and the electrode may be performed in addition to the general winding process.
  • Polystyrene (PS) particles having an average particle diameter of 300 nm were dispersed on a glass substrate, and then dried in an oven at 70 degrees Celsius to form a template film having a thickness of 30 um. Thereafter, a polyethermide-dispersed methylene chloride solution (5 wt %) was poured on and dried in the same oven for 5 min to obtain a film filled with a polymer resin. After the film was made, it was ultrasonically washed with toluene for 10 minutes to remove the PS particles and to obtain a porous membrane (porous substrate).
  • PS Polystyrene
  • Silica particles having an average particle diameter of 300 nm were dispersed on a glass substrate, and then dried in an oven at 70 degrees Celsius to form a template film having a thickness of 30 um. Thereafter, a polyetherimide dispersed methylene chloride solution (5 wt%) was poured thereon. Drying in the same oven for 5 min yielded a film filled with polyetherimide. Next, the film was soaked in HF solution for 1 hour and the membrane was ultrasonically washed to obtain a membrane with pores.
  • Example 1 After the spherical particles were removed from Example 1 and Comparative Example 1, an inverse opal structure composed of polyetherimide was formed.
  • polystyrene particles were used on the surface in Example 1, they appeared to be cleanly removed, but in Comparative Example 1, it was confirmed that the degraded particles using silica particles formed small granules.
  • the shape showed a body-centered cubic structure or a face-centered cubic structure, and the porosity of the structural calculations based on the cross section is about 72% in Example 1, and about 70% in the comparative example.
  • the comparative example is similar in structure to that of Example 1 but appears to be slightly less due to the aggregation of particles during hydrofluoric acid treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

본 발명은 고내열성 플라스틱 엔지니어링 수지를 이용하여 제조된 역오팔 구조를 갖는 다공성 분리막 기재 및 상기 분리막 기재를 제조하는 방법에 대한 것이다. 상기 방법은 가교되지 않은 고분자 수지를 이용하여 오팔 구조를 형성하고 가교된 고분자 수지를 상기 오팔 구조내에 침투시킨 후 유기 용매로 오팔 구조를 형성하는 고분자 입자를 용해시켜 역오팔 구조를 갖는 다공성 기재를 제조하는 것이다. 본 발명에 따르면 내열성 저하, 기공 폐쇄 및 두께 감소의 문제점을 갖지 않으면서도 우수한 기공도 및 통기도를 갖는 분리막이 제조될 수 있다.

