WO2015062146A1 - 一种汽车车灯装置及其通过灯光传递信号的方法 - Google Patents

一种汽车车灯装置及其通过灯光传递信号的方法 Download PDF

Info

Publication number
WO2015062146A1
WO2015062146A1 PCT/CN2013/089775 CN2013089775W WO2015062146A1 WO 2015062146 A1 WO2015062146 A1 WO 2015062146A1 CN 2013089775 W CN2013089775 W CN 2013089775W WO 2015062146 A1 WO2015062146 A1 WO 2015062146A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
light
data
vehicle
protocol layer
Prior art date
Application number
PCT/CN2013/089775
Other languages
English (en)
French (fr)
Inventor
周圣砚
敖锦龙
李景泉
张园
Original Assignee
上海小糸车灯有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海小糸车灯有限公司 filed Critical 上海小糸车灯有限公司
Priority to EP13896743.5A priority Critical patent/EP3064400A4/en
Priority to US15/033,127 priority patent/US9505406B2/en
Priority to JP2016550910A priority patent/JP6343350B2/ja
Publication of WO2015062146A1 publication Critical patent/WO2015062146A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/0017Devices integrating an element dedicated to another function
    • B60Q1/0023Devices integrating an element dedicated to another function the element being a sensor, e.g. distance sensor, camera
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C23/00Non-electrical signal transmission systems, e.g. optical systems
    • G08C23/04Non-electrical signal transmission systems, e.g. optical systems using light waves, e.g. infrared
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • G08G1/163Decentralised systems, e.g. inter-vehicle communication involving continuous checking
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/65Data transmitted between vehicles

