WO2015064548A1 - ポリチオール化合物およびその製造方法 - Google Patents

ポリチオール化合物およびその製造方法 Download PDF

Info

Publication number
WO2015064548A1
WO2015064548A1 PCT/JP2014/078548 JP2014078548W WO2015064548A1 WO 2015064548 A1 WO2015064548 A1 WO 2015064548A1 JP 2014078548 W JP2014078548 W JP 2014078548W WO 2015064548 A1 WO2015064548 A1 WO 2015064548A1
Authority
WO
WIPO (PCT)
Prior art keywords
polythiol compound
bis
polythiol
group
hydrazine
Prior art date
Application number
PCT/JP2014/078548
Other languages
English (en)
French (fr)
Inventor
慶彦 西森
嘉村 輝雄
堀越 裕
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020167008204A priority Critical patent/KR102279400B1/ko
Priority to CN201480058992.1A priority patent/CN105683160B/zh
Priority to EP14859047.4A priority patent/EP3064488B1/en
Priority to JP2015544990A priority patent/JP6406265B2/ja
Priority to US14/917,120 priority patent/US10071959B2/en
Publication of WO2015064548A1 publication Critical patent/WO2015064548A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/12Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms
    • C07C321/14Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/22Preparation of thiols, sulfides, hydropolysulfides or polysulfides of hydropolysulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C335/00Thioureas, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C335/04Derivatives of thiourea
    • C07C335/06Derivatives of thiourea having nitrogen atoms of thiourea groups bound to acyclic carbon atoms
    • C07C335/08Derivatives of thiourea having nitrogen atoms of thiourea groups bound to acyclic carbon atoms of a saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3863Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing groups having sulfur atoms between two carbon atoms, the sulfur atoms being directly linked to carbon atoms or other sulfur atoms
    • C08G18/3865Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing groups having sulfur atoms between two carbon atoms, the sulfur atoms being directly linked to carbon atoms or other sulfur atoms containing groups having one sulfur atom between two carbon atoms
    • C08G18/3868Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing groups having sulfur atoms between two carbon atoms, the sulfur atoms being directly linked to carbon atoms or other sulfur atoms containing groups having one sulfur atom between two carbon atoms the sulfur atom belonging to a sulfide group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3874Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing heterocyclic rings having at least one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8054Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/06Polythioethers from cyclic thioethers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a polythiol compound having a low nitrogen component content and a method for producing the same, and in particular, optical materials such as plastic lenses, prisms, optical fibers, information recording substrates, filters, etc. It relates to the manufacturing method.
  • Plastic lenses are light and tough and easy to dye.
  • the performances particularly required for the plastic lens are low specific gravity, high transparency and low yellowness, optical performance such as high refractive index, high Abbe number, high heat resistance, and high strength.
  • a high refractive index enables the lens to be thinned, and a high Abbe number reduces the chromatic aberration of the lens.
  • organic compounds having sulfur atoms have been reported as raw materials for plastic lenses for spectacles.
  • a polythiol compound having a sulfur atom is known as a useful compound such as a polythiourethane resin excellent in impact resistance by reacting with isocyanate or a resin having excellent refractive index by reacting with episulfide.
  • Patent Documents 1 and 2 the polythiol compound is likely to be colored by being exposed to a high temperature during long-term storage or transportation, and there is a problem that the hue of an optical material obtained by polymerizing the polythiol compound is deteriorated.
  • JP-A-2-270859 Japanese Patent Laid-Open No. 10-298287
  • An object of the present invention is to provide a polythiol compound for an optical lens that hardly causes hue deterioration due to long-term storage or high temperature, and a method for producing the same.
  • the present inventor has found that the deterioration of the hue of the polythiol compound is caused by the contained nitrogen component.
  • a polythiol compound with a low content of nitrogen component and a long-lasting hue deterioration can be obtained.
  • the present invention has been completed. That is, the present invention is as follows. ⁇ 1> A polythiol compound having a total nitrogen amount of 50 ppm to 600 ppm.
  • ⁇ 2> The polythiol compound according to ⁇ 1>, having a structure represented by the following formula (1).
  • ⁇ 3> An optical material composition comprising the polythiol compound according to ⁇ 1> or ⁇ 2> and a polyisocyanate compound.
  • ⁇ 4> An optical material composition comprising the polythiol compound according to ⁇ 1> or ⁇ 2> and an episulfide compound.
  • ⁇ 5> An optical material obtained by polymerizing and curing the composition for optical material according to ⁇ 3> or ⁇ 4>.
  • ⁇ 6> A method for producing the polythiol compound according to ⁇ 1> or ⁇ 2>, wherein a step of preparing a thiuonium salt by reacting a polyalcohol and thiourea, and the presence of an organic solvent It has a step of adding one or more bases selected from the group consisting of (hydrazine) hydrazine, ammonia and amines and an inorganic base (excluding (hydrate) hydrazine and ammonia) to the salt for hydrolysis.
  • bases selected from the group consisting of (hydrazine) hydrazine, ammonia and amines and an inorganic base (excluding (hydrate) hydrazine and ammonia)
  • ⁇ 7> The method for producing a polythiol compound according to ⁇ 6>, wherein the organic solvent is one or more selected from the group consisting of diethyl ether, benzene, toluene, xylene, dichloroethane, chloroform, and chlorobenzene.
  • the inorganic base is selected from the group consisting of sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydroxide, potassium hydroxide, magnesium hydroxide and calcium hydroxide. It is a manufacturing method of the polythiol compound as described in said ⁇ 6> or ⁇ 7> which is 1 or more.
  • ⁇ 9> The addition amount of one or more bases selected from the group consisting of the (hydrated) hydrazine, ammonia, and amine is 0.4 to 1.2 equivalents relative to the thiuonium group in the thyronium salt.
  • the present invention is a polythiol compound having a total nitrogen amount of 50 to 600 ppm, and is more preferably 50 to 300 ppm, particularly preferably 50 to 150 ppm in consideration of producing a lens having a thickness such as an advanced lens. is there. Even if the nitrogen content is less than 50 ppm, there is no problem, but purification is difficult. If the total amount of nitrogen in the polythiol compound is within the range of 50 to 600 ppm, the hue of the polythiol compound will not be significantly deteriorated for a long period of time, and even if the polythiol compound is used after long-term storage, the hue deterioration of the resin obtained is slight. Therefore, there is no need to change the blending amount of the bluing agent. In addition, temperature management for preventing deterioration of the polythiol compound becomes unnecessary, which leads to not only improvement of lens properties but also cost reduction.