Description

역오팔 구조의 다공성 기재를 포함하는 전기화학소자용 다공성 분리막 및 이의 제조 방법
본 출원은 2013년 10월 31일에 출원된 한국특허출원 제10-2013-0131521호 및 2014년 10월 31일에 출원된 한국 특허출원 제10-2014-0150290호에 기초한 우선권을 주장한다. 본 발명은 전기화학소자용 분리막 및 이의 제조 방법에 대한 것이다. 더욱 상세하게는 기공의 크기 및 형태가 균일하게 형성된 다공성 기재를 포함하는 전기화학소자용 다공성 분리막 및 이의 제조방법에 대한 것이다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목 받고 있는 분야이고 그 중에서도 충방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구개발로 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다. 그러나 이러한 리튬 이온 전지는 유기 전해액을 사용하는 데 따르는 발화 및 폭발 등의 안전 문제가 존재하고, 제조가 까다로운 단점이 있다. 최근의 리튬 이온 고분자 전지는 이러한 리튬 이온 전지의 약점을 개선하여 차세대 전지의 하나로 꼽히고 있으나 아직까지 전지의 용량이 리튬 이온 전지와 비교하여 상대적으로 낮고, 특히 저온에서의 방전 용량이 불충분하여 이에 대한 개선이 시급히 요구되고 있다.
상기와 같은 전기화학소자는 많은 회사에서 생산되고 있으나 그들의 안전성 특성은 각각 다른 양상을 보인다. 이러한 전기화학소자의 안전성 평가 및 안전성 확보는 매우 중요하다. 가장 중요한 고려사항은 전기화학소자가 오작동시 사용자에게 상해를 입혀서는 안 된다는 것이며, 이러한 목적으로 안전규격은 전기화학소자 내의 발화 및 발연 등을 엄격히 규제하고 있다. 전기화학소자의 안전성 특성에 있어서, 전기화학소자가 과열되어 열폭주가 일어나거나 세퍼레이터가 관통될 경우에는 폭발을 일으키게 될 우려가 크다. 특히, 전기화학소자의 세퍼레이터로서 통상적으로 사용되는 폴리올레핀계 다공성 막은 재료적 특성과 연신을 포함하는 제조공정 상의 특성으로 인하여 100℃도 이상의 온도에서 극심한 열 수축 거동을 보임으로서, 양극과 음극 사이의 단락을 일으키는 문제점이 있다.
이와 같은 전기화학소자의 안전성 문제를 해결하기 위하여, 무기물 입자가 바인더와 결합되어 이루어지는 다공성 코팅층을 가지는 세퍼레이터를 제안하게 되었다. 그러나, 이러한 세퍼레이터를 형성하는 기존의 방법의 경우에는 극판에 도포된 다공막 구조의 활물질층의 표면에 무기물입자와 바인더 고분자 혼합물의 슬러리를 코팅하여 다공성 코팅층을 형성하였기 때문에, 이러한 바인더 고분자가 활물질층의 기공에 침투되어 전극의 품질을 저하시키며, 다공성 코팅층이 균일하게 형성되지 않으므로 안전성의 문제점이 있었다. 이에, 한국공개특허 제2008-0109237호에서는 다공성 코팅층을 형성하기 전에 활물질층의 표면에 용매를 먼저 도포하여 바인더 고분자의 침투를 방지하는 전극의 제조방법을 개시하고 있지만, 용매의 도포에 따른 충진밀도의 저하가 일어나고 거친 표면이 형성되는 문제점이 여전히 존재하고 있다.
따라서 본 발명은 높은 기공도(porosity) 및 이온 전도도가 우수한 전기화학소자용 다공성 분리막을 제공하는 것을 목적으로 한다. 또한, 본 발명의 다른 목적은 종래의 실리카 또는 타이타니아를 이용한 공정과는 달리 불산 처리가 필요하지 않은 환경친화적인 역오팔 구조의 제조 공정 및 이를 이용한 분리막 제조 공정을 제공하는 것이다. 이 외의 본 발명의 다른 목적 및 장점들은 하기 설명에 의해서 이해될 수 있을 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에서 기재되는 수단 또는 방법, 및 이의 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명은 전술한 기술적 과제를 해결하기 위한 전기화학소자용 다공성 기재 및 이를 제조하는 방법을 제공한다. 본원 발명에 따른 다공성 기재는 역오팔 구조를 갖는 것으로서 이를 제조 하는 방법은 고분자 입자를 포함하는 콜로이드 용액을 준비하는 단계(S10); 상기 콜로이드 용액을 기재에 코팅하여 오팔 구조를 갖는 고분자 입자의 코팅층을 형성하는 단계(S20); 고분자 수지를 제1 유기 용매에 분산시킨 고분자 수지 분산액을 준비하는 단계(S30); 상기 고분자 수지 분산액으로 고분자 입자의 오팔 구조를 충전(filling)하는 단계 (S40); 및 제2 유기 용매를 이용하여 고분자 입자를 용해하는 단계(S50); 을 포함한다.
여기에서, 상기 고분자 입자는 가교되지 않은 고분자 중합체이며, 상기 고분자 수지는 가교된 고분자 중합체일 수 있다.
여기에서, 상기 고분자 입자는 스타이렌-부타디엔 러버(SBR), 폴리부타디엔 러버, 폴리플로로프렌(네오프렌), 니트릴 러버, 아크릴 러버, 불소계 고무(FKM), PVC, 폴리스티렌, 폴리스티렌, 폴리메틸메타크릴레이트(PMMA), 아크릴로니트릴-부타디엔-스티렌(ABS), 폴리비닐리덴 플루오라이드, 폴리비닐 플루오라이드, PTFE, 폴리비닐 아세테이트나 이의 공중합체, 비닐아세테이트-에틸렌 공중합체로 이루어진 그룹에서 선택된 1종 또는 2종 이상일 수 있다.
여기에서, 상기 고분자 입자의 직경은 0.1㎛ 내지 1㎛일 수 있다.
여기에서, 상기 고분자 수지는 고내열성 플라스틱 엔지니어링 수지일 수 있다.
여기에서, 상기 고내열성 플라스틱 엔지니어링 수지는 폴리술폰(PSF), 폴리에테르술폰(PES), 폴리에테르이미드(PEI), 폴리페닐렌술포이드(PPS), 폴리에테르에테르케튼(PEEK), 폴리아릴레이트(PA) 및 폴리아미드이미드(PAI), 폴리이미드(PI)으로 이루어진 그룹에서 선택된 1종 또는 2종 이상일 수 있다.
여기에서, 상기 제1 유기 용매는 염소계 유기 용매일 수 있다.
여기에서, 상기 제2 유기 용매는 고분자 입자를 선택적으로 용해할 수 있는 것일 수 있다.
또한, 본 발명은 음극, 양극 및 상기 음극 및 양극 사이에 개재되는 분리막을 포함하는 전극 조립체 및 상기 전극 조립체를 포함하는 전기화학소자를 제공하며, 여기에서, 상기 분리막은 전술한 본원 발명에 따른 방법에 의해 제조된 다공성 기재를 포함한다.
또한 본 발명은 역오팔 구조을 갖고, 상기 다공성 기재의 표면 및 내부에는 복수의 기공이 존재하며 상기 기공의 직경에 대한 표준 편차가 1% 내지 35%인 것인, 전기 화학 소자용 다공성 기재를 제공한다.
여기에서, 상기 기공은 직경은 0.1㎛ 내지 1㎛인 것인 것이다.
여기에서, 상기 다공성 기재는 고내열성 플라스틱 엔지니어링 수지를 포함할 수 있다.
여기에서, 상기 고내열성 플라스틱 엔지니어링 수지는 폴리술폰(PSF), 폴리에테르술폰(PES), 폴리에테르이미드(PEI), 폴리페닐렌술포이드(PPS), 폴리에테르에테르케튼(PEEK), 폴리아릴레이트(PA) 및 폴리아미드이미드(PAI), 폴리이미드(PI)으로 이루어진 그룹에서 선택된 1종 또는 2종 이상일 수 있다.
여기에서, 상기 고내열성 플라스틱 엔지니어링 수지는 분자량이 100,000 Da 내지 10,000,000 Da일 수 있다.
여기에서, 상기 고내열성 플라스틱 엔지니어링 수지는 주쇄에 이미드(imide)기를 포함하는 선형 폴리이미드 또는 방향족 헤테로 고리 폴리이미드일 수 있다.
여기에서, 상기 다공성 기재는 가교된 고분자 수지를 포함할 수 있다.
본원 발명에 따른 분리막은 역오팔 구조의 제조 공정에 의해 형성되므로 기공의 크기 및 형태가 균일하고 높은 기공도(porosity)를 갖는다. 또한, 상기 분리막은 기공 폐쇄 및 두께 감소의 문제점을 갖지 않으면서도 우수한 기공도, 이온 전도도 및 통기도를 갖는다. 마지막으로 본원 발명에 따른 역오팔 구조의 제조 방법은 종래와는 달리 불산 처리가 필요하지 않으므로 환경친화적이고 인체에 유해하지 않다.
