WO2015053131A1 - タイヤ位置判定システム - Google Patents

タイヤ位置判定システム Download PDF

Info

Publication number
WO2015053131A1
WO2015053131A1 PCT/JP2014/076100 JP2014076100W WO2015053131A1 WO 2015053131 A1 WO2015053131 A1 WO 2015053131A1 JP 2014076100 W JP2014076100 W JP 2014076100W WO 2015053131 A1 WO2015053131 A1 WO 2015053131A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
tire pressure
axle rotation
timing information
rotation amount
Prior art date
Application number
PCT/JP2014/076100
Other languages
English (en)
French (fr)
Inventor
正則 小杉
多佳朗 新家
孝司 奥村
Original Assignee
株式会社東海理化電機製作所
太平洋工業 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東海理化電機製作所, 太平洋工業 株式会社 filed Critical 株式会社東海理化電機製作所
Priority to KR1020167011848A priority Critical patent/KR20160070778A/ko
Priority to CN201480055433.5A priority patent/CN105612067B/zh
Priority to US15/027,367 priority patent/US10166822B2/en
Priority to EP14852927.4A priority patent/EP3056360B1/en
Publication of WO2015053131A1 publication Critical patent/WO2015053131A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0415Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0415Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels
    • B60C23/0416Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels allocating a corresponding wheel position on vehicle, e.g. front/left or rear/right
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0447Wheel or tyre mounted circuits
    • B60C23/0455Transmission control of wireless signals
    • B60C23/0462Structure of transmission protocol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • B60C23/0488Movement sensor, e.g. for sensing angular speed, acceleration or centripetal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • B60C23/0489Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors for detecting the actual angular position of the monitoring device while the wheel is turning

Definitions

  • the present invention relates to a tire position determination system that determines the position of each tire in a vehicle.
  • Patent Document 1 a tire position determination system (auto-location function) that automatically determines a tire position necessary for air pressure monitoring of each tire is well known.
  • the system of Patent Document 1 includes a first sensor (4a to 4d) provided on each wheel (2a to 2d) and four second sensors (5a to 5d) associated with a specific position in the vehicle. And a measurement system (3) for determining the wheel position.
  • the first sensor transmits signals (S4a to S4d) indicating the wheel position to the measurement system.
  • the second sensor measures the angular position of the wheel and outputs the measured values (S5a to S5d).
  • the measurement system determines the phase position (W1a to W3a, W1b to W3b) of the signal of the first sensor based on the measured value, and the phase position is within a predetermined allowable range (WTa, WTb) during a predetermined monitoring period.
  • the wheel position is determined by checking whether it stays.
  • An object of the present invention is to provide a tire position determination system capable of reliably transmitting a radio signal necessary for tire position determination from a tire air pressure detector to a receiver.
  • One aspect of the present invention is a tire position determination system, which is a plurality of tire pressure detectors that are respectively attached to a plurality of tires and that can transmit tire pressure signals, and that are radio wave signals in a first time zone. And a plurality of tire air pressure detectors capable of transmitting radio signals in a second time zone, and a plurality of axles, respectively, each corresponding to one of the plurality of axles.
  • a plurality of axle rotation detectors that detect the amount of rotation and generate axle rotation amount information, and a tire air pressure signal that is provided on the vehicle body and that is transmitted from each of the plurality of tire air pressure detectors to determine the tire air pressure.
  • a plurality of tire pressure detectors each of the plurality of tire pressure detectors detecting a specific detection in a first time zone waiting for transmission of the radio signal.
  • An information holding unit that holds one or more timing information indicating the time of rotation to an angle, and one or more of the one or more of the information held by the information holding unit when a second time zone in which a radio signal can be transmitted
  • a radio wave transmission control unit that transmits timing information to the receiver, wherein the receiver receives an axle rotation amount reading unit that receives axle rotation amount information generated in each of the plurality of axle rotation detection units;
  • the tire pressure detector has a specific detector angle based on timing information from each radio wave transmission control unit of the tire pressure detector and axle rotation amount information corresponding to the timing information from the axle rotation amount reading unit.
  • a position determination unit that calculates the amount of axle rotation at the time of rotation until the position of the tire is calculated using the calculated amount of axle rotation.
  • the radio signal includes an ID for identifying the tire pressure detector, and the timing information is transmitted from the time when the tire pressure detector is rotated to a specific detector angle. It is preferable that information on a time until a radio signal is transmitted in a possible second time zone is included, and the timing information is associated with the ID so that individual identification of the tire pressure detector is possible.
  • the position determination unit determines a tire pressure detector corresponding to the timing information among the plurality of tire pressure detectors according to the ID, and relates to the determined tire pressure detector.
  • the radio wave transmission control unit continuously transmits the one or more timing information when a second time zone in which the radio signal can be transmitted is reached.
  • the radio wave transmission control unit collectively transmits one or more timing information held by the information holding unit when a second time zone in which the radio wave signal can be transmitted is reached. It is preferable.
  • the position determination unit Preferably, one of an average value and a median value is calculated from the plurality of timing information.
  • a radio signal necessary for tire position determination can be reliably transmitted from the tire pressure detector to the receiver.
  • the lineblock diagram of the tire position judging system of a 1st embodiment Explanatory drawing which shows the centripetal component of the gravity detected with a tire air pressure detector.
  • the communication sequence diagram of a tire pressure detector Explanatory drawing which shows the aspect of an electromagnetic wave transmission when the rotational speed of a tire is low speed.
  • the communication sequence figure of the radio signal for auto location The plot figure which shows the pulse number change of two axles at the time of receiving specific ID with a receiver.
  • the communication sequence figure of the radio signal for auto location of a 2nd embodiment The lineblock diagram of the tire position judging system of a 1st embodiment.
  • the vehicle 1 includes a tire pressure monitoring system (TPMS: Tire Pressure Monitoring System) 3 that monitors the tire pressure of each tire 2 (2a to 2d).
  • the tire pressure monitoring system 3 is a direct type and includes a plurality of tire pressure detectors 4 (4a to 4d: also referred to as tire valves) attached to the plurality of tires 2a to 2d, respectively.
  • These tire pressure detectors 4 a to 4 d detect the tire pressure and transmit a tire pressure signal Stp to the vehicle body 5. As a result, the air pressure of the tires 2a to 2d is monitored in the vehicle body 5.
  • Each tire pressure detector 4 includes a controller 6 that controls the operation of the tire pressure detector 4, a pressure detection unit 7 that detects tire pressure, a temperature detection unit 8 that detects tire temperature, and a tire pressure detector 4.
  • a gravity detection unit 9 that detects the generated gravity and a transmission antenna 10 that enables radio wave transmission from the tire pressure detector 4 are included.
  • a tire ID (valve ID) is stored as a unique ID of each tire pressure detector 4.
  • the pressure detector 7 is preferably a pressure sensor, for example.
  • the temperature detector 8 is preferably a temperature sensor, for example.
  • the gravity detector 9 is preferably an acceleration sensor (G sensor), for example.
  • the transmission antenna 10 preferably transmits a radio signal in, for example, a UHF (Ultra High Frequency) band.
  • the vehicle body 5 includes a receiver (hereinafter referred to as a TPMS receiver) 12 that receives the tire pressure signals Stp from the tire pressure detectors 4a to 4d and monitors the air pressure of the tires 2a to 2d.
  • the TPMS receiver 12 includes a tire air pressure monitoring ECU (Electronic Control Unit) 13 that controls the operation of the TPMS receiver 12 and a receiving antenna 14 that enables the TPMS receiver 12 to receive a radio signal.
  • the tire pressure monitoring ECU 13 includes a memory 15 that stores IDs of the tire pressure detectors 4a to 4d. The IDs of the tire pressure detectors 4a to 4d are associated with tire positions.
  • ID of the right front tire pressure detector 4a is ID1
  • ID of the left front tire pressure detector 4b is ID3
  • ID of the right rear tire pressure detector 4c is ID4
  • ID of the left rear tire pressure detector 4d is ID2.
  • a display unit 16 installed on an in-vehicle instrument panel or the like is connected to the TPMS receiver 12.
  • Each tire pressure detector 4 transmits a tire pressure signal Stp from the transmission antenna 10 to the vehicle body 5 when the rotation of the tire 2 is confirmed based on the detection signal from the gravity detection unit 9.
  • each tire pressure detector 4 may transmit the tire pressure signal Stp from the transmission antenna 10 to the vehicle body 5 at regular or irregular intervals.
  • the tire pressure signal Stp is preferably a signal including, for example, a tire ID, pressure data, temperature data, and the like.
  • the rotation of the tire 2 is determined by checking whether or not the output of the gravity detection unit 9 has changed. Further, even when it is determined that the tire 2 is not rotating, the tire air pressure signal Stp is transmitted at an interval equal to or longer than that at the time of rotation.
  • the TPMS receiver 12 checks the tire ID in the tire pressure signal Stp.
  • the TPMS receiver 12 confirms the pressure data in the tire pressure signal Stp when the tire ID verification is established. If the pressure value is equal to or lower than the low pressure threshold, the TPMS receiver 12 displays the tire determined to be low pressure on the display unit 16 in association with the tire position.
  • the TPMS receiver 12 performs the tire pressure determination for each received tire pressure signal Stp and monitors the tire pressures of the tires 2a to 2d.
  • the tire pressure monitoring system 3 includes a tire position determination function (tire position determination system 17) that performs so-called auto-location that automatically determines at which position the front, rear, left, and right of each tire 2a to 2d is attached.
  • the tire position determination system 17 detects that the tire pressure detectors 4a to 4d are located at a specific position in the tire rotation direction, and uses the principle of confirming the rotation amount of the axle 18 (18a to 18d) at that time. The positions of the tires 2a to 2d are determined.
  • FIG. 2 shows the centripetal component of gravity detected by the gravity detector 9.
  • the gravity detector 9 detects the centripetal force Gr of gravity in the axle direction (tire radial direction) with respect to the gravity G as the gravity applied to the tire air pressure detector 4.
  • the centrifugal force must be taken into consideration “ ⁇ 1G” or “+ 1G”.
  • FIG. 3 schematically shows a communication sequence of radio wave transmission in the tire pressure detector 4.
  • Each tire pressure detector 4 acquires a transmission pattern in which a transmission timing t at which radio wave transmission is possible repeatedly appears in a certain cycle.
  • a very short time “T1” from when the transmission timing t passes until a predetermined time elapses is set as a time zone in which radio wave transmission is possible.
  • the time zone T1 is preferably “1 second”, for example.
  • the radio wave transmission is repeated at a time interval “T2” at which the transmission timing t appears.
  • This time interval T2 is a time zone in which radio wave transmission is on standby, and is preferably, for example, “30 seconds”.
  • the tire air pressure detector 4 repeatedly performs the operation of performing radio wave transmission for 1 second at intervals of 30 seconds.
  • each tire air pressure detector 4 includes a detector angle monitoring unit 19, an information holding unit 20, and a radio wave transmission control unit 21.
  • the detector angle monitoring unit 19 monitors whether the tire air pressure detector 4 has rotated to a specific detector angle. The description of the specific detector angle will be described later with reference to FIGS.
  • the information holding unit 20 holds a plurality of timing information Dti indicating the time when the tire air pressure detector 4 is rotated to a specific detector angle in a time zone T2 in which transmission of a radio signal is awaited.
  • the radio wave transmission control unit 21 executes radio wave signal transmission a plurality of times when the tire air pressure detector 4 rotates to a specific detector angle at a transmission timing t in a time zone T1 in which radio wave signals can be transmitted.
  • the radio wave transmission control unit 21 repeats such an operation a plurality of times at predetermined time intervals.
  • the detector angle monitoring unit 19, the information holding unit 20, and the radio wave transmission control unit 21 are preferably provided in the controller 6, for example.
  • the specific detector angle is preferably an angle corresponding to the pole position of the tire pressure detector 4 in the tire rotation direction, for example.
  • the positions of the poles are, for example, “12 o'clock” position, “3 o'clock” position, “6 o'clock” position, and “9 o'clock” position.
  • the specific detector angle is preferably an angle corresponding to the peak position of the tire air pressure detector 4 in the tire rotation direction, for example.
  • the peak position refers to, for example, a “12 o'clock” position and a “6 o'clock” position.
  • the time zone T1 in which radio waves can be transmitted is as short as “1 second” as in this example, the time zone in which radio waves can be transmitted when the vehicle 1 travels at a low speed and the tire 2 rotates slowly.
  • the tire pressure detector 4 may not be able to transmit a radio signal multiple times.
  • the tire position cannot be determined by a method in which the tire air pressure detector 4 needs to transmit a radio signal multiple times in the determination of the tire position.
  • the peak position detection of the tire pressure detector 4 is executed in advance, and the timing indicating the time when the tire pressure detector 4 is rotated to the peak position.
  • Information Dti is collectively transmitted in a time zone T1 in which radio wave transmission is possible.
  • the information holding unit 20 preferably holds “n” pieces of timing information Dti that are continuous before the transmission timing t1.
  • the timing information Dti is time information from detection of a specific angle until radio wave transmission becomes possible.
  • FIG. 5 shows a case where four timing information Dti is transmitted.
  • the timing information Dti is information that enables individual identification of the tire pressure detector 4.
  • the timing information Dti is associated with a tire ID (ID1 to ID4) included in the radio signal, and is associated with any one of the plurality of tire pressure detectors 4 by the tire ID (ID1 to ID4). .
  • the radio wave transmission control unit 21 performs a radio signal transmission operation in a time zone T1 (about 1 second) in which a micro time radio wave transmission is possible, and is sufficiently more than the micro time T1 after the micro time zone T1 has passed.
  • the radio wave transmission is not executed in the long time zone T2 (about 30 seconds), and the operation of executing the radio wave transmission operation again after the elapse of the time zone T2 is repeated.
  • the radio wave transmission control unit 21 executes transmission of the radio signal for auto location.
  • the radio wave transmission control unit 21 continuously transmits a radio signal including the timing information Dti held by the information holding unit 20 at a short time interval at a transmission timing t at which radio wave transmission is possible.
  • the radio wave transmission control unit 21 repeatedly executes such an operation at the time interval T2.
  • the radio signal for auto location may be a radio signal including the timing information Dti, may be one using the tire pressure signal Stp described above, or any other radio signal.
  • the TPMS receiver 12 includes a plurality of axle rotation detection units 22 (22a to 22d), an axle rotation amount reading unit 23, and a position determination unit 24.
  • the plurality of axle rotation detection units 22 (22a to 22d) are provided on the plurality of axles 18a to 18d, respectively.
  • Each axle rotation detector 22 (22a to 22d) detects the amount of rotation of the corresponding axle 18 (18a to 18d) each time it receives a radio signal for autolocation from the tire air pressure detector 4, and the amount of axle rotation. Generate information.
  • the axle rotation amount reading unit 23 receives the axle rotation amount information transmitted from each axle rotation detection unit 22 (22a to 22d) and supplies it to the position determination unit 24.
  • the position determination unit 24 calculates the axle rotation amount at the time when the tire air pressure detector 4 rotates to a specific detector angle from the axle rotation amount information based on the timing information Dti, and according to the calculated axle rotation amount. Determine the tire position.
  • the axle rotation amount reading unit 23 and the position determination unit 24 are preferably provided, for example, in the tire air pressure monitoring ECU 13.
  • an ABS (Antilock Brake System) sensor can be used for the axle rotation detection units 22a to 22d.
  • the axle rotation amount is preferably indicated by, for example, the number of pulses Px.
  • each of the axle rotation detection units 22a to 22d detects a plurality of teeth provided on the axle 18, for example, 48 teeth, by the sensing unit of the vehicle body 5, and a rectangular wave pulse signal Spl is read by the axle rotation amount reading unit. 23.
  • the axle rotation amount reading unit 23 detects 96 pulses (count value: 0 to 95) per tire rotation when detecting both the rising edge and the falling edge of the pulse signal Spl.
  • the position determination unit 24 calculates an axle rotation amount by back calculation every time a set of radio signals is received.
  • the position determination unit 24 compares the first set of axle rotation speeds with the subsequent set of axle rotation speeds, and associates ID1 to ID4 with the axles 18a to 18d, respectively.
  • the positions 2a to 2d are determined.
  • the TPMS receiver 12 switches to the auto location mode in accordance with a predetermined cycle, and executes tire position determination.
  • FIG. 6 illustrates the tire position determination principle of this example.
  • Each of the tires 2a to 2d (axles 18a to 18d) is configured to rotate independently in order to allow cornering such as a curve.
  • the timing at which the tire pressure detectors 4a to 4d reach the peak position changes before and after turning, so the radio wave transmission timing of the tire pressure detectors 4a to 4d also changes. That is, when timing information Dti including a certain ID is received before and after turning, the measured number of pulses Px of the axle 18 corresponding to the ID converges to a predetermined value, but a plurality not corresponding to the ID The measured number of pulses Px of the axle 18 changes to another value. Based on this principle, this example determines the tire position.
  • the information holding unit 20 includes a plurality of timing information Dti indicating the time when the tire air pressure detector 4 has reached the peak position in the time zone T2 in which the transmission of the radio signal before the transmission timing t1 is waited. Stored in the memory 11.
  • the information holding unit 20 holds n pieces (four pieces in FIG. 7) of timing information Dti.
  • the information holding unit 20 discards the oldest timing information Dti and stores the latest timing information Dt i.
  • the data group of the timing information Dti to be held is updated.
  • Each tire pressure detector 4 can transmit a radio signal in a time zone T1 (for example, 1 second) when the transmission timing t1 of the radio signal arrives.
  • the radio wave transmission control unit 21 continuously transmits radio wave signals including the timing information Dti by the number of timing information Dti held in the memory 11 at relatively short time intervals.
  • the radio wave transmission control unit 21 transmits the plurality of timing information Dti to the TPMS receiver 12 in order from the oldest timing information Dti.
  • the radio wave transmission control unit 21 transmits a radio signal including the oldest timing information Dti, transmits a radio signal including the second oldest timing information Dti,... Includes the latest timing information Dti.
  • a transmission interval Ts that is an interval of radio wave transmission is set to 100 ms, for example.
  • Each tire air pressure detector 4 does not perform radio wave transmission after the time zone T1 has elapsed, in order to shift to a time zone T2 (for example, 30 seconds) for waiting for transmission of radio wave signals again.
  • the information holding unit 20 stores n pieces of timing information Dti indicating the time when the tire pressure detector 4 reaches the peak position in the memory 11 even in the time zone T2 in which the transmission of the radio wave signal between the transmission timings t1 and t2 is waited. Hold.
  • the radio wave transmission control unit 21 receives the radio signal including the timing information Dti by the number of the plurality of timing information Dti, as in the transmission timing t1. Send continuously at short time intervals.
  • the position determination unit 24 receives the timing information Dti from the tire pressure detectors 4a to 4d at the transmission timing t1 when the TPMS receiver 12 is in the auto location mode. Based on the received timing information Dti, the position determination unit 24 determines the tire air pressure detectors 4a to 4d at the time when the tire pressure detectors 4a to 4d have reached the peak position in the past from the axle rotation amount supplied from the axle rotation detection units 22a to 22d. The axle rotation amount is calculated for each of the axle rotation detection units 22a to 22d. For example, the position determination unit 24 determines the tire pressure detector 4 corresponding to the timing information Dti among the plurality of tire pressure detectors 4 in accordance with information that enables individual identification of the tire pressure detector 4.
  • the position determination unit 24 can transmit a radio signal from the time when the tire air pressure detector 4 is rotated to a specific detector angle based on the determined axle rotation amount information of the axle 18 related to the tire air pressure detector 4.
  • the axle rotation amount at the time when the tire air pressure detector 4 is rotated to a specific detector angle is calculated according to the time information until the radio signal is transmitted to the belt. Further, for example, the position determination unit 24 determines that the tire pressure detectors 4a to 4d have reached the peak position in the past based on the received timing information Dti and the number of pulses Px supplied from the axle rotation detection units 22a to 22d. The number of pulses Px at the time is calculated for each axle rotation detection unit 22a to 22d.
  • timing information Dti of ID1 when the timing information Dti of ID1 is received, the number of pulses Px of the axle 18a when the right front tire pressure detector 4a has reached the peak position in the past is calculated. Similarly, such an operation is executed when timing information Dti of ID2 to ID4 is received.
  • the TPMS receiver 12 can receive at least one timing information Dti.
  • the calculated value of the pulse number Px is calculated using one or more of the plurality of timing information Dti.
  • the position determination unit 24 holds the calculated value in the memory 15 as the pulse number Px of each axle 18a to 18d corresponding to the timing information Dti received at the transmission timing t1.
  • the position determination unit 24 receives the radio signal including the timing information Dti of each ID1 to ID4 by the TPMS receiver 12, and the pulses read by the axle rotation amount reading units 23a to 23d are now read. From the number Px, the number of pulses Px when the tire air pressure detector 4 has reached the peak position in the past is calculated for each of the axle rotation detection units 22a to 22d. That is, when receiving the radio signal including the timing information Dti for each of ID1 to ID4, the TPMS receiver 12 calculates the number of pulses Px of the axles 18a to 18d when the tires 2a to 2d have reached the peak position in the past. .
  • the position determination unit 24 receives the pulse number Px of each axle 18a to 18d corresponding to the timing information Dti received at the transmission timing t1 and held in the memory 15, and the timing information calculated later and received at the transmission timing t2.
  • the tire position is determined by comparing the number of pulses Px of each axle 18a to 18d corresponding to Dti. That is, the position determination unit 24 identifies the tire position by confirming whether the number of pulses Px before and after the axle rotation detection units 22a to 22d are equal or less than a certain allowable width.
  • the position determination unit 24 retries the same process when the tire position determination cannot be completed with a single determination. That is, the position determination unit 24 calculates the number of pulses Px at the next transmission timing t, and compares the calculated number of pulses Px with the previous number of pulses Px (for example, the previous one) to determine the tire position. The position determination unit 24 continues the determination process until the tire positions of all four wheels can be determined, and completes the autolocation. The above autolocation is repeatedly executed according to a predetermined cycle.
  • the tire pressure detector 4 detects the peak position in advance in the time zone T2 waiting for transmission of the radio signal, and holds timing information Dti indicating the time when the peak position is reached each time the peak position is detected. .
  • the tire air pressure detector 4 continuously transmits the plurality of stored timing information Dti to the TPMS receiver 12 in a short interval Ts in a time zone T1 in which radio wave transmission is possible. .
  • the tire air pressure detector 4 can finish transmitting the timing information Dti to the TPMS receiver 12 in a time zone T1 in which a minute time radio wave transmission is possible. Therefore, the radio signal for auto location necessary for the determination of the tire position can be reliably transmitted from the tire pressure detector 4 to the TPMS receiver 12.
  • the plurality of timing information Dti detected in advance is transmitted to the TPMS receiver 12 in order from the old timing information Dti in a time zone T1 in which radio wave transmission is possible. Therefore, when the tire pressure detector 4 transmits a radio signal in the time zone T1, the data amount of the timing information Dti to be put on the radio signal at the time of one radio transmission can be reduced.
  • the tire air pressure detector 4 has a time zone ("T1" time zone) during which a radio signal can be transmitted for a very short time, and waits for transmission of a radio signal with a relatively long time (“T2").
  • T1 time zone
  • T2 relatively long time
  • the specific detector angle may be the position of the pole of the tire pressure detector 4 in the tire rotation direction.
  • the pole position of the tire air pressure detector 4 can be easily detected by the gravity detection unit 9, so that a specific detector angle can be easily detected.
  • 2nd Embodiment is an Example which changed the transmission logic of the tire pressure detector 4 as described in 1st Embodiment. Therefore, the same parts as those in the first embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and only different parts are described in detail.
  • the radio wave transmission control unit 21 receives the first auto-location radio signal including a plurality of timing information Dti detected in the time zone T2 as a TPMS receiver. 12 to transmit.
  • the timing information Dti are illustrated.
  • the radio signal for auto location includes, for example, a tire ID and a plurality of timing information Dti.
  • the tire air pressure detector 4 detects the past from the number of pulses Px read by the axle rotation detection units 22a to 22d based on the timing information Dti.
  • the number of pulses Px when the peak position is reached is calculated.
  • the position determination unit 24 selects one or more of the plurality of acquired timing information Dti, and calculates the pulse number Px at the previous peak from the current pulse number Px based on the selected timing information Dti. To do.
  • the position determination unit 24 performs the same calculation at the transmission timing t2, compares the calculated value acquired at the previous transmission timing t1 with the calculated value acquired at the subsequent transmission timing t2, and determines the tire position. Is identified.
  • FIG. 8 shows an example in which a radio signal is transmitted several times after a radio signal for auto location is transmitted, this radio wave transmission may be omitted. That is, it is good also as communication which transmits the radio signal for autolocation only once at the transmission timing t1. By doing so, the number of times of radio wave transmission by the tire pressure detector 4 can be reduced, which is further advantageous for power saving of the power source of the tire pressure detector 4.
  • the tire pressure detector 4 transmits a first radio signal including a plurality of timing information Dti detected in advance to the TPMS receiver 12 at a transmission timing t at which radio wave transmission is possible. For this reason, the frequency
  • the embodiment is not limited to the configuration described so far, and may be modified as follows.
  • the plurality of timing information Dti are combined into one radio signal, but the second and subsequent radio signals may include the plurality of timing information Dti.
  • the number “n” of timing information Dti to be held may be different between the previous transmission timing t1 and the subsequent transmission timing t2.
  • maintain may be variable according to a vehicle speed, driving time, etc., for example.
  • the timing information Dti to be held is a predetermined number that goes back immediately before the transmission timing t.
  • the timing information Dti may be held at any timing.
  • a method may be used in which peak position detection is not performed during T2, a necessary number of peak positions are detected after T2, and transmission is performed during T1. .
  • a time limit is set for the auto location determination process, and if the position determination is not completed after the time limit, the process is forcibly terminated and re-executed next time. Good.
  • zone T1 is good also as a different value at the time of tire pressure monitoring, and the time of an auto location, respectively. This also applies to T2.
  • the time width T1 and the time interval T2 can be appropriately set to various time widths.
  • the time width T1 and the time interval T2 may be variable, for example, by switching to another value according to the vehicle speed, the running time, or the like.
  • the gravity component detected by the tire pressure detector 4 may be, for example, gravity in a direction orthogonal to the axle direction.
  • the axle rotation detection unit 22 can be changed to various detection members (sensors, switches, communication devices, etc.) if the rotation of the axle 18 can be detected.
  • the timing information Dti may be information indicating the time at which the tire air pressure detector 4 has rotated to a specific detector angle in the time zone T2.
  • the accuracy of position information may be improved by performing, for example, averaging, median processing, etc. on a plurality of data for autolocation within one T1.
  • the position determination unit 24 includes a plurality of timing information. Either one of the average value and the median value is calculated from the timing information Dti.
  • the tire position determination method is performed by measuring the rotation amount (pulse) of each axle 18a to 18d when the tire air pressure detector 4 takes a specific detector angle. If it is a system, a various aspect is employable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

 複数のタイヤ空気圧検出器4の各々は、電波信号の送信を待機する第1の時間帯T2において、タイヤ空気圧検出器4が特定の検出器角度まで回転した時刻を示す1つ以上のタイミング情報を保持する情報保持部20と、電波信号の送信が可能な第2の時間帯T1となったとき、情報保持部4が保持する1つ以上のタイミング情報を受信機12に送信する電波送信制御部21とを含む。受信機12は、複数の車軸回転検出部22の各々において生成された車軸回転量情報を受け取る車軸回転量読込部23と、複数のタイヤ空気圧検出器4の各々の電波送信制御部21からのタイミング情報と、車軸回転量読込部23からの当該タイミング情報に対応する車軸回転量情報とに基づいてタイヤ空気圧検出器4が特定の検出器角度まで回転した時点での車軸回転量を算出し、算出された車軸回転量を用いてタイヤの位置を判定する位置判定部24とを含む。

Description

タイヤ位置判定システム
 本発明は、車両において各タイヤの位置を判定するタイヤ位置判定システムに関する。
 従来、特許文献1に開示されるように、各タイヤの空気圧監視に必要なタイヤ位置を自動で判定するタイヤ位置判定システム(オートロケーション機能)が周知である。特許文献1のシステムは、各ホイール(2a~2d)に設けられた第1のセンサ(4a~4d)と、車両において特定の位置に対応付けられている4つの第2のセンサ(5a~5d)と、ホイール位置を判定する測定システム(3)とを備える。第1のセンサは、ホイール位置を示す信号(S4a~S4d)を測定システムに送信する。第2のセンサは、ホイールの角度位置を測定し、その測定値(S5a~S5d)を出力する。測定システムは、測定値に基づく第1のセンサの信号の位相位置(W1a~W3a,W1b~W3b)を確定し、その位相位置が所定の監視期間に所定の許容範囲(WTa,WTb)内に留まるか否かを確認することにより、ホイール位置を判定する。
特表2011-527971号公報
 ところで、特許文献1のタイヤ位置の判定では、所定の監視期間が設定されているが、車両が低速走行してタイヤがゆっくり回転したとき、所定の監視期間に第1のセンサがタイヤ位置の判定に必要な複数の信号を送信することができず、タイヤ位置を判定できない可能性があった。なお、この問題は、特許文献1に限らず、第1のセンサ及び第2のセンサを用いてタイヤ位置を判定する方式であれば、必然的に生じる。よって、タイヤ位置の判定に必要な電波信号を、第1のセンサから車体へ確実に送信したいニーズがあった。
 本発明の目的は、タイヤ位置判定に必要な電波信号を、タイヤ空気圧検出器から受信機に確実に送信することができるタイヤ位置判定システムを提供することにある。
 本発明の一側面は、タイヤ位置判定システムであって、複数のタイヤにそれぞれ取り付けられ、各々、タイヤ空気圧信号を送信可能な複数のタイヤ空気圧検出器であって、第1の時間帯において電波信号の送信を待機し、第2の時間帯において電波信号の送信が可能である前記複数のタイヤ空気圧検出器と、複数の車軸にそれぞれ設けられ、各々、前記複数の車軸のうちの対応する1つの回転量を検出して車軸回転量情報を生成する複数の車軸回転検出部と、車体に設けられ、前記複数のタイヤ空気圧検出器の各々から送信されるタイヤ空気圧信号を受信してタイヤの空気圧を監視する受信機とを備え、前記複数のタイヤ空気圧検出器の各々は、前記電波信号の送信を待機する第1の時間帯において、前記タイヤ空気圧検出器が特定の検出器角度まで回転した時刻を示す1つ以上のタイミング情報を保持する情報保持部と、電波信号の送信が可能な第2の時間帯となったとき、前記情報保持部が保持する1つ以上の前記タイミング情報を前記受信機に送信する電波送信制御部とを含み、前記受信機は、前記複数の車軸回転検出部の各々において生成された車軸回転量情報を受け取る車軸回転量読込部と、前記複数のタイヤ空気圧検出器の各々の電波送信制御部からのタイミング情報と、前記車軸回転量読込部からの当該タイミング情報に対応する車軸回転量情報とに基づいてタイヤ空気圧検出器が特定の検出器角度まで回転した時点での車軸回転量を算出し、算出された車軸回転量を用いて前記タイヤの位置を判定する位置判定部とを含む。
 上記構成において、前記電波信号は、前記タイヤ空気圧検出器を識別するためのIDを含み、前記タイミング情報は、前記タイヤ空気圧検出器が特定の検出器角度まで回転したときから、電波信号の送信が可能な第2の時間帯に電波信号が送信されるまでの時間の情報を含み、前記タイミング情報は、前記IDに関連付けられて前記タイヤ空気圧検出器の個体識別が可能であることが好ましい。
 上記構成において、前記位置判定部は、前記IDに応じて、前記複数のタイヤ空気圧検出器のうちの前記タイミング情報と対応するタイヤ空気圧検出器を決定し、前記決定されたタイヤ空気圧検出器に関連する車軸の車軸回転量情報から、前記タイヤ空気圧検出器が特定の検出器角度まで回転したときから電波信号の送信が可能な第2の時間帯に電波信号が送信されるまでの時間の情報に応じて前記タイヤ空気圧検出器が特定の検出器角度まで回転した時点での車軸回転量を算出することが好ましい。
 上記構成において、前記電波送信制御部は、前記電波信号の送信が可能な第2の時間帯となったとき、前記1つ以上のタイミング情報を連続して送信することが好ましい。
 上記構成において、前記電波送信制御部は、前記電波信号の送信が可能な第2の時間帯となったとき、前記情報保持部により保持されている1つ以上の前記タイミング情報をまとめて送信することが好ましい。
 上記構成において、前記電波信号の送信が可能な第2の時間帯に前記受信機が前記複数のタイヤ空気圧検出器の各々の電波送信制御部から複数のタイミング情報を受信した場合、前記位置判定部は、前記複数のタイミング情報から平均値および中央値のうちのいずれか一方を算出することが好ましい。
 本発明によれば、タイヤ位置判定システムにおいて、タイヤ位置判定に必要な電波信号を、タイヤ空気圧検出器から受信機に確実に送信することができる。
第1実施形態のタイヤ位置判定システムの構成図。 タイヤ空気圧検出器で検出される重力の向心成分を示す説明図。 タイヤ空気圧検出器の通信シーケンス図。 タイヤの回転速度が低速のときの電波送信の態様を示す説明図。 オートロケーション用の電波信号の通信シーケンス図。 特定のIDを受信機で受信した時点での2つの車軸のパルス数変化を示すプロット図。 オートロケーション用の電波信号の具体的な通信シーケンス図。 第2実施形態のオートロケーション用の電波信号の通信シーケンス図。
 (第1実施形態)
 以下、第1実施形態のタイヤ位置判定システムを図1~図7に従って説明する。
 図1に示すように、車両1は、各タイヤ2(2a~2d)のタイヤ空気圧等を監視するタイヤ空気圧監視システム(TPMS:Tire Pressure Monitoring System)3を備える。タイヤ空気圧監視システム3は、直接式であり、複数のタイヤ2a~2dにそれぞれ取り付けられた複数のタイヤ空気圧検出器4(4a~4d:タイヤバルブとも言う)を含む。これらタイヤ空気圧検出器4a~4dが、タイヤ空気圧を検出して、タイヤ空気圧信号Stpを車体5に送信する。これにより、車体5において各タイヤ2a~2dの空気圧が監視される。
 各タイヤ空気圧検出器4は、タイヤ空気圧検出器4の動作を制御するコントローラ6と、タイヤ空気圧を検出する圧力検出部7と、タイヤ温度を検出する温度検出部8と、タイヤ空気圧検出器4に発生する重力を検出する重力検出部9と、タイヤ空気圧検出器4からの電波送信を可能とする送信アンテナ10とを含む。コントローラ6のメモリ11には、各タイヤ空気圧検出器4の固有のIDとしてタイヤID(バルブID)が記憶されている。圧力検出部7は、例えば圧力センサであることが好ましい。温度検出部8は、例えば温度センサであることが好ましい。重力検出部9は、例えば加速度センサ(Gセンサ)であることが好ましい。送信アンテナ10は、例えばUHF(Ultra High Frequency)帯の電波信号を送信することが好ましい。
 車体5は、各タイヤ空気圧検出器4a~4dからのタイヤ空気圧信号Stpを受信して、各タイヤ2a~2dの空気圧を監視する受信機(以降、TPMS受信機と記す)12を備える。TPMS受信機12は、TPMS受信機12の動作を制御するタイヤ空気圧監視ECU(Electronic Control Unit)13と、TPMS受信機12において電波信号を受信可能とする受信アンテナ14とを備える。タイヤ空気圧監視ECU13は、タイヤ空気圧検出器4a~4dのIDを記憶するメモリ15を含む。タイヤ空気圧検出器4a~4dのIDは、タイヤ位置と対応付けられている。例えば、右前タイヤ空気圧検出器4aのIDをID1とし、左前タイヤ空気圧検出器4bのIDをID3とし、右後タイヤ空気圧検出器4cのIDをID4とし、左後タイヤ空気圧検出器4dのIDをID2とする。TPMS受信機12には、例えば車内インストルメントパネル等に設置された表示部16が接続されている。
 各タイヤ空気圧検出器4は、重力検出部9からの検出信号に基づいてタイヤ2の回転を確認したとき、タイヤ空気圧信号Stpを送信アンテナ10から車体5に送信する。代替的には、各タイヤ空気圧検出器4は、定期又は不定期に、タイヤ空気圧信号Stpを送信アンテナ10から車体5に送信してもよい。タイヤ空気圧信号Stpは、例えばタイヤID、圧力データ、温度データ等を含む信号であることが好ましい。タイヤ2の回転は、重力検出部9の出力が変化したか否かを確認することにより判定される。また、タイヤ2が回転していないと判断した場合であっても、回転時と同じか、又はそれ以上の間隔でタイヤ空気圧信号Stpが送信される。
 TPMS受信機12は、各タイヤ空気圧検出器4a~4dからのタイヤ空気圧信号Stpを受信アンテナ14で受信すると、タイヤ空気圧信号Stp内のタイヤIDを照合する。TPMS受信機12は、タイヤID照合が成立した場合、タイヤ空気圧信号Stp内の圧力データを確認する。TPMS受信機12は、圧力値が低圧閾値以下であれば、低圧と判定されたタイヤを、タイヤ位置と対応付けて表示部16に表示する。TPMS受信機12は、このタイヤ空気圧判定を、受信するタイヤ空気圧信号Stpごとに行って、各タイヤ2a~2dの空気圧を監視する。
 タイヤ空気圧監視システム3は、各タイヤ2a~2dが前後左右のどの位置に取り付けられているのかを自動で判断する、いわゆるオートロケーションを実行するタイヤ位置判定機能(タイヤ位置判定システム17)を備える。タイヤ位置判定システム17は、タイヤ空気圧検出器4a~4dがタイヤ回転方向において特定の位置に位置することを検出し、そのときの車軸18(18a~18d)の回転量を確認する原理を用いて、タイヤ2a~2dの位置を判定する。
 図2は、重力検出部9が検出する重力の向心成分を示す。重力検出部9は、タイヤ空気圧検出器4にかかる重力として、重力Gに対する車軸方向(タイヤ半径方向)の重力の向心分力Grを検出する。重力の向心成分Grは、タイヤ2の回転軌跡において、タイヤ空気圧検出器4がピーク位置(紙面の「12時」又は「6時」の位置)に位置するとき、遠心力を考慮しなければ「-1G」又は「+1G」である。ちなみに、タイヤ2の回転軌跡において、タイヤ空気圧検出器4が紙面の「3時」及び「9時」に位置するとき、遠心力を考慮しなければ、重力分力Grは「0G」である。
 図3に、タイヤ空気圧検出器4における電波送信の通信シーケンスの概略を図示する。各タイヤ空気圧検出器4は、電波送信が可能な送信タイミングtが、ある周期で繰り返し出現する送信パターンを取得する。送信タイミングtが過ぎてから所定の時間が経過するまでの微少時間の「T1」が、電波送信が可能な時間帯に設定されている。この時間帯T1は、例えば「1秒」であることが好ましい。電波送信は、送信タイミングtが出現する時間間隔「T2」で繰り返される。この時間間隔T2は、電波送信が待機される時間帯であり、例えば「30秒」であることが好ましい。このように、タイヤ空気圧検出器4は、電波送信を1秒間行なう動作を、30秒の間隔で繰り返し実行する。
 図1に示すように、各タイヤ空気圧検出器4は、検出器角度監視部19と、情報保持部20と、電波送信制御部21とを含む。検出器角度監視部19は、タイヤ空気圧検出器4が特定の検出器角度まで回転したかどうかを監視する。特定の検出器角度の説明は、図4および図5を用いて後述される。情報保持部20は、電波信号の送信を待機する時間帯T2において、タイヤ空気圧検出器4が特定の検出器角度まで回転した時刻を示す複数のタイミング情報Dtiを保持する。電波送信制御部21は、電波信号の送信が可能な時間帯T1の送信タイミングtにおいてタイヤ空気圧検出器4が特定の検出器角度まで回転したときに電波信号の送信を複数回実行する。電波送信制御部21は、このような動作を所定の時間間隔で複数回繰り返す。検出器角度監視部19、情報保持部20、および電波送信制御部21は、例えばコントローラ6に設けられることが好ましい。
 図4及び図5に、本例のタイヤ空気圧検出器4の電波送信の動作原理を図示する。特定の検出器角度は、例えばタイヤ空気圧検出器4がタイヤ回転方向において極の位置に対応する角度であることが好ましい。極の位置とは、例えば「12時」の位置、「3時」の位置、「6時」の位置、「9時」の位置である。さらに、特定の検出器角度は、例えばタイヤ空気圧検出器4がタイヤ回転方向においてピーク位置に対応する角度であることが好ましい。ピーク位置とは、例えば「12時」の位置、「6時」の位置を言う。
 図4に示すように、本例のように電波送信可能な時間帯T1が「1秒」と短い場合、車両1が低速走行してタイヤ2がゆっくり回っていると、電波送信可能な時間帯T1において、タイヤ空気圧検出器4が電波信号を複数回送信できない場合がある。こうなると、本例のように、タイヤ位置の判定において、タイヤ空気圧検出器4が電波信号を複数回送信することが必要な方式では、タイヤ位置を判定できないことになる。
 そこで、図5に示すように、電波信号の送信を待機する時間帯T2において、タイヤ空気圧検出器4のピーク位置検出が予め実行され、タイヤ空気圧検出器4がピーク位置まで回転した時刻を示すタイミング情報Dtiが、電波送信が可能な時間帯T1にまとめて送信される。情報保持部20は、例えば送信タイミングt1以前に連続する「n個」のタイミング情報Dtiを保持するのが好ましい。ここで、タイミング情報Dtiは、特定の角度の検出から電波送信が可能となるまでの時間情報である。図5には、4つのタイミング情報Dtiを送信する場合が示されている。例えば、タイミング情報Dtiは、タイヤ空気圧検出器4の個体識別が可能な情報である。例えば、タイミング情報Dtiは、電波信号に含まれるタイヤID(ID1~ID4)と関連付けられており、該タイヤID(ID1~ID4)によって複数のタイヤ空気圧検出器4のうちのいずれか1つと関連付けられる。
 電波送信制御部21は、微少時間の電波送信が可能な時間帯T1(約1秒)において電波信号の送信動作を行ない、微少時間の時間帯T1を過ぎた後の微少時間T1よりも充分に長い時間帯T2(約30秒)において電波送信を実行せず、この時間帯T2の経過後、電波送信の動作を再度実行するという動作を繰り返す。これにより、電波送信制御部21は、オートロケーション用の電波信号の送信を実行する。具体的には、電波送信制御部21は、電波送信が可能な送信タイミングtにおいて、情報保持部20によって保持されているタイミング情報Dtiを含む電波信号を、短い時間間隔で連続的に送信する。電波送信制御部21は、このような動作を、時間間隔T2で繰り返し実行する。オートロケーション用の電波信号は、タイミング情報Dtiを含む電波信号であればよく、前述のタイヤ空気圧信号Stpを用いたものでもよいし、他の電波信号のいずれでもよい。
 図1に示すように、TPMS受信機12は、複数の車軸回転検出部22(22a~22d)と、車軸回転量読込部23と、位置判定部24とを含む。複数の車軸回転検出部22(22a~22d)は、複数の車軸18a~18dにそれぞれ設けられている。各車軸回転検出部22(22a~22d)は、タイヤ空気圧検出器4からオートロケーション用の電波信号を受信する度に、対応する車軸18(18a~18d)の回転量を検出して車軸回転量情報を生成する。車軸回転量読込部23は、各車軸回転検出部22(22a~22d)から送信される車軸回転量情報を受け取って位置判定部24に供給する。位置判定部24は、タイミング情報Dtiに基づいて車軸回転量情報からタイヤ空気圧検出器4が特定の検出器角度まで回転した時点での車軸回転量を算出し、算出された車軸回転量に応じてタイヤ位置を判定する。車軸回転量読込部23及び位置判定部24は、例えばタイヤ空気圧監視ECU13に設けられることが好ましい。
 車軸回転検出部22a~22dには、例えばABS(Antilock Brake System)センサを用いることができる。この場合、車軸回転量は、例えばパルス数Pxで示すことが好ましい。例えば、各車軸回転検出部22a~22dは、車軸18に設けられた複数の歯、例えば48個の歯を車体5のセンシング部で検出して、矩形波状のパルス信号Splを車軸回転量読込部23に供給する。車軸回転量読込部23は、パルス信号Splの立ち上がりエッジ及び立ち下がりエッジの両方を検出する場合、タイヤ1回転当たり96パルス(カウント値:0~95)を検出する。
 位置判定部24は、1セットの電波信号を受信する度、逆算により車軸回転量を割り出す。位置判定部24は、先の1セットの車軸回転数の群と、後の1セットの車軸回転数の群とを比較して、ID1~ID4を車軸18a~18dとそれぞれ紐付けして、タイヤ2a~2dの位置を判定する。
 次に、図6及び図7を用いて、タイヤ位置判定システム17の動作を説明する。なお、TPMS受信機12は、所定のサイクルに従ってオートロケーションモードに切り替わり、タイヤ位置の判定を実行する。
 まず、図6に、本例のタイヤ位置の判定原理を図示する。各タイヤ2a~2d(車軸18a~18d)は、カーブ等の旋回走行を許容するために、独立して回転するように構成されている。この結果、旋回走行の前後では、各タイヤ空気圧検出器4a~4dがピーク位置に到達するタイミングが変化するので、各タイヤ空気圧検出器4a~4dの電波送信タイミングも変化する。つまり、旋回走行の前後において、あるIDを含むタイミング情報Dtiを受信した場合、同IDに対応する車軸18の測定されたパルス数Pxが所定値に収束するのに対し、同IDに対応しない複数の車軸18の測定されたパルス数Pxが他の値に変化する。この原理を前提に、本例はタイヤ位置を判定する。
 図7に示すように、情報保持部20は、送信タイミングt1以前の電波信号の送信を待機する時間帯T2において、タイヤ空気圧検出器4がピーク位置に到達した時刻を示す複数のタイミング情報Dtiをメモリ11に保持する。情報保持部20は、n個(図7は4個)のタイミング情報Dtiを保持する。情報保持部20は、保持できる最大のタイミング情報Dtiを既に保持しているとき、新たなタイミング情報Dtiを検出すると、最も古いタイミング情報Dtiを破棄して最新のタイミング情報Dt iを記憶することにより、保持するタイミング情報Dtiのデータ群を更新する。
 各タイヤ空気圧検出器4は、電波信号の送信タイミングt1が到来したとき、時間帯T1(例えば1秒)において、電波信号を送信することができる。このとき、電波送信制御部21は、タイミング情報Dtiを含む電波信号を、メモリ11に保持されているタイミング情報Dtiの数だけ、比較的短い時間間隔で連続的に送信する。例えば、電波送信制御部21は、複数のタイミング情報Dtiを最も古いタイミング情報Dtiから順番にTPMS受信機12に送信する。具体的には、電波送信制御部21は、最も古いタイミング情報Dtiを含む電波信号を送信し、2番目に古いタイミング情報Dtiを含む電波信号を送信し、・・・最も新しいタイミング情報Dtiを含む電波信号を送信する。電波送信の間隔である送信のインターバルTsは、例えば100msに設定される。
 各タイヤ空気圧検出器4は、時間帯T1が経過すると、再度、電波信号の送信を待機する時間帯T2(例えば30秒)に移行するために電波送信を実行しない。情報保持部20は、送信タイミングt1,t2の間の電波信号の送信を待機する時間帯T2でも、タイヤ空気圧検出器4がピーク位置に到達した時刻を示すn個のタイミング情報Dtiをメモリ11に保持する。電波送信制御部21は、電波信号の送信タイミングt2が到来すると、送信タイミングt1のときと同様に、タイミング情報Dtiを含む電波信号を、保持されている複数のタイミング情報Dtiの数だけ、比較的短い時間間隔で連続的に送信する。
 位置判定部24は、TPMS受信機12がオートロケーションモードに入っているとき、送信タイミングt1で各タイヤ空気圧検出器4a~4dからのタイミング情報Dtiを受信する。位置判定部24は、受信されたタイミング情報Dtiに基づき、いま車軸回転検出部22a~22dから供給された車軸回転量から、タイヤ空気圧検出器4a~4dが過去にピーク位置に到達した時点での車軸回転量を、車軸回転検出部22a~22dごとに算出する。例えば、位置判定部24は、タイヤ空気圧検出器4の個体識別が可能な情報に応じて、複数のタイヤ空気圧検出器4のうちのタイミング情報Dtiと対応するタイヤ空気圧検出器4を決定する。位置判定部24は、決定されたタイヤ空気圧検出器4に関連する車軸18の車軸回転量情報から、タイヤ空気圧検出器4が特定の検出器角度まで回転したときから電波信号の送信が可能な時間帯に電波信号が送信されるまでの時間の情報に応じてタイヤ空気圧検出器4が特定の検出器角度まで回転した時点での車軸回転量を算出する。また例えば、位置判定部24は、受信されたタイミング情報Dtiに基づき、いま車軸回転検出部22a~22dから供給されたパルス数Pxから、タイヤ空気圧検出器4a~4dが過去にピーク位置に到達した時点でのパルス数Pxを、車軸回転検出部22a~22dごとに算出する。つまり、ID1のタイミング情報Dtiを受信すると、右前タイヤ空気圧検出器4aが過去にピーク位置に到達した時点での車軸18aのパルス数Pxを算出する。同様に、このような動作が、ID2~ID4のタイミング情報Dtiを受信した場合も実行される。
 ちなみに、複数のタイミング情報Dtiが送信されるので、仮に通信環境がよくない場合であっても、TPMS受信機12は、少なくとも1つのタイミング情報Dtiを受信できる。また、複数のタイミング情報Dtiを受信することができた場合、例えば、複数のタイミング情報Dtiのうちの1つ以上を用いてパルス数Pxの算出値を演算する。位置判定部24は、演算された算出値を、送信タイミングt1において受信されたタイミング情報Dtiに対応する各車軸18a~18dのパルス数Pxとしてメモリ15に保持する。
 位置判定部24は、次の送信タイミングt2のときも、各ID1~ID4のタイミング情報Dtiを含む電波信号をTPMS受信機12で受信すると、いま各車軸回転量読込部23a~23dで読み込んだパルス数Pxからタイヤ空気圧検出器4が過去にピーク位置に到達した時点でのパルス数Pxを車軸回転検出部22a~22dごとに算出する。つまり、TPMS受信機12は、各ID1~ID4のタイミング情報Dtiを含む電波信号を受信すると、過去にタイヤ2a~2dがピーク位置に到達した時点での車軸18a~18dのパルス数Pxを算出する。
 位置判定部24は、送信タイミングt1において受信され、メモリ15に保持されていたタイミング情報Dtiに対応する各車軸18a~18dのパルス数Pxと、後に算出され、送信タイミングt2において受信されたタイミング情報Dtiに対応する各車軸18a~18dのパルス数Pxとを比較して、タイヤ位置を判定する。つまり、位置判定部24は、車軸回転検出部22a~22dの前後のパルス数Pxが一致するか又は一定許容幅以下となるのかを確認して、タイヤ位置を特定する。
 なお、位置判定部24は、1度の判定でタイヤ位置判定を完了することができないと、同様の処理をリトライする。つまり、位置判定部24は、次の送信タイミングtにおいてパルス数Pxを算出し、算出されたパルス数Pxを過去(例えば1つ前)のパルス数Pxと比較して、タイヤ位置を判定する。位置判定部24は、全4輪のタイヤ位置を判定できるまで判定処理を継続し、オートロケーションを完了する。以上のオートロケーションは、所定のサイクルに従って繰り返し実行される。
 本実施形態の構成によれば、以下に記載の効果を得ることができる。
 (1)タイヤ空気圧検出器4は、電波信号の送信を待機する時間帯T2において事前にピーク位置を検出し、ピーク位置を検出する度にピーク位置に到達した時刻を示すタイミング情報Dtiを保持する。タイヤ空気圧検出器4は、送信タイミングtが到来したとき、保持しておいた複数のタイミング情報Dtiを、電波送信が可能な時間帯T1において短いインターバルTsで連続的にTPMS受信機12に送信する。このため、タイヤ2がゆっくり回転する場合であっても、タイヤ空気圧検出器4は、微少時間の電波送信が可能な時間帯T1にタイミング情報DtiをTPMS受信機12に送信し終えることができる。よって、タイヤ位置の判定に必要なオートロケーション用の電波信号を、タイヤ空気圧検出器4からTPMS受信機12に確実に送信することができる。
 (2)事前に検出された複数のタイミング情報Dtiは、電波送信が可能な時間帯T1に、古いタイミング情報Dtiから順番にTPMS受信機12に送信される。よって、タイヤ空気圧検出器4がT1の時間帯で電波信号を送信するとき、1回の電波送信時に電波信号に乗せるタイミング情報Dtiのデータ量を削減することができる。
 (3)タイヤ空気圧検出器4は、微少時間の電波信号の送信が可能な時間帯(「T1」の時間帯)が、相対的に時間が長い電波信号の送信を待機する時間帯(「T2」の時間帯)を挟んで繰り返し出現する通信シーケンスをとる。よって、タイヤ空気圧検出器4において電波信号を送信しなければならない時間帯が短く済むので、タイヤ空気圧検出器4の電源の省電力化に寄与する。
 (4)特定の検出器角度は、タイヤ空気圧検出器4のタイヤ回転方向における極の位置としてもよい。ところで、タイヤ空気圧検出器4の極位置は重力検出部9で検出し易いので、特定の検出器角度を容易に検出することができる。
 (5)1回の電波送信で複数の検出角度情報を送信することができるので、そのデータ処理により角度精度を向上することができる。
 (第2実施形態)
 次に、第2実施形態を図8に従って説明する。なお、第2実施形態は、第1実施形態に記載のタイヤ空気圧検出器4の送信ロジックを変更した実施例である。よって、第1実施形態と同一部分には同じ符号を付して詳しい説明を省略し、異なる部分についてのみ詳述する。
 図8に示すように、電波送信制御部21は、電波信号の送信タイミングtが到来すると、時間帯T2において検出された複数のタイミング情報Dtiを含む最初のオートロケーション用の電波信号をTPMS受信機12に送信させる。ちなみに、図8では、タイミング情報Dtiが2つの例を図示している。本例の場合、オートロケーション用の電波信号は、例えばタイヤIDと、複数のタイミング情報Dtiとを含む。
 位置判定部24は、複数のタイミング情報Dtiを含む電波信号を受信すると、これらタイミング情報Dtiを基に、車軸回転検出部22a~22dで読み込んだパルス数Pxから、タイヤ空気圧検出器4が過去にピーク位置に到達した時点でのパルス数Pxを算出する。例えば、位置判定部24は、取得された複数のタイミング情報Dtiのうち1つ以上を選択し、選択したタイミング情報Dtiに基づいて現在のパルス数Pxから、先のピーク時のパルス数Pxを算出する。位置判定部24は、送信タイミングt2のときも同様の算出を行ない、先の送信タイミングt1に取得された算出値と、後の送信タイミングt2に取得された算出値とを比較して、タイヤ位置を特定する。
 なお、図8では、オートロケーション用の電波信号を送信した後に、数回の電波送信を行なう例を記載しているが、この電波送信は省略してもよい。つまり、送信タイミングt1のとき、オートロケーション用の電波信号を1回のみ送信させる通信としてもよい。こうすれば、タイヤ空気圧検出器4による電波送信の回数が少なく済むので、タイヤ空気圧検出器4の電源の省電力化に一層有利となる。
 本実施形態の構成によれば、第1実施形態に記載の(1),(3)~(5)に加え、以下の効果を得ることができる。
 (6)タイヤ空気圧検出器4は、電波送信が可能な送信タイミングtとなったとき、事前に検出された複数のタイミング情報Dtiを含む最初の電波信号をTPMS受信機12に送信する。このため、タイヤ空気圧検出器4によるタイミング情報Dtiの送信回数を削減することができる。よって、タイヤ空気圧検出器4の電源の省電力化に一層寄与する。
 なお、実施形態はこれまでに述べた構成に限らず、以下の態様に変更してもよい。
 ・第2実施形態において、複数のタイミング情報Dtiを1つの電波信号にまとめていたが、2番目以降に送信される電波信号が、複数のタイミング情報Dtiを含んでもよい。
 ・第1および第2実施形態において、保持するタイミング情報Dtiの個数「n」は、先の送信タイミングt1と後の送信タイミングt2とで異なっていてもよい。
 ・第1および第2実施形態において、保持するタイミング情報Dtiの個数「n」は、例えば車速や走行時間等に応じて可変としてもよい。
 ・第1および第2実施形態において、保持するタイミング情報Dtiは、送信タイミングtの直前から遡った所定個としたが、どのタイミングのものを保持対象としてもよい。
 ・第1および第2実施形態において、T2の間、ピーク位置の検出を行わず、T2が終了後、必要な数のピーク位置の検出を行い、T1の間に送信する方法を用いてもよい。
 ・第1および第2実施形態において、オートロケーションの判定処理に制限時間を設け、制限時間を過ぎても位置判定が完了しないときは、処理を強制終了し、次回に再実行するようにしてもよい。
 ・第1および第2実施形態において、時間帯T1は、タイヤ空気圧監視時とオートロケーション時とで各々異なる値としてもよい。なお、これはT2でも同様である。
 ・第1および第2実施形態において、時間幅T1や時間間隔T2は、種々の時間幅に適宜設定可能である。
 ・第1および第2実施形態において、時間幅T1や時間間隔T2は、例えば車速や走行時間等に応じて他の値に切り替えるなど、可変としてもよい。
 ・第1および第2実施形態において、タイヤ空気圧検出器4において検出する重力の成分は、例えば車軸方向と直交する方向の重力としてもよい。
 ・第1および第2実施形態において、車軸回転検出部22は、車軸18の回転を検出することができれば、種々の検出部材(センサ、スイッチ、通信機等)に変更可能である。
 ・第1および第2実施形態において、タイミング情報Dtiは、時間帯T2においてタイヤ空気圧検出器4が特定の検出器角度まで回転した時刻を示す情報であればよい。
 ・第1および第2実施形態において、1回のT1内における複数のオートロケーション用のデータに、例えば平均化や中央値等の処理を行うことにより、位置情報の正確性を上げてもよい。例えば、電波信号の送信が可能な時間帯T1において受信機12が複数のタイヤ空気圧検出器4の各々の電波送信制御部21から複数のタイミング情報を受信した場合、位置判定部24は、複数のタイミング情報Dtiから平均値および中央値のうちのいずれか一方を算出する。
 ・第1および第2実施形態において、タイヤ位置の判定方法は、タイヤ空気圧検出器4が特定の検出器角度をとったときの各車軸18a~18dの回転量(パルス)を測定して判定する方式であれば、種々の態様が採用可能である。

Claims (5)

  1.  タイヤ位置判定システムであって、
     複数のタイヤにそれぞれ取り付けられ、各々、タイヤ空気圧信号を送信可能な複数のタイヤ空気圧検出器であって、第1の時間帯において電波信号の送信を待機し、第2の時間帯において電波信号の送信が可能である前記複数のタイヤ空気圧検出器と、
     複数の車軸にそれぞれ設けられ、各々、前記複数の車軸のうちの対応する1つの回転量を検出して車軸回転量情報を生成する複数の車軸回転検出部と、
     車体に設けられ、前記複数のタイヤ空気圧検出器の各々から送信されるタイヤ空気圧信号を受信してタイヤの空気圧を監視する受信機とを備え、
     前記複数のタイヤ空気圧検出器の各々は、
     前記電波信号の送信を待機する第1の時間帯において、前記タイヤ空気圧検出器が特定の検出器角度まで回転した時刻を示す1つ以上のタイミング情報を保持する情報保持部と、
     電波信号の送信が可能な第2の時間帯となったとき、前記情報保持部が保持する1つ以上の前記タイミング情報を前記受信機に送信する電波送信制御部とを含み、
     前記受信機は、
     前記複数の車軸回転検出部の各々において生成された車軸回転量情報を受け取る車軸回転量読込部と、
     前記複数のタイヤ空気圧検出器の各々の電波送信制御部からのタイミング情報と、前記車軸回転量読込部からの当該タイミング情報に対応する車軸回転量情報とに基づいてタイヤ空気圧検出器が特定の検出器角度まで回転した時点での車軸回転量を算出し、算出された車軸回転量を用いて前記タイヤの位置を判定する位置判定部とを含む、タイヤ位置判定システム。
  2.  前記電波信号は、前記タイヤ空気圧検出器を識別するためのIDを含み、
     前記タイミング情報は、
     前記タイヤ空気圧検出器が特定の検出器角度まで回転したときから、電波信号の送信が可能な第2の時間帯に電波信号が送信されるまでの時間の情報を含み、
     前記タイミング情報は、前記IDに関連付けられて前記タイヤ空気圧検出器の個体識別が可能である、請求項1に記載のタイヤ位置判定システム。
  3.  前記位置判定部は、
     前記IDに応じて、前記複数のタイヤ空気圧検出器のうちの前記タイミング情報と対応するタイヤ空気圧検出器を決定し、
     前記決定されたタイヤ空気圧検出器に関連する車軸の車軸回転量情報から、前記タイヤ空気圧検出器が特定の検出器角度まで回転したときから電波信号の送信が可能な第2の時間帯に電波信号が送信されるまでの時間の情報に応じて前記タイヤ空気圧検出器が特定の検出器角度まで回転した時点での車軸回転量を算出する、請求項2に記載のタイヤ位置判定システム。
  4.  前記電波送信制御部は、
     前記電波信号の送信が可能な第2の時間帯となったとき、前記1つ以上のタイミング情報を連続して送信する、請求項1~3のいずれか1項に記載のタイヤ位置判定システム。
  5.  前記電波送信制御部は、
     前記電波信号の送信が可能な第2の時間帯となったとき、前記情報保持部により保持されている1つ以上の前記タイミング情報をまとめて送信する、請求項1~3のいずれか1項に記載のタイヤ位置判定システム。
PCT/JP2014/076100 2013-10-10 2014-09-30 タイヤ位置判定システム WO2015053131A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167011848A KR20160070778A (ko) 2013-10-10 2014-09-30 타이어 위치 판정 시스템
CN201480055433.5A CN105612067B (zh) 2013-10-10 2014-09-30 轮胎位置判断系统
US15/027,367 US10166822B2 (en) 2013-10-10 2014-09-30 Tire position determination system
EP14852927.4A EP3056360B1 (en) 2013-10-10 2014-09-30 Tire position determination system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-212857 2013-10-10
JP2013212857A JP6257992B2 (ja) 2013-10-10 2013-10-10 タイヤ位置判定システム

Publications (1)

Publication Number Publication Date
WO2015053131A1 true WO2015053131A1 (ja) 2015-04-16

Family

ID=52812949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076100 WO2015053131A1 (ja) 2013-10-10 2014-09-30 タイヤ位置判定システム

Country Status (6)

Country Link
US (1) US10166822B2 (ja)
EP (1) EP3056360B1 (ja)
JP (1) JP6257992B2 (ja)
KR (1) KR20160070778A (ja)
CN (1) CN105612067B (ja)
WO (1) WO2015053131A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3308985A4 (en) * 2015-05-28 2019-01-16 Pacific Industrial Co., Ltd. DEVICE FOR IDENTIFYING A WHEEL POSITION

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3028058B1 (fr) * 2014-10-30 2016-12-09 Continental Automotive France Procede de pilotage d'un processeur d'un boitier electronique monte sur une roue d'un vehicule automobile
FR3035617B1 (fr) * 2015-04-29 2017-06-02 Continental Automotive France Procede de localisation de la position de roues d'un vehicule automobile
JP6329265B2 (ja) * 2015-09-09 2018-05-23 太平洋工業株式会社 車輪位置特定装置
GB2545681B (en) * 2015-12-22 2018-05-09 Schrader Electronics Ltd Tyre monitoring device and system for use with a vehicle on-board stability control system
DE102016214865A1 (de) 2016-08-10 2018-02-15 Continental Automotive Gmbh Elektronische Radeinheit für ein Fahrzeugrad, sowie Verfahren zum Betreiben einer derartigen elektronischen Radeinheit
CN112455166B (zh) * 2017-03-28 2023-01-13 太平洋工业株式会社 发送器、接收器以及收发系统
CN109986916B (zh) * 2017-12-29 2023-12-12 惠州比亚迪电子有限公司 基于胎压监测系统的轮胎定位方法、装置、设备及存储介质
JP7225966B2 (ja) * 2019-03-15 2023-02-21 株式会社デンソー 内燃機関の制御装置
US11110758B1 (en) * 2020-10-19 2021-09-07 Safran Landing Systems System for monitoring the inflation pressure of the tires of an aircraft
CN115534595B (zh) * 2021-06-30 2024-09-10 比亚迪股份有限公司 一种监测系统和监测方法
JP2023066994A (ja) * 2021-10-29 2023-05-16 株式会社東海理化電機製作所 車載システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6112587A (en) * 1997-08-08 2000-09-05 Continental Aktiengesellschaft Method for assigning the wheel position to tire pressure control devices in a tire pressure control system of a motor vehicle
JP2007153034A (ja) * 2005-12-01 2007-06-21 Toyota Motor Corp タイヤ摩耗状態判定装置
JP2011527971A (ja) 2008-09-26 2011-11-10 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両における少なくとも1つのホイールのロケーティングのための方法、センサ、検出器及びシステム
US20120029767A1 (en) * 2010-07-30 2012-02-02 Ivan Andrew David Bailie Tire Pressure Monitoring System Wheel Rotation Auto Location
JP2013103519A (ja) * 2011-11-10 2013-05-30 Pacific Ind Co Ltd 車輪位置判定装置
WO2013133307A1 (ja) * 2012-03-08 2013-09-12 日産自動車株式会社 タイヤ空気圧モニター装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6435020B1 (en) 1998-08-10 2002-08-20 Continental Aktiengesellschaft Method for allocating tire pressure control devices to wheel positions in a tire pressure control system of a motor vehicle
US6518877B1 (en) * 2001-05-31 2003-02-11 The Goodyear Tire & Rubber Company Pneumatic tire monitor
JP3997819B2 (ja) * 2002-02-18 2007-10-24 トヨタ自動車株式会社 タイヤ状態取得装置
JP2004161113A (ja) * 2002-11-12 2004-06-10 Pacific Ind Co Ltd タイヤ状態監視装置
JP3934573B2 (ja) * 2003-04-10 2007-06-20 アルプス電気株式会社 タイヤ情報検出装置
JP3975973B2 (ja) * 2003-06-05 2007-09-12 トヨタ自動車株式会社 車輪−車体間通信システム
EP1681660B1 (en) * 2003-11-07 2013-09-11 Kabushiki Kaisha Bridgestone Tire sensor device and tire information transmission method
JP2005321958A (ja) * 2004-05-07 2005-11-17 Denso Corp タイヤ空気圧検出装置
JP5322946B2 (ja) * 2006-12-04 2013-10-23 コンパニー ゼネラール デ エタブリッスマン ミシュラン 複数の遠隔測定システムのためのバックドア式データ同期
EP2018980B1 (en) * 2007-07-25 2016-03-23 Infineon Technologies AG Tyre localization system
EP2217458A4 (en) * 2007-11-30 2013-12-04 Volvo Lastvagnar Ab METHOD FOR IDENTIFYING WHEEL MODULAR POSITIONS
DE102008046270B4 (de) * 2008-09-08 2017-01-05 Continental Automotive France Drehrichtungsgeber und Verfahren zur Ermittlung der Drehrichtung eines Rades
US20100231403A1 (en) * 2009-03-16 2010-09-16 Trw Automotive U.S. Llc Method and apparatus for determining tire position on a vehicle
US8332104B2 (en) * 2009-09-22 2012-12-11 Schrader Electronics Ltd. System and method for performing auto-location of a tire pressure monitoring sensor arranged with a vehicle wheel
DE102009059789A1 (de) * 2009-12-21 2011-06-22 Continental Automotive GmbH, 30165 Radelektronik, Fahrzeugrad und Fahrzeug
CN103080693B (zh) * 2010-08-04 2015-04-22 株式会社普利司通 轮胎外形测量数据校正方法和轮胎外观检查装置
US8436724B2 (en) * 2010-11-05 2013-05-07 Trw Automotive U.S. Llc Method and apparatus for determining tire condition and location
JP5853402B2 (ja) * 2011-04-25 2016-02-09 日産自動車株式会社 タイヤ空気圧モニター装置
JP5736948B2 (ja) * 2011-05-13 2015-06-17 日産自動車株式会社 タイヤ空気圧モニタシステム
JP5736959B2 (ja) * 2011-05-23 2015-06-17 日産自動車株式会社 タイヤ空気圧モニター装置
US8700286B2 (en) * 2011-12-21 2014-04-15 Infineon Technologies Ag Tire localization systems and methods in tire pressure monitoring systems
JP2013256157A (ja) * 2012-06-11 2013-12-26 Denso Corp 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP2014080176A (ja) * 2012-09-25 2014-05-08 Tokai Rika Co Ltd タイヤ位置判定システム
JP2014121982A (ja) 2012-12-21 2014-07-03 Tokai Rika Co Ltd タイヤ位置判定システム
JP2014128982A (ja) 2012-12-27 2014-07-10 Tokai Rika Co Ltd タイヤ位置判定システム
JP2015013635A (ja) 2012-12-27 2015-01-22 株式会社東海理化電機製作所 タイヤ位置判定システム
JP2015013637A (ja) 2013-06-03 2015-01-22 株式会社東海理化電機製作所 タイヤ位置判定システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6112587A (en) * 1997-08-08 2000-09-05 Continental Aktiengesellschaft Method for assigning the wheel position to tire pressure control devices in a tire pressure control system of a motor vehicle
JP2007153034A (ja) * 2005-12-01 2007-06-21 Toyota Motor Corp タイヤ摩耗状態判定装置
JP2011527971A (ja) 2008-09-26 2011-11-10 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両における少なくとも1つのホイールのロケーティングのための方法、センサ、検出器及びシステム
US20120029767A1 (en) * 2010-07-30 2012-02-02 Ivan Andrew David Bailie Tire Pressure Monitoring System Wheel Rotation Auto Location
JP2013103519A (ja) * 2011-11-10 2013-05-30 Pacific Ind Co Ltd 車輪位置判定装置
WO2013133307A1 (ja) * 2012-03-08 2013-09-12 日産自動車株式会社 タイヤ空気圧モニター装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3308985A4 (en) * 2015-05-28 2019-01-16 Pacific Industrial Co., Ltd. DEVICE FOR IDENTIFYING A WHEEL POSITION

Also Published As

Publication number Publication date
JP2015074388A (ja) 2015-04-20
JP6257992B2 (ja) 2018-01-10
KR20160070778A (ko) 2016-06-20
CN105612067B (zh) 2017-07-28
EP3056360B1 (en) 2018-12-26
CN105612067A (zh) 2016-05-25
EP3056360A1 (en) 2016-08-17
EP3056360A4 (en) 2017-07-19
US10166822B2 (en) 2019-01-01
US20160280018A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
WO2015053131A1 (ja) タイヤ位置判定システム
EP2749437B1 (en) Tire position determination system
KR101597893B1 (ko) 타이어 위치 판정 시스템
KR101559691B1 (ko) 차륜 위치 검출 장치 및 이를 포함하는 타이어 공기압 검출 장치
JP5477369B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP2014080176A (ja) タイヤ位置判定システム
WO2015076394A1 (ja) タイヤ位置判定システム
JP5803710B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
WO2015072475A1 (ja) タイヤ位置判定システム
US20150142259A1 (en) Wheel position detecting device and tire air pressure detecting apparatus including the same
WO2015076292A1 (ja) タイヤ位置判定システム
EP2749436A1 (en) Tire position determination system
JP2013133057A (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP5736951B2 (ja) タイヤ空気圧モニター装置
JP2015074387A (ja) タイヤ位置判定システム
JP5954006B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP2014121983A (ja) タイヤ位置判定システム
JP2015054545A (ja) タイヤ位置判定システム
JP2015102390A (ja) 車軸回転検出パルス計数装置及びタイヤ位置判定システム
JP2014226943A (ja) タイヤ位置判定システム
WO2015105147A1 (ja) タイヤ位置登録システム
WO2015107956A1 (ja) タイヤ位置登録システム
JP2014016288A (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
KR20140085283A (ko) 타이어 위치 판정 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852927

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15027367

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014852927

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014852927

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167011848

Country of ref document: KR

Kind code of ref document: A