WO2015064739A1 - 燃料改質器用フェライト系ステンレス鋼およびその製造方法 - Google Patents

燃料改質器用フェライト系ステンレス鋼およびその製造方法 Download PDF

Info

Publication number
WO2015064739A1
WO2015064739A1 PCT/JP2014/079061 JP2014079061W WO2015064739A1 WO 2015064739 A1 WO2015064739 A1 WO 2015064739A1 JP 2014079061 W JP2014079061 W JP 2014079061W WO 2015064739 A1 WO2015064739 A1 WO 2015064739A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stainless steel
mass
ferritic stainless
oxide film
Prior art date
Application number
PCT/JP2014/079061
Other languages
English (en)
French (fr)
Inventor
秦野 正治
篤剛 林
松山 宏之
春樹 有吉
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to JP2015545324A priority Critical patent/JP6067134B2/ja
Priority to EP14857491.6A priority patent/EP3064606B1/en
Publication of WO2015064739A1 publication Critical patent/WO2015064739A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention is suitable for high-temperature members of fuel cells such as reformers and heat exchangers used when reforming hydrocarbon fuels such as city gas, methane, natural gas, propane, kerosene, and gasoline into hydrogen.
  • the present invention relates to a ferritic stainless steel and a method for producing the same.
  • fuel cell which has high practical value as a distributed power source and a power source for automobiles, is attracting attention.
  • fuel cells There are several types of fuel cells. Among them, polymer electrolyte fuel cells (PEFC) and solid oxide fuel cells (SOFC) have high energy efficiency, and are expected to expand in the future.
  • PEFC polymer electrolyte fuel cells
  • SOFC solid oxide fuel cells
  • a fuel cell is a device that generates electric power through a reaction process opposite to that of water electrolysis, and requires hydrogen.
  • Hydrogen is produced by a reforming reaction of hydrocarbon fuels such as city gas (LNG), methane, natural gas, propane, kerosene, and gasoline in the presence of a catalyst.
  • hydrocarbon fuels such as city gas (LNG), methane, natural gas, propane, kerosene, and gasoline in the presence of a catalyst.
  • the fuel reformer is usually operated at a high temperature of 200 to 900 ° C. to ensure the amount of heat necessary for the hydrogen reforming reaction. Further, under such a high temperature operation, it is exposed to an oxidizing atmosphere containing a large amount of water vapor, carbon dioxide, carbon monoxide and the like, and the heating / cooling cycle by starting and stopping is repeated according to the demand for hydrogen.
  • austenitic stainless steel represented by SUS310S 25Cr-20Ni
  • cost reduction is indispensable for the spread of fuel cell systems, and reduction of alloy costs by optimizing the materials used is an important issue.
  • Patent Document 1 Cr: 8 to 35%, C: 0.03% or less, N: 0.03% or less, Mn: 1.5% or less, Si: 0.8 to 2.5%, and / or Al: 0.6 to 6.0%, Nb: 0.05 to 0.80%, Ti: 0.03 to 0.50%, Mo: 0.1 to 4%, Cu: 0.1
  • a ferritic stainless steel for a petroleum fuel reformer is disclosed that contains one or more of ⁇ 4% and has a composition in which the total amount of Si and Al is adjusted to 1.5% or more. These stainless steels are characterized by a small increase in oxidation during heating / cooling to 900 ° C. in an atmosphere of 50% by volume H 2 O + 20% by volume CO 2 .
  • Patent Document 2 Cr: 12 to 20%, C: 0.03% or less, N: 0.03% or less, Si: 0.1 to 1.5%, Mn: 0.95 to 1.5% Carbonization including Al: 1.5% or less, Nb: 0.10 to 0.80%, Mo: 0.1 to 4%, Cu: 0.1 to 4% Ferritic stainless steel for hydrogen fuel reformers is disclosed. These stainless steels are characterized in that the increase in oxidation after heating and cooling to 700 ° C. 500 times in an atmosphere of 50 vol% H 2 O + 20 vol% CO 2 is 2.0 mg / cm 2 or less.
  • Patent Document 3 Cr: 8 to 25%, C: 0.03% or less, N: 0.03% or less, Si: 0.1 to 2.5%, Mn: 1.5% or less, Al: Including 0.1 to 4%, Nb: 0.05 to 0.80%, Ti: 0.03 to 0.5%, Mo: 0.1 to 4%, Cu: 0.1 to 4% Ferritic stainless steel for alcohol-based fuel reformers containing one or more types is disclosed. These stainless steels are characterized in that the increase in oxidation after repeated heating and cooling to 600 ° C. 500 times in an atmosphere of 50 vol% H 2 O + 20 vol% CO 2 is 2.0 mg / cm 2 or less.
  • Patent Document 4 Cr: 11 to 22%, C: 0.03% or less, N: 0.03% or less, Si: 2% or less, Mn: 1.5% or less, Al: 1 to 6%
  • a ferritic stainless steel suitable for a power generation system satisfying Cr + 5Si + 6Al ⁇ 30 is disclosed. These stainless steels are characterized by good oxidation resistance in a 50 volume% H 2 O atmosphere (remaining air).
  • Patent Document 5 Cr: 11 to 21%, C: 0.03% or less, N: 0.03% or less, Si: 3% or less, Mn: 1.0% or less, Al: 6% or less, Cu : 0.01 to 0.5%, Mo: 0.01 to 0.5%, Nb: 0.1% or less, Ti: 0.005 to 0.5%, Sn: 0.001 to 0.1% , O: 0.002% or less, H: 0.00005% or less, and Pb: 0.01% or less, a ferritic stainless steel suitable for a high-temperature reformer for a fuel cell is disclosed. These stainless steels are characterized by good oxidation resistance in a 10% by volume H 2 O atmosphere (remaining air).
  • Patent Documents 1 to 3 are directed to improving the oxidation resistance in an environment of 50% by volume H 2 O + 20% by volume CO 2 , adding 2.5% or less of Si and 0.01% or more of Al.
  • the technical idea is to promote the formation of an oxide film mainly composed of Cr-based oxides by addition and to strengthen the oxide film by solid solution of Y, REM, Ca, and Al in Cr-based oxides.
  • Patent Documents 4 and 5 aim to improve oxidation resistance in an environment containing 10 to 50% by volume H 2 O (remaining air), the former being 1% or more Al-containing ferritic stainless steel, and the latter being substantially Is limited to 18Cr-1.9 to 3.3Al ferritic stainless steel containing 0.5% or less of Si.
  • the reformed gas of the fuel cell uses the above-mentioned city gas as a raw fuel, and is characterized by containing a large amount of hydrogen in addition to water vapor / carbon dioxide / carbon monoxide.
  • an oxide film mainly composed of a Cr-based oxide as compared with the atmosphere or a conventional high-temperature steam environment. (Hereinafter also referred to as “Cr-based oxide film”) is difficult to form, and oxidation of the internal steel structure, internal oxidation as a so-called FeCr-based oxide, and abnormal oxidation that is rapid growth of the Fe-based oxide It tends to be encouraged.
  • Patent Document 6 discloses a ferritic stainless steel sheet for a separator for a solid oxide fuel cell that can form an oxide film by heat treatment before use or heat during operation of the solid oxide fuel cell.
  • the heat treatment is not performed in a reformed gas environment in which a large amount of water vapor and hydrogen coexist, and it is unclear how much the oxide film is promoted in the reformed gas environment of the fuel cell.
  • Patent Document 7 discloses a ferritic stainless steel having an oxide layer formed by ion bombardment mainly composed of Cr on the surface and excellent in oxidation resistance used in a high temperature environment of 400 ° C. or higher. .
  • Patent Document 8 discloses a heat transfer material based on a ferritic stainless steel, which is used for collecting heat from a high-temperature gas in a steam environment of 800 ° C. level.
  • Patent Document 9 discloses a high-temperature corrosion resistance, no significant carburization even when exposed to corrosive gas at high temperature, and substantially no oxide film peeling under a heating / cooling cycle.
  • An alloy is disclosed.
  • Patent Documents 1 to 9 have an effect of suppressing internal oxidation in a high temperature atmosphere in which a large amount of water vapor and hydrogen coexist.
  • the reformed gas contains a large amount of water vapor and hydrogen, and hydrogen is considered to be a factor that promotes internal oxidation.
  • Patent Documents 1 to 9 do not focus on the problem of promotion of internal oxidation of stainless steel by hydrogen in the reformed gas, and oxidation resistance in a high-temperature atmosphere in which a large amount of hydrogen is present in addition to a large amount of water vapor. Sex has not been fully studied.
  • the present invention provides a ferritic stainless steel sheet for a fuel reformer that is excellent in durability of a Cr-based oxide film and is economical without causing abnormal oxidation in a reformed gas environment in which a large amount of water vapor and hydrogen coexist. It is to provide.
  • Si and Mn are concentrated by forming an oxide directly under the Cr-based oxide film, delaying the progress of internal oxidation by hydrogen and water vapor, and accompanying the formation of an oxide film mainly composed of Fe-based oxide Suppresses abnormal oxidation. Due to such effects, the durability of the Cr-based oxide film can be enhanced.
  • Nb is concentrated by forming an oxide immediately below the Cr-based oxide film, thereby suppressing internal oxidation and grain boundary oxidation, thereby improving the durability of the Cr-based oxide film.
  • a ferritic stainless steel for a fuel reformer comprising any of the above, the balance being composed of Fe and inevitable impurities, and having a composition satisfying the formula (i).
  • the element symbol in a formula means the content mass% in the steel of the said element.
  • the surface of the ferritic stainless steel of the present invention is mainly composed of a Cr-based oxide by exposing it to an atmosphere of a reformed gas environment containing a large amount of hydrogen in addition to water vapor / carbon dioxide / carbon monoxide.
  • a Cr-based oxide film is formed, and the Cr-based oxide contains at least one element of Si and Mn in an amount of 0.5% by mass or more.
  • the “Cr-based oxide” is an oxide in which Cr is detected together with O and 50 mass% or more is detected by glow discharge mass spectrometry (GDS analysis). “Mainly” means that the ratio of the volume of the Cr-based oxide in the entire oxide film to the volume of the entire oxide film is 50% or more.
  • the Cr-based oxide film of the ferritic stainless steel of the present invention may contain MnCr 2 O 4 , SiO 2 , Al 2 O 3 and the like in addition to the Cr-based oxide.
  • Mn is less than 0.95%.
  • the stainless steel is further, in mass%, Ni: 1% or less, Cu: 1% or less, Mo: 2% or less, Sn: 1% or less, W: 1% or less, Co: 0.5%
  • V 0.5% or less
  • Ti 0.3% or less
  • B 0.005% or less
  • Ca 0.005% or less
  • Mg 0.005% or less
  • Zr 0.5% or less
  • the stainless steel having the composition according to any one of (1) to (5) is 300% in an atmosphere containing 10 to 50% by volume of water and 10 to 70% by volume of hydrogen. By performing heat treatment in the range of ⁇ 1000 ° C., an oxide containing 0.5% by mass or more of at least one of Si and Mn and 50% by mass or more of Cr occupies the surface of the stainless steel material.
  • the surface contains either 0.5% by mass or more of any element of Si and Mn, and the content of both Cr and O is 50
  • the element symbol in a formula means the content mass% in the steel of the said element.
  • Ni 1% or less
  • Cu 1% or less
  • Mo 2% or less
  • Sn 1% or less
  • W 1% or less
  • Co 0.5% or less
  • V 0 0.5% or less
  • Ti 0.3% or less
  • B 0.005% or less
  • Ca 0.005% or less
  • Mg 0.005% or less
  • Zr 0.5% or less
  • La 0.1 % Or less
  • Y 0.1% or less
  • Hf 0.1% or less
  • REM 0.1% or less
  • a ferritic stainless steel for a fuel reformer according to any one of the above.
  • the inventions related to the steels (1) to (13) are referred to as the present invention.
  • the inventions (1) to (13) may be collectively referred to as the present invention.
  • Invention Example No. 2 in Table 2 3 is a result of GDS analysis of the composition of an oxide film after an oxidation test for 1000 hours at 850 ° C. assuming a reformed gas environment, and is a diagram showing each element profile in the depth direction.
  • Invention Example No. 2 in Table 2 1 to 14 and Comparative Example No. For 19, 20, 22, 23, 25, 27, 30, 35, and 36, the effect on the evaluation at the heating temperature of 900 ° C. of the atmospheric repeated oxidation test is assumed assuming the formula (i) and the reformed gas environment of the present invention. It is the figure which showed the influence of the higher value of Si and Mn contained in Cr type oxide in the Cr type oxide film after a test.
  • the oxide film mainly composed of a Cr-based oxide containing Si and Mn as described above uses a ferritic stainless steel having a component defined in the present invention described in (I) below, and a fuel described in (III) below. It is formed on the surface of stainless steel in the reforming gas environment of the reformer. Some component systems of the present invention are formed on the surface of stainless steel in the reformed gas environment of the fuel reformer after performing the predetermined pre-oxidation described in (IV) below.
  • Cr is a basic constituent element for the Cr-based oxide film to have target durability in addition to corrosion resistance.
  • the target oxidation resistance is not sufficiently ensured. Therefore, the lower limit is 12%.
  • excessive addition when exposed to a high temperature atmosphere, promotes the formation of the ⁇ phase, which is an embrittlement phase, and increases the alloy cost.
  • the upper limit is 24% from the viewpoint of basic characteristics and alloy costs. From the viewpoint of basic characteristics, oxidation resistance and cost, the preferred range is 14.5 to 22.5%. A more preferable range is 17.5 to 20%.
  • C inhibits the target oxidation resistance of the present invention by forming a solid solution or Cr carbide in the ferrite phase. For this reason, the smaller the amount of C, the better.
  • the upper limit is made 0.03%. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.001%. From the viewpoint of oxidation resistance and manufacturability, the preferred range is 0.002 to 0.02%.
  • Mn improves the durability of the film by dissolving in a Cr-based oxide together with Si in a reformed gas environment. These effects are obtained from more than 0.1%. On the other hand, excessive addition leads to a decrease in corrosion resistance and oxidation resistance of the steel, so the upper limit is made 2%. From the viewpoint of oxidation resistance and basic characteristics, the preferred range is 0.2 to 1.5%. In a preferable range of Mn, Mn is concentrated by forming an oxide directly under the Cr-based oxide film, and the progress of internal oxidation by hydrogen or water vapor is delayed.
  • the Mn content in the Cr-based oxide is set to 0.00 when used in the reformed gas environment of the fuel reformer described in (III) below. It can be 5 mass% or more. However, even if the Mn content in the steel is more than 0.1%, the following (III) explains that the Si content described later is 2.5% or less and the Al content is more than 0.5%. There is a possibility that the Mn content in the Cr-based oxide cannot be made 0.5 mass% or more only by using it in the reformed gas environment of the fuel reformer.
  • the Cr-based oxide is stably formed in the reformed gas environment of the subsequent fuel reformer.
  • the Mn content in the medium can be 0.5% by mass or more.