Definitions

  • the present invention relates to the field of intelligent transportation and intelligent vehicle research, and in particular to an automobile lamp device and a method for transmitting a signal through a lamp.
  • the active safety system of the vehicle uses radar and camera sensors. These systems use signal processing methods to judge the driving state of the surrounding vehicles. When a potential danger is discovered, the judgment can be made in advance, through warning and auxiliary braking. The way to avoid accidents.
  • the focus of these studies is mainly on the passive receiving sensors such as cameras and radars.
  • Signal processing and computer vision algorithms are used to judge the occurrence of dangerous situations.
  • the essence of this is an estimation of the driving mode of surrounding vehicles.
  • the accuracy of such estimates and approximations depends not only on the design of the signal processing and algorithms, but also on the external environmental factors.
  • the active safety system based on the camera sensor will generate false alarms and missed detections when working at night.
  • the active safety system based on radar sensors will have large deviations in the lateral motion component of the vehicle.
  • the object of the present invention is to provide an automobile lamp device and a method for transmitting signals through the light, to realize signal transmission of the front and rear vehicles, effectively judge the potentially dangerous situation, and improve the safety of the vehicle to solve the problem in the prior art.
  • an aspect of the present invention is: an automobile lamp device comprising a headlight mounted on a head of a car and a tail lamp mounted at a tail of the automobile, wherein the lamp body of the headlight is provided with a light receiving device, and the lamp body of the tail lamp Provided with a light transmitting device, the light transmitting device is composed of a bus data receiver, a transmitting terminal microcontroller, a lamp driver and a vehicle lamp, and an input end of the bus data receiver is connected to a CAN bus of the vehicle for collecting The running data information of the vehicle, the input end of the transmitting end microcontroller is connected with the output end of the bus data receiver, and is used for collecting the running data information of the vehicle and performing check and coding, and the output end of the transmitting end microcontroller Connected to an input end of the lamp driver for generating data of the check code, the output end of the lamp driver is drivingly connected to the tail lamp for driving the brightness of the tail lamp, and the tail lamp is used for generating
  • the light receiving device and the light transmitting device comprise a software protocol layer, a signal protocol layer and a physical protocol layer, and the transmitting end microcontroller and the receiving end microcontroller form a software protocol layer and a signal protocol layer, a lamp driver, a lamp, a lens And the light sense module constitutes a physical protocol layer;
  • the software protocol layer is used for verifying and decoding data to be sent and received, and generating a data packet signal;
  • the signal protocol layer is used to implement the data packet signal generated by the software protocol layer and the basic light The signal is combined and encoded;
  • the physical protocol layer is used to realize the mutual conversion of the digital signal and the optical signal.
  • the light sensing module receives the light focused by the lens, samples the light at a predetermined frequency, converts the sampled optical signal into a voltage signal, performs operational amplification on the voltage signal, and transmits the amplified voltage signal.
  • the AD acquisition port of the receiver microcontroller is processed, and the acquired signal is processed to obtain a final digital signal, and the reception of the digital signal is completed.
  • the data after the check and encoding is: a check code of the data obtained by verifying and encoding the vehicle running data information, and adding the check code to the end of the running data of the vehicle, that is, the data information after the check encoding is obtained.
  • the light sensor module is a light sensor.
  • the invention also provides a method for transmitting signals by means of the above device, comprising the following steps: (1) setting a light receiving device in the lamp body of the front vehicle and the rear vehicle headlight, and setting the light body of the tail light
  • the light transmitting device, the light receiving device and the light transmitting device both comprise a software protocol layer, a signal protocol layer and a physical protocol layer
  • the software protocol layer in the light sending device comprises a verification encoder, a software protocol layer in the light receiving device Include a verification decoder
  • a signal protocol layer in the light transmitting device includes a data packet signal transmitter, a basic light generator, and a data signal generator, and a signal protocol layer in the light receiving device includes a data packet signal receiver
  • the physical protocol layer includes a signal modulator and a light generator, and the physical protocol layer in the light receiving device includes a light signal receiver and a signal demodulator;
  • the light transmitting device of the preceding vehicle collects its own running data information through the bus, and the checking data encoder of the software protocol layer checks and codes the running data information to obtain a check code of the running data information, and The encoded data is sent to the data packet signal transmitter, and the check code is used to verify the transmitted and received data at the signal protocol layer;
  • the data signal generator in the signal protocol layer of the light transmitting device of the preceding vehicle waits for the rising edge of the basic light signal generated by the basic light generator, and after receiving the rising edge signal, the data signal generator sends according to the data packet signal
  • the data packet generated by the device generates a waveform of the data signal, combines the waveform of the data signal with the waveform of the basic light signal, and modulates the signal to generate a modulated analog luminance signal, and drives the modulated PWM signal corresponding to the modulated analog luminance signal to drive the taillight through the voltage driver.
  • Generating an optical signal which is included in the taillight light by the difference in brightness of the optical signal, is transmitted to the air medium in a bright form, and is received by the following vehicle to complete the transmission of the data;
  • the light sensing module in the light signal receiver of the physical light distribution layer of the rear vehicle light receiving device receives the light signal transmitted by the preceding vehicle, filters the analog signal received by the light sensing module through the filter filtering module, and removes the burrs Obtaining the filtered signal, and then performing analog-to-digital conversion on the filtered signal to obtain an analog-to-digital converter to obtain a signal.
  • a reference signal is obtained, and the analog-to-digital converter obtains the signal and The reference signal is input to the signal comparator for signal comparison to obtain a digital signal, and the data is received.
  • the rear vehicle light receiving device compares the obtained digital signal with its own position and vehicle speed data information to obtain a relative positional relationship between the preceding vehicle and the following vehicle. If there is a collision risk, the following vehicle immediately takes corresponding braking measures.
  • the rear vehicle receives the vehicle speed and position information sent by the preceding vehicle, and compares it with its own vehicle speed and position information to obtain the time when the vehicle will collide, ⁇ : Where T is the time when the two vehicles are about to collide. When the ⁇ is less than 2 seconds, it indicates that there is a potential collision risk.
  • the vehicle controller of the rear vehicle controls the dynamic system to fill the oil. When the ⁇ is less than 1 second, the rear vehicle is completely The vehicle controller controls the brake pedal to take a braking measure; wherein: ⁇ indicates the speed of the vehicle in front;
  • the analog signal received by the light sensing module is:
  • s is the received analog signal, which is the original optical signal
  • /0 is the attenuation function in the light propagation process, which is the external noise signal.
  • the signal protocol layer defines a reference brightness calibration start period as: setting a light effective period in the signal protocol layer, and after generating a rising edge of the light effective period, generating a carrier luminance of a first predetermined period duration, the first predetermined period This is the reference brightness calibration start period.
  • the check-coded data is: a check code of the data obtained by verifying the vehicle operation data information, and adding the check code to the end of the running data of the vehicle, that is, the check-coded data is obtained.
  • the method verifies the received data in a physical protocol layer in the light receiving device: when the optical signal received by the following vehicle is sampled separately in the reference brightness calibration start period and the reference brightness calibration end period, the average of the two reference brightness voltages is obtained. If the voltage difference of the value is greater than 5%, the received signal is considered invalid, and the received data is discarded; the reference brightness calibration end period is the carrier brightness of the second predetermined period after the data signal is transmitted. The second predetermined period duration is the reference luminance calibration end period.
  • the method verifies the transmitted and received data at the signal protocol layer: when the data received by the physical protocol layer is valid, the signal protocol layer in the light receiving device, and the data received by the following vehicle and the data sent by the preceding vehicle. When the code is inconsistent, the received data is discarded.
  • the invention achieves the following beneficial effects: (1)
  • the invention encodes the vehicle operation data information collected by the bus data receiver according to the software protocol layer and the signal protocol layer, and sends the encoded data to the lamp driver, by the vehicle.
  • the lamp driver drives the brightness of the taillights of the car.
  • the brightness difference of the brightness of the taillights contains the data to be sent in the lights of the taillights, effectively achieving communication between the vehicles, between the lights, and between the vehicles and the lights. Achieve intelligent traffic and intelligent vehicles, which can improve driving safety and effectively reduce potential traffic accidents;
  • the present invention exchanges information between the driver and the vehicle with digitally quantifiable information, enabling the computer to more accurately determine the state of the vehicle around its driving environment and accurately determine the potential danger. Improve driving safety. At the same time, the invention also helps to realize the Internet of Vehicles and provide effective equipment support for intelligent transportation and networked transportation.
  • the method of the present invention verifies the received data, and determines the voltage difference of the average value of the reference luminance voltage before and after the reference luminance calibration period, and if the voltage difference exceeds 5%, it is considered
  • the received signal is greatly affected by the environment during the transmission process. It is considered that the received data is invalid and the received data is discarded.
  • the present invention further checks the received and transmitted data at the signal protocol layer. When it is found that the transmitted data and the received data check code are inconsistent, the data that is sent is invalid and discarded. Through double verification, the accuracy of the potential danger judgment of the car collision is further improved, and the safety of the vehicle driving is improved.
  • the invention installs the light receiving device and the light transmitting device inside the lamp body of the lamp, so that the lamp not only It has the function of lighting, and it can also realize the optical communication between the car and the car.
  • FIG. 1 is a schematic structural view of a vehicle lamp device of the present invention installed on a vehicle;
  • Figure 2 is a schematic structural view of the lamp device of the present invention.
  • Figure 3 is a schematic diagram of the structure of the signal amplifier of the present invention.
  • FIG. 4 is a schematic diagram of comparison between an actual transmitted signal and an actual sampled signal according to the present invention.
  • Figure 5 is a schematic diagram showing the structure of a protocol layer of the method of the present invention.
  • Figure 6 is a light signal brightness and timing protocol of the present invention.
  • Figure 7 is a schematic flow chart of the method of the present invention.
  • Figure 8 is a process of encoding an acquired vehicle data signal into an optical signal
  • Figure 9 is a process of decoding an optical signal into a digital signal
  • Figure 10 is a schematic diagram of the brightness of the voltage value on the light
  • Figure 11 is a schematic diagram of the signal receiving process of the present invention.
  • the lamp device of the present invention comprises a headlight mounted on the head of the automobile and a taillight installed at the tail of the automobile.
  • a light transmitting device El is disposed in the lamp body of the headlight, and a light is disposed in the lamp body of the taillight.
  • the light transmitting device is hooked up to the vehicle CAN bus, and the data information that the vehicle itself needs to transmit, such as the vehicle speed data, the brake pedal data and the throttle data, is collected, when the A car travels to the rear of the B car, Since the light receiving device in the A headlight is aimed at the light transmitting device in the B taillight, the A car can receive the data sent by the B car, such as the vehicle speed data, the brake pedal data and the throttle data.
  • the light transmitting device E1 of the present embodiment is composed of a bus data receiver E1A, a transmitting terminal microcontroller E1B, a lamp driver E1C and a tail lamp E1D; the light receiving device E2 is a lens E2C, and a light sensing module E2B. And the receiving end microcontroller E2A, wherein the light sensing module is a photosensitive sensor.
  • the input end of the bus data receiver E1A is connected to the CAN bus of the vehicle, and is responsible for collecting vehicle state information on the vehicle CAN bus, receiving and transmitting the vehicle state information to the transmitting end microcontroller E1B, and micro-controlling by the transmitting end.
  • the E1B packs and sends these status information.
  • the input end of the transmitting end microcontroller E1B is connected to the output end of the bus data receiver, receives the vehicle state information sent by the bus data receiver E1A, encodes the state information of the vehicle, and transmits the encoded data to the car.