첨부된 도면은 발명의 바람직한 실시예를 예시하는 것이며, 상세한 설명과 함께 본 발명의 원리를 설명하는 것으로, 발명의 범위가 이에 국한되는 것은 아니다. 한편, 본 명세서에 수록된 도면에서의 요소의 형상, 크기, 축척 또는 비율 등은 보다 명확한 설명을 강조하기 위해서 과장된 것일 수 있다.
도 1은 본원 발명의 역오팔 구조의 분리막 제조 공정을 개략적인 설명한 흐름도이다.
도 2는 종래의 역오팔 구조를 형성하는 공정을 개략적으로 도시한 것이다.
도 3은 본원 발명에 따른 역오팔 구조의 분리막을 제조하는 공정을 개략적으로 도시한 것이다.
도 4는 본원 발명의 분리막 제조 공정시 준비된 오팔 구조의 템플레이트를 도시한 것이다.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명은 역오팔 구조를 갖는 다공성 기재 및 이를 제조하는 방법에 대한 것이다. 또한 본원 발명은 상기 다공성 기재를 포함하는 분리막 및 상기 분리막을 포함하는 전기 화학 소자를 제공한다.
본원 발명의 제1 측면은 역오팔 구조를 갖는 다공성 기재를 제조하는 방법에 대한 것이다. 본원 발명에 따른 역오팔 구조를 갖는 다공성 기재는 고분자 입자를 이용하여 오팔 구조의 템플레이트를 형성하고 고분자 수지를 상기 템플레이트에 충전(filling)시킨 후 유기 용매를 이용하여 상기 고분자 입자를 용해시켜 제거함으로써 얻어질 수 있다.
도 1은 본원 발명의 역오팔 구조의 다공성 기재을 제조하는 순서의 흐름도이다. 다음으로 도 1을 참조하여 본 발명에 대해 상세하게 설명한다.
우선, 고분자 입자를 포함하는 콜로이드 용액을 준비한다.
본원 발명의 구체적인 일 실시양태에 따르면 상기 고분자 입자는 가교도(또는 겔분율)이 10% 미만, 또는 5% 미만, 또는 3% 미만, 또는 1% 미만, 또는 가교되지 않은 고분자 중합체인 것이 바람직하다. 고도로 가교된 고분자인 경우에는 용매와 접촉했을 때 팽윤되지만 잘 용해되지 않는다. 따라서 후술하는 단계에서 고분자 입자가 용매에 의해 용해되어 오팔 구조의 템플레이트가 제거되고 역오팔 구조가 형성되도록 하기 위해 상기 고분자 입자로 가교되지 않은 고분자 중합체를 사용한다.
상기 가교도(또는 겔분율)은 하기 일반식 1로 계산될 수 있다.
[일반식 1]
가교도(또는 겔분율)(5) = B/A x 100
상기 일반식 1에서 A는 고분자 입자로 사용되는 중합체의 질량이고, B는 상기 질량 A를 갖는 중합체를 200메쉬 크기의 망에 넣은 상태로 상온에서 에틸 아세테이트에서 72시간 침적시킨 후에 채취한 불용해분의 건조 질량을 나타낸다.
본원 발명에서는 고분자 입자의 겔 분율을 10% 미만, 또는 5% 미만, 또는 3% 미만, 또는 1% 미만, 또는 0%로 또는 미가교 입자를 사용하여 후술하는 단계에서 용해에 의해 제거가 용이하도록 할 수 있다.
상기 고분자 입자는 스타이렌-부타디엔 러버(SBR), 폴리부타디엔 러버, 폴리플로로프렌(네오프렌), 니트릴 러버, 아크릴 러버, 불소계 고무(FKM), PVC, 폴리스티렌(PS), 폴리메틸메타크릴레이트(PMMA), 아크릴로니트릴-부타디엔-스티렌(ABS), 폴리비닐리덴 플루오라이드, 폴리비닐 플루오라이드, PTFE, 폴리비닐 아세테이트나 이의 공중합체, 비닐아세테이트-에틸렌 공중합체 등에서 선택된 1종 또는 2종 이상의 혼합물인 것이다. 그러나 이에 한정되는 것은 아니며, 상기 고분자 입자는 유화 중합이나 현탁 중합에 의해 안정적인 입자를 생성하는 것이면 특별히 한정되지 않는다.
일예로 SBR의 고분자 입자는 1,3 부타디엔과 스티렌과 같은 모노머와 유화제, 중합개시제, 전해질, 분자량 조절제와 같은 첨가제를 물 중에서 약 30℃ 의 온도 조건에서 교반하면서 저온 유화 중합의 방법으로 수득할 수 있다. 그러나, 고분자 입자의 제조 방법은 이에 한정되지 않으며, 고분자 입자의 종류에 따라 적절한 방법이 선택될 수 있다.
상기 고분자 입자는 분리막의 통기도를 고려하여 평균 입경이 0.1㎛ 내지 1㎛, 또는 0.1㎛ 내지 0.7㎛, 또는 0.2㎛ 내지 0.5㎛일 수 있다. 상기 고분자 입자의 평균 입경이 전술한 범위를 벗어나는 경우에는 최종단계에서 수득되는 역오팔 구조를 갖는 다공성 기재 내에 기공이 지나치게 작거나 크게 형성될 수 있어 전기화학소자용 분리막에 적용했을 때 통기도 및 이온 전도도에 불리한 측면이 있다. 상기 고분자 입자들의 크기는 다공성 기재 및 이를 포함하는 분리막의 소정의 용도나 특성에 따라 적절하게 변화될 수 있다. 즉, 상기 고분자 입자의 크기는 다공성 기재의 통기도, 이온 전도도, 공극의 직경 또는 공극율과 같은 특성을 고려하여 적절하게 조절될 수 있다. 본원 발명의 구체적인 일 실시양태에 있어서, 상기 고분자 입자의 입경은 모노모달 분포를 갖는 것이다. 상기 고분자 입자의 입경에 대한 표준 편차가 1% 내지 35% 또는 1% 내지 35%인 것이다.
상기 콜로이드 용액 중 고분자 입자의 농도는 10 ~ 50중량%인 것이나 이에 한정되는 것은 아니다. 상기 콜로이드 용액 중 물 등의 수성 매질은 후술하는 건조 단계에서 제거되는 것이므로 과도한 건조 시간이나 가열 온도가 요구되지 않는 범위 내에서 적절하게 조절될 수 있다.
다음으로 상기 콜로이드 용액을 기재상에 도포하고 건조하여 고분자 입자의 코팅층을 형성한다. 상기 코팅층은 고분자 입자가 오팔 구조를 형성하며 집적된 것으로 후술하는 단계에서 다공성 기재를 형성하는 템플레이트의 역할을 한다.
여기에서 상기 기재는 상기 코팅층이 형성되도록 하는 지지체 역할을 하는 것으로 특별히 한정되는 것은 아니다. 본원 발명의 구체적인 일 실시양태에 따르면, 상기 기재로 예를 들어, 유리 또는 실리콘 웨이퍼가 사용될 수 있다.
상기 콜로이드 용액의 코팅 방법은 특별히 제한되지 않는다. 상기 코팅 방법의 비제한적인 예로 나이프 코팅(knife coating), 롤 코팅(roll coating), 커튼 코팅(curtain coating), 캐스트 코팅(cast coating), 엔그래이브 롤 코팅(engrave roll coating), 분사 코팅(spary coating), 거품 코팅(foam coating), 리버스 롤 코팅(reverse roll coating), 캘린더 코팅(calendar coating), 익스트루젼 코팅(extrusion coating), 딥 코팅(dip coating) 또는 에어 나이프 코팅(air-knife coating) 중 하나의 방법을 선택하여 수행할 수 있다. 본원 발명의 구체적인 일 실시양태에 따른 상기 코팅 방법은 바람직하게는 상기 기재를 콜로이드 용액에 침지시키는 딥 코팅의 방식에 의해 수행된다.
상기 콜로이드 용액의 건조는 상압 또는 가압 조건에서 이루어질 수 있으며, 필요에 따라 기재에 열 또는 열풍을 가하여 건조를 수행할 수 있다. 또한, 상기 건조는 오븐, 가스로 또는 전기로를 이용하여 수행될 수 있다. 본원 발명의 구체적인 일 실시양태에 따르면 상기 건조는 25℃ 내지 100℃, 바람직하게는 50℃ 내지 80℃의 온도조건에서 수행될 수 있으나 이에 한정되는 것은 아니다. 본 단계에서 건조 온도나 건조 시간은 콜로이드 용액의 농도나 고분자 입자의 종류 등 공정 조건에 따라 적절하게 선택될 수 있다.