  • the oxide film formed on the surface is (Cr, Mn) -based only when used in the reformed gas environment of the fuel reformer described in (III) below.
  • the oxide is mainly used and the Cr-based oxide of the present invention is not formed. Therefore, the Mn content is preferably less than 0.95%. Therefore, in order to actively utilize the effects of Si and Mn, the upper limit is more preferably less than 0.95%, and an even more preferable range is 0.2% to 0.8%.
  • the fuel reformer can stably operate in the reformed gas environment of the subsequent fuel reformer.
  • a Cr-based oxide is formed on the surface of the stainless steel.
  • the upper limit is made 0.05%.
  • the lower limit is preferably 0.003%. From the viewpoint of manufacturability and weldability, the preferred range is 0.005 to 0.04%, more preferably 0.01 to 0.03%.
  • the oxidation resistance targeted by the present invention is an inevitable impurity element contained in the steel, and lowers the oxidation resistance targeted by the present invention.
  • the presence of Mn-based inclusions and solute S acts as a starting point for destroying the Cr-based oxide film when used at a high temperature for a long time. Therefore, the lower the amount of S, the better. Therefore, the upper limit is made 0.01%.
  • the lower limit is made 0.0001%. From the viewpoint of manufacturability and oxidation resistance, the preferred range is 0.0001 to 0.002%, more preferably 0.0002 to 0.001%.
  • N like C, inhibits the target oxidation resistance of the present invention. For this reason, the smaller the amount of N, the better.
  • the upper limit is made 0.03%. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.002%. From the viewpoint of oxidation resistance and manufacturability, the preferred range is 0.005 to 0.02%.
  • Nb is enriched by forming an oxide directly under the Cr-based oxide film, in addition to improving oxidation resistance through high purity of steel by the action of a stabilizing element that fixes C and N, By suppressing the progress of internal oxidation and grain boundary oxidation under a reformed gas environment, it has the effect of enhancing the durability of the Cr-based oxide film targeted by the present invention.
  • These Nb addition effects can be obtained from 0.01% or more.
  • excessive addition leads to a decrease in manufacturability accompanying an increase in alloy costs and a recrystallization temperature, so the upper limit is made 1%.
  • a preferable range is 0.1 to 0.6%, and a more preferable range is 0.2 to 0.4%.
  • Si is an important element in securing the oxidation resistance targeted by the present invention. It dissolves in Cr-based oxides in a reformed gas environment and enhances the durability of Cr-based oxide films. These effects are obtained from 0.3% and become prominent over 2.5%. On the other hand, excessive addition causes deterioration of workability and weldability of steel, so the upper limit is made 4%. From the viewpoint of oxidation resistance and basic characteristics, the preferred range is 0.4 to 3.5%. Within a preferable range of Si, Si is concentrated by forming an oxide immediately below the Cr-based oxide film, and the progress of internal oxidation by hydrogen or water vapor is delayed.
  • the Si in the steel is 0.3% or more and the Mn is 0.00. It is preferable that the content satisfies at least one of more than 1%. Further, in order to actively utilize the effects of Si and Mn, the lower limit of Si is more preferably more than 2.50%, and still more preferably the range is more than 2.50% to 3.5%. .
  • the Si content in the Cr-based oxide is 0.5 mass when used in the reformed gas environment of the fuel reformer described in (III) below. % Or more. If the Si content is 0.3% or more and the following Al content is 0.5% or less, Cr-based oxidation will occur when used in the reformed gas environment of the fuel reformer described in (III) below. Si content in a thing can be 0.5 mass% or more. When the Si content is 0.3% or more and the Al content is more than 0.5%, the Cr-based oxide is only used in the reformed gas environment of the fuel reformer described in (III) below. There is a possibility that the Si content in it cannot be made 0.5 mass% or more.
  • the steel components can be used stably in the reformed gas environment of the fuel reformer described in (III) below.
  • Si content in Cr type oxide film can be 0.5 mass% or more.
  • Al is an effective element that improves deoxidation and oxidation resistance, and is preferably contained in an amount of 0.001% or more.
  • the upper limit is made 4%.
  • the upper limit is preferably 2%.
  • the addition of a large amount of Al leads to the deterioration of the durability of the Cr-based oxide film targeted by the present invention by promoting the progress of internal oxidation and grain boundary oxidation in the reformed gas environment.
  • the upper limit is more preferably 0.5%. From the viewpoint of oxidation resistance and deacidification, a more preferable range is 0.002 to 0.2%, and an even more preferable range is 0.01 to 0.08%.
  • the value of the formula (i) is preferably 25 or more, and more preferably 30 or more.
  • the upper limit of the value of the formula (i) is not particularly specified, but is preferably set to 40 in consideration of the influence on the manufacturability of steel by the addition of Cr and Si.
  • the coefficient concerning each element of the formula (i) uses steel materials containing various components, the effect of modified Si containing a large amount of water vapor and hydrogen is five times that of Cr, and the effect of contained Nb is Cr This is because the effect of the contained Mn was found to be equivalent to that of Cr.
  • the ferritic stainless steel of the present invention satisfies the conditions of Mn: less than 0.95%, Si: more than 2.50% and / or Al: 0.5% or less, as described in the above section of Mn and Si. , It is not necessary to perform the predetermined pre-oxidation described in (IV) below, and when used in the reformed gas environment of the fuel reformer described in (III) below, Si and / Or since Mn content can be 0.5 mass% or more, it is preferable.
  • the ferritic stainless steel of the present invention may further comprise Ni: 1% or less, Cu: 1% or less, Mo: 2% or less, Sn: 1% or less, W: 1% or less, Co: 0 as required. 0.5% or less, V: 0.5% or less, Ti: 0.3% or less, B: 0.005% or less, Ca: 0.005% or less, Mg: 0.005% or less, Zr: 0.5 % Or less, La: 0.1% or less, Y: 0.1% or less, Hf: 0.1% or less, REM: 0.1% or less. Also good.
  • Ni, Cu, Mo, Sn, W, and Co are effective elements for increasing the oxidation resistance and high-temperature strength in the reformed gas environment, and are added as necessary.
  • the upper limit of Ni, Cu, Sn and W is 1%.
  • Mo is an element that reduces the thermal expansion coefficient of the ferritic stainless steel of the present invention and is also effective in suppressing high-temperature deformation
  • the upper limit of the amount of Mo added is 2%, more preferably 0.5. %.
  • the lower limit of the more preferable content of any element is 0.1%.
  • V, B, and Mg are elements that promote the effect of improving oxidation resistance due to the addition of Nb, and are added as necessary.
  • the upper limit of V is 0.5% and the upper limits of B and Mg are 0.005%.
  • the lower limit of the more preferable content of V is 0.05%, and the more preferable lower limit of B and Mg is 0.0002%.
  • the element symbol in a formula means the content mass% in the steel of the said element.
  • Ti is an element that improves oxidation resistance through the purification of steel by the action of a stabilizing element that fixes C and N, and is added as necessary.
  • a stabilizing element that fixes C and N, and is added as necessary.
  • excessive addition leads to the progress of internal oxidation and grain boundary oxidation under the reformed gas environment and leads to the deterioration of the durability of the Cr-based oxide film targeted by the present invention. It is limited to 0.3% or less. From the viewpoint of oxidation resistance, the lower limit of the preferable content is 0.01%.
  • Ca is an element that improves hot workability and secondary workability, and is added as necessary. However, since excessive addition leads to the inhibition of manufacturability, the upper limit is made 0.005%. A preferred lower limit is 0.0001%.
  • Zr, La, Y, Hf, and REM are effective elements for improving hot workability and steel cleanliness and improving oxidation resistance of the present invention. Also good. However, from the technical idea of the present invention and the reduction of the alloy cost, it does not depend on the effect of adding these elements.
  • the upper limit of Zr is 0.5%, and the upper limits of La, Y, Hf, and REM are each 0.1%.
  • a more preferable lower limit of Zr is 0.01%, and a preferable lower limit of La, Y, Hf, and REM is 0.001%.
  • REM is an element belonging to atomic numbers 57 to 71, such as Ce, Pr, and Nd.
  • the steel sheet using the ferritic stainless steel of the present invention is mainly cold-rolled annealing in which a hot-rolled steel strip is cold-rolled after descaling without annealing or annealing, followed by finish annealing and descaling.
  • the board is the target.
  • a hot-rolled annealed plate that is not subjected to cold rolling may be used.
  • a welding rod manufactured from a steel plate is also included.
  • the pipe is not limited to a weld rod, and may be a seamless rod manufactured by hot working.
  • the above-described finish annealing of the steel is preferably performed at 700 to 1100 ° C.
  • the temperature is lower than 700 ° C., softening and recrystallization of the steel become insufficient, and predetermined material characteristics may not be obtained. On the other hand, if it exceeds 1100 ° C., it becomes coarse and may impair the toughness and ductility of the steel.
  • the oxide film mainly comprising a Cr-based oxide containing 0.5% by mass or more of Si and / or Mn on the surface of the ferritic stainless steel of the present invention is a ferritic stainless steel having the above-mentioned composition defined in the present invention. Is formed on the surface of the stainless steel by exposing it to the reformed gas environment of the fuel reformer.
  • the reformed gas environment means an environment exposed to a high temperature of 200 to 900 ° C. in an atmosphere containing a large amount of water vapor, hydrogen, carbon dioxide, carbon monoxide and the like.
  • Some of the steel components of the present invention described above are mainly composed of a Cr-based oxide containing 0.5 mass% or more of Si and / or Mn on the surface of the stainless steel in the reformed gas environment of the fuel reformer.
  • a dense oxide film enriched with Cr, Si and Mn is formed on the surface of the steel sheet. It is effective to form it uniformly.
  • the uniformity and barrier properties of the oxide film formed in the initial stage are improved compared to the state of the metal surface, and long-term acid resistance And the adhesion of the oxide film can be further improved.
  • the pre-oxidation atmosphere is an atmosphere containing water vapor and hydrogen, and the pre-oxidation temperature is 300 to 1000 ° C. Under such conditions, it is possible to form a highly durable oxide film by dissolving Si or Mn in the Cr-based oxide and concentrating it directly under the film.
  • the lower limit is 300 ° C., preferably 400 ° C.
  • the pre-oxidation temperature is high, the oxide film contains a large amount of Fe and lowers the durability, so the upper limit is 1000 ° C., preferably less than 850 ° C.
  • the upper limit of the pre-oxidation time is not particularly specified but is preferably 200 hours or less. Furthermore, in order to form a Cr-based oxide film having high durability even in a short time of 100 hours or less, it is preferable that the water vapor and hydrogen in the pre-oxidation atmosphere be 10% by volume or more, respectively. When the water vapor is less than 10% by volume, the oxidation property is low and the growth of the oxide film is slow, so the lower limit of the pre-oxidation time is preferably set to more than 100 hours. When hydrogen is less than 10% by volume, since the solid solution of Si or Mn in the Cr-based oxide tends not to proceed, it is preferable to set the lower limit of the pre-oxidation time to more than 100 hours.
  • the upper limit of water vapor and hydrogen is not particularly specified, but the upper limit of water vapor is preferably 50% by volume and the upper limit of hydrogen is preferably 70% by volume.
  • the pre-oxidation atmosphere may contain other gases such as nitrogen, carbon dioxide, carbon monoxide, and hydrocarbon gases.
  • gases such as nitrogen, carbon dioxide, carbon monoxide, and hydrocarbon gases.
  • the range of other gases is not particularly specified, but the upper limit is preferably 30% by volume.
  • the total of hydrogen and carbon monoxide, which is a reducing gas is 50% by volume or more, the oxidation is low and the growth of the oxide film is slow, so the total amount of water vapor and carbon dioxide which are oxidizing gases is 20 volumes. % Or more, and more preferably more than 32% by volume.
  • the thickness of the Cr-based oxide film obtained by the preliminary oxidation is preferably set to 0.01 ⁇ m or more in order to maintain durability in a high temperature reformed gas environment.
  • the upper limit of the film thickness is not particularly specified, but is preferably 5 ⁇ m in consideration of the pre-oxidation efficiency.
  • the ratio of the volume or thickness of the Cr-based oxide in the oxide film obtained by pre-oxidation is 50% or more, and MnCr 2 O 4 , SiO 2 , Al 2 O exhibiting durability in the modified gas environment. 3 etc. may be included.
  • the ferritic stainless steel for fuel reformer of the present invention forms an oxide film mainly composed of Cr-based oxide containing Si and / or Mn on the surface, and Si, Mn is formed between the oxide film and the base material. , Nb is preferably concentrated. As a result, a Cr-based oxide film having excellent durability can be formed.
  • the presence of Si and Mn in the Cr-based oxide is detected by glow discharge mass spectrometry (GDS analysis) in the oxide in which Cr is detected together with O, and Cr is detected by 50 mass% or more. It can be determined by whether or not Mn is detected by 0.5 mass% or more.
  • Concentration of Si, Mn, and Nb between the Cr-based oxide film and the base material is performed by FE-SEM observation and EDS elemental analysis of the cross section of the oxide film, and Si, Mn, Nb immediately below the Cr-based oxide film. Can be determined based on whether or not is detected higher than the base material concentration.
  • the pre-oxidation may be performed before the fuel reformer is operated, and may be performed before the ferritic stainless steel having the composition of the present invention described above is formed into a component of the fuel reformer. Alternatively, the pre-oxidation may be performed after the ferritic stainless steel having the above-described composition of the present invention is formed into the component parts of the fuel reformer.