  • the total amount of nitrogen can be reduced to some extent by acid cleaning the polythiol compound, but it is difficult to reduce it to 600 ppm or less only by acid cleaning, and a production method capable of reducing the total nitrogen amount is necessary.
  • the polyalcohol represented by the following formula (2) which is a raw material of the polythiol compound of the formula (1), is synthesized by reacting epichlorohydrin and 2-mercaptoethanol in the presence of an alkali.
  • the synthesized polyalcohol is reacted with thiourea in mineral acid, and the obtained thiuonium salt is coexisted with an organic solvent in the presence of one or more bases selected from the group consisting of (hydrated) hydrazine, ammonia and amine (hereinafter,
  • the polythiol represented by the above formula (1) is obtained by hydrolysis with an “amine-based base” and an inorganic base (excluding (hydrate) hydrazine and ammonia).
  • (Hydrohydrate) Hydrazine refers to hydrazine or hydrazine hydrate.
  • the polyalcohol represented by the formula (2) is equivalent to 3 equivalents or more of the hydroxy group in the molecule and less than 5 equivalents, preferably 2 equivalents, preferably to the hydroxy group.
  • 1.1 equivalents, that is, 3.3 equivalents or more and less than 4 equivalents of thiourea that is 1 equivalent excess with respect to the polyalcohol are added and reacted.
  • the reaction is carried out in a range of room temperature to reflux temperature in a mineral acid aqueous solution of 3 equivalents or more, preferably 3 equivalents or more and 6 equivalents or less, relative to the polyalcohol represented by formula (2).
  • a mineral acid hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid and the like can be used.
  • Hydrochloric acid is preferable from the viewpoint of obtaining a sufficient reaction rate and controlling the coloring of the product.
  • the hydrolysis reaction is performed by adding a base including an amine base and an inorganic base while stirring and mixing the reaction solution and the organic solvent.
  • the organic solvent is not particularly limited as long as the reaction is allowed to proceed, but preferably ethers, aromatic hydrocarbons and halogenated hydrocarbons are used. Specific examples include diethyl ether, benzene, toluene, xylene, dichloroethane, chloroform, chlorobenzene and the like. Of these, toluene is preferred.
  • One or more bases selected from the group consisting of (hydrazine), ammonia and amine (hydrate) added in the hydrolysis step include, for example, ammonia, (hydrate) hydrazine, methylamine, ethylamine, propylamine, isopropylamine, Examples thereof include butylamine, dimethylamine, diethylamine, diisopropylamine, dipropylamine, and dibutylamine.
  • preferred specific examples are at least one compound selected from the group consisting of ammonia, (hydrated) hydrazine, methylamine, ethylamine, propylamine, isopropylamine, and butylamine, and more preferably ammonia.
  • (hydrate) hydrazine more preferably (hydrate) hydrazine.
  • (Hydrohydrate) Hydrazine hydrate is preferred as the hydrazine.
  • the amount of one or more bases selected from the group consisting of hydrazine, ammonia and amines (hydrated) used in the hydrolysis step is 0.4 to 1.2 equivalents to the thiuonium group in the thiuonium salt compound, More preferably, it is 0.6 to 1 equivalent with respect to the thiuonium group. If the amount of one or more bases selected from the group consisting of hydrazine, ammonia and amine (hydrate) added is too small, the yield decreases, and if too large, the total nitrogen amount increases.
  • Examples of the inorganic base used in the hydrolysis reaction include sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide.
  • Sodium hydroxide and potassium hydroxide are preferable, and sodium hydroxide is more preferable.
  • the amount of the inorganic base to be added is 0.9 equivalents or more and 3 equivalents or less, more preferably 1 equivalent or more, based on the amount of mineral acid used in the thiuonium chlorination reaction step. The amount is equal to or less than 2 equivalents. If the amount is too small, the progress of the reaction becomes insufficient, and if it is too large, the yield decreases.
  • the polythiol compound represented by the formula (1) thus generated can be purified by pickling, washing with water, concentrating and filtering after taking out the organic layer.
  • the polyisocyanate compound used in the present invention is not particularly limited as long as it is a compound having at least two isocyanates in one molecule. Specific examples thereof include diethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, trimethylhexahexan.
  • isophorone diisocyanate isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, m-tetramethylxylylene diisocyanate, p-tetramethylxylylene diisocyanate.
  • 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, bis (isocyanatomethyl) norbornene, and 2,5-diisocyanatomethyl-1,4-dithiane At least one kind of compound, among which preferred compounds are isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate.
  • Hexamethylene diisocyanate, 1,3-bis (isocyanate methyl) cyclohexane, m-xylylene diisocyanate, and more preferred compounds are isophorone diisocyanate, m-xylylene diisocyanate, 1,3-bis (isocyanate methyl) cyclohexane.
  • the most preferred compound is m-xylylene diisocyanate.
  • the polyisocyanate compounds that are the subject of the present invention are not limited to these, and these may be used alone or in admixture of two or more.
  • episulfide compounds used in the present invention include bis ( ⁇ -epithiopropyl) sulfide, bis ( ⁇ -epithiopropyl) disulfide, bis ( ⁇ -epithiopropylthio) methane, 1,2-bis ( ⁇ Episulfides such as -epithiopropylthio) ethane, 1,3-bis ( ⁇ -epithiopropylthio) propane, 1,4-bis ( ⁇ -epithiopropylthio) butane. These may be used alone or in combination of two or more. However, the episulfide compounds that are the subject of the present invention are not limited to these, and these may be used alone or in combination of two or more.
  • preferred compounds are bis ( ⁇ -epithiopropyl) sulfide and bis ( ⁇ -epithiopropyl) disulfide, and the most preferred compound is bis ( ⁇ -epithiopropyl) sulfide.
  • polythiol compounds may be used in combination.
  • Polythiol compounds may be used alone or in combination of two or more. Specific examples thereof include methanedithiol, methanetrithiol, 1,2-dimercaptoethane, 1,2-dimercaptopropane, 1,3-dimercaptopropane, 2,2-dimercaptopropane, 1,4-dimer.
  • preferred specific examples are bis (2-mercaptoethyl) sulfide, 2,5-dimercaptomethyl-1,4-dithiane, 1,3-bis (mercaptomethyl) benzene, 1,4-bis (mercapto).
  • Methyl) benzene 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithia Undecane, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 1,2-bis [(2-mercaptoethyl) thio] -3-mercaptopropane, 1,1, 3,3-tetrakis (mercaptomethylthio) propane, pentaerythritol tetrakismercaptopropionate, pentaerythritol tetrakis Thioglycolate, trimethylolpropane tristhioglycolate), trimethylolpropane trismercaptopropionate, more preferably bis (2-mercaptoethyl) sulfide, 2,5-bis (2-mercap
  • a polymerization catalyst As the polymerization catalyst, a known urethanization catalyst, episulfide polymerization catalyst or the like can be used.
  • organic tin, amine, phosphine, and onium salt are used, but organic tin, onium salt, especially organic tin, quaternary ammonium salt, and quaternary phosphonium salt are preferable.
