CN114085406B - 一种孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜及其制备方法与应用 - Google Patents
一种孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜及其制备方法与应用 Download PDFInfo
- Publication number
- CN114085406B CN114085406B CN202111297815.7A CN202111297815A CN114085406B CN 114085406 B CN114085406 B CN 114085406B CN 202111297815 A CN202111297815 A CN 202111297815A CN 114085406 B CN114085406 B CN 114085406B
- Authority
- CN
- China
- Prior art keywords
- polyamide
- polyolefin
- imide
- pore
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/0427—Coating with only one layer of a composition containing a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/26—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/04—Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
- C08J2201/046—Elimination of a polymeric phase
- C08J2201/0464—Elimination of a polymeric phase using water or inorganic fluids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08J2379/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2471/00—Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
- C08J2471/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2479/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
- C08J2479/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08J2479/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
本发明公开了一种孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜及其制备方法与应用,涉及锂离子电池隔离膜技术领域。本发明所述孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜包含聚烯烃基膜和涂覆在其表面的多孔聚酰胺酰亚胺涂层;所述多孔聚酰胺酰亚胺的厚度为1~10μm,主孔径大小为0.01~1μm。本发明通过在聚烯烃基膜表面制备多孔聚酰胺酰亚胺涂层,控制涂层厚度及孔径,使得隔离膜在高温条件下仍然具有较好的尺寸稳定性,并且存在明显的热闭孔区间,有效改善了锂离子电池的安全性,具有良好的效果和广阔的应用前景。
Description
技术领域
本发明涉及锂离子电池隔离膜技术领域,尤其涉及一种孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜及其制备方法与应用。
背景技术
在近二十年间,锂离子电池已经被广泛的被应用于数码电子和电动车领域。随着人们对锂离子电池的能量密度要求越来越高,随之而来凸显的安全性问题也越来越受人们的关注。众所周知,隔离膜在锂离子电池中起到隔断电子通道(阻断正负极接触,避免内短路发生),提供离子通道的作用(锂离子以电解液为媒介,通过隔离膜的孔隙往返穿梭于正负极)。在综合考虑了物性,成本和加工性能的基础上,以聚烯烃类为基材,比如聚乙烯(PE)和聚丙烯(PP),通过不同的工艺(湿法或干法,单向或双向拉伸)所制备的具有单层的或者多层结构的多孔薄膜成为了商用锂离子电池隔离膜的首选。但是,聚烯烃隔离膜在高温情况下会因为尺寸的严重收缩,导致正负极的直接接触形成内短路,进一步引发锂电池的热失控并造成安全事故。因此,如何提升聚烯烃隔离膜的热稳定性是改善锂离子电池安全性的重中之重。通过对聚烯烃隔离膜进行表面涂覆的方式进行改性,以提升其热稳定性是一种较为常见的方法。所选用的涂覆材料相对于PP和PE一般具备更高的熔点或者玻璃化转变温度。常用的无机材料有Al2O3、SiO2和ZrO2等,有机材料主要包含聚酰胺-酰亚胺(PAI),聚酰亚胺(PI),和聚甲基丙烯酸甲酯(PMMA)等。通常,相对于无机材料,有机涂层的优势体现在其对电解液具备更好的相容性和浸润性,在提升锂离子电池安全性的同时,对电性能的不利影响也相对较小。但是,有机涂层的孔径会影响到复合隔离膜的物性,进一步影响到锂离子电池的安全性能和电性能。