  • the preliminary oxidation is not limited to one time but may be performed a plurality of times. Alternatively, preliminary oxidation for less than 100 hours may be performed a plurality of times, and preliminary oxidation may be performed so that the total preliminary oxidation time exceeds 100 hours. Alternatively, a plurality of preliminary oxidations may be performed under the same or different conditions until an oxide film mainly composed of Cr-based oxide containing 0.5 mass% or more of Si and / or Mn is formed on the surface of ferritic stainless steel. You may go round.
  • the reformed gas is applied to the ferritic stainless steel of the present invention for the purpose of evaluating the Cr-based oxide film formed on the ferritic stainless steel surface.
  • Heat treatment simulating the environment may be performed.
  • the simulated heat treatment for evaluating the surface structure of the ferritic stainless steel of the present invention for example, the following heat treatment can be exemplified. Needless to say, the simulated heat treatment applicable to the ferritic stainless steel of the present invention is not limited to these simulated heat treatment conditions.
  • an oxide film mainly composed of a Cr-based oxide containing 0.5% by mass or more of Si and / or Mn can be formed on the surface of stainless steel.
  • ferritic stainless steel having the component composition defined in the present invention is subjected to a treatment that simulates preliminary oxidation, and then before the fuel reformer is used in the reformed gas environment, You may evaluate that the said ferritic stainless steel is stainless steel which has the Cr type oxide film of this invention by performing the heat processing which simulated the reformed gas environment.
  • the ferritic stainless steel subjected to the above-described simulated heat treatment is further, in mass%, Ni: 1% or less, Cu: 1% or less, Mo: 2% or less, Sn: 1% or less, W: 1% or less.
  • composition of the atmosphere of the above-mentioned simulated reformed gas environment may cause an error of about ⁇ 3% by volume, but this error is allowed because the evaluation of the oxide film is not so changed.
  • a test piece was cut out from each ferritic stainless steel, and the cold-rolled annealed plate was subjected to an oxidation test.
  • the oxidation test assumes an atmosphere in which the steel material is exposed in a reformed gas environment, is an atmosphere of 26 volume% H 2 O + 7 volume% CO 2 + 7% volume% CO + 60 volume% H 2 , is heated to 850 ° C., and 850 After holding at 1000C for 1000 hours, it was cooled to room temperature.
  • the composition of the surface oxide film produced in the modified gas environment was evaluated by the GDS analysis method.
  • Si and Mn in the Cr-based oxide in which Cr was detected with O in an amount of 50% by mass or more were set to the values of Si and Mn at the same depth position as the depth position where Cr had the highest concentration.
  • the durability of the surface oxide film produced in the modified gas environment was evaluated by repeated oxidation tests in the atmosphere.
  • the temperature corresponding to the start and stop of the fuel reformer is increased or decreased, and the temperature of the fuel reformer is increased or decreased to examine the destruction of the oxide film and the accompanying abnormal oxidation.
  • the post-oxidation test piece of the above reformed gas environment not subjected to GDS analysis is used as a test material, heating temperatures are 800 ° C., 900 ° C., 1000 ° C., and one cycle is heated for 25 minutes and air cooled for up to 400 cycles.
  • the durability of the Cr-based oxide film targeted by the present invention is “ ⁇ ” at a heating temperature of 900 ° C. or higher.
  • the oxidation test of the reformed gas environment as described above the GDS analysis of the surface oxide film generated in the environmental reformed gas environment, A repeated oxidation test was conducted in the air after the oxidation test of the reformed gas environment.
  • % in the atmosphere display of the preliminary oxidation test shown in Table 2 means volume%.
  • the pre-oxidation atmospheres a to e shown in Table 2 define a gas environment having the following composition.
  • Atmosphere a 20% H 2 O-15% CO 2 -5% CO-30% H 2 -30% N 2 Atmosphere b: 25% H 2 O-8% CO 2 -8% CO-59% H 2 Atmosphere c: 16% H 2 O-43% H 2 -41% N 2 Atmosphere d: 3% H 2 O-9% CO 2 -16% CO-32% H 2 -40% N 2 Atmosphere e: 24% H 2 O-19% CO 2 -5% H 2 -52% N 2 In addition, a test piece with any of asterisks “*”, “**”, and “***” in the “steel” column of Table 2 indicates that a pre-oxidation treatment has been performed.
  • the (Fe, Cr) -based film means that Fe and Cr are detected together with O by GDS analysis, Fe is 10 mass% or more, Cr is 10 mass% or more, and the total of Fe and Cr is 50
  • the (Cr, Mn) -based film detects Cr and Mn together with O by GDS analysis, and Cr is 10
  • the film is detected by GDS analysis with Fe, Cr and Mn together with O, Fe is 5 mass% or more, Cr is 5 mass% or more, Mn is 5 mass% or more, and the total of Fe, Cr and Mn is 50 mass % Or more detected (Fe, Cr, Mn) It means an oxide film mainly composed of product.
  • No. Nos. 1 to 8 are components of each element specified in the present invention and steels A to H satisfying the formula (i), and after an oxidation test assuming a reformed gas environment, Si and / or Mn is 0.5 mass% or more.
  • a highly durable Cr-based oxide film mainly composed of a Cr-based oxide is produced, and both are evaluated as “ ⁇ ” at the heating temperatures of 800 ° C. and 900 ° C. in the repeated atmospheric oxidation test.
  • No. The result of 3 is shown in FIG.
  • No. Nos. 4, 6, and 8 are those in which the value of the formula (i) is 25 or more and the durability of the Cr-based oxide film is improved, and the evaluation is “ ⁇ ” at a heating temperature of 1000 ° C.
  • No. Nos. 3 and 5 contain Si in excess of 2.5% and Al in an amount of 0.50% or less, and the value of the formula (i) is 30 or more, and the durability of the Cr-based oxide film is remarkably improved.
  • the evaluation was “ ⁇ ” even at a heating temperature of 1000 ° C.
  • No. No. 7 The durability of the Cr-based oxide film was remarkably improved by the combined addition of B, V, and Mg to the steel No. 2 and the evaluation was “ ⁇ ” even at a heating temperature of 1000 ° C.
  • No. Nos. 9 and 14 are Nos.
  • the same steel A as in No. 1 was pre-oxidized to improve the durability of the Cr-based oxide film, and the evaluation was improved to “ ⁇ ” even at a heating temperature of 1000 ° C.
  • No. 17, 19, 20, and 23 satisfy the components (i) and the components of each element defined in the present invention, but all of them are mainly composed of Cr-based oxides containing 0.5 mass% or more of Si and / or Mn. It does not have an oxide film.
  • No. Each of 17, 19, 20, and 23 has a composition in which any of the components of Mn, Si, and Al is out of the preferable component range. Specifically, no. Steel K of No. 17 has a Mn content exceeding 0.95%. Steel No. 19 has an Si content of less than 2.50% and an Al content of more than 0.5%. No. Steel No. 20 has a Mn content of over 0.95%, a Si content of less than 2.50%, and an Al content of over 0.5%. No. Steel No.
  • No. Nos. 17, 19, 20, and 23 are tests that do not contain Mn, Si, and Al to such an extent that the above-described effects of Si and Mn are positively utilized, and in which pre-oxidation is not performed. It is a piece. After the oxidation test assuming a reformed gas environment, No. 17 produces an oxide film mainly composed of (Cr, Mn) oxide. Nos. 19, 20 and 23 produce Cr-based oxide films, but Si and Mn in the Cr-based oxides are less than 0.5% by mass, and the evaluation is “x” or “ ⁇ ”.
  • No. 10, 11, 12, and 13 are No. This is a pre-oxidized steel having the same composition as 17, 19, 20, and 23. Pre-oxidation improves the durability of the oxide film, and after oxidation tests assuming a reformed gas environment, highly durable Cr mainly composed of Cr-based oxides containing 0.5% by mass or more of Si and / or Mn A system oxide film is formed. No. In all of Nos. 10 to 13, the evaluation at the heating temperatures of 800 ° C. and 900 ° C. in the atmospheric repeated oxidation test is improved to “ ⁇ ”.
  • No. No. 16 (i) is outside the lower limit of the appropriate range of the present invention, and after an oxidation test assuming a reformed gas environment, an oxide film mainly composed of (Fe, Cr, Mn) oxide is generated.
  • the evaluation is “x” at a heating temperature of 900 ° C. in the atmospheric repeated oxidation test.
  • No. No. 15 Nb is outside the lower limit of the appropriate range of the present invention.
  • No. 18 has Cr outside the lower limit of the appropriate range of the present invention.
  • Mn is outside the upper limit of the present invention.
  • Al and Ti are outside the upper limit of the proper range of the present invention.
  • Nos. 15, 18, and 24 are (Fe, Cr) -based oxides.
  • No. 21 generates an oxide film mainly composed of a (Cr, Mn) -based oxide, and the evaluation is “x” at a heating temperature of 900 ° C. in a repeated atmospheric oxidation test.
  • No. No. 22 produces a Cr-based oxide film mainly composed of a Cr-based oxide containing 0.5% by mass or more of Mn after an oxidation test assuming a reformed gas environment.
  • the lower limit of the range is exceeded, and the evaluation is “x” at a heating temperature of 900 ° C. in the atmospheric repeated oxidation test.
  • Si and Mn are out of the preferred lower limit of the present invention, and a Cr-based oxide film is formed, but Si and Mn in the Cr-based oxide are less than 0.5% by mass, and heating in an atmospheric repeated oxidation test The evaluation is “x” at a temperature of 900 ° C.
  • No. Nos. 26, 28, 29, and 31 are steel Nos. Defined in the present invention or No. (i) out of the proper range. Although the steel was pre-oxidized with 15, 18, 21, and 24, there was no improvement in the oxide film, and all evaluations were “x” at a heating temperature of 900 ° C. in the atmospheric repeated oxidation test, and there was no improvement.
  • No. Nos. 27 and 30 are No. 27 in which the formula (i) defined in the present invention is outside the appropriate range. 16 and 22 are pre-oxidized to improve the durability of the oxide film, and the evaluation has been improved from “ ⁇ ” or “ ⁇ ” to “ ⁇ ” at a heating temperature of 800 ° C. in the atmospheric repeated oxidation test. In both cases, the evaluation is “x” at the heating temperature of 900 ° C. and there is no improvement.
  • No. Nos. 32 and 36 are Nos. In which Si and Mn are outside the preferred lower limit of the present invention.
  • Steel S of 25 and the same steel were pre-oxidized, but there was no improvement in the oxide film, and there was no improvement with an evaluation “x” at a heating temperature of 900 ° C. in the atmospheric repeated oxidation test.
  • No. Nos. 33 and 35 are No.s that satisfy the above-described components of the respective elements and the formula (i) defined in the present invention. 17 and 23 are pre-oxidized. However, no. No. 33 has water vapor in the pre-oxidation atmosphere of less than 10% and a pre-oxidation time of less than 100 hours. No. 35 has less than 10% of hydrogen in the pre-oxidation atmosphere and a pre-oxidation time of less than 100 hours. In these comparative examples, there is no improvement of the oxide film, and in all cases, the evaluation is “x” at the heating temperature of 900 ° C. in the atmospheric repeated oxidation test, and there is no improvement.
  • No. No. 34 is a No. 34 satisfying the above-mentioned components of each element and the formula (i) defined in the present invention. 1 is pre-oxidized. However, since the pre-oxidation temperature is higher than 1000 ° C, the durability of the oxide film deteriorates, and after the oxidation test assuming a reformed gas environment, an oxide film mainly composed of Fe-based oxide is formed, and heating in the atmospheric repeated oxidation test is performed. Evaluation deteriorated to “x” at temperatures of 800 ° C. and 900 ° C.
  • the horizontal axis represents the formula (i) defined in the present invention
  • the vertical axis represents Si in the Cr-based oxide after the oxidation test assuming a reformed gas environment.
  • Steel A used for the preparation of test piece No. 1 in Table 2 does not contain elements B and Mg, and the evaluation is “x” at a heating temperature of 1000 ° C. in a repeated atmospheric oxidation test.
  • test pieces No. 101 to No. 106 in which the total amount of addition of elements B and Mg is 0.0002% or more, good results are obtained at a heating temperature of 1000 ° C. in a repeated atmospheric oxidation test. ing.
  • the steel satisfies the elements (i) and the components of each element defined in the present invention, and the surface after the oxidation test assuming a reformed gas environment has 0.5 mass of Si and / or Mn.
  • the steel having a Cr-based oxide film mainly composed of Cr-based oxide containing at least 50% is superior to the comparative example in the evaluation at a heating temperature of 900 ° C. in the repeated atmospheric oxidation test. It was revealed that the generated oxide film was excellent in durability.
  • the steel that satisfies the pre-oxidation conditions specified in the present invention for the steel satisfying the formula (i) and the components of each element specified in the present invention has 0 Si and / or Mn in the reformed gas environment.
  • a Cr-based oxide film mainly composed of a Cr-based oxide containing 5% by mass or more is produced.
  • a steel that does not satisfy the components of each element defined in the present invention has a Si and / or Mn content of 0.5 mass in a reformed gas environment, regardless of the presence or absence of the pre-oxidation conditions defined in the present invention. It can be seen that a Cr-based oxide film mainly composed of a Cr-based oxide containing at least% is not generated. Further, the steel that does not satisfy the formula (i) defined in the present invention has a Cr-based oxide film mainly composed of a Cr-based oxide containing 0.5 mass% or more of Si and / or Mn in a reformed gas environment.
  • the solid solution of Si and Mn in the Cr-based oxide and the oxide of Si, Mn, and Nb just under the Cr-based oxide film are not formed, and the Cr-based oxidation is caused by the concentration of Si, Mn, and Nb.
  • the improvement of the durability of the film is generally insufficient, the evaluation at the heating temperature of 900 ° C. in the atmospheric repeated oxidation test is inferior, and the durability of the oxide film generated in the reformed gas environment is insufficient I understand that.
  • the amount of Si, Mn, Nb is optimized, and by adding a small amount of V, B, Mg, etc. and the amount of Al, Ti added, It is possible to provide a ferritic stainless steel for a fuel reformer that has both excellent oxidation resistance and economy without depending on a large amount of addition.
  • the ferritic stainless steel of the present invention can be industrially produced regardless of a special production method.

Abstract

 本発明は、希土類元素や多量のNi添加に頼ることなく、改質ガス環境下において異常酸化を生じることなく、優れた耐酸化性と経済性を兼備した燃料改質器用フェライト系ステンレス鋼を提供する。本発明の燃料改質器用フェライト系ステンレス鋼は、質量%にて、Cr:12以上24%以下、C:0.001%以上0.03%以下、Al:0.002%以上4%以下、P:0.05%以下、S:0.01%以下、N:0.03%以下、Nb:0.01以上1%以下、Si:0.3%以上4%以下及びMn:0.1%超2%以下の少なくともいずれかと、残部がFeおよび不可避的不純物からなり、かつ(i)式を満たす組成を有する。 Cr+5Si+Mn+2Nb≧22 ・・・(i) 但し、式中の元素記号は、当該元素の鋼中における含有質量%を意味する。

Description

燃料改質器用フェライト系ステンレス鋼およびその製造方法
 本発明は、都市ガス、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を水素に改質する際に使用される改質器、熱交換器などの燃料電池高温部材に好適なフェライト系ステンレス鋼およびその製造方法に関する。
 最近、石油を代表とする化石燃料の枯渇化、CO2排出による地球温暖化現象等の問題から、従来の発電システムに替わる新しいシステムの普及が加速している。その1つとして、分散電源,自動車の動力源としても実用的価値が高い「燃料電池」が注目されている。燃料電池にはいくつかの種類があるが、その中でも固体高分子型燃料電池(PEFC)や固体酸化物型燃料電池(SOFC)はエネルギー効率が高く、将来の普及拡大が有望視されている。
 燃料電池は、水の電気分解と逆の反応過程を経て電力を発生する装置であり、水素を必要とする。水素は、都市ガス(LNG)、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を触媒の存在下で改質反応させることにより製造される。中でも都市ガスを原燃料とする燃料電池は、都市ガス配管が整備された地区において水素を製造できる利点がある。
 燃料改質器は、水素の改質反応に必要な熱量を確保するため、通常、200~900℃までの高温で運転される。更に、このような高温運転下において、多量の水蒸気、二酸化炭素、一酸化炭素等を含む酸化性の雰囲気に曝され、水素の需要に応じて起動・停止による加熱・冷却サイクルが繰り返される。これまで、このような過酷な環境下において十分な耐久性を有する実用材料として、SUS310S(25Cr-20Ni)に代表されるオーステナイト系ステンレス鋼が使用されてきた。将来、燃料電池システムの普及拡大に向けて、コスト低減は必要不可欠であり、使用材料の最適化による合金コストの低減は重要な課題である。
 近年、上述した背景から、高価なNiを殆ど含まないフェライト系ステンレス鋼の検討が開示されている。特許文献1には、Cr:8~35%、C:0.03%以下、N:0.03%以下、Mn:1.5%以下、Si:0.8~2.5%及び/又はAl:0.6~6.0%であり、更にNb:0.05~0.80%、Ti:0.03~0.50%、Mo:0.1~4%、Cu:0.1~4%の1種又は2種以上を含み、Si及びAlの合計量が1.5%以上に調整された組成を有する石油系燃料改質器用フェライト系ステンレス鋼が開示されている。これらステンレス鋼は、50体積%H2O+20体積%CO2の雰囲気中、900℃への加熱・冷却時の酸化増量が小さいことを特徴としている。
 特許文献2には、Cr:12~20%、C:0.03%以下、N:0.03%以下、Si:0.1~1.5%、Mn:0.95~1.5%、Al:1.5%以下を含み、更にNb:0.10~0.80%、Mo:0.1~4%、Cu:0.1~4%の1種又は2種以上を含む炭化水素系燃料改質器用フェライト系ステンレス鋼が開示されている。これらステンレス鋼は、50体積%H2O+20体積%CO2の雰囲気中、700℃への加熱・冷却500回繰り返し後の酸化増量が2.0mg/cm2以下であることを特徴としている。
 特許文献3には、Cr:8~25%、C:0.03%以下、N:0.03%以下、Si:0.1~2.5%、Mn:1.5%以下、Al:0.1~4%を含み、更にNb:0.05~0.80%、Ti:0.03~0.5%、Mo:0.1~4%、Cu:0.1~4%の1種又は2種以上を含むアルコール系燃料改質器用フェライト系ステンレス鋼が開示されている。これらステンレス鋼は、50体積%H2O+20体積%CO2の雰囲気中、600℃への加熱・冷却500回繰り返し後の酸化増量が2.0mg/cm2以下であることを特徴としている。
 特許文献4には、Cr:11~22%、C:0.03%以下、N:0.03%以下、Si:2%以下、Mn:1.5%以下、Al:1~6%を含み、Cr+5Si+6Al≧30を満足する発電システム用として好適なフェライト系ステンレス鋼が開示されている。これらステンレス鋼は、50体積%H2O雰囲気中(残り空気)で耐酸化性が良好であることを特徴としている。
 特許文献5には、Cr:11~21%、C:0.03%以下、N:0.03%以下、Si:3%以下、Mn:1.0%以下、Al:6%以下、Cu:0.01~0.5%、Mo:0.01~0.5%、Nb:0.1%以下、Ti:0.005~0.5%、Sn:0.001~0.1%、O:0.002%以下、H:0.00005%以下、Pb:0.01%以下を含む燃料電池の高温改質装置に好適なフェライト系ステンレス鋼が開示されている。これらステンレス鋼は、10体積%H2O雰囲気中(残り空気)で耐酸化性が良好であることを特徴としている。
 特許文献1から3のフェライト系ステンレス鋼は、50体積%H2O+20体積%CO2環境下での耐酸化性改善を指向し、2.5%以下のSi添加と0.01%以上のAl添加によるCr系酸化物を主体とする酸化皮膜の生成促進とY、REMならびにCa、AlのCr系酸化物への固溶による酸化皮膜の強化を技術思想としている。特許文献4、5は、10ないし50体積%H2Oを含む環境下(残り空気)での耐酸化性改善を指向し、前者は1%以上のAl含有フェライト系ステンレス、後者は実質的には0.5%以下のSi量を含む18Cr-1.9~3.3Alのフェライト系ステンレス鋼に限定されている。
特許第3886785号公報 特許第3942876号公報 特許第3910419号公報 特開2009-167443号公報 特開2012-12674号公報 国際公開番号WO2014/010680A1 特開平5-320866号公報 特開2008-101240号公報 特開2002-256398号公報
 燃料電池の改質ガスは、前記した都市ガスを原燃料としており、水蒸気/二酸化炭素/一酸化炭素に加えて、多量の水素を含むことが特徴である。例えば、約10体積%以上の水蒸気と、約10体積%以上の水素が共存する改質ガス環境下では、大気や従来の高温水蒸気環境と比較して、Cr系酸化物を主体とする酸化皮膜(以下、「Cr系酸化皮膜」ともいう。)が形成し難く、内部の鋼組織の酸化、いわゆるFeCr系酸化物としての内部酸化、さらにはFe系酸化物の急速な成長である異常酸化が助長される傾向にある。
 これら酸化促進メカニズムは未だ不明な点も多いが、改質ガス環境下では、水素や水蒸気が酸化皮膜中の欠陥形成を助長するため、Cr系酸化皮膜の成長速度が上昇してCr消費が増加すると考えられる。また、形成された欠陥からH2O、CO2等の酸化性成分が前記Cr系酸化皮膜を透過して、鋼素地を直接的に酸化する。そのため、Cr系酸化皮膜の成長よりも内部酸化が進行し易く、さらには異常酸化が生じ易いと推察される。さらに、鋼組織への水素の固溶が、異常酸化を促進する悪影響をもたらしている可能性もある。
 従って、フェライト系ステンレス鋼を燃料改質器に適用する際、その表面に形成されるCr系酸化皮膜の耐久性を高め、異常酸化を抑制することが技術的課題となる。
 特許文献6は、使用前の熱処理または固体酸化物型燃料電池作動時の熱により、酸化皮膜を形成できる固体酸化物型燃料電池用のセパレータ用フェライト系ステンレス鋼板を開示する。しかし、前記熱処理は、多量の水蒸気と水素が共存する改質ガス環境下において行われておらず、前記酸化皮膜が燃料電池の改質ガス環境下においてどの程度促進されるのか不明である。
 特許文献7は、表面にCrを主体とするイオンボンバード処理により生成せしめた酸化物層を有し、400℃以上の高温環境で用いられる耐酸化性に優れたフェライト系ステンレス鋼を開示している。
 また、特許文献8は、800℃レベルの水蒸気環境で高温ガスから集熱するために使用される、フェライト系ステンレス鋼を基材とする伝熱材を開示する。
 また、特許文献9は、高温耐食性が高く、高温下で腐食性のガスに曝されても顕著な浸炭がなく、加熱・冷却サイクル下で実質的に酸化皮膜の剥離が無い改質器用オーステナイト系合金を開示している。
 しかし、特許文献1~9に開示された発明は、多量の水蒸気及び水素が共存する高温雰囲気下において内部酸化を抑制する効果をどの程度有するか不明である。前述したように、改質ガスには多量の水蒸気と水素が含まれており、水素も内部酸化を促進する要因であると考えられる。しかしながら、特許文献1~9において、改質ガスにおける水素によるステンレス鋼材の内部酸化への促進という問題が着目されておらず、多量の水蒸気に加えて多量の水素が存在する高温雰囲気下における耐酸化性が十分に検討されていない。
 本発明は、多量の水蒸気及び水素が共存する改質ガス環境下において異常酸化を生じることなく、Cr系酸化皮膜の耐久性に優れ、経済性をも備えた燃料改質器用フェライト系ステンレス鋼板を提供するものである。
 本発明者らは、前記した課題を解決するために、改質ガス環境を想定した多量の水蒸気と水素を含む雰囲気下でフェライト系ステンレス鋼表面に生成するCr系酸化皮膜の耐久性に及ぼすSiやMn及び微量元素であるNb、Ti、Al、V、B、Mgの作用、Cr系酸化物中のSiやMnの作用について鋭意実験と検討を重ね、以下の知見を得た。
(a)多量の水蒸気と水素が共存する改質ガス環境下において、Si及びMnは、Cr系酸化物へ固溶して、Cr系酸化皮膜の成長と内部酸化の抑制に寄与する新規な知見が得られた。更に、SiやMnはCr系酸化皮膜の直下に酸化物を形成することにより濃化して、水素や水蒸気による内部酸化の進行を遅延させ、Fe系酸化物を主体とする酸化皮膜の形成に伴う異常酸化を抑制する。このような作用効果により、Cr系酸化皮膜の耐久性を高めることができる。
(b)前記したCr系酸化皮膜の耐久性を更に高めるには、Nbの微量添加が有効であることを知見した。Nbは、Cr系酸化皮膜の直下に酸化物を形成することにより濃化して、内部酸化ならびに粒界酸化を抑制することによって、Cr系酸化皮膜の耐久性を改善する。
(c)V、B、Mgの微量添加もNbと同様な効果を発現することが分かった。これら元素の微量添加によって、Nb添加の効果が重畳する。
(d)一方、Al、TiはCr系酸化物への固溶や界面への濃化によって酸化皮膜を強化する作用もあるものの、当該改質ガス環境下では添加量によっては内部酸化ならびに粒界酸化の進行を助長してCr系酸化皮膜の耐久性を損なう作用もあることが分かった。
(e)水蒸気及び水素を含む雰囲気中において、雰囲気、温度及び処理時間の条件が特定された予備酸化処理を実施することで、前記Cr系酸化物中のSi及びMnを濃化して、Cr系酸化皮膜の耐久性を高めることができることが分った。
 上述したように、改質ガス環境下において、Si、Mn、Nb量を最適化し、V、B、Mgの微量を添加し、Al、Tiの添加量を調整することにより、希土類元素や多量のNi添加に頼ることなく、Cr系酸化皮膜の耐久性を付与できる全く新規な知見が得られた。
 以下の(1)~(13)の本発明は、上述した検討結果に基づいて完成されたものである。
(1)質量%にて、Cr:12以上24%以下、C:0.001%以上0.03%以下、Al:0.002%以上4%以下、P:0.05%以下、S:0.01%以下、N:0.03%以下、Nb:0.01以上1%以下を含み、更にSi:0.3%以上4%以下及びMn:0.1%超2%以下の少なくともいずれかを含み、残部がFeおよび不可避的不純物からなり、かつ(i)式を満たす組成を有することを特徴とする燃料改質器用フェライト系ステンレス鋼。
  Cr+5Si+Mn+2Nb≧22 ・・・(i)
但し、式中の元素記号は、当該元素の鋼中における含有質量%を意味する。
 上記した組成により、本発明のフェライト系ステンレス鋼の表面を、水蒸気/二酸化炭素/一酸化炭素に加えて多量の水素を含む改質ガス環境の雰囲気に晒すことによって、Cr系酸化物を主体とした酸化皮膜であるCr系酸化皮膜が形成され、前記Cr系酸化物中にはSi及びMnのうち少なくともいずれかの元素が0.5質量%以上含有される。
 Cr系酸化物中に、Si及びMnのうち少なくともいずれかの元素を0.5質量%以上含むことにより、Cr系酸化皮膜の成長と内部酸化の抑制に寄与することができ、改質ガス環境下において十分な耐久性を得ることができる。
 尚、「Cr系酸化物」とはグロー放電質量分析法(GDS分析法)により、CrがOとともに検出され、且つ、Crが50質量%以上検出される酸化物である。また「主体とする」とは、酸化皮膜全体に占めるCr系酸化物の体積の酸化皮膜全体の体積に対する比率が50%以上であることを意味する。本発明のフェライト系ステンレス鋼のCr系酸化皮膜には、Cr系酸化物以外にMnCr24、SiO2、Al23などを含んでいてもよい。
(2)Mnが0.95%未満であることを特徴とする(1)に記載の燃料改質器用フェライト系ステンレス鋼。
(3)Siが2.50%超であることを特徴とする(1)または(2)に記載の燃料改質器用フェライト系ステンレス鋼。
(4)Alが0.5%以下であることを特徴とする(1)~(3)のうちいずれかに記載の燃料改質器用フェライト系ステンレス鋼。
(5)前記ステンレス鋼が、さらに質量%にて、Ni:1%以下、Cu:1%以下、Mo:2%以下、Sn:1%以下、W:1%以下、Co:0.5%以下、V:0.5%以下、Ti:0.3%以下、B:0.005%以下、Ca:0.005%以下、Mg:0.005%以下、Zr:0.5%以下、La:0.1%以下、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下の1種または2種以上含有していることを特徴とする(1)~(4)のうちいずれかに記載の燃料改質器用フェライト系ステンレス鋼。
(6)ステンレス鋼の表面に酸化皮膜を有し、酸化皮膜の成分として、Si及びMnのうち少なくともいずれかの元素を0.5質量%以上と、Crを50質量%以上含有する酸化物が酸化皮膜に占める体積の比率が50%以上であることを特徴とする(1)~(5)のうちいずれかに記載の燃料改質器用フェライト系ステンレス鋼。
(7)(1)~(5)のいずれかに記載の組成を有するステンレス鋼を、水分を10体積%以上50体積%以下及び水素を10体積%以上70体積%以下含む雰囲気中において、300~1000℃の範囲で熱処理することにより、前記ステンレス鋼材の表面に、Si及びMnのうち少なくともいずれかの元素を0.5質量%以上と、Crを50質量%以上を含有する酸化物が占める体積の比率が50%以上である酸化皮膜を形成することを特徴とする燃料改質器用フェライト系ステンレス鋼の製造方法。
(8)質量%にて、Cr:12以上24%以下、C:0.001%以上0.03%以下、Al:0.002%以上4%以下、P:0.05%以下、S:0.01%以下、N:0.03%以下、Nb:0.011%以上1%以下を含み、更にSi:0.3%以上4%以下及びMn:0.1%超2%以下の少なくともいずれかを含み、残部がFeおよび不可避的不純物からなり、かつ(i)式を満たす組成を有し、26体積%H2O+7体積%CO2+7%体積%CO+60体積%H2の雰囲気で850℃にて1000時間保持した後で室温まで冷却したとき、その表面にSi及びMnのうちいずれかの元素を0.5質量%以上と、Cr及びOの両者の含有量を合算して50質量%以上とを含有する酸化皮膜が形成されていることを特徴とする燃料改質器用フェライト系ステンレス鋼。
  Cr+5Si+Mn+2Nb≧22 ・・・(i)
 但し、式中の元素記号は、当該元素の鋼中における含有質量%を意味する。
(9)質量%にて、Cr:12以上24%以下、C:0.001%以上0.03%以下、Al:0.002%以上4%以下、P:0.05%以下、S:0.01%以下、N:0.03%以下、Nb:0.011%以上1%以下を含み、更にSi:0.3%以上4%以下及びMn:0.1%超2%以下の少なくともいずれかを含み、残部がFeおよび不可避的不純物からなり、かつ(i)式を満たす組成を有し、20体積%H2O+15体積%CO2+5%体積%CO+30体積%H2+30体積%N2の雰囲気で650℃にて100時間保持する熱処理を施した後に、26体積%H2O+7体積%CO2+7%体積%CO+60体積%H2の雰囲気で850℃にて1000時間保持した後で室温まで冷却したとき、その表面にSi及びMnのうちいずれかの元素を0.5質量%以上と、Cr及びOの両者の含有量を合算して50質量%以上とを含有する酸化皮膜が形成されていることを特徴とする燃料改質器用フェライト系ステンレス鋼。
  Cr+5Si+Mn+2Nb≧22 ・・・(i)
 但し、式中の元素記号は、当該元素の鋼中における含有質量%を意味する。
(10)Mnが0.95%未満であることを特徴とする(8)または(9)に記載の燃料改質器用フェライト系ステンレス鋼。
(11)Siが2.50超であることを特徴とする(8)~(10)のうちいずれかに記載の燃料改質器用フェライト系ステンレス鋼。
(12)Alが0.5%以下であることを特徴とする(8)~(11)のうちいずれかに記載の燃料改質器用フェライト系ステンレス鋼。
(13)さらに質量%にて、Ni:1%以下、Cu:1%以下、Mo:2%以下、Sn:1%以下、W:1%以下、Co:0.5%以下、V:0.5%以下、Ti:0.3%以下、B:0.005%以下、Ca:0.005%以下、Mg:0.005%以下、Zr:0.5%以下、La:0.1%以下、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下の1種または2種以上含有していることを特徴とする(8)~(12)のうちいずれかに記載の燃料改質器用フェライト系ステンレス鋼。
 以下、上記(1)~(13)の鋼に係わる発明をそれぞれ本発明という。また、(1)~(13)の発明を合わせて、本発明ということがある。
 本発明によれば、優れた耐酸化性と経済性を兼備した燃料改質器用フェライト系ステンレス鋼を提供することができる。