상기 콜로이드 용액 중 수성 매질이 건조에 의해 제거되면서 콜로이드 용액 내 고분자 입자는 기재 상에 오팔 구조를 형성하면서 집적된다. 도 3은 본원 발명의 역오팔 구조 제조의 공정도를 개략적으로 도시한 것으로서, 수성 매질이 건조 된 후 얻어지는 역오팔 구조의 고분자 입자 집적체를 일례를 개략적으로 나타낸 것이다. 상기 오팔 구조의 집적체는 고분자 입자 사이에 형성된 다수의 공극을 포함하고 있어 후술하는 단계에서 고분자 수지로 이루어지는 역오팔 구조의 다공성 기재를 형성하는 템플레이트로 이용된다.
다음으로, 고분자 수지를 제1 유기용매에 분산시켜 고분자 수지 분산액을 준비한다.
본원 발명의 구체적인 일 실시양태에 따르면 상기 고분자 입자는 가교된 고분자 중합체를 포함한다. 상기 고분자 수지는 역오팔 구조를 갖는 분리막의 다공성 기재로 사용되는 것이므로 추후 전지 조립 후 전해액과 같은 극성 용매나 유기 용매에 용해되는 것을 방지하기 위해 가교된 고분자 중합체인 것이 바람직하다. 본원 발명의 구체적인 일 실시양태에 따르면 상기 고분자 수지는 가교도(또는 겔분율)이 40% 이상, 또는 50% 이상, 또는 70% 이상, 또는 80% 이상, 또는 90% 이상인 것이다. 가교도의 측정은 전술한 바와 같다.
또한, 본원 발명의 구체적인 일 실시양태에 따르면, 상기 고분자 수지는 고내열성 엔지니어링 플라스틱 수지인 것이다. 상기 엔지니어링 플라스틱 수지는 내열 온도가 150℃ 이상, 바람직하게는 180℃ 이상, 가장 바람직하게는 200℃ 이상인 것을 특징으로 한다.
통상적으로 폴리올레핀계 수지를 압출하여 연신 및 이완시킨 폴리올레핀계 필름 분리막이나 상기 폴리올레핀계 수지를 섬유상으로 가공한 후 부직포 형태로 제조한 분리막으로 사용되고 있다. 그러나 이러한 폴리올레핀계 수지는 고온에서 열수축이 심하며, 물리적으로 취약한 단점이 있다. 이에 본 발명자들은 전기 화학 소자의 과열시에도 안정적으로 사용할 수 있도록 분리막에 내열온도가 150℃ 이상인 고내열성 엔지니어링 플라스틱 수지를 적용하였으며, 고온 환경에서도 열수축이 적은 또는 열 수축율이 5% 이하인 또는 열수축이 발생되지 않는 분리막을 제공한다. 한편, 상기 고내열성 엔지니어링 플라스틱 수지는 통상적인 방법에 의해 다공성 막을 제조하는데 있어 용해되는 용매가 많지 않고 고온의 사출 공정을 사용해야 하는 것과 같은 가공상 불리한 점이 있었다. 그러나, 본원 발명은 역오팔 구조의 제조 방법을 고내열성 엔지니어링 플라스틱 수지에 적용함으로써 이온전도도 및 통기도가 우수한 다공성 분리막을 제조할 수 있는 신규한 방법을 제공한다.
상기 고내열성 엔지니어링 플라스틱 수지는, 이에 한정되는 것은 아니지만, 본원 발명의 바람직한 일 실시양태에 따르면 폴리술폰(PSF), 폴리에테르술폰(PES), 폴리에테르이미드(PEI), 폴리페닐렌술포이드(PPS), 폴리에테르에테르케튼(PEEK), 폴리아릴레이트(PA) 및 폴리아미드이미드(PAI), 폴리이미드(PI)로 이루어진 그룹에서 선택된 1종 또는 둘 이상의 혼합물을 사용할 수 있다. 바람직하게는 상기 고내열성 엔지니어링 플라스틱 수지는 분자량이 100,000 Da 내지 10,000,000 Da, 바람직하게는 500,000 Da이상인 것이다.
본원 발명의 구체적인 일 실시양태에 따르면 고내열성 엔지니어링 플라스틱 수지는 주쇄에 이미드(imide)기를 포함하고 있는 선형 폴리이미드 또는 방향족 헤테로 고리 폴리이미드인 것이다. 또는 상기 이미드기를 포함하는 단량체를 포함하는 공중합 수지일 수 있다.
본 발명의 일 실시양태에 있어서, 상기 제1 유기용매는 염소계 유기 용매를 사용할 수 있다. 상기 염소계 유기 용매의 비제한적인 예로서, 클로로포름, 메틸렌클로라이드, 사염화탄소, 이염화탄소, 삼염화에탄, 염화비닐, 이염화에틸렌, 삼염화에틸렌 및 사염화에틸렌으로 이루어진 그룹에서 선택된 1종 또는 2종 이상의 혼합물을 사용할 수 있다.
다음으로, 상기에서 수득한 고분자 분산액으로 고분자 기재에 형성된 오팔 구조의 공극을 충전(filling)한다. 상기 충전은 고분자 입자의 템플레이트가 코팅된 기재를 상기 고분자 분산액에 침지시키는 방법으로 수행될 수 있다. 본원 발명에 따른 구체적인 일 실시형태에 따르면, 상기 오팔 구조의 템플레이트가 코팅된 기재를 고분자 분산액이 담긴 용기에 담근다. 바람직하게는 오팔 구조에 형성되어 있는 입자간 공극으로 상기 고분자 분산액이 고루 침투되도록 상기 기재를 분산액에 담그고 수분 내지 수 시간 방치한다. 상기 분산액의 공극으로의 침투가 효과적으로 일어나도록 상기 침지는 가압 조건에서 수행될 수 있다. 오팔 구조의 공극으로 고분자 수지 분산액의 침투가 이루어지면 상기 기재를 분산액에서 꺼낸 후 건조하여 고분자 수지 분산액을 경화시킨다. 상기 건조는 상압 또는 가압 조건에서 이루어질 수 있으며, 필요에 따라 기재에 열 또는 바람 또는 열풍을 가하여 건조를 수행할 수 있다. 오팔 구조의 템플레이트에 사용된 고분자 입자는 용해도가 높으므로 상기 고분자 분산액에 포함된 용매에 의해 고분자 입자가 용해되지 않고 템플레이트가 견고하게 유지되어 역오팔 구조가 효과적으로 생성될 수 있도록 하여야 한다. 따라서 상기 고분자 분산액은 열이나 열풍을 이용하여 신속하게 건조가 이루어지는 것이 바람직하다. 본원 발명의 바람직한 일 실시양태에 따르면 상기 건조는 오븐, 가스로 또는 전기로를 이용할 수 있다. 상기 건조 온도는 하여 30℃ 내지 80℃, 바람직하게는 50℃ 내지 80℃의 온도조건에서 수행될 수 있다. 상기 온도가 80℃를 초과하는 경우에는 고분자가 유리전이온도 이상으로 가열되어 형상의 변화를 일으킬 수 있다.
다음으로 제2 유기 용매를 이용하여 고분자 입자를 용해시킨다. 상기 제2 유기 용매는 고분자 수지는 용해시키지 않고 고분자 입자만 용해시킬 수 있는 것으로서 고분자 입자에 대해서 선택성이 높은 용매를 사용한다. 상기 제2 유기 용매는 사용된 고분자 입자나 고분자 수지를 고려하여 적절하게 선택될 수 있다. 본원 발명의 구체적인 일 실시 양태에 있어서, 고분자 입자로서 폴리스타이렌이나 폴리메타크릴레이트를 사용하는 경우에는 제2 유기 용매로서 톨루엔, 클로로포름 또는 NMP 등을 사용할 수 있다.
본원 발명의 구체적인 일 실시양태에 따르면 상기 고분자 입자의 용해는 상기 고분자 수지가 충전되어 있는 기재를 제2 유기 용매에 침지시킴으로써 수행된다. 또한, 상기 용해가 효과적으로 수행되도록 하기 위해서 이 단계는 가열 조건에서 수행될 수 있다. 상기 가열은 30℃ 내지 50℃, 바람직하게는 30℃ 내지 40℃의 온도조건에서 수행될 수 있다.
상기 제2 용매는 고분자 입자에 대해 선택성이 있는 것이므로 고분자 입자의 코팅층에서 고분자 입자만 용해시키고 고분자 수지는 용해되지 않는다. 따라서 오팔 구조를 이루는 고분자 입자만 용해되어 제거됨으로써 최종적으로 역오팔 구조를 갖는 고분자 수지의 다공성 기재가 형성된다.
본원 발명의 제2 측면은 상기의 방법에 의해다공성 기재 및 상기 다공성 기재를 포함하는 전기화학소자용 분리막이다.
전기화학소자 분리막은 전해액을 함유하며 양극과 음극간 이온 전도를 가능하게 하여야 하므로두께나 기공 분포가 균일해야 한다. 예를 들면, 분리막 특정 부분의 두께가 다른 부분에 비해서 얇거나 분리막 특정 부분의 기공도가 다른 부분에 비해서 높다면 그 부분의 이온 전도성은 높아지고 충방전 과정에서 그 부분에 전류가 집중되어 그 곳에 접촉하는 부위의 활물질이 우선적으로 반응하여 충전상태(SOC)에 있어서 양방향의 큰 분포를 발생시킨다. 이와 같은 분포는 전지의 열화를 가속화시키게 되며 이는 전지의 안정성 및 신뢰성을 감소시킨다. 특히 순간적인 고전류 순간방전(10초)에서 전류 누설 등 부족한 성능을 나타낸다.