  • the lamp driver E1C the brightness of the tail lamp is driven by the lamp driver E1C.
  • the input end of the lamp driver E1C is connected to the output of the transmitter of the transmitter, and receives the data sent by the transmitter E1B.
  • the output of the lamp driver is connected to the taillight E1D to drive the taillight E1D.
  • Taillight E1D is based on the traditional lighting effect of the car. It realizes that the data to be sent by the brightness difference of the brightness of the lamp is included in the lamp light and sent out in the form of light.
  • the function of the E2C is to focus the received light and control the focus on the photosensor E2B.
  • the photosensitive sensor E2B receives the light focused by the lens E2C, samples the light at a certain frequency, converts the sampled optical signal into a corresponding voltage signal, performs operational amplification on the voltage signal, and transmits the amplified voltage signal.
  • the operational amplification principle circuit is shown in Figure 3.
  • the AD acquisition port of the receiving end microcontroller E2A is connected to the photosensor E2B, and the receiving end microcontroller E2A collects the voltage signal from the photosensor E2B through the AD acquisition port.
  • the collected voltage is as shown in FIG. 4, and the receiving end is micro-controlled.
  • the E2A performs analog-to-digital conversion and filtering on the collected signals to obtain a final digital signal.
  • the light transmitting device and the light receiving device of this embodiment are divided into a software protocol layer L1, a signal protocol layer L2, and a physical protocol layer L3.
  • the software protocol layer L1 is responsible for check encoding and decoding of data that the device needs to transmit and receive, and includes a check encoder L1A and a check decoder L1B.
  • the check encoder L1A calculates the signal data that the device needs to send, obtains the check code, and adds the check code to the end of the digital string.
  • the method of verifying the data is:
  • the signal protocol layer L2 is responsible for combining and encoding the data packet generated by the software protocol layer L1 according to the protocol, and the signal protocol layer L2 is generated by the data packet signal transmitter L2A and the basic light generator L2B, and the data signal occurs.
  • the device L2C is composed of a signal receiver L2A, a basic light generator L2B and a data signal generator L2C for performing signal transmission, and a data packet signal receiver L2D for completing reception of signals.
  • the physical protocol layer L3 is used for the mutual conversion of the digital signal and the optical signal in the present invention.
  • the physical protocol layer L3 is composed of a signal modulator L3A at the transmitting end, a light generator L3B, and a light signal receiver L3D and a signal demodulator L3C at the receiving end.
  • the sender-side microcontroller and the receiver-side microcontroller form a software protocol layer and a signal protocol layer
  • the vehicle lamp driver, the lamp, the lens, and the light-sensing module form a physical protocol layer.
  • the present invention specifies voltage and timing specifications for the optical signal generated by the signal protocol layer L2, including the signal low level voltage S1, the reference luminance calibration start period S2, the signal transmission period S3, the reference luminance calibration end period S4, the carrier voltage S5, and the signal.
  • the high-level voltage S6 and the light effective period S7, the specified voltage and timing specifications work as follows: As shown in Figure 6, after the rising edge of the light effective period S7, the carrier brightness S5 of the reference brightness calibration start period S2 will be generated.
  • the system will follow the binary data signal generated by the data signal generator L2C, wherein the brightness of the data signal 1 is the signal high level brightness S6, corresponding to the high level corresponding PWM waveform S11, the data signal The brightness of 0 is the signal low level S1, corresponding to the low level corresponding to the PWM waveform S12.
  • the data signal is transmitted, and the system starts transmitting for the reference brightness calibration end period S4.
  • the specific process of receiving the digital signal by the light receiving device of the embodiment is as follows: According to the voltage and timing specifications of the light signal defined in FIG. 6, the receiving end microcontroller E2A performs the detected rising edge signal and the threshold value. For comparison, when it is greater than the threshold, it is determined that the light effective period S7 starts, and the average value of the collected voltage during the period is calculated according to the reference brightness calibration start period S2 specified by the protocol, as the carrier voltage S5, and the subsequent sample values. Compared with the carrier voltage S5, the judgment greater than the predetermined threshold is a signal high level, small The determination at the predetermined threshold is a signal low level.
  • the total time experienced by the sampling of the digital signal is the signal transmission period S3 specified in the protocol. After the sampling time reaches the length of the signal transmission period S3, the average value of the voltage within the duration of the reference luminance calibration period S4 is acquired, and the value is compared with the carrier. The voltage S5 is compared. If they are equal, the physical layer of the sampling is valid. If they are not equal, the physical layer of the sampling is invalid. If the sampled physical layer is valid, the signal data S9 and the check data S10 sampled in the signal transmission period S3, the receiving end microcontroller E2A judges by calculation, if the calculation result of the signal data S9 is equal to the check data S10, The sampling signal layer is valid. If it is not equal, the sampling signal layer is invalid. The data received by the receiving end microcontroller E2A in a light effective period S7, if both the physical layer and the signal layer are valid, this time If the sampling is successful, the data is successfully sent and received.
  • FIG. 1 An application example of the lamp device of the present invention in the anti-collision of the automobile is specifically described below:
  • the light transmitting device in the B taillight collects the data that the B car needs to send
  • gp The vehicle speed s of the vehicle and the GPS positioning coordinates of the vehicle are sent out by the light transmitting device set on the B car.
  • the vehicle's own speed ⁇ is compared with its own GPS positioning coordinates, and the time when the two cars are about to collide is obtained, namely:
  • T is the calculated collision time. When ⁇ is less than 2 seconds, it indicates that there is a potential collision risk. Then the brake starts to charge the brake system. When ⁇ is less than 1 second, it indicates that the collision risk is further improved. A motion measure collision will occur, and the brake pedal is controlled to take a braking action.
  • the method of the present invention comprises the following steps:
  • a light receiving device is disposed in the lamp body of the front vehicle and the rear vehicle headlight, and a light transmitting device disposed in the lamp body of the tail light, the light receiving device and the light transmitting device both include a software protocol layer, a signal protocol layer, and a physical protocol.
  • the software protocol layer in the light sending device includes the verification encoder, the software protocol in the light receiving device
  • the layer includes a verification decoder
  • the signal protocol layer in the light transmitting device comprises a data packet signal transmitter, a basic light generator and a data signal generator
  • the signal protocol layer in the light receiving device comprises a data packet signal receiver
  • the physical protocol layer in the device includes a signal modulator and a light generator, and the physical protocol layer in the light receiving device includes a light signal receiver and a signal demodulator;
  • the light transmitting device of the preceding vehicle collects its own running data information through the bus, and the checking data encoder of the software protocol layer checks and codes the running data information to obtain a check code of the running data information, and The encoded data is sent to the data packet signal transmitter, and the check code is used to verify the transmitted and received data at the signal protocol layer;
  • the data signal generator in the signal protocol layer of the light transmitting device of the preceding vehicle waits for the rising edge of the basic light signal generated by the basic light generator, and after receiving the rising edge signal, the data signal generator sends according to the data packet signal
  • the data packet generated by the device generates a waveform of the data signal, combines the waveform of the data signal with the waveform of the basic light signal, and modulates the signal to generate a modulated analog luminance signal, and drives the modulated PWM signal corresponding to the modulated analog luminance signal to drive the taillight through the voltage driver.
  • Generating an optical signal which is included in the taillight light by the difference in brightness of the optical signal, is transmitted to the air medium in a bright form, and is received by the following vehicle to complete the transmission of the data;
  • the light sensing module in the light signal receiver of the physical light distribution layer of the rear vehicle light receiving device receives the light signal transmitted by the preceding vehicle, filters the analog signal received by the light sensing module through the filter filtering module, and removes the burrs Obtaining the filtered signal, and then performing analog-to-digital conversion on the filtered signal to obtain an analog-to-digital converter to obtain a signal.
  • a reference signal is obtained, and the analog-to-digital converter obtains the signal and The reference signal is input to the signal comparator for signal comparison to obtain a digital signal, and the data is received.
  • the signal transmission process of the present invention is as follows:
  • the data signal generator L2C in the signal protocol layer L2 will wait for the rising edge signal generated by the basic light generator L2B. Upon receiving the rising edge signal, the data signal generator L2C is based on the data packet generated by the packet signal transmitter L2A. Generating a data signal waveform D1, combining the data signal waveform D1 with the basic light signal waveform D2, generating a modulated analog luminance signal D3 via the signal modulator L3A) according to the signal luminance and timing specifications defined in FIG. 2, and then modulating the modulation The luminance signal D3 is converted into a modulated PWM signal D4, which is driven by the LED voltage driver D5 to generate an optical signal D6 of the light, which is emitted into the air medium in a bright form.
  • the light transmitting device collects the digital signal string that needs to be sent as: 1, 2, 3, 4, 5, 6, 7, 8, 9, the binary way of these data is 00000001, 00000010, 00000011, 00000100, 00000101, 00000110, 00000111, 00001000, 00001001, according to the calculation formula of the check code, the check code of the digital signal string is 3897, the binary is 0000111100111001, and the data signal string and the check code of the digital signal string are packed into data by the signal modulator.
  • the package is:
  • the PWM duty cycle is: Carrier voltage: 50%;
  • the first eight voltage values of the data packet are: 30%, 30%, 30%, 30%, 30%, 30%, 70%.
  • the signal receiving process of the present invention is as follows:
  • the light signal D6 of the light sent by the transmitter is received by the light sensor in the light signal receiver L3D. Due to the attenuation of the light in the air medium and the sensitivity of the sensor itself, the received analog signal can be expressed as:
  • FIG. 4 is a schematic diagram of the received signal.
  • the signal in the signal is removed from the photosensitive signal analog signal R2, and the filtered signal R3 is obtained.
  • the analog-to-digital conversion is performed on the filtered signal R3 to obtain the analog-to-digital converter to obtain the signal R4.
  • the reference signal R5 is obtained, and the analog-to-digital converter acquisition signal R4 and the reference signal R5 are input to the signal comparator R6 for signal comparison, and the number is obtained.
  • Signal R7 is the analog-to-digital converter acquisition signal R4 and the reference signal R5 are input to the signal comparator R6 for signal comparison, and the number is obtained.
  • the sensed brightness change can be converted into a voltage value through the light sensing module.
  • the actual light sensor module measures voltage values there are more interfering signals and burrs, after the reception of the microcontroller is calculated, the calculated reference brightness value 1. 5ffl Vl voltage by the reference voltage value with a voltage value of the filtered digital signal is than 1. 5mv Yes, get the voltage difference respectively For:
  • a dual verification mechanism of the physical protocol layer and the signal protocol layer is designed to ensure the correctness of the received data:
  • the average value Vs and Ve of the two reference luminance voltages are respectively sampled by the receiving end microcontroller in the two periods of the reference luminance calibration start period S2 and the reference luminance calibration end period S4, if the two If the voltage difference of the reference voltage is greater than five percent, it is judged that this signal is greatly affected by ambient light during the transmission period, and the receiving terminal microcontroller discards the received data in the physical layer.
  • the data actually received in the light receiving device of the lamp is
  • the data is transmitted and received, and the vehicle receiving device of the following vehicle will obtain the vehicle speed and GPS positioning coordinates of the preceding vehicle, and its own vehicle speed and its own GPS positioning.
  • the coordinates are compared to get the time when the two cars will collide, namely:
  • T is the calculated collision time. When ⁇ is less than 2 seconds, it indicates that there is a potential collision risk. Then A car starts to charge the brake system. When ⁇ is less than 1 second, it indicates that the collision risk is further improved. A motion measure collision will occur, and the brake pedal is controlled to take a braking action.
  • the layering of the network communication protocol and the mutual relationship between the protocol layers are the same as the foregoing device embodiment, and the specific process of performing double verification of the data in the physical protocol layer and the signal protocol layer and the foregoing device embodiment The same, will not be described here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Regulating Braking Force (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种汽车车灯装置及其通过灯光传递信号的方法,将车辆间相互通信的网络通信协议分为软件协议层(L1)、信号协议层(L2)和物理协议层(L3),软件协议层用于实现对系统需要发送和接受的数据进行校验编码和解码,信号协议层用于实现对软件协议层产生的数据包按照协议规定实现数据包信号与基本灯光信号进行组合编码,物理协议层用于实现数字信号与光信号的相互转化;该装置包括设置于车辆头部的灯光接受设备,设置于车辆尾部的灯光发送设备,灯光发送设备采集车辆的运行状态信息,以数字信息与周围车辆进行信息交互。该装置解决了现有技术中无法利用车灯作为通讯介质实现车与车之间的通讯和定位的问题。

Description

一种汽车车灯装置及其通过灯光传递信号的方法 技术领域
本发明涉及智能交通和智能车辆研究领域, 具体涉及一种汽车车灯装置及其通过灯 光传递信号的方法。
背景技术
随着经济和交通事业的不断发展, 汽车巳经成为人们不可或缺的交通工具。 但随着 汽车使用率的不断提高, 交通事故率也呈现出了逐年上升的趋势。 据统计, 在所有机动 车事故中, 由于车道偏离而造成的交通事故占所有交通事故的百分之二十, 因此, 近年 来国内外许多研究机构开始致力于汽车主动安全技术的研究。
现有技术提供的汽车主动安全系统采用的是雷达和摄像头传感器,这些系统通过信 号处理方法对周围车辆的行驶状态进行判断, 当发现潜在危险发生时, 能够提前做出判 断, 通过警告和辅助刹车的方式, 来避免事故的发生。
但是这些研究的重点主要集中在摄像头和雷达这种被动接收的传感器的基础上,通 过信号处理和计算机视觉算法的方式, 来判断危险状况的发生, 其本质是对周围车辆的 行驶方式的一个估计和近似, 这种估计和近似的精确性不仅取决于信号处理和算法的设 计, 同时还取决于外界的环境因素。 比如基于摄像头传感器的主动安全系统在夜间工作 时就会产生误报和漏检,基于雷达传感器的主动安全系统在车辆橫向运动分量会出现较 大偏差。
因此, 现有系统的缺陷主要总结为两点: 1.算法依赖性较高; 2.受传感器固有特性 的限制条件较多。 这些缺陷将使系统失去其作用和意义。
发明内容
本发明的目的是提供汽车车灯装置及其通过灯光传递信号的方法,实现前后车辆的 信号传递, 有效的对潜在危险的状况进行判断, 提高车辆行驶的安全性, 以解决现有技 术中为防止车辆的碰撞发生交通事故的汽车主动安全系统的可靠性差的问题。 为实现上述目的, 本发明的方案是: 一种汽车车灯装置, 包括安装于汽车头部的头 灯和安装于汽车尾部的尾灯, 头灯的灯体内设置有灯光接收设备, 尾灯的灯体内设置有 灯光发送设备, 所述灯光发送设备由总线数据接收器、 发送端微控制器、 车灯驱动器和 车灯组成, 所述总线数据接收器的输入端与车辆的 CAN总线连接, 用于采集本车的运行 数据信息, 所述发送端微控制器的输入端与总线数据接收器的输出端连接, 用于采集本 车的运行数据信息并进行校验编码,发送端微控制器的输出端与车灯驱动器的输入端连 接, 用于产生校验编码后的数据信息, 所述车灯驱动器的输出端驱动连接所述尾灯, 用 于驱动尾灯的亮度, 所述尾灯用于产生包含本车运行数据信息的光信号, 并发送出去; 所述灯光接收设备由镜头、 光感模块和接收端微控制器组成, 所述镜头用于对接收 到的光信号进行聚焦处理, 并将处理后的光信号发送给光感模块, 所述光感模块与所述 接收端微控制器的 AD端口连接, 用于将根据光信号转换的电压信号发送给接收端微控 制器, 所述接收端微控制器的输出端与整车控制器的输入端连接, 用于将接收的电压信 号进行模数转换、 滤波处理, 并输出控制信号给整车控制器;
所述灯光接收设备和灯光发送设备包括软件协议层、 信号协议层和物理协议层, 发 送端微控制器和接收端微控制器构成软件协议层和信号协议层, 车灯驱动器、 车灯、 镜 头和光感模块构成物理协议层; 软件协议层用于对需要发送和接收的数据进行校验编码 和解码, 产生数据包信号; 信号协议层用于实现将软件协议层产生的数据包信号与基本 灯光信号进行组合编码; 物理协议层用于实现数字信号与光信号的相互转化。
所述光感模块接收由镜头聚焦后的光线, 对光线以预定的频率进行采样, 并将采样 后的光信号转换为电压信号, 对所述电压信号进行运算放大, 将放大后的电压信号发送 给接收端微控制器的 AD采集端口, 再对采集信号进行处理, 得到最终的数字信号, 完 成对数字信号的接收。
所述校验编码后的数据为: 将车辆运行数据信息经过校验编码得到数据的校验码, 在车辆的运行数据尾部加上所述校验码, 即得到校验编码后的数据信息。
光感模块为光敏传感器。
本发明还提供一种采用上述装置通过灯光传递信号的方法, 包括如下步骤: ( 1 ) 在前面车辆和后面车辆头灯的灯体内设置灯光接收设备, 尾灯的灯体内设置 的灯光发送设备, 所述灯光接收设备和灯光发送设备均包括软件协议层、 信号协议层和 物理协议层, 灯光发送设备中的软件协议层包括校验编码器, 灯光接收设备中的软件协 议层包括校验解码器; 灯光发送设备中的信号协议层包括数据包信号发送器、 基本灯光 发生器和数据信号发生器, 灯光接收设备中的信号协议层包括数据包信号接收器; 灯光 发送设备中的物理协议层包括信号调制器和灯光产生器,灯光接收设备中的物理协议层 包括灯光信号接收器和信号解调器;
( 2 ) 前面车辆的灯光发送设备通过总线采集自身的运行数据信息, 由软件协议层 的校验编码器对所述运行数据信息进行校验编码, 得到运行数据信息的校验码, 并将校 验编码后的数据发送到数据包信号发送器,校验码用于在信号协议层对发送和接收的数 据进行校验;
( 3 ) 前面车辆的灯光发送设备的信号协议层中的数据信号发生器等待基本灯光发 生器产生的基本灯光信号的上升沿, 当收到上升沿信号后, 数据信号发生器根据数据包 信号发送器产生的数据包,产生数据信号波形, 将数据信号波形和基本灯光信号波形相 结合, 经信号调制后产生调制模拟亮度信号, 将与调制模拟亮度信号对应的调制 PWM信 号经过电压驱动器驱动尾灯, 产生光信号, 通过光信号的亮度差别将需要发送的数据包 含在尾灯灯光里, 以光亮的形式发射到空气介质中,被后面车辆接收, 完成数据的发送;
( 4 ) 后面车辆灯光接收设备物理协议层的灯光信号接收器中的光感模块接收由前 面车辆发送的光信号,经过滤波器滤波模块对光感模块接收到的模拟信号进行滤波并去 除毛剌, 得到滤波后信号, 再对滤波后信号进行模数转换得到模数转换器获取信号, 通 过对基准电压校准起始周期的电平进行采样平均, 得到基准信号, 将模数转换器获取信 号和基准信号输入到信号比较器中进行信号比较, 得到数字信号, 完成数据的接收。
后面车辆灯光接收设备将得到的数字信号与其自身的位置和车速数据信息进行比 较, 得到前面车辆与后面车辆之间的相对位置关系, 如果存在碰撞危险, 则后面车辆立 即采取相应的制动措施。
后面车辆接收到前面车辆发送的车速与位置信息,并与自身的车速和位置信息进行 比对,得到车辆将要发生碰撞的时间, 艮卩:
Figure imgf000006_0001
其中, T为两车将要发生碰撞的时间, 当 Γ小于 2秒时, 表明存在潜在的碰撞危 险, 后面车辆的整车控制器控制动系统充油, 当 Γ小于 1秒时, 后面车辆的整车控制 器控制制动踏板采取制动措施; 其中: ^表示前面车辆的车速;
(¾, )表示前面车辆的 GPS定位坐标; 表示后面车辆的车速; 表示后面车辆的 GPS定位坐标。 所述光感模块接收到的模拟信号为:
其中, s„。为接收到的模拟信号, 为原始光信号, /0为光传播过程中的衰减函数, 为外界噪声信号。 步骤 (2 ) 中对车辆的运行数据信息进行校验编码的方法为:
Figure imgf000006_0002
fi ( ) =∑ & (1 « j》〉〉 j), / = 0, 1, 2,…- . N
j=o
ΪΜ) =∑(( & (1 « j)) » j)^' = 0,1, 2, ..... N 其中, N为信号位长度, v为最终得到的校验码, 的取值范围为 0到 255的整数, ft(4) 表示将 的二进制中所有值为 1的个数, f2( )表示将 的二进制中所有值为 0的个数。 信号协议层将基准亮度校准起始周期规定为: 在信号协议层中设定灯光有效周期, 在灯光有效周期的上升沿产生后, 将产生第一预定周期时长的载波亮度, 该第一预定周 期即为基准亮度校准起始周期。 所述校验编码后的数据为: 将车辆运行数据信息经过校验编码得到数据的校验码, 在车辆的运行数据尾部加上所述校验码, 即得到校验编码后的数据。
该方法在灯光接收设备中的物理协议层对接受的数据进行校验: 当后面车辆接收的 光信号在基准亮度校准起始周期和基准亮度校准结束周期内分别采样得到两个基准亮 度电压的平均值的电压差如果大于 5%,则认为接收的信号无效,丢弃此次接收到的数据; 所述基准亮度校准结束周期是指数据信号发送完毕后,发送第二预定周期时长的载波亮 度, 该第二预定周期时长即为基准亮度校准结束周期。
该方法在信号协议层对发送和接收的数据进行校验: 当物理协议层接收的数据有效 时, 在灯光接收设备中的信号协议层, 当后面车辆接收的数据和前面车辆发送的数据的 校验码不一致时, 丢弃此次接收的数据。
本发明达到的有益效果: (1 ) 本发明将总线数据接收器采集的车辆运行数据信息 按照软件协议层和信号协议层进行协议编码处理, 并将编码后的数据发送到车灯驱动 器, 由车灯驱动器驱动汽车尾灯的亮度, 通过尾灯亮度的亮度差别将需要发送的数据包 含在尾灯的灯光里, 有效地实现车辆之间、 车灯之间、 车辆与车灯之间的通信, 有助于 实现智能交通和智能车辆, 从而能够提高行驶安全性, 有效降低潜在的交通事故;
( 2 ) 本发明将驾驶员以及车辆以数字这种可量化的信息来进行信息交互, 能够使 计算机更加准确的判断出在其驾驶环境周围的车辆的状态,对潜在的危险进行精确的判 断, 提高驾驶安全性, 同时, 该发明也有助于实现车联网, 为智能交通以及网络化交通 提供有效的设备支持。
( 3 ) 本发明的方法在接收到亮度信息后, 对接收到的数据进行校验, 通过对基准 亮度校准周期前后基准亮度电压的平均值的电压差进行判断,如果电压差超过 5%则认为 接收到的信号在传送过程中受环境影响较大, 认为接收的数据无效, 将接收到的数据丢 弃。
( 4 ) 本发明进一步在信号协议层对接收和发送的数据进行校验, 当校验后发现发 送的数据和接收的数据的校验码不一致, 则认为该次发送的数据无效, 将其丢弃, 通过 双重校验, 进一步提高了汽车碰撞的潜在危险判断的准确性, 提高车辆行驶的安全性。
( 5 ) 本发明将灯光接收设备和灯光发送设备安装在车灯的灯体内部, 使车灯不仅 具有照明的功能, 同时还可以实现车与车之间的光通信。
附图说明
图 1是本发明车灯装置在汽车上安装的结构示意图;
图 2是本发明车灯装置的结构原理图;
图 3是本发明信号放大器结构原理图;
图 4是本发明实际发送信号与实际采样信号的对比示意图;
图 5是本发明方法的协议层结构示意图;
图 6是本发明灯光信号亮度与时序协议;
图 7是本发明方法的流程示意图;
图 8是将采集的车辆数据信号编码成光信号的过程;
图 9是将光信号解码成数字信号的过程;
图 10是电压值在灯光上的明暗度示意图;
图 11是本发明信号接收过程示意图。
具体实施方式
下面结合附图对本发明作进一步详细的说明。
本发明的装置实施例:
如图 1所示,本发明的车灯装置包括安装在汽车头部的头灯和安装在汽车尾部的尾 灯, 在头灯的灯体内设置有灯光发送设备 El, 在尾灯的灯体内设置有灯光接收设备 E2。
本实施例中, 将灯光发送设备挂接到车辆 CAN总线上, 采集车辆自身需要发送的数 据信息, 如车速数据, 制动踏板数据和油门数据等, 当 A车行驶到 B车的后方时, 由于 A车头灯中的灯光接收设备对准了 B车尾灯中的灯光发送设备, 则 A车能够接收到由 B 车发来的数据, 如车速数据, 制动踏板数据和油门数据等。
如图 2所示,本实施例的灯光发送设备 E1由总线数据接收器 E1A、发送端微控制器 E1B, 车灯驱动器 E1C和尾灯 E1D组成; 灯光接收设备 E2是由镜头 E2C, 光感模块 E2B 和接收端微控制器 E2A组成, 其中, 光感模块为一个光敏传感器。
总线数据接收器 E1A的输入端与车辆的 CAN总线连接,负责采集车辆 CAN总线上的 车辆状态信息, 将车辆状态信息接收到并发送给发送端微控制器 E1B, 由发送端微控制 器 E1B对这些状态信息进行打包发送。
发送端微控制器 E1B的输入端连接总线数据接收器的输出端,接收由总线数据接收 器 E1A发来的车辆状态信息, 对车辆的状态信息进行编码处理, 并将编码后的数据发送 到车灯驱动器 E1C, 由车灯驱动器 E1C驱动尾灯的亮度。
车灯驱动器 E1C 的输入端连接发送端微控制器的输出端, 接收由发送端微控制器 E1B发送来的数据, 车灯驱动器的输出端驱动连接尾灯 E1D,实现对尾灯 E1D的驱动。
尾灯 E1D在传统车灯照明作用的基础上, 实现了通过车灯亮度的亮度差别将需要发 送的数据包含在车灯灯光里, 并以光的形式发送出去。
镜头 E2C的作用是将接收到的光进行聚焦处理, 将焦点控制在光敏传感器 E2B上。 光敏传感器 E2B接收由镜头 E2C聚焦后的光线, 对光线以一定的频率进行采样, 并 将采样后的光信号转换为对应的电压信号, 对电压信号进行运算放大, 并将放大后的电 压信号发送给接收端微控制器 E2A的 AD采集端口, 运算放大原理电路如图 3所示。
接收端微控制器 E2A的 AD采集端口连接光敏传感器 E2B,接收端微控制器 E2A通过 AD采集端口采集来自光敏传感器 E2B发来的电压信号,采集到的电压如图 4所示,接收 端微控制器 E2A对采集到的信号进行模数转换、 滤波处理, 得到最终的数字信号。
如图 5, 本实施例的灯光发送设备和灯光接收设备分为软件协议层 Ll, 信号协议层 L2和物理协议层 L3。软件协议层 L1负责对装置需要发送和接收的数据进行校验编码和 解码, 其中含有校验编码器 L1A和校验解码器 L1B。 校验编码器 L1A通过对装置需要发 送的信号数据进行计算, 得到校验码, 并将校验码加入数字串的尾部。
对数据进行校验编码的方法为:
Figure imgf000009_0001
fi ( ) =∑ & (1 « j》〉〉 j), / = 0, 1, 2,…- . N
j=o
ΪΜ) =∑(( & (1 « j)) » j)^' = 0,1, 2, ..... N
j=o
其中, N为信号位长度, v为最终得到的校验码,4的取值范围为 0到 255的整数, ΐ^) 表示将 4的二进制中所有值为 1的个数, f2(4)表示将 4的二进制中所有值为 0的个数。 信号协议层 L2负责对软件协议层 L1产生的数据包按照协议规定实现数据包信号与 基本灯光信号进行组合编码,信号协议层 L2由数据包信号发送器 L2A、基本灯光发生器 L2B, 数据信号发生器 L2C和信号接收器 L2D组成, 其中, 数据包信号发送器 L2A、 基本 灯光发生器 L2B和数据信号发生器 L2C用于完成信号的发送,数据包信号接收器 L2D用 于完成信号的接收。
物理协议层 L3用于本发明中数字信号与光信号的相互转化,物理协议层 L3由发送 端的信号调制器 L3A、灯光产生器 L3B和接收端的灯光信号接收器 L3D和信号解调器 L3C 组成。
本实施例中, 发送端微控制器和接收端微控制器构成软件协议层和信号协议层, 车 灯驱动器、 车灯、 镜头和光感模块构成物理协议层。
本发明对信号协议层 L2产生的光信号规定电压和时序规范, 包括信号低电平电压 Sl、 基准亮度校准起始周期 S2、 信号发送周期 S3、 基准亮度校准结束周期 S4、 载波电 压 S5、信号高电平电压 S6和灯光有效周期 S7,规定的电压和时序规范的工作关系如下: 如图 6, 在灯光有效周期 S7上升沿产生后, 将产生基准亮度校准起始周期 S2时长 的载波亮度 S5,之后,系统将按照由数据信号发生器 L2C产生的二进制数据信号,其中, 数据信号 1的亮度为信号高电平亮度 S6, 与之相对应的是高电平对应的 PWM波形 Sll, 数据信号 0的亮度为信号低电平亮度 Sl, 与之对应的是低电平对应 PWM波形 S12, 经过 信号发送周期 S3 的时间长度后, 数据信号发送完毕, 系统开始发送时长为基准亮度校 准结束周期 S4的载波亮度 S5。
按照上述协议, 本实施例的灯光接收设备接收数字信号的具体的过程为: 根据图 6所定义的灯光信号的电压和时序规范,接收端微控制器 E2A将检测到的上 升沿信号与阈值进行比较, 当大于阈值时, 判断为灯光有效周期 S7开始, 根据协议所 规定的基准亮度校准起始周期 S2,计算采集电压在这段时间内的平均值,作为载波电压 S5, 将之后的采样值与载波电压 S5进行比较, 大于预定阈值的判断为信号高电平, 小 于预定阈值的判断为信号低电平。
数字信号的采样所经历的总时间为协议里所规定的信号发送周期 S3,等到采样时间 到达信号发送周期 S3的时长后, 采集基准亮度校准周期 S4时长内的电压平均值, 将该 值与载波电压 S5进行比较, 如果相等, 则此次采样物理层有效, 如果不相等, 则此次 采样物理层无效。 如果此次采样物理层有效后, 在信号发送周期 S3 内采样得到的信号 数据 S9和校验数据 S10, 接收端微控制器 E2A通过计算判断, 如果信号数据 S9的计算 结果等于校验数据 S10, 则此次采样信号层有效, 如果不相等, 则此次采样信号层无效, 接收端微控制器 E2A在一个灯光有效周期 S7内采样得到的数据, 如果物理层和信号层 均有效, 则此次采样成功, 则本次数据收发成功。
下面具体说明本发明车灯装置在汽车防碰撞中的一个应用实例: 如图 1, 当 A车行驶到 B车的后面, B车尾灯中的灯光发送设备采集 B车需要发送 的数据, gp : 车辆的车速 s、 车辆的 GPS定位坐标 由 B车上设置的灯光发送 设备发送出去, 当 A车接收到由 B车发来的车速 ^和车辆的 GPS定位坐标(¾, )后, 通过与 A车自身的车速 ^和自身的 GPS定位坐标 进行比对, 得到两车将要发生 碰撞的时间, 即:
Figure imgf000011_0001
T为计算得到的碰撞时间, 当 Γ小于 2秒时, 表明存在潜在的碰撞危险, 则 Α车开 始给制动系统充油, 当 Γ小于 1秒时, 表明碰撞危险进一步提高, 如不采取制动措施碰 撞将会发生, 则控制制动踏板采取制动措施。
本发明的方法实施例:
如图 7, 本发明的方法包括如下步骤:
( 1 ) 在前面车辆和后面车辆头灯的灯体内设置灯光接收设备, 尾灯的灯体内设置 的灯光发送设备, 所述灯光接收设备和灯光发送设备均包括软件协议层、 信号协议层和 物理协议层, 灯光发送设备中的软件协议层包括校验编码器, 灯光接收设备中的软件协 议层包括校验解码器; 灯光发送设备中的信号协议层包括数据包信号发送器、 基本灯光 发生器和数据信号发生器, 灯光接收设备中的信号协议层包括数据包信号接收器; 灯光 发送设备中的物理协议层包括信号调制器和灯光产生器,灯光接收设备中的物理协议层 包括灯光信号接收器和信号解调器;
( 2 ) 前面车辆的灯光发送设备通过总线采集自身的运行数据信息, 由软件协议层 的校验编码器对所述运行数据信息进行校验编码, 得到运行数据信息的校验码, 并将校 验编码后的数据发送到数据包信号发送器,校验码用于在信号协议层对发送和接收的数 据进行校验;
( 3 ) 前面车辆的灯光发送设备的信号协议层中的数据信号发生器等待基本灯光发 生器产生的基本灯光信号的上升沿, 当收到上升沿信号后, 数据信号发生器根据数据包 信号发送器产生的数据包,产生数据信号波形, 将数据信号波形和基本灯光信号波形相 结合, 经信号调制后产生调制模拟亮度信号, 将与调制模拟亮度信号对应的调制 PWM信 号经过电压驱动器驱动尾灯, 产生光信号, 通过光信号的亮度差别将需要发送的数据包 含在尾灯灯光里, 以光亮的形式发射到空气介质中,被后面车辆接收, 完成数据的发送;
( 4 ) 后面车辆灯光接收设备物理协议层的灯光信号接收器中的光感模块接收由前 面车辆发送的光信号,经过滤波器滤波模块对光感模块接收到的模拟信号进行滤波并去 除毛剌, 得到滤波后信号, 再对滤波后信号进行模数转换得到模数转换器获取信号, 通 过对基准电压校准起始周期的电平进行采样平均, 得到基准信号, 将模数转换器获取信 号和基准信号输入到信号比较器中进行信号比较, 得到数字信号, 完成数据的接收。
如图 8, 本发明的信号发送过程如下:
信号协议层 L2中的数据信号发生器 L2C将等待由基本灯光发生器 L2B产生的上升 沿信号, 当收到上升沿信号后, 数据信号发生器 L2C根据由数据包信号发送器 L2A产生 的数据包, 产生数据信号波形 D1, 将数据信号波形 D1和基本灯光信号波形 D2相结合, 经由信号调制器 L3A) 依据图 2中定义的信号亮度和时序规范, 产生调制模拟亮度信号 D3,再将调制模拟亮度信号 D3转化为调制 PWM信号 D4,调制 PWM信号 D4经过 LED电压 驱动器 D5驱动 LED, 产生灯光的光信号 D6, 以光亮的形式发射到空气介质中。 当灯光发送设备采集到需要发送的数字信号串为: 1, 2, 3, 4, 5, 6, 7, 8, 9, 这些数据的二进制方式为 00000001, 00000010, 00000011, 00000100, 00000101, 00000110, 00000111, 00001000, 00001001, 根据校验码的计算公式得到该数字信号串 的校验码为 3897, 其二进制为 0000111100111001, 通过信号调制器将数字信号串和数 字信号串的校验码打包成的数据包为:
0111100111001,在将这些信号通过信号调制器转化为每个数据位周期内需要发送的 PWM 值, 由于数据包长度较长, 这里列举出载波亮度的 PWM占空比和数据包中前八位数据的 PWM占空比, 分别为: 载波电压为: 50%; 数据包前八位电压值为: , 30%, 30%, 30%, 30%, 30%, 30%, 70%。 这些占空比值反映在灯光上的明暗度如图 9所示。
如图 9, 本发明的信号接收过程如下:
通过灯光信号接收器 L3D 中的光敏传感器接收到由发送器发送出的灯光的光信号 D6, 由于光在空气介质中的衰减和传感器本身的灵敏度的限制, 接收到的模拟信号可以 表达为:
其中, ^为灯光发送端的原始光信号, /0为光传播过程中的衰减函数, 为 外界噪声信号。 图 4为接收到的 信号示意图。 经过滤波器滤波模块对信号进行滤波 后, 将对光敏传感器模拟信号 R2去除信号中的毛剌, 得到滤波后信号 R3, 在对滤波后 信号 R3进行模数转换得到模数转换器获取信号 R4, 通过对起始基准亮度校准起始周期 S2时长内的电平进行采样平均, 得到基准信号 R5, 将模数转换器获取信号 R4和基准信 号 R5输入到信号比较器 R6中进行信号比较, 得到数字信号 R7。
如图 10, 当接收设备的镜头对准车灯灯光发送设备时,便能够通过光感模块将感应 到的明暗变化转化为电压值, 从图 11中可以看到, 光感模块测量到的实际电压值存在 较多干扰信号和毛剌, 经过接收端微控制器的计算, 计算得到的基准亮度电压值为 1. 5fflVl 通过将滤波后的数字信号电压值与基准电压值 1. 5mv的比对, 得到电压差分别 为:
vl=-0. 21mv, v2=-0. 20mv, v3=-0. 19mv, v4=-0. 19mv, v5=-0. 20mv, v6=-0. 21mv, v7=-0 . 22mv, v8=0. 20mv,则比对后的数字信号为 0, 0, 0, 0, 0, 0, 0, 1。
由于光信号在空气中的传播容易受到天气和周围环境光的影响, 本实施例中, 设计 了物理协议层和信号协议层的双重校验机制来确保接收到的数据的正确性:
( 1 ) 物理协议层校验
在物理协议层中, 通过接收端微控制器在基准亮度校准起始周期 S2和基准亮度校 准结束周期 S4两个周期内分别采样得到两个基准亮度电压的平均值 Vs和 Ve,如果这两 个基准电压的电压差大于百分之五, 则判断这段信号在发送周期内受环境光影响较大, 接收端微控制器在物理层中就丢弃此次接收到的数据。
(2 ) 信号协议层校验 在确定物理层校验的数据有效后, 在信号协议层对接收到的数据进行进一步校验: 假设车灯灯光发送设备需要发送的数据为:
00000001, 00000010, 00000011, 00000100, 00000101, 00000110, 00000111, 00001000, 00001001
而实际在车灯灯光接收设备中接收到的数据为
00000011, 00000010, 00000011, 00000110, 00000101, 00000110, 00000111, 00001000, 00001001 从实施例给出的数据发现, 第一位和第四位数据接收错误, 通过对这些数据的校验 码计算公式,得到发送数据的校验码为 3897,而通过接收端微控制器计算出的接收数据 的校验码为 4407, 通过比对发现, 两个校验码不一致, 则信号层校验失败, 接收端微控 制器自动丢弃接收到的数据。
本发明方法在汽车防碰撞中的一个应用实例:
按照上述本实施例中的方法进行数据的发送和接收,后面车辆的灯光接收设备将得 到的前面车辆的车速 ^和 GPS定位坐标 , 与其自身的车速 ^和自身的 GPS定位 坐标 进行比对, 得到两车将要发生碰撞的时间, 即:
Figure imgf000015_0001
T为计算得到的碰撞时间, 当 Γ小于 2秒时, 表明存在潜在的碰撞危险, 则 A车开 始给制动系统充油, 当 Γ小于 1秒时, 表明碰撞危险进一步提高, 如不采取制动措施碰 撞将会发生, 则控制制动踏板采取制动措施。
本实施例中,对网络通信协议的分层和各协议层之间的相互关系与上述装置实施例 相同,对数据在物理协议层和信号协议层进行双重校验的具体过程与上述装置实施例相 同, 在此不再赘述。

Claims

权利要求书
1. 一种汽车车灯装置,包括安装于汽车头部的头灯和安装于汽车尾部的尾灯,其特 征是头灯的灯体内设置有灯光接收设备, 尾灯的灯体内设置有灯光发送设备, 所述灯光 发送设备由总线数据接收器、 发送端微控制器、 车灯驱动器和车灯组成, 所述总线数据 接收器的输入端与车辆的 CAN总线连接, 用于采集本车的运行数据信息, 所述发送端微 控制器的输入端与总线数据接收器的输出端连接,用于采集本车的运行数据信息并进行 校验编码, 发送端微控制器的输出端与车灯驱动器的输入端连接, 用于产生校验编码后 的数据信息, 所述车灯驱动器的输出端驱动连接所述尾灯, 用于驱动尾灯的亮度, 所述 尾灯用于产生包含本车运行数据信息的光信号, 并发送出去;
所述灯光接收设备由镜头、 光感模块和接收端微控制器组成, 所述镜头用于对接收 到的光信号进行聚焦处理, 并将处理后的光信号发送给光感模块, 所述光感模块与所述 接收端微控制器的 AD端口连接, 用于将根据光信号转换的电压信号发送给接收端微控 制器, 所述接收端微控制器的输出端与整车控制器的输入端连接, 用于将接收的电压信 号进行模数转换、 滤波处理, 并输出控制信号给整车控制器;
所述灯光接收设备和灯光发送设备包括软件协议层、 信号协议层和物理协议层, 发 送端微控制器和接收端微控制器构成软件协议层和信号协议层, 车灯驱动器、 车灯、 镜 头和光感模块构成物理协议层; 软件协议层用于对需要发送和接收的数据进行校验编码 和解码, 产生数据包信号; 信号协议层用于实现将软件协议层产生的数据包信号与基本 灯光信号进行组合编码; 物理协议层用于实现数字信号与光信号的相互转化。
2. 根据权利要求 1所述的汽车车灯装置,其特征是所述光感模块接收由镜头聚焦后 的光线, 对光线以预定的频率进行采样, 并将采样后的光信号转换为电压信号, 对所述 电压信号进行运算放大, 将放大后的电压信号发送给接收端微控制器的 AD采集端口, 再对采集信号进行处理, 得到最终的数字信号, 完成对数字信号的接收。
3. 根据权利要求 1所述的汽车车灯装置,其特征是所述校验编码后的数据为:将车 辆运行数据信息经过校验编码得到数据的校验码,在车辆的运行数据尾部加上所述校验 码, 即得到校验编码后的数据信息。
4. 根据权利要求 1所述的汽车车灯装置, 其特征是光感模块为光敏传感器。
5. 一种权利要求 1所述装置通过灯光传递信号的方法, 其特征是包括如下步骤:
( 1 ) 在前面车辆和后面车辆头灯的灯体内设置灯光接收设备, 尾灯的灯体内设置 的灯光发送设备, 所述灯光接收设备和灯光发送设备均包括软件协议层、 信号协议层和 物理协议层, 灯光发送设备中的软件协议层包括校验编码器, 灯光接收设备中的软件协 议层包括校验解码器; 灯光发送设备中的信号协议层包括数据包信号发送器、 基本灯光 发生器和数据信号发生器, 灯光接收设备中的信号协议层包括数据包信号接收器; 灯光 发送设备中的物理协议层包括信号调制器和灯光产生器,灯光接收设备中的物理协议层 包括灯光信号接收器和信号解调器;
( 2 ) 前面车辆的灯光发送设备通过总线采集自身的运行数据信息, 由软件协议层 的校验编码器对所述运行数据信息进行校验编码, 得到运行数据信息的校验码, 并将校 验编码后的数据发送到数据包信号发送器,校验码用于在信号协议层对发送和接收的数 据进行校验;
( 3 ) 前面车辆的灯光发送设备的信号协议层中的数据信号发生器等待基本灯光发 生器产生的基本灯光信号的上升沿, 当收到上升沿信号后, 数据信号发生器根据数据包 信号发送器产生的数据包,产生数据信号波形, 将数据信号波形和基本灯光信号波形相 结合, 经信号调制后产生调制模拟亮度信号, 将与调制模拟亮度信号对应的调制 PWM信 号经过电压驱动器驱动尾灯, 产生光信号, 通过光信号的亮度差别将需要发送的数据包 含在尾灯灯光里, 以光亮的形式发射到空气介质中,被后面车辆接收, 完成数据的发送;
( 4 ) 后面车辆灯光接收设备物理协议层的灯光信号接收器中的光感模块接收由前 面车辆发送的光信号,经过滤波器滤波模块对光感模块接收到的模拟信号进行滤波并去 除毛剌, 得到滤波后信号, 再对滤波后信号进行模数转换得到模数转换器获取信号, 通 过对基准电压校准起始周期的电平进行采样平均, 得到基准信号, 将模数转换器获取信 号和基准信号输入到信号比较器中进行信号比较, 得到数字信号, 完成数据的接收。
6. 根据权利要求 5所述的方法,其特征是后面车辆灯光接收设备将得到的数字信号 与其自身的位置和车速数据信息进行比较,得到前面车辆与后面车辆之间的相对位置关 系, 如果存在碰撞危险, 则后面车辆立即采取相应的制动措施。
7. 根据权利要求 6所述的方法,其特征是后面车辆接收到前面车辆发送的车速与位 置信息, 并与自身的车速和位置信息进行比对,得到车辆将要发生碰撞的时间, 艮卩:
■^{xB - xA)2 + {yB -yA)
τ =
vA -vB 其中, T为两车将要发生碰撞的时间, 当 Γ小于 2秒时, 表明存在潜在的碰撞危 险, 后面车辆的整车控制器控制动系统充油, 当 Γ小于 1秒时, 后面车辆的整车控制 器控制制动踏板采取制动措施; 其中: ^表示前面车辆的车速; 表示前面车辆的 GPS定位坐标; 表示后面车辆的车速; 表示后面车辆的 GPS定位坐标。
8. 根据权利要求 6所述的方法, 其特征在于, 所述光感模块接收到的模拟信号为:
其中, s„。为接收到的模拟信号, 为原始光信号, /0为光传播过程中的衰减函数, 为外界噪声信号。
9. 根据权利要求 6所述的方法, 其特征是步骤 (2 ) 中对车辆的运行数据信息进行 校验编码的方法为:
Figure imgf000018_0001
fi ½) =∑ & (1 « j》〉〉 j), / = 0, 1, 2,…- . N f2 ½) =∑ & (1 « j))〉〉 j), / = 0, 1, 2,…- . N 其中, N为信号位长度, v为最终得到的校验码, 的取值范围为 0到 255的整数, ft (4) 表示将 的二进制中所有值为 1的个数, f2( )表示将 的二进制中所有值为 0的个数。
10. 根据权利要求 6所述的方法, 其特征是信号协议层将基准亮度校准起始周期规 定为: 在信号协议层中设定灯光有效周期, 在灯光有效周期的上升沿产生后, 将产生第 一预定周期时长的载波亮度, 该第一预定周期即为基准亮度校准起始周期。
11. 根据权利要求 6所述的方法, 其特征是所述校验编码后的数据为: 将车辆运行 数据信息经过校验编码得到数据的校验码, 在车辆的运行数据尾部加上所述校验码, 即 得到校验编码后的数据。
12. 根据权利要求 6所述的方法, 其特征是该方法在灯光接收设备中的物理协议层 对接受的数据进行校验: 当后面车辆接收的光信号在基准亮度校准起始周期和基准亮度 校准结束周期内分别采样得到两个基准亮度电压的平均值的电压差如果大于 5%,则认为 接收的信号无效, 丢弃此次接收到的数据; 所述基准亮度校准结束周期是指数据信号发 送完毕后, 发送第二预定周期时长的载波亮度, 该第二预定周期时长即为基准亮度校准 结束周期。
13. 根据权利要求 12所述的方法, 其特征是该方法在信号协议层对发送和接收的 数据进行校验: 当物理协议层接收的数据有效时, 在灯光接收设备中的信号协议层, 当 后面车辆接收的数据和前面车辆发送的数据的校验码不一致时, 丢弃此次接收的数据。
PCT/CN2013/089775 2013-10-30 2013-12-18 一种汽车车灯装置及其通过灯光传递信号的方法 WO2015062146A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13896743.5A EP3064400A4 (en) 2013-10-30 2013-12-18 Automobile lamp device and method for transmitting signals through light thereof
US15/033,127 US9505406B2 (en) 2013-10-30 2013-12-18 Automobile lamp device and method for transmitting signals through light thereof
JP2016550910A JP6343350B2 (ja) 2013-10-30 2013-12-18 自動車灯火装置及びその灯光を通じて信号を伝送する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310533122.2A CN103600687B (zh) 2013-10-30 2013-10-30 一种汽车车灯装置及其通过灯光传递信号的方法
CN201310533122.2 2013-10-30

Publications (1)

Publication Number Publication Date
WO2015062146A1 true WO2015062146A1 (zh) 2015-05-07

Family

ID=50118982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089775 WO2015062146A1 (zh) 2013-10-30 2013-12-18 一种汽车车灯装置及其通过灯光传递信号的方法

Country Status (5)

Country Link
US (1) US9505406B2 (zh)
EP (1) EP3064400A4 (zh)
JP (1) JP6343350B2 (zh)
CN (1) CN103600687B (zh)
WO (1) WO2015062146A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI616373B (zh) * 2017-05-31 2018-03-01 Car light induction flashing warning device