表2の本発明例No.3について、改質ガス環境を想定した850℃における1000時間の酸化試験後の酸化皮膜の組成をGDS分析した結果であり、深さ方向の各元素プロファイルを示した図である。 表2の本発明例No.1~14及び比較例No.19、20、22、23、25、27、30、35、36について、大気繰り返し酸化試験の加熱温度900℃における評価に及ぼす、本発明規定の(i)式及び改質ガス環境を想定した酸化試験後のCr系酸化皮膜中のCr系酸化物に含有されるSiとMnの高い方の値の影響を示した図である。
 以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。
 上記所定のSi、Mnを含むCr系酸化物を主体とする酸化皮膜は、下記(I)で説明する本発明に規定する成分を有するフェライト系ステンレス鋼を用い、下記(III)で説明する燃料改質機の改質ガス環境下においてステンレス鋼の表面に形成される。本発明の一部の成分系においては、下記(IV)で説明する所定の予備酸化を行った後、燃料改質機の改質ガス環境下においてステンレス鋼の表面に形成される。
 (I)鋼中成分の限定理由を以下に説明する。
 Crは、耐食性に加えて、目標とする耐久性をCr系酸化皮膜が有するための基本の構成元素である。本発明においては、12%未満では目標とする耐酸化性が十分に確保されない。従って、下限は12%とする。しかし、過度な添加は高温雰囲気に曝された際、脆化相であるσ相の生成を助長することに加え、合金コストの上昇を招く。上限は、基本特性と合金コストの視点から24%とする。基本特性及び耐酸化性とコストの点から、好ましい範囲は14.5~22.5%である。より好ましい範囲は、17.5~20%である。
 Cは、フェライト相に固溶あるいはCr炭化物を形成して本発明の目標とする耐酸化性を阻害する。このため、C量は少ないほど良く、上限を0.03%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.001%とすることが好ましい。耐酸化性と製造性の点から、好ましい範囲は0.002~0.02%である。
 Mnは、改質ガス環境下でSiとともにCr系酸化物に固溶して皮膜の耐久性を高める。これら効果は0.1%超から得られる。一方、過度な添加は、鋼の耐食性や耐酸化性の低下にも繋がるため、上限は2%とする。耐酸化性と基本特性の点から、好ましい範囲は0.2~1.5%である。好ましいMnの範囲において、MnはCr系酸化皮膜の直下に酸化物を形成することにより濃化して、水素や水蒸気による内部酸化の進行を遅延させる。
 鋼中Mn含有量が0.1%超であると、下記(III)で説明する燃料改質機の改質ガス環境下で使用したときに、Cr系酸化物中のMn含有量を0.5質量%以上とすることができる。しかし、鋼中Mn含有量が0.1%超であっても、後述のSi含有量が2.5%以下かつAl含有量が0.5%超であると、下記(III)で説明する燃料改質機の改質ガス環境下で使用したのみでは、Cr系酸化物中のMn含有量を0.5質量%以上とすることができない可能性がある。ただし、このような鋼成分でも、例えば、下記(IV)で説明する所定の予備酸化を行えば、安定して、その後の燃料改質機の改質ガス環境下において形成されるCr系酸化物中のMn含有量を0.5質量%以上とすることができる。
 Mn含有量が0.95%以上であると、下記(III)で説明する燃料改質機の改質ガス環境下で使用したのみでは、表面に形成される酸化皮膜が(Cr、Mn)系酸化物が主体となってしまい、本発明のCr系酸化物が形成されない可能性がある。従って、Mn含有量は0.95%未満が好ましい。従って、SiとMnの効果を積極的に活用するためには、上限は0.95%未満とすることがより好ましく、さらにより好ましい範囲は0.2%~0.8%である。ただし、Mn含有量が0.95%以上であっても、例えば、下記(IV)で説明する所定の予備酸化を行えば、安定して、その後の燃料改質機の改質ガス環境下においてステンレス鋼の表面にCr系酸化物が形成される。
 Pは、製造性や溶接性を阻害する元素であり、その含有量は少ないほど良いため、上限は0.05%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.003%とすることが好ましい。製造性と溶接性の点から、好ましい範囲は0.005~0.04%、より好ましくは0.01~0.03%である。
 Sは、鋼中に含まれる不可避的不純物元素であり、本発明の目標とする耐酸化性を低下させる。特に、Mn系介在物や固溶Sの存在は、高温・長時間使用におけるCr系酸化皮膜を破壊する起点として作用する。従って、S量は低いほど良いため、上限は0.01%とする。但し、過度の低減は原料や精錬コストの上昇に繋がるため、下限は0.0001%とする。製造性と耐酸化性の点から、好ましい範囲は0.0001~0.002%、より好ましくは0.0002~0.001%である。
 Nは、Cと同様に本発明の目標とする耐酸化性を阻害する。このため、N量は少ないほど良く、上限を0.03%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.002%とすることが好ましい。耐酸化性と製造性の点から、好ましい範囲は0.005~0.02%である。
 Nbは、C,Nを固定する安定化元素の作用による鋼の高純度化を通じて耐酸化性を向上させることに加えて、Cr系酸化皮膜の直下に酸化物を形成することにより濃化して、改質ガス環境下での内部酸化や粒界酸化の進行を抑制することで本発明の目標とするCr系酸化皮膜の耐久性を高める作用を有する。これらNb添加の効果は0.01%以上から得られる。一方、過度な添加は合金コストの上昇や再結晶温度上昇に伴う製造性の低下に繋がるため、上限は1%とする。耐酸化性と合金コストや製造性の点から、好ましい範囲は0.1~0.6%であり、より好ましい範囲は0.2~0.4%である。
 Siは、本発明の目標とする耐酸化性を確保する上で重要な元素である。改質ガス環境下でCr系酸化物へ固溶し、Cr系酸化皮膜の耐久性を高める。これら効果は0.3%から得られ、2.5%を超えて顕著になる。一方、過剰な添加は鋼の加工性や溶接性の低下を招くため上限は4%とする。耐酸化性と基本特性の点から、好ましい範囲は0.4~3.5%である。好ましいSiの範囲において、SiはCr系酸化皮膜の直下に酸化物を形成することにより濃化して、水素や水蒸気による内部酸化の進行を遅延させる。SiとMnの少なくともいずれかがCr系酸化物へ固溶してCr系酸化皮膜の成長と内部酸化の抑制に寄与するためには、鋼中のSiが0.3%以上、Mnが0.1%超の少なくともいずれかを満たす含有量であることが好ましい。さらに、SiとMnの効果を積極的に活用するためには、Siの下限は2.50%超とすることがより好ましく、さらにより好ましい範囲は2.50%超~3.5%である。
 Si含有量が2.5%超であれば、下記(III)で説明する燃料改質機の改質ガス環境下で使用したときに、Cr系酸化物中のSi含有量を0.5質量%以上とすることができる。Si含有量が0.3%以上かつ下記Al含有量が0.5%以下であれば、下記(III)で説明する燃料改質機の改質ガス環境下で使用したときに、Cr系酸化物中のSi含有量を0.5質量%以上とすることができる。Si含有量が0.3%以上かつAl含有量が0.5%超であると、下記(III)で説明する燃料改質機の改質ガス環境下で使用したのみでは、Cr系酸化物中のSi含有量を0.5質量%以上とすることができない可能性がある。ただし、このような鋼成分でも、例えば、下記(IV)で説明する所定の予備酸化を行えば、安定して、その後下記(III)で説明する燃料改質機の改質ガス環境下で使用したときに、Cr系酸化皮膜中のSi含有量を0.5質量%以上とすることができる。
 Alは、脱酸元素および耐酸化性を高める有効な元素であり、0.001%以上含有することが好ましい。一方、過剰な添加は鋼の加工性や溶接性の低下を招くため上限は4%とする。合金コストと製造性の点から、上限は2%とすることが好ましい。また、多量のAl添加は、当該改質ガス環境下において内部酸化や粒界酸化の進行を助長して本発明の目標とするCr系酸化皮膜の耐久性を損なうことに繋がる。積極的にCr系酸化皮膜の耐久性を高めるためには、上限は0.5%とすることがより好ましい。耐酸化性と脱酸性の点から、より好ましい範囲は0.002~0.2%であり、さらにより好ましい範囲は0.01~0.08%である。
 上記、Cr、Si、Mn、Nbの含有量に加えて、本発明では当該改質ガス環境下において目標とするCr系酸化皮膜の形成を促進するために、前記(i)式の通り、Cr+5Si+Mn+2Nb≧22とする。耐久性の高いCr系酸化皮膜を形成するには、Si添加が有効に機能し、SiとMn及びNbの複合添加が好適である。Cr系酸化皮膜の耐久性をより高める点から、(i)式の値は25以上であることが好ましく、より好ましくは30以上である。(i)式の値の上限は、特に規定するものではないが、CrおよびSi添加による鋼の製造性への影響を考慮して40とすることが好ましい。尚、(i)式の各元素に係る係数は、種々の成分を含有する鋼材を用い、多量の水蒸気・水素を含む改質Siの効果がCrの5倍であり、含有Nbの効果がCrの2倍であり、含有Mnの効果がCrと同等であることを見出したことによる。
 上記Mn及びSiの項で説明したとおり、本発明のフェライト系ステンレス鋼が、Mn:0.95%未満、Si:2.50超%及び/又はAl:0.5%以下の条件を満たすときには、下記(IV)で説明する所定の予備酸化を行う必要がなく、下記(III)で説明する燃料改質機の改質ガス環境下で使用したときに、Cr系酸化物中のSi及び/又はMn含有量を0.5質量%以上とすることができるので好ましい。
 また、本発明のフェライト系ステンレス鋼は、更に必要に応じて、Ni:1%以下、Cu:1%以下、Mo:2%以下、Sn:1%以下、W:1%以下、Co:0.5%以下、V:0.5%以下、Ti:0.3%以下、B:0.005%以下、Ca:0.005%以下、Mg:0.005%以下、Zr:0.5%以下、La:0.1%以下,Y:0.1%以下,Hf:0.1%以下,REM:0.1%以下の1種または2種以上を含有しているものであってもよい。
 Ni、Cu、Mo、Sn、W、Coは、当該改質ガス環境下での耐酸化性と高温強度を高めるのに有効な元素であり、必要に応じて添加する。但し、過度な添加は合金コストの上昇や製造性を阻害することに繋がるため、Ni、Cu、Sn、Wの上限は1%とする。Moは、本発明のフェライト系ステンレス鋼の熱膨張係数を低減し、高温変形の抑制にも有効な元素であることから、Moの添加量の上限は2%であり、より好ましくは0.5%未満である。いずれの元素もより好ましい含有量の下限は0.1%とする。
 V、B、Mgは、Nb添加による耐酸化性向上効果を促進する元素であり、必要に応じて添加する。但し、過度な添加は合金コストの上昇や製造性を阻害することに繋がるため、Vの上限は0.5%、BとMgの上限は0.005%とする。Vのより好ましい含有量の下限は0.05%、BとMgのより好ましい下限は0.0002%とする。
 尚、B及びMgのそれぞれの添加量が前記下限に満たない場合であっても、これらの添加量が下記の式(ii)を充足する場合、耐酸化性向上効果が促進される。
 B+Mg≧0.0002%・・・(ii)
 但し、式中の元素記号は、当該元素の鋼中における含有質量%を意味する。
 Tiは、C,Nを固定する安定化元素の作用による鋼の高純度化を通じて耐酸化性を向上させる元素であり、必要に応じて添加する。但し、過度な添加は、当該改質ガス環境下において内部酸化や粒界酸化の進行を助長して本発明の目標とするCr系酸化皮膜の耐久性を損なうことに繋がるため、その含有量は0.3%以下に制限される。耐酸化性の点から、好ましい含有量の下限は0.01%とする。
 Caは、熱間加工性や2次加工性を向上させる元素であり、必要に応じて添加する。但し、過度な添加は製造性を阻害することに繋がるため、上限は0.005%とする。好ましい下限は0.0001%とする。
 Zr、La、Y、Hf、REMは、熱間加工性や鋼の清浄度を向上ならびに本発明の耐酸化性改善に対しても、従来から有効な元素であり、必要に応じて添加しても良い。但し、本発明の技術思想と合金コストの低減から、これら元素の添加効果に頼るものではない。添加する場合、Zrの上限は0.5%、La、Y、Hf、REMの上限はそれぞれ0.1%とする。Zrのより好ましい下限は0.01%、La、Y、Hf、REMの好ましい下限は0.001%とする。ここで、REMは原子番号57~71に帰属する元素であり、例えば、Ce、Pr、Nd等である。
 (II)製造方法について以下に説明する。
 本発明のフェライト系ステンレス鋼を用いた鋼板は、主として,熱間圧延鋼帯を焼鈍あるいは焼鈍を省略してデスケ-リングの後冷間圧延し,続いて仕上げ焼鈍とデスケ-リングした冷延焼鈍板を対象としている。場合によっては、冷間圧延を施さない熱延焼鈍板でも構わない。さらに、ガス配管用としては、鋼板から製造した溶接菅も含まれる。配管は、溶接菅に限定するものでなく,熱間加工により製造した継ぎ目無し菅でもよい。上述した鋼の仕上げ焼鈍は、700~1100℃とするのが好ましい。700℃未満では鋼の軟質化と再結晶が不十分となり,所定の材料特性が得られないこともある。他方,1100℃超では粗大粒となり,鋼の靭性・延性を阻害することもある。
 (III)燃料改質機の改質ガス環境での使用について説明する。
 本発明のフェライト系ステンレス鋼の表面に有する、Si及び/又はMnを0.5質量%以上含むCr系酸化物を主体とする酸化皮膜は、本発明に規定する上記組成を有するフェライト系ステンレス鋼を、燃料改質機の改質ガス環境下に晒すことによってステンレス鋼の表面に形成される。改質ガス環境下とは、多量の水蒸気、水素、二酸化炭素、一酸化炭素等を含む雰囲気で200~900℃までの高温に曝される環境を意味する。
 (IV)燃料改質機のシステムの運転初期に行うと好ましい予備酸化について説明する。
 前述した本発明の一部の鋼成分においては、燃料改質機の改質ガス環境下においてステンレス鋼の表面にSi及び/又はMnを0.5質量%以上含むCr系酸化物を主体とする酸化皮膜を形成するために、上記フェライト系ステンレス鋼を燃料改質器用として使用する前に予備酸化を行い、システムの運転初期において、CrならびにSiやMnが濃化した緻密な酸化皮膜を鋼板表面に均一に形成しておくことが有効である。燃料改質器運転前、予め緻密な酸化皮膜を表面に形成しておくことで、金属表面の状態と比較して初期に形成される酸化皮膜の均一性・バリヤー性を高め、長期使用の耐酸化性と酸化皮膜の密着性を一層向上させることができる。
 但し、予備酸化を行う場合は、予備酸化雰囲気を水蒸気及び水素を含む雰囲気中とし、予備酸化温度を300~1000℃とする。このような条件でCr系酸化物へSiやMnを固溶させかつ皮膜直下にも濃化させて耐久性の高い酸化皮膜を形成することができる。予備酸化温度が低い場合、ほとんど酸化皮膜は形成されないため、下限は300℃であり、好ましくは400℃である。一方、予備酸化温度が高い場合、酸化皮膜に多量のFeを含むようになり、耐久性を低下させるため、上限は1000℃であり、好ましくは850℃未満である。
 予備酸化時間の上限は特に規定するものではないが、200時間以下とすることが好ましい。さらに、100時間以下の短時間でも耐久性の高いCr系酸化皮膜を形成するためには、予備酸化雰囲気の水蒸気及び水素をそれぞれ10体積%以上とすることが好ましい。水蒸気が10体積%未満の場合は、酸化性が低く酸化皮膜の成長が遅いため、予備酸化時間の下限を100時間超とすることが好ましい。水素が10体積%未満の場合は、Cr系酸化物中へのSiやMnの固溶が進行し難い傾向であるため、予備酸化時間の下限を100時間超とすることが好ましい。水蒸気や水素の上限は特に規定するものではないが、水蒸気の上限は50体積%、水素の上限は70体積%とすることが好ましい。
 また、予備酸化雰囲気には窒素、二酸化炭素、一酸化炭素、炭化水素系ガスなどのその他ガスを含んでも良い。その他ガスの範囲は特に規定するものではないが、上限は30体積%とすることが好ましい。また、還元性ガスである水素と一酸化炭素の合計が50体積%以上の場合は、酸化性が低く酸化皮膜の成長が遅くなるため、酸化性ガスである水蒸気と二酸化炭素の合計を20体積%以上とすることが好ましく、32体積%超とすることがより好ましい。
 予備酸化により得られたCr系酸化皮膜の厚さは、高温改質ガス環境下で耐久性を維持するために、0.01μm以上とすることが好ましい。皮膜厚さの上限は、特に規定するものでないが、予備酸化の効率を考慮して5μmとすることが好ましい。予備酸化により得られた酸化皮膜に占めるCr系酸化物の体積または厚みの比率は50%以上であり、当該改質ガス環境下で耐久性を発揮するMnCr24、SiO2、Al23などを含むものであってもよい。
 本発明の燃料改質器用フェライト系ステンレス鋼は、表面にSi及び/又はMnを含むCr系酸化物を主体とする酸化皮膜を形成し、この酸化皮膜と母材との間に、Si、Mn、Nbが濃化していると好ましい。これにより、優れた耐久性を有するCr系酸化皮膜を形成することができる。Cr系酸化物中のSi、Mnの存在は、グロー放電質量分析法(GDS分析法)により、CrがOとともに検出され、且つ、Crが50質量%以上検出された酸化物中において、SiやMnが0.5質量%以上検出されるか否かによって判定することができる。またCr系酸化皮膜と母材との間のSi、Mn、Nbの濃化については、酸化皮膜の断面をFE-SEM観察とEDS元素分析を行い、Cr系酸化皮膜直下にSi、Mn、Nb、が母材濃度より高く検出されるか否かによって判定することができる。
 また、前記予備酸化は燃料改質器運転前に行えば良く、前述した本発明の組成を有するフェライト系ステンレス鋼を燃料改質器の構成部品に成形する前に行っても良い。或いは、前述した本発明の組成を有するフェライト系ステンレス鋼を燃料改質器の構成部品に成形した後、予備酸化を行っても良い。
 前記予備酸化は、1回に限らず複数回行っても良い。また、100時間未満の予備酸化を複数回行い、予備酸化時間が合計で100時間を超えるように予備酸化を行っても良い。或いは、フェライト系ステンレス鋼の表面に、Si及び/又はMnを0.5質量%以上含むCr系酸化物を主体とする酸化皮膜が形成されるまで、予備酸化を同じ条件或いは異なる条件にて複数回行っても良い。
 さらに、燃料改質機を改質ガス環境下において使用する以前に、フェライト系ステンレス鋼表面に形成されるCr系酸化皮膜を評価する目的で、本発明のフェライト系ステンレス鋼に対して改質ガス環境を模擬した熱処理を行っても良い。