본원 발명에 따른 분리막용 다공성 기재는 고분자 입자가 일정한 규칙을 갖고 집적된 오팔 구조의 템플레이트로부터 얻어지는 것이다. 따라서 본원 발명의 방법에 따라 제조된 다공성 기재는 오팔 구조의 규칙성에 따라서 공극의 모양, 크기 및 분포의 측면에서 균일도가 상당히 높다. 따라서 이를 분리막으로 이용한 전지의 경우 저항특성 및 고출력 특성이 우수하며, 고전류 순간방전(10초)의 경우에도 전류의 누설이 방지되는 효과가 있다. 본 발명이 구체적인 일 실시양태에 따르면 상기 분리막 기재는 기공의 직경은 0.1㎛ 내지 1㎛, 또는 0.1㎛ 내지 0.7㎛ 또는 0.2㎛ 내지 0.5㎛일 수 있다. 본원 발명의 구체적인 일 실시양태에 따르면 상기 다공성 기재에 있어서 기공은 표준편차가 1% 이상 내지 30% 미만의 범위 이내, 바람직하게는, 1% 이상 내지 20% 이하의 범위 이내 인 것으로 정의할 수 있다. 상기 기공의 직경은 템플레이트로 사용되는 고분자 입자의 입경에 따르므로 균일한 기공 분포를 나타낼 수 있도록 고분자 입자의 입경은 바람직하게는 모노모달 분포를 나타낸 것이 바람직하다. 또한, 본원 발명에 있어서 상기 다공성 기재는 통기도가 50sec/100cc 내지 800sec/100cc 또는 100sec/100cc 내지 500sec/100의 범위일 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 다공성 기재의 두께는 10㎛ 내지 40㎛인 것이다.
본원 발명의 제3 측면은 상기의 방법으로 제조된 다공성 기재를 포함하는 분리막, 상기 분리막을 포함하는 전극 조립체 및 상기 전극 조립체를 포함하는 전기 화학소자이다. 즉, 전기화학 소자에 있어서, 캐소드와 애노드 사이에 개재시킨 분리막으로서 본 발명에 따른 분리막이 유용하게 사용될 수 있다.
본 발명에 있어서, 상기 분리막은 본원 발명에 따른 다공성 기재를 포함한다. 구체적인 일 실시양태에 있어서, 상기 분리막은 1층의 상기 분리막 기재를 사용하거나 또는 상기 분리막 기재를 복수의 층으로 적층한 것일 수 있다. 또는 폴리올레핀계 고분자 수지를 건식법 또는 습식법에 의해 성막한 다공성 필름과 본원 발명에 따른 상기 다공성 기재를 다층으로 적층한 것일 수 있다. 본원 발명의 다른 측면에 따르면 상기 분리막은 분리막의 적어도 일측 표면에 무기물 입자와 바인더 수지가 혼합되어 형성된 유/무기 복합 다공성 코팅층을 더 포함할 수 있다. 상기 복합 다공성 코팅층은 무기물 입자들이 바인더 고분자 수지를 매개로 하여 입자간 점결착 및/또는 면결착하여 서로 고정되어 코팅층의 물리적 형태가 유지되며, 상기 무기물 입자들의 인터스티셜 볼륨(interstitial volume)에 의해 형성된 복수의 미세 기공을 갖는 다공성 구조인 것이다. 상기 다공성 코팅층의 두께는 1㎛ 내지 30㎛인 또는 1 내지 1㎛ 내지 20㎛ 또는 1㎛ 내지 15㎛인 것이다. 상기 무기물 입자의 크기는 제한이 없으나, 균일한 두께의 필름 형성 및 적절한 공극률을 위하여 0.001㎛ 내지 10㎛ 범위인 것이 바람직하며, 본 발명의 구체적인 일 실시양태에 있어서, 상기 무기물 입자의 함량은 상기 다공성 코팅층 100중량% 당 50 중량% 내지 99 중량% 범위 또는 60 증량% 내지 95 중량%가 더욱 바람직하다.
본 발명의 일 측면에 따른 전기화학 소자는 전기 화학 반응을 하는 모든 소자를 포함하며, 구체적인 예로서 모든 종류의 일차 전지, 이차 전지, 연료 전지, 태양 전지 또는 수퍼 캐패시터 소자와 같은 캐퍼시터(capacitor) 등이 있다. 특히, 상기 이차 전지 중 리튬금속 이차전지, 리튬이온 이차전지, 리튬 폴리머 이차전지 또는 리튬이온 폴리머 이차전지 등을 포함하는 리튬 이차전지가 포함될 수 있다.
본원 발명에 따른 분리막과 함께 적용될 전극은 특별히 제한되지 않으며, 당업계에 알려진 통상적인 방법에 따라 전극활물질을 전극 전류집전체에 결착된 형태로 제조할 수 있다. 상기 전극활물질 중 양극활물질의 비제한적인 예로는 종래 전기화학 소자의 양극에 사용될 수 있는 통상적인 양극활물질이 사용 가능하며, 특히 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬철산화물 또는 이들을 조합한 리튬복합산화물을 사용할 수 있다. 음극활물질의 비제한적인 예로는 종래 전기화학 소자의 음극에 사용될 수 있는 통상적인 음극활물질이 사용 가능하며, 특히 리튬 금속 또는 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite) 또는 기타 탄소류 등과 같은 리튬 흡착물질 등이 사용 가능하다. 양극 전류집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 전류집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
본 발명의 일 측면에 따른 전기화학 소자에서 사용될 수 있는 전해액은 A+B-와 같은 구조의 염으로서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고 B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤 (g-부티로락톤) 또는 이들의 혼합물로 이루어진 유기 용매에 용해 또는 해리된 것이 있으나, 이에만 한정되는 것은 아니다.
상기 전해액 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전지조립 전 또는 전지조립 최종 단계 등에서 적용될 수 있다.
본 발명의 일 측면에 따른 분리막을 전지로 적용하는 공정으로는 일반적인 공정인 권취(winding) 이외에도 분리막과 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다.
이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계의 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예
평균 입경 300 nm 의 폴리스티렌(PS) 입자를 유리 기판 위에 분산시킨 후에 오븐에서 섭씨 70도로 건조시켜 두께 30 um의 템플레이트 필름을 형성하였다 그 후 폴리에테르이미드(polyethermide)가 분산된 메틸렌클로라이드 용액 (5 wt%)을 위에 부은 후에 동일 오븐에서 5 min 동안 건조시켜 고분자 수지가 충진된 필름을 수득하였다. 상기 필름을 된 후에, 톨루엔(toluene)을 이용하여 10분 동안 초음파로 세척하여, PS 입자를 제거하고, 기공을 가진 막(다공성 기재)을 수득하였다.
비교예
평균 입경 300 nm 의 실리카 입자를 유리 기판 위에 분산시킨 후에 오븐에서 섭씨 70도로 건조시켜 두께 30 um의 템플레이트 필름을 형성하였다 그 후 폴리에테르이미드가 분산된 메틸렌클로라이드 용액 (5 wt%)을 위에 부은 후에 동일 오븐에서 5 min 동안 건조시켜 폴리에테르이미드가 충진된 필름을 수득하였다. 다음으로 상기 필름을 1시간 동안 HF 용액에 담근 후에 막을 초음파로 세척하여기공을 가진 막을 수득하였다.
결과
실시예 1 및 비교예 1로부터 구형 입자가 제거된 후에, 폴리에테르이미드(polyetherimide)로 이루어진 역오팔 구조가 형성되었다. 실시예 1에서 표면상으로 폴리스티렌 입자를 사용하였을 경우 깨끗하게 제거된 것으로 보이나, 비교예 1에서 실리카 입자를 사용하는 분해된 입자들이 작은 그래뉼을 형성하는 것이 확인되었다. 결과적으로 형상은 체심입방구조 또는 면심입방구조를 나타내었으며, 단면에 의해 구조 계산 결과 기공률이 실시예 1의 경우는 72% 정도이며, 비교예의 경우는 70% 정도이다. 실시예 1보다 비교예가 구조는 비슷하나 조금 적게 나온 이유는 불산 처리 과정에의 입자가 뭉쳐진 양상에 기인한 것으로 보인다.