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6484420B2 (ja) * 2014-09-17 2019-03-13 株式会社小糸製作所 車両用リアランプ
CN106157690B (zh) * 2015-03-24 2018-10-19 重庆长安汽车股份有限公司 一种基于可见光通信的汽车追尾预警系统及方法
CN105398371A (zh) * 2015-11-05 2016-03-16 卢碧娴 汽车动向宣示系统
CN105959022A (zh) * 2016-07-14 2016-09-21 京东方科技集团股份有限公司 车载互联互通装置及方法、车辆
CN106059666A (zh) * 2016-07-20 2016-10-26 上海小糸车灯有限公司 基于LiFi的汽车行驶数据交互系统及其车辆信号照明装置
TWI606750B (zh) * 2016-08-08 2017-11-21 修平學校財團法人修平科技大學 燈具狀態檢測系統及其檢測方法
CN106330330B (zh) * 2016-10-26 2019-02-26 桂林理工大学 一种可见光通信车灯对讲装置
CN106506078B (zh) * 2016-10-26 2019-04-12 桂林理工大学 一种带车牌定位的可见光通信车灯对讲方法
US10139818B2 (en) * 2016-11-16 2018-11-27 Baidu Usa Llc Visual communication system for autonomous driving vehicles (ADV)
CN108082035A (zh) * 2016-11-22 2018-05-29 常州星宇车灯股份有限公司 一种基于led车灯的车对车通信系统
CN108202661B (zh) * 2016-12-19 2021-07-27 法法汽车(中国)有限公司 车载led控制器、车用信息交互系统及自动驾驶汽车
CN106741366A (zh) * 2016-12-30 2017-05-31 赵恩龙 智能车载装置及含有该智能车载装置的自行车
CN108347281B (zh) * 2017-01-23 2020-12-25 中国移动通信有限公司研究院 一种车辆通信方法、车辆通信装置和车辆
CN107222959B (zh) * 2017-06-09 2019-06-25 吉利汽车研究院(宁波)有限公司 车辆碰撞试验灯光系统
DE102017121114B4 (de) 2017-09-12 2020-08-06 Elmos Semiconductor Aktiengesellschaft Verfahren zum Betrieb einer H-Brücke zum Erzeugen kurzer Lichtpulse mittels eines LED-Leuchtmittels
DE102017121109B3 (de) 2017-09-12 2018-12-27 Elmos Semiconductor Aktiengesellschaft LED-Scheinwerfer für Datenübertragungszwecke und Verfahren zu dessen Nutzung
DE102018120283A1 (de) 2017-09-12 2019-03-14 Elmos Semiconductor Aktiengesellschaft Verfahren zum Betreiben eines datenübertragungsfähigen LED-Scheinwerfers mit hohen gepulsten LED-Betriebsspannungen
DE102017121112B3 (de) 2017-09-12 2018-12-27 Elmos Semiconductor Aktiengesellschaft Lichtpulsfähiger Scheinwerfer
DE102017121113B3 (de) 2017-09-12 2018-12-27 Elmos Semiconductor Aktiengesellschaft LED-Scheinwerfer für Mess- und Datenübertragungszwecke und Verfahren zu dessen Nutzung
DE102018120271B4 (de) 2017-09-12 2023-09-07 Elmos Semiconductor Se LED-H-Brückenbetriebsverfahren mit hohen gepulsten Betriebsspannungen
DE102018120245B4 (de) 2017-09-12 2024-02-15 Elmos Semiconductor Se H-Brücke zum Erzeugen kurzer Lichtpulse mittels eines LED-Leuchtmittels und hoher gepulster Betriebsspannungen und Verfahren zu deren Betrieb
CN107749094A (zh) * 2017-09-13 2018-03-02 陕西千山航空电子有限责任公司 一种非接触快取记录器
CN107911168A (zh) * 2017-11-30 2018-04-13 南京协众汽车空调集团有限公司 一种基于车灯的车牌认证方法及装置
CN108234022B (zh) * 2018-01-02 2020-03-24 京东方科技集团股份有限公司 光通信控制方法、装置和光通信系统
KR102129199B1 (ko) * 2019-02-07 2020-07-01 유인환 차량 운행 보조 장치
CN110497846A (zh) * 2019-09-10 2019-11-26 福建省汽车工业集团云度新能源汽车股份有限公司 汽车信号灯系统、汽车控制系统及智能汽车
CN111169475B (zh) * 2020-01-15 2022-01-11 北京汽车集团有限公司 车辆碰撞预警装置、方法及车辆
DE102020125683A1 (de) * 2020-10-01 2022-04-07 Audi Aktiengesellschaft Kraftfahrzeug mit Außenleuchten und einer Steuereinrichtung
CN112193186A (zh) * 2020-10-16 2021-01-08 北京航天发射技术研究所 一种基于光电效应的车辆灯光状态采集系统、设备和车辆
CN112874518A (zh) * 2021-01-19 2021-06-01 合肥索斯智能科技有限公司 一种基于可见光通信的车车互联及防碰撞系统
CN115100840B (zh) * 2022-05-16 2024-01-12 深圳绿米联创科技有限公司 设备控制方法、装置、电子设备及存储介质
CN115914452A (zh) * 2022-11-10 2023-04-04 南京安旺芯电子科技有限公司 一种可通过手机蓝牙更新软件的车灯控制器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1034893A (zh) * 1988-03-31 1989-08-23 李升阳 汽车大灯全自动调光系统
CN2541261Y (zh) * 2002-06-04 2003-03-26 邢树村 机动车辆间安全信号应答装置
CN1451567A (zh) * 2002-04-18 2003-10-29 李载敏 一种车灯数字编、译码一线控制装置及方法
KR20120096229A (ko) * 2011-02-22 2012-08-30 영남대학교 산학협력단 차량의 지능형 회피 제어 장치 및 방법
DE102011119558A1 (de) * 2011-11-26 2013-05-29 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Verfahren zur parameterabhängigen Ansteuerung einer Leuchteinheit in einem Kraftfahrzeug

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179561A (en) * 1988-08-16 1993-01-12 Ntt Data Communications Systems Corporation Totally self-checking checker
GB2359180B (en) * 1997-10-21 2002-04-17 911 Emergency Products Inc Warning signal light
US6367949B1 (en) * 1999-08-04 2002-04-09 911 Emergency Products, Inc. Par 36 LED utility lamp
US6831571B2 (en) * 1999-12-21 2004-12-14 Halliburton Energy Services, Inc. Logging device data dump probe
US20020105423A1 (en) * 2000-12-05 2002-08-08 Rast Rodger H. Reaction advantage anti-collision systems and methods
CN2765820Y (zh) * 2004-09-10 2006-03-22 谢政伟 汽车驾驶信息显示装置
US20060152383A1 (en) * 2004-12-28 2006-07-13 Tsutomu Yamate Methods and apparatus for electro-optical hybrid telemetry
CN1799909A (zh) * 2005-01-02 2006-07-12 傅建中 被动式汽车追尾预警避撞技术方案
EP1681657A1 (en) * 2005-01-14 2006-07-19 HighGain Antenna Co., Ltd. Multifunctional On-board-equipment (OBE) for intelligent transport systems (ITS)
US20080007421A1 (en) * 2005-08-02 2008-01-10 University Of Houston Measurement-while-drilling (mwd) telemetry by wireless mems radio units
US20070242339A1 (en) * 2006-04-17 2007-10-18 James Roy Bradley System and Method for Vehicular Communications
US7961086B2 (en) * 2006-04-17 2011-06-14 James Roy Bradley System and method for vehicular communications
US20070242338A1 (en) * 2006-04-17 2007-10-18 James Roy Bradley System and Method for Vehicular Communications
CN2917174Y (zh) * 2006-06-07 2007-06-27 严胜利 夜间转向信号灯前照灯灯光互动装置
JP2007336179A (ja) * 2006-06-14 2007-12-27 Auto Network Gijutsu Kenkyusho:Kk 車載データベースシステム
JP2008262418A (ja) * 2007-04-12 2008-10-30 Toyota Motor Corp 渋滞緩和システム、地上システム、渋滞予測制御装置
US7701361B2 (en) * 2007-07-23 2010-04-20 Chun Shan Institute Of Science And Technology, Araments Bureau, M.N.D. Parking information sensing device and providing method thereof
CN202413589U (zh) * 2011-10-20 2012-09-05 范小骐 汽车车辆门及门框边缘提示信号系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1034893A (zh) * 1988-03-31 1989-08-23 李升阳 汽车大灯全自动调光系统
CN1451567A (zh) * 2002-04-18 2003-10-29 李载敏 一种车灯数字编、译码一线控制装置及方法
CN2541261Y (zh) * 2002-06-04 2003-03-26 邢树村 机动车辆间安全信号应答装置
KR20120096229A (ko) * 2011-02-22 2012-08-30 영남대학교 산학협력단 차량의 지능형 회피 제어 장치 및 방법
DE102011119558A1 (de) * 2011-11-26 2013-05-29 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Verfahren zur parameterabhängigen Ansteuerung einer Leuchteinheit in einem Kraftfahrzeug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3064400A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI616373B (zh) * 2017-05-31 2018-03-01 Car light induction flashing warning device

Also Published As

Publication number Publication date
JP6343350B2 (ja) 2018-06-13
CN103600687A (zh) 2014-02-26
JP2017503439A (ja) 2017-01-26
US9505406B2 (en) 2016-11-29
EP3064400A1 (en) 2016-09-07
CN103600687B (zh) 2015-09-02
US20160257306A1 (en) 2016-09-08
EP3064400A4 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
WO2015062146A1 (zh) 一种汽车车灯装置及其通过灯光传递信号的方法
Takai et al. Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver
CN104485993B (zh) 一种车载可见光无线数字语音通信系统
CN106059666A (zh) 基于LiFi的汽车行驶数据交互系统及其车辆信号照明装置
CN108347281B (zh) 一种车辆通信方法、车辆通信装置和车辆
CN104966415A (zh) 基于led可见光通信技术的车辆安全控制方法及系统
CN204928831U (zh) 一种基于车载led和可见光通信的车联网系统
CN108696320A (zh) 调制的红外照明
CN111641452B (zh) 基于occ的车对车通信系统发射机和接收机
KR102110582B1 (ko) 가시광 통신을 이용한 전방 차량 팔로잉 장치
CN112256004A (zh) 无人驾驶车辆的远程驾驶控制装置、控制方法及无人驾驶车辆
CN110012448B (zh) 基于灯光的车辆端通信方法
CN109345835A (zh) 一种基于车车通信的前向预警方法及装置
KR20190018958A (ko) 교통신호정보를 송/수신하기 위한 시스템 및 그 동작방법
CN116935698A (zh) 一种基于可见光通信的车辆换道意图交互方法和系统
CN108616306B (zh) 一种车载互联互通方法、计算机可读存储介质和车载终端
CN202362940U (zh) 一种模型车用自动识别交通信号灯控制装置
CN205847277U (zh) 一种基于LiFi的车辆信号照明装置
CN108631867A (zh) 一种基于led车灯的车对车通信收发器及编解码方法
CN210899180U (zh) 一种前后车辆之间led无线光通信数据传输系统
CN206678883U (zh) 一种车载自适应led车前灯通信装置
CN205854058U (zh) 一种车载led通信和照明装置
KR20190020525A (ko) 신호등 시스템의 조도 유지 방법 및 그 장치
Plattner et al. Camera-based Vehicle-to-Vehicle Visible Light Communication-A Software-Only Solution for Vehicle Manufacturers
CN207926591U (zh) 一种基于汽车灯光的信息通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550910

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15033127

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013896743

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013896743

Country of ref document: EP