 本発明のフェライト系ステンレス鋼の表面組織を評価するための模擬的な熱処理として、例えば以下の熱処理を例示することができる。尚、本発明のフェライト系ステンレス鋼に対して適用可能な模擬的な熱処理は、これらの模擬熱処理条件に限定されないことはいうまでもない。
 即ち、質量%にて、Cr:12以上24%以下、C:0.001%以上0.03%以下、Al:0.002%以上4%以下、P:0.05%以下、S:0.01%以下、N:0.03%以下、Nb:0.01以上1%以下を含み、更にSi:0.3%以上4%以下及びMn:0.1%超2%以下の少なくともいずれかを含み、残部がFeおよび不可避的不純物からなり、かつ前記(i)式を満たす組成を有する燃料改質器用フェライト系ステンレス鋼に対して、燃料改質機の改質ガス環境を模擬する熱処理として、26体積%H2O+7体積%CO2+7%体積%CO+60体積%H2の雰囲気で850℃に加熱し、850℃にて1000時間保持した後で室温まで冷却する模擬熱処理1を行っても良い。
 また、質量%にて、Cr:12以上24%以下、C:0.001%以上0.03%以下、Al:0.002%以上4%以下、P:0.05%以下、S:0.01%以下、N:0.03%以下、Nb:0.01以上1%以下を含み、更にSi:0.3%以上4%以下及びMn:0.1%超2%以下の少なくともいずれかを含み、残部がFeおよび不可避的不純物からなり、かつ(i)式を満たす組成を有する燃料改質器用フェライト系ステンレス鋼に対して、燃料改質機の改質ガス環境を模擬する熱処理として、26体積%H2O+7体積%CO2+7%体積%CO+60体積%H2の雰囲気で850℃に加熱して850℃にて1000時間保持した後、室温まで冷却する模擬熱処理2を行っても良い。
 前述の模擬熱処理1或いは2を行うことによって、ステンレス鋼の表面にSi及び/又はMnを0.5質量%以上含むCr系酸化物を主体とする酸化皮膜を形成することができる。
 また、本発明に規定する成分組成を有するフェライト系ステンレス鋼に対して、予備酸化を模擬した処理を行った後、燃料改質機の改質ガス環境下における使用前に、燃料改質機の改質ガス環境を模擬した熱処理を行うことにより、前記フェライト系ステンレス鋼が本発明のCr系酸化皮膜を有するステンレス鋼であることを評価しても良い。
 例えば、質量%にて、Cr:12以上24%以下、C:0.001%以上0.03%以下、Al:0.002%以上4%以下、P:0.05%以下、S:0.01%以下、N:0.03%以下、Nb:0.01以上1%以下を含み、更にSi:0.3%以上4%以下及びMn:0.1%超2%以下の少なくともいずれかを含み、残部がFeおよび不可避的不純物からなり、かつ(i)式を満たす組成を有する燃料改質器用フェライト系ステンレス鋼に対して、20体積%H2O+15体積%CO2+5%体積%CO+30体積%H2+30体積%N2の雰囲気で650℃に加熱し、650℃にて100時間の熱処理を施した後、前述した模擬熱処理1又は2を行っても良い。
 前述の模擬的な熱処理が行われるフェライト系ステンレス鋼は、さらに質量%にて、Ni:1%以下、Cu:1%以下、Mo:2%以下、Sn:1%以下、W:1%以下、Co:0.5%以下、V:0.5%以下、Ti:0.3%以下、B:0.005%以下、Ca:0.005%以下、Mg:0.005%以下、Zr:0.5%以下、La:0.1%以下、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下の1種または2種以上含有していても良い。
 前述の模擬的な熱処理を行うことにより、フェライト系ステンレス鋼の表面に、Si及び/又はMnを0.5質量%以上含むCr系酸化物を主体とする酸化皮膜を形成することを確認することができる。
 また、上記の模擬的な改質ガス環境の雰囲気の組成は、±3体積%程度の誤差を生じることがあるが、酸化皮膜の評価が変わる程ではないので、この誤差は許容される。
 以下に、本発明の実施例について述べる。
 表1に成分を示す各種フェライト系ステンレス鋼を溶製し、熱間圧延、焼鈍酸洗、冷間圧延、仕上げ焼鈍を経て板厚1.0mmの冷延焼鈍材を製造した。
 各フェライト系ステンレス鋼から試験片を切り出し、冷延焼鈍板を酸化試験に供した。
酸化試験は、改質ガス環境下で鋼材が曝される雰囲気を想定し、26体積%H2O+7体積%CO2+7%体積%CO+60体積%H2の雰囲気とし、850℃に加熱し、850℃にて1000時間保持した後で室温まで冷却した。
 上記改質ガス環境で生成した表面酸化皮膜の組成は、GDS分析法により評価した。CrがOとともに50質量%以上検出されたCr系酸化物中のSiおよびMnは、Crが最も高い濃度となる深さ位置と同じ深さ位置のSiおよびMnの値とした。
 さらに、上記改質ガス環境で生成した表面酸化皮膜の耐久性は、大気中繰り返し酸化試験により評価した。この試験により、燃料改質器の起動停止に相当する温度の昇降、またはそれ以上の温度の昇降を施し、酸化皮膜の破壊及び、それに伴う異常酸化の発生を調べることができる。なお、水蒸気及び水素を含む雰囲気で繰り返し酸化試験を実施することは一般的に困難であり、本評価では、大気中繰り返し試験を実施することとした。GDS分析に供していない上記改質ガス環境の酸化後試験片を供試材として用い、加熱温度は800℃、900℃、1000℃とし、1サイクルを25分加熱と5分空冷とし400サイクルまで実施し、酸化皮膜の剥離を生じたものを「△」、酸化皮膜に剥離が生じて異常酸化に至ったものを「×」、酸化皮膜に剥離がなく異常酸化も発生しなかったものを「○」とした。本発明の目標とするCr系酸化皮膜の耐久性は加熱温度900℃以上で「○」とする。
 また、表2に示す雰囲気、温度、時間の条件で予備酸化を実施した試験片についても、上記同様に改質ガス環境の酸化試験、環境改質ガス環境で生成した表面酸化皮膜のGDS分析、改質ガス環境の酸化試験後の大気中繰り返し酸化試験を実施した。なお、表2に示す予備酸化試験の雰囲気表示における%は体積%を意味する。また、表2に示す予備酸化の雰囲気a~eは、以下の組成のガス環境を定義する。
 雰囲気a:20%H2O-15%CO2-5%CO-30%H2-30%N2
 雰囲気b:25%H2O-8%CO2-8%CO-59%H2
 雰囲気c:16%H2O-43%H2-41%N2
 雰囲気d:3%H2O-9%CO2-16%CO-32%H2-40%N2
 雰囲気e:24%H2O-19%CO2-5%H2-52%N2
 また、表2の「鋼」欄にアスタリスク“*”、“**”及び“***”のいずれかが付された試験片は、予備酸化処理が実施されていることを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた結果を表2に示す。なお、表2において、(Fe、Cr)系皮膜とはGDS分析法により、FeとCrがOとともに検出され、Feが10質量%以上、Crが10質量%以上、FeとCrの合計が50質量%以上検出される(Fe、Cr)系酸化物を主体とする酸化皮膜を意味し、(Cr、Mn)系皮膜とはGDS分析法により、CrとMnがOとともに検出され、Crが10質量%以上、Mnが10質量%以上、CrとMnの合計が50質量%以上検出される(Cr、Mn)系酸化物を主体とする酸化皮膜を意味し、(Fe、Cr、Mn)系皮膜とはGDS分析法により、FeとCrとMnがOとともに検出され、Feが5質量%以上、Crが5質量%以上、Mnが5質量%以上、FeとCrとMnの合計が50質量%以上検出される(Fe、Cr、Mn)系酸化物を主体とする酸化皮膜を意味する。
 No.1~8は、本発明で規定する各元素の成分と(i)式を満たす鋼A~Hについて、改質ガス環境を想定した酸化試験後に、Si及び/又はMnを0.5質量%以上含むCr系酸化物を主体とする耐久性の高いCr系酸化皮膜を生成しており、いずれも大気繰り返し酸化試験の加熱温度800℃及び900℃において評価が「○」である。改質ガス環境を想定した酸化試験後の酸化皮膜のGDS分析例としてNo.3の結果を図1に示す。
 また、No.4、6、8は、(i)式の値が25以上であり、Cr系酸化皮膜の耐久性が向上したものであり、加熱温度1000℃において評価が「△」となった。No.3、5は、Siを2.5%超、Alを0.50%以下含有し、かつ(i)式の値が30以上であり、Cr系酸化皮膜の耐久性が著しく向上したものであり、加熱温度1000℃においても評価が「○」となった。No.7は、No.2と同鋼へB、V、Mgの複合添加によりCr系酸化皮膜の耐久性が著しく改善されて、加熱温度1000℃においても評価が「○」となった。
 No.9、14は、No.1と同じ鋼Aを予備酸化して、Cr系酸化皮膜の耐久性を改善したものであり、加熱温度1000℃においても評価が「○」に改善されている。
 No.17、19、20、23は、本発明で規定する各元素の成分と(i)式を満たしているが、いずれもSi及び/又はMnが0.5質量%以上含むCr系酸化物を主体とする酸化皮膜を有していない。また、No.17、19、20、23は、いずれも、Mn、Si、Alの成分のいずれかが好ましい成分範囲から外れている組成を有する。具体的には、No.17の鋼KはMn含有量が0.95%超であり、No.19の鋼MはSi含有量が2.50%未満であり、Al含有量が0.5%超である。No.20の鋼NはMn含有量が0.95%超、Si含有量が2.50%未満であり、Al含有量が0.5%超である。また、No.23の鋼QはSi含有量が2.50%未満であり、Al含有量が0.5%超である。No.17、19、20、23は、いずれもSiとMnの前記作用効果が積極的に活用される程度にはMn、Si及びAlを含有しておらず、また、予備酸化が行われていない試験片である。改質ガス環境を想定した酸化試験後に、No.17は(Cr、Mn)系酸化物を主体とする酸化皮膜を生成し、No.19、20、23はCr系酸化皮膜を生成するがCr系酸化物中のSi及びMnが0.5質量%未満であり、大気繰り返し酸化試験の加熱温度900℃において評価が「×」もしくは「△」である。
 No.10、11、12、13はそれぞれ、No.17、19、20、23と同じ組成の鋼を予備酸化したものである。予備酸化によって、酸化皮膜の耐久性が改善され、改質ガス環境を想定した酸化試験後に、Si及び/又はMnを0.5質量%以上含むCr系酸化物を主体とする耐久性の高いCr系酸化皮膜が形成されている。No.10~13はいずれも、大気繰り返し酸化試験の加熱温度800℃及び900℃における評価が「○」に改善されている。
 No.16は(i)式が本発明の適正範囲の下限を外れており、改質ガス環境を想定した酸化試験後に、(Fe、Cr、Mn)系酸化物を主体とする酸化皮膜を生成しており、大気繰り返し酸化試験の加熱温度900℃において評価が「×」である。
 No.15はNbが本発明の適正範囲の下限を外れており、No.18はCrが本発明の適正範囲の下限を外れており、No.21はMnが本発明の上限を外れており、No.24はAlおよびTiが本発明の適正範囲の上限を外れている。改質ガス環境を想定した酸化試験後に、No.15、18、24は(Fe、Cr)系酸化物を、No.21は(Cr、Mn)系酸化物を主体とする酸化皮膜を生成しており、いずれも大気繰り返し酸化試験の加熱温度900℃において評価が「×」である。
 No.22は改質ガス環境を想定した酸化試験後に、Mnを0.5質量%以上含むCr系酸化物を主体とするCr系酸化皮膜を生成しているが、(i)式が本発明の適正範囲の下限を外れており、大気繰り返し酸化試験の加熱温度900℃において評価が「×」である。
 No.25は、Si及びMnが本発明の好ましい下限を外れており、Cr系酸化皮膜を生成するがCr系酸化物中のSi及びMnが0.5質量%未満であり、大気繰り返し酸化試験の加熱温度900℃において評価が「×」である。
 No.26、28、29、31は、上記の本発明で規定される鋼成分もしくは(i)式が適正範囲から外れているNo.15、18、21、24と同鋼を予備酸化しているが、酸化皮膜の改善はなく、いずれも大気繰り返し酸化試験の加熱温度900℃において評価が「×」であり改善はない。
 No.27、30は、上記の本発明で規定される(i)式が適正範囲から外れているNo.16、22と同鋼を予備酸化することで酸化皮膜の耐久性を改善し、大気繰り返し酸化試験の加熱温度800℃において評価が「△」もしくは「×」から「○」に改善されているが、加熱温度900℃においてはいずれも評価が「×」であり改善はない。
 No.32、36は、Si及びMnが本発明の好ましい下限を外れているNo.25の鋼Sと同鋼を予備酸化しているが、酸化皮膜の改善はなく、大気繰り返し酸化試験の加熱温度900℃において評価「×」で改善はない。
 No.33、35は、上記の本発明で規定する各元素の成分と(i)式を満たしているNo.17、23を予備酸化したものである。しかし、No.33は予備酸化の雰囲気中の水蒸気が10%未満かつ予備酸化時間が100時間未満であり、No.35は予備酸化の雰囲気中の水素が10%未満かつ予備酸化時間が100時間未満である。これらの比較例には酸化皮膜の改善はなく、いずれも大気繰り返し酸化試験の加熱温度900℃において評価が「×」であり改善はない。
 No.34は、上記の本発明で規定する各元素の成分と(i)式を満たしているNo.1を予備酸化している。しかし、予備酸化温度が1000℃超であるため酸化皮膜の耐久性が悪化し、改質ガス環境を想定した酸化試験後に、Fe系酸化物を主体とする酸化皮膜となり、大気繰り返し酸化試験の加熱温度800℃及び900℃において評価が「×」に悪化している。
 また、上記の改質ガス環境を想定した酸化試験後に、Cr系酸化皮膜を生成している本発明例No.1~13及び比較例No.19、20、22、23、27、30、35について、横軸に本発明規定の(i)式を用い、縦軸に改質ガス環境を想定した酸化試験後のCr系酸化物中のSiとMnの高い方の値を用いると、図2のように大気繰り返し酸化試験の加熱温度900℃における評価を整理することができる。
(B及びMg添加による耐酸化性向上効果の確認試験)
 元素B及びMg間の相互扶助的な耐酸化性向上効果を確認すべく、表3に成分を示す各種フェライト系ステンレス鋼T~Uを溶製し、熱間圧延、焼鈍酸洗、冷間圧延、仕上げ焼鈍を経て板厚1.0mmの冷延焼鈍材を製造した。次いで、各フェライト系ステンレス鋼から試験片No.101~No.106を切り出し、表2の試験片No.1~36と同様の条件にて大気中繰り返し酸化試験により、これらの試験片の耐久性を評価した。試験片No.101~No.106の耐久性の評価結果を表4に示す。
 表2の試験片No.1の作成に用いられた鋼Aは、元素B及びMgが添加されておらず、大気繰り返し酸化試験の加熱温度1000℃において評価が「×」である。これに対して、元素B及びMgの添加量の合計が0.0002%以上である試験片No.101~No.106の場合、大気繰り返し酸化試験の加熱温度1000℃において良好な結果が得られている。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(Mo添加による耐酸化性向上効果の確認試験)
 表5に成分を示す各種フェライト系ステンレス鋼W及びXを溶製し、熱間圧延、焼鈍酸洗、冷間圧延、仕上げ焼鈍を経て板厚1.0mmの冷延焼鈍材を製造した。次いで、各フェライト系ステンレス鋼から試験片No.201~No.204を切り出し、表2の試験片No.1~36と同様の条件にて大気中繰り返し酸化試験により、これらの試験片の耐久性を評価した。試験片No.101~No.106の耐久性の評価結果を表6に示す。
 表2の試験片No.4の作成に用いられた鋼D及び表6の試験片No.204の作成に用いられた鋼XはいずれもMoを0.5%以上含有しているが、予備酸化が施されていない場合、大気繰り返し酸化試験の加熱温度1000℃における評価が「△」である。これに対して、Moを0.4%含有する試験片No.201を用いた大気繰返酸化試験結果は、予備酸化処理の有無に関わらず、前記試験片No.4及びNo.204を用いた試験結果よりも良好であった。尚、試験片No.201~No.204の大気繰返酸化試験結果から、本発明のフェライト系ステンレス鋼がMoを0.5%以上含有する場合であっても、予備酸化を行うことによって、Moの含有量が0.4%のものと同等の耐酸化性を備えることが分かる。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 以上から、本発明で規定する各元素の成分と(i)式を満たしている鋼であって、改質ガス環境を想定した酸化試験後の表面に、Si及び/又はMnが0.5質量%以上含むCr系酸化物を主体とするCr系酸化皮膜を有している鋼は、比較例に比べて大気繰り返し酸化試験の加熱温度900℃における評価が優位であり、改質ガス環境下に生成される酸化皮膜の耐久性に優れていることが明らかにされた。また、本発明で規定する各元素の成分と(i)式を満たしている鋼を、本発明で規定する予備酸化条件を実施した鋼は、改質ガス環境下でSi及び/又はMnが0.5質量%以上含むCr系酸化物を主体とするCr系酸化皮膜を生成することがわかる。
 一方、本発明で規定する各元素の成分を満たしていない鋼は、本発明で規定する予備酸化条件の実施の有無に係わらず、改質ガス環境下でSi及び/又はMnが0.5質量%以上含むCr系酸化物を主体とするCr系酸化皮膜を生成しないことがわかる。また、本発明で規定する(i)式を満たしていない鋼は、改質ガス環境下でSi及び/又はMnが0.5質量%以上含むCr系酸化物を主体とするCr系酸化皮膜を生成する場合もある。しかし、Cr系酸化物へのSi、Mnの固溶とCr系酸化皮膜の直下へのSi、Mn、Nbの酸化物が十分に形成されず、Si、Mn、Nbの濃化によるCr系酸化皮膜の耐久性の改善が総合的に不十分であり、大気繰り返し酸化試験の加熱温度900℃における評価が劣位であり、改質ガス環境下に生成される酸化皮膜の耐久性が不十分であることがわかる。
 また、以上から、鋼中のB及びMgのそれぞれの添加量が、単独では耐酸化性向上効果を得るのに不十分であっても、合算した量が前記式(ii)を満たす場合、耐酸化性向上効果が促進されることが明らかにされた。
 本発明によれば、改質ガス環境下において、Si、Mn、Nb量を最適化し、V、B、Mg等の微量添加とAl、Tiの添加量を調整することにより、希土類元素やNiの多量添加に頼ることなく、優れた耐酸化性と経済性を兼備した燃料改質器用フェライト系ステンレス鋼を提供することができる。本発明のフェライト系ステンレス鋼は、特殊な製造方法によらず、工業的に生産することが可能である。

Claims (13)

  1.  質量%にて、Cr:12以上24%以下、C:0.001%以上0.03%以下、Al:0.002%以上4%以下、P:0.05%以下、S:0.01%以下、N:0.03%以下、Nb:0.01以上1%以下を含み、更にSi:0.3%以上4%以下及びMn:0.1%超2%以下の少なくともいずれかを含み、残部がFeおよび不可避的不純物からなり、かつ(i)式を満たす組成を有することを特徴とする燃料改質器用フェライト系ステンレス鋼。
      Cr+5Si+Mn+2Nb≧22 ・・・(i)
    但し、式中の元素記号は、当該元素の鋼中における含有質量%を意味する。
  2.  Mnが0.95%未満であることを特徴とする請求項1に記載の燃料改質器用フェライト系ステンレス鋼。
  3.  Siが2.50超であることを特徴とする請求項1または2に記載の燃料改質器用フェライト系ステンレス鋼。
  4.  Alが0.5%以下であることを特徴とする請求項1~3のうちいずれか1項に記載の燃料改質器用フェライト系ステンレス鋼。
  5.  前記ステンレス鋼が、さらに質量%にて、Ni:1%以下、Cu:1%以下、Mo:2%以下、Sn:1%以下、W:1%以下、Co:0.5%以下、V:0.5%以下、Ti:0.3%以下、B:0.005%以下、Ca:0.005%以下、Mg:0.005%以下、Zr:0.5%以下、La:0.1%以下、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下の1種または2種以上含有していることを特徴とする請求項1~4のうちいずれか1項に記載の燃料改質器用フェライト系ステンレス鋼。
  6.  前記ステンレス鋼の表面に酸化皮膜を有し、該酸化皮膜の成分として、Si及びMnのうち少なくともいずれかの元素を0.5質量%以上と、Crを50質量%以上含有する酸化物が前記酸化皮膜に占める体積の比率が50%以上であることを特徴とする請求項1~5のうちいずれか1項に記載の燃料改質器用フェライト系ステンレス鋼。
  7.  請求項1~5のいずれか1項に記載の組成を有するステンレス鋼材を、水分を10体積%以上50体積%以下及び水素を10体積%以上70体積%以下含む雰囲気中において、300~1000℃の範囲で熱処理することにより、前記ステンレス鋼材の表面に、Si及びMnのうち少なくともいずれかの元素を0.5質量%以上と、Crを50質量%以上含有する酸化物が占める体積の比率が50%以上である酸化皮膜を形成することを特徴とする燃料改質器用フェライト系ステンレス鋼の製造方法。
  8.  質量%にて、Cr:12以上24%以下、C:0.001%以上0.03%以下、Al:0.002%以上4%以下、P:0.05%以下、S:0.01%以下、N:0.03%以下、Nb:0.01以上1%以下を含み、更にSi:0.3%以上4%以下及びMn:0.1%超2%以下の少なくともいずれかを含み、残部がFeおよび不可避的不純物からなり、かつ(i)式を満たす組成を有し、
     26体積%H2O+7体積%CO2+7%体積%CO+60体積%H2の雰囲気で850℃にて1000時間保持した後で室温まで冷却したとき、その表面にSi及びMnのうちいずれかの元素を単独で0.5質量%以上或いはSi及びMnの両方の元素をそれぞれ0.5質量%以上と、Crを50質量%以上含有する酸化物が占める体積の比率が50%以上である酸化皮膜が形成されていることを特徴とする燃料改質器用フェライト系ステンレス鋼。
      Cr+5Si+Mn+2Nb≧22 ・・・(i)
     但し、式中の元素記号は、当該元素の鋼中における含有質量%を意味する。
  9.  質量%にて、Cr:12以上24%以下、C:0.001%以上0.03%以下、Al:0.002%以上4%以下、P:0.05%以下、S:0.01%以下、N:0.03%以下、Nb:0.01以上1%以下を含み、更にSi:0.3%以上4%以下及びMn:0.1%超2%以下の少なくともいずれかと、残部がFeおよび不可避的不純物からなり、かつ(i)式を満たす組成を有し、
     20体積%H2O+15体積%CO2+5%体積%CO+30体積%H2+30体積%N2の雰囲気で650℃にて100時間保持する熱処理を施した後に、
     26体積%H2O+7体積%CO2+7%体積%CO+60体積%H2の雰囲気で850℃にて1000時間保持した後で室温まで冷却したとき、その表面にSi及びMnのうちいずれかの元素を単独で0.5質量%以上或いはSi及びMnの両方の元素をそれぞれ0.5質量%以上と、Crを50質量%以上含有する酸化物が占める体積の比率が50%以上である酸化皮膜が形成されていることを特徴とする燃料改質器用フェライト系ステンレス鋼。
      Cr+5Si+Mn+2Nb≧22 ・・・(i)
     但し、式中の元素記号は、当該元素の鋼中における含有質量%を意味する。
  10.  Mnが0.95%未満であることを特徴とする請求項8または9に記載の燃料改質器用フェライト系ステンレス鋼。
  11.  Siが2.50超であることを特徴とする請求項8~10のうちいずれか1項に記載の燃料改質器用フェライト系ステンレス鋼。
  12.  Alが0.5%以下であることを特徴とする請求項8~11のうちいずれか1項に記載の燃料改質器用フェライト系ステンレス鋼。
  13.  さらに質量%にて、Ni:1%以下、Cu:1%以下、Mo:2%以下、Sn:1%以下、W:1%以下、Co:0.5%以下、V:0.5%以下、Ti:0.3%以下、B:0.005%以下、Ca:0.005%以下、Mg:0.005%以下、Zr:0.5%以下、La:0.1%以下、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下の1種または2種以上含有していることを特徴とする請求項8~12のうちいずれか1項に記載の燃料改質器用フェライト系ステンレス鋼。
PCT/JP2014/079061 2013-11-01 2014-10-31 燃料改質器用フェライト系ステンレス鋼およびその製造方法 WO2015064739A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015545324A JP6067134B2 (ja) 2013-11-01 2014-10-31 燃料改質器用フェライト系ステンレス鋼およびその製造方法
EP14857491.6A EP3064606B1 (en) 2013-11-01 2014-10-31 Ferritic stainless steel for use in fuel reformer and method of manufacturing ferritic stainless steel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-228158 2013-11-01
JP2013228159 2013-11-01
JP2013-228159 2013-11-01
JP2013228158 2013-11-01