Claims (17)

  1. 고분자 입자를 포함하는 콜로이드 용액을 준비하는 단계(S10);
    상기 콜로이드 용액을 기재에 코팅하여 오팔 구조를 갖는 고분자 입자의 코팅층을 형성하는 단계(S20);
    고분자 수지를 제1 유기 용매에 분산시킨 고분자 수지 분산액을 준비하는 단계(S30);
    상기 고분자 수지 분산액으로 고분자 입자의 오팔 구조를 충전(filling)하는 단계 (S40); 및
    제2 유기 용매를 이용하여 고분자 입자를 용해하는 단계(S50);
    을 포함하는, 역오팔 구조를 갖는 다공성 기재의 제조 방법.
  2. 제1항에 있어서,
    상기 고분자 입자는 가교되지 않은 고분자 중합체이며, 상기 고분자 수지는 가교된 고분자 중합체인 것인, 역오팔 구조를 갖는 다공성 기재의 제조 방법.
  3. 제1항에 있어서,
    상기 고분자 입자는 스타이렌-부타디엔 러버(SBR), 폴리부타디엔 러버, 폴리플로로프렌(네오프렌), 니트릴 러버, 아크릴 러버, 불소계 고무(FKM), PVC, 폴리스티렌, 폴리스티렌, 폴리메틸메타크릴레이트(PMMA), 아크릴로니트릴-부타디엔-스티렌(ABS), 폴리비닐리덴 플루오라이드, 폴리비닐 플루오라이드, PTFE, 폴리비닐 아세테이트나 이의 공중합체, 비닐아세테이트-에틸렌 공중합체로 이루어진 그룹에서 선택된 1종 또는 2종 이상인 것인, 역오팔 구조를 갖는 다공성 기재의 제조 방법.
  4. 제1항에 있어서,
    상기 고분자 입자의 직경은 0.1㎛ 내지 1㎛인 것인, 역오팔 구조를 갖는 다공성 기재의 제조 방법.
  5. 제1항에 있어서,
    상기 고분자 수지는 고내열성 플라스틱 엔지니어링 수지인 것인, 역오팔 구조를 갖는 다공성 기재의 제조 방법.
  6. 제5 항에 있어서,
    상기 고내열성 플라스틱 엔지니어링 수지는 폴리술폰(PSF), 폴리에테르술폰(PES), 폴리에테르이미드(PEI), 폴리페닐렌술포이드(PPS), 폴리에테르에테르케튼(PEEK), 폴리아릴레이트(PA) 및 폴리아미드이미드(PAI), 폴리이미드(PI)으로 이루어진 그룹에서 선택된 1종 또는 2종 이상인 것인, 역오팔 구조를 갖는 다공성 기재의 제조 방법.
  7. 제1항에 있어서,
    상기 제1 유기 용매는 염소계 유기 용매인 것인, 역오팔 구조를 갖는 다공성 기재의 제조 방법.
  8. 제1항에 있어서,
    상기 제2 유기 용매는 고분자 입자를 선택적으로 용해할 수 있는 것인, 역오팔 구조를 갖는 다공성 기재의 제조 방법.
  9. 음극, 양극 및 상기 음극 및 양극 사이에 개재되는 분리막을 포함하며, 상기 분리막은 제1항 내지 제8항 중 어느 한 항에 따른 방법에 의해 제조된 다공성 기재를 포함하는 것인, 전극 조립체.
  10. 제9항에 따른 전극 조립체를 포함하는 전기 화학 소자.
  11. 전기화학소자용 다공성 기재에 있어서,
    상기 다공성 기재는 역오팔 구조을 갖고,
    상기 다공성 기재의 표면 및 내부에는 복수의 기공이 존재하며 상기 기공의 직경에 대한 표준 편차가 1% 내지 35%인 것인, 다공성 기재.
  12. 제11항에 있어서,
    상기 기공은 직경은 0.1㎛ 내지 1㎛인 것인, 다공성 기재.
  13. 제11항에 있어서,
    상기 다공성 기재는 고내열성 플라스틱 엔지니어링 수지를 갖는 것인, 다공성 기재.
  14. 제13항에 있어서,
    상기 고내열성 플라스틱 엔지니어링 수지는 폴리술폰(PSF), 폴리에테르술폰(PES), 폴리에테르이미드(PEI), 폴리페닐렌술포이드(PPS), 폴리에테르에테르케튼(PEEK), 폴리아릴레이트(PA) 및 폴리아미드이미드(PAI), 폴리이미드(PI)으로 이루어진 그룹에서 선택된 1종 또는 2종 이상인 것인, 다공성 기재.
  15. 제13항에 있어서,
    상기 고내열성 플라스틱 엔지니어링 수지는 분자량이 100,000 Da 내지 10,000,000 Da인 것인, 다공성 기재.
  16. 제13항에 있어서,
    상기 고내열성 플라스틱 엔지니어링 수지는 주쇄에 이미드(imide)기를 포함하는 선형 폴리이미드 또는 방향족 헤테로 고리 폴리이미드인 것인, 다공성 기재.
  17. 제11항에 있어서,
    상기 다공성 기재는 가교된 고분자 수지를 포함하는 것인, 다공성 기재.
PCT/KR2014/010392 2013-10-31 2014-10-31 역오팔 구조의 다공성 기재를 포함하는 전기화학소자용 다공성 분리막 및 이의 제조 방법 WO2015065121A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480017640.1A CN105051942A (zh) 2013-10-31 2014-10-31 具有反蛋白石结构的二次电池用多孔隔膜及其制造方法
JP2016526929A JP6316417B2 (ja) 2013-10-31 2014-10-31 逆オパール構造の多孔性基材を含む電気化学素子用多孔性分離膜及びこの製造方法
US14/771,720 US10115952B2 (en) 2013-10-31 2014-10-31 Porous separator having inverse opal structure for secondary battery and method for manufacturing the same
EP14858506.0A EP2950367B1 (en) 2013-10-31 2014-10-31 Porous separator having inverse opal structure for secondary battery and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130131521 2013-10-31
KR10-2013-0131521 2013-10-31
KR10-2014-0150290 2014-10-31
KR1020140150290A KR101693778B1 (ko) 2013-10-31 2014-10-31 역오팔 구조의 다공성 기재를 포함하는 전기화학소자용 다공성 분리막 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2015065121A1 true WO2015065121A1 (ko) 2015-05-07