  • the addition amount of the polymerization catalyst varies depending on the components of the composition, the mixing ratio, and the polymerization curing method, but is not generally determined, but is usually 0.0001 mass with respect to a total of 100 mass% of the composition for optical materials. % To 10% by mass, preferably 0.001% to 5% by mass, more preferably 0.01% to 1% by mass, and most preferably 0.01% to 0.5% by mass. . When the addition amount of the polymerization catalyst is more than 10% by mass, polymerization may occur rapidly. On the other hand, if the addition amount of the polymerization catalyst is less than 0.0001% by mass, the composition for optical materials may not be sufficiently cured and the heat resistance may be poor.
  • the ultraviolet absorber are benzotriazole compounds, and particularly preferred compounds are 2- (2-hydroxy-5-methylphenyl) -2H-benzotriazole, 5-chloro-2- (3,5-di -Tert-butyl-2-hydroxyphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-octylphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-methoxyphenyl) -2H-benzo Triazole, 2- (2-hydroxy-4-ethoxyphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-butoxyphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-octyloxyphenyl) ) -2H-benzotriazole,
  • composition for optical material When the composition for optical material is polymerized and cured, known additives such as an internal mold release agent, an antioxidant and a polymerization regulator may be added as necessary.
  • the optical material composition thus obtained is cast into a mold such as a mold and polymerized to obtain an optical material.
  • a filter having a pore diameter of about 0.1 to 5 ⁇ m from the viewpoint of improving the quality of the optical material of the present invention.
  • the polymerization of the composition for optical materials of the present invention is usually performed as follows. That is, the curing time is usually 1 to 100 hours, and the curing temperature is usually ⁇ 10 ° C. to 140 ° C.
  • the polymerization is performed by a step of holding at a predetermined polymerization temperature for a predetermined time, a step of raising the temperature from 0.1 ° C.
  • the obtained optical material may be subjected to a surface treatment such as dyeing, hard coating, impact resistant coating, antireflection or imparting antifogging properties as necessary.
  • the optical material of the present invention can be suitably used as an optical lens.
  • -Total nitrogen content (TN) of polythiol compound The total amount of nitrogen of the produced polythiol compound was measured using TN-2100H (manufactured by Mitsubishi Chemical Analytech).
  • -Hue change ( ⁇ YI value) of plastic lens Using the polythiol compound before and after the storage test at 50 ° C. for 2 months, resins having a thickness of 10 mm and ⁇ 83 mm were prepared, and YI of these resins was measured using a spectrocolorimeter JS555 (manufactured by Color Techno System). The difference between these values was taken as the ⁇ YI value.
  • Synthesis Example Synthesis of polyalcohol compound and thiuonium chloride reaction
  • a 2 L four-necked reaction flask equipped with a stirrer, reflux condenser, nitrogen gas purge pipe, and thermometer 76.0 parts by mass of water and 90.0 parts by mass (1.08 mol) of a 48% by mass aqueous sodium hydroxide solution were added. I was charged. After dropwise addition of 169 parts by mass of 2-mercaptoethanol (2.16 mol) at 20 ° C. over 10 minutes, 99.9 parts by mass of epichlorohydrin (1.08 mol) was added at the same temperature over 2 hours. After dropping, the temperature was raised to 30 ° C. and aging was performed for 1 hour.
  • Example 1 The thyronium salt synthesized in the synthesis example was cooled to 50 ° C., 450.0 parts by mass of toluene was added, and then 97.5 parts by mass of hydrazine hydrate (1) while stirring so that the organic layer and the aqueous layer were uniformly mixed. .95 mol), 485.7% sodium hydroxide (225.7 parts by mass) (2.71 mol) was charged, the hydrolysis reaction was carried out for 2 hours, the aqueous layer was acidified, and the compound represented by formula (1) was mainly used. A toluene solution of polythiol as a component was obtained.
  • the toluene solution was washed once with 400 mL of 5% aqueous sulfuric acid and twice with 400 mL of water, and then the low-boiling components were removed under heating and reduced pressure, followed by filtration to obtain the main component of the compound of formula (1). As a result, 219 parts by mass of polythiol was obtained. The total amount of nitrogen of the obtained polythiol compound was 60 ppm, and the hue change ⁇ APHA before and after the storage stability test was 0.
  • Examples 2-7 A polythiol containing the compound of the formula (1) as a main component was obtained according to Example 1 except that the types of amine bases and inorganic bases and the equivalence ratio were changed in Example 1. The analysis results of these polythiols are shown in Table 1.
  • Comparative Examples 1 and 2 A polythiol containing the compound of the formula (1) as a main component was obtained according to Example 1 except that only an amine base was used without adding an inorganic base in Example 1. The analysis results of these polythiols are shown in Table 1.
  • Comparative Example 3 A polythiol containing the compound of the formula (1) as a main component was obtained according to Example 1 except that only an aqueous sodium hydroxide solution was used without adding an amine base in Example 1. The analysis results of the polythiol are shown in Table 1.
  • Comparative Example 4 A polythiol containing a compound of the formula (1) as a main component was obtained according to Example 1 except that the hydrolysis reaction was carried out without adding toluene in Example 1. The analysis results of the polythiol are shown in Table 1.
  • thiourethane resin 52 parts by mass of m-xylylene diisocyanate, 0.015 parts by mass of di-n-butyltin dichloride, 0.1 parts by mass of Zepan UN made by Stepan and 0.05 parts by mass of Biosorb 583 made by Kyodo Pharmaceutical Partially mixed and dissolved.
  • polythiol containing the compound of formula (1) synthesized in each example and comparative example as a main component and 48 parts by mass of polythiol after the storage stability test were charged and mixed to obtain a mixed homogeneous solution. This mixed homogeneous liquid was defoamed at 600 Pa for 30 minutes.
  • This mixed homogeneous liquid was defoamed at 600 Pa for 1 hour, filtered through a 1 ⁇ m PTFE filter, and poured into a mold composed of a glass mold and a tape.
  • This mold was put into an oven and heated from 20 ° C. to 100 ° C. for 20 hours to be cured by polymerization. Thereafter, the mold was removed to obtain an optical material made of episulfide resin.
  • Table 1 shows the evaluation results of ⁇ YI of the episulfide resin using each polythiol.
  • the polythiol compound of the present invention has a low ⁇ APHA (hue change) of 0 to 5 and is excellent.
  • ⁇ APHA (hue change) of the polythiol compounds of Comparative Examples 1 to 4 is 11 to 16, which is inferior to the present invention.
  • the thiourethane resin using the polythiol compound of the present invention has a low ⁇ YI value (hue change) of 0 to 0.5 and is excellent.
  • the ⁇ YI value (hue change) of the thiourethane resins using the polythiol compounds of Comparative Examples 1 to 4 is 1.5 to 2.1, which is inferior to the present invention.
  • the episulfide resin using the polythiol compound of the present invention has a low ⁇ YI value (hue change) of 0 to 0.2 and is excellent.
  • the ⁇ YI value (hue change) of the episulfide resin using the polythiol compound of Comparative Examples 1 to 4 is 0.6 to 0.9, which is inferior to the present invention.

Abstract

 本発明によれば、全窒素量が50ppm以上600ppm以下のポリチオール化合物を提供することができる。更に、本発明によれば、上記ポリチオール化合物を製造する方法であって、ポリアルコールとチオ尿素とを反応させてチウロニウム塩を調製する工程と、有機溶媒の存在下、前記チウロニウム塩に(抱水)ヒドラジン、アンモニアおよびアミンからなる群から選択される1種以上の塩基と無機塩基(ただし、(抱水)ヒドラジンおよびアンモニアを除く)とを加えて加水分解する工程を有することを特徴とするポリチオール化合物の製造方法を提供することができる。

Description

ポリチオール化合物およびその製造方法
 本発明は、窒素成分の含有量の少ないポリチオール化合物及びその製造方法に関し、特に、プラスチックレンズ、プリズム、光ファイバー、情報記録基盤、フィルター等の光学材料、中でもプラスチックレンズに好適に使用されるポリチオール化合物及びその製造方法に関する。
 プラスチックレンズは軽量かつ靭性に富み、染色も容易である。プラスチックレンズに特に要求される性能は、低比重、高透明性および低黄色度、光学性能として高屈折率と高アッベ数、高耐熱性、高強度などである。高屈折率はレンズの薄肉化を可能とし、高アッベ数はレンズの色収差を低減する。
 近年、眼鏡用プラスチックレンズの原料として、硫黄原子を有する有機化合物が数多く報告されている。中でも硫黄原子を有するポリチオール化合物は、イソシアネートと反応させて耐衝撃性に優れたポリチオウレタン樹脂、あるいはエピスルフィドと反応させて屈折率に優れた樹脂として用いられるなど、有用な化合物として知られている(特許文献1、2)。しかしながら、ポリチオール化合物は長期保管時や輸送時などに高温にさらされることで着色しやすく、ポリチオール化合物を重合させて得られる光学材料の色相悪化の原因となるという問題があった。
特開平2-270859号公報 特開平10-298287号公報
 本発明の課題は、長期保管や高温による色相悪化の起こりにくい光学レンズ用ポリチオール化合物および、その製造方法を提供することにある。
 本発明者は上記課題を解決すべく鋭意研究を行った結果、ポリチオール化合物の色相悪化は含有される窒素成分に起因することを見出した。さらに検討を行った結果、チウロニウム塩を経てポリチオールを製造する際の加水分解工程においてアミンと無機塩基を併用することで、窒素成分の含有量の少ない長期にわたって色相悪化の起こりにくいポリチオール化合物が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の通りである。
<1> 全窒素量が50ppm以上600ppm以下のポリチオール化合物である。
<2> 下記式(1)で表される構造を有する上記<1>に記載のポリチオール化合物である。
Figure JPOXMLDOC01-appb-C000002
<3> 上記<1>または<2>に記載のポリチオール化合物とポリイソシアネート化合物とを含む光学材料用組成物である。
<4> 上記<1>または<2>に記載のポリチオール化合物とエピスルフィド化合物とを含む光学材料用組成物である。
<5> 上記<3>または<4>に記載の光学材料用組成物を重合硬化してなる光学材料である。
<6> 上記<1>または<2>に記載のポリチオール化合物を製造する方法であって、ポリアルコールとチオ尿素とを反応させてチウロニウム塩を調製する工程と、有機溶媒の存在下、前記チウロニウム塩に(抱水)ヒドラジン、アンモニアおよびアミンからなる群から選択される1種以上の塩基と無機塩基(ただし、(抱水)ヒドラジンおよびアンモニアを除く)とを加えて加水分解する工程を有することを特徴とするポリチオール化合物の製造方法である。
<7> 前記有機溶媒が、ジエチルエーテル、ベンゼン、トルエン、キシレン、ジクロロエタン、クロロホルム及びクロロベンゼンからなる群より選択される1以上である、上記<6>に記載のポリチオール化合物の製造方法である。
<8> 前記無機塩基が、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム及び水酸化カルシウムからなる群より選択される1以上である、上記<6>または<7>に記載のポリチオール化合物の製造方法である。
<9> 前記(抱水)ヒドラジン、アンモニアおよびアミンからなる群から選択される1種以上の塩基の添加量が、前記チウロニウム塩中のチウロニウム基に対して0.4から1.2等量である、上記<6>から<8>のいずれかに記載のポリチオール化合物の製造方法である。
 本発明により、長期保管や高温による色相悪化の起こりにくい光学材料用ポリチオール化合物を得ることが可能となった。
 本発明は、全窒素量が50~600ppmであるポリチオール化合物であり、高度数レンズなど厚みがあるレンズを作製することを考慮すると、より好ましくは50~300ppmであり、特に好ましくは50~150ppmである。窒素含有量は50ppm未満でも問題ないが精製が困難である。ポリチオール化合物中の全窒素量が、50~600ppmの範囲内であれば長期間ポリチオール化合物の色相の大幅な悪化は起こらず、長期保管後のポリチオール化合物を用いても得られる樹脂の色相悪化はわずかでありブルーイング剤の配合量の変更などを行う必要がない。また、ポリチオール化合物の劣化を防止するための温度管理なども不要になるため、レンズ物性の向上のみならずコストの削減にもつながる。
 全窒素量はポリチオール化合物を酸洗浄することで、ある程度の低減が可能であるが、酸洗浄のみでは600ppm以下まで低減することは難しく、全窒素量を低減可能な製造法が必要であった。
 以下に本発明のポリチオール化合物の製造方法を前記式(1)の化合物を例に詳細に説明する。
 前記式(1)のポリチオール化合物の原料である下記式(2)で表されるポリアルコールは、エピクロロヒドリンと2-メルカプトエタノールとをアルカリ存在下反応させて合成する。
Figure JPOXMLDOC01-appb-C000003
 合成したポリアルコールを鉱酸中、チオ尿素と反応させ、得られたチウロニウム塩を有機溶媒共存下、(抱水)ヒドラジン、アンモニアおよびアミンからなる群から選択される1種以上の塩基(以下、「アミン系塩基」と呼ぶことがある)と無機塩基(ただし、(抱水)ヒドラジンおよびアンモニアを除く)により加水分解を行うことで前記式(1)で表されるポリチオールが得られる。(抱水)ヒドラジンとはヒドラジンまたは抱水ヒドラジンを指す。
 具体的に、式(2)で表されるポリアルコールから式(1)で表されるポリチオール化合物を合成する方法としては、例えば以下のようにチウロニウム塩化工程、加水分解工程を経て行う。チウロニウム塩化工程では、式(2)で表されるポリアルコールに、分子内のヒドロキシ基と等量である3等量以上、2等量過剰である5等量未満、好ましくはヒドロキシ基に対して1.1等量、つまりポリアルコールに対して3.3等量以上、1等量過剰である4等量未満のチオ尿素を加え反応させる。チオ尿素が少ないと得られるポリチオールの純度が低下し、多すぎると未反応の原材料の余剰が多くなり経済的に好ましくない。反応は、式(2)で表されるポリアルコールに対して3等量以上、好ましくは3等量以上6等量以下の鉱酸水溶液中において室温から還流温度の範囲で行う。鉱酸としては、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、リン酸等が使用できる。十分な反応速度が得られ、しかも製品の着色を制御する観点から、塩酸が好ましい。
 続いて、加水分解反応では、上記の反応液と有機溶媒を撹拌、混合させながらアミン系塩基及び無機塩基を含む塩基を加えて行う。有機溶媒は反応を進行させるのであれば特に制限はないが、好ましくはエーテル類、芳香族炭化水素類、ハロゲン化炭化水素類が用いられる。具体例としては、ジエチルエーテル、ベンゼン、トルエン、キシレン、ジクロロエタン、クロロホルム、クロロベンゼン等が挙げられる。中でも好ましくはトルエンである。加水分解時に有機溶媒を共存させることによりポリチオール化合物中の窒素成分を除去する効果を向上することが可能となる。適切な量の塩基を加えて加水分解を行うことで生成したポリチオールを速やかに有機層に抽出することが可能となり、窒素成分とポリチオール化合物を分離する効果が得られる。
 加水分解工程で加える(抱水)ヒドラジン、アンモニアおよびアミンからなる群から選択される1種以上の塩基としては、例えば、アンモニア、(抱水)ヒドラジン、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、ジメチルアミン、ジエチルアミン、ジイソプロピルアミン、ジプロピルアミン、ジブチルアミンなどを挙げることができる。これらの中で好ましい具体例は、アンモニア、(抱水)ヒドラジン、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、及びブチルアミンからなる群より選ばれる少なくとも1種以上の化合物であり、より好ましくは、アンモニアと(抱水)ヒドラジンであり、さらに好ましくは(抱水)ヒドラジンである。(抱水)ヒドラジンとしては抱水ヒドラジンが好ましい。加水分解工程で用いる(抱水)ヒドラジン、アンモニアおよびアミンからなる群から選択される1種以上の塩基の量は、チウロニウム塩化合物中のチウロニウム基に対して0.4から1.2等量、より好ましくは、チウロニウム基に対して0.6~1等量である。加える(抱水)ヒドラジン、アンモニアおよびアミンからなる群から選択される1種以上の塩基の量が少なすぎると収率が低下し、多すぎると全窒素量が増加する。
 加水分解反応で用いる無機塩基は、例えば炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムなどが挙げられる。好ましくは水酸化ナトリウムと水酸化カリウム、より好ましくは、水酸化ナトリウムである。加える無機塩基の量は、無機塩基とアミン系塩基の添加量の和がチウロニウム塩化反応工程での鉱酸使用量に対して0.9等量以上3等量以下、より好ましくは1等量以上2等量以下となる量である。少なすぎると反応進行が不十分となり、多すぎると収率が低下する。
 こうして生成する式(1)で表されるポリチオール化合物は、有機層を取り出した後に、酸洗、水洗、濃縮、濾過により精製を行うことができる。
 本発明で使用するポリイソシアネート化合物は、一分子中に少なくとも2個以上のイソシアネートを有する化合物であれば特に限定されないが、その具体例としては、ジエチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、1,4-ビス(イソシアネートメチル)シクロヘキサン、イソホロンジイソシアネート、2,6-ビス(イソシアネートメチル)デカヒドロナフタレン、リジントリイソシアネート、トリレンジイソシアネート、o-トリジンジイソシアネート、ジフェニルメタンジイソシアネート、ジフェニルエーテルジイソシアネート、3-(2’-イソシアネートシクロヘキシル)プロピルイソシアネート、イソプロピリデンビス(シクロヘキシルイソシアネート)、2,2’-ビス(4-イソシアネートフェニル)プロパン、トリフェニルメタントリイソシアネート、ビス(ジイソシアネートトリル)フェニルメタン、4,4’,4’’-トリイソシアネート-2,5-ジメトキシフェニルアミン、3,3’-ジメトキシベンジジン-4,4’-ジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、4,4’-ジイソシアネートビフェニル、4,4’-ジイソシアネート-3,3’-ジメチルビフェニル、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,1’-メチレンビス(4-イソシアネートベンゼン)、1,1’-メチレンビス(3-メチル-4-イソシアネートベンゼン)、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、m-テトラメチルキシリレンジイソシアネート、p-テトラメチルキシリレンジイソシアネート、1,3-ビス(2-イソシアネート-2-プロピル)ベンゼン、2,6-ビス(イソシアネートメチル)ナフタレン、1,5-ナフタレンジイソシアネート、ビス(イソシアネートメチル)テトラヒドロジシクロペンタジエン、ビス(イソシアネートメチル)ジシクロペンタジエン、ビス(イソシアネートメチル)テトラヒドロチオフェン、ビス(イソシアネートメチル)ノルボルネン、ビス(イソシアネートメチル)アダマンタン、チオジエチルジイソシアネート、チオジプロピルジイソシアネート、チオジヘキシルジイソシアネート、ビス〔(4-イソシアネートメチル)フェニル〕スルフィド、2,5-ジイソシアネート-1,4-ジチアン、2,5-ジイソシアネートメチル-1,4-ジチアン、2,5-ジイソシアネートメチルチオフェン、ジチオジエチルジイソシアネート、ジチオジプロピルジイソシアネートを挙げることができる。
 これらのなかで好ましい具体例は、イソホロンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、m-テトラメチルキシリレンジイソシアネート、p-テトラメチルキシリレンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、1,4-ビス(イソシアナートメチル)シクロヘキサン、ビス(イソシアネートメチル)ノルボルネン、および2,5-ジイソシアネートメチル-1,4-ジチアンからなる群より選ばれる少なくとも1種以上の化合物であり、中でも好ましい化合物は、イソホロンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、m-キシリレンジイソシアネートであり、さらに好ましい化合物は、イソホロンジイソシアネート、m-キシリレンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサンであり、最も好ましい化合物はm-キシリレンジイソシアネートである。
 しかしながら、本発明の対象となるポリイソシアネート化合物に関してはこれらに限定されるわけではなく、また、これらは単独でも2種類以上を混合して使用してもかまわない。
 本発明で使用するポリイソシアネート化合物の使用割合(モル比)は、特に限定されないが通常はNCO/(SH+OH)=0.7~2.5の範囲内、好ましくは0.8~2.25の範囲内、さらに好ましくは1.0~2.0の範囲内である。上記割合を下回るとレンズ成型時に黄色く着色する場合があり、上回ると耐熱性が低下する場合がある。
 本発明で使用するエピスルフィド化合物の例としては、ビス(β-エピチオプロピル)スルフィド、ビス(β-エピチオプロピル)ジスルフィド、ビス(β-エピチオプロピルチオ)メタン、1,2-ビス(β-エピチオプロピルチオ)エタン、1,3-ビス(β-エピチオプロピルチオ)プロパン、1,4-ビス(β-エピチオプロピルチオ)ブタンなどのエピスルフィド類が挙げられる。これらは単独でも、2種類以上を混合して用いてもかまわない。
 しかしながら、本発明の対象となるエピスルフィド化合物に関してはこれらに限定されるわけではなく、また、これらは単独でも、2種類以上を混合して使用してもかまわない。
 中でも好ましい化合物は、ビス(β-エピチオプロピル)スルフィド、ビス(β-エピチオプロピル)ジスルフィドであり、最も好ましい化合物は、ビス(β-エピチオプロピル)スルフィドである。
 本発明において、複数のポリチオール化合物を併用しても良い。ポリチオール化合物は単独でも、2種類以上を混合して用いてもかまわない。
 その具体例としては、メタンジチオール、メタントリチオール、1,2-ジメルカプトエタン、1,2-ジメルカプトプロパン、1,3-ジメルカプトプロパン、2,2-ジメルカプトプロパン、1,4-ジメルカプトブタン、1,6-ジメルカプトヘキサン、ビス(2-メルカプトエチル)エーテル、ビス(2-メルカプトエチル)スルフィド、1,2-ビス(2-メルカプトエチルオキシ)エタン、1,2-ビス(2-メルカプトエチルチオ)エタン、2,3-ジメルカプト-1-プロパノール、1,3-ジメルカプト-2-プロパノール、1,2,3-トリメルカプトプロパン、2-メルカプトメチル-1,3-ジメルカプトプロパン、2-メルカプトメチル-1,4-ジメルカプトブタン、2-(2-メルカプトエチルチオ)-1,3-ジメルカプトプロパン、2,4-ジメルカプトメチル-1,5-ジメルカプト-3-チアペンタン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,1-トリス(メルカプトメチル)プロパン、テトラキス(メルカプトメチル)メタン、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(2-メルカプトアセテート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(2-メルカプトアセテート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、トリメチロールプロパントリスチオグリコレート、トリメチロールプロパントリスメルカプトプロピオネート、ペンタエリスリトールテトラキスチオグリコレート、ペンタエリスリトールテトラキスメルカプトプロピオネート、1,2-ジメルカプトシクロヘキサン、1,3-ジメルカプトシクロヘキサン、1,4-ジメルカプトシクロヘキサン、1,3-ビス(メルカプトメチル)シクロヘキサン、1,4-ビス(メルカプトメチル)シクロヘキサン、2,5-ジメルカプトメチル-1,4-ジチアン、2,5-ジメルカプトメチル-1,4-ジチアン、2,5-ビス(2-メルカプトエチルチオメチル)-1,4-ジチアン、2,5-ジメルカプトメチル-1-チアン、2,5-ジメルカプトエチル-1-チアン、2,5-ジメルカプトメチルチオフェン、1,2-ジメルカプトベンゼン、1,3-ジメルカプトベンゼン、1,4-ジメルカプトベンゼン、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、2,2’-ジメルカプトビフェニル、4,4’-ジメルカプトビフェニル、ビス(4-メルカプトフェニル)メタン、2,2-ビス(4-メルカプトフェニル)プロパン、ビス(4-メルカプトフェニル)エーテル、ビス(4-メルカプトフェニル)スルフィド、ビス(4-メルカプトフェニル)スルホン、ビス(4-メルカプトメチルフェニル)メタン、2,2-ビス(4-メルカプトメチルフェニル)プロパン、ビス(4-メルカプトメチルフェニル)エーテル、ビス(4-メルカプトメチルフェニル)スルフィド、2,5-ジメルカプト-1,3,4-チアジアゾール、3,4-チオフェンジチオール、1,2-ビス[(2-メルカプトエチル)チオ]-3-メルカプトプロパン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパンを挙げることができる。
 これらのなかで好ましい具体例は、ビス(2-メルカプトエチル)スルフィド、2,5-ジメルカプトメチル-1,4-ジチアン、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,2-ビス[(2-メルカプトエチル)チオ]-3-メルカプトプロパン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、ペンタエリスリトールテトラキスメルカプトプロピオネート、ペンタエリスリトールテトラキスチオグリコレート、トリメチロールプロパントリスチオグリコレート)、トリメチロールプロパントリスメルカプトプロピオネートであり、より好ましくは、ビス(2-メルカプトエチル)スルフィド、2,5-ビス(2-メルカプトメチル)-1,4-ジチアン、1,3-ビス(メルカプトメチル)ベンゼン、ペンタエリスリトールテトラキスメルカプトプロピオネート、1,2-ビス[(2-メルカプトエチル)チオ]-3-メルカプトプロパン、ペンタエリスリトールテトラキスチオグリコレートであり、最も好ましい化合物は、1,2-ビス[(2-メルカプトエチル)チオ]-3-メルカプトプロパン、ビス(2-メルカプトエチル)スルフィド、2,5-ジメルカプトメチル-1,4-ジチアンである。
 本発明の光学材料用組成物を重合硬化して光学材料を得るに際して、重合触媒を添加することが好ましい。重合触媒としては公知のウレタン化触媒、エピスルフィド重合触媒などを用いることができる。好ましくは、有機スズ、アミン、ホスフィン、オニウム塩が用いられるが、特に有機スズ、オニウム塩、中でも有機スズ、第4級アンモニウム塩、第4級ホスホニウム塩が好ましい。
 重合触媒の添加量は、組成物の成分、混合比および重合硬化方法によって変化するため一概には決められないが、通常は光学材料用組成物の合計100質量%に対して、0.0001質量%~10質量%、好ましくは、0.001質量%~5質量%、より好ましくは、0.01質量%~1質量%、最も好ましくは、0.01質量%~0.5質量%である。重合触媒の添加量が10質量%より多いと急速に重合する場合がある。また、重合触媒の添加量が0.0001質量%より少ないと光学材料用組成物が十分に硬化せず耐熱性が不良となる場合がある。
 また、本発明の光学材料を製造する際、光学材料用組成物に紫外線吸収剤、ブルーイング剤、顔料等の添加剤を加え、得られる光学材料の実用性をより向上せしめることはもちろん可能である。
 紫外線吸収剤の好ましい例としてはベンゾトリアゾール系化合物であり、特に好ましい化合物は、2-(2-ヒドロキシ-5-メチルフェニル)-2H-ベンゾトリアゾール、5-クロロ-2-(3、5-ジ-tert-ブチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-オクチルフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-メトキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-エトキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-ブトキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-オクチロキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-5-t-オクチルフェニル)-2H-ベンゾトリアゾールである。
 紫外線吸収剤の添加量は、通常、光学材料用組成物の合計100質量%に対して0.01~5質量%である。
 光学材料用組成物を重合硬化させる際に、必要に応じて内部離型剤、酸化防止剤、重合調整剤等の公知の添加剤を加えても良い。
 このようにして得られた光学材料用組成物はモールド等の型に注型し、重合させて光学材料とする。
 本発明の光学材料用組成物の注型に際し、0.1~5μm程度の孔径のフィルター等で不純物を濾過し除去することは、本発明の光学材料の品質を高める上からも好ましい。
 本発明の光学材料用組成物の重合は通常、以下のようにして行われる。即ち、硬化時間は通常1~100時間であり、硬化温度は通常-10℃~140℃である。重合は所定の重合温度で所定時間保持する工程、0.1℃~100℃/hの昇温を行う工程、0.1℃~100℃/hの降温を行う工程によって、又はこれらの工程を組み合わせて行う。
 また、硬化終了後、得られた光学材料を50~150℃の温度で10分~5時間程度アニール処理を行うことは、本発明の光学材料の歪を除くために好ましい処理である。さらに得られた光学材料に対して、必要に応じて染色、ハードコート、耐衝撃性コート、反射防止、防曇性付与等の表面処理を行ってもよい。
 本発明の光学材料は光学レンズとして好適に用いることができる。
 以下、本発明を合成例、実施例、および比較例により具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。
・ポリチオール化合物の保存安定性試験:
 ポリチオールを窒素雰囲気下50℃で2か月間保管した。
・ポリチオール化合物のΔAPHA(色相変化):
 ハーゼンメーターHM-4(株式会社エックス電子設計製)を用いて50℃、2か月の保存試験前後のポリチオール化合物のAPHA値を測定し、その変化量をΔAPHAとした。
・ポリチオール化合物の全窒素量(TN):
 製造したポリチオール化合物をTN-2100H(三菱化学アナリテック社製)を用いて全窒素量を測定した。
・プラスチックレンズの色相変化(ΔYI値):
 50℃、2か月の保存試験を行う前後のポリチオール化合物を用いて厚さ10mm、φ83mmの樹脂を作製して、それらの樹脂のYIを分光色彩計JS555(カラーテクノシステム社製)を用いて測定し、その値の差をΔYI値とした。
合成例(ポリアルコール化合物の合成とチウロニウム塩化反応)
 攪拌機、還流冷却管、窒素ガスパージ管、および温度計を取り付けた2L4つ口反応フラスコ内に、水76.0質量部と48質量%の水酸化ナトリウム水溶液90.0質量部(1.08mol)を装入した。20℃にて2-メルカプトエタノール169質量部(2.16mol)を10分かけて滴下装入した後、エピクロロヒドリン99.9質量部(1.08mol)を同温度にて2時間かけて滴下装入した後に30℃に昇温し1時間熟成を行った。
 次に、36質量%塩酸水450.1質量部(4.44mol)、チオ尿素271.7質量部(3.57mol)を装入し3.5時間110℃加熱還流を行ってチウロニウム塩化を行った。
実施例1
 合成例で合成したチウロニウム塩を50℃に冷却し、トルエン450.0質量部を加えた後に、有機層と水層が均一に混ざるように撹拌を行いながら抱水ヒドラジン97.5質量部(1.95mol)、48%水酸化ナトリウム225.7質量部(2.71mol)を装入して加水分解反応を2時間行った後に水層を酸性にして式(1)で表される化合物を主成分とするポリチオールのトルエン溶液を得た。該トルエン溶液を、400mLの5%硫酸水溶液で1回、400mLの水で2回洗浄を行った後に加熱減圧下で低沸分を除去し、濾過することで式(1)の化合物を主成分とするポリチオール219質量部を得た。得られたポリチオール化合物の全窒素量は60ppmで保存安定性試験前後の色相変化ΔAPHAは0であった。
実施例2~7
 実施例1においてアミン系塩基、及び無機塩基の種類、及び等量比を変更した他は実施例1に従って式(1)の化合物を主成分とするポリチオールを得た。それらのポリチオールの分析結果を表1に示す。
比較例1、2
 実施例1において無機塩基を加えずアミン系塩基のみを用いた他は実施例1に従って式(1)の化合物を主成分とするポリチオールを得た。それらのポリチオールの分析結果を表1に示す。
比較例3
 実施例1においてアミン系塩基を加えず水酸化ナトリウム水溶液のみを用いた他は実施例1に従って式(1)の化合物を主成分とするポリチオールを得た。そのポリチオールの分析結果を表1に示す。
比較例4
 実施例1においてトルエンを加えずに加水分解反応を行った他は実施例1に従って式(1)の化合物を主成分とするポリチオールを得た。そのポリチオールの分析結果を表1に示す。
チオウレタン樹脂の製造
 m-キシリレンシイソシアナート52質量部、ジ-n-ブチルスズジクロライド0.015質量部、Stepan社製ゼレックUNを0.1質量部、共同薬品社製バイオソーブ583を0.05質量部混合溶解させた。15℃にて各実施例、比較例にて合成した式(1)の化合物を主成分とするポリチオール、及び保存安定性試験後のポリチオール48質量部を装入混合し、混合均一液とした。この混合均一液を600Paにて30分脱泡を行った。その後、1μmPTFEフィルターにて濾過を行った後、ガラスモールドとテープからなるモールド型へ注入した。このモールド型をオーブンへ投入し、10℃から120℃まで徐々に加温し、20時間で重合した。重合終了後、オーブンからモールド型を取り出し、離型して樹脂を得た。得られた樹脂をさらに130℃で2時間アニールを行いチオウレタン樹脂からなる光学材料を得た。各ポリチオールを用いたチオウレタン樹脂のΔYIの評価結果を表1に示す。
エピスルフィド樹脂の製造
 ビス(β-エピチオプロピル)スルフィド77質量部、1,3-ビス(イソシアナトメチル)ベンゼン9質量部、さらに各実施例、比較例にて合成した式(1)の化合物を主成分とするポリチオール、及び保存安定性試験後のポリチオール14質量部に、重合触媒としてテトラブチルホスホニウムブロマイド0.2質量部、ジブチルスズジクロライド0.05質量部を添加し、室温で均一液とした。この混合均一液を600Paにて1時間脱泡を行った後、1μmのPTFEフィルターにて濾過を行い、ガラスモールドとテープからなるモールド型へ注入した。このモールド型をオーブンへ投入し、20℃から100℃まで20時間かけて加熱し重合硬化させた。その後脱型し、エピスルフィド樹脂からなる光学材料を得た。各ポリチオールを用いたエピスルフィド樹脂のΔYIの評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1の結果より、本発明のポリチオール化合物は、ΔAPHA(色相変化)が0~5と低く優れていることがわかる。一方、比較例1~4のポリチオール化合物のΔAPHA(色相変化)は11~16であり、本発明より劣っている。また、本発明のポリチオール化合物を用いたチオウレタン樹脂は、ΔYI値(色相変化)が0~0.5と低く優れていることがわかる。一方、比較例1~4のポリチオール化合物を用いたチオウレタン樹脂のΔYI値(色相変化)は1.5~2.1であり、本発明より劣っている。更に、本発明のポリチオール化合物を用いたエピスルフィド樹脂は、ΔYI値(色相変化)が0~0.2と低く優れていることがわかる。一方、比較例1~4のポリチオール化合物を用いたエピスルフィド樹脂のΔYI値(色相変化)は0.6~0.9であり、本発明より劣っている。