Publications (1)

Publication Number Publication Date
WO2015064739A1 true WO2015064739A1 (ja) 2015-05-07

Family

ID=53004335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079061 WO2015064739A1 (ja) 2013-11-01 2014-10-31 燃料改質器用フェライト系ステンレス鋼およびその製造方法

Country Status (3)

Country Link
EP (1) EP3064606B1 (ja)
JP (1) JP6067134B2 (ja)
WO (1) WO2015064739A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180125598A (ko) 2016-07-04 2018-11-23 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 페라이트계 스테인리스강과, 그의 강판 및 그들의 제조 방법
US20190106774A1 (en) * 2016-04-22 2019-04-11 Sandvik Intellectual Property Ab Ferritic alloy
JP2020066792A (ja) * 2018-10-26 2020-04-30 日鉄ステンレス株式会社 フェライト系ステンレス鋼及びその製造方法、並びに燃料電池用部材
KR20240007212A (ko) 2021-10-07 2024-01-16 닛테츠 스테인레스 가부시키가이샤 페라이트계 스테인리스 강관 및 그 제조 방법, 그리고 연료 전지

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116065096B (zh) * 2023-03-05 2023-08-04 襄阳金耐特机械股份有限公司 一种铁素体耐热铸钢

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320866A (ja) 1992-05-21 1993-12-07 Sumitomo Metal Ind Ltd フェライト系ステンレス鋼とその製造方法
JP2002256398A (ja) 2001-03-02 2002-09-11 Sumitomo Metal Ind Ltd 改質器用オーステナイト系合金ならびに耐熱用鋼材およびそれを用いた改質器
JP3886785B2 (ja) 2001-11-22 2007-02-28 日新製鋼株式会社 石油系燃料改質器用フェライト系ステンレス鋼
JP3910419B2 (ja) 2001-11-22 2007-04-25 日新製鋼株式会社 アルコール系燃料改質器用フェライト系ステンレス鋼
JP3942876B2 (ja) 2001-11-22 2007-07-11 日新製鋼株式会社 炭化水素系燃料改質器用フェライト系ステンレス鋼
JP2008101240A (ja) 2006-10-18 2008-05-01 Nisshin Steel Co Ltd 集熱用伝熱材およびその製造法
JP2009167443A (ja) 2008-01-11 2009-07-30 Nisshin Steel Co Ltd フェライト系ステンレス鋼及びその製造方法
JP2011162843A (ja) * 2010-02-09 2011-08-25 Nisshin Steel Co Ltd 耐酸化性及び耐二次加工脆性に優れたフェライト系ステンレス鋼、並びに鋼材及び二次加工品
JP2011190524A (ja) * 2010-03-17 2011-09-29 Nisshin Steel Co Ltd 耐酸化性、二次加工脆性および溶接部の靭性に優れたフェライト系ステンレス鋼
JP2012012674A (ja) 2010-07-01 2012-01-19 Nisshin Steel Co Ltd 耐酸化性および二次加工性に優れたフェライト系ステンレス鋼
JP2012102376A (ja) * 2010-11-11 2012-05-31 Jfe Steel Corp 耐酸化性に優れたフェライト系ステンレス鋼
JP2012211379A (ja) * 2011-03-31 2012-11-01 Nisshin Steel Co Ltd 二次加工性および耐Cr蒸発性に優れたフェライト系ステンレス鋼
JP2013100595A (ja) * 2011-10-14 2013-05-23 Jfe Steel Corp フェライト系ステンレス鋼
WO2014010680A1 (ja) 2012-07-13 2014-01-16 新日鐵住金ステンレス株式会社 フェライト系ステンレス鋼板および酸化皮膜の導電性と密着性に優れたフェライト系ステンレス鋼板の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3995978B2 (ja) * 2002-05-13 2007-10-24 日新製鋼株式会社 熱交換器用フェライト系ステンレス鋼材
JP4214921B2 (ja) * 2004-01-23 2009-01-28 Jfeスチール株式会社 燃料電池用Fe−Cr系合金
JP2008156692A (ja) * 2006-12-22 2008-07-10 Nisshin Steel Co Ltd 燃料電池高温器用フェライト系ステンレス鋼
JP2010116622A (ja) * 2008-11-14 2010-05-27 Nisshin Steel Co Ltd ヒートパイプ用フェライト系ステンレス鋼および鋼板並びにヒートパイプおよび高温排熱回収装置
JP5709594B2 (ja) * 2011-03-14 2015-04-30 新日鐵住金ステンレス株式会社 耐銹性と防眩性に優れた高純度フェライト系ステンレス鋼板
US9487849B2 (en) * 2011-11-30 2016-11-08 Jfe Steel Corporation Ferritic stainless steel

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320866A (ja) 1992-05-21 1993-12-07 Sumitomo Metal Ind Ltd フェライト系ステンレス鋼とその製造方法
JP2002256398A (ja) 2001-03-02 2002-09-11 Sumitomo Metal Ind Ltd 改質器用オーステナイト系合金ならびに耐熱用鋼材およびそれを用いた改質器
JP3886785B2 (ja) 2001-11-22 2007-02-28 日新製鋼株式会社 石油系燃料改質器用フェライト系ステンレス鋼
JP3910419B2 (ja) 2001-11-22 2007-04-25 日新製鋼株式会社 アルコール系燃料改質器用フェライト系ステンレス鋼
JP3942876B2 (ja) 2001-11-22 2007-07-11 日新製鋼株式会社 炭化水素系燃料改質器用フェライト系ステンレス鋼
JP2008101240A (ja) 2006-10-18 2008-05-01 Nisshin Steel Co Ltd 集熱用伝熱材およびその製造法
JP2009167443A (ja) 2008-01-11 2009-07-30 Nisshin Steel Co Ltd フェライト系ステンレス鋼及びその製造方法
JP2011162843A (ja) * 2010-02-09 2011-08-25 Nisshin Steel Co Ltd 耐酸化性及び耐二次加工脆性に優れたフェライト系ステンレス鋼、並びに鋼材及び二次加工品
JP2011190524A (ja) * 2010-03-17 2011-09-29 Nisshin Steel Co Ltd 耐酸化性、二次加工脆性および溶接部の靭性に優れたフェライト系ステンレス鋼
JP2012012674A (ja) 2010-07-01 2012-01-19 Nisshin Steel Co Ltd 耐酸化性および二次加工性に優れたフェライト系ステンレス鋼
JP2012102376A (ja) * 2010-11-11 2012-05-31 Jfe Steel Corp 耐酸化性に優れたフェライト系ステンレス鋼
JP2012211379A (ja) * 2011-03-31 2012-11-01 Nisshin Steel Co Ltd 二次加工性および耐Cr蒸発性に優れたフェライト系ステンレス鋼
JP2013100595A (ja) * 2011-10-14 2013-05-23 Jfe Steel Corp フェライト系ステンレス鋼
WO2014010680A1 (ja) 2012-07-13 2014-01-16 新日鐵住金ステンレス株式会社 フェライト系ステンレス鋼板および酸化皮膜の導電性と密着性に優れたフェライト系ステンレス鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3064606A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190106774A1 (en) * 2016-04-22 2019-04-11 Sandvik Intellectual Property Ab Ferritic alloy
KR20180125598A (ko) 2016-07-04 2018-11-23 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 페라이트계 스테인리스강과, 그의 강판 및 그들의 제조 방법
KR20200015820A (ko) 2016-07-04 2020-02-12 닛테츠 스테인레스 가부시키가이샤 페라이트계 스테인리스강과, 그의 강판 및 그들의 제조 방법
JP2020066792A (ja) * 2018-10-26 2020-04-30 日鉄ステンレス株式会社 フェライト系ステンレス鋼及びその製造方法、並びに燃料電池用部材
JP7233195B2 (ja) 2018-10-26 2023-03-06 日鉄ステンレス株式会社 フェライト系ステンレス鋼及びその製造方法、並びに燃料電池用部材
KR20240007212A (ko) 2021-10-07 2024-01-16 닛테츠 스테인레스 가부시키가이샤 페라이트계 스테인리스 강관 및 그 제조 방법, 그리고 연료 전지

Also Published As

Publication number Publication date
EP3064606A4 (en) 2017-03-29
EP3064606A1 (en) 2016-09-07
JP6067134B2 (ja) 2017-02-01
EP3064606B1 (en) 2022-03-02
JPWO2015064739A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
JP5401039B2 (ja) フェライト系ステンレス鋼及びその製造方法
JP6190498B2 (ja) フェライト系ステンレス鋼およびその製造方法
JP5645417B2 (ja) 耐酸化性と電気伝導性に優れたAl含有フェライト系ステンレス鋼
WO2016017692A1 (ja) 燃料電池用フェライト系ステンレス鋼材およびその製造方法
JP5902253B2 (ja) 燃料電池用フェライト系ステンレス鋼およびその製造方法
JP6067134B2 (ja) 燃料改質器用フェライト系ステンレス鋼およびその製造方法
JP6006759B2 (ja) 燃料電池の燃料改質器用または燃料電池の熱交換器用フェライト系ステンレス鋼およびその製造方法
WO2017073093A1 (ja) 耐クリープ強さに優れた燃料電池用フェライト系ステンレス鋼およびその製造方法
JP2010222638A (ja) 燃料電池用Al含有耐熱フェライト系ステンレス鋼およびその製造方法
JP3995978B2 (ja) 熱交換器用フェライト系ステンレス鋼材
JP2008101240A (ja) 集熱用伝熱材およびその製造法
JP6423138B2 (ja) 酸化皮膜の密着性に優れた燃料改質器用オーステナイト系ステンレス鋼およびその製造方法
JP6113359B1 (ja) クリープ特性に優れたAl含有フェライト系ステンレス鋼材と、燃料電池用部材
JP6765287B2 (ja) フェライト系ステンレス鋼とその製造方法、及び燃料電池部材
JP6643906B2 (ja) 耐熱性に優れた固体酸化物型燃料電池用フェライト系ステンレス鋼およびその製造方法
JP6006893B2 (ja) 燃料電池用フェライト系ステンレス鋼
JP2008156692A (ja) 燃料電池高温器用フェライト系ステンレス鋼
JP6498263B2 (ja) 酸化皮膜の密着性に優れた燃料改質器用オーステナイト系ステンレス鋼およびその製造方法
JP7224141B2 (ja) フェライト系ステンレス鋼板及びその製造方法、並びに燃料電池用部材
JP2006131945A (ja) 耐高温水蒸気酸化性に優れたフェライト系鋼材およびその使用方法
JP6053994B1 (ja) 耐クリープ強さに優れた燃料電池用フェライト系ステンレス鋼およびその製造方法
WO2012133506A1 (ja) バイオ燃料供給系部品用フェライト系ステンレス鋼、バイオ燃料供給系部品、排熱回収器用フェライト系ステンレス鋼、及び排熱回収器
JP6429957B1 (ja) オーステナイト系ステンレス鋼およびその製造方法、ならびに燃料改質器および燃焼器の部材
JP6655962B2 (ja) 耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手
JP4123870B2 (ja) 耐高温酸化性オーステナイト系ステンレス鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857491

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015545324

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014857491

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014857491

Country of ref document: EP