Family

ID=53388277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010392 WO2015065121A1 (ko) 2013-10-31 2014-10-31 역오팔 구조의 다공성 기재를 포함하는 전기화학소자용 다공성 분리막 및 이의 제조 방법

Country Status (7)

Country Link
US (1) US10115952B2 (ko)
EP (1) EP2950367B1 (ko)
JP (1) JP6316417B2 (ko)
KR (1) KR101693778B1 (ko)
CN (1) CN105051942A (ko)
TW (1) TWI526484B (ko)
WO (1) WO2015065121A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104861197B (zh) * 2015-06-02 2017-08-29 中国科学技术大学 一种用于制备可回收的反蛋白石型聚四氟乙烯多孔膜的方法
KR102102612B1 (ko) * 2017-03-30 2020-04-21 한양대학교 산학협력단 경화 온도에 따라 표면 구조 조절이 가능한 다공성 필름의 제조방법
CN107240663B (zh) * 2017-05-02 2020-08-28 佛山市金辉高科光电材料股份有限公司 一种聚合物涂层隔膜及其制备方法
CN107655813B (zh) * 2017-11-09 2020-06-16 东南大学 基于反蛋白石结构水凝胶的心肌细胞检测方法及其应用
CN110504403B (zh) * 2019-07-18 2022-03-15 肇庆市华师大光电产业研究院 一种用于锂硫电池功能性隔层的zif8/氧化锌复合材料的制备方法
CN114975878B (zh) * 2022-05-09 2024-03-19 上海交通大学 一种流延法制备大面积厚度可控有序多孔电极的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002687A (ja) * 2001-06-14 2003-01-08 Kanagawa Acad Of Sci & Technol 逆オパール構造フォトニクス結晶の製造方法
KR20080109237A (ko) 2007-06-12 2008-12-17 삼성에스디아이 주식회사 세라믹 세퍼레이터 형성방법
KR20110003786A (ko) * 2009-07-06 2011-01-13 서강대학교산학협력단 초임계 유체에서 역 오팔 구조체의 제조방법
KR20120122020A (ko) * 2011-04-28 2012-11-07 서강대학교산학협력단 계층형 다공성 전이금속 산화물 구조체, 상기의 제조 방법, 상기를 포함하는 광전극, 및 상기 광전극을 포함하는 염료감응형 태양전지
KR20130008153A (ko) * 2011-07-12 2013-01-22 서강대학교산학협력단 다공성 탄소 상대전극을 이용한 염료감응 태양전지 및 이의 제조방법
KR20130066746A (ko) * 2011-12-13 2013-06-21 주식회사 코캄 리튬 이차전지용 고내열성 복합체 세퍼레이터 및 이를 포함하는 리튬 이차전지

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261469B1 (en) * 1998-10-13 2001-07-17 Honeywell International Inc. Three dimensionally periodic structural assemblies on nanometer and longer scales
JP2000260413A (ja) 1999-03-10 2000-09-22 Nitto Denko Corp 電池用セパレータおよびこのセパレータを用いた電池
US6861497B2 (en) * 2001-04-20 2005-03-01 The United States Of America As Represented By The Secretary Of The Navy Polyimides having an unusually low and tunable electrical resistivity useful for electrical and optical applications
JP2003093852A (ja) * 2001-09-25 2003-04-02 Sangaku Renkei Kiko Kyushu:Kk 分離膜の製造方法およびその方法により得られた分離膜形成材、分離膜
JP4646804B2 (ja) * 2003-03-28 2011-03-09 株式会社ピーアイ技術研究所 架橋ポリイミド、それを含む組成物及びその製造方法
JP2006167855A (ja) * 2004-12-15 2006-06-29 Ricoh Co Ltd 周期性構造物の作成方法、周期性構造物、および、周期性構造物を用いた光学素子
US9023534B2 (en) * 2005-07-29 2015-05-05 Toyo Boseki Kabushiki Kaisha Polyamide imide fiber, non-woven fabric composed of the fiber, process for manufacture of the non-woven fabric, and separator for electronic component
JP2007190899A (ja) * 2005-12-21 2007-08-02 Fujifilm Corp 規則配列したナノ構造材料およびその製造方法
CN100533816C (zh) * 2006-01-09 2009-08-26 比亚迪股份有限公司 电池隔膜及其制备方法以及含该隔膜的锂离子二次电池
JPWO2007086306A1 (ja) * 2006-01-30 2009-06-18 学校法人近畿大学 生分解性逆オパール構造体、その製造方法及び使用方法、並びに該生分解性逆オパール構造体からなる医療用インプラント
JP2007271609A (ja) * 2006-03-08 2007-10-18 Hokkaido Univ バイオセンサー
CN101209609B (zh) * 2006-12-30 2011-06-15 比亚迪股份有限公司 一种聚烯烃复合薄膜及其制备方法和用途
JP5214998B2 (ja) * 2008-02-28 2013-06-19 帝人株式会社 非水電解質電池セパレータ及びその製造方法並びにそれを用いた非水電解質二次電池
JP2009268836A (ja) * 2008-05-09 2009-11-19 Kinki Univ 逆オパール構造体、その製造方法及び使用方法
US20100233258A1 (en) * 2009-03-13 2010-09-16 Inovista Inc. Tablet having concavity with active ingredient disposed therein and manufacturing method thereof
US8127936B2 (en) * 2009-03-27 2012-03-06 Uop Llc High performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes
JP5331627B2 (ja) 2009-09-09 2013-10-30 公立大学法人首都大学東京 リチウム二次電池用セパレーターおよびこれを用いたリチウム二次電池
JP5605566B2 (ja) * 2010-11-18 2014-10-15 公立大学法人首都大学東京 多孔質ポリイミド膜の製造方法
JP5794464B2 (ja) 2011-03-08 2015-10-14 株式会社Gsユアサ 二次電池用のセパレータ、及び二次電池
EP2749588B1 (en) * 2011-09-09 2015-12-16 Asahi Kasei Fibers Corporation Polyketone porous film
JP6257122B2 (ja) 2011-10-04 2018-01-10 日産自動車株式会社 耐熱絶縁層付セパレータ
CN102340010B (zh) 2011-10-09 2013-11-20 上海大学 反蛋白石聚吡咯负极材料的原电池的制备方法
KR101852924B1 (ko) * 2011-11-04 2018-04-30 삼성전자주식회사 혼성 다공성 구조체, 이를 포함하는 분리막 및 혼성 다공성 구조체의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002687A (ja) * 2001-06-14 2003-01-08 Kanagawa Acad Of Sci & Technol 逆オパール構造フォトニクス結晶の製造方法
KR20080109237A (ko) 2007-06-12 2008-12-17 삼성에스디아이 주식회사 세라믹 세퍼레이터 형성방법
KR20110003786A (ko) * 2009-07-06 2011-01-13 서강대학교산학협력단 초임계 유체에서 역 오팔 구조체의 제조방법
KR20120122020A (ko) * 2011-04-28 2012-11-07 서강대학교산학협력단 계층형 다공성 전이금속 산화물 구조체, 상기의 제조 방법, 상기를 포함하는 광전극, 및 상기 광전극을 포함하는 염료감응형 태양전지
KR20130008153A (ko) * 2011-07-12 2013-01-22 서강대학교산학협력단 다공성 탄소 상대전극을 이용한 염료감응 태양전지 및 이의 제조방법
KR20130066746A (ko) * 2011-12-13 2013-06-21 주식회사 코캄 리튬 이차전지용 고내열성 복합체 세퍼레이터 및 이를 포함하는 리튬 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2950367A4

Also Published As

Publication number Publication date
TW201529653A (zh) 2015-08-01
EP2950367A4 (en) 2016-08-10
KR20150050513A (ko) 2015-05-08
EP2950367A1 (en) 2015-12-02
JP6316417B2 (ja) 2018-04-25
EP2950367B1 (en) 2019-01-02
US20160013464A1 (en) 2016-01-14
CN105051942A (zh) 2015-11-11
JP2016536750A (ja) 2016-11-24
KR101693778B1 (ko) 2017-01-06
US10115952B2 (en) 2018-10-30
TWI526484B (zh) 2016-03-21

Similar Documents

Publication Publication Date Title
WO2015065121A1 (ko) 역오팔 구조의 다공성 기재를 포함하는 전기화학소자용 다공성 분리막 및 이의 제조 방법
JP5635970B2 (ja) 高耐熱性被覆層を有するポリオレフィン系複合微多孔膜の製造方法
KR101577383B1 (ko) 비수 전해질 전지용 세퍼레이터 및 비수 전해질 전지
WO2017010780A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
Yu et al. A newly-developed heat-resistance polyimide microsphere coating to enhance the thermal stability of commercial polyolefin separators for advanced lithium-ion battery
WO2011105866A2 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
CN111615760A (zh) 改善的涂覆的分隔件、锂电池及相关方法
US11777175B2 (en) Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
TW201733186A (zh) 非水系二次電池用隔板及非水系二次電池
CN112020784A (zh) 用于电化学装置的隔板和包含该隔板的电化学装置
KR101943502B1 (ko) 이차 전지용 분리막의 제조 방법 및 상기 방법에 의해 제조된 분리막
JP2014203676A (ja) 電極一体型セパレータ及びその製造方法
CN111463390A (zh) 改善的涂覆的分隔件、锂电池及相关方法
TW202044646A (zh) 用於高能量可充電鋰電池之聚醯胺—醯亞胺塗覆分隔件
WO2012128460A2 (ko) 홍합유래 고분자를 이용한 분리막 코팅제 및 그 제조방법, 열수축 방지제 및 그 제조방법
JP2006351365A (ja) 電子部品用セパレータおよび電子部品
KR101748640B1 (ko) 유기-무기 복합 다공성 막, 이를 포함하는 세퍼레이터 및 전극구조체
KR20160051167A (ko) 다공성 코팅 복합 분리막의 제조방법 및 그 제조방법에 의하여 제조된 분리막
KR20140044527A (ko) 발포제를 사용하는 다공성 분리막의 제조방법
CN114085406B (zh) 一种孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜及其制备方法与应用
Fang et al. The High-performance Separators in the Power Lithiumi-on Batteries
KR20210017843A (ko) 다공성 분리막 및 이를 포함하는 전기화학소자
CN116742274A (zh) 一种复合膜及其制备方法和应用
KR20150018083A (ko) 리튬이온 전지 분리막 및 그 제조방법
CN114883745A (zh) 用于制备隔离膜的方法、隔离膜、应用该隔离膜的电化学电池、用电装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017640.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858506

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014858506

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14771720

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016526929

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE