WO2015053296A1 - 偏光板のセット及び前面板一体型液晶表示パネル - Google Patents

偏光板のセット及び前面板一体型液晶表示パネル Download PDF

Info

Publication number
WO2015053296A1
WO2015053296A1 PCT/JP2014/076870 JP2014076870W WO2015053296A1 WO 2015053296 A1 WO2015053296 A1 WO 2015053296A1 JP 2014076870 W JP2014076870 W JP 2014076870W WO 2015053296 A1 WO2015053296 A1 WO 2015053296A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
plate
liquid crystal
polarizer
film
Prior art date
Application number
PCT/JP2014/076870
Other languages
English (en)
French (fr)
Inventor
崇仁 河村
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020217003911A priority Critical patent/KR102457358B1/ko
Priority to KR1020167009796A priority patent/KR20160067860A/ko
Priority to CN201480055804.XA priority patent/CN105637393B/zh
Priority to US15/028,246 priority patent/US9740044B2/en
Publication of WO2015053296A1 publication Critical patent/WO2015053296A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133567Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the back side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/54Arrangements for reducing warping-twist
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • a set of polarizing plates consisting of a front plate integrated polarizing plate and a rear polarizing plate integrated with a front plate that suppresses the amount of warpage in a high temperature environment when a liquid crystal display panel is formed, and these are attached to a liquid crystal cell.
  • the present invention relates to a liquid crystal display panel integrated with a front plate.
  • Liquid crystal display devices have been used for desktop computers, electronic watches, personal computers, etc., but their demand has increased rapidly in recent years, and recently they are also used for mobile phones and tablet terminals. Its uses are also expanding.
  • a pair of polarizing plates are usually arranged on the front and back of the liquid crystal cell to form a liquid crystal display panel.
  • liquid crystal display panels which are the components, are required to be lighter and thinner. There is a tendency to make the front plate thinner. In addition, in order to improve visibility by eliminating reflection and light scattering at the interface, the front plate tends to be integrated with the liquid crystal display panel with an adhesive or an ultraviolet curable resin.
  • the front plate and the liquid crystal cell are thick, the warpage due to the contraction of the polarizing plate was suppressed even in a high temperature environment, but the glass used in the recent front plate and liquid crystal cell as described above. With the tendency to reduce the thickness of the liquid crystal display, there is a problem that the liquid crystal display panel warps when used in a high temperature environment and does not fit in the casing of the final product.
  • the liquid crystal display has been changed by changing the thickness of the polarizing plate disposed on the liquid crystal cell viewing side and the side opposite to the liquid crystal cell viewing side (back side).
  • Techniques for suppressing panel warpage have been developed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-58429
  • the thickness of a polarizing film (polarizer in the present invention) of a polarizing plate disposed on the viewing side of a liquid crystal cell is disposed on the back side of the liquid crystal cell.
  • Patent Document 2 describes polarizing plates on the viewing side and the back side of a liquid crystal cell in a liquid crystal display element (a liquid crystal display panel referred to in the present invention) using a plastic substrate liquid crystal cell.
  • a liquid crystal display element in which the amount of warpage of a plastic substrate liquid crystal cell is suppressed by changing the thickness of the protective film is described.
  • Patent Document 2 In the method of changing the thickness of the protective film as described above, the liquid crystal cell is warped due to the thermal contraction of the protective film, which may cause a problem that the liquid crystal cell does not fit in the case of the final product.
  • JP 2012-58429 A Japanese Patent No. 4666430 (Japanese Patent Laid-Open No. 2002-221715)
  • the present invention has been made in order to solve the above-described conventional problems.
  • the main object of the present invention is to set a polarizing plate in which the amount of warpage in a high-temperature environment is suppressed when the liquid crystal display panel is used, and the polarization
  • An object is to provide a liquid crystal display panel integrated with a front plate formed by bonding a set of plates to a liquid crystal cell.
  • the present invention comprises a front-side polarizing plate and a front plate having a Young's modulus of 2 GPa or more, which is disposed on the viewing side and bonded via an ultraviolet curable resin or an adhesive, and is disposed on the viewing side of the liquid crystal cell.
  • the distance (d1) from the surface far from the front plate of the polarizer of the front plate integrated polarizing plate to the liquid crystal cell is typically a surface far from the front plate of the polarizer of the front plate integrated polarizing plate. This corresponds to the thickness of a laminate composed of at least one transparent polymer film and at least one pressure-sensitive adhesive layer.
  • the distance (d2) from the surface of the back side polarizing plate close to the front plate side of the polarizer to the liquid crystal cell is typically laminated on the surface of the back side polarizing plate close to the front plate side of the polarizer. This corresponds to the thickness of the adhesive layer or the laminate of the adhesive layer and the transparent polymer layer.
  • the distance (d1) from the surface far from the front plate of the polarizer of the front plate integrated polarizing plate to the liquid crystal cell, and the distance (d2) from the surface near the front plate side of the polarizer of the back side polarizing plate to the liquid crystal cell Is sufficient as long as it satisfies the relationship d1> d2, and the upper and lower limits of d1 and d2 are not limited.
  • d1 is up to about 100 ⁇ m
  • d2 is 5 ⁇ m or more.
  • the difference d1-d2 between d1 and d2 is preferably 95 ⁇ m or less.
  • the set of polarizing plates can take the following various modes, either alone or in combination.
  • the front side polarizing plate and the back side polarizing plate are typically both protective films of transparent polymer films on at least one surface of a polarizer made of a polyvinyl alcohol-based resin film. Is a laminated polarizing plate.
  • the transparent polymer film may be a transparent polymer film having an in-plane retardation.
  • the front polarizing plate of the set of polarizing plates may be provided with another retardation plate made of a transparent polymer film on the side far from the front plate of the polarizer.
  • the back side polarizing plate of the set of polarizing plates may be provided with an optical film other than the transparent polymer film on the side farther from the front plate side of the polarizer.
  • the total thickness of the transparent polymer film of the front side polarizing plate is preferably thicker than the total thickness of the transparent polymer film of the back side polarizing plate.
  • the front-side polarizing plate and the rear-side polarizing plate both have a rectangular shape having a long side and a short side, and the front-side polarizing plate preferably has an absorption axis approximately short side direction. It is parallel and the back side polarizing plate has an absorption axis substantially parallel to the long side direction.
  • a front plate integrated polarizing plate constituting the polarizing plate set is attached to the viewing side of the liquid crystal cell on the polarizing plate side, and the polarizing plate is set on the back side of the liquid crystal cell.
  • a liquid crystal display panel integrated with a front plate to which a rear-side polarizing plate constituting the substrate is attached is formed.
  • Such a front plate-integrated liquid crystal display panel is a front plate-integrated liquid crystal display panel having an absolute value of 0.5 mm or less when warped at 85 ° C. for 240 hours.
  • the curvature in the high temperature environment in the liquid crystal display panel which integrated the front plate can be eliminated, and the front plate integrated liquid crystal display panel which fits in the case of the final product in a high temperature environment is obtained. be able to.
  • the set of polarizing plates of the present invention comprises a front plate integrated polarizing plate and a back side polarizing plate.
  • FIG. 1 shows a schematic cross-sectional view of an example of a preferred layer structure in a set of polarizing plates according to the present invention.
  • the front plate integrated polarizing plate 30 constituting the polarizing plate set of the present invention is arranged on the viewing side of the liquid crystal cell, and the front plate 10 arranged on the side far from the liquid crystal cell is UV-cured on the front side polarizing plate 30. It is bonded through a mold resin or an adhesive 20.
  • the front side polarizing plate 30 is obtained by bonding transparent protective films 35a and 35b of the front side polarizing plate to both surfaces of the polarizer 37 of the front side polarizing plate, respectively.
  • the back side polarizing plate 50 is obtained by bonding transparent protective films 55a and 55b of the back side polarizing plate to both surfaces of the polarizer 57 of the back side polarizing plate, respectively.
  • the front plate is assumed to have a Young's modulus of 2 GPa or more from the role of suppressing or protecting the warpage of the liquid crystal cell.
  • the front plate may be a single layer or a stacked layer as long as the Young's modulus is satisfied. Since the front plate is disposed on the viewing side of the liquid crystal cell as described above, specifically, on the outermost surface of the final product, it is assumed to be used outdoors or semi-outdoors. Therefore, from the viewpoint of durability, the front plate is preferably composed of an inorganic material such as glass and tempered glass, an organic material such as polycarbonate resin and acrylic resin, and the like.
  • the front plate may be, for example, tempered glass or a film constituting a touch panel as long as the Young's modulus is 2 GPa or more.
  • the touch panel method is not particularly limited, and examples thereof include a capacitance method, a surface acoustic wave method, a resistive film method, an electromagnetic induction method, an optical sensor method, and an infrared method.
  • the front plate may have functions such as antireflection, antifouling, electromagnetic wave shielding, near infrared shielding, color adjustment, and glass scattering prevention.
  • the front plate having such a function may be, for example, a laminate in which at least one film layer having these functions is laminated on at least one surface of the front plate.
  • Such a multi-layer front plate is, for example, a method of directly applying an effective agent for imparting the above functions to a substrate made of an organic material or an inorganic material as described above, or a function having the above functions created separately. You may make and paste the film.
  • the UV curable resin or adhesive that bonds the front plate and the front-side polarizing plate is preferably a transparent one whose refractive index is close to that of the front plate.
  • a general ultraviolet curable liquid such as (meth) acrylic acid ester or epoxy resin
  • an adhesive what used the acrylic polymer, the silicone type polymer, polyester, polyurethane, polyether etc. as a base polymer can be used.
  • an acrylic pressure-sensitive adhesive that has excellent optical transparency and high transparency, such as an acrylic pressure-sensitive adhesive.
  • (meth) acrylic acid ester means that either an acrylic acid ester or a methacrylic acid ester may be used, and “(meth)” when referred to as (meth) acrylate or the like has the same meaning. is there.
  • the thickness of the polarizer 37 constituting the front side polarizing plate and the thickness of the polarizer 57 constituting the back side polarizing plate arranged on the back side of the liquid crystal cell is not particularly limited,
  • the thickness of the polarizer constituting the front side polarizing plate is typically 5 ⁇ m or more and 30 ⁇ m or less, and the thickness of the polarizer of the back side polarizing plate of the liquid crystal cell is typically 3 ⁇ m or more and 25 ⁇ m or less. It is.
  • the polarizer used for the front-side and back-side polarizing plates any appropriate one can be used as long as the thickness of the polarizer is satisfied.
  • a polyvinyl alcohol-based resin film having a dichroic dye adsorbed and oriented is used as the polarizer.
  • the polyvinyl alcohol resin constituting the polarizer can be obtained by saponifying a polyvinyl acetate resin.
  • the polyvinyl acetate resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith.
  • Examples of other monomers copolymerized with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the saponification degree of the polyvinyl alcohol-based resin is usually about 85 to 100 mol%, preferably 98 mol% or more.
  • This polyvinyl alcohol-based resin may be further modified, and for example, polyvinyl formal and polyvinyl acetal modified with aldehydes may be used.
  • the degree of polymerization of the polyvinyl alcohol resin is usually about 1,000 to 10,000, preferably about 1,500 to 5,000.
  • Specific polyvinyl alcohol resins and dichroic dyes include, for example, polyvinyl alcohol resins and dichroic dyes exemplified in JP2012-159778A.
  • a film obtained by forming such a polyvinyl alcohol resin is used as an original film of a polarizer.
  • the method for forming a polyvinyl alcohol-based resin is not particularly limited, and can be formed by a known method.
  • the film thickness of the raw film made of polyvinyl alcohol resin is not particularly limited, but is, for example, about 1 to 150 ⁇ m. Considering easiness of stretching, the film thickness is preferably 3 ⁇ m or more and 75 ⁇ m or less.
  • the polarizer is, for example, a step of stretching the polyvinyl alcohol-based resin film as described above in a uniaxial stretching step, a step of dyeing the polyvinyl alcohol-based resin film with a dichroic pigment, and adsorbing the dichroic pigment, two colors
  • the polyvinyl alcohol-based resin film on which the ionic dye is adsorbed is processed by a boric acid aqueous solution, and after the treatment with the boric acid aqueous solution, the step of washing with water and finally drying to produce.
  • a polyvinyl alcohol resin layer to be a polarizer is formed by coating a polyvinyl alcohol resin on a base film, and a protective layer of a transparent polymer film is laminated thereon to produce a polarizing plate. May be.
  • Both the front-side polarizing plate and the rear-side polarizing plate defined in the present invention are protective films made of a transparent polymer film on at least one surface of the polarizer produced as described above (in this specification, transparent protective film Are also laminated).
  • this transparent protective film what is formed from an appropriate transparent resin can be used. Specifically, it is preferable to use a polymer made of a polymer excellent in transparency, uniform optical properties, mechanical strength, thermal stability, and the like.
  • transparent protective films examples include cellulose films such as triacetyl cellulose and diacetyl cellulose, polyester films such as polyethylene terephthalate, polyethylene isophthalate, and polybutylene terephthalate, polymethyl (meth) acrylate, and polyethyl (meth) acrylate.
  • Acrylic resin film, polycarbonate film, polyethersulfone film, polysulfone film, polyimide film, polyolefin film, polynorbornene film and the like can be used, but are not limited thereto.
  • the transparent protective film applied to the front side polarizing plate and the transparent protective film applied to the back side polarizing plate may be the same, or may be independent and different.
  • the transparent protective film closer to the liquid crystal cell (35b or 55a in FIG. 1) may be omitted or one of them.
  • the transparent protective film provided on the liquid crystal cell side in at least one polarizing plate has an in-plane retardation.
  • Both of the front-side transparent protective films (35a and 35b in FIG. 1) may be retardation plates having an in-plane retardation.
  • the in-plane retardation of the transparent protective film can be imparted by uniaxial stretching or biaxial stretching.
  • the in-plane retardation value may be appropriately set according to the type of liquid crystal cell to be applied, but is generally preferably 30 nm or more.
  • the upper limit of the in-plane retardation value is not particularly limited, but for example, up to about 300 nm is sufficient.
  • Adhesives and pressure-sensitive adhesives can be used for bonding between the polarizer and the transparent protective film.
  • a water-based adhesive containing a polyvinyl alcohol resin or a urethane resin as a main component, or a photocurable adhesive containing a photocurable resin such as an ultraviolet curable resin (epoxy resin) can be used.
  • a photocurable adhesive containing a photocurable resin such as an ultraviolet curable resin (epoxy resin)
  • the pressure-sensitive adhesive those having an acrylic polymer, silicone polymer, polyester, polyether or the like as a base polymer can be used.
  • the transparent protective film Prior to bonding to the polarizer, the transparent protective film may be subjected to easy adhesion treatment such as saponification treatment, corona treatment, primer treatment, and anchor coating treatment on the bonding surface.
  • the thickness of the transparent protective film of the front side polarizing plate and the back side polarizing plate is usually in the range of about 5 to 200 ⁇ m, preferably 10
  • a hard coat may be applied to the surface of the protective film (side close to the front plate) as necessary.
  • a surface treatment layer such as a layer, an antireflection layer or an antiglare layer may be provided.
  • the hard coat layer is a surface treatment layer formed to prevent scratches on the surface of the polarizing plate. Adhesion and hardness with a transparent protective film mainly from an ultraviolet curable resin such as an acrylic or silicone resin. Is excellently selected and can be formed on the surface of the transparent protective film.
  • the antireflection layer is a surface treatment layer formed for the purpose of preventing reflection of external light on the surface of the polarizing plate, and can be formed by a known method.
  • the anti-glare layer is a surface treatment layer that is formed in order to prevent the visibility from being generated when external light is reflected on the surface of the polarizing plate, for example, a roughening method such as a sandblasting method or an embossing method,
  • the surface of the transparent protective film is formed to have an uneven structure by a method of mixing transparent fine particles with an ultraviolet curable resin.
  • a polarizing plate is obtained by bonding the transparent protective film to at least one surface of a polarizer.
  • the transparent protective film described above may be bonded to both sides of the polarizer.
  • bonding of a polarizer and a transparent protective film is not specifically limited, It can carry out using the adhesive agent, adhesive, etc. which consist of an epoxy-type polymer.
  • Such an adhesive layer or pressure-sensitive adhesive layer is formed as an aqueous solution coating / drying layer or the like.
  • other additives and catalysts such as acids can be blended as necessary.
  • an optical film having the following functions in addition to the transparent polymer film can be used by laminating one layer or two or more layers.
  • examples of such an optical film include a reflective layer, a transflective reflective layer, and a brightness enhancement film.
  • a reflective layer a reflective layer
  • a transflective reflective layer a transflective reflective layer
  • a brightness enhancement film a reflective layer
  • a transparent protective film it can also be set as the polarizing plate by which the brightness improvement film is further laminated
  • one or more retardation plates may be laminated.
  • an elliptically or circularly polarizing plate in which a retardation plate is further laminated on a polarizing plate made of the polarizer and the transparent protective film, one side of the polarizing plate made of the polarizer and the transparent protective film one A polarizing plate in which the protective layer is a viewing angle compensation film is exemplified.
  • the retardation plate is a ⁇ plate (1 / 2 ⁇ plate or 1 / 4 ⁇ plate) that can form an elliptically polarized light or a circularly polarized light mode composite polarizing plate used for an image display device for mobile use.
  • the composite polarizing plate of the elliptical polarization mode or the circular polarization mode has a function of changing to an elliptical polarization or a circular polarization when the incident polarization direction is a linear polarization, and changing to a linear polarization when the incident polarization direction is an elliptical polarization or a circular polarization. Yes.
  • phase difference plate that can convert elliptically polarized light or circularly polarized light into linearly polarized light and linearly polarized light into elliptically polarized light or circularly polarized light
  • a quarter ⁇ plate is used as a phase difference plate that can convert elliptically polarized light or circularly polarized light into linearly polarized light and linearly polarized light into elliptically polarized light or circularly polarized light.
  • the 1 / 2 ⁇ plate has a function of changing the direction of linearly polarized light.
  • the retardation plate include polymers selected from polycarbonate, polyvinyl alcohol, polystyrene, polymethyl methacrylate, polyolefins such as polypropylene, polyarylate, polyamide, polyolefin, polynorbornene, and the like.
  • stretching is illustrated. Such a stretched film may be processed by an appropriate method such as uniaxial or biaxial.
  • attachment with a heat-shrinkable film may be sufficient.
  • the brightness enhancement film is used for the purpose of improving the brightness in a liquid crystal display device or the like.
  • a plurality of thin film films having different refractive index anisotropies are laminated to cause anisotropy in reflectance
  • the various optical films described above are integrated with the polarizing plate using a pressure-sensitive adhesive or an adhesive, but the pressure-sensitive adhesive or the adhesive used for that purpose is not particularly limited, and an appropriate one can be selected. Use it. It is preferable to use a pressure-sensitive adhesive from the viewpoint of easy bonding work and prevention of optical distortion. There are no particular limitations on the pressure-sensitive adhesive, and for example, an acrylic polymer, silicone polymer, polyester, polyurethane, polyether or the like can be used as the base polymer. Above all, like acrylic pressure-sensitive adhesives, it has excellent optical transparency, retains appropriate wettability and cohesion, has excellent adhesion to substrates, and has heat resistance, etc. It is preferable to select and use one that does not cause peeling problems such as floating and peeling under the environment.
  • the pressure-sensitive adhesive layer may contain fine particles for exhibiting light scattering properties, and include fillers, pigments and coloring made of glass fibers, glass beads, resin beads, metal powder, other inorganic powders, and the like.
  • An agent, an antioxidant, an ultraviolet absorber and the like may be blended.
  • ultraviolet absorbers include salicylic acid ester compounds, benzophenone compounds, benzotriazole compounds, cyanoacrylate compounds, and nickel complex compounds.
  • the pressure-sensitive adhesive layer can be provided on the protective film constituting the polarizing plate or the transparent polymer film layer provided on the polarizing plate in order to adhere to other members such as a liquid crystal cell.
  • the pressure-sensitive adhesive layer can be formed by appropriately using a conventionally used pressure-sensitive adhesive such as acrylic.
  • a conventionally used pressure-sensitive adhesive such as acrylic.
  • the pressure-sensitive adhesive layer has excellent heat resistance.
  • the pressure-sensitive adhesive layer may be provided on a necessary surface as necessary.
  • a transparent protective film of a polarizing plate comprising a polarizer and a transparent protective film, one or both surfaces of the transparent protective film as required.
  • An adhesive layer may be provided on the surface.
  • an appropriate material such as acrylic, silicone, polyester, polyurethane, polyether, or rubber can be used.
  • the back side polarizing plate 50 has one or more layers of the above optical film laminated on the outermost surface on the side opposite to the liquid crystal cell 60 (the side far from the front plate side). It is preferable.
  • Examples of such an optical film include a brightness enhancement film.
  • the pressure-sensitive adhesive layer provided on the polarizing plate or the optical film is preferably temporarily covered with a separator for the purpose of preventing contamination until the pressure-sensitive adhesive layer is used for film adhesion.
  • the separator is formed by, for example, a method of providing a release coat with an appropriate release agent such as a silicone-based, long-chain alkyl-based, fluorine-based, or molybdenum sulfide on an appropriate thin leaf according to the above-described transparent protective film or the like. be able to.
  • the angle formed by the short side of the liquid crystal cell and the absorption axis of the front side polarizing plate 30 is usually within ⁇ 45 degrees, and preferably within ⁇ 10 degrees.
  • the angle formed by the long side of the liquid crystal cell and the absorption axis of the back-side polarizing plate is usually within ⁇ 45 degrees, and preferably within ⁇ 10 degrees.
  • the front side polarizing plate 30 has an absorption axis substantially parallel to the short side direction of the liquid crystal cell
  • the back side polarizing plate has an absorption axis substantially parallel to the long side direction of the liquid crystal cell.
  • FIG. 2 is a schematic sectional view showing an example of a preferable layer structure in the front plate integrated liquid crystal display panel 80.
  • the front plate integrated liquid crystal display panel 80 of the present invention has a front plate integrated polarizing plate 40 constituting the set of polarizing plates of FIG. It is the structure which bonded the board 50 to the back side of the liquid crystal cell 60 through the adhesive, respectively.
  • Bonding of the front plate integrated polarizing plate 40 and the rear polarizing plate 50 to the liquid crystal cell 60 can be performed using the adhesives 25b and 45a, respectively.
  • the pressure-sensitive adhesive include those having a base polymer such as an acrylic polymer, a silicone polymer, polyester, polyurethane, or polyether. Excellent optical transparency, good heat resistance, less prone to peeling problems such as floating and peeling under high temperature environment, preventing deterioration of optical properties due to thermal expansion differences, etc. It is preferable to use an acrylic pressure-sensitive adhesive that is advantageous for suppressing warpage.
  • the front plate integrated polarizing plate 40 and the back side polarizing plate 50 are bonded so that their short sides are parallel to the short sides of the liquid crystal cell 60.
  • the driving mode of the liquid crystal cell may be any known mode such as VA mode, IPS mode, TN mode, etc.
  • the liquid crystal cell substrate on which the front plate integrated polarizing plate and the rear polarizing plate are bonded is Typically, it is made of glass or transparent resin.
  • the front plate integrated liquid crystal display panel of the present invention has an absolute value of 0.5 mm or less, preferably 0.3 mm or less when heated at 85 ° C. for 240 hours. Therefore, warpage under a high temperature environment is suppressed, and a front plate integrated liquid crystal display panel that fits in the casing of the final product is obtained.
  • Example 1 Preparation of polarizing plate set
  • the front-side polarizing plate was prepared as follows. First, a 30 ⁇ m-thick polyvinyl alcohol film (average polymerization degree of about 2,400, saponification degree of 99.9 mol% or more) was uniaxially stretched by about 5 times by dry stretching, and while maintaining a tension state, After immersing in pure water of 1 ° C. for 1 minute, it was immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.05 / 5/100 at 28 ° C. for 60 seconds.
  • TAC triacetylcellulose film
  • the above-mentioned adhesive is used to form a 20 ⁇ m-thick norbornene-based resin layer [Nippon ZEON ( ) Was pasted the trade name of the Corporation "ZEONOR"].
  • a 15 ⁇ m-thick adhesive material (trade name “# 3” manufactured by Lintec Co., Ltd.) having a thickness of 15 ⁇ m was bonded to the ZEONOR surface side, and a styrene-maleic anhydride copolymer resin [trade name manufactured by Nova Chemical Co., Ltd.]
  • a skin layer of a methacrylic resin (trade name “Technoloy S001” manufactured by Sumitomo Chemical Co., Ltd.) containing “Dylark D332”] as a core layer and about 20% of acrylic rubber particles having an average particle diameter of 200 nm.
  • a phase difference film was bonded.
  • an adhesive having a thickness of 25 ⁇ m [trade name “P-119E” manufactured by Lintec Co., Ltd.] was bonded to the retardation film surface side.
  • transparent protective film TAC
  • polarizer polarizer
  • retardation plate Zeonor
  • adhesive / retardation plate / adhesive (25/11 / 20/15/25/25, each numerical value represents the thickness of the corresponding layer, and the polarizing plate was manufactured in the order of ⁇ m).
  • the total thickness of the transparent polymer film (the total thickness of the TAC and the two retardation plates) constituting the front side polarizing plate was 70 ⁇ m.
  • a polarizer was prepared by the same method as the front side polarizing plate, and a 25 ⁇ m thick triacetylcellulose film [Konica Minolta was used as a protective film for the transparent polymer film by the same method as the front side polarizing plate.
  • a product name “KC2UA” manufactured by Opt Co., Ltd.] was bonded, and the other side using the above-mentioned adhesive, a non-stretched norbornene resin film having a thickness of 23 ⁇ m as a transparent polymer film [ Nippon Zeon Co., Ltd. trade name “ZEONOR” ”] was pasted. Then, a 5 ⁇ m thick adhesive (trade name“ # L2 ”produced by Lintec Co., Ltd.) was pasted on the TAC surface side. A 26 ⁇ m thick brightness enhancement film (trade name “Advanced Polarized Film, Version 3” manufactured by 3M) was bonded thereto. Thereafter, an adhesive having a thickness of 25 ⁇ m [trade name “P-119E” manufactured by Lintec Co., Ltd.] was bonded to the norbornene resin side.
  • the back-side polarizing plate has a pressure-sensitive adhesive / transparent protective film (trade name “ZEONOR” manufactured by Nippon Zeon Co., Ltd.) / Polarizer / transparent protective film (TAC) from the side close to the front plate-side polarizing plate. ) / Adhesive / brightness enhancement film (25/23/11/25/5/26, each numerical value represents the thickness of the corresponding layer, and the unit is ⁇ m).
  • the total thickness of the transparent polymer film (total thickness of TAC and unstretched norbornene-based resin film) constituting the back-side polarizing plate was 48 ⁇ m.
  • the set of polarizing plates produced above was bonded to a liquid crystal cell in the following manner to produce a front plate integrated liquid crystal display panel.
  • the front side polarizing plate is cut into a 5-inch size so that the absorption axis of the polarizer is parallel to the short side of the liquid crystal cell, and the absorption axis of the polarizer is cut to the long side of the liquid crystal cell. It cut
  • each of the cut polarizing plates is bonded to a liquid crystal cell on the adhesive side, and an ultraviolet curable optical elastic resin (trade name “Super View Resin” manufactured by Dexerias Co., Ltd.) on the triacetyl cellulose film side of the front polarizing plate.
  • a front plate having a Young's modulus of 70 GPa and a thickness of 0.55 mm (trade name “Gorilla” manufactured by Corning) was laminated thereon.
  • ultraviolet irradiation (“D bulb” manufactured by Fusion UV Systems, integrated light quantity of 1200 mJ / cm 2 ) was performed from the front plate side, and a front plate integrated liquid crystal cell was produced.
  • the amount of warpage in a high temperature environment was measured by the following method. First, the manufactured front plate integrated liquid crystal display panel was allowed to stand in an environment of 85 ° C. for 240 hours, and then measured with a two-dimensional measuring instrument “NEXIV VMR-1207” manufactured by Nikon Corporation with the front plate facing upward. Placed on the table. Next, focus on the surface of the measuring table, and using that as a reference, focus on the four corners, four sides of the front panel integrated liquid crystal display panel and the center of the front panel integrated liquid crystal display panel. After measuring the distance from the focal point, the longest distance in absolute value from the measurement table was taken as the amount of warpage. The measurement results are shown in the “warp amount” column of Table 1.
  • the front side polarizing plate was produced as follows. First, the polyvinyl alcohol aqueous solution was apply
  • a water-soluble polyamide epoxy resin (trade name “Smiles Resin 650” manufactured by Taoka Chemical Industry Co., Ltd., an aqueous solution having a solid content concentration of 30%) as a cross-linking agent is added to this aqueous solution as 5 parts per 6 parts of the solid content of polyvinyl alcohol. Were mixed at a ratio of 1 to 5 to obtain a primer coating solution. Then, after the corona treatment was applied to the base film made of polypropylene, the primer coating liquid was applied to the corona-treated surface with a microgravure coater and dried at 80 ° C. for 10 minutes to obtain a thickness of 0. A 2 ⁇ m primer layer was formed.
  • a water-soluble polyamide epoxy resin (trade name “Smiles Resin 650” manufactured by Taoka Chemical Industry Co., Ltd., an aqueous solution having a solid content concentration of 30%) as a cross-linking agent is added to this aqueous solution as 5 parts per 6 parts of the solid content of polyvin
  • polyvinyl alcohol powder (trade name “PVA124” obtained from Kuraray Co., Ltd.) having an average degree of polymerization of 2400 and a saponification degree of 98.0 to 99.0 mol% was dissolved in hot water at 95 ° C., and 8% A polyvinyl alcohol aqueous solution having a concentration was prepared.
  • the obtained aqueous solution was coated on the primer layer of the base film using a lip coater at room temperature and dried at 80 ° C. for 20 minutes to obtain a laminated film consisting of the base film / primer layer / polyvinyl alcohol layer.
  • the obtained laminated film was uniaxially stretched at a free end length of 5.8 times at a temperature of 160 ° C.
  • the total thickness of the laminated stretched film thus obtained was 28.5 ⁇ m, and the thickness of the polyvinyl alcohol layer was 5.0 ⁇ m.
  • the obtained laminated stretched film was dyed by immersing it in an aqueous solution having a weight ratio of water / iodine / potassium iodide of 100 / 0.35 / 10 at 26 ° C. for 90 seconds, and then washed with pure water at 10 ° C.
  • this laminated film was immersed in an aqueous solution having a water / boric acid / potassium iodide weight ratio of 100 / 9.5 / 5 at 76 ° C. for 300 seconds to crosslink the polyvinyl alcohol.
  • the substrate was washed with pure water at 10 ° C. for 10 seconds, and finally dried at 80 ° C. for 200 seconds.
  • a polarizing laminated film in which a polarizer composed of a polyvinyl alcohol layer on which iodine was adsorbed and oriented was formed on a polypropylene base film was produced.
  • carboxyl group-modified polyvinyl alcohol [trade name “KL-318” obtained from Kuraray Co., Ltd.] 3 parts of the product is dissolved in a polyamide epoxy-based additive that is a water-soluble epoxy resin (trade name “Smileze Resin 650 (30)” obtained from Taoka Chemical Industry Co., Ltd., aqueous solution with a solid content of 30%).
  • TAC triacetyl cellulose film
  • an ultraviolet curable adhesive containing an epoxy compound and a cationic photopolymerization initiator is applied to the primer layer surface side, and a film that is not stretched with a norbornene-based resin that is a transparent polymer film [product of Nippon Zeon Co., Ltd. Name “ZEONOR”], UV irradiation from the norbornene resin side (“D bulb” manufactured by Fusion UV Systems, integrated light quantity 1200 mJ / cm 2 ), and curing the adhesive, TAC / A polarizing plate of polyvinyl alcohol polarizer / primer layer / norbornene resin layer was obtained.
  • a 25 ⁇ m-thick adhesive (trade name “P-119E” manufactured by Lintec Corporation) was bonded to the norbornene-based resin layer (thickness: 23 ⁇ m) side.
  • the total thickness of the transparent polymer film (the total thickness of the TAC and morbornene resin layers) constituting the front side polarizing plate was 48 ⁇ m.
  • the back side polarizing plate was produced as follows. After obtaining a polarizing plate comprising a TAC / polyvinyl alcohol polarizer / primer layer in the same manner as the above-mentioned front side polarizing plate, an adhesive with a thickness of 5 ⁇ m on the TAC surface side [trade name “manufactured by Lintec Corporation” # L2 "] was pasted, and a 26 ⁇ m thick brightness enhancement film (trade name" Advanced Polarized Film, Version 3 "manufactured by 3M) was pasted thereon. Then, an adhesive having a thickness of 25 ⁇ m [trade name “P-119E” manufactured by Lintec Corporation] was directly bonded to the polarizer.
  • the total thickness of the transparent polymer film (TAC thickness) constituting the back-side polarizing plate was 25 ⁇ m.
  • TAC thickness the total thickness of the transparent polymer film constituting the back-side polarizing plate.
  • the set of polarizing plates prepared above was bonded to a liquid crystal cell in the same manner as in Example 1 to prepare a front plate integrated liquid crystal display panel, and the amount of warpage in a high temperature environment was measured. The results are shown in Table 1.
  • the front polarizing plate was prepared as follows. First, in a transparent polymer film, a norbornene-based resin having a in-plane retardation of 90 nm and a thickness of 20 ⁇ m (trade name “ZEONOR” manufactured by Nippon Zeon Co., Ltd.), 80 parts of N- (2-hydroxyethyl) acrylamide, 3 parts of a photo-radical polymerization initiator (trade name “Irgacure 907” manufactured by BASF) and a silicone leveling agent [manufactured by Toray Dow Corning Co., Ltd.] are mixed in a solution mixed with 20 parts of methyl acrylate.
  • a norbornene-based resin having a in-plane retardation of 90 nm and a thickness of 20 ⁇ m (trade name “ZEONOR” manufactured by Nippon Zeon Co., Ltd.)
  • 80 parts of N- (2-hydroxyethyl) acrylamide 80 parts of N- (2-hydroxyethyl) acrylamide
  • a curable resin to which 0.2 part of a trade name “SH710”] was added was applied in a thickness of 1 ⁇ m.
  • acrylic rubber particles having an average particle diameter of 200 nm are blended in the transparent polymer film with a styrene-maleic anhydride copolymer resin (trade name “Dylark D332” manufactured by Nova Chemical Co., Ltd.) as a core layer.
  • a 30 ⁇ m-thick polyvinyl alcohol film (average polymerization degree of about 2,400, saponification degree of 99.9 mol% or more) was uniaxially stretched by about 5 times by dry stretching, and while maintaining the tension state, After being immersed in pure water at 60 ° C. for 1 minute, it was immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.05 / 5/100 at 28 ° C. for 60 seconds. Then, it was immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 8.5 / 8.5 / 100 at 72 ° C. for 300 seconds.
  • the film was washed with pure water at 26 ° C. for 20 seconds and then dried at 65 ° C. to obtain a 11 ⁇ m thick polarizer in which iodine was adsorbed and oriented on a polyvinyl alcohol film.
  • 3 parts of carboxyl group-modified polyvinyl alcohol [trade name “KL-318” obtained from Kuraray Co., Ltd.] is dissolved in 100 parts of water on one side of the polarizer, and a water-soluble epoxy resin is dissolved in the aqueous solution.
  • the front plate side polarizing plate has a transparent protective film (TAC) / polarizer / retardation plate / UV adhesive layer / retardation plate / adhesive (25/11 / from the side bonded to the front plate. 20/1/25/25, each numerical value represents the thickness of the corresponding layer, and the unit is manufactured as a polarizing plate laminated in the order of ⁇ m).
  • TAC transparent protective film
  • the total thickness of the transparent polymer film (the total thickness of the TAC and the two retardation plates) constituting the obtained front plate-side polarizing plate was 71 ⁇ m.
  • Example 2 As the front side polarizing plate and the back side polarizing plate manufactured as described above, using the back side polarizing plate prepared in Example 2, a front plate integrated liquid crystal display panel was prepared in the same manner as in Example 1, The amount of warpage in a high temperature environment was measured. The results are shown in Table 1.
  • Example 1 As the front side polarizing plate to be bonded to the liquid crystal cell, the TAC surface side adhesive and the brightness enhancement film of the back side polarizing plate used in Example 1 were removed, that is, an adhesive / transparent protective film (“Zeonor”). Polarized light that has been laminated in the order of Nippon Zeon Co., Ltd. (trade name) / polarizer / transparent protective film (TAC) (25/23/11/25, each value represents the thickness of the corresponding layer, and the unit is ⁇ m).
  • Zeonor an adhesive / transparent protective film
  • Polarized light that has been laminated in the order of Nippon Zeon Co., Ltd. (trade name) / polarizer / transparent protective film (TAC) (25/23/11/25, each value represents the thickness of the corresponding layer, and the unit is ⁇ m).
  • the plate was used as a front-side polarizing plate, and its TAC surface was bonded to the front plate through an ultraviolet curable optical elastic resin in the same manner as in Example 1, and was bonded to the liquid crystal cell through the adhesive of the laminate. .
  • a back side polarizing plate to be bonded to the liquid crystal cell a 5 ⁇ m-thick adhesive material [trade name “# L2” manufactured by Lintec Corporation] is bonded to the TAC surface side of the front side polarizing plate used in Example 1.
  • Example 1 using the same adhesive as that used in Example 1 with a 26 ⁇ m-thickness brightness enhancement film (trade name “Advanced Polarized Film, Version 3” manufactured by 3M) bonded thereto, It was bonded to the opposite side of the polarizing plate on the front plate side.
  • the liquid crystal panel thus produced was exposed to a high temperature environment in the same manner as in Example 1, and the amount of warpage of the panel was measured. The results are shown in the “warp amount” column of Table 1.
  • Front side The distance from the surface far from the front plate of the polarizer of the front plate side polarizing plate to the liquid crystal cell.
  • Back side Distance from the surface near the front plate of the polarizer of the back side polarizing plate to the liquid crystal cell.
  • the amount of warpage of the display panel when heated at 85 ° C. for 240 hours at the polarizing plate on the front side of the liquid crystal cell is 0.30 mm or less.
  • the total thickness of the transparent polymer film constituting the front side polarizing plate is thicker than the total thickness of the transparent polymer film constituting the back side polarizing plate.
  • Front plate 20 Adhesive or UV curable resin 25a, 25b: Adhesive 30: Front side polarizing plate 35a, 35b: Transparent protective film of front side polarizing plate 37: Polarizer of front side polarizing plate 40: Front plate Integrated polarizing plate 45a, 45b: Adhesive 50: Back side polarizing plate 55a, 55b: Back side polarizing plate transparent protective film 57: Back side polarizing plate polarizer 58: Brightness enhancement film 60: Liquid crystal cell 80: Front plate Integrated liquid crystal display panel d1: Distance from the surface of the polarizer on the front plate side polarizing plate far from the front plate of the polarizer to the liquid crystal cell d2: Distance from the surface of the polarizing plate on the back side polarizing plate to the liquid crystal cell near the front plate of the polarizer

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

 液晶表示パネルとした際に高温環境下での反り量が抑制される前面板が一体化された前面板一体型偏光板と背面側偏光板からなる偏光板のセット、及びこれらを液晶セルに貼合した前面板一体型液晶表示パネルを提供する。 前面側偏光板及びその視認側に配置され紫外線硬化型樹脂又は粘着剤を介して貼合されたヤング率が2GPa以上の前面板とからなり、液晶セルの視認側に配置される前面板一体型偏光板と、液晶セルの背面側に配置される背面側偏光板とのセットであって、前面側偏光板の偏光子の前面板から遠くなる面から液晶セルまでの距離が、背面側偏光板の偏光子の前面板に近くなる面から液晶セルまでの距離より大きい偏光板のセット及びこの偏光板のセットを液晶セルに貼合して前面板一体型液晶表示パネルとする。

Description

偏光板のセット及び前面板一体型液晶表示パネル
 液晶表示パネルとした際に高温環境下での反り量が抑制される前面板が一体化された前面板一体型偏光板と背面側偏光板からなる偏光板のセット、及びこれらを液晶セルに貼合した前面板一体型液晶表示パネルに関するものである。
 液晶表示装置は、従来から卓上計算機、電子時計、パーソナルコンピューターなどに使用されているが、近年急激にその需要が増加しており、最近では携帯電話やタブレット型端末などにも使用されるなど、その用途も広がっている。これらの液晶表示装置は通常、液晶セルの表裏に一対の偏光板が配置されて液晶表示パネルとなる。
 最近の市場では、画面が大型化した携帯電話やタブレット型端末等のモバイル機器の普及に伴い、その構成部材である液晶表示パネルの軽量化、薄型化が要求されており、液晶セルのガラスや前面板を薄くする傾向がある。また、界面における反射や光の散乱をなくして視認性を向上するために、前面板が粘着剤や紫外線硬化型樹脂で液晶表示パネルと一体化される傾向もある。
 従来の液晶表示パネルでは、前面板及び液晶セルが厚いため、高温環境下でも偏光板の収縮による反りは抑制されていたが、上記のような近年の前面板や液晶セルに使用されているガラスの厚さを薄くする傾向に伴い、高温環境下での使用において液晶表示パネルの反りが発生し、最終製品の筐体に収まらないなどの問題がある。
 このような液晶表示パネルの反りを抑制するために、以前から液晶セルの視認側と液晶セルの視認側とは反対側(背面側)に配置する偏光板の厚さを変更することで液晶表示パネルの反りを抑制する手法が開発されている。例えば、特開2012−58429号公報(特許文献1)では、液晶セルの視認側に配置する偏光板の偏光膜(本発明でいう偏光子)の厚さを、液晶セルの背面側に配置する偏光膜より薄くすることで液晶表示パネルの反りを抑制する方法が記載されている。
 しかし、高温環境下における液晶表示パネルの使用の際に発生する反りは、上記のとおり偏光子の厚さによる偏光板の収縮に起因するため、特許文献1のように視認側に配置する偏光板の偏光子の厚さを薄くした場合、特に視認性向上のために前面板を粘着剤や紫外線硬化型樹脂などで一体化させた液晶表示パネルの場合には、反りが発生することがあり、反りの抑制は、必ずしも満足のいくものではない。
 また、特許第4666430号公報(特許文献2)には、プラスチック基板液晶セルを使用した液晶表示素子(本発明でいう液晶表示パネル)において、液晶セルの視認側及び背面側の偏光板を構成する保護膜の厚さを変えることにより、プラスチック基板液晶セルの反り量が抑制された液晶表示素子について記載されている。この方法によると、液晶セルの反りを抑制するという目的は達成されているものの、視認性向上のために偏光板に前面板が一体化された状態で高温環境におかれた場合、特許文献2のように保護膜の厚さを変える方法では、保護膜の熱収縮に起因する液晶セルの反りが発生し、最終製品の筐体に収まらないという問題が生ずる場合がある。
特開2012−58429号公報 特許第4666430号公報(特開2002−221715号公報)
 本発明は、上記従来の課題を解決するためになされたものであり、その主たる目的は、液晶表示パネルとした際に高温環境下での反り量が抑制される偏光板のセット、及びこの偏光板のセットを液晶セルに貼合してなる前面板一体型液晶表示パネルを提供することにある。
 すなわち、本発明は、前面側偏光板及びその視認側に配置され紫外線硬化型樹脂又は粘着剤を介して貼合されたヤング率が2GPa以上の前面板とからなり、液晶セルの視認側に配置される前面板一体型偏光板と、前記液晶セルの背面側に配置される背面側偏光板とのセットであって、
 前面板一体型偏光板の偏光子の前面板から遠くなる面から液晶セルまでの距離が、背面側偏光板の偏光子の前面板側に近くなる面から液晶セルまでの距離より大きい、偏光板のセットである。
 前面板一体型偏光板の偏光子の前面板から遠くなる面から液晶セルまでの距離(d1)とは、典型的には、前面板一体型偏光板の偏光子の前面板から遠くなる面に積層された少なくとも一つの透明高分子フィルム及び少なくとも一つの粘着剤層からなる積層の厚みに相当する。背面側偏光板の偏光子の前面板側に近くなる面から液晶セルまでの距離(d2)とは、典型的には、背面側偏光板の偏光子の前面板側に近くなる面に積層された粘着剤層もしくは粘着剤層と透明高分子層との積層の厚みに相当する。
 前面板一体型偏光板の偏光子の前面板から遠くなる面から液晶セルまでの距離(d1)、背面側偏光板の偏光子の前面板側に近くなる面から液晶セルまでの距離(d2)は、d1>d2の関係を満たすものであればよく、d1およびd2の上限値および下限値は、限定されないが、通常、d1は、100μm程度までであり、d2は、5μm以上である。d1とd2の差d1−d2は、好ましくは、95μm以下である。
 偏光板のセットは、以下の各種の態様をそれぞれ単独もしくは組合せた形でとりうる。
 前記偏光板のセットにおいて、前記前面側偏光板及び前記背面側偏光板が、典型的には、ともに、ポリビニルアルコール系樹脂フィルムからなる偏光子の少なくとも一方の面に、透明高分子フィルムの保護膜が積層された偏光板である。
 前記透明高分子フィルムは、面内位相差を有する透明高分子フィルムであってもよい。
 前記偏光板のセットの前面側偏光板には、その偏光子の前面板から遠くなる側に透明高分子フィルムからなる他の位相差板が設けられていてもよい。
 前記偏光板のセットの背面側偏光板は、その偏光子の前面板側から遠くなる側に透明高分子フィルム以外の光学フィルムが設けられていてもよい。
 前記偏光板セットにおいて、前面側偏光板の有する透明高分子フィルムの総厚みが、背面側偏光板の有する透明高分子フィルムの総厚みより厚いことが好ましい。
 前記偏光板のセットにおいて、前面側偏光板および背面側偏光板は、ともに長辺と短辺を有する方形形状を有し、前面側偏光板は、好ましくは、その吸収軸が短辺方向と略平行であり、背面側偏光板は、その吸収軸が長辺方向と略平行である。
 前記偏光板のセットは、液晶セルの視認側に前記偏光板のセットを構成する前面板一体型偏光板がその偏光板側で貼着されており、液晶セルの背面側に前記偏光板のセットを構成する背面側偏光板が貼着された前面板一体型液晶表示パネルを形成する。かかる前面板一体型液晶表示パネルは、85℃にて240時間加熱したときの反り量が、絶対値で0.5mm以下の前面板一体型液晶表示パネルとなる。
 本発明によれば、前面板を一体化した液晶表示パネルにおける高温環境下での反りを解消することができ、高温環境下での最終製品の筐体に収まる前面板一体型液晶表示パネルを得ることができる。
本発明に係る偏光板のセットにおける好ましい層構成の例を示す概略断面図である。 本発明に係る前面板一体型液晶表示パネルにおける好ましい層構成の例を示す概略断面図である。
 以下、本発明に係る偏光板のセット及びこれを用いた前面板一体型液晶表示パネルについて適宜、図を用いて説明するが、本発明はこれらの実施態様に限定されるものではない。
 本発明の偏光板のセットは、前面板一体型偏光板と背面側偏光板から構成される。図1は、本発明に係る偏光板のセットにおける好ましい層構成の例の概略断面図を示したものである。図1を参照してまず説明する。本発明の偏光板のセットを構成する前面板一体型偏光板30は、液晶セルの視認側に配置され、液晶セルから遠い側に配置される前面板10が、前面側偏光板30に紫外線硬化型樹脂又は粘着剤20を介して貼り合わされたものである。なお、前面側偏光板30は、前面側偏光板の偏光子37の両面に、前面側偏光板の透明保護膜35a,35bがそれぞれ貼合されたものである。また背面側偏光板50は、背面側偏光板の偏光子57の両面に、背面側偏光板の透明保護膜55a,55bがそれぞれ貼合されたものである。
 前面板は、液晶セルの反りの抑制や保護する役割から、そのヤング率が2GPa以上であるものとする。前面板は、前記のヤング率を満たすのであれば、単層もしくは積層された物であってもよい。前面板は、上記のとおり液晶セルの視認側、具体的には最終製品において最外面に配置されることから、屋外又は半屋外での使用が想定される。したがって、前面板は、耐久性の観点から、ガラス及び強化ガラス等の無機材料、ポリカーボネート樹脂、アクリル樹脂等の有機材料などから構成されるのが好適である。上記前面板は、ヤング率が2GPa以上であるものであれば、例えば、タッチパネルを構成している強化ガラスやフィルムであってもよい。タッチパネルの方式については、特に限定はなく、静電容量方式、表面弾性波方式、抵抗膜方式、電磁誘導方式、光センサー方式、赤外線方式などが例示される。前記前面板は、反射防止、防汚、電磁波遮蔽、近赤外線遮蔽、色調整、あるいはガラス飛散防止などの機能を有していてもよい。かかる機能を有する前面板は、例えば、これらの機能を有する少なくとも一つ以上のフィルム層を、上記前面板の少なくとも一方の面に積層したものでもよい。かかる多層からなる前面板は、例えば、上記のような有機材料もしくは無機材料の基板に上記機能を付与するために有効な剤を直接塗布する方法もしくは別途作成した上記のような機能を有する機能性のフィルムを貼合して作成してもよい。
 前面板及び前面側偏光板を貼り合わせる紫外線硬化型樹脂又は粘着剤は、その屈折率が前面板に近い透明なものが好適である。そのような紫外線硬化型樹脂又は粘着剤を採用することで、前面板と偏光板との界面における反射や光の散乱を無くし、視認性を向上させることができる。
 紫外線硬化性樹脂としては、(メタ)アクリル酸エステルやエポキシ樹脂などの一般的な紫外線硬化性液状物を使用することができる。また、粘着剤としては、アクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリエーテルなどをベースポリマーとしたものを用いることができる。なかでも、アクリル系粘着剤のように、光学的な透明性に優れ、透明性の高いアクリル系粘着剤を使用することが好ましい。ここで、「(メタ)アクリル酸エステル」とは、アクリル酸エステル及びメタクリル酸エステルのいずれでもよいことを意味し、その他、(メタ)アクリレートなどというときの「(メタ)」も同様の趣旨である。
 本発明の偏光板のセットにおいては、前面側偏光板を構成する偏光子37及び液晶セルの背面側に配置された背面側偏光板を構成する偏光子57の厚さは、特に限定されないが、前面側偏光板を構成する偏光子の厚さは、典型的には、5μm以上30μm以下であり、液晶セルの背面側偏光板の偏光子の厚さは、典型的には、3μm以上25μm以下である。
 前面側及び背面側の偏光板に用いられる偏光子としては、上記の偏光子の厚さを満たす限り、任意の適切なものを用いることができる。偏光子としては、ポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向されたものが用いられる。偏光子を構成するポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することにより得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニル及びこれと共重合可能な他の単量体の共重合体などが例示される。酢酸ビニルに共重合される他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類などを挙げることができる。ポリビニルアルコール系樹脂のケン化度は、通常85~100モル%程度、好ましくは98モル%以上である。このポリビニルアルコール系樹脂はさらに変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタールなども使用し得る。またポリビニルアルコール系樹脂の重合度は、通常1,000~10,000程度、好ましくは1,500~5,000程度である。具体的なポリビニルアルコール系樹脂や二色性色素としては、例えば、特開2012−159778号公報に例示されているポリビニルアルコール系樹脂や二色性色素が挙げられる。
 かかるポリビニルアルコール系樹脂を製膜したものが、偏光子の原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は特に限定されるものでなく、公知の方法で製膜することもできる。ポリビニルアルコール系樹脂からなる原反フィルムの膜厚は特に限定されないが、例えば、1~150μm程度である。延伸のしやすさなども考慮すれば、その膜厚は、3μm以上75μm以下であるのが好ましい。
 偏光子は、例えば、上記のようなポリビニルアルコール系樹脂フィルムを一軸延伸する工程で延伸し、ポリビニルアルコール系樹脂フィルムを二色性色素で染色してその二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、及びこのホウ酸水溶液による処理後に水洗する工程を経て、最後に乾燥させて製造される。偏光子の製造工程におけるポリビニルアルコール系樹脂フィルムの延伸、染色、ホウ酸処理、水洗工程、乾燥工程は、例えば、特開2012−159778号公報に記載されている方法に準じて行ってもよい。この文献記載の方法により、基材フィルムへのポリビニルアルコール系樹脂のコーティングにより、偏光子となるポリビニルアルコール系樹脂層を形成し、これに透明高分子フィルムの保護層を積層して偏光板を製造してもよい。
 本発明で規定する前面側偏光板及び背面側偏光板はともに、上記のように製造される偏光子の少なくとも一方の面に透明高分子フィルムからなる保護膜(本明細書中において、透明保護膜とも記すことがある。)が積層されている。この透明保護膜としては、適宜の透明樹脂から形成されているものを用いることができる。具体的には、透明性や均一な光学特性、機械強度、熱安定性などに優れるポリマーからなるものを用いるのが好ましい。このような透明保護膜としては、例えば、トリアセチルセルロース及びジアセチルセルロース等のセルロース系フィルム、ポリエチレンテレフタレート、ポリエチレンイソフタレート及びポリブチレンテレフタレート等のポリエステル系フィルム、ポリメチル(メタ)アクリレート及びポリエチル(メタ)アクリレート等のアクリル樹脂系フィルム、ポリカーボネート系フィルム、ポリエーテルスルホン系フィルム、ポリスルホン系フィルム、ポリイミド系フィルム、ポリオレフィン系フィルム、ポリノルボルネン系フィルムなどを用いることができるが、これらに限定されるものではない。
 前面側偏光板に適用される透明保護膜及び背面側偏光板に適用される透明保護膜は、同じものであってもよいし、それぞれ独立で、異なるものであってもよい。液晶セルに近い方の透明保護膜(図1においては、35bもしくは55a)の両者もしくは一方が無い形態でもよい。本発明では、少なくとも一方の偏光板における液晶セル側に設けられる透明保護膜が面内位相差を有することが好ましい。前面側透明保護膜(図1では、35a,35b)は、ともに面内位相差を有する位相差板であってもよい。
 透明保護膜の面内位相差は、一軸延伸又は二軸延伸によって付与することができる。その面内位相差値は、適用される液晶セルの種類に合わせて適宜設定すればよいが、一般には30nm以上とするのが好ましい。面内位相差値の上限は、特に限定されないが、例えば300nm程度までで十分である。面内位相差値Rは、下記式:(I)
=(n−n)×d   (I)
(式中、nは、透明保護膜の面内遅相軸方向の屈折率を、nは、面内進軸方向(面内遅相軸方向と直交する方向)の屈折率を表し、dは、透明保護膜の厚みを表す。)
で定義される。
 偏光子と透明保護膜との貼合は、接着剤や粘着剤を用いることができる。接着剤としては、ポリビニルアルコール系樹脂やウレタン樹脂を主成分として含む水系接着剤や、紫外線硬化型樹脂(エポキシ系樹脂)のような光硬化型樹脂を含む光硬化型接着剤を用いることができる。粘着剤としては、アクリル系重合体、シリコーン系ポリマー、ポリエステル、あるいはポリエーテル等をベースポリマーとするものを用いることができる。
 上記の透明保護膜は、偏光子への貼合に先立って、その貼合面に、ケン化処理、コロナ処理、プライマー処理、アンカーコーティング処理などの易接着処理が施されてもよい。
 前面側偏光板及び背面側偏光板の透明保護膜の厚さは、通常、5~200μm程度の範囲で、好ましくは10μm以上80μm以下、さらに好ましくは40μm以下である。
 前面側偏光板30が、偏光子37における前面板に近い側に積層される保護膜の層35aを備える場合、この保護膜の表面(前面板に近い側)には、必要に応じてハードコート層、反射防止層又は防眩層等の表面処理層を設けてもよい。ハードコート層は、偏光板表面の傷付き防止のために形成される表面処理層であり、主に紫外線硬化型樹脂、例えばアクリル系やシリコーン系などの樹脂から透明保護膜との密着性や硬度に優れるものが適宜に選定され、透明保護膜の表面に形成することができる。
 反射防止層は、偏光板の表面において外光の反射防止を目的として形成される表面処理層であり、公知の方法で形成することができる。防眩層は、外光が偏光板の表面に映りこんで発生する視認性の阻害を防止するために形成される表面処理層であり、例えばサンドブラスト方式やエンボス加工方式等による粗面化方式や紫外線硬化型樹脂に透明微粒子を混合する方式などにより透明保護膜の表面が凸凹構成となるように形成されるのが一般的である。
 上記の透明保護膜を、偏光子の少なくとも一方の面に貼合したものが偏光板となる。偏光板としては、上記の透明保護膜を、偏光子の両面に貼合したものであってもよい。偏光子と透明保護膜の貼合は、特に限定されるものではないが、エポキシ系ポリマーからなる接着剤や粘着剤などを用いて行なうことができる。かかる接着剤層又は粘着剤層は、水溶液の塗布乾燥層などとして形成されるものである。その水溶液を調整するとき、必要に応じて他の添加剤や酸等の触媒も配合することができる。
 本発明の偏光板のセットの偏光板においては、透明高分子フィルムの他に以下のような機能を有する光学フィルムを一層又は二層以上積層して用いることができる。かかる光学フィルムとしては、例えば、反射層、半透過型反射層、輝度向上フィルムなどを挙げることができる。例えば、前記した偏光子と透明保護膜からなら偏光板に、さらに輝度向上フィルムが積層されている偏光板とすることもできる。
 本発明の偏光板のセットの偏光板においては、位相差板を一層又は二層以上積層してもよい。例えば、前記した偏光子と透明保護膜からなる偏光板に、さらに位相差板が積層されている楕円偏光板又は円偏光板、前記した偏光子と透明保護膜からなる偏光板の片側(一つの保護層)が視野角補償フィルムとなっている偏光板が例示される。
 位相差板は、特にモバイル用途の画像表示装置に使用される楕円偏光又は円偏光モードの複合偏光板を形成しうるλ板(1/2λ板又は1/4λ板)が、前記の保護膜上に積層され有効に用いられる。楕円偏光又は円偏光モードの複合偏光板は入射する偏光方向が直線偏光の場合は楕円偏光又は円偏光に、入射する偏光方向が楕円偏光又は円偏光の場合は直線偏光に変える機能を有している。特に楕円偏光又は円偏光を直線偏光に、直線偏光を楕円偏光又は円偏光に変えられる位相差板としては1/4λ板と呼ばれるものが使用される。また、1/2λ板は直線偏光の方向を変える機能を有している。
 位相差板の具体例としては、ポリカーボネート系、ポリビニルアルコール系、ポリスチレン系、ポリメチルメタクリレート系、ポリプロピレンのようなポリオレフィン系、ポリアリレート系、ポリアミド系、ポリオレフィン系、ポリノルボルネン系等から選ばれるポリマーを延伸処理して得られる延伸フィルムが例示される。かかる延伸フィルムは、一軸や二軸等の適宜な方式で処理したものであってよい。また、熱収縮性フィルムとの接着下に収縮力及び/又は延伸力をかけることでフィルムの厚さ方向の屈折率を制御した複屈折性フィルムでもよい。
 輝度向上フィルムは、液晶表示装置等における輝度の向上を目的として用いられ、その例としては、屈折率の異方性が互いに異なる薄膜フィルムを複数枚積層して反射率に異方性が生じるように設計された反射型偏光分離シート、コレステリック液晶ポリマーの配向フィルムやその配向液晶層をフィルム基材上に支持した円偏光分離シートなどが挙げられる。
 上記の各種の光学フィルムは、粘着剤又は接着剤を用いて偏光板と一体化されるが、そのために用いられる粘着剤又は接着剤は、特に限定されるものではなく適宜のものを選択して使用すればよい。接着作業の簡便性や光学歪の発生防止などの観点から、粘着剤を使用することが好ましい。粘着剤には特に限定はなく、例えば、アクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリエーテルなどをベースポリマーとしたものを用いることができる。なかでも、アクリル系粘着剤のように、光学的な透明性に優れ、適度な濡れ性や凝集力を保持し、基材との接着性にも優れ、さらには耐熱性などを有し、高温環境下で浮きや剥がれ等の剥離問題を生じないものを選択して用いることが好ましい。
 粘着剤層には、必要に応じて光散乱性を示すための微粒子を含有させてもよく、ガラス繊維やガラスビーズ、樹脂ビーズ、金属粉やその他の無機粉末等からなる充填剤、顔料や着色剤、酸化防止剤、紫外線吸収剤などが配合されていてもよい。紫外線吸収剤には、サリチル酸エステル系化合物やベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物などがある。
 前記した偏光板を構成する保護膜又は偏光板上に設けられた透明高分子フィルム層には、液晶セル等の他部材と接着するために粘着剤層を設けることができる。その粘着剤層は、アクリル系等の従来から使用されている粘着剤を適宜使用して形成することができる。特に、高温環境下での剥がれ現象の防止、熱膨張差等による光学特性の低下や前面板一体型液晶表示パネルの反り防止、ひいては高品質で耐久性に優れる液晶画像装置の形成などの観点より、耐熱性に優れる粘着剤層であることが好ましい。粘着剤層は必要に応じて必要な面に設ければよく、例えば、偏光子と透明保護膜からなる偏光板の透明保護膜について言及するならば、必要に応じて透明保護膜の片面又は両面に粘着剤層を設ければよい。なお、粘着剤層には、例えば、アクリル系、シリコーン系、ポリエステル系、ポリウレタン系、ポリエーテル系、ゴム系等の適宜なものを用いることができる。
 背面側偏光板50としては、液晶セル60とは反対側(前面板側から遠くなる側)の最表面に積層される前記のような光学フィルムの層を1層または2層以上有していることが好ましい。かかる光学フィルムとしては、輝度向上フィルムが挙げられる。
 偏光板や光学フィルムに設けた粘着剤層は、その粘着剤層をフィルムの粘着に供するまでの間、汚染防止等を目的にセパレータにて仮着カバーすることが好ましい。セパレータは、上記の透明保護膜等に準じた適宜な薄葉体に、必要に応じシリコーン系や長鎖アルキル系、フッ素系や硫化モリブテン等の適宜な剥離剤による剥離コートを設ける方式などにより形成することができる。
 本発明の偏光板のセットは、液晶セルの短辺と前記前面側偏光板30の吸収軸とが成す角度は、通常、±45度以内であり、好ましくは±10度以内である。液晶セルの長辺と前記背面側偏光板の吸収軸とが成す角度は、通常、±45度以内であり、好ましくは±10度以内である。前面側偏光板30は、その吸収軸が液晶セルの短辺方向と略平行であり、背面側偏光板は、その吸収軸が液晶セルの長辺方向と略平行であることがより好ましい。
 本発明に係る前面板一体型液晶表示パネルについて以下説明する。図2に前面板一体型液晶表示パネル80における好ましい層構成の例を概略断面図で示す。図2に示されるように、本発明の前面板一体型液晶表示パネル80は、図1の偏光板のセットを構成する前面板一体型偏光板40を液晶セル60の視認側に、背面側偏光板50を液晶セル60の背面側にそれぞれ粘着剤を介して貼合した構成である。
 液晶セル60への前面板一体型偏光板40および背面側偏光板50の貼合は、それぞれ粘着剤25bおよび45aを用いて行うことができる。粘着剤としては、例えば、アクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、またはポリエーテル等をベースポリマーとするものが例示される。光学的な透明性に優れ、良好な耐熱性を有し、高温環境下で浮きや剥がれ等の剥離問題が生じにくく、熱膨張差等による光学特性の低下防止や前面板一体型液晶表示パネルの反りの抑制にも有利なアクリル系粘着剤を用いることが好ましい。前面板一体型偏光板40及び背面側偏光板50は、それらの短辺が液晶セル60の短辺と平行になるように貼合される。
 液晶セルの駆動モードとしては、VAモード、IPSモード、TNモードなどのような公知のいかなるモードであってもよく、前面板一体型偏光板及び背面側偏光板が貼合される液晶セル基板は、典型的には、ガラス、あるいは透明樹脂等からなるものである。
 本発明の前面板一体型液晶表示パネルは、85℃にて240時間加熱したときの反り量が、絶対値で0.5mm以下、好ましくは0.3mm以下のものとなる。したがって、高温環境下での反りが抑制され、最終製品の筐体に収まる前面板一体型液晶表示パネルとなる。
 実施例及び比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されない。例中、含有量ないし使用量を表す%及び部は、特記ない限り重量基準である。
[実施例1]
(1)偏光板のセットの作製
 前面側偏光板は、次のように作製した。まず、厚さ30μmのポリビニルアルコールフィルム(平均重合度約2,400、ケン化度99.9モル%以上)を、乾式延伸により約5倍に一軸延伸し、さらに緊張状態を保ったまま、60℃の純水に1分間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.05/5/100の水溶液に28℃で60秒間浸漬した。その後、ヨウ化カリウム/ホウ酸/水の重量比が8.5/8.5/100の水溶液に72℃で300秒間浸漬した。引き続き26℃の純水で20秒間洗浄した後、65℃で乾燥し、ポリビニルアルコールフィルムにヨウ素が吸着配向している厚さ11μmの偏光子を得た。次に、この偏光子の片側に、水100部に対し、カルボキシル基変性ポリビニルアルコール〔(株)株式会社クラレから入手した商品名「KL−318」〕を3部溶解し、その水溶液に水溶性エポキシ樹脂であるポリアミドエポキシ系添加剤〔田岡化学工業(株)株式会社から入手した商品名「スミレーズレジン 650(30)」、固形分濃度30%の水溶液〕を1.5部添加したエポキシ系接着剤を塗布し、透明高分子フィルムからなる保護膜として厚さ25μmのトリアセチルセルロースフィルム(TAC)〔コニカミノルタオプト(株)株式会社製の商品名「KC2UA」〕を貼り合せ、その反対側には前記の接着剤を用いて、透明高分子フィルムで、面内位相差90nmを有する厚さ20μmのノルボルネン系樹脂層〔日本ゼオン(株)株式会社製の商品名「ZEONOR」〕を貼合した。その後、ZEONOR面側に厚さ15μmの粘着材〔リンテック(株)株式会社製の商品名「#3」〕を貼合し、スチレン−無水マレイン酸系共重合樹脂〔ノヴァケミカル社製の商品名「ダイラークD332」〕をコア層とし、平均粒径200nmのアクリル系ゴム粒子が約20%配合されているメタクリル系樹脂〔住友化学(株)株式会社製の商品名「テクノロイS001」〕をスキン層として3層共押出を行ない、コア層の両面にスキン層が形成された3層構造の積層フィルムを延伸して得た透明高分子フィルムで面内位相差値が60nmである厚さ25μmの位相差フィルムを貼合した。
 その後、位相差フィルム面側に厚さ25μmの粘着剤〔リンテック(株)株式会社製の商品名「P−119E」〕を貼合した。
 このようにして前面側偏光板として、前面板に貼合される側から、透明保護膜(TAC)/偏光子/位相差板(Zeonor)/粘着剤/位相差板/粘着剤(25/11/20/15/25/25、数値はそれぞれ対応する層の厚さを表し、単位はμm)という順に積層された偏光板が製作された。
 ここで、前面側偏光板を構成する透明高分子フィルム(TACおよび二つの位相差板の厚さの合計)の総厚みは70μmであった。
[0055]
 背面側偏光板は、前記前面側偏光板と同様の方法で偏光子を作成し、前面側偏光板と同様の方法で透明高分子フィルムの保護膜として厚さ25μmのトリアセチルセルロースフィルム〔コニカミノルタオプト(株)株式会社製の商品名「KC2UA」〕を貼り合せ、その反対側には前記の接着剤を用いて、透明高分子フィルムとして、延伸されていない厚さ23μmのノルボルネン系樹脂フィルム〔日本ゼオン(株)製の商品名「ZEONOR」”〕を貼合した。その後、TAC面側に厚さ5μmの粘着材〔リンテック(株)製の商品名「#L2」〕を貼合し、そこに厚さ26μmの輝度向上フィルム(3M製の商品名「Advanced Polarized Film,Version 3」)を貼合した。その後、ノルボルネン系樹脂側に厚さ25μmの粘着剤〔リンテック(株)製の商品名「P−119E」〕を貼合した。
 このようにして、背面側偏光板は、前面板側偏光板に近い側から、粘着剤/透明保護膜(「ZEONOR」日本ゼオン(株)製の商品名)/偏光子/透明保護膜(TAC)/粘着剤/輝度向上フィルム(25/23/11/25/5/26、数値はそれぞれ対応する層の厚さを表し、単位はμm)という順に積層された偏光板として製作された。
 ここで、背面側偏光板を構成する透明高分子フィルム(TACおよび未延伸のノルボルネン系樹脂フィルムの厚さの合計)の総厚みは48μmであった。
(前面板一体型液晶表示パネルの作成)
 上記で作製した偏光板のセットを次のやり方で液晶セルに貼合し、前面板一体型液晶表示パネルを作製した。
 前面側偏光板を液晶セルの短辺に対して偏光子の吸収軸が平行になるように5インチサイズに裁断し、背面側偏光板を液晶セルの長辺に対して偏光子の吸収軸が平行になるように5インチサイズに裁断した。次いで、裁断した偏光板をそれぞれ粘着剤側で液晶セルに貼り合せ、前面側偏光板のトリアセチルセルロースフィルム側に紫外線硬化型光学弾性樹脂〔デクセリアス(株)製の商品名「Super View Resin」〕を塗布し、その上にヤング率が70GPaで、厚さが0.55mmの前面板〔コーニング社製の商品名「Gorilla」〕を積層した。その後、前面板側から紫外線照射〔フュージョンUVシステムズ社製の「Dバルブ」、積算光量1200mJ/cm〕を実施し、前面板一体型液晶セルを作製した。
(反り量の測定)
 上記で作製した前面板一体型液晶表示パネルについて、高温環境下における反り量を次の方法で測定した。まず、作製した前面板一体型液晶表示パネルを、85℃の環境下に240時間静置した後、前面板を上側にして(株)ニコン製の二次元測定器「NEXIV VMR−12072」の測定台上に置いた。次いで、測定台の表面に焦点を合わせ、そこを基準とし、前面板一体型液晶表示パネルの4角部、4辺の各中央及び前面板一体型液晶表示パネル表面の中央に焦点を合わせ、基準とした焦点からの距離を測定した後、測定台からの距離が絶対値で最も長い距離を反り量とした。測定結果を表1の「反り量」の欄に示した。
[実施例2]
 前面側偏光板は、次のように作製した。まず、基材フィルム上にポリビニルアルコール水溶液を塗布し、乾燥して、偏光子製造用の原反となる積層フィルムを作製した。ここでは、厚さ110μmで融点163℃のポリプロピレンフィルムを基材フィルムとした。
 次に平均重合度1,100でケン化度99.5モル%のアセトアセチル基変性ポリビニルアルコール粉末(日本合成化学工業(株)製の商品名「ゴーセファイマーZ−200」)を、95℃の熱水に溶解し、3%濃度の水溶液を調製した。この水溶液に架橋剤として、水溶性ポリアミドエポキシ樹脂(田岡化学工業(株)製の商品名「スミレーズレジン 650」、固形分濃度30%の水溶液)を、ポリビニルアルコールの固形分6部あたり5部の割合で混合し、プライマー用塗工液とした。
 そして、先のポリプロピレンからなる基材フィルムにコロナ処理を施した後、そのコロナ処理面に、プライマー用塗工液をマイクログラビアコーターで塗工し、80℃で10分間乾燥して、厚さ0.2μmのプライマー層を形成した。
 次に平均重合度2400でケン化度98.0~99.0モル%のポリビニルアルコール粉末((株)クラレから入手した商品名「PVA124」)を、95℃の熱水に溶解し、8%濃度のポリビニルアルコール水溶液を調製した。得られた水溶液を、前記基材フィルムのプライマー層上にリップコーターを用いて室温で塗工し、80℃で20分間乾燥して、基材フィルム/プライマー層/ポリビニルアルコール層からなる積層フィルムを作製した。
 得られた積層フィルムを、温度160℃で5.8倍に自由端縦一軸延伸した。こうして得られた積層延伸フィルムの全体厚さは28.5μmであり、ポリビニルアルコール層の厚さは5.0μmであった。
 得られた積層延伸フィルムを、水/ヨウ素/ヨウ化カリウムの重量比が100/0.35/10の水溶液に26℃で90秒間浸漬して染色した後、10℃の純水で洗浄した。次にこの積層フィルムを、水/ホウ酸/ヨウ化カリウムの重量比が100/9.5/5の水溶液に76℃で300秒間浸漬して、ポリビニルアルコールを架橋させた。引き続き、10℃の純水で10秒間洗浄し、最後に80℃で200秒間の乾燥処理を行った。以上の操作により、ポリプロピレン基材フィルム上に、ヨウ素が吸着配向しているポリビニルアルコール層からなる偏光子が形成されている偏光性積層フィルムを作製した。
 上記で作製した偏光性積層フィルムの基材フィルムとは反対面(偏光子面)に、水100部に対し、カルボキシル基変性ポリビニルアルコール〔(株)クラレから入手した商品名「KL−318」〕を3部溶解し、その水溶液に水溶性エポキシ樹脂であるポリアミドエポキシ系添加剤〔田岡化学工業(株)から入手した商品名「スミレーズレジン 650(30)」、固形分濃度30%の水溶液〕を1.5部添加したエポキシ系接着剤を塗布し、透明高分子フィルムの保護膜として厚さ25μmのトリアセチルセルロースフィルム(TAC)〔コニカミノルタオプト(株)社製の商品名「KC2UA」〕を貼り合せ、基材フィルムのみを剥離することによって、TAC/ポリビニルアルコール系偏光子/プライマー層からなる偏光板を得た。
 次にプライマー層面側にエポキシ化合物と光カチオン重合開始剤を含む紫外線硬化型接着剤を塗工し、透明高分子フィルムであるノルボルネン系樹脂で延伸されていないフィルム〔日本ゼオン(株)製の商品名「ZEONOR」〕を貼合し、ノルボルネン系樹脂側から紫外線照射〔フュージョンUVシステムズ社製の「Dバルブ」、積算光量1200mJ/cm〕を実施し、接着剤を硬化させることにより、TAC/ポリビニルアルコール系偏光子/プライマー層/ノルボルネン系樹脂層の偏光板を得た。
 その後、ノルボルネン系樹脂層(厚さ23μm)側に厚さ25μmの粘着剤〔リンテック(株)製の商品名「P−119E」〕を貼合した。ここで、前面側偏光板を構成する透明高分子フィルム(TACおよびモルボルネン系樹脂層の厚さの合計)の総厚みは48μmであった。
 背面側偏光板は、次のように作製した。上記前面側偏光板と同様の方法で、TAC/ポリビニルアルコール系偏光子/プライマー層からなる偏光板を得た後、TAC面側に厚さ5μmの粘着材〔リンテック(株)製の商品名「#L2」〕を貼合し、そこに厚さ26μmの輝度向上フィルム(3M製の商品名「Advanced Polarized Film, Version 3」)を貼合した。
 そして、偏光子に直接厚さ25μmの粘着剤〔リンテック(株)製の商品名「P−119E」〕を貼合した。ここで、背面側偏光板を構成する透明高分子フィルム(TACの厚さ)の総厚みは25μmであった。
 上記で作製した偏光板のセットを実施例1と同様に液晶セルに貼合し前面板一体型液晶表示パネルを作成し、高温環境下での反り量を測定した。結果を表1に示した。
[実施例3]
 前面側偏光板は、次のように作成した。まず、透明高分子フィルムで、面内位相差90nmを有する厚さ20μmのノルボルネン系樹脂〔日本ゼオン(株)製の商品名「ZEONOR」〕に、N−(2−ヒドロキシエチル)アクリルアミド80部、メチルアクリレート20部の割合で混合されている溶液に光ラジカル重合開始剤〔BASF社製の商品名「イルガキュア907」〕を3部及び、シリコーン系レベリング剤〔東レ・ダウコーニング(株)社製の商品名「SH710」〕を0.2部加えた硬化性樹脂を厚さ1μmで塗布した。次いで、この透明高分子フィルムに、スチレン−無水マレイン酸系共重合樹脂〔ノヴァケミカル社製の商品名「ダイラークD332」〕をコア層とし、平均粒径200nmのアクリル系ゴム粒子が約20%配合されているメタクリル系樹脂〔住友化学(株)製の商品名「テクノロイS001」〕をスキン層として3層共押出を行ない、コア層の両面にスキン層が形成された3層構造の積層フィルムを延伸して得た透明高分子フィルムで面内位相差60nmを有する厚さ25μmの位相差フィルムを貼合した。さらに、得られた積層体にノルボルネン系樹脂側から、紫外線照射〔フュージョンUVシステムズ社製の「Dバルブ」、積算光量250mJ/cm〕を実施し、硬化性樹脂を硬化させて厚さ46μmの透明高分子フィルムである複合位相差板を作製した。
 次に、厚さ30μmのポリビニルアルコールフィルム(平均重合度約2,400、ケン化度99.9モル%以上)を、乾式延伸により約5倍に一軸延伸し、さらに緊張状態を保ったまま、60℃の純水に1分間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.05/5/100の水溶液に28℃で60秒間浸漬した。その後、ヨウ化カリウム/ホウ酸/水の重量比が8.5/8.5/100の水溶液に72℃で300秒間浸漬した。引き続き26℃の純水で20秒間洗浄した後、65℃で乾燥し、ポリビニルアルコールフィルムにヨウ素が吸着配向している厚さ11μmの偏光子を得た。次に、この偏光子の片側に、水100部に対し、カルボキシル基変性ポリビニルアルコール〔(株)クラレから入手した商品名「KL−318」〕を3部溶解し、その水溶液に水溶性エポキシ樹脂であるポリアミドエポキシ系添加剤〔田岡化学工業(株)から入手した商品名「スミレーズレジン 650(30)」、固形分濃度30%の水溶液〕を1.5部添加したエポキシ系接着剤を塗布し、透明高分子フィルムの保護膜として厚さ25μmのトリアセチルセルロースフィルム(TAC)〔コニカミノルタオプト(株)社製の商品名「KC2UA」〕を貼り合せ、その反対側には前記の接着剤を用いて、上記複合位相差板を貼合した。
 その後、複合位相差板側に厚さ25μmの粘着剤〔リンテック(株)製の商品名「P−119E」〕を貼合した。
 このようにして前面板側偏光板は、前面板に貼合される側から、透明保護膜(TAC)/偏光子/位相差板/UV接着層/位相差板/粘着剤(25/11/20/1/25/25、数値はそれぞれ対応する層の厚さを表し、単位はμm)という順に積層した偏光板として製作される。
 ここで、得られた前面板側偏光板を構成する透明高分子フィルム(TACおよび二つの位相差板の厚さの合計)の総厚みは71μmであった。
 このようにして製造された前面側偏光板と、背面側偏光板としては、実施例2で作成した背面側偏光板を用い、実施例1と同様に前面板一体型液晶表示パネルを作成し、高温環境下での反り量を測定した。結果を表1に示した。
[比較例1]
 液晶セルに貼合する前面側偏光板として、実施例1で用いた背面側偏光板のTAC面側の粘着剤および輝度向上フィルムを取り除いた物、即ち、粘着剤/透明保護膜(「Zeonor」日本ゼオン(株)製の商品名)/偏光子/透明保護膜(TAC)(25/23/11/25、数値はそれぞれ対応する層の厚さを表し、単位はμm)という順に積層した偏光板を前面側偏光板として用い、そのTAC面を実施例1と同じように紫外線硬化型光学弾性樹脂を介して前面板に貼合せ、前記積層体の粘着剤を介して液晶セルに貼合せた。
 液晶セルに貼合する背面側偏光板として、実施例1で用いた前面側偏光板のTAC面側に厚さ5μmの粘着材〔リンテック(株)製の商品名「#L2」〕を貼合し、そこに厚さ26μmの輝度向上フィルム(3M製の商品名「Advanced Polarized Film, Version 3」)を貼合したものを用い、実施例1で用いたのと同じ粘着剤で、液晶セルの前記前面板側の偏光板の反対側に貼合した。かくして製作された液晶パネルを、実施例1と同様にして、高温環境下に曝し、パネルの反り量を測定した。結果を表1の「反り量」の欄に示した。
Figure JPOXMLDOC01-appb-T000001
前面側:前面板側偏光板の偏光子の前面板から遠くなる面から液晶セルまでの距離。
背面側:背面側偏光板の偏光子の前面板に近くなる面から液晶セルまでの距離。
 実施例1から3の前面板一体型液晶表示パネルは、液晶セルの前面側の偏光板の85℃にて240時間加熱したときの表示パネルの反り量が0.30mm以下である。また、実施例1から3では、前面側偏光板を構成する透明高分子フィルムの総厚みが、背面側偏光板を構成する透明高分子フィルムの総厚みよりも厚くなっている。
 10:前面板
 20:粘着剤又は紫外線硬化型樹脂
 25a、25b:粘着剤
 30:前面側偏光板
 35a,35b:前面側偏光板の透明保護膜
 37:前面側偏光板の偏光子
 40:前面板一体型偏光板
 45a、45b:粘着剤
 50:背面側偏光板
 55a,55b:背面側偏光板の透明保護膜
 57:背面側偏光板の偏光子
 58:輝度向上フィルム
 60:液晶セル
 80:前面板一体型液晶表示パネル
 d1:前面板側偏光板の偏光子の前面板から遠くなる面から液晶セルまでの距離
 d2:背面側偏光板の偏光子の前面板に近くなる面から液晶セルまでの距離

Claims (9)

  1.  前面側偏光板及びその視認側に配置され紫外線硬化型樹脂又は粘着剤を介して貼合されたヤング率が2GPa以上の前面板とからなり、液晶セルの視認側に配置される前面板一体型偏光板と、液晶セルの背面側に配置される背面側偏光板とのセットであって、
     前面側偏光板の偏光子の前面板から遠くなる面から液晶セルまでの距離が、背面側偏光板の偏光子の前面板に近くなる面から液晶セルまでの距離より大きい、偏光板のセット。
  2.  前面側偏光板及び前記背面側偏光板は、ともに、ポリビニルアルコール系樹脂フィルムからなる偏光子の少なくとも一方の面に透明高分子フィルムからなる透明保護膜が積層された偏光板である請求項1に記載の偏光板のセット。
  3.  前面側偏光板の偏光子の前面板から遠くなる側及び背面側偏光板の偏光子の前面板に近くなる側の少なくとも一方の面に面内位相差を有する透明高分子フィルムからなる透明保護膜が積層されている請求項1または2に記載の偏光板のセット。
  4.  前面側偏光板に、その偏光子の前面板から遠くなる側に透明高分子フィルムからなる他の位相差板が設けられている請求項3に記載の偏光板のセット。
  5.  背面側偏光板には、その偏光子の前面板側から遠くなる側に他の光学フィルムが積層されている請求項1から4のいずれかに記載の偏光板のセット。
  6.  前面側偏光板に設けられた透明高分子フィルムの総厚みが、背面側偏光板に設けられた透明高分子フィルムの総厚みより厚い請求項1から5のいずれかに記載の偏光板のセット。
  7.  前面側偏光板および背面側偏光板は、ともに長辺と短辺を有する方形形状を有し、前面側偏光板は、その吸収軸が短辺方向と略平行であり、背面側偏光板は、その吸収軸が長辺方向と略平行である請求項1から6のいずれかに記載の偏光板のセット。
  8.  請求項1から7のいずれかに記載の偏光板のセットと、液晶セルとを備え、前面板一体型偏光板が液晶セルの視認側にその偏光板側で貼合されており、液晶セルの背面側に背面側偏光板が貼合された前面板一体型液晶表示パネル。
  9.  85℃にて240時間加熱したときの反り量が、絶対値で0.5mm以下である請求項7に記載の前面板一体型液晶表示パネル。
PCT/JP2014/076870 2013-10-10 2014-10-01 偏光板のセット及び前面板一体型液晶表示パネル WO2015053296A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217003911A KR102457358B1 (ko) 2013-10-10 2014-10-01 편광판의 셋트 및 전면판 일체형 액정 표시 패널
KR1020167009796A KR20160067860A (ko) 2013-10-10 2014-10-01 편광판의 셋트 및 전면판 일체형 액정 표시 패널
CN201480055804.XA CN105637393B (zh) 2013-10-10 2014-10-01 偏光板组及前板一体型液晶显示面板
US15/028,246 US9740044B2 (en) 2013-10-10 2014-10-01 Set of polarizing plates having a young's modulus and front-plate-integrated liquid crystal display panel comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-212681 2013-10-10
JP2013212681A JP6294043B2 (ja) 2013-10-10 2013-10-10 偏光板のセット

Publications (1)

Publication Number Publication Date
WO2015053296A1 true WO2015053296A1 (ja) 2015-04-16

Family

ID=52813112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076870 WO2015053296A1 (ja) 2013-10-10 2014-10-01 偏光板のセット及び前面板一体型液晶表示パネル

Country Status (6)

Country Link
US (1) US9740044B2 (ja)
JP (1) JP6294043B2 (ja)
KR (2) KR20160067860A (ja)
CN (1) CN105637393B (ja)
TW (1) TWI627478B (ja)
WO (1) WO2015053296A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218304A (ja) * 2015-05-22 2016-12-22 住友化学株式会社 積層体及び液晶表示装置
WO2020189145A1 (ja) * 2019-03-18 2020-09-24 住友化学株式会社 積層体およびそれを含む表示装置
WO2020189146A1 (ja) * 2019-03-18 2020-09-24 住友化学株式会社 積層体およびそれを含む表示装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10088705B2 (en) * 2014-09-30 2018-10-02 Nitto Denko Corporation Method for producing polarizing film
JP2016157081A (ja) * 2015-02-26 2016-09-01 日東電工株式会社 位相差層付偏光板および画像表示装置
JP6940927B2 (ja) * 2015-06-01 2021-09-29 日東電工株式会社 両面粘着剤層付偏光フィルムおよび画像表示装置
CN105137632B (zh) * 2015-09-08 2017-07-04 京东方科技集团股份有限公司 显示面板及显示装置
KR20170037703A (ko) * 2015-09-25 2017-04-05 삼성디스플레이 주식회사 액정 표시 장치 및 이의 제조 방법
KR20240050450A (ko) * 2015-12-25 2024-04-18 닛토덴코 가부시키가이샤 점착제층을 갖는 편광 필름 및 화상 표시 장치
JP6323477B2 (ja) * 2016-02-29 2018-05-16 住友化学株式会社 偏光板のセットおよび液晶パネル
JP2017156399A (ja) * 2016-02-29 2017-09-07 住友化学株式会社 偏光板のセットおよび液晶パネル
JP6887222B2 (ja) * 2016-06-21 2021-06-16 住友化学株式会社 偏光板セット
JP2017227893A (ja) * 2016-06-21 2017-12-28 住友化学株式会社 偏光板セット
KR102535102B1 (ko) * 2016-08-18 2023-05-19 스미또모 가가꾸 가부시키가이샤 편광 필름의 제조 방법 및 제조 장치
KR102024248B1 (ko) * 2017-07-14 2019-09-23 주식회사 엘지화학 편광판
WO2019131220A1 (ja) * 2017-12-28 2019-07-04 日東電工株式会社 偏光板のセットおよび液晶表示パネル
JP2018067020A (ja) * 2018-01-23 2018-04-26 住友化学株式会社 偏光板のセットおよび液晶パネル
KR102614478B1 (ko) * 2018-12-13 2023-12-14 엘지디스플레이 주식회사 커버 글라스 구조물 및 이를 포함하는 표시 장치
JP2019086790A (ja) * 2019-01-15 2019-06-06 住友化学株式会社 積層体及び液晶表示装置
JP7159375B2 (ja) * 2021-03-10 2022-10-24 住友化学株式会社 光学積層体及び表示装置、並びに光学積層体の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292939A (ja) * 2005-04-08 2006-10-26 Nitto Denko Corp 液晶パネル、粘着型偏光板および液晶表示装置
JP2008203400A (ja) * 2007-02-19 2008-09-04 Nitto Denko Corp 表面保護フィルム付偏光板、表面保護フィルム付液晶パネル、および画像表示装置
JP2010060618A (ja) * 2008-09-01 2010-03-18 Jsr Corp 積層光学フィルム付き偏光板およびそれを具備する液晶表示装置
JP2012053079A (ja) * 2010-08-31 2012-03-15 Sumitomo Chemical Co Ltd ロール状偏光板のセット及びその製造方法並びに液晶パネルの製造方法
JP2013011853A (ja) * 2011-05-31 2013-01-17 Sumitomo Chemical Co Ltd 複合偏光板および液晶表示装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227121U (ja) * 1988-08-09 1990-02-22
JP2001033775A (ja) * 1999-07-19 2001-02-09 Matsushita Electric Ind Co Ltd 液晶表示パネル
JP2001272542A (ja) * 2000-03-27 2001-10-05 Nitto Denko Corp 光学補償フィルム付き偏光板及び液晶表示装置
JP4666430B2 (ja) 2001-01-25 2011-04-06 日東電工株式会社 液晶表示素子及びそれを用いた液晶表示装置
JP2006251294A (ja) * 2005-03-10 2006-09-21 Konica Minolta Opto Inc 液晶表示装置
JP2007133350A (ja) * 2005-10-11 2007-05-31 Fujifilm Corp 画像表示装置
JP5301080B2 (ja) 2005-12-26 2013-09-25 株式会社ジャパンディスプレイ 液晶表示装置
JP5057321B2 (ja) * 2006-03-14 2012-10-24 株式会社ジャパンディスプレイウェスト 表示装置の製造方法
CN100572479C (zh) * 2006-06-26 2009-12-23 达信科技股份有限公司 胶材、利用此胶材贴合的偏振板及其制造方法
JP2009103818A (ja) * 2007-10-22 2009-05-14 Citizen Holdings Co Ltd 液晶表示装置
TWI453123B (zh) * 2007-12-03 2014-09-21 Sumitomo Chemical Co 偏光板的套組,以及使用該偏光板的套組之液晶面板及液晶顯示器
JP5354733B2 (ja) * 2008-07-29 2013-11-27 日東電工株式会社 偏光子保護フィルムおよび偏光子保護フィルムを用いた偏光板および画像表示装置
JP5066554B2 (ja) * 2009-07-17 2012-11-07 株式会社ジャパンディスプレイイースト 液晶表示装置
KR20110014515A (ko) * 2009-08-05 2011-02-11 제일모직주식회사 편광판 및 이를 구비한 액정 표시 장치
JP2011203319A (ja) * 2010-03-24 2011-10-13 Sumitomo Chemical Co Ltd 偏光板のセット、ならびにこれを用いた液晶パネルおよび液晶表示装置
KR20110130573A (ko) * 2010-05-28 2011-12-06 동우 화인켐 주식회사 액정표시장치
JP5473840B2 (ja) 2010-09-08 2014-04-16 日東電工株式会社 液晶パネルおよび液晶表示装置
JP5756635B2 (ja) * 2010-11-23 2015-07-29 シチズンファインデバイス株式会社 液晶素子
KR101831650B1 (ko) * 2011-05-30 2018-02-23 엘지디스플레이 주식회사 액정표시장치
KR101911421B1 (ko) 2011-06-30 2018-10-25 삼성디스플레이 주식회사 보호용 윈도우 및 보호용 윈도우를 포함하는 표시 장치
JP2013185121A (ja) 2012-03-09 2013-09-19 Dic Corp 保護フィルムの製造方法及び保護フィルム
KR20130074559A (ko) * 2011-12-26 2013-07-04 동우 화인켐 주식회사 표시 얼룩이 없는 액정 표시 장치
JP5205582B1 (ja) 2012-01-27 2013-06-05 東海光学株式会社 表示装置用カバープレートの透過領域及び不可視領域の設定方法並びに表示装置用カバープレート
JP5538579B2 (ja) * 2013-02-01 2014-07-02 株式会社ジャパンディスプレイ 液晶表示装置および表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292939A (ja) * 2005-04-08 2006-10-26 Nitto Denko Corp 液晶パネル、粘着型偏光板および液晶表示装置
JP2008203400A (ja) * 2007-02-19 2008-09-04 Nitto Denko Corp 表面保護フィルム付偏光板、表面保護フィルム付液晶パネル、および画像表示装置
JP2010060618A (ja) * 2008-09-01 2010-03-18 Jsr Corp 積層光学フィルム付き偏光板およびそれを具備する液晶表示装置
JP2012053079A (ja) * 2010-08-31 2012-03-15 Sumitomo Chemical Co Ltd ロール状偏光板のセット及びその製造方法並びに液晶パネルの製造方法
JP2013011853A (ja) * 2011-05-31 2013-01-17 Sumitomo Chemical Co Ltd 複合偏光板および液晶表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218304A (ja) * 2015-05-22 2016-12-22 住友化学株式会社 積層体及び液晶表示装置
WO2020189145A1 (ja) * 2019-03-18 2020-09-24 住友化学株式会社 積層体およびそれを含む表示装置
WO2020189146A1 (ja) * 2019-03-18 2020-09-24 住友化学株式会社 積層体およびそれを含む表示装置
JP2020154309A (ja) * 2019-03-18 2020-09-24 住友化学株式会社 積層体およびそれを含む表示装置
JP2020154308A (ja) * 2019-03-18 2020-09-24 住友化学株式会社 積層体およびそれを含む表示装置

Also Published As

Publication number Publication date
KR20210018552A (ko) 2021-02-17
US20160246114A1 (en) 2016-08-25
KR102457358B1 (ko) 2022-10-20
TW201520651A (zh) 2015-06-01
TWI627478B (zh) 2018-06-21
JP2015075684A (ja) 2015-04-20
CN105637393A (zh) 2016-06-01
JP6294043B2 (ja) 2018-03-14
US9740044B2 (en) 2017-08-22
KR20160067860A (ko) 2016-06-14
CN105637393B (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
JP6294043B2 (ja) 偏光板のセット
JP5932750B2 (ja) 偏光板のセット及び前面板一体型液晶表示パネル
JP6664866B2 (ja) 偏光板のセット及び前面板一体型液晶表示パネル
JP5932749B2 (ja) 偏光板のセット及び前面板一体型液晶表示パネル
WO2018021190A1 (ja) 位相差層付偏光板および有機el表示装置
JP5082480B2 (ja) 薄型偏光板及びそれを用いた画像表示装置
JP6323477B2 (ja) 偏光板のセットおよび液晶パネル
JP2017083857A (ja) 前面板一体型液晶表示パネル
TWI708966B (zh) 偏光板之套組及使用該套組之ips模式液晶顯示裝置
TWI720253B (zh) 偏光板組及使用該偏光板組之ips模式液晶顯示裝置
JP7126479B2 (ja) 位相差層付偏光板および有機el表示装置
JP2018054887A (ja) 偏光板のセット及びそれを用いたipsモード液晶表示装置
JP2011227418A (ja) 偏光板、その製造方法及びそれを用いたipsモード液晶表示装置
JP2018054884A (ja) 偏光板のセット及びそれを用いたipsモード液晶表示装置
JP2018054886A (ja) 偏光板のセット及びそれを用いたipsモード液晶表示装置
JP2018054883A (ja) 偏光板のセット及びそれを用いたipsモード液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852284

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15028246

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167009796

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14852284

Country of ref document: EP

Kind code of ref document: A1