发明内容
本发明的目的在于克服上述现有技术的不足之处而提供一种孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜及其制备方法与应用。
为实现上述目的,本发明所采取的技术方案为:一种孔径可控的聚酰胺酰亚胺(PAI)涂覆改性聚烯烃隔离膜,包含聚烯烃基膜和涂覆在其表面的多孔聚酰胺酰亚胺涂层;所述多孔聚酰胺酰亚胺的厚度为1~10μm,主孔径大小为0.01~1μm。
聚酰胺酰亚胺涂层的厚度及孔径大小对隔离膜的热稳定性及锂离子的传输速率具有较大的影响,本发明申请人通过实验证实,当聚酰胺酰亚胺的厚度及孔径符合上述限定时,隔离膜具有较好的热稳定性和电性能。
优选地,所述聚烯烃基膜包含聚乙烯、聚丙烯、三层结构的PP-PE-PP中的至少一种。
此外,本发明还公开了一种上述孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜的制备方法,所述制备方法包括如下步骤:
(1)将聚酰胺酰亚胺和有机溶剂加入搅拌罐中,搅拌,得到混合均匀的物料;
(2)在物料中加入致孔剂,持续搅拌,直至混合均匀,得到混合溶液;
(3)将混合溶液涂覆在聚烯烃基膜的单侧或双侧,得到涂覆好的隔离膜;
(4)将涂覆好的隔离膜固化,得到所述孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜。
优选地,所述有机溶剂包含乙酸乙酯、乙酸甲酯、丙酮、正丙醇、甲醇、乙酸、N-甲基吡咯烷酮、N,N-二甲基乙酰胺中的至少一种;所述致孔剂包含聚丙烯酰胺、聚乙烯吡咯烷酮、聚乙二醇等水溶性高分子聚合物中的至少一种。
优选地,所述步骤(1)中,有机溶剂与聚酰胺酰亚胺的质量比为70~90:10~30。控制有机溶剂与聚酰胺酰亚胺的质量比是为了保证加工性能。有机溶剂的含量过高,涂液太稀,不便于加工;有机溶剂的含量过低,涂液太稠,同样不便于涂覆加工。
优选地,所述致孔剂与聚酰胺酰亚胺的质量比为10~80:100。当致孔剂与聚酰胺酰亚胺的质量比符合上述配比时,涂层的孔径随致孔剂的用量的增加而增大,制备出的涂层的孔径在0.01~1μm范围内变化,可以有效改善使用该隔离膜的锂离子电池的安全性。
优选地,所述致孔剂与聚酰胺酰亚胺的质量比为10~60:100。当致孔剂与聚酰胺酰亚胺的质量比小于10:100时,制备出的涂层的孔径太小,锂离子的传输较为困难,锂离子电池的电性能变差;当致孔剂与聚酰胺酰亚胺的质量比大于60:100时,热稳定性相对较差,在高温条件下隔离膜的收缩率会明显增大。
优选地,所述步骤(1)中,在80~90℃下搅拌4~6h;所述步骤(2)中,在80~90℃下搅拌0.5~1h;所述步骤(3)中,采用凹版印刷的方式进行涂覆;所述步骤(4)中,采用水浴进行固化,固化温度为25~30℃。
此外,本发明还公开了一种所述孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜在锂离子电池中的应用。
同时,本发明还公开了一种锂离子电池,所述锂离子电池包含上述孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜。所述锂离子电池的正极活性物质为镍钴锰三元材料,负极活性物质为人造石墨,电解液为0.8~1.2M LiPF6碳酸酯溶液,溶剂为碳酸乙烯酯(EC)、碳酸丙烯酯(PC)和碳酸甲乙酯(EMC)的混合体系。
相比于现有技术,本发明的有益效果为:本发明提供了一种孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜及其制备方法与应用,通过对PAI溶液中致孔剂的质量分数进行调节,可以实现对PAI涂层的主孔径大小进行调控。制备的复合隔离膜,其PAI涂层的厚度为1~10μm,主孔径大小为0.01~1μm。这种复合隔离膜在高温下的尺寸稳定性得到了明显改善,并且存在明显的热闭孔温度区间,应用在锂离子电池中可以有效地提升锂离子电池的安全性能。
附图说明
图1为实施例1~3和对比例所述隔离膜的SEM图;
图2为实施例1~3和对比例所述隔离膜在高温下的收缩率对比图;
图3为实施例1~3和对比例所述隔离膜在高温下的热闭孔效应对比图;
图4为使用实施例1~3和对比例所述隔离膜的锂离子电池的穿钉测试结果图;
图5为使用实施例1~3和对比例所述隔离膜的锂离子电池的热滥用测试结果图;
图6为使用实施例1~3和对比例所述隔离膜的锂离子电池的过充电测试结果图。
具体实施方式
为更好地说明本发明的目的、技术方案和优点,下面将结合附图和具体实施例对本发明作进一步说明。
实施例1
本发明所述孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜的一种实施例,本实施例所述隔离膜的制备方法如下:
(1)在85℃的条件下,将聚酰胺酰亚胺(PAI,Torlon4000TF,Solvay,Belgium)和N,N-二甲基乙酰胺(DMAc,Chemours,US)按照质量分数30:70的配比加入搅拌罐中,机械搅拌4h直至混合均匀。
(2)再加入一定量的聚乙二醇(PEG,Dow,US)作为致孔剂,并持续搅拌30min;其中,致孔剂的添加量为聚酰胺酰亚胺的10wt.%。
(3)将步骤(2)得到的溶液通过凹版印刷的方式均匀涂覆在聚乙烯基膜(12μm,Tonen,Japan)的单侧,控制涂层厚度2~3μm;
(4)将涂覆好的隔离膜进行水浴固化,水浴温度为30℃;然后用超纯水清洗、干燥,得到所述隔离膜。本实施例制备出的隔离膜的总厚度为13.5~15μm,其中,聚乙烯基膜的厚度为11~12μm,聚酰胺酰亚胺涂层的厚度为2.5~3μm(在产线上制备,存在一定误差)。
实施例2~3
本发明所述孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜的实施例,实施例2~3与实施例1的区别仅在于,制备过程中致孔剂的用量不同,在制备实施例2的过程中,致孔剂的用量为聚酰胺酰亚胺的30wt.%;在制备实施例3的过程中,致孔剂的用量为聚酰胺酰亚胺的60wt.%。
对比例
一种湿法聚乙烯隔离膜(12μm,Tonen,日本)。
性能测试
1、形貌测试
图1为实施例1~3和对比例所述隔离膜的SEM图,从图中可以看到,实施例1~3所述隔离膜中PAI涂层的孔径大小分别为0.02μm、0.17μm和0.85μm,随着致孔剂含量的增加,孔径逐步增大。
2、热收缩测试
在高低温箱(BTL-D2-252-C,东莞贝尔)中进行,烘烤的条件分别为85℃/4h,90℃/1h,110℃/1h和130℃/30min。使用高精度投影仪测量烘烤前后隔离膜的尺寸(MD和TD两个方向),并计算收缩率。每种隔离膜的每种烘烤条件,其平行样品的数量为5个,计算平均值,测试结果如图2所示。
从图2中可以看到,实施例1~3所述隔离膜在不同温度和时间的烘烤条件下,热收缩率均明显小于对比例;此外,实施例1~3的热收缩率逐步增大,表明PAI涂层的孔径越小,这种改善就越明显。
3、热闭孔测试
分别使用实施例1~3和对比例所述隔离膜制备对称电池并进行热闭孔测试。对称电池的制备:正负极片采用空白铝箔,电解液使用1mol/L六氟磷酸锂(LiPF6)的碳酸酯溶液(广州天赐),并使用铝塑膜(DNP,日本)进行封装。将对称电池放入高温箱中(BTL-D2-252-C,东莞贝尔),高温箱的温度上升速率为5℃/min,截止温度为150℃,采用交流阻抗仪实时监控对称电池的阻抗随温度的变化情况。当对称电池的阻抗呈现出明显的上升趋势,可以认为隔离膜开始闭孔,而当阻抗达到最大值时,可以认为隔离膜已经完全闭孔。
从图3中可以看到,对比例所聚乙烯隔离膜没有热闭孔温度区间,内阻在130℃达到最大值,之后随着温度的上升迅速下降,说明聚乙烯隔离膜在持续的收缩,直至熔融。而实施例1~3所述隔离膜则存在明显的热闭孔温度区间,介于130~150℃。
4、使用实施例1~3和对比例所述隔离膜制备的锂离子电池的安全性能测试
电池制备:按照通用的卷绕工艺,制备满充电压为4.2V,标称容量为1600mAh,型号为426188(4.2mm x 61mm x 88mm)的软包聚合物锂离子电池。其中,正极活性物质为LiNi0.5Mn0.3Co0.2O2(NCM523,湖南杉杉),负极活性物质为人造石墨(AG,江西紫宸),电解液为LiPF6浓度为1mol/L的碳酸酯溶液(广州天赐),溶剂中碳酸乙烯酯(EC)、碳酸丙烯酯(PC)和碳酸甲乙酯(EMC)的体积比大致为1:1:1。电解液添加剂包含少量的亚硫酸丙烯酯(PS),碳酸亚乙烯酯(VC)和氟代碳酸乙烯酯(FEC)。实施例1~3和对比例所述隔离膜在卷绕工序段导入,区分并做好标识。另外,在卷绕的过程中,需要确保实施例1~3所述隔离膜的PAI涂层面对锂离子电池的正极。
安全性能测试:安全性测试项目包含穿钉、热滥用和过充电。其中穿钉测试是在专用的穿刺设备中进行(BE-8111,东莞贝尔),针的直径为2.5mm,速度200mm min-1。热滥用测试在高温防爆箱中进行(BE-8103,东莞贝尔),温升速率5℃ min-1,温度在到达150℃后继续保持60min。过充电在专用的过充测试柜(GXCDS-60V10A,东莞高鑫)中进行,流程是先1C放电至3.0V,然后1.5C充电至10V并保持8h。测试通过的标准是电池不冒烟,不起火。
图4为穿钉测试结果图,从图中可以看到,使用对比例聚乙烯隔离膜的锂离子电池起火燃烧,而使用实施例1~3所述隔离膜的锂离子电池均顺利通过了测试,且最高温度不超过150℃。
图5为热滥用测试结果图,从图中可以看到,使用对比例所述聚乙烯隔离膜的锂离子电池在热滥用测试过程中冒烟,测试完成后电压下降到1.0V左右,说明电池内部发生了明显的内短路。而使用实施例1~3所述隔离膜的锂离子电池均顺利通过了测试,且测试完成后电压保持在3.8V以上。
图6为过充电测试结果图,从图中可知,使用对比例所述隔离膜的锂离子电池起火燃烧,而使用实施例1~3所述隔离膜的锂离子电池均顺利通过了测试,且最高温度不超过140℃。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,但并不脱离本发明技术方案的实质和范围。
Claims (4)
1.一种孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜的制备方法,其特征在于,包括如下步骤:
(1)将聚酰胺酰亚胺和有机溶剂加入搅拌罐中,搅拌,得到混合均匀的物料;
(2)在物料中加入致孔剂,持续搅拌,直至混合均匀,得到混合溶液;
(3)将混合溶液涂覆在聚烯烃基膜的单侧或双侧,得到涂覆好的隔离膜;
(4)将涂覆好的隔离膜固化,得到所述孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜;
所述致孔剂为聚乙二醇,所述有机溶剂为N,N-二甲基乙酰胺,所述致孔剂与聚酰胺酰亚胺的质量比为10:100;
所述聚酰胺酰亚胺与有机溶剂的质量比为30:70;
所述步骤(1)中,在85℃下搅拌4h;所述步骤(2)中,在85℃下搅拌0.5h;所述步骤(3)中,采用凹版印刷的方式进行涂覆;所述步骤(4)中,采用水浴进行固化,固化温度为30℃;
所述孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜包含聚烯烃基膜和涂覆在其表面的多孔聚酰胺酰亚胺涂层;所述多孔聚酰胺酰亚胺涂层的厚度为1~10μm,主孔径大小为0.01~1μm。
2.如权利要求1所述的孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜的制备方法,其特征在于,所述聚烯烃基膜包含聚乙烯、聚丙烯、三层结构的PP-PE-PP中的至少一种。
3.一种如权利要求1~2任一项所述方法制备的孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜在锂离子电池中的应用。
4.一种锂离子电池,其特征在于,包含如权利要求1~2任一项所述方法制备的孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111297815.7A CN114085406B (zh) | 2021-11-03 | 2021-11-03 | 一种孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜及其制备方法与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111297815.7A CN114085406B (zh) | 2021-11-03 | 2021-11-03 | 一种孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜及其制备方法与应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114085406A CN114085406A (zh) | 2022-02-25 |
CN114085406B true CN114085406B (zh) | 2023-07-18 |
Family
ID=80298820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111297815.7A Active CN114085406B (zh) | 2021-11-03 | 2021-11-03 | 一种孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜及其制备方法与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114085406B (zh) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101690916B1 (ko) * | 2013-08-08 | 2016-12-28 | 도오꾜오까고오교 가부시끼가이샤 | 다공질 폴리이미드계 수지막의 제조 방법, 다공질 폴리이미드계 수지막 및 그것을 사용한 세퍼레이터 |
US10865286B2 (en) * | 2015-09-04 | 2020-12-15 | Tokyo Ohka Kogyo Co., Ltd. | Method for manufacturing porous membrane |
CN105552278A (zh) * | 2016-01-27 | 2016-05-04 | 江苏巨贤合成材料有限公司 | 一种聚酰胺酰亚胺锂电池隔膜的制备方法 |
CN109004165B (zh) * | 2018-08-01 | 2021-10-26 | 上海钱丰纺织品有限公司 | 耐热锂离子电池隔膜及其制备方法 |
-
2021
- 2021-11-03 CN CN202111297815.7A patent/CN114085406B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN114085406A (zh) | 2022-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lee et al. | A review of recent developments in membrane separators for rechargeable lithium-ion batteries | |
US20090169984A1 (en) | Composite separator films for lithium-ion batteries | |
CN102386357B (zh) | 一种高性能锂离子电池聚合物复合隔膜的制备方法 | |
WO2023155604A1 (zh) | 复合隔膜及电化学装置 | |
JP2003533862A (ja) | 超極細繊維状の多孔性高分子セパレータフィルムを含むリチウム二次電池及びその製造方法 | |
CN101276895A (zh) | 锂离子二次电池多孔隔膜层用组合物及锂离子二次电池 | |
KR100406689B1 (ko) | 전기화학 소자를 위한 다성분계 복합 필름 및 그의 제조방법 | |
CN111244369B (zh) | 聚烯烃微多孔膜 | |
WO2024008055A1 (zh) | 一种多孔隔膜、其制备方法及电化学装置 | |
CN109841785A (zh) | 一种电池隔膜及其制备方法及包含该隔膜的锂离子电池 | |
WO2015065121A1 (ko) | 역오팔 구조의 다공성 기재를 포함하는 전기화학소자용 다공성 분리막 및 이의 제조 방법 | |
CN113812038A (zh) | 蓄电装置用分隔件及蓄电装置 | |
JP2014026946A (ja) | 非水電解質電池用セパレータ及び非水電解質電池 | |
JP2018137140A (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
CN113629353A (zh) | 一种用于锂离子电池的pet基重离子径迹复合隔膜及其制备方法 | |
TWI791854B (zh) | 電化學裝置用之隔板、彼之製造方法及包含彼之電化學裝置 | |
CN114085406B (zh) | 一种孔径可控的聚酰胺酰亚胺涂覆改性聚烯烃隔离膜及其制备方法与应用 | |
KR102684714B1 (ko) | 다공성 분리막 및 이를 포함하는 전기화학소자 | |
JP2018147656A (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
CN114171845A (zh) | 一种聚合物改性聚烯烃隔离膜及其制备方法与应用 | |
JP2016181439A (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
KR102460963B1 (ko) | 복합 세퍼레이터, 이를 포함하는 리튬 전지, 및 상기 복합 세퍼레이터의 제조방법 | |
CN103956449B (zh) | 锂离子二次电池及其隔离膜及制备方法 | |
JP2013218925A (ja) | セパレータ、及びそれを用いた非水系二次電池 | |
KR102388261B1 (ko) | 다공성 분리막 및 이를 포함하는 리튬 이차 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |