WO2015107956A1 - タイヤ位置登録システム - Google Patents

タイヤ位置登録システム Download PDF

Info

Publication number
WO2015107956A1
WO2015107956A1 PCT/JP2015/050256 JP2015050256W WO2015107956A1 WO 2015107956 A1 WO2015107956 A1 WO 2015107956A1 JP 2015050256 W JP2015050256 W JP 2015050256W WO 2015107956 A1 WO2015107956 A1 WO 2015107956A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
axle
valve
rotation information
axles
Prior art date
Application number
PCT/JP2015/050256
Other languages
English (en)
French (fr)
Inventor
巨樹 渡部
由宇太 土川
勝秀 熊谷
Original Assignee
株式会社東海理化電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東海理化電機製作所 filed Critical 株式会社東海理化電機製作所
Publication of WO2015107956A1 publication Critical patent/WO2015107956A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0415Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels
    • B60C23/0416Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels allocating a corresponding wheel position on vehicle, e.g. front/left or rear/right
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • B60C23/0488Movement sensor, e.g. for sensing angular speed, acceleration or centripetal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • B60C23/0489Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors for detecting the actual angular position of the monitoring device while the wheel is turning

Definitions

  • the present invention relates to a tire position registration system for registering a tire valve ID associated with a tire mounting position in a receiver.
  • a tire position registration system that automatically registers a tire valve ID (valve ID) in a receiver without using a trigger device such as an initiator is well known (Patent Document 1). Etc.). If the initiator is not required for registering the valve ID in the receiver, the number of components mounted on the vehicle can be reduced.
  • An object of the present invention is to provide a tire position registration system that can complete the determination of the tire position at an early stage.
  • One aspect of the present invention is a tire position registration system, which includes a plurality of tire valves respectively attached to a plurality of tires, wherein each of the plurality of tire valves includes tire pressure data and an ID of the tire valve.
  • Each of the plurality of tire valves and the plurality of axles configured to transmit a first radio wave signal including the rotation of one axle corresponding to each of the plurality of axles.
  • Tire position registration comprising: a plurality of axle rotation detection units that generate axle rotation information; and a receiver that is provided on a vehicle body and configured to receive the first radio signal from each of the plurality of tire valves.
  • each of the plurality of tire valves includes data indicating that the tire valve has reached a specific position on a tire rotation trajectory and the type of the tire valve.
  • a second radio signal including a valve ID is transmitted, and the receiver receives the second radio signal transmitted from each of the plurality of tire valves, and transmits the second radio signal to each of the plurality of tire valves.
  • the tire corresponding to the received second radio signal Axle rotation information of a plurality of axles when the valve reaches the specific position is acquired, and based on the second radio signal and the axle rotation information of the plurality of axles, the axle rotation information of each of the axles A position configured to determine the tire position of the plurality of tires by identifying the tire valve ID of the tire that rotates synchronously and associating the tire valve ID with the axle.
  • the fixed part, the ID of the tire valve and which set of axles has a value deviating from the other set, and the determination of the tire position of the tire corresponding to the specified set is completed first And a preceding determination processing unit configured as described above.
  • the preceding determination processing unit may calculate a sampling period of gravity based on the information on the specific position included in the second radio wave signal, and confirm the deviation based on a change in the sampling period. preferable.
  • the second radio wave signal includes gravity data on which a centrifugal force generated in the tire is superimposed, and the preceding determination processing unit monitors the centrifugal force superimposed on the gravity data included in the radio wave signal. It is preferable to confirm the deviation based on the change in centrifugal force.
  • the position determination unit calculates a distribution of axle rotation information of each of the plurality of axles for each tire valve ID by taking statistics of the axle rotation information for each tire valve ID. It is preferable to determine the tire positions of a plurality of tires by confirming the tire valve ID and axle synchronism based on the calculated distribution.
  • the second radio signal includes rotation information indicating a rotation state of a tire to which a corresponding tire valve is attached
  • the preceding determination processing unit is configured to transmit the plurality of tire valves respectively transmitted by the plurality of tire valves.
  • the second radio signal is received from the receiver, the axle rotation information of the plurality of axles is received from the plurality of axle rotation detection units, respectively, and based on the rotation information of the plurality of radio signals and the axle rotation information of the axles.
  • the tire position of the tire is determined, and the position determination unit determines the tire position of the plurality of tires. Preparative, is preferably performed with the exception of the at least one tire is determined by the preceding determination processing unit.
  • the preceding determination processing unit compares rotation states of the plurality of tires, specifies an ID of the at least one tire valve based on a comparison result, and based on axle rotation information of the plurality of axles. Identifying axle rotation information of at least one axle that rotates synchronously with the at least one tire valve having the identified ID and associating the at least one tire valve ID with the at least one axle. preferable.
  • the preceding determination processing unit acquires a change in the rotation state of each of the plurality of tires, specifies an ID of the at least one tire valve based on the acquired change in the rotation state, and
  • the axle rotation information of at least one axle that rotates in synchronization with the at least one tire valve having the identified ID is identified based on the axle rotation information of the axle, and the ID of the at least one tire valve is determined.
  • it is associated with said at least one axle.
  • the said structure WHEREIN It is preferable that the said rotation information contains the rotation period of a tire. In the above configuration, it is preferable that the rotation information includes a centrifugal force generated in the tire.
  • the said structure WHEREIN It is preferable that the said rotation information contains the rotation speed of a tire.
  • the rotation information includes the number of rotations of a tire
  • the preceding determination processing unit determines the synchronism between the number of rotations of the plurality of tires and the axle rotation information of the plurality of axles, Based on this, it is preferable to associate at least one tire valve ID with at least one axle.
  • the determination of the tire position can be completed early.
  • the lineblock diagram of the tire position registration system of one embodiment Explanatory drawing which shows the centripetal component of the gravity detected with a tire valve.
  • (A), (b) is a communication sequence diagram of a tire valve. Explanatory drawing of the sampling logic of the centripetal component of gravity.
  • the distribution map of axle rotation information (pulse count value) of each wheel in a certain ID is a distribution table of axle rotation information (pulse count value) created for each ID. Deviation mean and standard deviation formulas.
  • (A), (b) is a gravity waveform diagram of a slip ring.
  • the distribution table of the axle rotation information (pulse count value) which shows the tire position determination implemented after predetermining one wheel.
  • the vehicle 1 includes a tire pressure monitoring system (TPMS) 3 that monitors the air pressure and the like of each tire 2 (2a to 2d).
  • the tire pressure monitoring system 3 includes tire valves 4 (4a to 4d) attached to the tires 2a to 2d.
  • the tire valve 4 is a tire valve sensor in which a tire plug is provided with a sensor and a communication function.
  • the tire pressure monitoring system 3 transmits a radio signal (valve radio signal) Sva including at least the pressure data of the tire 2 and a valve ID associated with the pressure data to the vehicle body 5 from the tire valves 4a to 4d.
  • the air pressure of each of the tires 2a to 2d is monitored.
  • Each tire valve 4 includes a controller 6 that controls the operation of the tire valve 4, a pressure detection unit 7 that detects tire air pressure, a temperature detection unit 8 that detects the temperature of the tire 2, and the gravity generated in the tire valve 4. It includes a gravity detecting unit 9 for detecting, and a transmission antenna 10 that enables transmission of a radio signal from the tire valve 4.
  • the controller 6 includes a memory 11 that stores a valve ID as a unique ID of each tire valve 4.
  • the pressure detector 7 is preferably a pressure sensor, for example.
  • the temperature detector 8 is preferably a temperature sensor, for example.
  • the gravity detector 9 is preferably an acceleration sensor (G sensor), for example.
  • the transmission antenna 10 is preferably capable of transmitting a radio signal in a UHF (Ultra High Frequency) band, for example.
  • the vehicle body 5 includes a receiver (hereinafter referred to as a TPMS receiver) 12 that receives the radio signal Sva transmitted from each tire valve 4a to 4d and monitors the air pressure of each tire 2a to 2d.
  • the TPMS receiver 12 includes a tire air pressure monitoring ECU (Electronic Control Unit) 13 that controls the operation of the TPMS receiver 12 and a reception antenna 14 that enables reception of radio signals in the TPMS receiver 12.
  • the tire pressure monitoring ECU 13 includes a memory 15 that stores a valve ID acquired from each of the tire valves 4a to 4d and associated with the tire position.
  • the TPMS receiver 12 is connected to a display unit 16 that displays the air pressure monitoring result. It is preferable that the display part 16 is installed in the instrument panel in a vehicle, for example.
  • the TPMS receiver 12 collates the valve ID in the radio signal Sva.
  • the TPMS receiver 12 confirms the pressure data (air pressure data) in the radio signal Sva when the valve ID verification is established. If the air pressure is equal to or lower than the low pressure threshold, the TPMS receiver 12 displays on the display unit 16 that the tire air pressure is low.
  • the TPMS receiver 12 performs the tire pressure determination for each received radio wave signal Sva, and monitors the tire pressures of the tires 2a to 2d.
  • the tire pressure monitoring system 3 associates the valve ID of each tire valve 4a to 4d with the ID of any one of the tires 2a to 2d, and automatically assigns the associated valve ID to the TPMS receiver 12.
  • a tire position registration function to be registered a so-called auto location function (tire position registration system 17) is provided.
  • the tire position registration system 17 acquires the rotation position (rotation amount) of each axle 18 (18a to 18d) when detecting that the tire valves 4a to 4d have reached a specific position on the tire rotation locus. To determine whether the tire of each valve ID rotates in synchronization with the rotational position (rotation amount) of the axles 18a to 18d, and associates the plurality of valve IDs with the axles 18a to 18d, respectively. . Thereby, the positions of the tires 2a to 2d are determined.
  • FIG. 2 shows the centripetal component of gravity detected by the gravity detector 9. It is preferable that the gravity detection unit 9 detects a centripetal component Gr of gravity in the axle direction (tire radial direction) with respect to the gravity G as the gravity applied to the tire valve 4. For example, if the centrifugal force is not taken into account, the centripetal component Gr of gravity is “ ⁇ ” when the tire valve 4 is located at a peak (position “12 o'clock” or “6 o'clock”) on the rotation locus of the tire. 1G “or” + 1G ". Note that the centripetal component Gr of gravity to be detected may be a tangential component on the tire rotation locus.
  • FIG. 3 (a) shows a radio wave transmission sequence of the tire valve 4.
  • FIG. 4 In the operation of the tire valve 4, it is preferable that the first time period T1 in which radio wave transmission is possible and the second time period T2 in which radio wave transmission is waited are alternately repeated.
  • the first time zone T1 is preferably a short time such as “1 second”.
  • the second time zone T2 is preferably a long time such as “30 seconds”. In this way, the tire valve 4 repeats the operation of transmitting a radio signal in a limited time of 1 second with an interval of about 30 seconds.
  • each tire valve 4 includes a detectable specific position detection unit 19 and a transmission processing unit 20.
  • the specific position detector 19 detects whether or not the tire valve 4 has reached a specific position on the rotation locus of the tire 2.
  • the transmission processing unit 20 transmits a radio wave signal indicating that the tire 2 has reached a specific position.
  • the radio signal is a specific position information radio signal Spi.
  • This radio signal includes at least a valve ID.
  • the specific position detection unit 19 and the transmission processing unit 20 are preferably provided in the controller 6, for example.
  • the specific position is preferably, for example, a peak position (an example is the “12 o'clock” position) on the tire rotation locus.
  • the detection of the peak position is preferably executed a plurality of times continuously before radio wave transmission.
  • the transmission of the specific position information radio signal Spi may be executed a plurality of times according to the number of times the peak position is detected, for example.
  • the tire valve 4 transmits the specific position information radio signal Spi in the regularly set first time
  • the tire valve 4 includes an information holding unit 21 that holds at least one specific position information Dgr indicating the time when the tire valve 4 has reached a specific position in the second time period T2.
  • Dgr specific position information
  • the tire valve 4 detects the peak position in advance in the second time zone T2 waiting for radio wave transmission.
  • the radio signal may be fixedly a null value thereafter.
  • the tire valve 4 transmits a radio signal at an arbitrary tire angle.
  • the radio signal does not have a fixed null value. That is, it is possible to prevent a risk that the reception rate of the TPMS receiver 12 is remarkably lowered in the determination of the tire position.
  • the specific position information Dgr is preferably peak information indicating the time when the tire valve 4 reaches the peak position.
  • the specific position information Dgr includes a gravity sampling point number Nx indicating how many times the measurement has been performed since the start of gravity sampling (actual gravity sampling), and a gravity sampling interval time Tb that is an interval of performing gravity sampling. Including.
  • the information holding unit 21 detects the peak position a predetermined number of times (for example, 8 times) in the second time period T2 before the start point T1a of the first time period T1. It is preferable. It is preferable that the transmission processing unit 20 sequentially transmits at least one specific position information Dgr held together with the valve ID by the number of specific position information Dgr in the first time period T1. That is, the transmission processing unit 20 causes the tire valve 4 to transmit the radio signal including the specific position information Dgr and the valve ID (for example, the specific position information radio signal Spi) in order from the tire valve 4 by the number of the specific position information Dgr held.
  • the transmission processing unit 20 causes the tire valve 4 to transmit the radio signal including the specific position information Dgr and the valve ID (for example, the specific position information radio signal Spi) in order from the tire valve 4 by the number of the specific position information Dgr held.
  • the transmission processing unit 20 may continuously transmit the specific position information radio signal Spi for one packet so that the specific position information radio signal Spi for one packet is completely transmitted during the first time period T1.
  • the specific position information radio signal Spi has a time length of about 10 ms, for example, and is preferably transmitted repeatedly at intervals of about 100 ms.
  • the tire position registration system 17 includes a position determination unit 23.
  • the position determination unit 23 causes each tire valve 4 to transmit a radio signal (for example, a specific position information radio signal Spi) including data indicating that a specific position (for example, a peak position) has been reached on the tire rotation locus.
  • the TPMS receiver 12 receives this radio signal.
  • the position determination unit 23 sets each tire valve 4a to 4d to a specific position from the axle rotation detection unit 22 (22a to 22d) that can detect the rotation of each axle 18a to 18d every time the TPMS receiver 12 receives a radio signal.
  • the tire positions of a plurality of tires are determined by associating the valve IDs with the axles 18a to 18d.
  • the position determination unit 23 is preferably provided, for example, in the tire air pressure monitoring ECU 13.
  • the position determination unit 23 is preferably provided, for example, in the tire air pressure monitoring ECU 13.
  • the distribution is preferably, for example, “variation”, “average deviation”, “standard deviation”, or the like.
  • the axle rotation detectors 22a to 22d are preferably ABS (Antilock Brake System) sensors provided on the axles 18a to 18d.
  • the axle rotation information Dc includes, for example, the number of pulses detected by an ABS sensor, that is, a pulse count value.
  • the axle rotation detection units 22a to 22d detect a plurality of teeth provided on the axles 18a to 18d, for example, 48 teeth, by the sensing unit on the vehicle body 5 side, thereby generating a rectangular pulse signal Spl.
  • the position determination unit 23 detects both the rising edge and the falling edge of the pulse signal Spl. In this case, the position determination unit 23 detects 96 pulses (count value: 0 to 95) per tire rotation.
  • the position determination unit 23 handles a plurality (eight in this example) of specific position information radio signals Spi received as one packet, as individual data. Each time the position determination unit 23 receives the specific position information radio signal Spi, the position determination unit 23 reads the axle rotation information Dc of each of the axle rotation detection units 22a to 22d, takes the distribution of the axle rotation information Dc, and confirms the distribution. Thus, the positions of the tires 2a to 2d are determined. When peak detection is performed in advance in the second time period T2, the position determination unit 23 uses the axle rotation information Dc stored in the memory 11, and the axle rotation for each specific position from the received specific position information Dgr. It is preferable to reversely calculate the information Dc and determine the tire position from the reversely calculated value.
  • the tire position registration system 17 confirms which of the valve ID and axles 18a to 18d has a value that deviates from the other, thereby identifying the specific wheel (the tire of the specified valve ID). ) Only in advance, the preceding determination processing unit 24 that completes the determination of the tire position is provided.
  • the preceding determination processing unit 24 is preferably provided, for example, in the tire air pressure monitoring ECU 13.
  • the advance determination processing unit 24 preferably determines, for example, a slip wheel as a specific wheel in advance.
  • the tire valve 4 first reads the centripetal component Gr of gravity and checks the gravity waveform for a predetermined time before starting peak detection.
  • a gravity sampling interval time Ta having a longer time corresponding to the centripetal component Gr of gravity is set.
  • the tire valve 4 starts pre-gravity sampling for detecting the centripetal component Gr of gravity at the gravity sampling interval time Ta.
  • the tire valve 4 At the time of pre-gravity sampling, the tire valve 4 first monitors where the peak of the centripetal component Gr of gravity is in the gravity sampling performed at the gravity sampling interval time Ta. For the peak, for example, it is preferable to determine the second “decrease” point when the centripetal component Gr of gravity takes a change of decrease ⁇ decrease ⁇ increase ⁇ increase as the peak position.
  • the tire valve 4 detects the peak of the centripetal component Gr of gravity
  • the tire valve 4 again monitors the peak of the centripetal component Gr of gravity in order to measure one period of the pre-gravity sampling.
  • the tire valve 4 detects the peak of the centripetal component Gr of gravity again, it calculates the pre-gravity sampling period based on the time between the previous peak and the subsequent peak.
  • the tire valve 4 sets “Tb” corresponding to the period of the pre-gravity sampling to a gravity sampling interval time used in actual gravity sampling. That is, since the number of times of gravity sampling per rotation of the tire is determined by a specified value (for example, 12 times), the optimum gravity sampling interval time Tb is set so that the number of times gravity sampling is performed reaches the specified value during actual gravity sampling. Is set.
  • the tire valve 4 performs actual gravity sampling at the gravity sampling interval time Tb. That is, the tire valve 4 repeatedly detects the centripetal component Gr of gravity at the gravity sampling interval time Tb, and detects a plurality of peak positions necessary for determining the tire position.
  • one period of actual gravity sampling is set to “Tr” having a time width corresponding to a prescribed number (for example, 12 times) of gravity sampling interval time Tb.
  • the information holding unit 21 stores the specific position information Dgr in the memory 11 when detecting the peak position in the gravity sampling repeatedly executed at the gravity sampling interval time Tb. Thereafter, the information holding unit 21 holds the specific position information Dgr in the memory 11 every time the peak position is detected.
  • the transmission processing unit 20 includes at least one specific position that includes at least one specific position information Dgr held in the memory 11 when the first time zone T1 in which radio wave transmission is possible.
  • the information radio wave signal Spi is transmitted from the transmitting antenna 10 in order.
  • the specific position information radio signal Spi includes at least a valve ID and specific position information Dgr.
  • the specific position information radio signal Spi preferably includes information such as valve ID, gravity sampling point Nx, gravity sampling interval time Tb, pressure data, and gravity data.
  • the number of gravity sampling points Nx corresponds to the number (total number) of gravity samplings performed at the gravity sampling interval time Tb after the gravity sampling is started.
  • the specific position information radio signal Spi is preferably transmitted continuously at a short interval of 100 ms, for example, so that it can be transmitted in the first time zone T1.
  • the position determination unit 23 acquires the axle rotation information Dc of each axle rotation detection unit 22a to 22d every time the specific position information radio signal Spi is received.
  • the position determination unit 23 calculates the axle rotation information Dc stored in the memory 15 for each specific position information (peak position) Dgr.
  • the position determination part 23 takes the statistics of the back calculation value of the axle shaft rotation information Dc obtained by the back calculation, and updates the statistics of the wheel shaft rotation information Dc every time the specific position information radio signal Spi is received in packet units.
  • the tire position is determined. For example, as shown in FIG.
  • the position determination unit 23 when the position determination unit 23 cannot identify the tire position from the distribution of the axle rotation information Dc calculated based on the ID radio signal Spi of the first packet, the ID radio wave of the second packet Based on the signal Spi, the distribution of the axle rotation information Dc is updated, and the tire position is specified from the updated distribution. If the tire position still cannot be specified, the same processing is repeated for the third and subsequent packets to update the distribution, and the tire position is determined from the newly updated distribution.
  • the position determination unit 23 creates a distribution table 25 for each valve ID as shown in FIG.
  • the position determination unit 23 determines the validity of the distribution by using only the axle rotation information Dc of each axle 18 to determine the validity of the distribution and the axle rotation information Dc of the plurality of axles 18. It is preferable to perform “relative evaluation” and determine the tire position based on the result of absolute evaluation and the result of relative evaluation. In the relative evaluation, the position determination unit 23 determines whether or not the target tire is sufficiently synchronized with other tires. Examples of the distribution include “average deviation” and “standard deviation”. The average of the deviation and the value of the standard deviation are smaller as the determination result is better.
  • the average of the deviations is calculated by assuming that the pulse count value is “x”, the total number of collected pulse count values is “n”, and the average of the collected pulse count values is “x ′”. 7 is calculated from equation ( ⁇ ).
  • the standard deviation is calculated from the equation ( ⁇ ) in the figure.
  • bias value “average deviation” and “standard deviation” are collectively referred to as “bias value”.
  • the position determination unit 23 determines whether or not the bias value falls below a threshold value.
  • the position determination unit 23 calculates a difference in the bias value between the target tire and the other tires, and whether or not the difference in the bias value is equal to or greater than a threshold value, that is, an absolute evaluation of the target tire.
  • the position determination unit 23 considers that the rotation of the tire 2 is synchronized with the rotation of the axle 18 if the bias value is equal to or smaller than the threshold value in the absolute evaluation and the difference in the bias value is equal to or larger than the threshold value in the relative evaluation. Determine the position.
  • the pulse count values of the left front axle 18b are gathered around “20”. At this time, the deviation value of the left front axle 18b falls within the threshold value, and the left front axle 18b satisfies the absolute evaluation with respect to ID1. However, regarding ID1, the pulse count values of the right front axle 18a, the right rear axle 18c, and the left rear axle 18d do not converge to one value, and these bias values take bad values. For this reason, the difference between the deviation value of the left front axle 18b and the deviation value of the other axles is equal to or greater than the threshold value, so the relative evaluation is also satisfied.
  • the position determination unit 23 determines that the rotation of the ID2 tire 2 is synchronized with the rotation of the left front axle 18b, and as a result, specifies that the ID1 tire 2 is the left front tire 2b. In the same way, the tire positions of the tires ID2 to ID4 are also specified.
  • the position determination unit 23 determines the position of the remaining tires by the same process. Then, the same processing is repeated until the positions are determined for all four wheels. When the position determination unit 23 completes position determination for all four wheels, the determination result is written in the memory 15 and the tire position is updated.
  • the tire position determination process may be executed each time the ignition switch of the vehicle 1 is turned on, for example.
  • FIG. 8 shows an output waveform of the gravity detecting unit 9 of the tire that has not slipped
  • FIGS. 9A and 9B show an output waveform of the gravity detecting unit 9 of the slipping wheel
  • FIG. 9A is a gravity waveform when the centrifugal force is not taken into consideration
  • FIG. 9B is a gravity waveform when the centrifugal force is taken into consideration.
  • the special rotation state is preferably “slip of the tire 2”, for example. Slip may occur, for example, when traveling on ice (ice burn) or on an iron plate (road under construction).
  • the output waveform of the gravity detector 9 of the tire valve 4 attached to the non-slip tire is a repetitive waveform with the same period Tr1. That is, when the tire 2 is not slipped, tire position determination is performed for all four wheels, and it is determined at which position the four tires 2 are attached to the front, rear, left and right respectively.
  • the preceding determination processing unit 24 calculates the gravity sampling period Tr based on the specific position information Dgr included in the specific position information radio signal Spi, and based on the change in the gravity sampling period Tr. It is preferable to check whether the rotation of a specific tire has deviated.
  • the gravity sampling period Tr is obtained by multiplying the difference between the gravity sampling point Nx just acquired and the gravity sampling point Nx previously acquired in the time series by the gravity sampling interval time Tb in the received specific position information radio signal Spi. By doing so, it is possible to calculate.
  • the gravity sampling period Tr of the gravity centripetal component Gr is calculated for each valve ID.
  • the advance determination processing unit 24 calculates the slip tire from the value of “Tr1 ⁇ Tr2”.
  • the valve ID is specified as the ID of the tire valve 4 attached to the slip tire.
  • the preceding determination processing unit 24 monitors the centrifugal force generated in the tire 2 based on the gravity data included in the specific position information radio signal Spi, and based on the change in the centrifugal force. In addition, the deviation of the rotation of the specific wheel may be confirmed.
  • the amount of change Fk of the centrifugal force can be calculated by obtaining “F2 ⁇ F1” where F1 is the centrifugal force generated in the non-slip tire and F2 is the centrifugal force generated in the slip tire.
  • the preceding determination processing unit 24 determines from the value of “F2-F1” that the slip tire has rotated significantly faster than the other tires, the preceding valve ID is assigned to the tire valve 4 attached to the slip tire. ID is specified.
  • the preceding determination processing unit 24 sequentially calculates the axle one rotation cycle Tsh (see FIG. 8) of the axles 18a to 18d based on the axle rotation information Dc supplied from the axle rotation detection units 22a to 22d.
  • the axle rotation period Tsh is a time required for the tire 2 to make one rotation.
  • the axle rotation period Tsh is calculated for each of the axles 18a to 18d.
  • the preceding determination processing unit 24 determines that a slip has occurred in the tire 2 of the own vehicle. At this time, the preceding determination processing unit 24 specifies the axle 1 rotation period Tsh of the axle 18 that rotates in synchronization with the tire valve 4 of the tire 2 whose rotation has deviated. Thereby, the advance determination processing unit 24 specifies the axle 18 associated with the tire valve 4 recognized as being attached to the slip tire. The determination as to whether synchronization is achieved may be made, for example, by only one rotation of the tire 2 or may be made by several rotations of the tire 2. Then, the preceding determination processing unit 24 determines the valve ID and the axle 18 that have been confirmed to be associated as a pair.
  • the position determination unit 23 excludes the pair from the tire position determination option and then determines the tire position. Continue position determination. In the case of the example of FIG. 10, ID3 and the right rear axle 18c are excluded from the tire position determination options. Thereafter, the position determination unit 23 determines tire positions by specifying which of ID1, ID2, and ID4 can be associated with the right front axle 18a, the left front axle 18b, and the left rear axle 18d. In this way, since it is only necessary to determine the tire positions of the three tires thereafter, the time required to complete the determination of the tire position can be shortened.
  • the following effects can be obtained. (1) When the tire 2 slips during traveling, only the rotation of the slip tire suddenly becomes faster than the rotation of other non-slip tires. At this time, the gravity sampling period Tr of the slip tire is significantly different from the gravity sampling period Tr of the other tires, or the slip tire centrifugal force is suddenly increased, so that the centrifugal force of the slip tire is compared with the centrifugal force of the other tires. Therefore, it is possible to identify which valve ID is a slip ring. Further, the axle rotation information Dc of the axle 18 of the slip tire also changes greatly compared to the axle rotation information Dc of the other axles 18.
  • the tire position of the slip tire is specified first by associating the valve ID of the slip tire with the axle 18 of the slip tire. For this reason, when the position determination unit 23 determines the tire position by associating the valve ID and the axle 18 with each other, it is possible to reduce options that must be confirmed at the time of the determination. Therefore, the time required for determining the tire position as a whole can be shortened.
  • the deviation of the rotation of the specific tire can be determined from the change in the gravity sampling period Tr. Therefore, based on the fact that the gravity sampling period Tr is significantly different from that of the other wheels, it is possible to more accurately determine a deviation from the other wheels that occurs in a predetermined tire.
  • the deviation of the rotation of the specific wheel can be determined from the change in centrifugal force detected by the gravity detection unit 9. Therefore, it is possible to more accurately determine the deviation from the other wheel that occurs in the predetermined tire 2 based on the increase in the centrifugal force that occurs in the tire 2.
  • the tire valve 4 transmits to the TPMS receiver 12 a specific position information radio signal Spi that can be used to determine that the tire valve 4 is positioned at the peak position on the tire rotation locus.
  • the TPMS receiver 12 acquires the axle rotation information Dc of each of the axles 18a to 18d when the tire valve 4 takes the peak position, and executes this operation for each of ID1 to ID4 and for each acquired peak.
  • a data group of axle rotation information Dc necessary for position determination is collected. Then, by taking statistics of the axle rotation information Dc of each axle 18a to 18d for each of ID1 to ID4, the distribution of axle rotation information Dc is calculated for each of ID1 to ID4, and the tire position is determined from this distribution.
  • each axle rotation information Dc is handled as individual data and the tire position is determined, it is possible to collect a lot of data necessary for the tire position determination in a short time. This is advantageous in that the time required for tire position determination can be shortened. Therefore, the tire position can be accurately determined in a short time.
  • the tire position can be determined in advance only for the slip wheel among all the wheels using this situation. it can.
  • the TPMS receiver 12 is not limited to judging the presence or absence of a slip wheel from the change of the axle rotation information Dc. For example, it is also possible to determine that a slip has occurred when one of the cycles Tr of the centripetal component Gr of four-wheel gravity has changed significantly from the other.
  • the tire valve 4 may take a communication sequence of simply transmitting a tire pressure signal including air pressure data without performing gravity monitoring after performing transmission of the specific position information radio signal Spi of one packet a predetermined number of times.
  • the plurality of slip rings may be determined.
  • the rotational speed should be different for each slip wheel, by confirming which slip wheel's gravity sampling period Tr is synchronized with which axle 18's axle 1 rotation period Tsh, these slip wheel and axle 18 Can be associated.
  • the deviation of the rotation of the specific wheel can be determined by various methods, for example, based on a change in the axle rotation information Dc.
  • the specific position information Dgr collected during the second time zone T2 may be transmitted all at once when the first time zone T1 arrives when the first radio wave transmission is performed.
  • the specific position information Dgr for example, various information such as the time when the peak position is detected and the time traced back from the start point T1a of the first time zone T1 can be adopted.
  • the specific position is not limited to the peak position, and may be a specific position taken by the tire valve 4 on the tire rotation locus.
  • the axle rotation detection unit 22 may output a pulse count value detected during a certain time interval to the TPMS receiver 12 as count data.
  • the axle rotation detection unit 22 may transmit a detection signal to the TPMS receiver 12 wirelessly.
  • the axle rotation information Dc is not limited to the pulse count value, and can be changed to another parameter as long as it is similar to the rotation position of the axle 18.
  • the position determination unit 23 can also apply a weight to the radio signal (specific position information radio signal Spi) received from the tire valve 4 according to the running state at that time. For example, when the vehicle 1 is traveling at a low speed, the weight of the received radio signal is increased. If the vehicle 1 is accelerating / decelerating, the weight of the received radio signal is decreased or the data itself is discarded. As a result, when the vehicle is in a traveling state in which accurate statistics can be obtained, a large weight is given to the received radio wave signal, so that the accuracy information can be added to the statistics of the axle rotation information Dc. That is, the distribution of the axle rotation information Dc of each axle 18a to 18d can be obtained with high accuracy in each valve ID. Therefore, it is advantageous to more correctly determine the tire position.
  • the weighting method can be changed to various modes.
  • the tire valve 4 is not limited to pre-detecting the peak in the second time zone T2 in which the radio wave transmission is not performed, but the specific position information is detected at the peak detection timing in the first time zone T1 in which the radio wave transmission is possible. It may be one that transmits a radio signal Spi.
  • the tire valve 4 may periodically transmit the specific position information Dgr.
  • the specific position information radio signal Spi is transmitted a plurality of times, the information on the gravity sampling interval time Tb may be transmitted only once.
  • the tire position determination method is not limited to the method of determining the position by taking the distribution of the axle rotation information Dc of each axle 18a to 18d for each ID as described in the embodiment.
  • the tire position may be determined by averaging the axle rotation information Dc of each axle 18a to 18d for each ID and confirming which of the average values the ID is synchronized with.
  • the tire position determination method can be appropriately changed to various modes.
  • the distribution is not limited to variation, average deviation, and standard deviation, and can be changed to other parameters as long as the synchronization between the valve ID and the axle 18 can be determined.
  • the radio signal for auto location is not limited to being classified into Spi with respect to Sva. That is, the radio signal Sva for notifying the tire pressure and the specific position information radio signal Spi can be handled as the same radio signal.
  • the specific wheel is not limited to a slip wheel, and may be a lock wheel that stops rotating, for example.
  • the rotation speed of the axle of the lock wheel is clearly lower than that of the other wheel, by confirming which valve ID causes the axle rotation information Dc to be significantly lower than that of the other wheel, only the lock wheel first.
  • the tire position can be fixed.
  • the receiver includes a traveling determination unit that determines a traveling state, and a weighting unit that weights the radio signal received by the receiver based on a determination result of the traveling determination unit.
  • the position determination unit takes statistics based on the axle rotation information reflecting the weighting, and determines a tire position based on a distribution calculated at this time.
  • the determination of the traveling state is not limited to being performed based on the sensor output of the ABS sensor, and can be changed to other modes, for example, based on vehicle speed information acquired from a meter ECU or the like.
  • the tire valve is an information holding unit that holds one or more specific position information indicating a time at which the tire valve has reached a specific position in a second time zone in which transmission of a radio signal is awaited.
  • the tire valve transmits one or more of the specific position information held so far together with the valve ID, and the position determination unit includes: Based on the received specific position information, the axle rotation information when the tire valve reaches the specific position in the past is calculated backward, and the tire position is determined from the reverse calculation value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Fluid Pressure (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

 タイヤ位置登録システムは、複数のタイヤバルブ(4)の各々に第2電波信号を送信させ、該第2電波信号を受信機(12)に受信させ、受信機(12)によってタイヤバルブ(4)からの第2電波信号を受信する度に、受信された第2電波信号に対応するタイヤバルブ(4)が特定位置に達したときの複数の車軸(18)の車軸回転情報を取得し、第2電波信号および複数の車軸(18)の車軸回転情報に基づいて、複数の車軸(18)の各々の車軸回転情報と同期して回転するタイヤのタイヤバルブ(4)のIDを特定することにより、当該タイヤバルブ(4)のIDと車軸(18)とを関連付けて、複数のタイヤのタイヤ位置を判定する位置判定部(26)と、タイヤバルブ(4)のID及び車軸のどの組が他の組に対して逸脱した値を有するかを特定し、特定された組に対応するタイヤのタイヤ位置の判定を先に完了する先行判定処理部(24)とを備える。

Description

タイヤ位置登録システム
 本発明は、タイヤの取付位置と関連付けられたタイヤバルブのIDを受信機に登録するタイヤ位置登録システムに関する。
 従来、タイヤ空気圧監視システムの1機能として、イニシエータ等のトリガ器を使用せずに、タイヤバルブのID(バルブID)を受信機に自動で登録するタイヤ位置登録システムが周知である(特許文献1等参照)。バルブIDを受信機に登録するにあたり、イニシエータが不要となれば、車両に搭載される部品の点数を少なく抑えることが可能になる。
特表2011-527971号公報
 この種のタイヤ位置登録システムでは、例えばタイヤをローテーションするか、またはタイヤを新規タイヤに交換した後に、新たなタイヤ位置を直ぐに表示することができないと、ユーザにとっては違和感がある。よって、タイヤ位置の判定を早期に完了したいニーズがあった。
 本発明の目的は、タイヤ位置の判定を早期に完了することができるタイヤ位置登録システムを提供することにある。
 本発明の一側面は、タイヤ位置登録システムであって、複数のタイヤにそれぞれ取り付けられた複数のタイヤバルブであって、前記複数のタイヤバルブの各々は、タイヤ空気圧データおよび当該タイヤバルブのIDを含む第1電波信号を送信するように構成される、前記複数のタイヤバルブと、複数の車軸にそれぞれ対応して設けられ、各々、前記複数の車軸のうちの対応する一つの車軸の回転を検出して車軸回転情報を生成する複数の車軸回転検出部と、車体に設けられ、前記複数のタイヤバルブの各々から前記第1電波信号を受信するように構成された受信機とを備えるタイヤ位置登録システムにおいて、前記複数のタイヤバルブの各々は、当該タイヤバルブがタイヤの回転軌跡上で特定位置に達したことを示すデータおよび当該タイヤバルブのIDを含む第2電波信号を送信し、前記受信機は、前記複数のタイヤバルブの各々から送信された前記第2電波信号を受信し、前記複数のタイヤバルブの各々に前記第2電波信号を送信させ、該第2電波信号を前記受信機に受信させ、前記受信機によって前記タイヤバルブからの前記第2電波信号を受信する度に、受信された前記第2電波信号に対応するタイヤバルブが前記特定位置に達したときの複数の車軸の車軸回転情報を取得し、前記第2電波信号および前記複数の車軸の車軸回転情報に基づいて、前記複数の車軸の各々の車軸回転情報と同期して回転するタイヤのタイヤバルブのIDを特定することにより、当該タイヤバルブのIDと車軸とを関連付けて、前記複数のタイヤのタイヤ位置を判定するように構成された位置判定部と、前記タイヤバルブのID及び車軸のどの組が他の組に対して逸脱した値を有するかを特定し、特定された組に対応するタイヤのタイヤ位置の判定を先に完了するように構成された先行判定処理部とを備える。
 上記構成において、前記先行判定処理部は、前記第2電波信号に含まれる前記特定位置の情報を基に重力のサンプリング周期を算出し、当該サンプリング周期の変化を基に前記逸脱を確認することが好ましい。
 上記構成において、前記第2電波信号は、前記タイヤに発生する遠心力が重畳された重力データを含み、前記先行判定処理部は、前記電波信号に含まれる重力データに重畳する前記遠心力を監視し、当該遠心力の変化を基に前記逸脱を確認することが好ましい。
 上記構成において、前記位置判定部は、前記タイヤバルブのIDごとに前記車軸回転情報の統計をとることにより、前記タイヤバルブのIDごとに前記複数の車軸の各々の車軸回転情報の分布を算出し、算出された分布を基にタイヤバルブのID及び車軸の同期性を確認して、複数のタイヤのタイヤ位置を判定することが好ましい。
 上記構成において、前記第2電波信号は、対応するタイヤバルブが取り付けられたタイヤの回転状態を示す回転情報を含み、前記先行判定処理部は、前記複数のタイヤバルブによりそれぞれ送信された前記複数の第2電波信号を前記受信機から受け取り、前記複数の車軸回転検出部から前記複数の車軸の車軸回転情報をそれぞれ受け取り、前記複数の電波信号の回転情報および前記複数の車軸の車軸回転情報に基づいて、少なくとも1つの車軸の車軸回転情報と同期して回転する少なくとも1つのタイヤのタイヤバルブのIDを特定することにより、少なくとも1つのタイヤバルブのIDを少なくとも1つの車軸に関連付けて、少なくとも1つのタイヤのタイヤ位置を判定し、前記位置判定部は、前記複数のタイヤのタイヤ位置を判定することを、前記先行判定処理部により判定された前記少なくとも1つのタイヤを除いて行うことが好ましい。
 上記構成において、前記先行判定処理部は、前記複数のタイヤの回転状態を比較し、比較結果に基づいて前記少なくとも1つのタイヤバルブのIDを特定し、前記複数の車軸の車軸回転情報に基づいて、特定されたIDを有する前記少なくとも1つのタイヤバルブと同期して回転する少なくとも1つの車軸の車軸回転情報を特定して、前記少なくとも1つのタイヤバルブのIDを前記少なくとも1つの車軸に関連付けることが好ましい。
 上記構成において、前記先行判定処理部は、前記複数のタイヤの各々の回転状態の変化を取得し、取得された回転状態の変化に基づいて前記少なくとも1つのタイヤバルブのIDを特定し、前記複数の車軸の車軸回転情報に基づいて、特定されたIDを有する前記少なくとも1つのタイヤバルブと同期して回転する少なくとも1つの車軸の車軸回転情報を特定して、前記少なくとも1つのタイヤバルブのIDを前記少なくとも1つの車軸に関連付けることが好ましい。
 上記構成において、前記回転情報は、タイヤの回転周期を含むことが好ましい。
 上記構成において、前記回転情報は、タイヤに発生する遠心力を含むことが好ましい。
 上記構成において、前記回転情報は、タイヤの回転数を含むことが好ましい。
 上記構成において、前記回転情報は、タイヤの回転数を含み、前記先行判定処理部は、前記複数のタイヤの回転数と前記複数の車軸の車軸回転情報との同期性を判定し、判定結果に基づいて少なくとも1つのタイヤバルブのIDを少なくとも1つの車軸に関連付けることが好ましい。
 本発明によれば、タイヤ位置の判定を早期に完了することができる。
一実施形態のタイヤ位置登録システムの構成図。 タイヤバルブで検出される重力の向心成分を示す説明図。 (a),(b)はタイヤバルブの通信シーケンス図。 重力の向心成分のサンプリングロジックの説明図。 あるIDにおける各輪の車軸回転情報(パルス計数値)の分布図。 IDごとに作成される車軸回転情報(パルス計数値)の分布表。 偏差の平均、及び標準偏差の計算式。 非スリップ輪の重力波形図。 (a),(b)はスリップ輪の重力波形図。 1輪を先行確定した後に実施されるタイヤ位置判定を示す車軸回転情報(パルス計数値)の分布表。
 以下、一実施形態のタイヤ位置登録システムを図1~図10に従って説明する。
 図1に示すように、車両1は、各タイヤ2(2a~2d)の空気圧等を監視するタイヤ空気圧監視システム(TPMS:Tire Pressure Monitoring System)3を備える。タイヤ空気圧監視システム3は、各タイヤ2a~2dに取り付けられたタイヤバルブ4(4a~4d)を備える。タイヤバルブ4は、タイヤ栓にセンサ及び通信機能が設けられたタイヤバルブセンサである。タイヤ空気圧監視システム3は、これらタイヤバルブ4a~4dから、少なくともタイヤ2の圧力データと圧力データに関連付けられたバルブIDとを含む電波信号(バルブ電波信号)Svaを車体5に送信し、車体5において各タイヤ2a~2dの空気圧を監視する。
 各タイヤバルブ4は、タイヤバルブ4の動作を制御するコントローラ6と、タイヤ空気圧を検出する圧力検出部7と、タイヤ2の温度を検出する温度検出部8と、タイヤバルブ4に発生する重力を検出する重力検出部9と、タイヤバルブ4からの電波信号の送信を可能とする送信アンテナ10とを含む。コントローラ6は、各タイヤバルブ4の固有のIDとしてバルブIDを記憶するメモリ11を含む。圧力検出部7は、例えば圧力センサであることが好ましい。温度検出部8は、例えば温度センサであることが好ましい。重力検出部9は、例えば加速度センサ(Gセンサ)であることが好ましい。送信アンテナ10は、例えばUHF(Ultra High Frequency)帯の電波信号を送信可能であることが好ましい。
 車体5は、各タイヤバルブ4a~4dから送信された電波信号Svaを受信して、各タイヤ2a~2dの空気圧を監視する受信機(以降、TPMS受信機と記す)12を備える。TPMS受信機12は、TPMS受信機12の動作を制御するタイヤ空気圧監視ECU(Electronic Control Unit)13と、TPMS受信機12において電波信号の受信を可能とする受信アンテナ14とを備える。タイヤ空気圧監視ECU13は、各タイヤバルブ4a~4dから取得され、タイヤ位置に関連付けられたバルブIDを記憶するメモリ15を含む。TPMS受信機12には、空気圧の監視結果を表示する表示部16が接続されている。表示部16は、例えば車内のインストルメントパネルに設置されることが好ましい。
 TPMS受信機12は、あるタイミングにおいて各タイヤバルブ4a~4dから送信された電波信号Svaを受信アンテナ14で受信すると、電波信号Sva内のバルブIDを照合する。TPMS受信機12は、バルブID照合が成立した場合、この電波信号Sva内の圧力データ(空気圧データ)を確認する。TPMS受信機12は、空気圧が低圧閾値以下であれば、タイヤ空気圧が低圧であることを表示部16に表示する。TPMS受信機12は、このタイヤ空気圧判定を、受信する電波信号Svaごとに行って、タイヤ2a~2dの空気圧を監視する。
 タイヤ空気圧監視システム3は、各タイヤバルブ4a~4dのバルブIDを、タイヤ2a~2dのうちのいずれか1つのタイヤのIDと対応付け、対応付けられたバルブIDをTPMS受信機12に自動で登録するタイヤ位置登録機能、いわゆるオートロケーション機能(タイヤ位置登録システム17)を備える。タイヤ位置登録システム17は、タイヤバルブ4a~4dがタイヤの回転軌跡上で特定の位置に達したことを検出するときに各車軸18(18a~18d)の回転位置(回転量)を取得する動作を複数回行って、各バルブIDのタイヤが車軸18a~18dの回転位置(回転量)と同期して回転しているのかを特定して、複数のバルブIDと車軸18a~18dとをそれぞれ関連付ける。これにより、タイヤ2a~2dの位置が判定される。
 図2に、重力検出部9が検出する重力の向心成分を示す。重力検出部9は、タイヤバルブ4にかかる重力として、重力Gに対する車軸方向(タイヤ半径方向)の重力の向心成分Grを検出することが好ましい。重力の向心成分Grは、例えば遠心力を考慮しなければ、タイヤバルブ4がタイヤの回転軌跡上でピーク(紙面の「12時」又は「6時」の位置)に位置するとき、「-1G」又は「+1G」である。なお、検出する重力の向心成分Grは、タイヤの回転軌跡上の接線方向の成分でもよい。
 図3(a)に、タイヤバルブ4の電波送信のシーケンスを示す。タイヤバルブ4の動作において、電波送信が可能な第1時間帯T1と、電波送信を待機する第2時間帯T2とを交互に繰り返されることが好ましい。第1時間帯T1は、例えば「1秒」のような短い時間であることが好ましい。第2時間帯T2は、例えば「30秒」のような長い時間であることが好ましい。このように、タイヤバルブ4は、1秒という制約された時間において電波信号を送信する動作を、約30秒の間隔を空けて繰り返す。
 図1に示すように、各タイヤバルブ4は、検出可能な特定位置検出部19と、送信処理部20とを含む。特定位置検出部19は、タイヤバルブ4がタイヤ2の回転軌跡上の特定位置に達したかどうかを検出する。送信処理部20は、タイヤ2が特定位置に達したことを示す電波信号を送信する。一例では、電波信号は、特定位置情報電波信号Spiである。この電波信号は、少なくともバルブIDを含む。特定位置検出部19及び送信処理部20は、例えばコントローラ6に設けられることが好ましい。特定位置は、例えばタイヤの回転軌跡上におけるピーク位置(一例は「12時」の位置)であることが好ましい。ピーク位置の検出は、電波送信の前に連続して複数回実行されることが好ましい。特定位置情報電波信号Spiの送信は、例えばピーク位置の検出回数に応じて複数回実行されるとよい。タイヤバルブ4は、特定位置情報電波信号Spiを、定期的に設定された第1時間帯T1において送信する。
 タイヤバルブ4は、第2時間帯T2においてタイヤバルブ4が特定位置に達した時刻を示す少なくとも1つの特定位置情報Dgrを保持する情報保持部21を備えることが好ましい。例えば、車両1が低速走行してタイヤ2がゆっくり回るとき、比較的短い第1時間帯T1の間にピーク位置を所定回数検出できない状況も生じ得る。このため、タイヤバルブ4は、電波送信を待機する第2時間帯T2においてピーク位置を予め検出する。また、例えば、ある決まったタイヤ角度のときにのみ電波信号を送信するようにした場合、その電波信号がヌル値であるとき、その後もその電波信号は固定的にヌル値である可能性がある。この点を考慮して、タイヤバルブ4は、任意のタイヤ角度で電波信号を送信する。この方法であれば、電波信号が固定的にヌル値とならない。すなわち、タイヤ位置の判定においてTPMS受信機12の受信率が著しく低下するリスクを防ぐことができる。
 特定位置情報Dgrは、タイヤバルブ4がピーク位置に達した時刻を示すピーク情報であることが好ましい。例えば、特定位置情報Dgrは、重力サンプリング(実際の重力サンプリング)を開始してから何回目の計測であるのかを示す重力サンプリング点数Nxと、重力サンプリングの実施間隔である重力サンプリング間隔時間Tbとを含む。
 図3(b)に示すように、例えば、情報保持部21は、第1時間帯T1の開始点T1aよりも前の第2時間帯T2において、ピーク位置を所定回数(例えば8回)検出することが好ましい。送信処理部20は、第1時間帯T1において、保持された少なくとも1つの特定位置情報Dgrを、特定位置情報Dgrの数だけバルブIDとともに順に送信することが好ましい。すなわち、送信処理部20は、特定位置情報Dgr及びバルブIDを含む電波信号(一例は特定位置情報電波信号Spi)を、保持された特定位置情報Dgrの数だけ順にタイヤバルブ4から送信させる。送信処理部20は、1パケット分の特定位置情報電波信号Spiを第1時間帯T1の間に送信し終えるように、これら特定位置情報電波信号Spiを連続的に送信するとよい。特定位置情報電波信号Spiは、例えば10ms程度の時間長を有し、100ms程度のインターバルで繰り返し送信されるとよい。
 図1に示すように、タイヤ位置登録システム17は、位置判定部23を備える。位置判定部23は、各タイヤバルブ4に、タイヤの回転軌跡上で特定位置(一例はピーク位置)に達したことを示すデータを含む電波信号(一例は特定位置情報電波信号Spi)を送信させ、この電波信号をTPMS受信機12に受信させる。位置判定部23は、TPMS受信機12が電波信号を受信する度に各車軸18a~18dの回転を検出可能な車軸回転検出部22(22a~22d)から各タイヤバルブ4a~4dが特定位置に達したときの車軸18a~18dの車軸回転情報(一例はパルス計数値)Dcを取得し、各車軸18a~18dの車軸回転情報Dcに同期して回転するタイヤのバルブIDを特定することにより、バルブIDと各車軸18a~18dとを関連付けて複数のタイヤのタイヤ位置を判定する。位置判定部23は、例えばタイヤ空気圧監視ECU13に設けられることが好ましい。位置判定部23は、例えばタイヤ空気圧監視ECU13に設けられることが好ましい。分布は、例えば「ばらつき」、「偏差の平均」、「標準偏差」などが好ましい。
 車軸回転検出部22a~22dは、車軸18a~18dに設けられたABS(Antilock Brake System)センサであることが好ましい。この場合、車軸回転情報Dcは、例えばABSセンサで検出されるパルス数、すなわちパルス計数値を含む。例えば、各車軸回転検出部22a~22dは、車軸18a~18dに設けられた複数の歯、例えば48個の歯を車体5側のセンシング部で検出することにより、矩形波形状のパルス信号SplをTPMS受信機12に出力する。位置判定部23は、パルス信号Splの立ち上がりエッジ及び立ち下がりエッジの両方を検出する。この場合、位置判定部23は、タイヤ1回転あたり96パルス(カウント値:0~95)を検出する。
 位置判定部23は、1パケットとして受信する複数(本例は8つ)の特定位置情報電波信号Spiを、各々個別のデータとして取り扱う。位置判定部23は、特定位置情報電波信号Spiを受信する度に各車軸回転検出部22a~22dの車軸回転情報Dcを読み出して、これらの車軸回転情報Dcの分布をとり、分布を確認することにより、各タイヤ2a~2dの位置を判定する。また、第2時間帯T2にピーク検出を予め実行する場合、位置判定部23は、メモリ11に記憶しておいた車軸回転情報Dcを用い、受信した特定位置情報Dgrから特定位置ごとの車軸回転情報Dcを逆算し、この逆算値からタイヤ位置を判定することが好ましい。
 タイヤ位置登録システム17は、バルブID及び車軸18a~18dの組のうちのどの組が他の組に対して逸脱した値をとるのかを確認することにより、特定輪(特定されたバルブIDのタイヤ)のみ先にタイヤ位置の判定を完了する先行判定処理部24を備える。先行判定処理部24は、例えばタイヤ空気圧監視ECU13に設けられることが好ましい。先行判定処理部24は、特定輪として例えばスリップ輪を先行して判定することが好ましい。
 次に、図3~図9を用いて、タイヤ位置登録システム17の動作を説明する。
 図4に示すように、タイヤバルブ4は、第2時間帯T2において、まず、ピーク検出を開始する所定時間前、重力の向心成分Grを読み取り、重力波形の確認を行うために、読み取った重力の向心成分Grに応じた時間が長めの重力サンプリング間隔時間Taを設定する。タイヤバルブ4は、この重力サンプリング間隔時間Taで重力の向心成分Grを検出する事前重力サンプリングを開始する。
 事前重力サンプリングのとき、タイヤバルブ4は、重力サンプリング間隔時間Taで行う重力サンプリングにおいて、まず重力の向心成分Grのピークがどこにあるのかを監視する。ピークは、例えば重力の向心成分Grが減→減→増→増の変化をとったときの2番目の「減」のポイントをピーク位置と判断するのが好ましい。タイヤバルブ4は、重力の向心成分Grのピークを検出すると、事前重力サンプリングの1周期を計測するために、重力の向心成分Grのピークを再度監視する。タイヤバルブ4は、重力の向心成分Grのピークを再度検出すると、先のピークと後のピークとの間の時間を基に事前重力サンプリングの周期を算出する。タイヤバルブ4は、事前重力サンプリングの周期に応じた「Tb」を、実際の重力サンプリングで使用する重力サンプリング間隔時間に設定する。すなわち、タイヤ1回転あたりの重力サンプリング回数が規定値(例えば12回)で決まっているので、最適な重力サンプリング間隔時間Tbは、実際の重力サンプリング時に重力サンプリングの実施回数が規定値に達するように設定される。
 タイヤバルブ4は、この重力サンプリング間隔時間Tbで実際の重力サンプリングを実行する。すなわち、タイヤバルブ4は、重力サンプリング間隔時間Tbで重力の向心成分Grを繰り返し検出し、タイヤ位置の判定に必要な複数のピーク位置を検出する。本例の場合、実際の重力サンプリングの1周期は、規定数の数(一例は12回)の重力サンプリング間隔時間Tbに対応する時間幅の「Tr」に設定されている。
 情報保持部21は、重力サンプリング間隔時間Tbで繰り返し実行される重力サンプリングにおいてピーク位置を検出すると、その特定位置情報Dgrをメモリ11に記憶する。情報保持部21は、以降、ピーク位置を検出する度、その特定位置情報Dgrをメモリ11に保持する。
 図3に示すように、送信処理部20は、電波送信が可能な第1時間帯T1となったとき、メモリ11に保持されていた少なくとも1つの特定位置情報Dgrをそれぞれ含む少なくとも1つの特定位置情報電波信号Spiを送信アンテナ10から順に送信させる。特定位置情報電波信号Spiは、少なくともバルブID及び特定位置情報Dgrを含む。例えば、特定位置情報電波信号Spiは、バルブID、重力サンプリング点数Nx、重力サンプリング間隔時間Tb、圧力データ、重力データなどの各情報を含むことが好ましい。重力サンプリング点数Nxは、重力サンプリングが開始されてから重力サンプリング間隔時間Tbで実施された重力サンプリングの回数(総数)に相当する。特定位置情報電波信号Spiは、第1時間帯T1において全て送信できるように、例えば100msの短いインターバルで連続的に送信されるとよい。
 図5に示すように、位置判定部23は、特定位置情報電波信号Spiを受信する度に各車軸回転検出部22a~22dの車軸回転情報Dcを取得する。本例の場合、位置判定部23は、特定位置情報(ピーク位置)Dgrごとに、メモリ15に記憶しておいた車軸回転情報Dcを逆算する。そして、位置判定部23は、逆算により得られた車軸回転情報Dcの逆算値の統計をとり、パケット単位での特定位置情報電波信号Spiを受信する度に、車軸回転情報Dcの統計を更新することによって、タイヤ位置を判定する。例えば、図5に示されるように、位置判定部23は、1パケット目のID電波信号Spiに基づいて計算した車軸回転情報Dcの分布からタイヤ位置を特定できないときは、2パケット目のID電波信号Spiに基づいて車軸回転情報Dcの分布を更新し、この更新した分布からタイヤ位置を特定する。それでもタイヤ位置を特定できないときは、3パケット目以降も同様の処理が繰り返されて分布が更新され、新たに更新された分布からタイヤ位置が判定される。
 図6に示すように、タイヤ位置判定の具体例を図示する。位置判定部23は、図6に示すように分布表25をバルブIDごとに作成する。位置判定部23は、各車軸18の車軸回転情報Dcのみを用いて分布の正当性を判定する「絶対評価」と、複数の車軸18の車軸回転情報Dcを用いて分布の正当性を判定する「相対評価」とを行い、絶対評価の結果と相対評価の結果とを基にタイヤ位置を判定することが好ましい。相対評価では、位置判定部23は、対象タイヤが他のタイヤよりも十分に同期性を有しているか否かを判断する。分布の例としては、「偏差の平均」や「標準偏差」が挙げられる。偏差の平均や標準偏差の値は、判定結果がよいときほど小さくなる。
 図7に示すように、偏差の平均は、パルス計数値を「x」とし、収集したパルス計数値の総数を「n」とし、収集したパルス計数値の平均を「x’」とすると、図7の式(α)から算出される。また、標準偏差は、図の式(β)から算出される。以降は、「偏差の平均」及び「標準偏差」を、まとめて「偏り値」と記す。絶対評価では、位置判定部23は、偏り値が閾値以下に収まるか否かを判定する。相対評価では、位置判定部23は、対象のタイヤと他のタイヤとの間で偏り値の差を算出し、偏り値の差が閾値以上であるか否か、すなわち対象のタイヤの絶対評価の偏り値が他のタイヤの偏り値に比べて十分に小さいか否かを判定する。位置判定部23は、絶対評価において偏り値が閾値以下であり、かつ相対評価において偏り値の差が閾値以上であれば、車軸18の回転にタイヤ2の回転が同期しているとみなし、タイヤ位置を判定する。
 図6の例の場合、ID1に関して、左前車軸18bのパルス計数値は「20」付近に集まっている。このとき左前車軸18bの偏り値は閾値以内に収まり、ID1に関しては左前車軸18bが絶対評価を満足する。しかし、ID1に関して、右前車軸18a、右後車軸18c及び左後車軸18dの各パルス計数値は1値に収束せず、これらの偏り値は悪い数値をとる。このため、左前車軸18bの偏り値と他の車軸の偏り値との差は閾値以上となるので、相対評価も満足する。よって、位置判定部23は、ID1のタイヤ2の回転が左前車軸18bの回転と同期していると判定し、その結果、ID1のタイヤ2が左前タイヤ2bであると特定される。同様な方法で、ID2~ID4のタイヤのタイヤ位置もそれぞれ特定される。
 位置判定部23は、1度の判定で4輪すべての位置を判定することができなければ、残りのタイヤにおいて、同様の処理により位置を判定する。そして、4輪の全てにおいて位置が確定するまで、同様の処理を繰り返す。位置判定部23は、4輪全てにおいて位置判定を完了すると、その判定結果をメモリ15に書き込み、タイヤ位置を更新する。なお、タイヤ位置の判定処理は、例えば車両1のイグニッションスイッチがオンされる度に実行されるとよい。
 図8に、スリップしていないタイヤの重力検出部9の出力波形を図示し、図9(a),(b)に、スリップしている輪の重力検出部9の出力波形を示す。図9(a)は、遠心力を考慮に入れない場合の重力波形であり、図9(b)は、遠心力を考慮に入れた場合の重力波形である。ところで、タイヤ位置判定は早期に完了できるとよいが、より正しい判定結果を得るために仮に偏差の閾値を狭くすると、判定に多数のデータが必要になることから、判定完了までに時間を要し、タイヤ位置判定の早期完了を満足できなくなる。この対策として、走行路面によっては4輪のうち特定のタイヤが「特殊な回転状態」となることに着目する。特殊な回転状態とは、例えば「タイヤ2のスリップ」であることが好ましい。スリップは、例えば氷上(アイスバーン)や鉄板上(工事中の道路)を走行するときに発生する可能性がある。
 図8に示すように、非スリップタイヤに取り付けられたタイヤバルブ4の重力検出部9の出力波形は、同じ周期Tr1の繰り返し波形となる。すなわち、タイヤ2にスリップが発生していないときには、4輪全てを対象としたタイヤ位置判定を実施し、4つのタイヤ2がそれぞれ前後左右のどの位置に取り付けられているのかを判定する。
 図9(a)に示すように、先行判定処理部24は、特定位置情報電波信号Spiに含まれる特定位置情報Dgrを基に重力サンプリング周期Trを算出し、重力サンプリング周期Trの変化を基に、特定のタイヤの回転が逸脱しているかどうかを確認することが好ましい。重力サンプリング周期Trは、受信した特定位置情報電波信号Spiにおいて、いま取得した重力サンプリング点数Nxと、時系列において1つ前に取得した重力サンプリング点数Nxとの差を、重力サンプリング間隔時間Tbで乗算することにより、算出することが可能である。重力の向心成分Grの重力サンプリング周期Trは、バルブIDごとに算出される。
 スリップタイヤに取り付けられたタイヤバルブ4の重力検出部9の出力波形では、スリップ時点からタイヤの回転が突然速くなることにより、スリップ後、重力サンプリング周期Trは、短い周期Tr2に変化する。先行判定処理部24は、例えばスリップタイヤの重力サンプリング周期Trが「Tr2」であり、かつ他のタイヤの重力サンプリング周期Trが「Tr1」であるとき、「Tr1-Tr2」の値から、スリップタイヤが他のタイヤに比べて著しく回転が速くなったことを判定すると、そのバルブIDを、スリップタイヤに取り付けられたタイヤバルブ4のIDであると特定する。
 また、図9(b)に示すように、先行判定処理部24は、特定位置情報電波信号Spiに含まれる重力データを基にタイヤ2に発生する遠心力を監視し、遠心力の変化を基に、特定輪の回転の逸脱を確認してもよい。遠心力の変化量Fkは、例えば非スリップタイヤに発生する遠心力をF1とし、スリップタイヤに発生する遠心力をF2とすると、「F2-F1」を求めることによって算出することが可能である。先行判定処理部24は、「F2-F1」の値から、スリップタイヤが他のタイヤに比べて著しく回転が速くなったことを判定すると、そのバルブIDを、スリップタイヤに取り付けられたタイヤバルブ4のIDであると特定する。
 先行判定処理部24は、車軸回転検出部22a~22dから供給された車軸回転情報Dcを基に、各車軸18a~18dの車軸1回転周期Tsh(図8参照)を逐次算出する。車軸1回転周期Tshは、タイヤ2が1回転するのに要する時間である。車軸1回転周期Tshは、車軸18a~18dごとに算出される。タイヤ2がスリップしたとき、車軸18も突然早く回転するはずであるので、スリップタイヤの車軸回転検出部22の車軸回転情報Dcと、スリップタイヤに取り付けられた重力検出部9の重力サンプリング周期Tr2や遠心力F2とは、高い確率で同期がとれるはずである。
 先行判定処理部24は、重力サンプリング周期Trや遠心力の変化量Fkに著しい変化が生じたことを確認すると、自車のタイヤ2にスリップが発生したと判定する。このとき、先行判定処理部24は、回転が逸脱したタイヤ2のタイヤバルブ4と同期して回転する車軸18の車軸1回転周期Tshを特定する。これにより、先行判定処理部24は、スリップタイヤに取り付けられたと認識したタイヤバルブ4に関連付けされる車軸18を特定する。同期がとれているかの判断は、例えばタイヤ2の1回転だけで判断してもよいし、タイヤ2の数回転分で判断してもよい。そして、先行判定処理部24は、関連付けが確認できたバルブIDと車軸18とをペアとして確定する。
 図10に示すように、位置判定部23は、先行判定処理部24によって「タイヤ2-車軸18」の1ペアの確定が済むと、そのペアをタイヤ位置判定の選択肢から除外した上で、タイヤ位置判定を継続する。図10の例の場合、ID3と右後車軸18cとがタイヤ位置判定の選択肢から除外される。以降、位置判定部23は、ID1,ID2,ID4が、右前車軸18a、左前車軸18b、左後車軸18dのどれと関連付けできるのかを特定して、タイヤ位置を判定する。このように、以降は3つのタイヤのタイヤ位置を判定するだけで済むので、タイヤ位置の判定完了までに要する時間が短く済む。
 本実施形態の構成によれば、以下に記載の効果を得ることができる。
 (1)走行中にタイヤ2がスリップすると、スリップタイヤの回転のみが他の非スリップタイヤの回転と比較して突然速くなる。このとき、スリップタイヤの重力サンプリング周期Trが他のタイヤの重力サンプリング周期Trに比べて著しく異なったり、スリップタイヤの回転が突然速くなることでスリップタイヤの遠心力が他のタイヤの遠心力に比べて著しく大きくなったりするので、どのバルブIDがスリップ輪であるのかを識別できる。また、スリップタイヤの車軸18の車軸回転情報Dcも、他の車軸18の車軸回転情報Dcに比べて大きく変化する。この関係性を利用し、スリップタイヤのバルブIDをスリップタイヤの車軸18に関連付けすることにより、スリップタイヤのタイヤ位置を先に特定する。このため、位置判定部23がバルブIDと車軸18とを関連付けしてタイヤ位置を特定する判定を行うにあたり、その判定時に確認しなければならない選択肢を削減することが可能となる。よって、全体としてタイヤ位置の判定に要する時間を短くすることができる。
 (2)特定タイヤの回転の逸脱を、重力サンプリング周期Trの変化から判定可能とした。よって、重力のサンプリング周期Trが他輪と比較して大きく異なることに基づき、所定のタイヤに発生する他輪に対する逸脱を、より正しく判定することが可能となる。
 (3)特定輪の回転の逸脱を、重力検出部9で検出される遠心力の変化から判定可能とした。よって、タイヤ2に発生する遠心力の増大を捉えることに基づき、所定のタイヤ2に発生する他輪に対する逸脱を、より正しく判定することが可能となる。
 (4)タイヤバルブ4は、タイヤバルブ4がタイヤの回転軌跡上でピーク位置に位置したことを判断できる特定位置情報電波信号SpiをTPMS受信機12に送信する。TPMS受信機12は、タイヤバルブ4がピーク位置をとるときの各車軸18a~18dの車軸回転情報Dcを取得し、この作業を、ID1~ID4ごと、かつ取得したピークごとに実行して、タイヤ位置判定に必要な車軸回転情報Dcのデータ群を収集する。そして、ID1~ID4ごとに各車軸18a~18dの車軸回転情報Dcの統計をとることにより、ID1~ID4ごとに車軸回転情報Dcの分布を算出し、この分布からタイヤ位置を判定する。このように、各車軸回転情報Dcを個別のデータとして取り扱ってタイヤ位置を判定するので、短時間の間にタイヤ位置判定に必要なデータを多く収集することが可能となる。これは、タイヤ位置判定にかかる時間が短く済むのに有利となる。よって、短時間で精度よくタイヤ位置を判定することができる。
 (5)車両1が氷上や鉄板上を走行したときには、タイヤ2がスリップし易くなるので、この状況を利用して、全輪のうちスリップ輪のみ、先にタイヤ位置を確定しておくことができる。
 なお、実施形態はこれまでに述べた構成に限らず、以下の態様に変更してもよい。
 ・TPMS受信機12は、スリップ輪の有無を、車軸回転情報Dcの変化から判断することに限定されない。例えば、4輪の重力の向心成分Grの周期Trが1つでも他から大きく変化したことをもって、スリップが発生したと判断することも可能である。
 ・タイヤバルブ4は、1パケットの特定位置情報電波信号Spiの送信を所定回実施した後、重力モニタリングを行わず、単に空気圧データを含むタイヤ空気圧信号を送信する通信シーケンスをとってもよい。
 ・スリップ輪が複数発生したとき、これら複数のスリップ輪を判定可能としてもよい。この場合、スリップ輪ごとに回転数が異なるはずであるので、どのスリップ輪の重力サンプリング周期Trがどの車軸18の車軸1回転周期Tshと同期するのかを確認することにより、これらスリップ輪と車軸18とを関連付けることができる。
 ・特定輪の回転の逸脱は、例えば車軸回転情報Dcの変化を基に判定するなど、種々の方法により判定可能である。
 ・第2時間帯T2のときに収集された特定位置情報Dgrは、第1時間帯T1が到来したとき、最初の電波送信の際に一度にまとめて送信されてもよい。
 ・特定位置情報Dgrは、例えばピーク位置を検出した時刻や、第1時間帯T1の開始点T1aから遡った時間など、種々の情報が採用可能である。
 ・特定位置は、ピーク位置に限らず、タイヤの回転軌跡上においてタイヤバルブ4がとる特定の位置であればよい。
 ・車軸回転検出部22は、ある時間間隔ごとに、その間に検出したパルス計数値を、計数データとしてTPMS受信機12に出力するものでもよい。
 ・車軸回転検出部22は、検出信号を無線でTPMS受信機12に送信してもよい。
 ・車軸回転情報Dcは、パルス計数値に限定されず、車軸18の回転位置に類するものであれば、他のパラメータに変更可能である。
 ・位置判定部23は、タイヤバルブ4から受信した電波信号(特定位置情報電波信号Spi)に、そのときどきの走行状態に応じた重み付けをかけることも可能である。例えば、車両1が低速走行しているときには、受信電波信号の重み付けを大きくし、車両1が加減速していれば、受信電波信号の重み付けを小さく、又はデータ自体を破棄する。これにより、精度のよい統計がとれると想定される走行状態のときには、受信電波信号に大きな重み付けが付与されるので、車軸回転情報Dcの統計に精度情報を加えることができる。すなわち、各バルブIDにおいて各車軸18a~18dの車軸回転情報Dcの分布を精度よく求めることができる。よって、タイヤ位置をより正しく判定するのに有利となる。
 ・重み付けのかけ方は、種々の態様に変更可能である。
 ・タイヤバルブ4は、電波送信を実行しない第2時間帯T2のときにピークを事前検出することに限らず、電波送信が可能な第1時間帯T1のとき、ピークの検出タイミングで特定位置情報電波信号Spiを送信するものでもよい。
 ・タイヤバルブ4は、特定位置情報Dgrを定期的に送信するものでもよい。
 ・特定位置情報電波信号Spiが複数回送信されるとき、重力サンプリング間隔時間Tbの情報は1度のみ送信されるようにしてもよい。
 ・タイヤ位置の判定方式は、実施形態に述べたようなIDごとに各車軸18a~18dの車軸回転情報Dcの分布をとって位置判定する方式に限定されない。例えば、IDごとに各車軸18a~18dの車軸回転情報Dcの平均をとり、IDが平均値のどれと同期するのかを確認することにより、タイヤ位置を判定する方式をとってもよい。このように、タイヤ位置の判定方式は、種々の態様に適宜変更可能である。
 ・分布とは、ばらつき、偏差の平均、標準偏差に限定されず、バルブIDと車軸18との同期を判別することができれば、他のパラメータに変更可能である。
 ・オートロケーション用の電波信号は、Svaに対してSpiに区分けされることに限定されない。すなわち、タイヤ空気圧通知の電波信号Svaと、特定位置情報電波信号Spiとは、同じ電波信号として取り扱うことも可能である。
 ・特定輪は、スリップ輪に限定されず、例えば回転が止まったロック輪でもよい。この場合、ロック輪は他輪に比べて明確に車軸回転数が遅くなるので、どのバルブIDで車軸回転情報Dcが他輪に対して著しく低くなるのかを確認することにより、ロック輪のみ先にタイヤ位置を確定しておくことができる。
 次に、上記実施形態及び別例から把握できる技術的思想について、それらの効果とともに以下に追記する。
 前記タイヤ位置登録システムにおいて、前記受信機は、走行状態を判定する走行判定部と、当該走行判定部の判定結果を基に、前記受信機において受信した前記電波信号に重み付けを行う重み付け部とを備え、前記位置判定部は、前記重み付けを反映した前記車軸回転情報で統計をとり、このときに算出される分布を基にタイヤ位置を判定する。この構成によれば、走行状態に応じて受信電波信号に重み付けを行うので、車軸回転情報の統計を精度よくとることが可能となる。すなわち、分布の精度が高くなる。よって、タイヤ位置判定をより正しく行うのに一層有利となる。なお、走行状態の判定は、ABSセンサのセンサ出力を基に行われることに限らず、例えばメータECU等から取得した車速情報を基に判定するなど、他の態様に変更可能である。
 前記タイヤ位置登録システムにおいて、前記タイヤバルブは、電波信号の送信を待機する第2時間帯のとき、前記タイヤバルブが特定位置に達した時刻を示す特定位置情報を1つ以上保持する情報保持部を備え、当該タイヤバルブは、電波信号が送信可能な第1時間帯のとき、それまで保持していた1つ以上の前記特定位置情報を、前記バルブIDとともに送信し、前記位置判定部は、受信した前記特定位置情報を基に、前記タイヤバルブが過去に特定位置に達したときの車軸回転情報を逆算し、逆算値からタイヤ位置を判定する。この構成によれば、第1時間帯が短時間であっても、電波信号の送信を待機する第2時間帯の間に予め特定位置を検出しておくので、タイヤ位置判定に必要なデータを漏れなく収集することが可能となる。よって、タイヤ位置判定で使用するデータ数を十分に確保することが可能となるので、タイヤ位置判定をより正しく行うのに一層有利となる。

Claims (11)

  1.  タイヤ位置登録システムであって、
     複数のタイヤにそれぞれ取り付けられた複数のタイヤバルブであって、前記複数のタイヤバルブの各々は、タイヤ空気圧データおよび当該タイヤバルブのIDを含む第1電波信号を送信するように構成される、前記複数のタイヤバルブと、
     複数の車軸にそれぞれ対応して設けられ、各々、前記複数の車軸のうちの対応する一つの車軸の回転を検出して車軸回転情報を生成する複数の車軸回転検出部と、
     車体に設けられ、前記複数のタイヤバルブの各々から前記第1電波信号を受信するように構成された受信機とを備えるタイヤ位置登録システムにおいて、
     前記複数のタイヤバルブの各々は、当該タイヤバルブがタイヤの回転軌跡上で特定位置に達したことを示すデータおよび当該タイヤバルブのIDを含む第2電波信号を送信し、
     前記受信機は、前記複数のタイヤバルブの各々から送信された前記第2電波信号を受信し、
     前記複数のタイヤバルブの各々に前記第2電波信号を送信させ、該第2電波信号を前記受信機に受信させ、前記受信機によって前記タイヤバルブからの前記第2電波信号を受信する度に、受信された前記第2電波信号に対応するタイヤバルブが前記特定位置に達したときの複数の車軸の車軸回転情報を取得し、前記第2電波信号および前記複数の車軸の車軸回転情報に基づいて、前記複数の車軸の各々の車軸回転情報と同期して回転するタイヤのタイヤバルブのIDを特定することにより、当該タイヤバルブのIDと車軸とを関連付けて、前記複数のタイヤのタイヤ位置を判定するように構成された位置判定部と、
     前記タイヤバルブのID及び車軸のどの組が他の組に対して逸脱した値を有するかを特定し、特定された組に対応するタイヤのタイヤ位置の判定を先に完了するように構成された先行判定処理部とを備える、タイヤ位置登録システム。
  2.  前記先行判定処理部は、前記第2電波信号に含まれる前記特定位置の情報を基に重力のサンプリング周期を算出し、当該サンプリング周期の変化を基に前記逸脱を確認する、請求項1に記載のタイヤ位置登録システム。
  3.  前記第2電波信号は、前記タイヤに発生する遠心力が重畳された重力データを含み、
     前記先行判定処理部は、前記第2電波信号に含まれる重力データに重畳する前記遠心力を監視し、当該遠心力の変化を基に前記逸脱を確認する、請求項1に記載のタイヤ位置登録システム。
  4.  前記位置判定部は、前記タイヤバルブのIDごとに前記車軸回転情報の統計をとることにより、前記タイヤバルブのIDごとに前記複数の車軸の各々の車軸回転情報の分布を算出し、算出された分布を基にタイヤバルブのID及び車軸の同期性を確認して、複数のタイヤのタイヤ位置を判定する、請求項1~3のいずれか一項に記載のタイヤ位置登録システム。
  5.  前記第2電波信号は、対応するタイヤバルブが取り付けられたタイヤの回転状態を示す回転情報を含み、
     前記先行判定処理部は、
     前記複数のタイヤバルブによりそれぞれ送信された前記複数の第2電波信号を前記受信機から受け取り、
     前記複数の車軸回転検出部から前記複数の車軸の車軸回転情報をそれぞれ受け取り、
     前記複数の第2電波信号の回転情報および前記複数の車軸の車軸回転情報に基づいて、少なくとも1つの車軸の車軸回転情報と同期して回転する少なくとも1つのタイヤのタイヤバルブのIDを特定することにより、少なくとも1つのタイヤバルブのIDを少なくとも1つの車軸に関連付けて、少なくとも1つのタイヤのタイヤ位置を判定し、
     前記位置判定部は、
     前記複数のタイヤのタイヤ位置を判定することを、前記先行判定処理部により判定された前記少なくとも1つのタイヤを除いて行う、請求項1に記載のタイヤ位置登録システム。
  6.  前記先行判定処理部は、
     前記複数のタイヤの回転状態を比較し、比較結果に基づいて前記少なくとも1つのタイヤバルブのIDを特定し、
     前記複数の車軸の車軸回転情報に基づいて、特定されたIDを有する前記少なくとも1つのタイヤバルブと同期して回転する少なくとも1つの車軸の車軸回転情報を特定して、前記少なくとも1つのタイヤバルブのIDを前記少なくとも1つの車軸に関連付ける、請求項5に記載のタイヤ位置登録システム。
  7.  前記先行判定処理部は、
     前記複数のタイヤの各々の回転状態の変化を取得し、取得された回転状態の変化に基づいて前記少なくとも1つのタイヤバルブのIDを特定し、
     前記複数の車軸の車軸回転情報に基づいて、特定されたIDを有する前記少なくとも1つのタイヤバルブと同期して回転する少なくとも1つの車軸の車軸回転情報を特定して、前記少なくとも1つのタイヤバルブのIDを前記少なくとも1つの車軸に関連付ける、請求項5に記載のタイヤ位置登録システム。
  8.  前記回転情報は、タイヤの回転周期を含む、請求項5~7のいずれか1項に記載のタイヤ位置登録システム。
  9.  前記回転情報は、タイヤに発生する遠心力を含む、請求項5~7のいずれか1項に記載のタイヤ位置登録システム。
  10.  前記回転情報は、タイヤの回転数を含む、請求項5~7のいずれか1項に記載のタイヤ位置登録システム。
  11.  前記回転情報は、タイヤの回転数を含み、
     前記先行判定処理部は、
     前記複数のタイヤの回転数と前記複数の車軸の車軸回転情報との同期性を判定し、判定結果に基づいて少なくとも1つのタイヤバルブのIDを少なくとも1つの車軸に関連付ける、請求項5~7のいずれか1項に記載のタイヤ位置登録システム。
PCT/JP2015/050256 2014-01-14 2015-01-07 タイヤ位置登録システム WO2015107956A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-004065 2014-01-14
JP2014004065A JP2015131566A (ja) 2014-01-14 2014-01-14 タイヤ位置登録システム

Publications (1)

Publication Number Publication Date
WO2015107956A1 true WO2015107956A1 (ja) 2015-07-23

Family

ID=53542846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050256 WO2015107956A1 (ja) 2014-01-14 2015-01-07 タイヤ位置登録システム

Country Status (2)

Country Link
JP (1) JP2015131566A (ja)
WO (1) WO2015107956A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740718A (ja) * 1993-07-27 1995-02-10 Mazda Motor Corp タイヤ空気圧警報装置
JP2008168674A (ja) * 2007-01-09 2008-07-24 Toyota Motor Corp タイヤ空気圧取得装置及びタイヤ空気圧取得方法
WO2012147396A1 (ja) * 2011-04-25 2012-11-01 日産自動車株式会社 タイヤ空気圧送信装置およびタイヤ空気圧モニタシステム
JP2013082436A (ja) * 2011-09-26 2013-05-09 Tokai Rika Co Ltd タイヤ取付位置判定システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740718A (ja) * 1993-07-27 1995-02-10 Mazda Motor Corp タイヤ空気圧警報装置
JP2008168674A (ja) * 2007-01-09 2008-07-24 Toyota Motor Corp タイヤ空気圧取得装置及びタイヤ空気圧取得方法
WO2012147396A1 (ja) * 2011-04-25 2012-11-01 日産自動車株式会社 タイヤ空気圧送信装置およびタイヤ空気圧モニタシステム
JP2013082436A (ja) * 2011-09-26 2013-05-09 Tokai Rika Co Ltd タイヤ取付位置判定システム

Also Published As

Publication number Publication date
JP2015131566A (ja) 2015-07-23

Similar Documents

Publication Publication Date Title
US9259979B2 (en) Method and apparatus for determining tire condition and location using wheel speed sensors and acceleration sensors
JP5910402B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
WO2015076394A1 (ja) タイヤ位置判定システム
WO2015072475A1 (ja) タイヤ位置判定システム
JP2015013637A (ja) タイヤ位置判定システム
JP6257992B2 (ja) タイヤ位置判定システム
JP5477369B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP5803710B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP2015037941A (ja) タイヤの状態および位置を決定する方法および装置
JP2014080176A (ja) タイヤ位置判定システム
WO2015076292A1 (ja) タイヤ位置判定システム
JP2013133057A (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
WO2015137454A1 (ja) タイヤ位置登録システム
JP2015074387A (ja) タイヤ位置判定システム
WO2015107956A1 (ja) タイヤ位置登録システム
WO2016035794A1 (ja) タイヤ位置登録システム
WO2015105147A1 (ja) タイヤ位置登録システム
JP2015137077A (ja) タイヤ位置登録システム
JP2015102390A (ja) 車軸回転検出パルス計数装置及びタイヤ位置判定システム
JP2014013221A (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP2017132348A (ja) タイヤ位置登録システム
JP2014226943A (ja) タイヤ位置判定システム
JP2014016288A (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP2013154688A (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737163

Country of ref document: EP

Kind code of ref document: A1