WO2013133307A1 - タイヤ空気圧モニター装置 - Google Patents
タイヤ空気圧モニター装置 Download PDFInfo
- Publication number
- WO2013133307A1 WO2013133307A1 PCT/JP2013/056094 JP2013056094W WO2013133307A1 WO 2013133307 A1 WO2013133307 A1 WO 2013133307A1 JP 2013056094 W JP2013056094 W JP 2013056094W WO 2013133307 A1 WO2013133307 A1 WO 2013133307A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wheel
- rotational position
- tire
- sensor
- vehicle speed
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C23/00—Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
- B60C23/02—Signalling devices actuated by tyre pressure
- B60C23/04—Signalling devices actuated by tyre pressure mounted on the wheel or tyre
- B60C23/0486—Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
- B60C23/0488—Movement sensor, e.g. for sensing angular speed, acceleration or centripetal force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C23/00—Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
- B60C23/02—Signalling devices actuated by tyre pressure
- B60C23/04—Signalling devices actuated by tyre pressure mounted on the wheel or tyre
- B60C23/0408—Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
- B60C23/0415—Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels
- B60C23/0416—Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels allocating a corresponding wheel position on vehicle, e.g. front/left or rear/right
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C23/00—Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
- B60C23/02—Signalling devices actuated by tyre pressure
- B60C23/04—Signalling devices actuated by tyre pressure mounted on the wheel or tyre
- B60C23/0408—Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
- B60C23/0422—Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
- B60C23/0433—Radio signals
- B60C23/0447—Wheel or tyre mounted circuits
- B60C23/0455—Transmission control of wireless signals
- B60C23/0459—Transmission control of wireless signals self triggered by motion sensor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C23/00—Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
- B60C23/02—Signalling devices actuated by tyre pressure
- B60C23/04—Signalling devices actuated by tyre pressure mounted on the wheel or tyre
- B60C23/0486—Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
- B60C23/0489—Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors for detecting the actual angular position of the monitoring device while the wheel is turning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
- G01P3/44—Devices characterised by the use of electric or magnetic means for measuring angular speed
- G01P3/48—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
- G01P3/481—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
Definitions
- the present invention relates to a tire pressure monitoring device.
- each tire is provided with a tilt sensor, and a rotational position corresponding to a wheel position is registered as a tilt angle.
- the tilt angle detected by the tilt sensor, the registered wheel position and tilt angle are registered.
- a technique for determining the wheel position of the transmitter of the tire pressure sensor attached to the tire based on the correspondence relationship with the tire is disclosed.
- An object of the present invention is to provide a tire pressure monitoring device that can accurately determine the wheel position of a transmitter.
- the rotational position of each wheel when a wireless signal including certain identification information is transmitted is acquired a plurality of times and accumulated as rotational position data of each wheel.
- the wheel position of the transmitter corresponding to the identification information is determined based on the degree of variation.
- the rotational position of the wheel on which the transmitter is mounted shows a substantially constant value among the rotational positions of the wheels detected at that timing.
- other rotational positions vary. Therefore, the wheel position of the transmitter can be accurately determined by determining the wheel position of the transmitter based on the degree of variation in the rotational position data of each wheel.
- FIG. 1 is a configuration diagram of a tire air pressure monitoring device of Example 1.
- FIG. It is sectional drawing which shows the attachment position in the tire of the TPMS sensor 2 of Example 1.
- FIG. 1 is a perspective view showing a configuration of a TPMS sensor 2 of Example 1.
- FIG. It is a control block diagram of TPMSCU4 for carrying out the wheel position determination control of the first embodiment.
- 3 is a diagram showing a method for calculating the rotational position of each wheel 1.
- FIG. It is a correction tooth number calculation map according to vehicle speed. It is a figure which shows the calculation method of a dispersion
- 3 is a flowchart showing a flow of first wheel position determination control processing by a first control unit 11; 3 is a flowchart showing a flow of second wheel position determination control processing by a second control unit 12; It is a figure which shows the relationship between the rotation position (the number of teeth of a rotor) of each wheel 1FL, 1FR, 1RL, and 1RR when the rotation position of the TPMS sensor 2FL of the left front wheel 1FL becomes the highest point and the number of receptions of TPMS data . It is a figure which shows the change of the dispersion characteristic value X according to the frequency
- FIG. 1 It is a figure showing the difference in the TPMS data transmission timing of the TPMS sensor 2 of the right front wheel (or right rear wheel 1RR) by the difference in vehicle speed. This is an example in which the rotational position data of the wheel speed sensor 8FR for the right front wheel 1FR and the left front wheel 1FL is plotted by vehicle speed. It is a control block diagram of TPMSCU4 for carrying out the wheel position determination control of the second embodiment. 3 is a characteristic diagram of elastic modulus with respect to temperature of a rubber part 26. FIG.
- FIG. 1 is a configuration diagram of a tire pressure monitoring apparatus according to the first embodiment.
- FL at the end of each symbol indicates a left front wheel
- FR indicates a right front wheel
- RL indicates a left rear wheel
- RR indicates a right rear wheel.
- the description of FL, FR, RL, and RR is omitted when there is no need to explain them individually.
- the tire pressure monitoring device of the first embodiment includes a TPMS (Tire Pressure Monitoring System) sensor 2, a receiver 3, a TPMS control unit (TPMSCU) 4, a display 5, a wheel speed sensor 8, a vehicle speed sensor (vehicle speed detection). Means) 15.
- the TPMS sensor 2 is attached to each wheel 1, and the receiver 3, the TPMSCU 4, the display 5, the wheel speed sensor 8, and the vehicle speed sensor 15 are provided on the vehicle body side.
- FIG. 2 is a cross-sectional view showing the mounting position of the TPMS sensor 2 of the first embodiment in the tire
- FIG. 3 is a perspective view showing the configuration of the TPMS sensor 2 of the first embodiment.
- the TPMS sensor 2 includes an air valve 20 and a main body 24 attached to one end of the air valve 20.
- the air valve 20 is a snap-in type air valve in which a rubber part (elastic body) 26 covering the outer periphery is fixed to the valve hole 23 of the wheel rim 22.
- the main body 24 is attached to the end of the air valve 20 on the side located in the tire 21. Therefore, the main body portion 24 is located outside the well 25 of the wheel rim 22 in the tire radial direction in the tire 21.
- the main body 24 is attached so as to be horizontal with respect to the ground when the tire 21 rotates and the valve hole 23 is at the uppermost point.
- a substrate 2g and a button battery 2e are stored inside a resin case 27.
- the main body 24 extends in a direction perpendicular to the axial direction of the air valve 20, the substrate 2g is disposed from the central portion 24a to the right side 24b of the main body 24, and the button battery 2e is disposed on the left side 24c of the main body 24.
- a pressure sensor (tire pressure detecting means) 2a, an acceleration sensor (G sensor) 2b, a temperature sensor 2f, a sensor control unit (sensor CU) 2c, and a transmitter 2d are mounted on the board 2g.
- the pressure sensor 2a detects tire air pressure [kPa].
- the G sensor 2b detects centrifugal acceleration [G] acting on the tire.
- the temperature sensor 2f detects the temperature [° C.] in the tire.
- the sensor CU2c operates by the electric power from the button battery 2e, and transmits TPMS data including at least the tire pressure information detected by the pressure sensor 2a and the sensor ID (identification information) from the transmitter 2d by a radio signal.
- the sensor ID is 1 to 4. Since the button battery 2e is heavier than the substrate 2g, the center of gravity in the longitudinal direction of the main body 24 is located closer to the button battery 2e than the surface 28 including the tire rotation shaft and the valve hole 23.
- the sensor CU2c compares the centrifugal acceleration detected by the G sensor 2b with a preset traveling determination threshold value, and determines that the vehicle is stopped if the centrifugal acceleration is less than the traveling determination threshold value, and determines TPMS data. Stop sending On the other hand, if the centrifugal acceleration is equal to or greater than the travel determination threshold, it is determined that the vehicle is traveling, and TPMS data is transmitted at a predetermined timing. Sensor CU2c also sends a motion flag ON signal that informs TPMSCU4 of the start of wireless signal transmission when the centrifugal acceleration reaches or exceeds the travel determination threshold, and the centrifugal acceleration is determined to be the travel determination threshold. When the value falls below, a motion flag OFF signal is sent once to notify the TPMSCU4 of the end of wireless signal transmission.
- the receiver 3 receives and decodes the radio signal output from each TPMS sensor 2, and outputs it to the TPMSCU 4.
- the TPMSCU4 reads each TPMS data, refers to the correspondence between each sensor ID and each wheel position stored in the nonvolatile memory 9 (see FIG. 4) from the sensor ID of the TPMS data, and which wheel the TPMS data has It is determined whether it corresponds to the position, and the tire air pressure included in the TPMS data is displayed on the display 5 as the air pressure at the corresponding wheel position. Further, when the tire air pressure falls below the lower limit value, the driver is notified of a decrease in air pressure by changing the display color, blinking display, warning sound, or the like.
- ABSCU 6 detects the wheel speed of each wheel 1 based on the wheel speed pulse from each wheel speed sensor 8, and when a certain wheel tends to lock, it activates the ABS actuator (not shown) to turn the wheel cylinder of that wheel.
- ABS actuator not shown
- the ABSCU 6 outputs the count value of the wheel speed pulse to the CAN communication line 7 at a predetermined cycle (for example, 20 msec).
- z 48
- the uneven surface of the rotor crosses the magnetic field formed around the wheel speed sensor 8 to change its magnetic flux density, generating an electromotive force in the coil, and this voltage change is applied to the ABSCU 6 as a wheel speed pulse signal.
- tire rotation refers to changing the mounting position of the tire in order to make the tire tread wear uniform and extend the life (tread life). For example, in a passenger car, the left and right tire positions are generally crossed to replace the front and rear wheels.
- Example 1 in order to register the correspondence between each sensor ID and each wheel position after tire rotation by storing and updating in the memory 9, there is a possibility that tire rotation has been performed.
- the TPMS data transmission cycle is changed on the second side, and the TPMSCU4 side determines which wheel each TPMS sensor 2 is based on the TPMS data transmission cycle and each wheel speed pulse.
- the sensor CU2c of the TPMS sensor 2 determines that there is a possibility that tire rotation has been performed when the vehicle stop determination time immediately before the start of traveling is a predetermined time (for example, 15 minutes) or more.
- the sensor CU2c performs the “normal mode” in which TPMS data is transmitted at regular intervals (for example, 1 minute intervals).
- the vehicle stop determination time is equal to or longer than the predetermined time, it is an interval shorter than the transmission interval in the normal mode (for example, about 16 seconds interval), and transmits TPMS data at a constant rotational position. Is implemented.
- the fixed position transmission mode is performed until the number of transmissions of TPMS data reaches a predetermined number (for example, 40 times), and when the number of transmissions reaches a predetermined number, the mode is shifted to the normal mode. If it is determined that the vehicle has stopped before the number of transmissions of TPMS data reaches the predetermined number, if the vehicle stop determination time is less than the predetermined time (15 minutes), the fixed position transmission before the vehicle stops until the number of transmissions reaches the predetermined number The mode is continued, and when the vehicle stop determination time is a predetermined time or longer, the continuation of the fixed position transmission mode before the vehicle is stopped is canceled and the fixed position transmission mode is newly started.
- a predetermined number for example, 40 times
- Sensor CU2c determines the transmission timing of the TPMS data in the fixed position transmission mode based on the gravity acceleration dependent component of the centrifugal acceleration detected by the G sensor 2b during the fixed position transmission mode.
- the centrifugal acceleration acting on the TPMS sensor 2 changes with the acceleration / deceleration of the wheel 1, but its gravitational acceleration dependent component is always constant, +1 [G] at the highest point and -1 [G] at the lowest point
- the waveform which is 0 [G] at a position of 90 degrees with respect to the uppermost point and the lowermost point is shown. That is, the rotational position of the TPMS sensor 2 can be grasped by monitoring the magnitude and direction of the gravitational acceleration component of the centrifugal acceleration. Therefore, for example, by outputting TPMS data at the peak of the gravity acceleration dependent component, TPMS data can always be output at the highest point.
- the TPMSCU 4 determines that the tire rotation may have been performed when the elapsed time from the ignition switch OFF to the ON is equal to or longer than a predetermined time (for example, 15 minutes). TPMSCU4 monitors the tire air pressure of each wheel 1 based on the air pressure information of TPMS data transmitted from each TPMS sensor 2 when the elapsed time from the ignition switch OFF to ON is less than the predetermined time. Is implemented. On the other hand, when the elapsed time from the ignition switch to the ON is equal to or longer than a predetermined time, the “auto-learning mode” for determining the wheel position of each TPMS sensor 2 is performed.
- a predetermined time for example, 15 minutes.
- the auto-learning mode is carried out until the wheel positions of all TPMS sensors 2 are determined or until a predetermined cumulative traveling time (for example, 8 minutes) has elapsed from the start of the auto-learning mode, and all the TPMS sensor 2 wheels are When the position is determined or when a predetermined accumulated traveling time has elapsed, the monitor mode is entered.
- a predetermined cumulative traveling time for example, 8 minutes
- the tire pressure can be monitored from the air pressure information included in the TPMS data. Therefore, during the auto-learning mode, each sensor ID and each wheel position currently stored in the memory 9 can be monitored. Air pressure display and warning of air pressure drop based on the corresponding relationship.
- the TPMSCU 4 receives the wheel speed pulse count value from the ABS control unit (ABSCU) 6 via the CAN communication line 7 during the auto-learning mode, and performs wheel position determination control as described below.
- FIG. 4 is a control block diagram of the TPMSCU 4 for performing the wheel position determination control according to the first embodiment.
- the TPMSCU 4 includes a first control unit 11 that executes the first wheel position determination control, and a second control unit 12 that executes the second wheel position determination control.
- the first control unit 11 includes a rotation position calculation unit (rotation position detection unit) 11a, a rotation position correction unit (rotation position correction unit) 11d, a dispersion calculation unit 11b, and a wheel position determination unit (wheel position determination unit) 11c.
- the rotational position calculation unit 11a inputs the decoded TPMS data output from the receiver 3 and the count value of each wheel speed pulse output from the ABSCU 6 to the CAN communication line 7, and the rotational position of each TPMS sensor 2 is determined.
- the rotational position (number of teeth of the rotor) of each wheel 1 when it becomes the highest point is calculated.
- the rotation position calculation unit 11a is based on the value obtained by adding 1 to the remainder of dividing the count value by the number of teeth for one rotation when the count value of each wheel speed pulse is input for the first time after starting the auto-learning mode.
- the number of teeth is determined based on the number of wheel speed pulses counted from the reference number of teeth (current count value minus the first count value) from the second time onward.
- FIG. 5 is a diagram illustrating a method for calculating the rotational position of each wheel 1.
- the time when the count value of the wheel speed pulse is input is t1
- the time when the rotational position of the TPMS sensor 2 is the highest point is t2
- the time when the TPMS sensor 2 actually starts transmitting TPMS data is t3
- the time when TPMSCU4 completes the reception of TPMS data is t4
- the time when the wheel speed pulse count value is input is t5.
- t1, t4, t5 can be actually measured
- t3 can be calculated by subtracting the data length of TPMS data (specified value, for example, about 10 msec) from t4, and t2 is a time lag at the time of transmission from t3 ( It can be calculated in advance by experiments etc.).
- the rotational position correction unit 11d receives the vehicle speed detected by the vehicle speed sensor 15, calculates the correction tooth number ⁇ z ( ⁇ 0) from the map of FIG. 6 according to the vehicle speed, and the rotation position calculation unit 11a uses the correction tooth number ⁇ z.
- the calculated rotational position (number of teeth z t2 ) of each wheel 1 is corrected.
- FIG. 6 is a correction tooth number calculation map corresponding to the vehicle speed, and as shown in FIG. 6, the correction tooth number ⁇ z has a characteristic of increasing as the vehicle speed increases.
- the amount of change in the correction tooth number with respect to the vehicle speed change is larger than the vehicle speed range below the predetermined vehicle speed.
- the correction tooth number ⁇ z is set based on the change characteristic with respect to the vehicle speed of the rotational position data of the same wheel position as that of the transmitter 2d corresponding to a certain sensor ID, which is actually measured when traveling while gradually increasing the vehicle speed. Yes.
- the rotational position correction unit 11d subtracts the first corrected rotational position z t2 + ⁇ z obtained by adding the correction tooth number ⁇ z and the correction tooth number ⁇ z to the tooth number z t2 calculated by the rotational position calculation unit 11a.
- the corrected rotation position z t2 ⁇ z is calculated to obtain the corrected rotation position.
- the dispersion calculation unit 11b accumulates the rotation position of each wheel 1 corrected by the rotation position correction unit 11d for each sensor ID to obtain rotation position data, and determines the variation degree of each rotation position data for each sensor ID as a dispersion characteristic value. Calculate as Since there are two corrected rotational positions (the first corrected rotational position and the second corrected rotational position) for one wheel by the rotational position correcting unit 11d, eight dispersion characteristic values are calculated for the same sensor ID. The calculation of the dispersion characteristic value is performed every time the rotation position of the same sensor ID is calculated by the rotation position calculation unit 11a.
- FIG. 7 is a diagram illustrating a method of calculating the dispersion characteristic value.
- a unit circle (circle having a radius of 1) centered on the origin (0,0) is considered on each two-dimensional plane.
- the wheel position determination unit 11c compares the dispersion characteristic values X of the rotational position data of the same sensor ID calculated by the dispersion calculation unit 11b, and the maximum value of the dispersion characteristic value X is the first threshold value (for example, 0.57). And the remaining three dispersion characteristic values X are all less than the second threshold value (for example, 0.37), the wheel position of the rotational position data corresponding to the maximum dispersion characteristic value X, That is, the wheel position of the wheel speed sensor 8 that has detected the rotational position data is determined as the wheel position of the TPMS sensor 2 corresponding to the sensor ID of the rotational position data. By performing this determination for all sensor IDs, the correspondence between each sensor ID and each wheel position is determined.
- the second control unit 12 includes a rotation position calculation unit (rotation position detection unit) 12a, a rotation position correction unit (rotation position correction unit) 12d, a dispersion calculation unit 12b, and a wheel position determination unit (wheel position determination unit) 12c.
- the second wheel position determination control to be described later is executed.
- the rotation position calculation unit 12a outputs from the receiver 3 during the period from the start to the end of one trip when the period from receiving the motion flag ON signal to receiving the OFF signal is defined as one trip.
- the decoded TPMS data and the count value of each wheel speed pulse output from the ABSCU 6 to the CAN communication line 7 are input, and the rotation position of each wheel 1 when the rotation position of each TPMS sensor 2 is the highest point ( The number of teeth of the rotor) is calculated.
- the rotational position calculation unit 12a calculates the reference tooth by adding 1 to the remainder of dividing the count value by the number of teeth for one rotation. In the second and subsequent times, the number of teeth is determined based on the number of wheel speed pulses counted from the reference number of teeth (current count value minus the first count value). That is, the reference number of teeth is updated every time one trip is started.
- the dispersion calculation unit 12b accumulates the rotation position of each wheel 1 corrected by the rotation position correction unit 12d for each sensor ID to obtain rotation position data, and determines the variation degree of each rotation position data for each sensor ID as a dispersion characteristic value. (Dispersion characteristic value by period) Calculated as Xtrpm. Since one wheel has two rotation positions after correction by the rotation position correction unit 12d (first corrected rotation position and second corrected rotation position), eight dispersion characteristic values are calculated for each sensor ID. The dispersion characteristic value Xtrpm is calculated for each trip. If the specified cumulative travel time has elapsed during one trip, that point is the end point of one trip. If the number of times TPMS data is received within one trip is less than a predetermined value (for example, 3 times), the dispersion characteristic value is not calculated.
- a predetermined value for example, 3 times
- the dispersion calculation unit 12b calculates a final dispersion characteristic value (total dispersion characteristic value) X based on the dispersion characteristic values Xtrp1, Xtrp2,..., Xtrpm calculated for each trip when a predetermined accumulated traveling time has elapsed. calculate.
- Each weighting coefficient K1, K2,..., Km is a value Nn / N obtained by dividing the number of receptions N1, N2,..., Nn of TPMS data within one trip by the number of receptions N of TPMS data within a predetermined cumulative travel time. And in other words, the weighting coefficient Km is the ratio of the number of receptions Nn to the total number of receptions N, and increases as the number of receptions Nn increases. Note that TPMS data during trips for which the number of receptions was less than 3 and the dispersion characteristic value Xtrpm was not calculated are excluded (subtracted) from N.
- the wheel position determination unit 12c compares the final dispersion characteristic value X of each rotational position data of the same sensor ID calculated by the dispersion calculation unit 12b, and when the maximum value is one, the dispersion characteristic of the highest value
- the wheel position of the rotational position data corresponding to the value Xtrpm, that is, the wheel position of the wheel speed sensor 8 that detected the rotational position data is determined as the wheel position of the TPMS sensor 2 corresponding to the sensor ID of the rotational position data. By performing this determination for all sensor IDs, the correspondence between each sensor ID and each wheel position is determined.
- the TPMSCU 4 registers the correspondence relationship between the sensor ID determined by the first control unit 11 and the wheel position by storing and updating the memory 9, and the first control unit 11 out of the correspondence relationship between each sensor ID and each wheel position. If there is something that cannot be determined, the determination result of the second control unit 12 is registered by updating the storage in the memory 9.
- step S2 the rotational position calculation unit 11a calculates the rotational position of each wheel 1.
- the rotation position correction unit 11d corrects the rotation position data of each wheel 1 according to the vehicle speed, and calculates two corrected rotation positions.
- step S4 the dispersion calculation unit 11b calculates the dispersion characteristic value X of the rotational position data of each wheel 1.
- step S7 the wheel position determination unit 11c determines that the wheel position of the rotational position data corresponding to the highest dispersion characteristic value is the wheel position of the sensor ID, and ends this control.
- step S8 the wheel position determination unit 11c determines whether or not a predetermined cumulative travel time (for example, 8 minutes) has elapsed since the start of the auto-learning mode. If YES, this control is terminated. If NO, the process returns to step S1.
- a predetermined cumulative travel time for example, 8 minutes
- FIG. 9 is a flowchart showing the flow of the second wheel position determination control process by the second control unit 12, and each step will be described below.
- the rotation position calculation unit 12a calculates the rotation position of each wheel 1.
- the rotational position correction unit 12d corrects rotational position data of each wheel 1 according to the vehicle speed, and calculates two corrected rotational positions.
- step S14 the dispersion calculating unit 12b calculates a one-trip dispersion characteristic value Xtrpm of the rotational position data of each wheel 1.
- step S15 the variance calculation unit 12b determines whether or not a predetermined cumulative travel time (for example, 8 minutes) has elapsed since the start of the auto-learning mode. If YES, the process proceeds to step S16, and NO In the case of, return to step S1.
- step S16 the final dispersion characteristic value X is calculated in the dispersion calculation unit 12b.
- step S17 the wheel position determination unit 12c determines whether or not the maximum dispersion characteristic value is one. If YES, the process proceeds to step S18. If NO, the present control is terminated. The auto-learning mode ends when this control ends.
- step S18 the wheel position determination unit 12c determines that the wheel position of the rotational position data corresponding to the maximum dispersion characteristic value is the wheel position of the sensor ID, and ends this control.
- Each TPMS sensor 2 determines that there is a possibility that tire rotation has been performed when the vehicle stop determination time immediately before the start of travel is 15 minutes or more, and shifts from the normal mode to the fixed position transmission mode.
- each TPMS sensor 2 transmits TPMS data when 16 seconds have elapsed from the previous transmission time and its own rotational position is at the highest point.
- TPMSCU4 shifts from the monitor mode to the auto-learning mode when the elapsed time from the ignition switch OFF to ON is 15 minutes or more.
- the TPMSCU 4 executes the first wheel position determination control by the first control unit 11 and the second wheel position determination control by the second control unit 12 in parallel as the wheel position determination control.
- the rotational position of the TPMS sensor 2 is the highest point from the input time of the count value of the wheel speed pulse, the reception completion time of the TPMS data, etc.
- the rotation position (number of teeth of the rotor) of each wheel 1 is calculated and TPMS data of the same sensor ID is received 10 times or more
- the dispersion characteristic value X of each rotation position data of the sensor ID is compared. If the maximum dispersion characteristic value X is larger than the first threshold value 0.57 and the remaining three dispersion characteristic values X are all less than the second threshold value 0.37, the maximum dispersion value is obtained.
- the wheel position of the rotational position data corresponding to the characteristic value X is determined as the wheel position of the sensor ID.
- the second wheel position determination control when each wheel 1 is rotating in the same direction, every time TPMS data is received from each TPMS sensor 2, the input time of the count value of the wheel speed pulse and the reception completion time of the TPMS data From the above, calculate the rotational position (number of teeth of the rotor) of each wheel 1 when the rotational position of the TPMS sensor 2 is at the highest point, and determine the degree of variation of each rotational position data for one trip.
- the cumulative running time (8 minutes) of each trip, the weight of each trip (dispersion characteristic values Xtrp1, Xtrp2, ..., Xtrpm) obtained continuously is weighted by the number of TPMS data reception Nn, and the final value of each wheel
- the wheel position corresponding to the rotational position data having the smallest degree of dispersion is determined as the wheel position of the TPMS sensor 2.
- each wheel 1 When the vehicle is running, the rotational speed of each wheel 1 varies depending on the difference between the inner and outer wheels when turning, the lock and slip of wheel 1, and the tire pressure difference. It is known that even during straight running, there is a difference in rotational speed between the front and rear wheels 1FL and 1FR and between the left and right wheels 1RL and 1RR due to a slight correction rudder by the driver and a difference in the left and right road surface conditions.
- each wheel 1 varies depending on traveling, whereas the TPMS sensor 2 and the wheel speed sensor 8 (the rotor teeth) rotate together, so that the output cycle of a certain TPMS sensor 2
- the output cycle of the wheel speed sensor 8 of the same wheel is always synchronized (matched) regardless of the travel distance and the travel state.
- FIG. 10 shows the relationship between the rotational position (number of teeth of the rotor) of each wheel 1FL, 1FR, 1RL, and 1RR when the rotational position of the TPMS sensor 2FL of the left front wheel 1FL is the highest point and the number of receptions of TPMS data.
- (A) is the wheel speed sensor 8FL for the left front wheel 1FL
- (b) is the wheel speed sensor 8FR for the right front wheel 1FR
- (c) is the wheel speed sensor 8RL for the left rear wheel 1RL
- (d) is the right Corresponds to the wheel speed sensor 8RR of the rear wheel 1RR.
- the wheel positions (number of teeth) obtained from the wheel speed sensors 8FR, 8RL, 8RR of the other wheels have a large degree of variation.
- the wheel position obtained from the wheel speed sensor 8FL of the own wheel has the smallest degree of variation, and the output cycle of the TPMS sensor 2FL and the output cycle of the wheel speed sensor 8FL are almost synchronized.
- each TPMS sensor is provided with a tilt sensor, and the wheel position of each TPMS sensor is determined using the relationship between the wheel position and tilt angle of each TPMS sensor. Since the difference in the rotation speed of the wheels occurs, the correspondence between the wheel position of each TPMS sensor and the inclination angle changes, so that the wheel position of each TPMS sensor cannot be accurately determined.
- the same number of receivers as the TPMS sensors are arranged in proximity to each receiver, and the wheel position of each TPMS sensor is determined based on the radio field intensity of the received radio signal.
- a receiver layout that takes into account sensor output, receiver sensitivity variations, and harness antenna effects is required, and performance is affected by the reception environment and layout.
- the cost becomes high.
- the wheel position of each TPMS sensor 2 can be determined without using the radio wave intensity, so the wheel position of each TPMS sensor 2 can be determined regardless of the reception environment and layout. Further, since only one receiver 3 is required, the cost can be kept low.
- the fact that the rotational position of the TPMS sensor 2 is at the highest point is calculated from the gravity acceleration dependent component of the centrifugal acceleration detected by the G sensor 2b.
- the G sensor 2b is used for stopping and running the vehicle in existing tire pressure monitoring devices, so the existing TPMS sensor can be used and the cost of adding a new sensor to the TPMS sensor 2 side can be saved. it can.
- the rotational position of each wheel 1 is calculated from the wheel speed pulse of the wheel speed sensor 8 in the TPMSCU 4. Since the ABS unit is mounted on most of the vehicles, and the wheel speed sensor 8 is an essential configuration for the ABS unit, the cost of adding a new sensor on the vehicle side can be saved.
- the rotational position ⁇ of each wheel 1 obtained from each wheel speed sensor 8 is set to the coordinates on the circumference of the unit circle with the origin (0, 0) as the center ( cos ⁇ , sin ⁇ ), the coordinates (cos ⁇ , sin ⁇ ) are regarded as vectors, the average vector (ave_cos ⁇ , ave_sin ⁇ ) of each vector of the same rotational position data is obtained, and the scalar quantity of the average vector is calculated as the dispersion characteristic value X
- the degree of variation in rotational position can be obtained while avoiding periodicity.
- FIG. 11 is a diagram illustrating a change in the dispersion characteristic value X according to the number of receptions of TPMS data.
- the own wheel shows the dispersion characteristic value X calculated from the rotational position data of the wheel speed sensor 8 of the same wheel as the TPMS sensor 2 that transmitted the TPMS data, and the other wheel is different from the TPMS sensor 2 that transmitted the TPMS data.
- the dispersion characteristic value X calculated from the rotational position data of the wheel speed sensor 8 of the wheel 1 is shown.
- the dispersion characteristic value X of the own wheel approaches 1 and the dispersion characteristic value X of the other wheel approaches 0 as the number of receptions of TPMS data of the same sensor ID increases.
- the dispersion characteristic value of the own wheel As the number of receptions increases, the difference between the dispersion characteristic value of the own wheel and the dispersion characteristic value of the other wheel increases. Therefore, by looking at the dispersion characteristic value X, the degree of variation in the rotational position data of each wheel 1 can be accurately determined.
- Each TPMS sensor 2 transmits TPMS data at a timing when 16 seconds or more have elapsed from the previous TPMS data transmission time and when its rotation position is at the highest point.
- the wheel position determination is performed by comparing the dispersion characteristic value X of each rotational position data, the own wheel (same wheel) and the other wheel (others) are compared to the TPMS sensor 2 that has transmitted certain TPMS data.
- TPMS data is transmitted every time the rotational position of the TPMS data is the highest point, there is no difference in the dispersion characteristic value X between the own wheel and the other wheel at the number of receptions of about 10 times, and the wheel position determination is performed. It becomes difficult. Therefore, by setting the transmission interval of TPMS data to 16 seconds + ⁇ , it is possible to secure a certain cumulative mileage until TPMS data is received 10 times or more, so it is sufficient for the dispersion characteristic value X of the own wheel and other wheels The difference can be obtained, and the wheel position can be accurately determined.
- First wheel position determination control action In the first embodiment, as wheel position determination control for determining the correspondence between each sensor ID and each wheel position after tire rotation, the first wheel position determination control by the first control unit 11 and the second wheel position determination control by the second control unit 12 are performed. Two wheel position determination controls are executed in parallel with the wheel position determination control. And about sensor ID which determined the wheel position by 1st wheel position determination control, priority is given to the determination result of 1st wheel position determination control, and in 1st wheel position determination control, wheel position is determined within predetermined accumulation travel time. For the sensor ID that could not be determined, the determination result of the second wheel position determination control is employed.
- the maximum value of each dispersion characteristic value X when TPMS data of the same sensor ID is received 10 times or more is larger than the first threshold value 0.57, and the remaining three dispersion characteristic values X
- the wheel position of the rotational position data corresponding to the highest dispersion characteristic value X is determined as the wheel position of the sensor ID. That is, instead of simply selecting the highest dispersion characteristic value X, the rotational position data with the highest dispersion characteristic value X is output as TPMS data by comparing the highest value with the first threshold value (0.57). The degree of synchronization with the period can be seen, and a certain determination accuracy can be secured.
- the dispersion characteristic value X other than the maximum value with the second threshold value it can be confirmed that there is a difference of more than the predetermined value (0.2) between the maximum value and the other three values. Can be further enhanced.
- the determination accuracy of the degree of variation of the rotational position data of each wheel 1 is higher than the second wheel position determination control that selects the highest dispersion characteristic value X. .
- the rotational position data number is less than 10.
- the determination accuracy of the degree of variation in the rotational position data of each wheel 1 is increased.
- the transmission cycle of TPMS data on the TPMS sensor 2 side is about 16 seconds, and when the vehicle is continuously running, the rotational position of each wheel 1 is about 2.5 minutes after the start of the auto-learning mode. Since the number of data becomes 10, and the determination of the degree of variation can be started, each of the second wheel position determination controls that start the determination of the degree of variation after waiting for the elapse of a predetermined cumulative traveling time (8 minutes) The correspondence relationship between the sensor ID and each wheel position can be determined.
- the rotational position of the wheel 1 is detected from the count value of the wheel speed pulse.
- the wheel speed sensor 8 is a pulse count type, and the coil current change due to the magnetic flux change when the uneven surface of the rotor rotating integrally with the wheel 1 crosses the magnetic field formed around the wheel speed sensor 8 Is output as a wheel speed pulse. Therefore, when wheel 1 vibrates due to vehicle vibration caused by shift change, steering or passenger getting on and off while the vehicle is stopped (when forward and reverse are repeated continuously at a minute angle), wheel 1 is actually rotating. Although there is no vibration, the wheel speed pulse may be counted up by vibration.
- the rotational speed (number of teeth) of the wheel 1 is calculated including the wheel speed pulse while the vehicle is stopped, and the rotational position is thus calculated when the vehicle is stopped in the auto-learning mode.
- the deviation occurs, it is difficult to make a difference in each dispersion characteristic value X due to erroneous detection of the rotational position, and it is difficult to determine the wheel position.
- the number of transmissions of TPMS data in the fixed position transmission mode is limited to 40 times. The first wheel position determination control cannot be continued until it is determined.
- the wheel position of the sensor ID is set to the second wheel. This is determined using the determination result of the position determination control.
- the wheel position of the sensor ID is determined by selecting the highest value of each dispersion characteristic value X after the elapse of a predetermined cumulative traveling time. At this time, since it is rare that the maximum value is two or more, the wheel positions of all sensor IDs can be determined.
- the period during which each wheel 1 is rotating in the same direction is defined as one trip, and the dispersion characteristic value Xtrp1, Xtrp2, ..., for each trip based on the rotation position data in one trip.
- Xtrpm is obtained, and the final dispersion characteristic value X is calculated based on each dispersion characteristic value Xtrp1, Xtrp2,..., Xtrpm. Therefore, the dispersion characteristic value X can be calculated by eliminating the influence of the deviation between the number of wheel speed pulses that occur when the vehicle stops or reverses and the actual number of revolutions of the wheel 1, and the degree of variation in each rotational position can be accurately calculated. Can be judged.
- the ratio Nn of the number of receptions Nn of TPMS data within one trip to the total number of receptions N of TPMS data within a predetermined cumulative travel time / N is multiplied by weighting coefficients K1, K2, ..., Km, and the weighted dispersion characteristics K1 ⁇ Xtrp1, K2 ⁇ Xtrp2,..., Km ⁇ Xtrpm sum (K1 ⁇ Xtrp1 + K2 ⁇ Xtrp2 +,..., Km ⁇ Xtrpm) is the final dispersion characteristic value X.
- the dispersion characteristic value Xtrp1 of the first trip is 0.8
- the dispersion characteristic value Xtrp2 of the second trip is 0.9
- 3 The dispersion characteristic value Xtrp3 of the second trip is set to 0.4.
- the value is closer to the dispersion characteristic value Xtrp2 of the second trip having the largest TPMS data reception count Nn.
- the dispersion characteristic value Xtrpm for one trip becomes more accurate as the number of data at the rotational position increases. Therefore, increasing the weighting of the dispersion characteristic value Xtrpm with a large number of data increases the reliability of the final dispersion characteristic value X. Can increase the sex.
- the dispersion characteristic value Xtrpm is not calculated and the number of TPMS data reception Nn is 3 or more in one trip. Based on the trip dispersion characteristic value Xtrpm, the final dispersion characteristic value X is calculated.
- the number of receptions Nn of TPMS data in one trip is small, the difference in dispersion characteristic value Xtrpm of each wheel 1 hardly occurs.
- an effective dispersion characteristic value Xtrpm for determining the degree of variation in the rotational position of each wheel 1 cannot be obtained, so this is excluded and the final dispersion characteristic value X is calculated. By doing so, the reliability of the final dispersion characteristic value X can be improved.
- FIG. 13 is a diagram showing a difference in TPMS data transmission timing of the TPMS sensor 2 of the right front wheel (or right rear wheel 1RR) due to a difference in vehicle speed, and (a) is at an extremely low speed (for example, 5 [km / h]). (B) is during low speed travel (for example, 40 [km / h]), and (c) is during high speed travel (for example, 90 [km / h]). As shown to (a), the main-body part 24 of the TPMS sensor 2 is assembled
- the G sensor 2b outputs a value of + 1G when the TPMS sensor 2 is at the uppermost point, and TPMS data is output.
- the center of gravity of the main body 24 is set at a position closer to the button battery 2e than the surface 28 (see FIG. 3) including the tire rotation shaft and the valve hole 23. Therefore, the higher the vehicle speed (the higher the rotational speed of the tire 21), the greater the centrifugal force that acts on the left side 24c.
- the air valve 20 that supports the main body portion 24 employs a snap-in method that is fixed to the valve hole 23 of the wheel rim 22 via the soft rubber portion 26, the rubber portion 26 is twisted and the main body portion 24 is twisted. Inclination occurs.
- the rotational position where the G sensor 2b outputs a value of + 1G that is, the position where the main body 24 is parallel to the ground is the original position (top point).
- the rotation angle is advanced by the inclination angle ⁇ of the main body 24.
- the inclination angle ⁇ of the main body 24 increases as the vehicle speed increases.
- the amount of change in the inclination angle ⁇ of the main body 24 with respect to the change in the vehicle speed is larger than that in the case where the vehicle speed is less than the predetermined vehicle speed.
- the wheel position can be determined after the elapse of a predetermined cumulative traveling time (for example, 8 minutes) from the start of the auto-learning mode, but the degree of variation in rotational position data is determined. Since the accuracy is lowered, the correspondence between each sensor ID and the wheel position cannot be accurately determined.
- a predetermined cumulative traveling time for example, 8 minutes
- the rotational position correction units 11d and 12d that correct the rotational position calculated by the rotational position calculation units 11a and 12a with the correction tooth number ⁇ z corresponding to the vehicle speed are provided.
- the inclination angle ⁇ represents the amount of deviation from the uppermost point of the TPMS sensor 2 when TPMS data is transmitted, and this amount of deviation varies depending on the vehicle speed, so the number of correction teeth ⁇ z corresponding to the vehicle speed can be used for each wheel.
- the rotational position correction units 11d and 12d increase the correction tooth number ⁇ z as the vehicle speed increases.
- the inclination angle ⁇ with respect to the assembly becomes larger as the vehicle speed becomes higher. Therefore, the transmission timing of TPMS data becomes larger with respect to the specified timing as the vehicle speed becomes higher.
- the rotational position correction units 11d and 12d have a characteristic that the amount of change with respect to a change in vehicle speed is larger when the correction tooth number ⁇ z is 60 [km / h] or more than when it is less than 60 [km / h].
- the main body 24 of the TPMS sensor 2 has a larger change amount of the inclination angle ⁇ with respect to the vehicle speed change in the region where the vehicle speed is 60 [km / h] or more than in the region where the vehicle speed is less than 60 [km / h].
- the vehicle speed is increased from the stopping speed by making the change amount of the correction tooth number ⁇ z with respect to the vehicle speed change larger than the change amount of the vehicle speed range of less than 60 [km / h]. It is possible to improve the accuracy of determining the wheel position in a traveling scene that changes to the vehicle speed.
- the rotation position correction units 11d and 12d subtract the first corrected rotation position z t2 + ⁇ z obtained by adding the correction tooth number ⁇ z to the rotation position calculated by the rotation position calculation units 11a and 12a and the correction tooth number ⁇ z.
- the second corrected rotation position z t2 ⁇ z is set as a corrected rotation position.
- the center of gravity in the longitudinal direction of the main body 24 is closer to the button battery 2e than the surface 28 including the tire rotation axis and the valve hole 23, that is, closer to the left side 24c. When acted, the main body 24 is inclined in a direction in which the left side 24c moves outward in the tire radial direction.
- the wheel positions of all the transmitters 2d can be determined by preparing two post-correction rotational positions obtained by adding and subtracting the correction tooth number ⁇ z.
- the rotational position correction units 11d and 12d are configured to measure the vehicle speed of the rotational position data of the same wheel position as that of the transmitter 2d corresponding to a certain sensor ID, which is actually measured when the vehicle is traveling while gradually increasing the vehicle speed. Set based on the change characteristics with respect to.
- the tire pressure monitoring device of the first embodiment has the following effects.
- a wheel speed sensor 8 provided on the vehicle body side for outputting a wheel speed pulse proportional to the number of rotations of the wheel, and rotational position calculation units 11a, 12a for detecting the rotational position of each wheel 1 from the count value of each wheel speed pulse;
- Wheel position for determining the wheel position of the transmitter 2d corresponding to the sensor ID based on the degree of variation of each rotation position data by acquiring the rotation position of each wheel 1 multiple times and accumulating it as rotation position data for each wheel 1.
- Judgment units 11c and 12c, a vehicle speed sensor 15 for detecting the vehicle speed, and rotational position correction units 11d and 12d for correcting the rotational position detected according to the detected vehicle speed are provided.
- the rotational position of the wheel 1 on which the transmitter 2d is mounted is substantially constant among the rotational positions of the wheels 1 detected at that timing. While the values are shown, other rotational positions vary. Therefore, the wheel position of the transmitter 2d can be accurately determined by determining the wheel position of the transmitter 2d based on the degree of variation in the rotational position data of each wheel 1. Moreover, when the vehicle speed is changing from the stop speed to the high vehicle speed, it is possible to suppress a decrease in the determination accuracy of the first wheel position determination control and the second wheel position determination control by correcting the rotational position according to the vehicle speed.
- the rotational position correction units 11d and 12d increase the correction tooth number ⁇ z as the vehicle speed increases.
- the inclination angle ⁇ with respect to the assembly becomes larger as the vehicle speed becomes higher. Therefore, the transmission timing of TPMS data becomes larger with respect to the specified timing as the vehicle speed becomes higher. Therefore, by increasing the correction tooth number ⁇ z as the vehicle speed increases, it is possible to improve the determination accuracy of the wheel position in the traveling scene where the vehicle speed changes from the stop speed to the high vehicle speed.
- the rotational position correction units 11d and 12d have a characteristic in which the amount of change with respect to a change in vehicle speed is larger when the correction tooth number ⁇ z is 60 [km / h] or more than when it is less than 60 [km / h]. .
- the main body 24 of the TPMS sensor 2 has a larger change amount of the inclination angle ⁇ with respect to the vehicle speed change in the region where the vehicle speed is 60 [km / h] or more than in the region where the vehicle speed is less than 60 [km / h].
- the vehicle speed is increased from the stopping speed by making the change amount of the correction tooth number ⁇ z with respect to the vehicle speed change larger than the change amount of the vehicle speed range of less than 60 [km / h]. It is possible to improve the accuracy of determining the wheel position in a traveling scene that changes to the vehicle speed.
- the rotation position correction units 11d and 12d are the first corrected rotation position z t2 + ⁇ z and the correction tooth number ⁇ z obtained by adding the correction tooth number ⁇ z to the rotation position calculated by the rotation position calculation units 11a and 12a.
- the second corrected rotation position z t2 - ⁇ z obtained by subtracting is used as the corrected rotation position.
- the center of gravity in the longitudinal direction of the main body 24 is closer to the button battery 2e than the surface 28 including the tire rotation axis and the valve hole 23, that is, closer to the left side 24c. When acted, the main body 24 is inclined in a direction in which the left side 24c moves outward in the tire radial direction.
- the wheel positions of all the transmitters 2d can be determined by preparing two post-correction rotational positions obtained by adding and subtracting the correction tooth number ⁇ z.
- the rotational position correction units 11d and 12d are the rotational positions of the same wheel position as the transmitter 2d corresponding to a certain sensor ID, actually measured when the correction tooth number ⁇ z is traveled while gradually increasing the vehicle speed.
- Set based on the change characteristics of data with respect to vehicle speed. Determine the wheel position in the driving scene where the vehicle speed changes from the stopping speed to the high vehicle speed by setting the characteristics according to the vehicle speed of the correction tooth number ⁇ z based on the rotational position data of the same wheel as the actually measured TPMS sensor Accuracy can be improved.
- the air valve 20 is a snap-in method that is fixed to the valve hole 23 of the wheel rim 22 via a rubber portion 26.
- the snap-in type air valve has a larger inclination angle ⁇ of the main body 24 with respect to the vehicle speed, so the rotational position is corrected based on the vehicle speed. The effect by is remarkable.
- FIG. 15 is a control block diagram of the TPMSCU 4 for performing the wheel position determination control according to the second embodiment.
- the rotational position correction unit 11d receives the temperature in the tire detected by the temperature sensor 2f, and corrects with the elastic coefficient estimation unit 13a to change the correction tooth number ⁇ z according to the vehicle speed based on the temperature in the tire.
- the elastic coefficient estimator 13a estimates the elastic coefficient of the rubber part 26 based on the temperature inside the tire.
- the elastic coefficient estimating unit 13a includes an elastic coefficient characteristic map with respect to the temperature of the rubber part 26, and estimates the elastic coefficient of the rubber part 26 from the temperature in the tire with reference to the elastic coefficient characteristic map.
- the elastic coefficient characteristic with respect to the temperature of the rubber part 26 can be obtained in advance by experiments or the like.
- the correction amount changing unit 13b changes the correction tooth number ⁇ z based on the elastic coefficient estimated by the elastic coefficient estimating unit 13a.
- the correction amount changing unit 13b decreases the correction tooth number ⁇ z as the estimated elastic coefficient is higher.
- the rotation position correction unit 11d changes the correction tooth number ⁇ z according to the temperature in the tire, and then adds a correction tooth number ⁇ z to the tooth number zt2 calculated by the rotation position calculation unit 11a.
- zt2 + ⁇ z and the second corrected rotation position zt2- ⁇ z obtained by subtracting the correction tooth number ⁇ z are respectively calculated to obtain a corrected rotation position.
- the rotational position correction unit 12d is the same as the rotational position correction
- the first wheel position determination control process of the second embodiment is the same as the first wheel position determination control process of the first embodiment shown in FIG. 8, but in the second embodiment, the rotational position of each wheel 1 in step S3.
- the elastic coefficient of the rubber part 26 is estimated from the temperature in the tire, and the corrected number of teeth ⁇ z is reduced as the estimated elastic coefficient is higher.
- the second wheel position determination control process of the second embodiment is the same as the second wheel position determination control process of the second embodiment shown in FIG. 9, but in the second embodiment, the rotational position of each wheel 1 in step S13.
- the elastic coefficient of the rubber portion 26 is estimated from the temperature in the tire, and the correction coefficient ⁇ z is decreased as the estimated elastic coefficient is higher.
- FIG. 16 is an elastic coefficient characteristic diagram with respect to the temperature of the rubber part 26.
- NBR uses an example of nitrile rubber (NBR) as the material of the rubber part 26
- EPDM uses ethylene propylene rubber (EPDM) as the material of the rubber part 26. It is an example used.
- the elastic coefficient of the rubber part 26 changes according to the atmospheric temperature of the rubber part 26, that is, the temperature in the tire, and particularly at an extremely low temperature, the lower the temperature in the tire, the lower the temperature of the rubber part 26. Increases elastic modulus.
- the inclination angle ⁇ of the main body part 24 with respect to the centrifugal force acting on the main body part 24 is smaller than at normal temperature even at the same vehicle speed. . Therefore, when the number of correction teeth z is determined only at the vehicle speed at an extremely low temperature, an excessive correction tooth number ⁇ z is set with respect to the inclination angle ⁇ of the main body 24, so that the rotational position of the TPMS sensor 2 is the highest point. Thus, the rotational position of each wheel cannot be determined with high accuracy, resulting in a decrease in determination accuracy of the wheel position.
- the rotational position correction units 11d and 12d change the correction tooth number ⁇ z based on the temperature in the tire. Since the elastic coefficient of the rubber part 26 depends on the temperature in the tire, the wheel position accompanying the change in the elastic coefficient of the rubber part 26 at extremely low temperatures can be obtained by changing the correction tooth number ⁇ z in consideration of the temperature in the tire. It is possible to suppress a decrease in determination accuracy.
- the rotational position correction units 11d and 12d include an elastic coefficient estimation unit 13a that estimates the elastic coefficient of the rubber part 26 based on the temperature in the tire, and a correction amount change unit 13b that changes the correction tooth number ⁇ z based on the elastic coefficient. Is provided.
- the deformation amount of the rubber part 24 when the centrifugal acceleration acts on the main body part 24 according to the vehicle speed, that is, the inclination angle ⁇ of the main body part 24 can be estimated with higher accuracy. Therefore, by changing the correction tooth number ⁇ z based on the elastic coefficient, it is possible to suppress a decrease in the determination accuracy of the wheel position at a very low temperature.
- the correction amount changing unit 13b decreases the correction tooth number ⁇ z as the elastic coefficient increases.
- the rotational position of each wheel can be prevented from deviating from the rotational position of each wheel 1 when the rotational position of the TPMS sensor 2 is at the highest point.
- the elastic deformation estimation unit 13a includes an elastic coefficient characteristic map with respect to the temperature of the rubber part 26, and estimates the elastic coefficient from the temperature in the tire with reference to the elastic coefficient characteristic map. By estimating the elastic coefficient based on the actually measured elastic coefficient characteristic of the rubber part 26, the elastic coefficient of the rubber part 26 can be accurately estimated.
- the tire pressure monitoring device of the second embodiment has the effects listed below.
- a temperature sensor 2f for detecting the temperature in the tire is provided, and the rotational position correction units 11d and 12d change the correction tooth number ⁇ z based on the detected temperature in the tire.
- the rotational position of the wheel 1 on which the transmitter 2d is mounted is substantially constant among the rotational positions of the wheels 1 detected at that timing. While the values are shown, other rotational positions vary. Therefore, the wheel position of the transmitter 2d can be accurately determined by determining the wheel position of the transmitter 2d based on the degree of variation in the rotational position data of each wheel 1.
- the rotational position correction units 11d and 12d are an elastic coefficient estimation unit 13a that estimates the elastic coefficient of the rubber part 26 based on the temperature in the tire, and a correction amount change that changes the correction tooth number ⁇ z based on the elastic coefficient Part 13b. If the elastic coefficient of the rubber part 26 is known, the deformation amount of the rubber part 24 when the centrifugal acceleration acts on the main body part 24 according to the vehicle speed, that is, the inclination angle ⁇ of the main body part 24 can be estimated with higher accuracy. Therefore, by changing the correction tooth number ⁇ z based on the elastic coefficient, it is possible to suppress a decrease in the determination accuracy of the wheel position at a very low temperature.
- the correction amount changing unit 13b decreases the correction tooth number ⁇ z as the elastic coefficient increases.
- the rotational position of each wheel can be prevented from deviating from the rotational position of each wheel 1 when the rotational position of the TPMS sensor 2 is at the highest point.
- the elastic deformation estimation unit 13a includes an elastic coefficient characteristic map with respect to the temperature of the rubber part 26, and estimates the elastic coefficient from the temperature in the tire with reference to the elastic coefficient characteristic map. By estimating the elastic coefficient based on the actually measured elastic coefficient characteristic with respect to the temperature of the rubber part 26, the elastic coefficient of the rubber part 26 can be accurately estimated.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
ある識別情報を含む無線信号が送信されたときの各車輪の回転位置を複数回取得して各車輪の回転位置データとして蓄積し、各回転位置データのばらつき度合いに基づいて当該識別情報に対応する送信機の車輪位置を判定する。
Description
本発明は、タイヤ空気圧モニター装置に関する。
特許文献1には、各タイヤに傾斜センサを設けて車輪位置に対応する回転位置を傾斜角としてそれぞれ登録しておき、傾斜センサによって検出される傾斜角と、登録されている車輪位置と傾斜角との対応関係とに基づいて、タイヤに取り付けたタイヤ空気圧センサの送信機の車輪位置を判定する技術が開示されている。
しかしながら、上記従来技術にあっては、走行時の4輪の回転数が常に一致する場合には成立するが、実際は、特に旋回時の内外輪差や車輪のロックおよびスリップ等によって4輪の回転数には差が生じるため、送信機の車輪位置を精度良く判定できないという問題があった。
本発明の目的は、送信機の車輪位置を精度良く判定できるタイヤ空気圧モニター装置を提供することにある。
本発明の目的は、送信機の車輪位置を精度良く判定できるタイヤ空気圧モニター装置を提供することにある。
上述の目的を達成するため、本発明では、ある識別情報を含む無線信号が送信されたときの各車輪の回転位置を複数回取得して各車輪の回転位置データとして蓄積し、各回転位置データのばらつき度合いに基づいて当該識別情報に対応する送信機の車輪位置を判定する。
送信機が常に一定の回転位置で無線信号を送信している場合、そのタイミングで検出された各車輪の回転位置のうち当該送信機が装着された車輪の回転位置はほぼ一定の値を示すのに対し、他の回転位置はばらつきが生じる。よって、各車輪の回転位置データのばらつき度合いに基づいて当該送信機の車輪位置と判定することで、送信機の車輪位置を精度良く判定できる。
1 車輪
2 TPMSセンサ
2a 圧力センサ(タイヤ空気圧検出手段)
2b Gセンサ
2c センサCU
2d 送信機
2e ボタン電池
2f 温度センサ
2g 基板
3 受信機
4 TPMSCU
5 ディスプレイ
7 通信線
8 車輪速センサ
9 メモリ
11 第1制御部
11a 回転位置演算部(回転位置検出手段)
11b 分散演算部
11c 車輪位置判定部(車輪位置判定手段)
11d 回転位置補正部(回転位置補正手段)
12 第2制御部
12a 回転位置演算部(回転位置検出手段)
12b 分散演算部
12c 車輪位置判定部(車輪位置判定手段)
12d 回転位置補正部(回転位置補正手段)
15 車速センサ(車速検出手段)
20 空気バルブ
21 タイヤ
22 ホイルリム
23 バルブ孔
24 本体部
24a 中央部
24b 右側部
24c 左側部
25 ウェル
26 ゴム部(弾性体)
27 ケース
28 面
2 TPMSセンサ
2a 圧力センサ(タイヤ空気圧検出手段)
2b Gセンサ
2c センサCU
2d 送信機
2e ボタン電池
2f 温度センサ
2g 基板
3 受信機
4 TPMSCU
5 ディスプレイ
7 通信線
8 車輪速センサ
9 メモリ
11 第1制御部
11a 回転位置演算部(回転位置検出手段)
11b 分散演算部
11c 車輪位置判定部(車輪位置判定手段)
11d 回転位置補正部(回転位置補正手段)
12 第2制御部
12a 回転位置演算部(回転位置検出手段)
12b 分散演算部
12c 車輪位置判定部(車輪位置判定手段)
12d 回転位置補正部(回転位置補正手段)
15 車速センサ(車速検出手段)
20 空気バルブ
21 タイヤ
22 ホイルリム
23 バルブ孔
24 本体部
24a 中央部
24b 右側部
24c 左側部
25 ウェル
26 ゴム部(弾性体)
27 ケース
28 面
以下、本発明を実施するため形態を、図面に基づく実施例を用いて説明する。
〔実施例1〕
図1は、実施例1のタイヤ空気圧モニター装置の構成図である。図において、各符号の末尾のFLは左前輪、FRは右前輪、RLは左後輪、RRは右後輪に対応することを示す。以下の説明では、個別に説明する必要がない場合にはFL,FR,RL,RRの記載を省略する。
実施例1のタイヤ空気圧モニター装置は、TPMS(Tire Pressure Monitoring System)センサ2と、受信機3と、TPMSコントロールユニット(TPMSCU)4と、ディスプレイ5と、車輪速センサ8と、車速センサ(車速検出手段)15と、を備える。TPMSセンサ2は各車輪1に装着され、受信機3、TPMSCU4、ディスプレイ5、車輪速センサ8および車速センサ15は車体側に設けられている。
〔実施例1〕
図1は、実施例1のタイヤ空気圧モニター装置の構成図である。図において、各符号の末尾のFLは左前輪、FRは右前輪、RLは左後輪、RRは右後輪に対応することを示す。以下の説明では、個別に説明する必要がない場合にはFL,FR,RL,RRの記載を省略する。
実施例1のタイヤ空気圧モニター装置は、TPMS(Tire Pressure Monitoring System)センサ2と、受信機3と、TPMSコントロールユニット(TPMSCU)4と、ディスプレイ5と、車輪速センサ8と、車速センサ(車速検出手段)15と、を備える。TPMSセンサ2は各車輪1に装着され、受信機3、TPMSCU4、ディスプレイ5、車輪速センサ8および車速センサ15は車体側に設けられている。
図2は実施例1のTPMSセンサ2のタイヤ内での取り付け位置を示す断面図、図3は実施例1のTPMSセンサ2の構成を示す斜視図である。
TPMSセンサ2は、空気バルブ20と空気バルブ20の一端部に装着された本体部24とを有する。空気バルブ20は、外周を覆うゴム部(弾性体)26がホイルリム22のバルブ孔23に固定されるスナップイン方式の空気バルブである。本体部24は、空気バルブ20のタイヤ21内に位置する側の端部に装着されている。したがって、本体部24は、タイヤ21内においてホイルリム22のウェル25のタイヤ径方向外側に位置する。本体部24は、タイヤ21が回転してバルブ孔23が最上点にあるとき、地面に対して水平となるように取り付けられている。
本体部24は、樹脂製のケース27の内部に、基板2gとボタン電池2eが格納されている。本体部24は空気バルブ20の軸方向に対して垂直方向に延び、基板2gは本体部24の中央部24aから右側部24bにかけて配置され、ボタン電池2eは本体部24の左側部24cに配置されている。
基板2gには、圧力センサ(タイヤ空気圧検出手段)2a、加速度センサ(Gセンサ)2b、温度センサ2f、センサコントロールユニット(センサCU)2cおよび送信機2dが実装されている。
圧力センサ2aは、タイヤの空気圧[kPa]を検出する。
Gセンサ2bは、タイヤに作用する遠心方向加速度[G]を検出する。
温度センサ2fは、タイヤ内の温度[℃]を検出する。
センサCU2cは、ボタン電池2eからの電力により動作し、少なくとも圧力センサ2aにより検出されたタイヤの空気圧情報およびセンサID(識別情報)を含むTPMSデータを無線信号により送信機2dから送信する。実施例1では、センサIDを1~4とする。
ボタン電池2eは基板2gと比較して重量が大きいため、本体部24の長さ方向の重心点は、タイヤ回転軸とバルブ孔23とを含む面28よりもボタン電池2e寄りの位置となる。
TPMSセンサ2は、空気バルブ20と空気バルブ20の一端部に装着された本体部24とを有する。空気バルブ20は、外周を覆うゴム部(弾性体)26がホイルリム22のバルブ孔23に固定されるスナップイン方式の空気バルブである。本体部24は、空気バルブ20のタイヤ21内に位置する側の端部に装着されている。したがって、本体部24は、タイヤ21内においてホイルリム22のウェル25のタイヤ径方向外側に位置する。本体部24は、タイヤ21が回転してバルブ孔23が最上点にあるとき、地面に対して水平となるように取り付けられている。
本体部24は、樹脂製のケース27の内部に、基板2gとボタン電池2eが格納されている。本体部24は空気バルブ20の軸方向に対して垂直方向に延び、基板2gは本体部24の中央部24aから右側部24bにかけて配置され、ボタン電池2eは本体部24の左側部24cに配置されている。
基板2gには、圧力センサ(タイヤ空気圧検出手段)2a、加速度センサ(Gセンサ)2b、温度センサ2f、センサコントロールユニット(センサCU)2cおよび送信機2dが実装されている。
圧力センサ2aは、タイヤの空気圧[kPa]を検出する。
Gセンサ2bは、タイヤに作用する遠心方向加速度[G]を検出する。
温度センサ2fは、タイヤ内の温度[℃]を検出する。
センサCU2cは、ボタン電池2eからの電力により動作し、少なくとも圧力センサ2aにより検出されたタイヤの空気圧情報およびセンサID(識別情報)を含むTPMSデータを無線信号により送信機2dから送信する。実施例1では、センサIDを1~4とする。
ボタン電池2eは基板2gと比較して重量が大きいため、本体部24の長さ方向の重心点は、タイヤ回転軸とバルブ孔23とを含む面28よりもボタン電池2e寄りの位置となる。
センサCU2cは、Gセンサ2bにより検出された遠心方向加速度とあらかじめ設定された走行判定しきい値とを比較し、遠心方向加速度が走行判定しきい値未満の場合は車両停止と判定してTPMSデータの送信を停止する。一方、遠心方向加速度が走行判定しきい値以上の場合は車両が走行していると判定し、所定のタイミングでTPMSデータの送信を行う。また、センサCU2cは、遠心方向加速度が走行判定しきい値以上となったとき、無線信号の送信開始をTPMSCU4に知らせるモーションフラグのON信号を1回送信し、遠心方向加速度が走行判定しきい値を下回ったとき、無線信号の送信終了をTPMSCU4に知らせるモーションフラグのOFF信号を1回送信する。
受信機3は、各TPMSセンサ2から出力された無線信号を受信してデコードし、TPMSCU4へ出力する。
受信機3は、各TPMSセンサ2から出力された無線信号を受信してデコードし、TPMSCU4へ出力する。
TPMSCU4は、各TPMSデータを読み込み、TPMSデータのセンサIDから、不揮発性のメモリ9(図4参照)に記憶した各センサIDと各車輪位置との対応関係を参照して当該TPMSデータがどの車輪位置に対応するものであるのかを判定し、当該TPMSデータに含まれるタイヤの空気圧を対応する車輪位置の空気圧としてディスプレイ5に表示する。また、タイヤの空気圧が下限値を下回った場合には、表示色変更、点滅表示や警告音などによりドライバに空気圧の低下を知らせる。
ABSCU6は、各車輪速センサ8からの車輪速パルスに基づいて、各車輪1の車輪速を検出し、ある車輪がロック傾向にある場合、図外のABSアクチュエータを作動させて当該車輪のホイルシリンダ圧を増減または保持してロック傾向を抑制するアンチスキッドブレーキ制御を実施する。ABSCU6は、所定周期(例えば、20msec)で車輪速パルスのカウント値をCAN通信線7に出力している。
各車輪速センサ8は、車輪1の1回転について所定数z(例えば、z=48)の車輪速パルスを発生するパルス発生器であり、車輪1と同期して回転する歯車状のロータと、車体側であってロータの外周に対向配置された永久磁石およびコイルとから構成される。ロータが回転すると、ロータの凹凸面が車輪速センサ8の周りに形成された磁界を横切ることによりその磁束密度が変化してコイルに起電力が生じ、この電圧変化を車輪速パルス信号としてABSCU6に出力する。
各車輪速センサ8は、車輪1の1回転について所定数z(例えば、z=48)の車輪速パルスを発生するパルス発生器であり、車輪1と同期して回転する歯車状のロータと、車体側であってロータの外周に対向配置された永久磁石およびコイルとから構成される。ロータが回転すると、ロータの凹凸面が車輪速センサ8の周りに形成された磁界を横切ることによりその磁束密度が変化してコイルに起電力が生じ、この電圧変化を車輪速パルス信号としてABSCU6に出力する。
上記のように、TPMSCU4は、メモリ9に記憶した各センサIDと各車輪位置との対応関係に基づいて、受信したTPMSデータがどの車輪のデータであるのかを判定しているため、車両停止中にタイヤローテーションが行われた場合、メモリ9に記憶された各センサIDと各車輪位置との対応関係が実際の対応関係と合致せず、TPMSデータがどの車輪のデータであるのかがわからなくなる。ここで、「タイヤローテーション」とは、タイヤのトレッド摩耗を均一にし、寿命(トレッドライフ)を延ばすため、タイヤの装着位置を変えることをいう。例えば、乗用車では、一般的に、左右のタイヤ位置をクロスして前後輪を入れ替える。
そこで、実施例1では、タイヤローテーション後の各センサIDと各車輪位置との対応関係をメモリ9への記憶更新により登録するために、タイヤローテーションが行われた可能性がある場合、各TPMSセンサ2側ではTPMSデータの送信周期を変更し、TPMSCU4側ではTPMSデータの送信周期と各車輪速パルスに基づいて各TPMSセンサ2がどの車輪のものであるのかを判定する。
そこで、実施例1では、タイヤローテーション後の各センサIDと各車輪位置との対応関係をメモリ9への記憶更新により登録するために、タイヤローテーションが行われた可能性がある場合、各TPMSセンサ2側ではTPMSデータの送信周期を変更し、TPMSCU4側ではTPMSデータの送信周期と各車輪速パルスに基づいて各TPMSセンサ2がどの車輪のものであるのかを判定する。
[定位置送信モード]
TPMSセンサ2のセンサCU2cは、走行開始直前の車両停止判定時間が所定時間(例えば、15分)以上である場合、タイヤローテーションが行われた可能性があると判断する。
センサCU2cは、走行開始直前の車両停止判定時間が所定時間未満である場合、一定間隔(例えば、1分間隔)でTPMSデータを送信する「通常モード」を実施する。一方、車両停止判定時間が所定時間以上である場合、通常モードの送信間隔よりも短い間隔(例えば、約16秒間隔)であって、一定の回転位置でTPMSデータを送信する「定位置送信モード」を実施する。
TPMSセンサ2のセンサCU2cは、走行開始直前の車両停止判定時間が所定時間(例えば、15分)以上である場合、タイヤローテーションが行われた可能性があると判断する。
センサCU2cは、走行開始直前の車両停止判定時間が所定時間未満である場合、一定間隔(例えば、1分間隔)でTPMSデータを送信する「通常モード」を実施する。一方、車両停止判定時間が所定時間以上である場合、通常モードの送信間隔よりも短い間隔(例えば、約16秒間隔)であって、一定の回転位置でTPMSデータを送信する「定位置送信モード」を実施する。
定位置送信モードは、TPMSデータの送信回数が所定数(例えば、40回)に達するまで実施し、送信回数が所定数に達した場合、通常モードへ移行する。TPMSデータの送信回数が所定数に達する前に車両停止と判定した場合、車両停止判定時間が所定時間(15分)未満であるときは送信回数が所定数に達するまで車両停止前の定位置送信モードを継続し、車両停止判定時間が所定時間以上であるときは車両停止前の定位置送信モードの継続をキャンセルして新たに定位置送信モードを開始する。
センサCU2cは、定位置送信モード中、Gセンサ2bにより検出された遠心方向加速度の重力加速度依存成分に基づいて、定位置送信モードにおけるTPMSデータの送信タイミングを決定する。TPMSセンサ2に作用する遠心方向加速度は、車輪1の加減速によって変化するが、その重力加速度依存成分は常に一定であり、最上点で+1[G]、最下点で-1[G]、最上点および最下点に対し90度の位置で0[G]となる波形を示す。すなわち、遠心方向加速度の重力加速度成分の大きさ、方向をモニターすることで、TPMSセンサ2の回転位置を把握できる。よって、例えば、重力加速度依存成分のピークでTPMSデータを出力することで、常に最上点でTPMSデータを出力できる。
[オートラーニングモード]
TPMSCU4は、イグニッションスイッチのOFFからONまでの経過時間が所定時間(例えば、15分)以上である場合、タイヤローテーションが行われた可能性があると判断する。
TPMSCU4は、イグニッションスイッチのOFFからONまでの経過時間が所定時間未満である場合、各TPMSセンサ2から送信されたTPMSデータの空気圧情報に基づいて各車輪1のタイヤの空気圧を監視する「モニターモード」を実施する。一方、イグニッションスイッチのOFFからONまでの経過時間が所定時間以上である場合、各TPMSセンサ2の車輪位置を判定する「オートラーニングモード」を実施する。オートラーニングモードは、すべてのTPMSセンサ2の車輪位置を判定するまで、またはオートラーニングモードの開始から所定の累積走行時間(例えば、8分)が経過するまで実施し、すべてのTPMSセンサ2の車輪位置を判定した場合、または、所定の累積走行時間が経過した場合、モニターモードへ移行する。
TPMSCU4は、イグニッションスイッチのOFFからONまでの経過時間が所定時間(例えば、15分)以上である場合、タイヤローテーションが行われた可能性があると判断する。
TPMSCU4は、イグニッションスイッチのOFFからONまでの経過時間が所定時間未満である場合、各TPMSセンサ2から送信されたTPMSデータの空気圧情報に基づいて各車輪1のタイヤの空気圧を監視する「モニターモード」を実施する。一方、イグニッションスイッチのOFFからONまでの経過時間が所定時間以上である場合、各TPMSセンサ2の車輪位置を判定する「オートラーニングモード」を実施する。オートラーニングモードは、すべてのTPMSセンサ2の車輪位置を判定するまで、またはオートラーニングモードの開始から所定の累積走行時間(例えば、8分)が経過するまで実施し、すべてのTPMSセンサ2の車輪位置を判定した場合、または、所定の累積走行時間が経過した場合、モニターモードへ移行する。
なお、オートラーニングモード中であっても、TPMSデータに含まれる空気圧情報からタイヤの空気圧の監視は可能であるため、オートラーニングモード中は現在メモリ9に記憶されている各センサIDと各車輪位置との対応関係に基づいて空気圧の表示、空気圧低下の警告を行う。
TPMSCU4は、オートラーニングモード中、ABSコントロールユニット(ABSCU)6からCAN通信線7を介して車輪速パルスのカウント値を入力し、以下に示すような車輪位置判定制御を実施する。
TPMSCU4は、オートラーニングモード中、ABSコントロールユニット(ABSCU)6からCAN通信線7を介して車輪速パルスのカウント値を入力し、以下に示すような車輪位置判定制御を実施する。
[車輪位置判定制御]
図4は、実施例1の車輪位置判定制御を実施するためのTPMSCU4の制御ブロック図であり、
TPMSCU4は、第1車輪位置判定制御を実行する第1制御部11と、第2車輪位置判定制御を実行する第2制御部12と、を備える。
[第1制御部]
第1制御部11は、回転位置演算部(回転位置検出手段)11aと、回転位置補正部(回転位置補正手段)11dと、分散演算部11bと、車輪位置判定部(車輪位置判定手段)11cとを備える。
回転位置演算部11aは、受信機3から出力されたデコード後のTPMSデータと、ABSCU6からCAN通信線7に出力された各車輪速パルスのカウント値を入力し、各TPMSセンサ2の回転位置が最上点となったときの各車輪1の回転位置(ロータの歯数)を演算する。ここで、「ロータの歯数」とは、車輪速センサ8がロータのどの歯をカウントしているかを示すもので、車輪速パルスのカウント値をタイヤ1回転分のカウント値(=1回転分の歯数z=48)で除算して求めることができる。回転位置演算部11aは、オートラーニングモードを開始してから1回目の各車輪速パルスのカウント値を入力したとき、カウント値を1回転分の歯数で除算した余りに1を加算した値を基準歯数とし、2回目以降は基準歯数からの車輪速パルスのカウント数(現在のカウント値-1回目のカウント値)に基づいて歯数を決定する。
図4は、実施例1の車輪位置判定制御を実施するためのTPMSCU4の制御ブロック図であり、
TPMSCU4は、第1車輪位置判定制御を実行する第1制御部11と、第2車輪位置判定制御を実行する第2制御部12と、を備える。
[第1制御部]
第1制御部11は、回転位置演算部(回転位置検出手段)11aと、回転位置補正部(回転位置補正手段)11dと、分散演算部11bと、車輪位置判定部(車輪位置判定手段)11cとを備える。
回転位置演算部11aは、受信機3から出力されたデコード後のTPMSデータと、ABSCU6からCAN通信線7に出力された各車輪速パルスのカウント値を入力し、各TPMSセンサ2の回転位置が最上点となったときの各車輪1の回転位置(ロータの歯数)を演算する。ここで、「ロータの歯数」とは、車輪速センサ8がロータのどの歯をカウントしているかを示すもので、車輪速パルスのカウント値をタイヤ1回転分のカウント値(=1回転分の歯数z=48)で除算して求めることができる。回転位置演算部11aは、オートラーニングモードを開始してから1回目の各車輪速パルスのカウント値を入力したとき、カウント値を1回転分の歯数で除算した余りに1を加算した値を基準歯数とし、2回目以降は基準歯数からの車輪速パルスのカウント数(現在のカウント値-1回目のカウント値)に基づいて歯数を決定する。
図5は、各車輪1の回転位置算出方法を示す図である。
図5において、車輪速パルスのカウント値を入力した時刻をt1、TPMSセンサ2の回転位置が最上点となったときの時刻をt2、TPMSセンサ2が実際にTPMSデータの送信を開始した時刻をt3、TPMSCU4がTPMSデータの受信を完了した時刻をt4、車輪速パルスのカウント値を入力した時刻をt5とする。このとき、t1,t4,t5は実際に測定でき、t3はt4からTPMSデータのデータ長(規定値であり、例えば、約10msec)を減算して算出でき、t2はt3から送信時のタイムラグ(あらかじめ実験等により求めることができる。)を減算して算出できる。
よって、t1の歯数をzt1、t2の歯数をzt2、t5の歯数をzt5とすると、
(t2 - t1) / (t5 - t1) = (zt2 - zt1) / (zt5 - zt1)
が成立し、
zt2 - zt1 = (zt5 - zt1) * (t2 - t1) / (t5 - t1)
であるから、TPMSセンサ2の回転位置が最上点となった時刻t2の歯数zt2は、
zt2 = zt1 + (zt5 - zt1) * (t2 - t1) / (t5 - t1)
となる。
図5において、車輪速パルスのカウント値を入力した時刻をt1、TPMSセンサ2の回転位置が最上点となったときの時刻をt2、TPMSセンサ2が実際にTPMSデータの送信を開始した時刻をt3、TPMSCU4がTPMSデータの受信を完了した時刻をt4、車輪速パルスのカウント値を入力した時刻をt5とする。このとき、t1,t4,t5は実際に測定でき、t3はt4からTPMSデータのデータ長(規定値であり、例えば、約10msec)を減算して算出でき、t2はt3から送信時のタイムラグ(あらかじめ実験等により求めることができる。)を減算して算出できる。
よって、t1の歯数をzt1、t2の歯数をzt2、t5の歯数をzt5とすると、
(t2 - t1) / (t5 - t1) = (zt2 - zt1) / (zt5 - zt1)
が成立し、
zt2 - zt1 = (zt5 - zt1) * (t2 - t1) / (t5 - t1)
であるから、TPMSセンサ2の回転位置が最上点となった時刻t2の歯数zt2は、
zt2 = zt1 + (zt5 - zt1) * (t2 - t1) / (t5 - t1)
となる。
回転位置補正部11dは、車速センサ15により検出された車速を入力し、車速に応じて図6のマップから補正歯数Δz(≧0)を求め、補正歯数Δzにより回転位置演算部11aで演算された各車輪1の回転位置(歯数zt2)を補正する。ここで、補正歯数Δzを求めるときの車速は、時刻t4において検出された車速から時刻t2における車速を推定するのが理想であるが、時刻t2-t4間は非常に短く、余程加減速を行なっていない限り車速はほとんど変化していないと考えられるため、時刻t4において検出された車速を時刻t2における車速とみなしても良い。
図6は、車速に応じた補正歯数演算マップであり、図6に示すように、補正歯数Δzは、車速が高くなるほど大きくなる特性を有する。また、車速が所定車速(60[km/h])を超える車速域では、所定車速以下の車速域よりも車速変化に対する補正歯数の変化量が大きい。補正歯数Δzは、車速を徐々に高めながら走行したときに実際に計測された、あるセンサIDに対応する送信機2dと同じ車輪位置の回転位置データの車速に対する変化特性に基づいて設定されている。
回転位置補正部11dは、回転位置演算部11aで演算された歯数zt2に対し、補正歯数Δzを加算した第1補正後回転位置zt2+Δzと補正歯数Δzを減算した第2補正後回転位置zt2-Δzとをそれぞれ演算して補正後の回転位置とする。
図6は、車速に応じた補正歯数演算マップであり、図6に示すように、補正歯数Δzは、車速が高くなるほど大きくなる特性を有する。また、車速が所定車速(60[km/h])を超える車速域では、所定車速以下の車速域よりも車速変化に対する補正歯数の変化量が大きい。補正歯数Δzは、車速を徐々に高めながら走行したときに実際に計測された、あるセンサIDに対応する送信機2dと同じ車輪位置の回転位置データの車速に対する変化特性に基づいて設定されている。
回転位置補正部11dは、回転位置演算部11aで演算された歯数zt2に対し、補正歯数Δzを加算した第1補正後回転位置zt2+Δzと補正歯数Δzを減算した第2補正後回転位置zt2-Δzとをそれぞれ演算して補正後の回転位置とする。
分散演算部11bは、回転位置補正部11dで補正された各車輪1の回転位置をセンサID毎にそれぞれ蓄積して回転位置データとし、センサID毎の各回転位置データのばらつき度合いを分散特性値として演算する。1つの車輪について回転位置補正部11dによる補正後の回転位置は2個(第1補正後回転位置、第2補正後回転位置)あるため、分散特性値は同一センサID毎に8個演算する。分散特性値の演算は、回転位置演算部11aにより同一センサIDの回転位置が算出される都度実施する。
図7は、分散特性値の算出方法を示す図であり、実施例1では、2次元平面上に原点(0,0)を中心とした単位円(半径が1の円)を考え、各車輪1の回転位置θ[deg](= 360 × ロータの歯数 / 48)を、単位円の円周上の座標(cosθ,sinθ)に変換する。つまり、各車輪1の回転位置を、原点(0,0)を始点、座標(cosθ,sinθ)を終点とする長さ1のベクトルとみて、同じ回転位置データの各ベクトルの平均ベクトル(ave_cosθ,ave_sinθ)を求め、平均ベクトルのスカラー量を回転位置データの分散特性値Xとして算出する。
(cosθ,sinθ) = (cos((zt2+1)*2π/48),sin((zt2+1)*2π/48))
よって、同一センサIDのTPMSデータの受信回数をn(nは正の整数)とすると、平均ベクトル(ave_cosθ,ave_sinθ)は、
(ave_cosθ,ave_sinθ) = ((Σ(cosθ))/n,(Σ(sinθ))/n)
となり、分散特性値Xは、
X = ave_cosθ2 + ave_sinθ2
で表すことができる。
図7は、分散特性値の算出方法を示す図であり、実施例1では、2次元平面上に原点(0,0)を中心とした単位円(半径が1の円)を考え、各車輪1の回転位置θ[deg](= 360 × ロータの歯数 / 48)を、単位円の円周上の座標(cosθ,sinθ)に変換する。つまり、各車輪1の回転位置を、原点(0,0)を始点、座標(cosθ,sinθ)を終点とする長さ1のベクトルとみて、同じ回転位置データの各ベクトルの平均ベクトル(ave_cosθ,ave_sinθ)を求め、平均ベクトルのスカラー量を回転位置データの分散特性値Xとして算出する。
(cosθ,sinθ) = (cos((zt2+1)*2π/48),sin((zt2+1)*2π/48))
よって、同一センサIDのTPMSデータの受信回数をn(nは正の整数)とすると、平均ベクトル(ave_cosθ,ave_sinθ)は、
(ave_cosθ,ave_sinθ) = ((Σ(cosθ))/n,(Σ(sinθ))/n)
となり、分散特性値Xは、
X = ave_cosθ2 + ave_sinθ2
で表すことができる。
車輪位置判定部11cは、分散演算部11bで演算された同一センサIDの各回転位置データの分散特性値Xを比較し、分散特性値Xの最高値が第1しきい値(例えば、0.57)よりも大きく、かつ、残り3つの分散特性値Xの値がすべて第2しきい値(例えば、0.37)未満となった場合、最高値の分散特性値Xと対応する回転位置データの車輪位置、すなわち、当該回転位置データを検出した車輪速センサ8の車輪位置を、当該回転位置データのセンサIDと対応するTPMSセンサ2の車輪位置と判定する。この判定をすべてのセンサIDで実施することで、各センサIDと各車輪位置との対応関係を判定する。
[第2制御部]
第2制御部12は、回転位置演算部(回転位置検出手段)12aと、回転位置補正部(回転位置補正手段)12dと、分散演算部12bと、車輪位置判定部(車輪位置判定手段)12cとを備え、後述する第2車輪位置判定制御を実行する。以下、第1制御部11の回転位置演算部11a、回転位置補正部11d、分散演算部11b、車輪位置判定部11cと異なる部分についてのみ説明する。
回転位置演算部12aは、モーションフラグのON信号を受信してからOFF信号を受信するまでの期間を1トリップと定義したとき、1トリップの開始から終了までの期間に受信機3から出力されたデコード後のTPMSデータと、ABSCU6からCAN通信線7に出力された各車輪速パルスのカウント値を入力し、各TPMSセンサ2の回転位置が最上点となったときの各車輪1の回転位置(ロータの歯数)を演算する。回転位置演算部12aは、1トリップが開始してから1回目の各車輪速パルスのカウント値を入力したとき、カウント値を1回転分の歯数で除算した余りに1を加算した値を基準歯数とし、2回目以降は基準歯数からの車輪速パルスのカウント数(現在のカウント値-1回目のカウント値)に基づいて歯数を決定する。つまり、基準歯数は、1トリップが開始される都度更新される。
第2制御部12は、回転位置演算部(回転位置検出手段)12aと、回転位置補正部(回転位置補正手段)12dと、分散演算部12bと、車輪位置判定部(車輪位置判定手段)12cとを備え、後述する第2車輪位置判定制御を実行する。以下、第1制御部11の回転位置演算部11a、回転位置補正部11d、分散演算部11b、車輪位置判定部11cと異なる部分についてのみ説明する。
回転位置演算部12aは、モーションフラグのON信号を受信してからOFF信号を受信するまでの期間を1トリップと定義したとき、1トリップの開始から終了までの期間に受信機3から出力されたデコード後のTPMSデータと、ABSCU6からCAN通信線7に出力された各車輪速パルスのカウント値を入力し、各TPMSセンサ2の回転位置が最上点となったときの各車輪1の回転位置(ロータの歯数)を演算する。回転位置演算部12aは、1トリップが開始してから1回目の各車輪速パルスのカウント値を入力したとき、カウント値を1回転分の歯数で除算した余りに1を加算した値を基準歯数とし、2回目以降は基準歯数からの車輪速パルスのカウント数(現在のカウント値-1回目のカウント値)に基づいて歯数を決定する。つまり、基準歯数は、1トリップが開始される都度更新される。
分散演算部12bは、回転位置補正部12dで補正された各車輪1の回転位置をセンサID毎にそれぞれ蓄積して回転位置データとし、センサID毎の各回転位置データのばらつき度合いを分散特性値(期間別分散特性値)Xtrpmとして演算する。1つの車輪について回転位置補正部12dによる補正後の回転位置は2個(第1補正後回転位置、第2補正後回転位置)あるため、分散特性値は同一センサID毎に8個演算する。分散特性値Xtrpmは、1トリップ毎に算出する。1トリップの途中で所定の累積走行時間が経過した場合には、その時点を1トリップの終了時点とする。なお、1トリップ内でTPMSデータの受信回数が所定値(例えば、3回)未満である場合は、分散特性値を演算しない。
分散演算部12bは、所定の累積走行時間が経過した場合、1トリップ毎に算出した分散特性値Xtrp1,Xtrp2,…,Xtrpmに基づいて、最終的な分散特性値(トータル分散特性値)Xを算出する。最終的な分散特性値Xは、各分散特性値Xtrp1,Xtrp2,…,Xtrpmに重み付け係数K1,K2,…,Km(K1 + K2 +,…, + Km = 1)を乗算した値を加算して求める。
X = K1 × Xtrp1 + K2 × Xtrp2+ ,…,Km × Xtrpm
各重み付け係数K1,K2,…,Kmは、1トリップ内のTPMSデータの受信回数N1,N2,…,Nnを、所定の累積走行時間内のTPMSデータの受信回数Nで除した値Nn/Nとする。すなわち、重み付け係数Kmは、総受信回数Nに対する受信回数Nnの割合であり、受信回数Nnが大きいほど大きな値となる。なお、受信回数が3回未満で分散特性値Xtrpmを演算しなかったトリップ中のTPMSデータはNから除外(減算)する。
X = K1 × Xtrp1 + K2 × Xtrp2+ ,…,Km × Xtrpm
各重み付け係数K1,K2,…,Kmは、1トリップ内のTPMSデータの受信回数N1,N2,…,Nnを、所定の累積走行時間内のTPMSデータの受信回数Nで除した値Nn/Nとする。すなわち、重み付け係数Kmは、総受信回数Nに対する受信回数Nnの割合であり、受信回数Nnが大きいほど大きな値となる。なお、受信回数が3回未満で分散特性値Xtrpmを演算しなかったトリップ中のTPMSデータはNから除外(減算)する。
車輪位置判定部12cは、分散演算部12bで演算された同一センサIDの各回転位置データの最終的な分散特性値Xを比較し、最高値が1つである場合、当該最高値の分散特性値Xtrpmと対応する回転位置データの車輪位置、すなわち、当該回転位置データを検出した車輪速センサ8の車輪位置を、当該回転位置データのセンサIDと対応するTPMSセンサ2の車輪位置と判定する。この判定をすべてのセンサIDで実施することで、各センサIDと各車輪位置との対応関係を判定する。
TPMSCU4は、第1制御部11で判定したセンサIDと車輪位置との対応関係をメモリ9への記憶更新により登録し、各センサIDと各車輪位置との対応関係のうち、第1制御部11で判定できないものがあれば、第2制御部12の判定結果をメモリ9への記憶更新により登録する。
TPMSCU4は、第1制御部11で判定したセンサIDと車輪位置との対応関係をメモリ9への記憶更新により登録し、各センサIDと各車輪位置との対応関係のうち、第1制御部11で判定できないものがあれば、第2制御部12の判定結果をメモリ9への記憶更新により登録する。
[第1車輪位置判定制御処理]
図8は、第1制御部11による第1車輪位置判定制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。なお、以下の説明では、センサID=1の場合について説明するが、他のID(ID=2,3,4)についても並列して車輪位置判定制御処理を行う。
ステップS1では、回転位置演算部11aにおいて、センサID=1のTPMSデータを受信する。
ステップS2では、回転位置演算部11aにおいて、各車輪1の回転位置を演算する。
ステップS3では、回転位置補正部11dにおいて、車速に応じて各車輪1の回転位置データを補正し、2つの補正後回転位置を演算する。
図8は、第1制御部11による第1車輪位置判定制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。なお、以下の説明では、センサID=1の場合について説明するが、他のID(ID=2,3,4)についても並列して車輪位置判定制御処理を行う。
ステップS1では、回転位置演算部11aにおいて、センサID=1のTPMSデータを受信する。
ステップS2では、回転位置演算部11aにおいて、各車輪1の回転位置を演算する。
ステップS3では、回転位置補正部11dにおいて、車速に応じて各車輪1の回転位置データを補正し、2つの補正後回転位置を演算する。
ステップS4では、分散演算部11bにおいて、各車輪1の回転位置データの分散特性値Xを演算する。
ステップS5では、車輪位置判定部11cにおいて、センサID=1のTPMSデータを所定数(例えば、10回)以上受信したか否かを判定し、YESの場合にはステップS6へ進み、NOの場合にはステップS1へ戻る。
ステップS6では、車輪位置判定部11cにおいて、分散特性値の最高値が第1しきい値0.57よりも大きく、かつ、残りの分散特性値の値が第2しきい値0.37未満であるか否かを判定し、YESの場合にはステップS7へ進み、NOの場合にはステップS8へ進む。
ステップS5では、車輪位置判定部11cにおいて、センサID=1のTPMSデータを所定数(例えば、10回)以上受信したか否かを判定し、YESの場合にはステップS6へ進み、NOの場合にはステップS1へ戻る。
ステップS6では、車輪位置判定部11cにおいて、分散特性値の最高値が第1しきい値0.57よりも大きく、かつ、残りの分散特性値の値が第2しきい値0.37未満であるか否かを判定し、YESの場合にはステップS7へ進み、NOの場合にはステップS8へ進む。
ステップS7では、車輪位置判定部11cにおいて、最高値の分散特性値と対応する回転位置データの車輪位置を、当該センサIDの車輪位置と判定し、本制御を終了する。
ステップS8では、車輪位置判定部11cにおいて、オートラーニングモードを開始してから所定の累積走行時間(例えば、8分)が経過したか否かを判定し、YESの場合には本制御を終了し、NOの場合にはステップS1へ戻る。
ステップS8では、車輪位置判定部11cにおいて、オートラーニングモードを開始してから所定の累積走行時間(例えば、8分)が経過したか否かを判定し、YESの場合には本制御を終了し、NOの場合にはステップS1へ戻る。
[第2車輪位置判定制御処理]
図9は、第2制御部12による第2車輪位置判定制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。なお、以下の説明では、センサID=1の場合について説明するが、他のID(ID=2,3,4)についても並列して車輪位置判定制御処理を行う。
ステップS11では、回転位置演算部12aにおいて、センサID=1のTPMSデータを受信する。
ステップS12では、回転位置演算部12aにおいて、各車輪1の回転位置を演算する。
ステップS13では、回転位置補正部12dにおいて、車速に応じて各車輪1の回転位置データを補正し、2つの補正後回転位置を演算する。
図9は、第2制御部12による第2車輪位置判定制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。なお、以下の説明では、センサID=1の場合について説明するが、他のID(ID=2,3,4)についても並列して車輪位置判定制御処理を行う。
ステップS11では、回転位置演算部12aにおいて、センサID=1のTPMSデータを受信する。
ステップS12では、回転位置演算部12aにおいて、各車輪1の回転位置を演算する。
ステップS13では、回転位置補正部12dにおいて、車速に応じて各車輪1の回転位置データを補正し、2つの補正後回転位置を演算する。
ステップS14では、分散演算部12bにおいて、各車輪1の回転位置データの1トリップの分散特性値Xtrpmを演算する。
ステップS15では、分散演算部12bにおいて、オートラーニングモードを開始してから所定の累積走行時間(例えば、8分)が経過したか否かを判定し、YESの場合にはステップS16へ進み、NOの場合にはステップS1へ戻る。
ステップS16では、分散演算部12bにおいて、最終的な分散特性値Xを演算する。
ステップS17では、車輪位置判定部12cにおいて、分散特性値の最高値が1つであるか否かを判定し、YESの場合にはステップS18へ進み、NOの場合には本制御を終了する。本制御の終了により、オートラーニングモードは終了する。
ステップS18では、車輪位置判定部12cにおいて、最高値の分散特性値と対応する回転位置データの車輪位置を、当該センサIDの車輪位置と判定し、本制御を終了する。
ステップS15では、分散演算部12bにおいて、オートラーニングモードを開始してから所定の累積走行時間(例えば、8分)が経過したか否かを判定し、YESの場合にはステップS16へ進み、NOの場合にはステップS1へ戻る。
ステップS16では、分散演算部12bにおいて、最終的な分散特性値Xを演算する。
ステップS17では、車輪位置判定部12cにおいて、分散特性値の最高値が1つであるか否かを判定し、YESの場合にはステップS18へ進み、NOの場合には本制御を終了する。本制御の終了により、オートラーニングモードは終了する。
ステップS18では、車輪位置判定部12cにおいて、最高値の分散特性値と対応する回転位置データの車輪位置を、当該センサIDの車輪位置と判定し、本制御を終了する。
次に、作用を説明する。
[回転位置データのばらつき度合いによる車輪位置判定作用]
各TPMSセンサ2は、走行開始直前の車両停止判定時間が15分以上である場合、タイヤローテーションが行われた可能性があると判定し、通常モードから定位置送信モードへ移行する。定位置送信モードにおいて、各TPMSセンサ2は、前回の送信時刻から16秒経過し、かつ、自身の回転位置が最上点となったときにTPMSデータを送信する。
一方、TPMSCU4は、イグニッションスイッチのOFFからONまでの経過時間が15分以上である場合、モニターモードからオートラーニングモードへ移行する。オートラーニングモードにおいて、TPMSCU4は、車輪位置判定制御として、第1制御部11による第1車輪位置判定制御と第2制御部12による第2車輪位置判定制御とを並列して実施する。
[回転位置データのばらつき度合いによる車輪位置判定作用]
各TPMSセンサ2は、走行開始直前の車両停止判定時間が15分以上である場合、タイヤローテーションが行われた可能性があると判定し、通常モードから定位置送信モードへ移行する。定位置送信モードにおいて、各TPMSセンサ2は、前回の送信時刻から16秒経過し、かつ、自身の回転位置が最上点となったときにTPMSデータを送信する。
一方、TPMSCU4は、イグニッションスイッチのOFFからONまでの経過時間が15分以上である場合、モニターモードからオートラーニングモードへ移行する。オートラーニングモードにおいて、TPMSCU4は、車輪位置判定制御として、第1制御部11による第1車輪位置判定制御と第2制御部12による第2車輪位置判定制御とを並列して実施する。
第1車輪位置判定制御では、各TPMSセンサ2からTPMSデータを受信する都度、車輪速パルスのカウント値の入力時刻、当該TPMSデータの受信完了時刻等から、当該TPMSセンサ2の回転位置が最上点となったときの各車輪1の回転位置(ロータの歯数)を演算し、同一センサIDのTPMSデータを10回以上受信した場合、当該センサIDの各回転位置データの分散特性値Xを比較し、分散特性値Xの最高値が第1しきい値0.57よりも大きく、かつ、残り3つの分散特性値Xの値がいずれも第2しきい値0.37未満となった場合、最高値の分散特性値Xと対応する回転位置データの車輪位置を当該センサIDの車輪位置と判定する。
第2車輪位置判定制御では、各車輪1が同一方向に回転している場合、各TPMSセンサ2からTPMSデータを受信する都度、車輪速パルスのカウント値の入力時刻、当該TPMSデータの受信完了時刻等から、当該TPMSセンサ2の回転位置が最上点となったときの各車輪1の回転位置(ロータの歯数)を演算して1トリップの各回転位置データのばらつき度合いを求め、これを所定の累積走行時間(8分間)継続して得られた各トリップの各ばらつき度合い(分散特性値Xtrp1,Xtrp2,…,Xtrpm)からTPMSデータの受信回数Nnによる重み付け処理を行って各車輪の最終的なばらつき度合い(分散特性値X)を演算し、これらのうち最もばらつき度合いが小さな回転位置データに対応する車輪位置を当該TPMSセンサ2の車輪位置と判定する。
車両の走行時、各車輪1の回転数は、旋回時の内外輪差、車輪1のロックおよびスリップ、タイヤの空気圧差によって差が生じる。なお、直進走行中であっても、ドライバによる微少な修正舵や左右路面状態の違い等により、前後輪1FL,1FR間および左右輪1RL,1RR間に回転数差が生じることがわかっている。つまり、各車輪1の回転数は、走行に応じて差が生じるのに対し、TPMSセンサ2と車輪速センサ8(のロータの歯)は一体に回転するため、あるTPMSセンサ2の出力周期に対し、同一輪の車輪速センサ8の出力周期は、走行距離や走行状態にかかわらず常に同期(一致)する。
よって、TPMSデータの送信周期に対する各車輪1の回転位置データのばらつき度合いを見ることで、各TPMSセンサ2の車輪位置を精度良く判定できる。
図10は、左前輪1FLのTPMSセンサ2FLの回転位置が最上点となったときの各車輪1FL,1FR,1RL,1RRの回転位置(ロータの歯数)とTPMSデータの受信回数との関係を示す図であり、(a)は左前輪1FLの車輪速センサ8FL、(b)は右前輪1FRの車輪速センサ8FR、(c)は左後輪1RLの車輪速センサ8RL、(d)は右後輪1RRの車輪速センサ8RRに対応する。
図10から明らかなように、他輪(右前輪1FR,左後輪1RL,右後輪1RR)の車輪速センサ8FR,8RL,8RRから得られた車輪位置(歯数)はばらつき度合いが大きいのに対し、自輪(左前輪1FL)の車輪速センサ8FLから得られた車輪位置はばらつき度合いが最小となり、TPMSセンサ2FLの出力周期と車輪速センサ8FLの出力周期とがほぼ同期している。
図10は、左前輪1FLのTPMSセンサ2FLの回転位置が最上点となったときの各車輪1FL,1FR,1RL,1RRの回転位置(ロータの歯数)とTPMSデータの受信回数との関係を示す図であり、(a)は左前輪1FLの車輪速センサ8FL、(b)は右前輪1FRの車輪速センサ8FR、(c)は左後輪1RLの車輪速センサ8RL、(d)は右後輪1RRの車輪速センサ8RRに対応する。
図10から明らかなように、他輪(右前輪1FR,左後輪1RL,右後輪1RR)の車輪速センサ8FR,8RL,8RRから得られた車輪位置(歯数)はばらつき度合いが大きいのに対し、自輪(左前輪1FL)の車輪速センサ8FLから得られた車輪位置はばらつき度合いが最小となり、TPMSセンサ2FLの出力周期と車輪速センサ8FLの出力周期とがほぼ同期している。
従来のタイヤ空気圧モニター装置のうち、各TPMSセンサに傾斜センサを設け、各TPMSセンサの車輪位置と傾斜角との関係を用いて各TPMSセンサの車輪位置を判定するものは、走行に応じて4輪の回転数差が生じることで、各TPMSセンサの車輪位置と傾斜角との対応関係が変化するため、各TPMSセンサの車輪位置を精度良く判定できない。
また、従来のタイヤ空気圧モニター装置のうち、受信機をTPMSセンサと同数設けて各受信機と近接配置し、受信した無線信号の電波強度に基づいて各TPMSセンサの車輪位置を判定するものは、センサ出力、受信機感度ばらつき、ハーネスアンテナ効果を考慮した受信機のレイアウトが必要となり、受信環境やレイアウトによって性能が左右されてしまう。また、4つの受信機が必要であるため、コストが高くなる。
これに対し、実施例1のタイヤ空気圧モニター装置では、電波強度を用いることなく各TPMSセンサ2の車輪位置を判別できるため、受信環境やレイアウトに依らず各TPMSセンサ2の車輪位置を判定できる。また、受信機3が1つで済むため、コストを低く抑えることができる。
また、従来のタイヤ空気圧モニター装置のうち、受信機をTPMSセンサと同数設けて各受信機と近接配置し、受信した無線信号の電波強度に基づいて各TPMSセンサの車輪位置を判定するものは、センサ出力、受信機感度ばらつき、ハーネスアンテナ効果を考慮した受信機のレイアウトが必要となり、受信環境やレイアウトによって性能が左右されてしまう。また、4つの受信機が必要であるため、コストが高くなる。
これに対し、実施例1のタイヤ空気圧モニター装置では、電波強度を用いることなく各TPMSセンサ2の車輪位置を判別できるため、受信環境やレイアウトに依らず各TPMSセンサ2の車輪位置を判定できる。また、受信機3が1つで済むため、コストを低く抑えることができる。
また、実施例1では、TPMSセンサ2において、TPMSセンサ2の回転位置が最上点にあることを、Gセンサ2bにより検出される遠心方向加速度の重力加速度依存成分から算出している。Gセンサ2bは、既存のタイヤ空気圧モニター装置において、車両の停止および走行判定に用いられているため、既存のTPMSセンサを流用でき、TPMSセンサ2側に新たなセンサを追加するコストを省くことができる。
さらに、実施例1では、TPMSCU4において、各車輪1の回転位置を、車輪速センサ8の車輪速パルスから算出している。ABSユニットは、車両のほとんどに搭載されており、車輪速センサ8は、ABSユニットに必須の構成であるから、車両側に新たなセンサを追加するコストを省くことができる。
さらに、実施例1では、TPMSCU4において、各車輪1の回転位置を、車輪速センサ8の車輪速パルスから算出している。ABSユニットは、車両のほとんどに搭載されており、車輪速センサ8は、ABSユニットに必須の構成であるから、車両側に新たなセンサを追加するコストを省くことができる。
[分散特性値によるばらつき度合い判定作用]
車輪1の回転位置は周期性のある角度データであるため、回転位置のばらつき度合いを、「平均との差の2乗」の平均で定義される、一般的な分散の式から求めることはできない。
そこで、実施例1では、分散演算部11bにおいて、各車輪速センサ8から得られた各車輪1の回転位置θを、原点(0,0)を中心とした単位円の円周上の座標(cosθ,sinθ)に変換し、座標(cosθ,sinθ)をベクトルとみて、同じ回転位置データの各ベクトルの平均ベクトル(ave_cosθ,ave_sinθ)を求め、平均ベクトルのスカラー量を分散特性値Xとして算出することで、周期性を回避して回転位置のばらつき度合いを求めることができる。
車輪1の回転位置は周期性のある角度データであるため、回転位置のばらつき度合いを、「平均との差の2乗」の平均で定義される、一般的な分散の式から求めることはできない。
そこで、実施例1では、分散演算部11bにおいて、各車輪速センサ8から得られた各車輪1の回転位置θを、原点(0,0)を中心とした単位円の円周上の座標(cosθ,sinθ)に変換し、座標(cosθ,sinθ)をベクトルとみて、同じ回転位置データの各ベクトルの平均ベクトル(ave_cosθ,ave_sinθ)を求め、平均ベクトルのスカラー量を分散特性値Xとして算出することで、周期性を回避して回転位置のばらつき度合いを求めることができる。
図11は、TPMSデータの受信回数に応じた分散特性値Xの変化を示す図である。図11において、自輪はTPMSデータを送信したTPMSセンサ2と同一輪の車輪速センサ8の回転位置データから演算した分散特性値Xを示し、他輪はTPMSデータを送信したTPMSセンサ2と異なる車輪1の車輪速センサ8の回転位置データから演算した分散特性値Xを示す。
図11に示すように、同一センサIDのTPMSデータの受信回数が増えるにつれて、自輪の分散特性値Xは1に近づき、他輪の分散特性値Xは0に近づく特性を示す。そして、受信回数が増えるほど、自輪の分散特性値と他輪の分散特性値との差は大きくなる。
よって、分散特性値Xを見ることで各車輪1の回転位置データのばらつき度合いを精度よく判定できる。
図11に示すように、同一センサIDのTPMSデータの受信回数が増えるにつれて、自輪の分散特性値Xは1に近づき、他輪の分散特性値Xは0に近づく特性を示す。そして、受信回数が増えるほど、自輪の分散特性値と他輪の分散特性値との差は大きくなる。
よって、分散特性値Xを見ることで各車輪1の回転位置データのばらつき度合いを精度よく判定できる。
[TPMSデータの間欠送信作用]
各TPMSセンサ2は、前回のTPMSデータの送信時刻から16秒以上経過し、かつ、自身の回転位置が最上点となったタイミングでTPMSデータの送信を行う。
実施例1では、各回転位置データの分散特性値Xを比較して車輪位置判定を行っているため、あるTPMSデータを送信したTPMSセンサ2に対し、自輪(同一輪)と他輪(他の車輪)の分散特性値Xに差を生じさせるためには、ある程度の累積走行距離を確保する必要がある。
ここで、仮にTPMSデータの回転位置が最上点となる都度、TPMSデータを送信した場合、10回程度の受信回数では自輪と他輪の分散特性値Xに差が生じず、車輪位置判定が困難となる。
よって、TPMSデータの送信間隔を16秒+αとすることで、TPMSデータを10回以上受信するまでにある程度の累積走行距離を確保できるため、自輪と他輪の分散特性値Xに十分な差を出すことができ、車輪位置を精度良く判定できる。
各TPMSセンサ2は、前回のTPMSデータの送信時刻から16秒以上経過し、かつ、自身の回転位置が最上点となったタイミングでTPMSデータの送信を行う。
実施例1では、各回転位置データの分散特性値Xを比較して車輪位置判定を行っているため、あるTPMSデータを送信したTPMSセンサ2に対し、自輪(同一輪)と他輪(他の車輪)の分散特性値Xに差を生じさせるためには、ある程度の累積走行距離を確保する必要がある。
ここで、仮にTPMSデータの回転位置が最上点となる都度、TPMSデータを送信した場合、10回程度の受信回数では自輪と他輪の分散特性値Xに差が生じず、車輪位置判定が困難となる。
よって、TPMSデータの送信間隔を16秒+αとすることで、TPMSデータを10回以上受信するまでにある程度の累積走行距離を確保できるため、自輪と他輪の分散特性値Xに十分な差を出すことができ、車輪位置を精度良く判定できる。
[第1車輪位置判定制御作用]
実施例1では、タイヤローテーション後の各センサIDと各車輪位置との対応関係を判定する車輪位置判定制御として、第1制御部11による第1車輪位置判定制御と第2制御部12による第2車輪位置判定制御との2つの車輪位置判定制御を並行して実施する。そして、第1車輪位置判定制御により車輪位置を判定したセンサIDについては、第1車輪位置判定制御の判定結果を優先し、第1車輪位置判定制御において、所定の累積走行時間内に車輪位置を判定できなかったセンサIDについては、第2車輪位置判定制御の判定結果を採用する。
実施例1では、タイヤローテーション後の各センサIDと各車輪位置との対応関係を判定する車輪位置判定制御として、第1制御部11による第1車輪位置判定制御と第2制御部12による第2車輪位置判定制御との2つの車輪位置判定制御を並行して実施する。そして、第1車輪位置判定制御により車輪位置を判定したセンサIDについては、第1車輪位置判定制御の判定結果を優先し、第1車輪位置判定制御において、所定の累積走行時間内に車輪位置を判定できなかったセンサIDについては、第2車輪位置判定制御の判定結果を採用する。
第1車輪位置判定制御では、同一センサIDのTPMSデータを10回以上受信したときの各分散特性値Xの最高値が第1しきい値0.57よりも大きく、かつ、残り3つの分散特性値Xの値がいずれも第2しきい値0.37未満となった場合、最高値の分散特性値Xと対応する回転位置データの車輪位置を当該センサIDの車輪位置と判定する。
すなわち、単に分散特性値Xの最高値を選択するのではなく、最高値を第1しきい値(0.57)と比較することで、最高値の分散特性値Xを持つ回転位置データがTPMSデータ出力周期とどの程度同期しているのかを見ることができ、一定の判定精度を確保できる。さらに、最高値以外の分散特性値Xを第2しきい値(0.37)と比較することで、最高値と他の3値とに所定(0.2)以上の差があることを確認でき、判定精度をより高めることができる。
すなわち、単に分散特性値Xの最高値を選択するのではなく、最高値を第1しきい値(0.57)と比較することで、最高値の分散特性値Xを持つ回転位置データがTPMSデータ出力周期とどの程度同期しているのかを見ることができ、一定の判定精度を確保できる。さらに、最高値以外の分散特性値Xを第2しきい値(0.37)と比較することで、最高値と他の3値とに所定(0.2)以上の差があることを確認でき、判定精度をより高めることができる。
つまり、第1車輪位置判定制御による車輪位置判定は、分散特性値Xの最高値を選択する第2車輪位置判定制御に対して、各車輪1の回転位置データのばらつき度合いの判定精度は高くなる。加えて、第1車輪位置判定制御では、各車輪1の回転位置のデータ数を最低10個集めてから回転位置データのばらつき度合いを判定しているため、回転位置のデータ数が10個未満となる可能性がある第2車輪位置判定制御に対して、各車輪1の回転位置データのばらつき度合いの判定精度は高くなる。
また、TPMSセンサ2側のTPMSデータの送信周期は約16秒間隔であり、車両が継続して走行している場合、オートラーニングモードの開始から約2分半経過後に各車輪1の回転位置のデータ数が10となり、ばらつき度合いの判定を開始できるため、所定の累積走行時間(8分)の経過を待ってばらつき度合いの判定を開始する第2車輪位置判定制御に対して、より早期に各センサIDと各車輪位置との対応関係を判定できる。
また、TPMSセンサ2側のTPMSデータの送信周期は約16秒間隔であり、車両が継続して走行している場合、オートラーニングモードの開始から約2分半経過後に各車輪1の回転位置のデータ数が10となり、ばらつき度合いの判定を開始できるため、所定の累積走行時間(8分)の経過を待ってばらつき度合いの判定を開始する第2車輪位置判定制御に対して、より早期に各センサIDと各車輪位置との対応関係を判定できる。
[第2車輪位置判定制御作用]
実施例1では、車輪速パルスのカウント値から車輪1の回転位置を検出している。ここで、車輪速センサ8は、パルスカウント式であり、車輪1と一体に回転するロータの凹凸面が車輪速センサ8の周りに形成された磁界を横切ったときの磁束変化によるコイルの電流変化を車輪速パルスとして出力する。よって、車両停止中にシフトチェンジ、操舵または乗員の乗り降りに起因する車両の振動に伴い車輪1が振動した場合(微小角度で連続して正逆転を繰り返した場合)、実際は車輪1が回転していないにもかかわらず、振動によって車輪速パルスがカウントアップされることがある。
実施例1では、車輪速パルスのカウント値から車輪1の回転位置を検出している。ここで、車輪速センサ8は、パルスカウント式であり、車輪1と一体に回転するロータの凹凸面が車輪速センサ8の周りに形成された磁界を横切ったときの磁束変化によるコイルの電流変化を車輪速パルスとして出力する。よって、車両停止中にシフトチェンジ、操舵または乗員の乗り降りに起因する車両の振動に伴い車輪1が振動した場合(微小角度で連続して正逆転を繰り返した場合)、実際は車輪1が回転していないにもかかわらず、振動によって車輪速パルスがカウントアップされることがある。
この場合、基準歯数からの車輪速パルスのカウント数により演算された車輪1の回転位置と実際の回転位置との間にズレが生じ、回転位置が誤検出されることで、回転位置データのばらつき度合いの判定精度が低下し、各センサIDと車輪位置との対応関係を精度良く判定できない。また、坂道発進や縁石乗り上げにより車両が後退(ずり下がり)した場合にも、実際は車輪1が逆転しているにもかかわらず、車輪速パルスがカウントアップされるため、上記の問題が生じる。
第1車輪位置判定制御では、車両停止中の車輪速パルスもカウント数に含めて車輪1の回転位置(歯数)を計算しているため、オートラーニングモード中の車両停止時などで上記回転位置のズレが生じた場合、回転位置の誤検出によって各分散特性値Xに違いが表れにくくなり、車輪位置の判定が困難となる。
ここで、TPMSセンサ2側では、ボタン電池2eの電池寿命を長くするために、定位置送信モード時のTPMSデータの送信回数を40回に制限しているため、すべてのセンサIDの車輪位置を判定するまで第1車輪位置判定制御を継続することはできない。
ここで、TPMSセンサ2側では、ボタン電池2eの電池寿命を長くするために、定位置送信モード時のTPMSデータの送信回数を40回に制限しているため、すべてのセンサIDの車輪位置を判定するまで第1車輪位置判定制御を継続することはできない。
そこで、実施例1では、第1車輪位置判定制御で所定の累積走行時間(8分)が経過しても車輪位置を判定できないセンサIDがある場合、当該センサIDの車輪位置を、第2車輪位置判定制御の判定結果を用いて決定する。
第2車輪位置判定制御では、所定の累積走行時間経過後の各分散特性値Xの最高値を選択してセンサIDの車輪位置を判定している。このとき、最高値が2つ以上となるケースは稀であるから、すべてのセンサIDの車輪位置を判定できる。
第2車輪位置判定制御では、所定の累積走行時間経過後の各分散特性値Xの最高値を選択してセンサIDの車輪位置を判定している。このとき、最高値が2つ以上となるケースは稀であるから、すべてのセンサIDの車輪位置を判定できる。
また、第2車輪位置判定制御では、各車輪1が同一方向に回転している期間を1トリップとし、1トリップ内の回転位置データに基づいて1トリップ毎に分散特性値Xtrp1,Xtrp2,…,Xtrpmを求め、各分散特性値Xtrp1,Xtrp2,…,Xtrpmに基づいて最終的な分散特性値Xを演算している。よって、車両停止時や後退時に生じる車輪速パルスのカウント数と車輪1の実際の回転数とのズレの影響を排除して各分散特性値Xを演算でき、各回転位置のばらつき度合いを精度よく判定できる。
第2車輪位置判定制御では、各分散特性値Xtrp1,Xtrp2,…,Xtrpmに対し、所定の累積走行時間内のTPMSデータの総受信回数Nに対する1トリップ内のTPMSデータの受信回数Nnの割合Nn/Nを重み付け係数K1,K2,…,Kmとして乗算する重み付け処理を行い、重み付け処理後の各分散特性値K1 × Xtrp1, K2 × Xtrp2,…, Km × Xtrpmの和(K1 × Xtrp1 + K2 × Xtrp2 + ,…,Km × Xtrpm)を最終的な分散特性値Xとしている。
図12は、第2車輪位置判定制御による分散特性値算出例である。図12では、3番目のトリップ中に所定の累積走行時間(8分)が経過したものとし、1番目のトリップの分散特性値Xtrp1を0.8、2番目のトリップの分散特性値Xtrp2を0.9、3番目のトリップの分散特性値Xtrp3を0.4としている。
図12は、第2車輪位置判定制御による分散特性値算出例である。図12では、3番目のトリップ中に所定の累積走行時間(8分)が経過したものとし、1番目のトリップの分散特性値Xtrp1を0.8、2番目のトリップの分散特性値Xtrp2を0.9、3番目のトリップの分散特性値Xtrp3を0.4としている。
ここで、各トリップ内のTPMSデータ受信回数Nn(=回転位置のデータ数)は、1番目から順に4,9,3回であるから、重み付け係数は、1番目から準にK1=4/16,K2=9/16,K3=3/16となる。
よって、最終的な分散特性値Xは、
X = 4/16 × 0.8 + 9/16 × 0.9 + 3/16 × 0.4
= 0.2 + 0.506 + 0.075
= 0.781
となり、1番目および3番目のトリップの分散特性値Xtrp1,Xtrp2と比較して、TPMSデータ受信回数Nnが最も大きな2番目のトリップの分散特性値Xtrp2に近い値となる。
すなわち、1トリップの分散特性値Xtrpmは、回転位置のデータ数が多いほど高精度となるため、データ数が大きな分散特性値Xtrpmの重み付けを大きくすることで、最終的な分散特性値Xの信頼性を高めることができる。
よって、最終的な分散特性値Xは、
X = 4/16 × 0.8 + 9/16 × 0.9 + 3/16 × 0.4
= 0.2 + 0.506 + 0.075
= 0.781
となり、1番目および3番目のトリップの分散特性値Xtrp1,Xtrp2と比較して、TPMSデータ受信回数Nnが最も大きな2番目のトリップの分散特性値Xtrp2に近い値となる。
すなわち、1トリップの分散特性値Xtrpmは、回転位置のデータ数が多いほど高精度となるため、データ数が大きな分散特性値Xtrpmの重み付けを大きくすることで、最終的な分散特性値Xの信頼性を高めることができる。
第2車輪位置判定制御では、1トリップ内でTPMSデータの受信回数Nnが3回未満である場合は、分散特性値Xtrpmを演算せず、1トリップ内でTPMSデータの受信回数Nnが3回以上であるトリップの分散特性値Xtrpmに基づいて、最終的な分散特性値Xを演算する。1トリップ内のTPMSデータの受信回数Nnが少ない場合、各車輪1の分散特性値Xtrpmに差が生じにくい。つまり、データ数が少ない場合には、各車輪1の回転位置のばらつき度合いを判定するための有効な分散特性値Xtrpmが得られないため、これを除外して最終的な分散特性値Xを算出することで、最終的な分散特性値Xの信頼性を高めることができる。
[車速に応じた回転位置補正作用]
図13は車速の違いによる右前輪(または右後輪1RR)のTPMSセンサ2のTPMSデータ送信タイミングの違いを表す図であり、(a)は極低速時(例えば、5[km/h])、(b)は低速走行時(例えば、40[km/h])、 (c)は高速走行時(例えば、90[km/h])である。
(a)に示すように、TPMSセンサ2の本体部24は、TPMSセンサ2が最上点に来たとき地面と平行になるようにホイルリム22に組み付けられている。これにより、Gセンサ2bは、TPMSセンサ2が最上点にあるとき+1Gの値を出力し、TPMSデータが出力される。
ここで、本体部24は、タイヤ回転軸とバルブ孔23とを含む面28(図3参照)よりもボタン電池2e寄りの位置に重心点が設定されている。このため、車速が高くなるほど(タイヤ21の回転速度が高くなるほど)左側部24cに作用する遠心力が大きくなる。このとき、本体部24を支持する空気バルブ20は、柔らかいゴム部26を介してホイルリム22のバルブ孔23に固定されたスナップイン方式を採用しているため、ゴム部26が捩れて本体部24に傾きが生じる。本体部24が傾くと、(b)に示すように、Gセンサ2bが+1Gの値を出力する回転位置、すなわち、本体部24が地面と並行になる位置が本来の位置(最上点)よりも本体部24の傾斜角度θだけ回転角度が進んだ位置となる。
さらに、車速が所定車速以上となる領域では、(c)に示すように、ゴム部26の捩れによる本体部24の傾斜に加え、本体部24の右側部24b自身の変形による本体部24の傾斜によって車速が高いほど本体部24の傾斜角度θは大きくなる。このとき、車速変化に対する本体部24の傾斜角度θの変化量は、車速が所定車速未満の場合よりも大きくなる。
図13は車速の違いによる右前輪(または右後輪1RR)のTPMSセンサ2のTPMSデータ送信タイミングの違いを表す図であり、(a)は極低速時(例えば、5[km/h])、(b)は低速走行時(例えば、40[km/h])、 (c)は高速走行時(例えば、90[km/h])である。
(a)に示すように、TPMSセンサ2の本体部24は、TPMSセンサ2が最上点に来たとき地面と平行になるようにホイルリム22に組み付けられている。これにより、Gセンサ2bは、TPMSセンサ2が最上点にあるとき+1Gの値を出力し、TPMSデータが出力される。
ここで、本体部24は、タイヤ回転軸とバルブ孔23とを含む面28(図3参照)よりもボタン電池2e寄りの位置に重心点が設定されている。このため、車速が高くなるほど(タイヤ21の回転速度が高くなるほど)左側部24cに作用する遠心力が大きくなる。このとき、本体部24を支持する空気バルブ20は、柔らかいゴム部26を介してホイルリム22のバルブ孔23に固定されたスナップイン方式を採用しているため、ゴム部26が捩れて本体部24に傾きが生じる。本体部24が傾くと、(b)に示すように、Gセンサ2bが+1Gの値を出力する回転位置、すなわち、本体部24が地面と並行になる位置が本来の位置(最上点)よりも本体部24の傾斜角度θだけ回転角度が進んだ位置となる。
さらに、車速が所定車速以上となる領域では、(c)に示すように、ゴム部26の捩れによる本体部24の傾斜に加え、本体部24の右側部24b自身の変形による本体部24の傾斜によって車速が高いほど本体部24の傾斜角度θは大きくなる。このとき、車速変化に対する本体部24の傾斜角度θの変化量は、車速が所定車速未満の場合よりも大きくなる。
つまり、右輪では、車速が高くなるほどTPMSデータの送信タイミングが規定のタイミングよりも遅くなり、右前輪1FRの車輪速センサ8FRの回転位置データを車速別にプロットすると、図14(a)に示すような特性となる。また、左輪では、右輪に対して車輪の回転方向に対する本体部24の右側部24bと左側部24cの位置が逆になるため、車速が高くなるほどTPMSデータの送信タイミングが規定のタイミングよりも早くなり、左前輪1FLの車輪速センサ8FLの回転位置データを車速別にプロットすると、図14(b)に示すような特性となる。
このため、車速が低車速から高車速まで変化する走行シーンでは、第1車輪位置判定制御の場合、各分散特性値Xに違いが表れにくくなり、車輪位置の判定が困難となる。また、第2車輪位置判定制御の場合には、オートラーニングモードの開始から所定の累積走行時間(例えば、8分)経過後に車輪位置の判定は可能であるものの、回転位置データのばらつき度合いの判定精度が低下するため、各センサIDと車輪位置との対応関係を精度良く判定できない。
このため、車速が低車速から高車速まで変化する走行シーンでは、第1車輪位置判定制御の場合、各分散特性値Xに違いが表れにくくなり、車輪位置の判定が困難となる。また、第2車輪位置判定制御の場合には、オートラーニングモードの開始から所定の累積走行時間(例えば、8分)経過後に車輪位置の判定は可能であるものの、回転位置データのばらつき度合いの判定精度が低下するため、各センサIDと車輪位置との対応関係を精度良く判定できない。
これに対し、実施例1では、回転位置演算部11a,12aで演算された回転位置を車速に応じた補正歯数Δzにより補正する回転位置補正部11d,12dを設けた。
傾斜角度θはTPMSデータが送信されたときのTPMSセンサ2の最上点からのズレ量を表し、このズレ量は、車速に応じて変化するため、車速に応じた補正歯数Δzにより各車輪の回転位置を補正することで、各車輪1の回転位置をTPMSセンサ2が最上点にあるときの回転位置に補正できる。これにより、TPMSセンサ2の回転位置が最上点にあるときの各車輪1の回転位置を精度良く求めることができるため、車速が停車速から高車速まで変化する走行シーンにおいて、第1車輪位置判定制御および第2車輪位置判定制御の判定精度低下を抑制できる。
回転位置補正部11d,12dは、補正歯数Δzを、車速が高くなるほど大きくする。
TPMSセンサ2の本体部24は、車速が高くなるほど組み付け時に対する傾斜角度θが大きくなるため、TPMSデータの送信タイミングは、車速が高くなるほど規定のタイミングに対するズレが大きくなる。よって、車速が高くなるほど補正歯数Δzを大きくすることで、車速が停車速から高車速まで変化する走行シーンにおける車輪位置の判定精度を向上できる。
回転位置補正部11d,12dは、補正歯数Δzを、60[km/h]以上の場合は60[km/h]未満の場合よりも車速変化に対する変化量が大きくなる特性とする。
TPMSセンサ2の本体部24は、車速が60[km/h]未満となる領域よりも60[km/h]以上となる領域の方が車速変化に対する傾斜角度θの変化量が大きい。よって、60[km/h]以上の車速域では車速変化に対する補正歯数Δzの変化量を60[km/h]未満の車速域の変化量よりも大きくすることで、車速が停車速から高車速まで変化する走行シーンにおける車輪位置の判定精度を向上できる。
傾斜角度θはTPMSデータが送信されたときのTPMSセンサ2の最上点からのズレ量を表し、このズレ量は、車速に応じて変化するため、車速に応じた補正歯数Δzにより各車輪の回転位置を補正することで、各車輪1の回転位置をTPMSセンサ2が最上点にあるときの回転位置に補正できる。これにより、TPMSセンサ2の回転位置が最上点にあるときの各車輪1の回転位置を精度良く求めることができるため、車速が停車速から高車速まで変化する走行シーンにおいて、第1車輪位置判定制御および第2車輪位置判定制御の判定精度低下を抑制できる。
回転位置補正部11d,12dは、補正歯数Δzを、車速が高くなるほど大きくする。
TPMSセンサ2の本体部24は、車速が高くなるほど組み付け時に対する傾斜角度θが大きくなるため、TPMSデータの送信タイミングは、車速が高くなるほど規定のタイミングに対するズレが大きくなる。よって、車速が高くなるほど補正歯数Δzを大きくすることで、車速が停車速から高車速まで変化する走行シーンにおける車輪位置の判定精度を向上できる。
回転位置補正部11d,12dは、補正歯数Δzを、60[km/h]以上の場合は60[km/h]未満の場合よりも車速変化に対する変化量が大きくなる特性とする。
TPMSセンサ2の本体部24は、車速が60[km/h]未満となる領域よりも60[km/h]以上となる領域の方が車速変化に対する傾斜角度θの変化量が大きい。よって、60[km/h]以上の車速域では車速変化に対する補正歯数Δzの変化量を60[km/h]未満の車速域の変化量よりも大きくすることで、車速が停車速から高車速まで変化する走行シーンにおける車輪位置の判定精度を向上できる。
回転位置補正部11d,12dは、回転位置演算部11a,12aで演算された回転位置に対して補正歯数Δzを加算した第1補正後回転位置zt2+Δzと補正歯数Δzを減算した第2補正後回転位置zt2-Δzとを補正後回転位置とする。
本体部24の長さ方向の重心点は、タイヤ回転軸とバルブ孔23とを含む面28よりもボタン電池2e寄り、すなわち左側部24c寄りの位置にあるため、車輪が回転して遠心力が作用すると、本体部24は、左側部24cがタイヤ半径方向の外側へ移動する方向に傾斜する。ここで、左右輪では、本体部24の傾斜方向と車輪の回転方向との関係が逆になるため、車速が高くなるのに応じてTPMSデータの送信タイミングがずれる方向も逆になる。よって、補正歯数Δzを加算および減算した2つの補正後回転位置を用意することで、全ての送信機2dの車輪位置を判定できる。
回転位置補正部11d,12dは、補正歯数Δzを、車速を徐々に高めながら走行したときに実際に計測された、あるセンサIDに対応する送信機2dと同じ車輪位置の回転位置データの車速に対する変化特性に基づいて設定する。
補正歯数Δzの車速に応じた特性を実際に計測されたTPMSセンサと同一車輪の回転位置データに基づいて設定することで、車速が停車速から高車速まで変化する走行シーンにおける車輪位置の判定精度を向上できる。
本体部24の長さ方向の重心点は、タイヤ回転軸とバルブ孔23とを含む面28よりもボタン電池2e寄り、すなわち左側部24c寄りの位置にあるため、車輪が回転して遠心力が作用すると、本体部24は、左側部24cがタイヤ半径方向の外側へ移動する方向に傾斜する。ここで、左右輪では、本体部24の傾斜方向と車輪の回転方向との関係が逆になるため、車速が高くなるのに応じてTPMSデータの送信タイミングがずれる方向も逆になる。よって、補正歯数Δzを加算および減算した2つの補正後回転位置を用意することで、全ての送信機2dの車輪位置を判定できる。
回転位置補正部11d,12dは、補正歯数Δzを、車速を徐々に高めながら走行したときに実際に計測された、あるセンサIDに対応する送信機2dと同じ車輪位置の回転位置データの車速に対する変化特性に基づいて設定する。
補正歯数Δzの車速に応じた特性を実際に計測されたTPMSセンサと同一車輪の回転位置データに基づいて設定することで、車速が停車速から高車速まで変化する走行シーンにおける車輪位置の判定精度を向上できる。
次に、効果を説明する。
実施例1のタイヤ空気圧モニター装置にあっては、以下に列挙する効果を奏する。
(1) 各車輪1のホイルリム22に取り付けられる空気バルブ20と、タイヤ21内であって空気バルブ20と一体に形成された基板2g上に、タイヤ空気圧を検出する圧力センサ2aと、車輪1が回転しているときの遠心方向加速度を検出するGセンサ2bと、遠心方向加速度の重力加速度依存成分の値が+1Gとなったときタイヤ空気圧情報およびセンサIDを無線信号にて送信する送信機2dとが取り付けられ、タイヤ回転軸とバルブ孔23とを含む面外に重心点を有する本体部24と、車体側に設けられ、無線信号を受信する受信機3と、各車輪1と対応して車体側に設けられ、車輪の回転数に比例した車輪速パルスを出力する車輪速センサ8と、各車輪速パルスのカウント値から各車輪1の回転位置を検出する回転位置演算部11a,12aと、あるセンサIDを含む無線信号が送信されたときの各車輪1の回転位置を複数回取得して各車輪1の回転位置データとして蓄積し、各回転位置データのばらつき度合いに基づいて当該センサIDに対応する送信機2dの車輪位置を判定する車輪位置判定部11c,12cと、車速を検出する車速センサ15と、検出された車速に応じて検出された回転位置を補正する回転位置補正部11d,12dと、を備えた。
実施例1のタイヤ空気圧モニター装置にあっては、以下に列挙する効果を奏する。
(1) 各車輪1のホイルリム22に取り付けられる空気バルブ20と、タイヤ21内であって空気バルブ20と一体に形成された基板2g上に、タイヤ空気圧を検出する圧力センサ2aと、車輪1が回転しているときの遠心方向加速度を検出するGセンサ2bと、遠心方向加速度の重力加速度依存成分の値が+1Gとなったときタイヤ空気圧情報およびセンサIDを無線信号にて送信する送信機2dとが取り付けられ、タイヤ回転軸とバルブ孔23とを含む面外に重心点を有する本体部24と、車体側に設けられ、無線信号を受信する受信機3と、各車輪1と対応して車体側に設けられ、車輪の回転数に比例した車輪速パルスを出力する車輪速センサ8と、各車輪速パルスのカウント値から各車輪1の回転位置を検出する回転位置演算部11a,12aと、あるセンサIDを含む無線信号が送信されたときの各車輪1の回転位置を複数回取得して各車輪1の回転位置データとして蓄積し、各回転位置データのばらつき度合いに基づいて当該センサIDに対応する送信機2dの車輪位置を判定する車輪位置判定部11c,12cと、車速を検出する車速センサ15と、検出された車速に応じて検出された回転位置を補正する回転位置補正部11d,12dと、を備えた。
送信機2dが常に一定の回転位置で無線信号を送信している場合、そのタイミングで検出された各車輪1の回転位置のうち当該送信機2dが装着された車輪1の回転位置はほぼ一定の値を示すのに対し、他の回転位置はばらつきが生じる。よって、各車輪1の回転位置データのばらつき度合いに基づいて当該送信機2dの車輪位置と判定することで、送信機2dの車輪位置を精度良く判定できる。
また、車速が停車速から高車速まで変化している場合、車速に応じた回転位置の補正により、第1車輪位置判定制御および第2車輪位置判定制御の判定精度低下を抑制できる。
また、車速が停車速から高車速まで変化している場合、車速に応じた回転位置の補正により、第1車輪位置判定制御および第2車輪位置判定制御の判定精度低下を抑制できる。
(2) 回転位置補正部11d,12dは、補正歯数Δzを、車速が高くなるほど大きくする。
TPMSセンサ2の本体部24は、車速が高くなるほど組み付け時に対する傾斜角度θが大きくなるため、TPMSデータの送信タイミングは、車速が高くなるほど規定のタイミングに対するズレが大きくなる。よって、車速が高くなるほど補正歯数Δzを大きくすることで、車速が停車速から高車速まで変化する走行シーンにおける車輪位置の判定精度を向上できる。
TPMSセンサ2の本体部24は、車速が高くなるほど組み付け時に対する傾斜角度θが大きくなるため、TPMSデータの送信タイミングは、車速が高くなるほど規定のタイミングに対するズレが大きくなる。よって、車速が高くなるほど補正歯数Δzを大きくすることで、車速が停車速から高車速まで変化する走行シーンにおける車輪位置の判定精度を向上できる。
(3) 回転位置補正部11d,12dは、補正歯数Δzを、60[km/h]以上の場合は60[km/h]未満の場合よりも車速変化に対する変化量が大きくなる特性とする。
TPMSセンサ2の本体部24は、車速が60[km/h]未満となる領域よりも60[km/h]以上となる領域の方が車速変化に対する傾斜角度θの変化量が大きい。よって、60[km/h]以上の車速域では車速変化に対する補正歯数Δzの変化量を60[km/h]未満の車速域の変化量よりも大きくすることで、車速が停車速から高車速まで変化する走行シーンにおける車輪位置の判定精度を向上できる。
TPMSセンサ2の本体部24は、車速が60[km/h]未満となる領域よりも60[km/h]以上となる領域の方が車速変化に対する傾斜角度θの変化量が大きい。よって、60[km/h]以上の車速域では車速変化に対する補正歯数Δzの変化量を60[km/h]未満の車速域の変化量よりも大きくすることで、車速が停車速から高車速まで変化する走行シーンにおける車輪位置の判定精度を向上できる。
(4) 回転位置補正部11d,12dは、回転位置演算部11a,12aで演算された回転位置に対して補正歯数Δzを加算した第1補正後回転位置zt2+Δzと補正歯数Δzを減算した第2補正後回転位置zt2-Δzとを補正後回転位置とする。
本体部24の長さ方向の重心点は、タイヤ回転軸とバルブ孔23とを含む面28よりもボタン電池2e寄り、すなわち左側部24c寄りの位置にあるため、車輪が回転して遠心力が作用すると、本体部24は、左側部24cがタイヤ半径方向の外側へ移動する方向に傾斜する。ここで、左右輪では、本体部24の傾斜方向と車輪の回転方向との関係が逆になるため、車速が高くなるのに応じてTPMSデータの送信タイミングがずれる方向も逆になる。よって、補正歯数Δzを加算および減算した2つの補正後回転位置を用意することで、全ての送信機2dの車輪位置を判定できる。
本体部24の長さ方向の重心点は、タイヤ回転軸とバルブ孔23とを含む面28よりもボタン電池2e寄り、すなわち左側部24c寄りの位置にあるため、車輪が回転して遠心力が作用すると、本体部24は、左側部24cがタイヤ半径方向の外側へ移動する方向に傾斜する。ここで、左右輪では、本体部24の傾斜方向と車輪の回転方向との関係が逆になるため、車速が高くなるのに応じてTPMSデータの送信タイミングがずれる方向も逆になる。よって、補正歯数Δzを加算および減算した2つの補正後回転位置を用意することで、全ての送信機2dの車輪位置を判定できる。
(5) 回転位置補正部11d,12dは、補正歯数Δzを、車速を徐々に高めながら走行したときに実際に計測された、あるセンサIDに対応する送信機2dと同じ車輪位置の回転位置データの車速に対する変化特性に基づいて設定する。
補正歯数Δzの車速に応じた特性を実際に計測されたTPMSセンサと同一車輪の回転位置データに基づいて設定することで、車速が停車速から高車速まで変化する走行シーンにおける車輪位置の判定精度を向上できる。
補正歯数Δzの車速に応じた特性を実際に計測されたTPMSセンサと同一車輪の回転位置データに基づいて設定することで、車速が停車速から高車速まで変化する走行シーンにおける車輪位置の判定精度を向上できる。
(6) 空気バルブ20は、ホイルリム22のバルブ孔23にゴム部26を介して固定されるスナップイン方式である。
スナップイン方式の空気バルブは、ホイルリムにバルブワッシャおよびバルブナットで固定されるクランプイン方式の空気バルブと比較して、車速に対する本体部24の傾斜角度θが大きくなるため、車速に基づく回転位置補正による効果が顕著である。
スナップイン方式の空気バルブは、ホイルリムにバルブワッシャおよびバルブナットで固定されるクランプイン方式の空気バルブと比較して、車速に対する本体部24の傾斜角度θが大きくなるため、車速に基づく回転位置補正による効果が顕著である。
〔実施例2〕
実施例2のタイヤ空気圧モニター装置は、車速に応じて回転位置を補正する際、タイヤ内の温度に基づいて補正量を変更する例である。実施例1と異なる構成についてのみ説明する。
[車輪位置判定制御]
図15は、実施例2の車輪位置判定制御を実施するためのTPMSCU4の制御ブロック図である。
回転位置補正部11dは、温度センサ2fにより検出されたタイヤ内の温度を入力し、タイヤ内の温度に基づいて車速に応じた補正歯数Δzを変更するために、弾性係数推定部13aと補正量変更部13bとを備える。
弾性係数推定部13aは、タイヤ内の温度に基づいてゴム部26の弾性係数を推定する。弾性係数推定部13aは、ゴム部26の温度に対する弾性係数特性マップを備え、タイヤ内の温度から当該弾性係数特性マップを参照してゴム部26の弾性係数を推定する。ここで、ゴム部26の温度に対する弾性係数特性は、あらかじめ実験等により求めることができる。
補正量変更部13bは、弾性係数推定部13aにより推定された弾性係数に基づいて補正歯数Δzを変更する。補正量変更部13bは、推定された弾性係数が高いほど補正歯数Δzを小さくする。
回転位置補正部11dは、補正歯数Δzをタイヤ内の温度に応じて変更後、回転位置演算部11aで演算された歯数zt2に対し、補正歯数Δzを加算した第1補正後回転位置zt2+Δzと補正歯数Δzを減算した第2補正後回転位置zt2-Δzとをそれぞれ演算して補正後の回転位置とする。
なお、回転位置補正部12dについても回転位置補正部11dと同様である。
実施例2のタイヤ空気圧モニター装置は、車速に応じて回転位置を補正する際、タイヤ内の温度に基づいて補正量を変更する例である。実施例1と異なる構成についてのみ説明する。
[車輪位置判定制御]
図15は、実施例2の車輪位置判定制御を実施するためのTPMSCU4の制御ブロック図である。
回転位置補正部11dは、温度センサ2fにより検出されたタイヤ内の温度を入力し、タイヤ内の温度に基づいて車速に応じた補正歯数Δzを変更するために、弾性係数推定部13aと補正量変更部13bとを備える。
弾性係数推定部13aは、タイヤ内の温度に基づいてゴム部26の弾性係数を推定する。弾性係数推定部13aは、ゴム部26の温度に対する弾性係数特性マップを備え、タイヤ内の温度から当該弾性係数特性マップを参照してゴム部26の弾性係数を推定する。ここで、ゴム部26の温度に対する弾性係数特性は、あらかじめ実験等により求めることができる。
補正量変更部13bは、弾性係数推定部13aにより推定された弾性係数に基づいて補正歯数Δzを変更する。補正量変更部13bは、推定された弾性係数が高いほど補正歯数Δzを小さくする。
回転位置補正部11dは、補正歯数Δzをタイヤ内の温度に応じて変更後、回転位置演算部11aで演算された歯数zt2に対し、補正歯数Δzを加算した第1補正後回転位置zt2+Δzと補正歯数Δzを減算した第2補正後回転位置zt2-Δzとをそれぞれ演算して補正後の回転位置とする。
なお、回転位置補正部12dについても回転位置補正部11dと同様である。
[第1車輪位置判定制御処理]
実施例2の第1車輪位置判定制御処理は、図8に示した実施例1の第1車輪位置判定制御処理と同様であるが、実施例2では、ステップS3において、各車輪1の回転位置データを補正する際、タイヤ内の温度からゴム部26の弾性係数を推定し、推定した弾性係数が高いほど補正歯数Δzを小さくする。
[第2車輪位置判定制御処理]
実施例2の第2車輪位置判定制御処理は、図9に示した実施例2の第2車輪位置判定制御処理と同様であるが、実施例2では、ステップS13において、各車輪1の回転位置データを補正する際、タイヤ内の温度からゴム部26の弾性係数を推定し、推定した弾性係数が高いほど補正係数Δzを小さくする。
実施例2の第1車輪位置判定制御処理は、図8に示した実施例1の第1車輪位置判定制御処理と同様であるが、実施例2では、ステップS3において、各車輪1の回転位置データを補正する際、タイヤ内の温度からゴム部26の弾性係数を推定し、推定した弾性係数が高いほど補正歯数Δzを小さくする。
[第2車輪位置判定制御処理]
実施例2の第2車輪位置判定制御処理は、図9に示した実施例2の第2車輪位置判定制御処理と同様であるが、実施例2では、ステップS13において、各車輪1の回転位置データを補正する際、タイヤ内の温度からゴム部26の弾性係数を推定し、推定した弾性係数が高いほど補正係数Δzを小さくする。
次に、作用を説明する。
[タイヤ内の温度に応じた補正歯数変更作用]
図16は、ゴム部26の温度に対する弾性係数特性図であり、NBRはゴム部26の素材としてニトリルゴム(NBR)を用いた例、EPDMはゴム部26の素材としてエチレンプロピレンゴム(EPDM)を用いた例である。
図16に示すように、ゴム部26の弾性係数は、ゴム部26の雰囲気温度、すなわち、タイヤ内の温度に応じて変化し、特に極低温時には、タイヤ内の温度が低いほどゴム部26の弾性係数を大きくなる。つまり、極低温時は常温時に比べてゴム部26の弾性係数が高いため、車速が同じであっても本体部24に作用する遠心力に対する本体部24の傾斜角度θは常温時よりも小さくなる。
よって、極低温時には、車速のみに応じて補正歯数zを決めると、本体部24の傾斜角度θに対して過大な補正歯数Δzが設定されるため、TPMSセンサ2の回転位置が最上点にあるときの各車輪の回転位置を精度良く求めることができず、車輪位置の判定精度低下を招く。
[タイヤ内の温度に応じた補正歯数変更作用]
図16は、ゴム部26の温度に対する弾性係数特性図であり、NBRはゴム部26の素材としてニトリルゴム(NBR)を用いた例、EPDMはゴム部26の素材としてエチレンプロピレンゴム(EPDM)を用いた例である。
図16に示すように、ゴム部26の弾性係数は、ゴム部26の雰囲気温度、すなわち、タイヤ内の温度に応じて変化し、特に極低温時には、タイヤ内の温度が低いほどゴム部26の弾性係数を大きくなる。つまり、極低温時は常温時に比べてゴム部26の弾性係数が高いため、車速が同じであっても本体部24に作用する遠心力に対する本体部24の傾斜角度θは常温時よりも小さくなる。
よって、極低温時には、車速のみに応じて補正歯数zを決めると、本体部24の傾斜角度θに対して過大な補正歯数Δzが設定されるため、TPMSセンサ2の回転位置が最上点にあるときの各車輪の回転位置を精度良く求めることができず、車輪位置の判定精度低下を招く。
これに対し、回転位置補正部11d,12dは、タイヤ内の温度に基づいて補正歯数Δzを変更する。
ゴム部26の弾性係数はタイヤ内の温度に依存するため、タイヤ内の温度を考慮して補正歯数Δzを変更することで、極低温時におけるゴム部26の弾性係数の変動に伴う車輪位置の判定精度低下を抑制できる。
回転位置補正部11d,12dは、タイヤ内の温度に基づいてゴム部26の弾性係数を推定する弾性係数推定部13aと、弾性係数に基づいて補正歯数Δzを変更する補正量変更部13bとを備える。
ゴム部26の弾性係数がわかると、車速に応じて本体部24に遠心方向加速度が作用したときのゴム部24の変形量、すなわち、本体部24の傾斜角度θをより精度良く推定できる。よって、弾性係数に基づいて補正歯数Δzを変更することで、極低温時における車輪位置の判定精度低下を抑制できる。
ゴム部26の弾性係数はタイヤ内の温度に依存するため、タイヤ内の温度を考慮して補正歯数Δzを変更することで、極低温時におけるゴム部26の弾性係数の変動に伴う車輪位置の判定精度低下を抑制できる。
回転位置補正部11d,12dは、タイヤ内の温度に基づいてゴム部26の弾性係数を推定する弾性係数推定部13aと、弾性係数に基づいて補正歯数Δzを変更する補正量変更部13bとを備える。
ゴム部26の弾性係数がわかると、車速に応じて本体部24に遠心方向加速度が作用したときのゴム部24の変形量、すなわち、本体部24の傾斜角度θをより精度良く推定できる。よって、弾性係数に基づいて補正歯数Δzを変更することで、極低温時における車輪位置の判定精度低下を抑制できる。
補正量変更部13bは、弾性係数が高いほど補正歯数Δzを小さくする。
ゴム部26の弾性係数が高いほど、同一車速であっても本体部24の傾斜角度θは小さくなるため、弾性係数が高いほど補正歯数Δzを小さくすることで、補正歯数Δzによる補正後の各車輪の回転位置が、TPMSセンサ2の回転位置が最上点にあるときの各車輪1の回転位置から乖離するのを抑制できる。
弾性変形推定部13aは、ゴム部26の温度に対する弾性係数特性マップを備え、タイヤ内の温度から弾性係数特性マップを参照して弾性係数を推定する。
実際に計測したゴム部26の弾性係数特性に基づいて弾性係数を推定することで、ゴム部26の弾性係数を精度良く推定できる。
ゴム部26の弾性係数が高いほど、同一車速であっても本体部24の傾斜角度θは小さくなるため、弾性係数が高いほど補正歯数Δzを小さくすることで、補正歯数Δzによる補正後の各車輪の回転位置が、TPMSセンサ2の回転位置が最上点にあるときの各車輪1の回転位置から乖離するのを抑制できる。
弾性変形推定部13aは、ゴム部26の温度に対する弾性係数特性マップを備え、タイヤ内の温度から弾性係数特性マップを参照して弾性係数を推定する。
実際に計測したゴム部26の弾性係数特性に基づいて弾性係数を推定することで、ゴム部26の弾性係数を精度良く推定できる。
次に、効果を説明する。
実施例2のタイヤ空気圧モニター装置にあっては、実施例1の効果(1)~(6)に加え、以下に列挙する効果を奏する。
(7) タイヤ内の温度を検出する温度センサ2fを備え、回転位置補正部11d,12dは、検出されたタイヤ内の温度に基づいて補正歯数Δzを変更する。
送信機2dが常に一定の回転位置で無線信号を送信している場合、そのタイミングで検出された各車輪1の回転位置のうち当該送信機2dが装着された車輪1の回転位置はほぼ一定の値を示すのに対し、他の回転位置はばらつきが生じる。よって、各車輪1の回転位置データのばらつき度合いに基づいて当該送信機2dの車輪位置と判定することで、送信機2dの車輪位置を精度良く判定できる。
また、車速が停車速から高車速まで変化している場合、回転位置補正部11d,12dによる回転位置の補正により、第1車輪位置判定制御および第2車輪位置判定制御の判定精度低下を抑制できる。
さらに、ゴム部26の弾性係数はタイヤ内の温度に依存するため、タイヤ内の温度を考慮して補正歯数Δzを変更することで、極低温時におけるゴム部26の弾性係数の変動に伴う車輪位置の判定精度低下を抑制できる。
実施例2のタイヤ空気圧モニター装置にあっては、実施例1の効果(1)~(6)に加え、以下に列挙する効果を奏する。
(7) タイヤ内の温度を検出する温度センサ2fを備え、回転位置補正部11d,12dは、検出されたタイヤ内の温度に基づいて補正歯数Δzを変更する。
送信機2dが常に一定の回転位置で無線信号を送信している場合、そのタイミングで検出された各車輪1の回転位置のうち当該送信機2dが装着された車輪1の回転位置はほぼ一定の値を示すのに対し、他の回転位置はばらつきが生じる。よって、各車輪1の回転位置データのばらつき度合いに基づいて当該送信機2dの車輪位置と判定することで、送信機2dの車輪位置を精度良く判定できる。
また、車速が停車速から高車速まで変化している場合、回転位置補正部11d,12dによる回転位置の補正により、第1車輪位置判定制御および第2車輪位置判定制御の判定精度低下を抑制できる。
さらに、ゴム部26の弾性係数はタイヤ内の温度に依存するため、タイヤ内の温度を考慮して補正歯数Δzを変更することで、極低温時におけるゴム部26の弾性係数の変動に伴う車輪位置の判定精度低下を抑制できる。
(8) 回転位置補正部11d,12dは、タイヤ内の温度に基づいてゴム部26の弾性係数を推定する弾性係数推定部13aと、弾性係数に基づいて補正歯数Δzを変更する補正量変更部13bとを備える。
ゴム部26の弾性係数がわかると、車速に応じて本体部24に遠心方向加速度が作用したときのゴム部24の変形量、すなわち、本体部24の傾斜角度θをより精度良く推定できる。よって、弾性係数に基づいて補正歯数Δzを変更することで、極低温時における車輪位置の判定精度低下を抑制できる。
ゴム部26の弾性係数がわかると、車速に応じて本体部24に遠心方向加速度が作用したときのゴム部24の変形量、すなわち、本体部24の傾斜角度θをより精度良く推定できる。よって、弾性係数に基づいて補正歯数Δzを変更することで、極低温時における車輪位置の判定精度低下を抑制できる。
(9) 補正量変更部13bは、弾性係数が高いほど補正歯数Δzを小さくする。
ゴム部26の弾性係数が高いほど、同一車速であっても本体部24の傾斜角度θは小さくなるため、弾性係数が高いほど補正歯数Δzを小さくすることで、補正歯数Δzによる補正後の各車輪の回転位置が、TPMSセンサ2の回転位置が最上点にあるときの各車輪1の回転位置から乖離するのを抑制できる。
ゴム部26の弾性係数が高いほど、同一車速であっても本体部24の傾斜角度θは小さくなるため、弾性係数が高いほど補正歯数Δzを小さくすることで、補正歯数Δzによる補正後の各車輪の回転位置が、TPMSセンサ2の回転位置が最上点にあるときの各車輪1の回転位置から乖離するのを抑制できる。
(10) 弾性変形推定部13aは、ゴム部26の温度に対する弾性係数特性マップを備え、タイヤ内の温度から弾性係数特性マップを参照して弾性係数を推定する。
実際に計測したゴム部26の温度に対する弾性係数特性に基づいて弾性係数を推定することで、ゴム部26の弾性係数を精度良く推定できる。
実際に計測したゴム部26の温度に対する弾性係数特性に基づいて弾性係数を推定することで、ゴム部26の弾性係数を精度良く推定できる。
〔他の実施例〕
以上、本発明を実施するための最良の形態を、図面に基づく実施例により説明したが、本発明の具体的な構成は、実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
例えば、実施例では、車速センサを設けた例を示したが、車輪速センサの車輪速パルスから車速を検出しても良い。
空気バルブは、ホイルリムにバルブワッシャおよびバルブナットで固定されるクランプイン方式の空気バルブとしても良い。
以上、本発明を実施するための最良の形態を、図面に基づく実施例により説明したが、本発明の具体的な構成は、実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
例えば、実施例では、車速センサを設けた例を示したが、車輪速センサの車輪速パルスから車速を検出しても良い。
空気バルブは、ホイルリムにバルブワッシャおよびバルブナットで固定されるクランプイン方式の空気バルブとしても良い。
Claims (10)
- 各車輪のホイルリムに取り付けられる空気バルブと、
タイヤ内であって前記空気バルブと一体に形成された基板上に、タイヤ空気圧を検出するタイヤ空気圧検出手段と、前記車輪が回転しているときの遠心方向加速度を検出する加速度検出手段と、前記遠心方向加速度の重力加速度依存成分の値が所定値となったとき前記タイヤ空気圧情報および各送信機固有の識別情報を無線信号にて送信する送信機とが取り付けられ、タイヤ回転軸と前記バルブ孔とを含む面外に重心点を有する本体部と、
車体側に設けられ、前記無線信号を受信する受信機と、
各車輪と対応して車体側に設けられ、車輪の回転数に比例した車輪速パルスを出力する車輪速センサと、
前記各車輪速パルスのカウント値から各車輪の回転位置を検出する回転位置検出手段と、
ある識別情報を含む無線信号が送信されたときの各車輪の回転位置を複数回取得して各車輪の回転位置データとして蓄積し、各回転位置データのばらつき度合いに基づいて当該識別情報に対応する送信機の車輪位置を判定する車輪位置判定手段と、
車速を検出する車速検出手段と、
前記検出された車速に応じて前記検出された回転位置を補正する回転位置補正手段と、
を備えたことを特徴とするタイヤ空気圧モニター装置。 - 請求項1に記載のタイヤ空気圧モニター装置において、
前記回転位置補正手段は、前記検出された回転位置の補正量を、車速が高くなるほど大きくすることを特徴とするタイヤ空気圧モニター装置。 - 請求項2に記載のタイヤ空気圧モニター装置において、
前記回転位置補正手段は、前記補正量を、前記所定車速以上の場合は前記所定車速未満の場合よりも車速変化に対する変化量が大きくなる特性とすることを特徴とするタイヤ空気圧モニター装置。 - 請求項2または請求項3に記載のタイヤ空気圧モニター装置において、
前記回転位置補正手段は、前記検出された回転位置に対し前記補正量を加算および減算した2つの値を補正後の回転位置とすることを特徴とするタイヤ空気圧モニター装置。 - 請求項2ないし請求項4のいずれか1項に記載のタイヤ空気圧モニター装置において、
前記回転位置補正手段は、前記補正量を、車速を徐々に高めながら走行したときに実際に計測された、ある識別情報に対応する送信機と同じ車輪位置の回転位置データの車速に対する変化特性に基づいて設定することを特徴とするタイヤ空気圧モニター装置。 - 請求項1ないし請求項5のいずれか1項に記載のタイヤ空気圧モニター装置において、
タイヤ内の温度を検出する温度検出手段を備え、
前記回転位置補正手段は、前記タイヤ内の温度に基づいて前記検出された回転位置を補正するための補正量を変更することを特徴とするタイヤ空気圧モニター装置。 - 請求項6に記載のタイヤ空気圧モニター装置において、
前記回転位置補正手段は、
前記タイヤ内の温度に基づいて前記弾性体の弾性係数を推定する弾性係数推定部と、
前記弾性係数に基づいて前記補正量を変更する補正量変更部と、
を備えたことを特徴とするタイヤ空気圧モニター装置。 - 請求項7に記載のタイヤ空気圧モニター装置において、
前記補正量変更部は、前記弾性係数が高いほど前記補正量を小さくすることを特徴とするタイヤ空気圧モニター装置。 - 請求項7または請求項8に記載のタイヤ空気圧モニター装置において、
前記弾性変形推定部は、前記弾性体の温度に対する弾性係数特性マップを備え、前記タイヤ内の温度から前記弾性係数特性マップを参照して前記弾性係数を推定することを特徴とするタイヤ空気圧モニター装置。 - 請求項1ないし請求項9のいずれか1項に記載のタイヤ空気圧モニター装置において、
前記空気バルブは、前記ホイルリムのバルブ孔に弾性体を介して固定されるスナップイン方式であることを特徴とするタイヤ空気圧モニター装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014503870A JP5741767B2 (ja) | 2012-03-08 | 2013-03-06 | タイヤ空気圧モニター装置 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012051705 | 2012-03-08 | ||
JP2012-051709 | 2012-03-08 | ||
JP2012-051705 | 2012-03-08 | ||
JP2012051709 | 2012-03-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013133307A1 true WO2013133307A1 (ja) | 2013-09-12 |
Family
ID=49116780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/056094 WO2013133307A1 (ja) | 2012-03-08 | 2013-03-06 | タイヤ空気圧モニター装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5741767B2 (ja) |
WO (1) | WO2013133307A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015058773A (ja) * | 2013-09-18 | 2015-03-30 | 株式会社東海理化電機製作所 | タイヤ位置判定システム |
WO2015053131A1 (ja) * | 2013-10-10 | 2015-04-16 | 株式会社東海理化電機製作所 | タイヤ位置判定システム |
WO2015072475A1 (ja) * | 2013-11-15 | 2015-05-21 | 株式会社東海理化電機製作所 | タイヤ位置判定システム |
WO2015076394A1 (ja) * | 2013-11-25 | 2015-05-28 | 株式会社東海理化電機製作所 | タイヤ位置判定システム |
WO2015076292A1 (ja) * | 2013-11-25 | 2015-05-28 | 株式会社東海理化電機製作所 | タイヤ位置判定システム |
WO2015105147A1 (ja) * | 2014-01-10 | 2015-07-16 | 株式会社東海理化電機製作所 | タイヤ位置登録システム |
WO2015137454A1 (ja) * | 2014-03-13 | 2015-09-17 | 株式会社東海理化電機製作所 | タイヤ位置登録システム |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001191767A (ja) * | 2000-01-14 | 2001-07-17 | Bridgestone Corp | タイヤの状態検出装置、自動車制御装置、及びタイヤの状態検出方法 |
JP2005321958A (ja) * | 2004-05-07 | 2005-11-17 | Denso Corp | タイヤ空気圧検出装置 |
JP2005343281A (ja) * | 2004-06-02 | 2005-12-15 | Bridgestone Corp | タイヤの動的状態推定方法とその装置、及び、センサ付タイヤ |
JP2006151295A (ja) * | 2004-11-30 | 2006-06-15 | Pacific Ind Co Ltd | スナップインバルブ装置 |
JP2007245982A (ja) * | 2006-03-17 | 2007-09-27 | Fuji Electric Systems Co Ltd | タイヤ位置判別方法、タイヤ位置判別システム、その無線送信ユニット、無線受信ユニット |
JP2010122023A (ja) * | 2008-11-19 | 2010-06-03 | Nissan Motor Co Ltd | タイヤ空気圧モニター装置およびタイヤ空気圧モニター方法 |
-
2013
- 2013-03-06 WO PCT/JP2013/056094 patent/WO2013133307A1/ja active Application Filing
- 2013-03-06 JP JP2014503870A patent/JP5741767B2/ja not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001191767A (ja) * | 2000-01-14 | 2001-07-17 | Bridgestone Corp | タイヤの状態検出装置、自動車制御装置、及びタイヤの状態検出方法 |
JP2005321958A (ja) * | 2004-05-07 | 2005-11-17 | Denso Corp | タイヤ空気圧検出装置 |
JP2005343281A (ja) * | 2004-06-02 | 2005-12-15 | Bridgestone Corp | タイヤの動的状態推定方法とその装置、及び、センサ付タイヤ |
JP2006151295A (ja) * | 2004-11-30 | 2006-06-15 | Pacific Ind Co Ltd | スナップインバルブ装置 |
JP2007245982A (ja) * | 2006-03-17 | 2007-09-27 | Fuji Electric Systems Co Ltd | タイヤ位置判別方法、タイヤ位置判別システム、その無線送信ユニット、無線受信ユニット |
JP2010122023A (ja) * | 2008-11-19 | 2010-06-03 | Nissan Motor Co Ltd | タイヤ空気圧モニター装置およびタイヤ空気圧モニター方法 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015058773A (ja) * | 2013-09-18 | 2015-03-30 | 株式会社東海理化電機製作所 | タイヤ位置判定システム |
WO2015053131A1 (ja) * | 2013-10-10 | 2015-04-16 | 株式会社東海理化電機製作所 | タイヤ位置判定システム |
JP2015074388A (ja) * | 2013-10-10 | 2015-04-20 | 株式会社東海理化電機製作所 | タイヤ位置判定システム |
EP3056360A4 (en) * | 2013-10-10 | 2017-07-19 | Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho | Tire position determination system |
CN105612067A (zh) * | 2013-10-10 | 2016-05-25 | 株式会社东海理化电机制作所 | 轮胎位置判断系统 |
US10166822B2 (en) | 2013-10-10 | 2019-01-01 | Pacific Industrial Co., Ltd. | Tire position determination system |
WO2015072475A1 (ja) * | 2013-11-15 | 2015-05-21 | 株式会社東海理化電機製作所 | タイヤ位置判定システム |
US20160288595A1 (en) * | 2013-11-15 | 2016-10-06 | Kabushiki Kaisha Tokai Rika Denki Seisakusho | Tire position determination system |
US9849736B2 (en) | 2013-11-15 | 2017-12-26 | Kabushiki Kaisha Tokai Rika Denki Seisakusho | Tire position determination system |
EP3088217A4 (en) * | 2013-11-15 | 2017-07-26 | Kabushiki Kaisha Tokai Rika Denki Seisakusho | Tire position determination system |
JP2015101209A (ja) * | 2013-11-25 | 2015-06-04 | 株式会社東海理化電機製作所 | タイヤ位置判定システム |
JP2015101208A (ja) * | 2013-11-25 | 2015-06-04 | 株式会社東海理化電機製作所 | タイヤ位置判定システム |
WO2015076292A1 (ja) * | 2013-11-25 | 2015-05-28 | 株式会社東海理化電機製作所 | タイヤ位置判定システム |
WO2015076394A1 (ja) * | 2013-11-25 | 2015-05-28 | 株式会社東海理化電機製作所 | タイヤ位置判定システム |
US9694631B2 (en) | 2013-11-25 | 2017-07-04 | Kabushiki Kaisha Tokai Rika Denki Seisakusho | Tire position determination system |
WO2015105147A1 (ja) * | 2014-01-10 | 2015-07-16 | 株式会社東海理化電機製作所 | タイヤ位置登録システム |
CN106061762A (zh) * | 2014-03-13 | 2016-10-26 | 株式会社东海理化电机制作所 | 轮胎位置登记系统 |
WO2015137454A1 (ja) * | 2014-03-13 | 2015-09-17 | 株式会社東海理化電機製作所 | タイヤ位置登録システム |
Also Published As
Publication number | Publication date |
---|---|
JP5741767B2 (ja) | 2015-07-01 |
JPWO2013133307A1 (ja) | 2015-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5590227B2 (ja) | タイヤ空気圧モニター装置 | |
JP5741767B2 (ja) | タイヤ空気圧モニター装置 | |
JP5574044B2 (ja) | タイヤ空気圧モニター装置 | |
JP5853402B2 (ja) | タイヤ空気圧モニター装置 | |
KR101550124B1 (ko) | 타이어 공기압 모니터 시스템 | |
KR101560960B1 (ko) | 타이어 공기압 송신 장치 및 타이어 공기압 모니터 시스템 | |
WO2012157308A1 (ja) | タイヤ空気圧モニター装置 | |
US20130179113A1 (en) | Method of sampling acceleration measurements of a motor vehicle wheel | |
JP5736959B2 (ja) | タイヤ空気圧モニター装置 | |
JP5736951B2 (ja) | タイヤ空気圧モニター装置 | |
JP5741765B2 (ja) | タイヤ空気圧モニター装置 | |
JP5741764B2 (ja) | タイヤ空気圧モニター装置 | |
JP5741766B2 (ja) | タイヤ空気圧モニター装置 | |
JP5741768B2 (ja) | タイヤ空気圧モニター装置 | |
JP5896014B2 (ja) | タイヤ空気圧モニター装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13758689 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014503870 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13758689 Country of ref document: EP Kind code of ref document: A1 |