Claims (9)

  1.  全窒素量が50ppm以上600ppm以下のポリチオール化合物。
  2.  下記式(1)で表される構造を有する請求項1に記載のポリチオール化合物。
    Figure JPOXMLDOC01-appb-C000001
  3.  請求項1または2に記載のポリチオール化合物とポリイソシアネート化合物とを含む光学材料用組成物。
  4.  請求項1または2に記載のポリチオール化合物とエピスルフィド化合物とを含む光学材料用組成物。
  5.  請求項3または4に記載の光学材料用組成物を重合硬化してなる光学材料。
  6.  請求項1または2に記載のポリチオール化合物を製造する方法であって、ポリアルコールとチオ尿素とを反応させてチウロニウム塩を調製する工程と、有機溶媒の存在下、前記チウロニウム塩に(抱水)ヒドラジン、アンモニアおよびアミンからなる群から選択される1種以上の塩基と無機塩基(ただし、(抱水)ヒドラジンおよびアンモニアを除く)とを加えて加水分解する工程を有することを特徴とするポリチオール化合物の製造方法。
  7.  前記有機溶媒が、ジエチルエーテル、ベンゼン、トルエン、キシレン、ジクロロエタン、クロロホルム及びクロロベンゼンからなる群より選択される1以上である、請求項6に記載のポリチオール化合物の製造方法。
  8.  前記無機塩基が、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム及び水酸化カルシウムからなる群より選択される1以上である、請求項6または7に記載のポリチオール化合物の製造方法。
  9.  前記(抱水)ヒドラジン、アンモニアおよびアミンからなる群から選択される1種以上の塩基の添加量が、前記チウロニウム塩中のチウロニウム基に対して0.4から1.2等量である、請求項6から8のいずれかに記載のポリチオール化合物の製造方法。
PCT/JP2014/078548 2013-11-01 2014-10-28 ポリチオール化合物およびその製造方法 WO2015064548A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167008204A KR102279400B1 (ko) 2013-11-01 2014-10-28 폴리티올 화합물 및 그 제조방법
CN201480058992.1A CN105683160B (zh) 2013-11-01 2014-10-28 多硫醇化合物及其制造方法
EP14859047.4A EP3064488B1 (en) 2013-11-01 2014-10-28 Polythiol compound and method for producing same
JP2015544990A JP6406265B2 (ja) 2013-11-01 2014-10-28 ポリチオール化合物およびその製造方法
US14/917,120 US10071959B2 (en) 2013-11-01 2014-10-28 Polythiol compound and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-228486 2013-11-01
JP2013228486 2013-11-01

Publications (1)

Publication Number Publication Date
WO2015064548A1 true WO2015064548A1 (ja) 2015-05-07

Family

ID=53004151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078548 WO2015064548A1 (ja) 2013-11-01 2014-10-28 ポリチオール化合物およびその製造方法

Country Status (7)

Country Link
US (1) US10071959B2 (ja)
EP (1) EP3064488B1 (ja)
JP (1) JP6406265B2 (ja)
KR (1) KR102279400B1 (ja)
CN (1) CN105683160B (ja)
TW (1) TWI630195B (ja)
WO (1) WO2015064548A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927222A4 (en) * 2013-12-11 2015-11-25 Mitsubishi Gas Chemical Co NOVEL THIOL COMPOUND AND OPTICAL MATERIAL COMPOSITION USING THE SAME
EP3170808A4 (en) * 2014-07-18 2018-02-21 Mitsubishi Gas Chemical Company, Inc. Polythiol composition and method for producing same
JP2019522086A (ja) * 2016-06-30 2019-08-08 エスケーシー カンパニー,リミテッド ポリチオウレタン系光学材料用重合性組成物
WO2019189787A1 (ja) * 2018-03-30 2019-10-03 三井化学株式会社 有機メルカプト化合物又はその中間体の製造方法、(ポリ)チオール成分、光学材料用重合性組成物、成形体、光学材料及びレンズ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101971110B1 (ko) * 2016-08-30 2019-04-22 에스케이씨 주식회사 광학 재료용 폴리티올 화합물
TWI615415B (zh) * 2016-09-13 2018-02-21 奇美實業股份有限公司 光學材料用樹脂組成物、光學材料用樹脂及其所形成的光學透鏡
CN110305049B (zh) * 2019-07-08 2021-05-28 山东益丰生化环保股份有限公司 一种生产低色度聚硫醇化合物的方法
US11578038B2 (en) 2019-12-13 2023-02-14 Skc Co., Ltd. Method for preparing polythiol composition
KR102647662B1 (ko) * 2020-01-16 2024-03-13 주식회사 엘지화학 광학 렌즈 및 이를 포함하는 웨어러블 디바이스

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268673A (ja) * 1988-04-20 1989-10-26 Nisso Yuka Kogyo Kk メルカプタン化合物の製造方法
JPH02270859A (ja) 1988-12-22 1990-11-05 Mitsui Toatsu Chem Inc メルカプト化合物及びその製造方法
JPH10298287A (ja) 1997-04-22 1998-11-10 Mitsubishi Gas Chem Co Inc 新規な光学材料用樹脂
JP2002226456A (ja) * 2001-01-30 2002-08-14 Mitsui Chemicals Inc 新規なポリチオール
WO2011105320A1 (ja) * 2010-02-25 2011-09-01 三菱瓦斯化学株式会社 光学材料用組成物及びその製造方法並びに光学材料用組成物から得られる光学材料
JP2012167198A (ja) * 2011-02-15 2012-09-06 Mitsubishi Gas Chemical Co Inc 光学材料用組成物
JP2013010772A (ja) * 2006-04-19 2013-01-17 Mitsui Chemicals Inc 光学材料用(ポリ)チオール化合物の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087758A (en) 1988-12-22 1992-02-11 Mitsui Toatsu Chemicals, Inc. Mercapto compound, a high refractive index resin and lens and a process for preparing them
JPH1180308A (ja) 1997-09-01 1999-03-26 Sumitomo Seika Chem Co Ltd 硬化性組成物およびそれを用いて得られる光学材料
JP4127169B2 (ja) * 2002-09-27 2008-07-30 三菱瓦斯化学株式会社 光学材料の製造方法
CN1171924C (zh) * 2002-11-05 2004-10-20 浙江大学 一种制备聚硫代氨基甲酸酯光学塑料的方法
JP4617667B2 (ja) 2003-12-10 2011-01-26 三菱化学株式会社 チオール化合物の製造方法
JP4844136B2 (ja) * 2006-01-27 2011-12-28 三菱瓦斯化学株式会社 樹脂用組成物
CN101400648B (zh) * 2006-04-20 2013-07-31 三井化学株式会社 光学材料用多硫醇化合物的制造方法及含有该化合物的聚合性组合物
CN104725593B (zh) * 2011-02-15 2017-10-20 三菱瓦斯化学株式会社 光学材料用组合物及使用其的光学材料
WO2014027427A1 (ja) 2012-08-14 2014-02-20 三井化学株式会社 ポリチオール化合物の製造方法、光学材料用重合性組成物およびその用途
TW201506083A (zh) 2013-06-18 2015-02-16 Mitsubishi Gas Chemical Co 光學材料用組成物
KR102012013B1 (ko) * 2018-10-15 2019-08-19 경남산업개발 주식회사 단열형 창호 구조물

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268673A (ja) * 1988-04-20 1989-10-26 Nisso Yuka Kogyo Kk メルカプタン化合物の製造方法
JPH02270859A (ja) 1988-12-22 1990-11-05 Mitsui Toatsu Chem Inc メルカプト化合物及びその製造方法
JPH10298287A (ja) 1997-04-22 1998-11-10 Mitsubishi Gas Chem Co Inc 新規な光学材料用樹脂
JP2002226456A (ja) * 2001-01-30 2002-08-14 Mitsui Chemicals Inc 新規なポリチオール
JP2013010772A (ja) * 2006-04-19 2013-01-17 Mitsui Chemicals Inc 光学材料用(ポリ)チオール化合物の製造方法
WO2011105320A1 (ja) * 2010-02-25 2011-09-01 三菱瓦斯化学株式会社 光学材料用組成物及びその製造方法並びに光学材料用組成物から得られる光学材料
JP2012167198A (ja) * 2011-02-15 2012-09-06 Mitsubishi Gas Chemical Co Inc 光学材料用組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3064488A1

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927222A4 (en) * 2013-12-11 2015-11-25 Mitsubishi Gas Chemical Co NOVEL THIOL COMPOUND AND OPTICAL MATERIAL COMPOSITION USING THE SAME
US9604959B2 (en) 2013-12-11 2017-03-28 Mitsubishi Gas Chemical Company, Inc. Thiol compound and composition for optical materials using the same
EP3170808A4 (en) * 2014-07-18 2018-02-21 Mitsubishi Gas Chemical Company, Inc. Polythiol composition and method for producing same
US10207987B2 (en) 2014-07-18 2019-02-19 Mitsubishi Gas Chemical Company, Inc. Polythiol composition and method for producing same
JP7175770B2 (ja) 2016-06-30 2022-11-21 エスケーシー カンパニー,リミテッド ポリチオウレタン系光学材料用重合性組成物
JP2019522086A (ja) * 2016-06-30 2019-08-08 エスケーシー カンパニー,リミテッド ポリチオウレタン系光学材料用重合性組成物
US11760721B2 (en) 2016-06-30 2023-09-19 Skc Co., Ltd. Polymerizable composition for polythiourethane-based optical material
WO2019189787A1 (ja) * 2018-03-30 2019-10-03 三井化学株式会社 有機メルカプト化合物又はその中間体の製造方法、(ポリ)チオール成分、光学材料用重合性組成物、成形体、光学材料及びレンズ
KR20200130366A (ko) * 2018-03-30 2020-11-18 미쓰이 가가쿠 가부시키가이샤 유기 머캅토 화합물 또는 그의 중간체의 제조 방법, (폴리)싸이올 성분, 광학 재료용 중합성 조성물, 성형체, 광학 재료 및 렌즈
JPWO2019189787A1 (ja) * 2018-03-30 2021-02-12 三井化学株式会社 有機メルカプト化合物又はその中間体の製造方法、(ポリ)チオール成分、光学材料用重合性組成物、成形体、光学材料及びレンズ
JP7168656B2 (ja) 2018-03-30 2022-11-09 三井化学株式会社 有機メルカプト化合物又はその中間体の製造方法、組成物、光学材料用重合性組成物、成形体、光学材料及びレンズ
KR102582232B1 (ko) 2018-03-30 2023-09-22 미쓰이 가가쿠 가부시키가이샤 유기 머캅토 화합물 또는 그의 중간체의 제조 방법, (폴리)싸이올 성분, 광학 재료용 중합성 조성물, 성형체, 광학 재료 및 렌즈
US11897835B2 (en) 2018-03-30 2024-02-13 Mitsui Chemicals, Inc. Method for producing organic mercapto compound or intermediate thereof, (poly)thiol component, polymerizable composition for optical material, molded product, optical material, and lens

Also Published As

Publication number Publication date
TW201531453A (zh) 2015-08-16
KR102279400B1 (ko) 2021-07-21
JPWO2015064548A1 (ja) 2017-03-09
CN105683160B (zh) 2018-02-16
US20160229798A1 (en) 2016-08-11
TWI630195B (zh) 2018-07-21
JP6406265B2 (ja) 2018-10-17
EP3064488A4 (en) 2017-06-14
EP3064488A1 (en) 2016-09-07
EP3064488B1 (en) 2022-10-05
CN105683160A (zh) 2016-06-15
US10071959B2 (en) 2018-09-11
KR20160083846A (ko) 2016-07-12

Similar Documents

Publication Publication Date Title
JP6406265B2 (ja) ポリチオール化合物およびその製造方法
EP2894177B1 (en) Composition for optical material, and method for producing same
KR101827033B1 (ko) 광학 재료용 조성물
EP3208268B1 (en) Novel episulfide compound and optical material composition containing same
WO2015159811A1 (ja) 光学材料用組成物及びその製造方法並びに光学材料用組成物から得られる光学材料
KR101877590B1 (ko) 광학 재료용 조성물
US20150018507A1 (en) Method for producing polythiol compound for optical materials and composition comprising same for optical materials
KR101815948B1 (ko) 신규한 환상 화합물 및 이것을 포함하는 광학재료용 조성물
JP6187722B2 (ja) 新規な硫黄化合物及びそれを含む光学材料用組成物
JP6241208B2 (ja) 光学材料用ポリチオール化合物の製造方法
JP5835526B2 (ja) 新規なチオール化合物及びそれを用いた光学材料用組成物
KR20190060419A (ko) 광학재료용 지방족 및 지환족 폴리싸이올 화합물과 이를 이용한 광학재료 조성물
JP3974404B2 (ja) ポリチオール、その製造方法、これを含有する重合性組成物、並びに樹脂及びレンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015544990

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14917120

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014859047

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167008204

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE