WO2015050173A1 - 化合物、有機エレクトロルミネッセンス素子及び電子機器 - Google Patents

化合物、有機エレクトロルミネッセンス素子及び電子機器 Download PDF

Info

Publication number
WO2015050173A1
WO2015050173A1 PCT/JP2014/076326 JP2014076326W WO2015050173A1 WO 2015050173 A1 WO2015050173 A1 WO 2015050173A1 JP 2014076326 W JP2014076326 W JP 2014076326W WO 2015050173 A1 WO2015050173 A1 WO 2015050173A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
compound
Prior art date
Application number
PCT/JP2014/076326
Other languages
English (en)
French (fr)
Inventor
匡 羽毛田
河村 昌宏
由美子 水木
裕勝 伊藤
友治 羽山
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN201480043471.9A priority Critical patent/CN105408311B/zh
Priority to US14/917,174 priority patent/US10622569B2/en
Priority to KR1020167002761A priority patent/KR102282552B1/ko
Publication of WO2015050173A1 publication Critical patent/WO2015050173A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/348Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising osmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/865Intermediate layers comprising a mixture of materials of the adjoining active layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Definitions

  • the present invention relates to a compound, an organic electroluminescence element using the compound, and an electronic apparatus including the organic electroluminescence element.
  • an organic electroluminescence (EL) element is composed of an anode, a cathode, and one or more organic thin film layers sandwiched between the anode and the cathode.
  • a voltage is applied between both electrodes, electrons from the cathode side and holes from the anode side are injected into the light emitting region, and the injected electrons and holes recombine in the light emitting region to generate an excited state, which is excited.
  • Light is emitted when the state returns to the ground state.
  • organic EL elements can be obtained in various light emitting colors by using various light emitting materials for the light emitting layer, and therefore, researches for practical application to displays and the like are active.
  • the present invention has been made under such circumstances.
  • An organic electroluminescence element capable of being driven at a lower voltage and having a higher luminous efficiency, an electronic device including the organic electroluminescence element, and realizing the same It is an object to provide a compound for the purpose.
  • the present inventors have found that the object can be achieved by a compound having a specific structure having a fluoranthene skeleton.
  • the present invention has been completed based on such findings.
  • X 1 to X 10 each independently represents C—R (R represents a hydrogen atom, a substituent or a single bond bonded to L) or a nitrogen atom.
  • L is a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heteroarylene group having 5 to 30 ring atoms, or the arylene group and the heteroarylene group.
  • R 1 to R 8 each independently represents a hydrogen atom, a fluorine atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, substituted or unsubstituted Unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms, substituted or unsubstituted alkylthio group having 1 to 20 carbon atoms, substituted or unsubstituted ring formation
  • the three R 100 s may be the same or different.
  • R 9 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted ring carbon atom having 6 to 30 carbon atoms. And a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms.
  • n represents an integer of 1 to 4. When n is an integer of 2 to 4, a plurality of groups enclosed in parentheses may be the same or different. However, the compound represented by the general formula (1) has one fluoranthene structure.
  • a material for an organic electroluminescence device comprising the compound according to [1] above.
  • An organic electroluminescence device comprising a plurality of organic thin film layers including a light emitting layer between a cathode and an anode, wherein at least one of the organic thin film layers comprises the compound according to the above [1].
  • An electronic device including the organic electroluminescence element according to [3].
  • an organic electroluminescence device capable of being driven at a lower voltage and having higher luminous efficiency
  • an electronic device including the organic electroluminescence device and a compound for realizing the same. it can.
  • carbon number ab in the expression “substituted or unsubstituted X group having carbon number ab” represents the carbon number when X group is unsubstituted, and X group The number of carbon atoms of the substituent when is substituted is not included.
  • ring-forming carbon means a carbon atom constituting a saturated ring, an unsaturated ring, or an aromatic ring, and does not include the number of carbon atoms of a substituent bonded to the ring.
  • the “ring-forming atom” means an atom constituting a saturated ring, an unsaturated ring, an aromatic ring or a heterocyclic ring, and does not include the number of hydrogen atoms and substituents bonded to the ring.
  • hydroxide atom includes isotopes having different neutron numbers, that is, light hydrogen (protium), deuterium (deuterium) and tritium (tritium).
  • substituents and “substituted or unsubstituted” have 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 6) unless otherwise defined.
  • substituents those selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 or 6 carbon atoms, and an aryl group having 6 to 12 ring carbon atoms are particularly preferable. These optional substituents may be further substituted with the above substituents.
  • the number of optional substituents when referring to “substituted or unsubstituted” may be one or two or more. When there are two or more substituents, these substituents may be the same or different.
  • the organic EL device of the present invention has a plurality of organic thin film layers including a light emitting layer between a cathode and an anode, and at least one of the organic thin film layers is represented by the following general formula (1) of the present invention.
  • Compounds. [In Formula (1), X 1 to X 10 each independently represents C—R (R represents a hydrogen atom, a substituent or a single bond bonded to L) or a nitrogen atom.
  • L is a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heteroarylene group having 5 to 30 ring atoms, or the arylene group and the heteroarylene group.
  • R 1 to R 8 each independently represents a hydrogen atom, a fluorine atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, substituted or unsubstituted Unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms, substituted or unsubstituted alkylthio group having 1 to 20 carbon atoms, substituted or unsubstituted ring formation
  • the three R 100 s may be the same or different.
  • R 9 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted ring carbon atom having 6 to 30 carbon atoms. And a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms.
  • n represents an integer of 1 to 4. When n is an integer of 2 to 4, a plurality of groups enclosed in parentheses may be the same or different. However, the compound represented by the general formula (1) has one fluoranthene structure. ]
  • X 1 to X 10 are preferably each independently C—R (R represents a hydrogen atom, a substituent or a single bond bonded to L), and R represents a single bond bonded to L. Except for the above, R is preferably a hydrogen atom.
  • R represents a hydrogen atom.
  • Examples of the arylene group represented by L having 6 to 30 ring carbon atoms include, for example, a phenylene group, a naphthylene group, a biphenylylene group, and an anthrylene group.
  • a phenylene group, a naphthylene group, and a biphenylylene group are preferable, a phenylene group is more preferable, and a 1,4-phenylene group is further preferable.
  • heteroarylene group having 5 to 30 ring atoms (preferably 5 to 24, more preferably 5 to 12) represented by L include, for example, a pyrrolylene group, a furylene group, a thienylene group, a pyridylene group, an imidazopyridylene group, Pyridazinylene group, pyrimidinylene group, pyrazinylene group, triazinylene group, imidazolylene group, oxazolylene group, thiazolylene group, pyrazolylene group, isoxazolylene group, isothiazolylene group, oxadiazolylene group, thiadiazolylene group, triazorylene group, indolylene group, indylene group Isoindolinylene group, benzofuranylene group, isobenzofuranylene group, benzothiophenylene group, isobenzothiophenylene group, indolizinylene group, quinolidinylene group,
  • a furylene group, a thienylene group, a pyridylene group, an imidazopyridylene group, a pyridazinylene group, a pyrimidinylene group, a pyrazinylene group, a benzimidazolylene group, a dibenzofuranylene group, a dibenzothiophenylene group, and a phenanthrolinylene group are preferable.
  • L may be a divalent group formed by bonding 2 to 4 of the arylene group and the heteroarylene group.
  • Preferred are divalent groups formed by bonding the arylene group and the heteroarylene group one by one, that is, a heteroarylene group-arylene group and an arylene group-heteroarylene group.
  • L is preferably a single bond or a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, more preferably a single bond or a substituted or unsubstituted arylene group having 6 to 12 ring carbon atoms, More preferable are a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylylene group, a substituted or unsubstituted terphenylylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted anthrylene group, and a substituted or unsubstituted pyrenylene group.
  • a single bond, a phenylene group, a naphthylene group or a biphenylylene group is particularly preferred.
  • Examples of the alkyl group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 6) represented by R 1 to R 9 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n- Butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group (including isomer group), hexyl group (including isomer group), heptyl group (including isomer group), octyl group (isomer) Nonyl group (including isomer group), decyl group (including isomer group), undecyl group (including isomer group), dodecyl group (including isomer group), and the like.
  • a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, and a pentyl group (including an isomer group) are preferable.
  • Ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group and t-butyl group are more preferable, and methyl group, ethyl group, isopropyl group and t-butyl group are particularly preferable.
  • Examples of the cycloalkyl group having 3 to 20 ring carbon atoms (preferably 3 to 6, more preferably 5 or 6) represented by R 1 to R 9 include, for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, A cycloheptyl group, a cyclooctyl group, an adamantyl group, etc. are mentioned. Among these, a cyclopentyl group and a cyclohexyl group are preferable.
  • the alkoxy group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 6) represented by R 1 to R 8 is an alkoxy group in which the alkyl group portion is the alkyl group having 1 to 20 carbon atoms. Can be mentioned. Specific examples of preferred alkoxy groups include those in which the alkyl group moiety is the preferred alkyl group.
  • the aryloxy group represented by R 1 to R 8 having 6 to 30 ring carbon atoms is an aryl group having a ring described later. Examples thereof include aryl groups having 6 to 30 carbon atoms. Specific examples of preferred aryloxy groups include those in which the aryl group moiety is a preferred aryl group described below.
  • the alkylthio group represented by R 1 to R 8 having 1 to 20 carbon atoms preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms
  • the alkyl group moiety is the alkyl group having 1 to 20 carbon atoms. A certain alkoxy group is mentioned.
  • preferred alkylthio groups include those in which the alkyl group moiety is the preferred alkyl group.
  • the arylthio group represented by R 1 to R 8 having 6 to 30 ring carbon atoms (preferably 6 to 24, more preferably 6 to 18 and even more preferably 6 to 10) the aryl group moiety is a ring formation described later. Examples thereof include aryl groups having 6 to 30 carbon atoms.
  • preferred arylthio groups include those in which the aryl group moiety is a preferred aryl group described below.
  • the three R 100 substituted with silicon atoms may be the same or different.
  • Specific examples of the silyl group having an alkyl group having 1 to 30 carbon atoms include a monoalkylsilyl group, a dialkylsilyl group, and a trialkylsilyl group.
  • Examples of the monoalkylsilyl group include a monoalkylsilyl group having two hydrogen atoms and one alkyl group having 1 to 30 carbon atoms.
  • the carbon number of the monoalkylsilyl group is preferably 1-30, more preferably 1-10, and even more preferably 1-5.
  • Examples of the dialkylsilyl group include a dialkylsilyl group having one hydrogen atom and two alkyl groups having 1 to 30 carbon atoms.
  • the total number of carbon atoms of the dialkylsilyl group is preferably 2-30, more preferably 2-20, and even more preferably 2-10.
  • trialkylsilyl group examples include trimethylsilyl group, triethylsilyl group, tri-n-butylsilyl group, tri-n-octylsilyl group, triisobutylsilyl group, dimethylethylsilyl group, dimethylisopropylsilyl group, dimethyl-n -Propylsilyl group, dimethyl-n-butylsilyl group, dimethyl-t-butylsilyl group, diethylisopropylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triisopropylsilyl group and the like.
  • the total number of carbon atoms in the trialkylsilyl group is preferably 3 to 30, and more preferably 3 to 15.
  • the plurality of alkyl groups in the dialkylsilyl group and the trialkylsilyl group may be the same or different from each other.
  • Specific examples of the silyl group having an aryl group having 6 to 60 ring carbon atoms include a monoarylsilyl group, a diarylsilyl group, a dialkylarylsilyl group, an alkyldiarylsilyl group, and a triarylsilyl group.
  • Examples of the monoarylsilyl group include a monoarylsilyl group having two hydrogen atoms and one aryl group having 6 to 30 ring carbon atoms, which will be described later.
  • Examples of the diarylsilyl group include a diarylsilyl group having one hydrogen atom and two aryl groups having 6 to 30 ring carbon atoms, which will be described later.
  • the total carbon number of the diarylsilyl group is preferably 12-30.
  • Examples of the dialkylarylsilyl group include a dialkylarylsilyl group having two alkyl groups exemplified as the alkyl group having 1 to 30 carbon atoms and one aryl group having 6 to 30 ring carbon atoms described later. It is done.
  • the total number of carbon atoms in the dialkylarylsilyl group is preferably 8-30.
  • the alkyldiarylsilyl group includes, for example, an alkyldiarylsilyl group having one alkyl group exemplified for the alkyl group having 1 to 30 carbon atoms and two aryl groups having 6 to 30 ring carbon atoms described later. It is done.
  • the total number of carbon atoms in the alkyldiarylsilyl group is preferably 13-30.
  • Examples of the triarylsilyl group include a triarylsilyl group having three aryl groups having 6 to 30 ring carbon atoms, which will be described later.
  • the total number of carbon atoms in the triarylsilyl group is preferably 18-30.
  • the plurality of aryl groups in the diarylsilyl group, alkyldiarylsilyl group, and triarylsilyl group may be the same or different.
  • the alkylamino group having 2 to 30 carbon atoms represented by R 1 to R 8 is represented as —NHR V or —N (R V ) 2 .
  • Two R V in -N (R V) 2 may each be the same or may be different.
  • Examples of R V include the above alkyl groups having 1 to 30 carbon atoms.
  • the number of carbon atoms in the alkyl group moiety is preferably 1-20, more preferably 1-10, and still more preferably 1-6.
  • As the alkylamino group a dimethylamino group, a diethylamino group, and a diisopropylamino group are preferable.
  • the arylamino group having 6 to 60 ring carbon atoms represented by R 1 to R 8 is represented as —NHR W or —N (R W ) 2 . -N (R w) of the two in 2 R w may each be the same or may be different.
  • the number of carbon atoms forming the aryl group moiety is preferably 6-30, more preferably 6-24, still more preferably 6-18, and particularly preferably 6-10.
  • a diphenylamino group is preferable.
  • R 9 represents (preferably 6-24, more preferably 6-18, more preferably 6-10) aryl group may be a condensed ring with a non-fused ring There may be.
  • the aryl group include phenyl, naphthylphenyl, biphenylyl, terphenylyl, naphthyl, acenaphthylenyl, anthryl, benzoanthryl, aceanthryl, phenanthryl, benzo [c] phenanthryl, phenalenyl.
  • a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, an anthryl group, a pyrenyl group, and a fluoranthenyl group are preferable, a phenyl group, a biphenylyl group, and a terphenylyl group are more preferable, and a phenyl group is more preferable.
  • R 9 represents a heteroaryl group having 5 to 30 (preferably 5 to 24, more preferably 5 to 12) ring-forming atoms represented by at least one, preferably 1 to 5, more preferably 1 to 4, More preferably, it contains 1 to 3 heteroatoms.
  • this hetero atom a nitrogen atom, a sulfur atom, and an oxygen atom are mentioned, for example, A nitrogen atom and an oxygen atom are preferable, and a nitrogen atom is more preferable.
  • heteroaryl group examples include pyrrolyl group, furyl group, thienyl group, pyridyl group, imidazopyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, oxazolyl group, thiazolyl group, pyrazolyl group, isoxazolyl group.
  • a furyl group, a thienyl group, a pyridyl group, an imidazopyridyl group, a pyridazinyl group, a pyrimidinyl group, a pyrazinyl group, a benzimidazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, and a phenanthrolinyl group are preferable.
  • R 1 to R 8 may represent a single bond that binds to L, but R 9 does not represent a single bond that binds to L. R 1 to R 9 do not combine to form a ring.
  • n represents an integer of 1 to 4, preferably 1 or 2, and more preferably 1.
  • n is an integer of 2 to 4, a plurality of groups enclosed in parentheses, that is, the following groups may be the same or different.
  • X 1 to X 10 when at least one of X 1 to X 10 is a nitrogen atom, X 1 to X 4 , X 5 , X 7 , X 8 and X 9 It is preferable that at least one selected is a nitrogen atom. Among them, it is more preferable that X 7 or X 8 is a nitrogen atom, or X 1 and X 3 , X 2 and X 4 , X 5 and X 7 , or X 8 and X 10 are nitrogen atoms. In particular, when X 7 is a nitrogen atom, X 6 represents C-R, as the R is a single bond to bond to L is more preferred.
  • X 1 and X 3 is a nitrogen atom
  • X 2 represents C-R, more preferably those which are a single bond said R is bound to L
  • X 2 and X 4 is a nitrogen atom
  • X 3 represents a C-R, more preferably those which are a single bond said R is bound by L
  • X 5 and X 7 is a nitrogen atom
  • X 6 represents C-R, wherein R Is more preferably a single bond bonded to L
  • X 8 and X 10 are nitrogen atoms
  • X 8 represented by the following formula (1-1) represents CR, and the R is What is the single bond couple
  • X 1 to X 7 , X 9 , X 10 , L, R 1 to R 9 and n are as defined above.
  • the compound of the present invention includes a single bond represented by the following formula (1-2), wherein X 2 represents CR, and R is bonded to L, from the viewpoint of low voltage driving and light emission efficiency Are also preferred.
  • X 1 , X 3 to X 10 , L, R 1 to R 9 and n are as defined above.
  • X 1 to X 10 are CR (wherein R represents a hydrogen atom or a single bond with L). More preferably, 9 or more are C—R (wherein R represents a hydrogen atom or a single bond with L), and all are represented by the following formula (1 ′): Is more preferably CR (wherein R represents a hydrogen atom or a single bond with L).
  • R 1 to R 9 , L and n are the same as those in the formula (1), and preferred ones are also the same.
  • R 1 to R 9 , L and n are the same as those in the formulas (1) and (1 ′), and preferred ones are also the same. is there.
  • R 9 is more preferably a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms (preferably 6 to 24, more preferably 6 to 18, more preferably 6 to 10),
  • a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenylyl group, and a substituted or unsubstituted naphthyl group are more preferable, and a phenyl group, a biphenylyl group, and a naphthyl group are particularly preferable.
  • R 9 is more preferably a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms (preferably 6 to 24, more preferably 6 to 18, more preferably 6 to 10),
  • a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenylyl group, and a substituted or unsubstituted naphthyl group are more preferable, and a phenyl group, a biphenylyl group, and a naphthyl group are particularly preferable.
  • R 9 is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  • the aryl group is preferably a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, an anthryl group, or a pyrenyl group.
  • R 9 is a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms.
  • the heteroaryl group includes a furyl group, a thienyl group, a pyridyl group, an imidazopyridyl group, a pyridazinyl group, a pyrimidinyl group, a pyrazinyl group, a benzimidazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a phenanthrotrol group.
  • Nyl groups are preferred.
  • a compound in which L is a single bond or a substituted or unsubstituted arylene group having 6 to 30 (more preferably 6 to 12) ring-forming carbon atoms.
  • the arylene group is preferably a phenylene group, biphenylylene group, terphenylylene group, naphthylene group, anthrylene group, or pyrenylene group.
  • the compounds of the present invention include the following formulas (1-3), (1-4), (1-5), (1-5-1), (1-6), (1-6) -1), (1-7), (1-8), (1-9) and (1-10) are more preferred.
  • the compound of the present invention is useful as a material for an organic EL device.
  • the light emitting layer of an organic EL element contains the compound of this invention.
  • the aspect which has a positive hole transport layer (hole injection layer) and this hole transport layer (hole injection layer) contains the compound of this invention is also preferable.
  • one aspect of the organic EL device of the present invention will be described in detail.
  • the configuration (8) is preferably used, but is not limited thereto.
  • a space layer may be provided between the respective light emitting layers for the purpose of preventing excitons generated in the phosphorescent light emitting layer from diffusing into the fluorescent light emitting layer.
  • the organic EL element 1 includes a transparent substrate 2, an anode 3, a cathode 4, and an organic thin film layer 10 disposed between the anode 3 and the cathode 4.
  • the organic thin film layer 10 has a phosphorescent light emitting layer 5 containing a phosphorescent host as a host material and a phosphorescent dopant as a phosphorescent material, and a phosphorescent light emitting layer such as a hole transport layer 6 between the phosphorescent light emitting layer 5 and the anode 3.
  • An electron transport layer 7 or the like may be provided between 5 and the cathode 4.
  • an electron barrier layer may be provided on the phosphorescent light emitting layer 5 on the anode 3 side, and a hole barrier layer may be provided on the phosphorescent light emitting layer 5 on the cathode 4 side.
  • the organic EL device of the present invention may be a fluorescent or phosphorescent monochromatic light emitting device, a fluorescent / phosphorescent hybrid white light emitting device, or a simple type having a single light emitting unit. Alternatively, a tandem type having a plurality of light emitting units may be used.
  • the “light emitting unit” refers to a minimum unit that includes one or more organic layers, one of which is a light emitting layer, and can emit light by recombination of injected holes and electrons. A typical layer structure of the light emitting unit is shown below.
  • A Hole transport layer / light emitting layer (/ electron transport layer)
  • B Hole transport layer / first phosphorescent light emitting layer / second phosphorescent light emitting layer (/ electron transport layer)
  • C Hole transport layer / phosphorescent layer / space layer / fluorescent layer (/ electron transport layer)
  • D Hole transport layer / first phosphorescent light emitting layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
  • E Hole transport layer / first phosphorescent light emitting layer / space layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
  • F Hole transport layer / phosphorescent layer / space layer / first fluorescent layer / second fluorescent layer (/ electron transport layer)
  • the following element structure can be mentioned as a typical element structure of a tandem type organic EL element.
  • the first light emitting unit and the second light emitting unit for example, the same light emitting unit as that described above can be selected independently. it can.
  • the intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer, and has electrons in the first light emitting unit and holes in the second light emitting unit.
  • a known material structure to be supplied can be used.
  • the host material is referred to as a fluorescent host when combined with a fluorescent dopant, and is referred to as a phosphorescent host when combined with a phosphorescent dopant. It is not limited. That is, the phosphorescent host in this specification means a material constituting the phosphorescent light emitting layer containing a phosphorescent dopant, and does not mean a material that can be used only as a host of the phosphorescent material.
  • the organic EL element of the present invention is produced on a light-transmitting substrate.
  • the light-transmitting substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 nm to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include those using soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like as raw materials.
  • the polymer plate include those using polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like as raw materials.
  • the anode of the organic EL element plays a role of injecting holes into the hole transport layer or the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
  • Specific examples of the anode material include indium tin oxide alloy (ITO), tin oxide (NESA), indium zinc oxide, gold, silver, platinum, copper, and the like.
  • the anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. When light emitted from the light emitting layer is extracted from the anode as in the present embodiment, it is preferable that the light transmittance in the visible region of the anode be greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 nm to 200 nm.
  • the cathode a material having a small work function is preferable for the purpose of injecting electrons into the electron transport layer or the light emitting layer.
  • the cathode material is not particularly limited, and specifically, indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy and the like can be used.
  • the cathode can be produced by forming a thin film by a method such as vapor deposition or sputtering.
  • the aspect which takes out light emission from a cathode side is also employable.
  • the light emitting layer of the organic EL element has the following functions. That is, (1) injection function; a function capable of injecting holes from the anode or hole transport layer when an electric field is applied, and a function of injecting electrons from the cathode or electron transport layer; (2) Transport function; function to move injected charges (electrons and holes) by the force of electric field, (3) Luminescent function; a function to provide a field for recombination of electrons and holes and connect this to light emission, There is.
  • a known method such as an evaporation method, a spin coating method, or an LB method can be applied.
  • the light emitting layer is preferably a molecular deposited film.
  • the molecular deposition film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidification from a material compound in a solution state or a liquid phase state. Can be classified from a thin film (accumulated film) formed by the LB method according to a difference in an agglomerated structure and a higher-order structure and a functional difference resulting therefrom.
  • the light emitting layer can also be formed by dissolving a binder such as a resin and a material compound in a solvent to form a solution, and then thinning the solution by a spin coating method or the like.
  • the organic EL device of the present invention includes an organic thin film layer composed of one layer or a plurality of layers between a cathode and an anode.
  • the organic thin film layer has at least one light emitting layer, and at least one of the organic thin film layers contains at least one phosphorescent material and at least one compound of the present invention. Moreover, it is preferable that at least one of the light emitting layers contains one or more of the compound of the present invention and the phosphorescent material.
  • the phosphorescent material contains a metal complex, and the metal complex has a metal atom selected from Ir, Pt, Os, Au, Cu, Re, and Ru, and a ligand. preferable.
  • the ligand preferably has an ortho metal bond.
  • a compound containing a metal atom selected from Ir, Os and Pt is preferable in that the phosphorescent quantum yield is high and the external quantum efficiency of the light-emitting element can be further improved, and an iridium complex, an osmium complex, platinum It is more preferable that it is a metal complex such as a complex (preferably an orthometalated complex), among which an iridium complex and a platinum complex (both preferably orthometacylated complexes) are more preferable, and an orthometalated iridium complex is most preferable. Specific examples of preferred metal complexes are shown below, but are not particularly limited thereto.
  • At least one of the phosphorescent materials included in the light emitting layer has a maximum emission wavelength of 450 nm or more and 750 nm or less.
  • the maximum value is 450 nm or more and 495 nm or less, 495 nm or more and 590 nm or less, and 590 nm or more and 750 nm or less.
  • a highly efficient organic EL device can be obtained by forming a light emitting layer by doping a phosphorescent material (phosphorescent dopant) having such an emission wavelength into a specific host material used in the present invention.
  • the thickness of the light emitting layer is not particularly limited, but is preferably 5 to 100 nm, more preferably 7 to 70 nm, and still more preferably 10 to 50 nm. When the thickness is 5 nm or more, the formation of the light emitting layer is easy, and when the thickness is 100 nm or less, an increase in driving voltage can be avoided.
  • the organic EL device of the present invention preferably has a reducing dopant in the interface region between the cathode and the organic thin film layer. According to such a configuration, it is possible to improve the light emission luminance and extend the life of the organic EL element.
  • the reducing dopant was selected from alkali metals, alkali metal complexes, alkali metal compounds, alkaline earth metals, alkaline earth metal complexes, alkaline earth metal compounds, rare earth metals, rare earth metal complexes, rare earth metal compounds, and the like. There is at least one kind.
  • alkali metal examples include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV), Cs (work function: 1.95 eV), and the like.
  • a function of 2.9 eV or less is particularly preferable. Of these, K, Rb, and Cs are preferred, Rb and Cs are more preferred, and Cs is most preferred.
  • alkaline earth metals include Ca (work function: 2.9 eV), Sr (work function: 2.0 eV to 2.5 eV), Ba (work function: 2.52 eV), and the like. The thing below 9 eV is especially preferable.
  • rare earth metals include Sc, Y, Ce, Tb, Yb, and the like, and those having a work function of 2.9 eV or less are particularly preferable.
  • preferred metals are particularly high in reducing ability, and by adding a relatively small amount to the electron injection region, it is possible to improve the light emission luminance and extend the life of the organic EL element.
  • alkali metal compound examples include alkali oxides such as Li 2 O, Cs 2 O, and K 2 O, and alkali halides such as LiF, NaF, CsF, and KF, and LiF, Li 2 O, and NaF are preferable.
  • alkaline earth metal compound examples include BaO, SrO, CaO, and Ba x Sr 1-x O (0 ⁇ x ⁇ 1), Ba x Ca 1-x O (0 ⁇ x ⁇ 1) mixed with these. BaO, SrO, and CaO are preferable.
  • the rare earth metal compound, YbF 3, ScF 3, ScO 3, Y 2 O 3, Ce 2 O 3, GdF 3, TbF 3 and the like, YbF 3, ScF 3, TbF 3 are preferable.
  • the alkali metal complex, alkaline earth metal complex, and rare earth metal complex are not particularly limited as long as each metal ion contains at least one of an alkali metal ion, an alkaline earth metal ion, and a rare earth metal ion.
  • the ligand includes quinolinol, benzoquinolinol, acridinol, phenanthridinol, hydroxyphenyl oxazole, hydroxyphenyl thiazole, hydroxydiaryl oxadiazole, hydroxydiaryl thiadiazole, hydroxyphenyl pyridine, hydroxyphenyl benzimidazole, hydroxybenzotriazole, Hydroxyfulborane, bipyridyl, phenanthroline, phthalocyanine, porphyrin, cyclopentadiene, ⁇ -diketones, azomethines, and derivatives thereof are preferred, but not limited thereto.
  • the addition form of the reducing dopant it is preferable to form a layered or island-like shape in the interface region.
  • a forming method a method in which a reducing dopant is deposited in the organic material by simultaneously depositing a light emitting material forming an interface region and an organic material as an electron transporting material while depositing a reducing dopant by a resistance heating vapor deposition method is preferable.
  • the reducing dopant is vapor-deposited by resistance heating vapor deposition method alone, preferably the layer thickness is 0. It is formed at 1 nm to 15 nm.
  • the reducing dopant is formed in an island shape, after forming the light emitting material or the electron transport material, which is the organic layer at the interface, in the island shape, the reducing dopant is vapor-deposited by a resistance heating vapor deposition method alone, preferably the thickness of the island The film is formed at 0.05 nm to 1 nm.
  • the electron transport layer is an organic layer formed between the light emitting layer and the cathode, and has a function of transporting electrons from the cathode to the light emitting layer.
  • an organic layer close to the cathode may be defined as an electron injection layer.
  • the electron injection layer has a function of efficiently injecting electrons from the cathode into the organic layer unit.
  • the compound of this invention can also be used as an electron transport material contained in an electron carrying layer.
  • an aromatic heterocyclic compound containing one or more heteroatoms in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable.
  • the nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton.
  • a nitrogen-containing ring metal chelate complex represented by the following formula (A) is preferable.
  • R 2 to R 7 in formula (A) are each independently a hydrogen atom, a halogen atom, an oxy group, an amino group, 1 to 40 carbon atoms (preferably 1 to 20, more preferably 1 to 10, more preferably Is a hydrocarbon group having 1 to 6), an alkoxy group having 1 to 40 carbon atoms (preferably 1 to 20, more preferably 1 to 10 and even more preferably 1 to 6), and a ring forming carbon number 6 to 40 (preferably 6-20, more preferably 6-12) aryloxy groups, C2-C40 (preferably 2-20, more preferably 2-10, even more preferably 2-5) alkoxycarbonyl groups or ring-forming atoms Aromatic heterocyclic group having a number of 9 to 40 (preferably 9 to 30, more preferably 9 to 20), which may be substituted.
  • halogen atom examples include fluorine, chlorine, bromine, iodine and the like.
  • optionally substituted amino group include an alkylamino group, an arylamino group, and an aralkylamino group.
  • the alkoxycarbonyl group is represented as —COOY ′, and examples of Y ′ include the same as the alkyl group.
  • the alkylamino group and the aralkylamino group are represented as —NQ 1 Q 2 . Specific examples of Q 1 and Q 2 are independently the same as those described for the alkyl group and the aralkyl group, and preferred examples are also the same. One of Q 1 and Q 2 may be a hydrogen atom.
  • the arylamino group is represented as —NAr 1 Ar 2, and specific examples of Ar 1 and Ar 2 are the same as those described for the non-condensed aromatic hydrocarbon group and the condensed aromatic hydrocarbon group, respectively. .
  • One of Ar 1 and Ar 2 may be a hydrogen atom.
  • M is aluminum (Al), gallium (Ga) or indium (In), and is preferably In.
  • L in the above formula (A) is a group represented by the following formula (A ′) or (A ′′).
  • R 8 to R 12 are each independently a hydrogen atom or a substituted or unsubstituted carbon number of 1 to 40 (preferably 1 to 20, more preferably 1 to 10, more preferably 1). To 6), and the groups adjacent to each other may form a cyclic structure.
  • R 13 to R 27 are each independently a hydrogen atom or a substituted or unsubstituted carbon number of 1 to 40 (preferably 1 to 20, more preferably 1 to 10, more preferably Are hydrocarbon groups of 1 to 6), and groups adjacent to each other may form a cyclic structure.
  • Examples of the hydrocarbon group having 1 to 40 carbon atoms represented by R 8 to R 12 and R 13 to R 27 in the formula (A ′) and the formula (A ′′) include R 2 to R 7 in the formula (A).
  • the divalent group includes a tetramethylene group, a pentamethylene group, a hexamethylene group, diphenylmethane-2,2 Examples include a '-diyl group, a diphenylethane-3,3'-diyl group, and a diphenylpropane-4,4'-diyl group.
  • 8-hydroxyquinoline or a metal complex of its derivative, an oxadiazole derivative, or a nitrogen-containing heterocyclic derivative is preferable.
  • a metal chelate oxinoid compound containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline), for example, tris (8-quinolinol) aluminum is used.
  • 8-quinolinol or 8-hydroxyquinoline a metal chelate oxinoid compound containing a chelate of oxine
  • tris (8-quinolinol) aluminum is used.
  • an oxadiazole derivative the following can be mentioned.
  • Ar 17, Ar 18, Ar 19, Ar 21, Ar 22 and Ar 25 represents an or without an aromatic hydrocarbon group or fused aromatic hydrocarbon group having a substituent
  • Ar 17 Ar 18 , Ar 19 and Ar 21 , Ar 22 and Ar 25 may be the same as or different from each other.
  • the aromatic hydrocarbon group or the condensed aromatic hydrocarbon group include a phenyl group, a naphthyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group.
  • substituent for these include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyano group.
  • Ar 20 , Ar 23 and Ar 24 each represent a divalent aromatic hydrocarbon group or a condensed aromatic hydrocarbon group with or without a substituent, and Ar 23 and Ar 24 may be the same or different from each other. Also good.
  • the divalent aromatic hydrocarbon group or condensed aromatic hydrocarbon group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group.
  • substituent for these include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyano group.
  • electron transfer compounds those having good thin film forming properties are preferably used.
  • Specific examples of these electron transfer compounds include the following.
  • the nitrogen-containing heterocyclic derivative as the electron transfer compound is a nitrogen-containing heterocyclic derivative composed of an organic compound having the following general formula, and includes a nitrogen-containing compound that is not a metal complex. Examples thereof include a 5-membered ring or 6-membered ring containing a skeleton represented by the following formula (B) and a structure represented by the following formula (C).
  • X represents a carbon atom or a nitrogen atom.
  • Z 1 and Z 2 each independently represents an atomic group capable of forming a nitrogen-containing heterocycle.
  • the nitrogen-containing heterocyclic derivative is more preferably an organic compound having a nitrogen-containing aromatic polycyclic group consisting of a 5-membered ring or a 6-membered ring. Further, in the case of such a nitrogen-containing aromatic polycyclic group having a plurality of nitrogen atoms, the nitrogen-containing compound having a skeleton in which the above formulas (B) and (C) or the above formula (B) and the following formula (D) are combined. Aromatic polycyclic organic compounds are preferred.
  • the nitrogen-containing group of the nitrogen-containing aromatic polycyclic organic compound is selected from, for example, nitrogen-containing heterocyclic groups represented by the following general formula.
  • R represents an aromatic hydrocarbon group having 6 to 40 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20 and even more preferably 6 to 12) or 6 to 40 ring carbon atoms.
  • 6 to 30, more preferably 6 to 20, more preferably 6 to 12 condensed aromatic hydrocarbon group, 5 to 40 ring forming atoms (preferably 5 to 30, more preferably 5 to 20, More preferably 5 to 12) aromatic heterocyclic group or 5 to 40 ring atoms (preferably 5 to 30, more preferably 5 to 20, more preferably 5 to 12) condensed aromatic heterocyclic group, carbon
  • An alkyl group having 1 to 20 preferably 1 to 10, more preferably 1 to 6) or an alkoxy group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 6).
  • n is an integer of 0 to 5. When n is an integer of 2 or more, a plurality of R may be the same or different from each other.
  • preferred specific compounds include nitrogen-containing heterocyclic derivatives represented by the following formula.
  • HAr-L 1 -Ar 1 -Ar 2 In the above formula, HAr is a nitrogen-containing heterocyclic group having 5 to 40 ring atoms (preferably 5 to 30, more preferably 5 to 20, more preferably 5 to 12) which may have a substituent. It is.
  • L 1 is a single bond or an aromatic hydrocarbon group having 6 to 40 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12) which may have a substituent.
  • an aromatic heterocyclic ring having 5 to 40 ring atoms (preferably 5 to 30, more preferably 5 to 20 and even more preferably 5 to 12) which may have a condensed aromatic hydrocarbon group or a substituent.
  • a condensed aromatic heterocyclic group having 6 to 40 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, further preferably 6 to 12) which may have a group or a substituent.
  • Ar 1 is a divalent aromatic having a single bond or an optionally substituted ring-forming carbon number of 6 to 40 (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12).
  • a hydrocarbon group, Ar 2 is an aromatic group having 6 to 40 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 14) which may have a substituent.
  • a condensed aromatic hydrocarbon group having 6 to 40 ring carbon atoms preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12
  • An aromatic heterocyclic group or substituent having 5 to 40 ring atoms preferably 5 to 30, more preferably 5 to 20 and even more preferably 5 to 12 which may have a substituent. May have 5 to 40 ring atoms (preferably 5 to 30, More preferred is a fused aromatic heterocyclic group of 5 to 20, more preferably 5 to 12.
  • HAr is selected from the following group, for example.
  • L 1 is preferably, for example, a group selected from the following group, more preferably a phenylene group.
  • L 1 preferably has a carbazolyl group, particularly a 9-carbazolyl group or the like, and more preferably has 2 9-carbazolyl groups.
  • Ar 1 is preferably a single bond, and for example, a group selected from the following arylanthranylene groups is also preferable.
  • R 1 to R 14 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 6), or 1 to 20 carbon atoms. (Preferably 1 to 10, more preferably 1 to 6) alkoxy group, aryloxy group having 6 to 40 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20 and even more preferably 6 to 12).
  • An aromatic hydrocarbon group having 6 to 40 preferably 6 to 30, more preferably 6 to 20, and still more preferably 6 to 12 ring-forming carbon atoms which may have a substituent.
  • a condensed aromatic hydrocarbon group having 6 to 40 ring forming carbon atoms preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12
  • 5 to 40 ring forming atoms preferably Is 5 to 30, more preferably To 20 and more preferably 5 to 12
  • aromatic heterocyclic groups or condensed aromatic heterocycles having 5 to 40 ring atoms (preferably 5 to 30, more preferably 5 to 20 and even more preferably 5 to 12). It is a cyclic group.
  • Ar 3 is 1-6 good ring-forming carbon atoms which may have a substituent 40 (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12) aromatic hydrocarbon group or a substituted group
  • a substituent 40 preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12
  • R 1 to R 8 may be nitrogen-containing heterocyclic derivatives each of which is a hydrogen atom.
  • Ar 2 is, for example, is preferably a group selected from the following group, also preferably a heterocyclic group such as carbazolyl groups, in particular 9-carbazolyl group.
  • R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aliphatic cyclic group, a substituted or unsubstituted carbocyclic aromatic ring.
  • a group, a substituted or unsubstituted heterocyclic group, and X 1 and X 2 each independently represent an oxygen atom, a sulfur atom, or a dicyanomethylene group.
  • R 1, R 2, R 3 and R 4 are each independently either an aromatic hydrocarbon group represented by the following formula, or a condensed aromatic hydrocarbon group.
  • R 5 , R 6 , R 7 , R 8 and R 9 are each independently a hydrogen atom, or at least one of them is a saturated or unsaturated alkoxyl group, an alkyl group, an amino group, or an alkylamino group It is.
  • the electron transfer compound may be a polymer compound containing the nitrogen-containing heterocyclic group or the nitrogen-containing heterocyclic derivative.
  • the electron transport layer preferably contains at least one of nitrogen-containing heterocyclic derivatives represented by the following formulas (201) to (203).
  • R represents a hydrogen atom or an optionally substituted ring-forming carbon number of 6 to 60 (preferably 6 to 30, more preferably 6 to 20, more preferably 6-12) condensation having 6 to 60 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12) which may have an aromatic hydrocarbon group or substituent.
  • n is an integer of 0-4.
  • R 1 has 6 to 60 ring carbon atoms which may have a substituent (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 6).
  • Aromatic hydrocarbon group or condensed aromatic group having 6 to 60 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20 and even more preferably 6 to 12) which may have an aromatic hydrocarbon group A hydrocarbon group, an aromatic heterocyclic group or substituent having 5 to 60 ring atoms (preferably 5 to 30, more preferably 5 to 20, more preferably 5 to 12) which may have a substituent
  • 1 to 20 carbon atoms (preferably 1 to 10, more preferably Properly is an alkyl group, or an alkoxy group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 6) of 1 to 6).
  • R 2 and R 3 each independently represent a hydrogen atom or an optionally substituted ring-forming carbon number of 6 to 60 (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12).
  • An aromatic heterocyclic group or substituent having 5 to 60 (preferably 5 to 30, more preferably 5 to 20 and even more preferably 5 to 12) ring-forming atoms optionally having a hydrogen group or a substituent; It may have a condensed aromatic heterocyclic group having 5 to 60 ring atoms (preferably 5 to 30, more preferably 5 to 20 and even more preferably 5 to 12) which may have a substituent.
  • Good carbon number 1-20 (preferably 1-10, more preferred Preferably, it is an alkyl group having 1 to 6), or an alkoxy group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 6) which may have a substituent.
  • L represents an optionally substituted ring-forming carbon number of 6 to 60 (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12).
  • Aromatic hydrocarbon group or optionally substituted aromatic carbon group having 6 to 60 ring carbon atoms preferably 6 to 30, more preferably 6 to 20 and even more preferably 6 to 12.
  • a condensed aromatic heterocyclic group having 5 to 60 ring atoms preferably 5 to 30, more preferably 5 to 20, and still more preferably 5 to 12 which may have a ring.
  • Ar 1 is an optionally substituted aromatic hydrocarbon group or substituent having 6 to 60 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12). Having a condensed aromatic hydrocarbon group having 6 to 60 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20 and even more preferably 6 to 12), and a substituent.
  • the number of ring-forming atoms optionally having 5 to 60 (preferably 5 to 30, more preferably 5 to 20, more preferably 5 to 12) aromatic heterocyclic groups or substituents 5 to 60 (preferably 5 to 30, more preferably 5 to 20, and still more preferably 5 to 12) condensed aromatic heterocyclic groups.
  • Ar 2 is an aromatic hydrocarbon group or substituent having 6 to 60 (preferably 6 to 30, more preferably 6 to 20 and even more preferably 6 to 12) ring-forming carbon atoms which may have a substituent. Having a condensed aromatic hydrocarbon group having 6 to 60 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20 and even more preferably 6 to 12), and a substituent.
  • the number of ring-forming atoms optionally having 5 to 60 (preferably 5 to 30, more preferably 5 to 20, more preferably 5 to 12) aromatic heterocyclic groups or substituents 5 to 60 (preferably 5 to 30, more preferably 5 to 20, more preferably 5 to 12) fused aromatic heterocyclic group, optionally having 1 to 20 carbon atoms (preferably 1) -10, more preferably 1-6) alkyl groups,
  • the ⁇ carbon atoms 1 may have a substituent 20 (preferably 1 to 10, more preferably 1 to 6) alkoxy group.
  • Ar 3 is an aromatic hydrocarbon group or substituent having 6 to 60 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12) which may have a substituent. Having a condensed aromatic hydrocarbon group having 6 to 60 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20 and even more preferably 6 to 12), and a substituent.
  • R represents a hydrogen atom, an optionally substituted aromatic hydrocarbon group having 6 to 60 carbon atoms, a condensed aromatic hydrocarbon group, or a substituent.
  • An optionally substituted pyridyl group, an optionally substituted quinolyl group, an optionally substituted alkyl group having 1 to 20 carbon atoms, or an optionally substituted carbon An alkoxy group of 1 to 20;
  • the film thickness of the electron transport layer is not particularly limited, but is preferably 1 nm to 100 nm. Moreover, it is preferable to use an insulator or a semiconductor as an inorganic compound in addition to the nitrogen-containing ring derivative as a component of the electron injection layer that can be provided adjacent to the electron transport layer. If the electron injection layer is made of an insulator or a semiconductor, current leakage can be effectively prevented and the electron injection property can be improved.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferable alkali metal chalcogenides include, for example, Li 2 O, K 2 O, Na 2 S, Na 2 Se, and Na 2 O
  • preferable alkaline earth metal chalcogenides include, for example, CaO, BaO. , SrO, BeO, BaS and CaSe.
  • preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl.
  • preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
  • the inorganic compound constituting the electron injection layer is preferably a microcrystalline or amorphous insulating thin film. If the electron injection layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced.
  • the inorganic compounds include alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides.
  • the preferred thickness of the layer is about 0.1 nm to 15 nm.
  • the electron injection layer contains the above-mentioned reducing dopant.
  • an organic layer close to the anode may be defined as a hole injection layer.
  • the hole injection layer has a function of efficiently injecting holes from the anode into the organic layer unit.
  • the compound of the present invention can also be used as a hole transport material contained in the hole transport layer (first charge transport layer).
  • an aromatic amine compound for example, an aromatic amine derivative represented by the following formula (H) is preferably used.
  • Ar 211 to Ar 214 each independently represents a substituted or unsubstituted ring-forming carbon number of 6 to 50 (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12). ) Or a substituted or unsubstituted condensed aromatic hydrocarbon group having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20 and even more preferably 6 to 12). Alternatively, an aromatic heterocyclic group having 5 to 50 unsubstituted ring atoms (preferably 5 to 30, more preferably 5 to 20 and even more preferably 5 to 12) or substituted or unsubstituted ring atoms having 5 to 5 atoms.
  • Ar 211 and Ar 212 , Ar 213 and Ar 214 may be bonded to form a ring together with the nitrogen atom to which they are bonded, and examples of the ring include a carbazole ring.
  • L 211 represents an aromatic carbon atom having 6 to 50 (preferably 6 to 30, more preferably 6 to 20, and still more preferably 6 to 12) ring-substituted carbon atoms.
  • aromatic amine compound of following formula (J) is also used suitably for formation of a positive hole transport layer.
  • the hole transport layer of the organic EL device of one embodiment of the present invention may have a two-layer structure of a first hole transport layer (anode side) and a second hole transport layer (cathode side).
  • the thickness of the hole transport layer is not particularly limited, but is preferably 10 nm to 300 nm.
  • the film thickness of the first hole transport layer is preferably 50 to 300 nm, more preferably 50 to 250 nm, and still more preferably 100 to
  • the thickness of the second hole transport layer is preferably 5 to 100 nm, more preferably 5 to 50 nm, still more preferably 5 to 30 nm, and particularly preferably 5 to 20 nm. .
  • a layer containing an acceptor material may be bonded to the positive hole transport layer or the anode side of the first hole transport layer. This is expected to reduce drive voltage and manufacturing costs.
  • the acceptor material a compound represented by the following formula (K) is preferable.
  • R 311 to R 316 may be the same as or different from each other, and each independently represents a cyano group, —CONH 2 , carboxyl group, or —COOR 317 (R 317 has 1 to 20 carbon atoms) Represents an alkyl group or a cycloalkyl group having 3 to 20 carbon atoms, provided that one or two or more pairs of R 311 and R 312 , R 313 and R 314 , and R 315 and R 316 are taken together— A group represented by CO—O—CO— may be formed.)
  • R 317 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a cyclopentyl group, and a cyclohexyl group.
  • the thickness of the layer containing the acceptor material is not particularly limited, but is
  • the space layer is a fluorescent layer for the purpose of adjusting the carrier balance so that excitons generated in the phosphorescent layer are not diffused into the fluorescent layer. It is a layer provided between the layer and the phosphorescent light emitting layer.
  • the space layer can be provided between the plurality of phosphorescent light emitting layers. Since the space layer is provided between the light emitting layers, a material having both electron transport properties and hole transport properties is preferable. In order to prevent diffusion of triplet energy in the adjacent phosphorescent light emitting layer, the triplet energy is preferably 2.6 eV or more. Examples of the material used for the space layer include the same materials as those used for the above-described hole transport layer.
  • the compound of the present invention can also be used as a material for the space layer.
  • the organic EL device of one embodiment of the present invention preferably has a barrier layer such as an electron barrier layer, a hole barrier layer, or a triplet barrier layer in a portion adjacent to the light emitting layer.
  • the electron barrier layer is a layer that prevents electrons from leaking from the light emitting layer to the hole transport layer
  • the hole barrier layer is a layer that prevents holes from leaking from the light emitting layer to the electron transport layer. is there.
  • the compound of the present invention can also be used as a material for the hole blocking layer.
  • the triplet barrier layer prevents the triplet excitons generated in the light emitting layer from diffusing into the surrounding layers, and confins the triplet excitons in the light emitting layer, thereby transporting electrons other than the light emitting dopant of the triplet excitons. It has a function of suppressing energy deactivation on the molecules of the layer.
  • the triplet energy of the phosphorescent dopant in the light emitting layer is E T d and the triplet energy of the compound used as the triplet barrier layer is E T TB , E T d ⁇ If the energy level relationship of E T TB is satisfied, the triplet exciton of the phosphorescent dopant is confined (cannot move to other molecules) due to the energy relationship, and the energy deactivation path other than light emission on the dopant is interrupted. It is assumed that light can be emitted with high efficiency.
  • the energy difference ⁇ E T E T TB ⁇ E T d is small, the actual device drive environment is at about room temperature. , endothermically triplet excitons overcame this energy difference Delta] E T by thermal energy near is considered to be possible to move to another molecule.
  • the energy difference ⁇ E T is preferably as large as possible relative to the thermal energy at room temperature, more preferably 0.1 eV or more, and particularly preferably 0.2 eV or more.
  • the organic EL element material of one embodiment of the present invention can also be used as the material for the triplet barrier layer having the TTF element structure described in International Publication No. 2010/134350.
  • the electron mobility of the material constituting the triplet barrier layer is preferably 10 ⁇ 6 cm 2 / Vs or more in the range of the electric field strength of 0.04 to 0.5 MV / cm.
  • the electron mobility is determined by impedance spectroscopy.
  • the electron injection layer is desirably 10 ⁇ 6 cm 2 / Vs or more in the range of electric field strength of 0.04 to 0.5 MV / cm. This facilitates the injection of electrons from the cathode into the electron transport layer, and also promotes the injection of electrons into the adjacent barrier layer and the light emitting layer, thereby enabling driving at a lower voltage.
  • the light emitting layer contains a charge injection auxiliary material.
  • a light emitting layer is formed using a host material having a wide energy gap, the difference between the ionization potential (Ip) of the host material and Ip of the hole transport layer, etc. becomes large, and it becomes difficult to inject holes into the light emitting layer.
  • the driving voltage for obtaining sufficient luminance may increase. In such a case, the hole injection into the light emitting layer can be facilitated and the driving voltage can be reduced by adding the hole transporting charge injection auxiliary agent to the light emitting layer.
  • a general hole transport material for example, a general hole transport material, a hole injection material, or the like can be used.
  • Specific examples include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, fluorenone derivatives, hydrazone derivatives, stilbenes.
  • Derivatives, silazane derivatives, polysilane-based, aniline-based copolymers, conductive polymer oligomers (particularly thiophene oligomers), and the like can be given.
  • Examples of the material having hole injecting property include the above materials, but porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds, particularly aromatic tertiary amine compounds are preferred. .
  • each layer of the organic EL element of the present invention is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used.
  • the organic thin film layer containing the compound of the present invention used in the organic EL device of the present invention is prepared by a vacuum deposition method, a molecular beam deposition method (MBE method), a solution dipping method in a solvent, a spin coating method, or a casting method. , And can be formed by a known method such as a bar coating method or a roll coating method.
  • each organic layer of the organic EL device of the present invention is not particularly limited. Generally, if the film thickness is too thin, defects such as pinholes are likely to occur. Conversely, if it is too thick, a high applied voltage is required and the efficiency is deteriorated. Therefore, the range of several nm to 1 ⁇ m is usually preferable.
  • each layer of the organic EL element which is one embodiment of the present invention is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used.
  • the organic thin film layer containing the compound according to another embodiment of the present invention used in the organic EL device according to one embodiment of the present invention is prepared by vacuum deposition, molecular beam deposition (MBE), or the compound as a solvent.
  • MBE molecular beam deposition
  • the solution can be formed by a known method such as a dipping method, a spin coating method, a casting method, a bar coating method, or a roll coating method.
  • the organic EL element obtained by using the compound of the present invention is used in electronic devices such as display components such as organic EL panel modules; display devices such as televisions, mobile phones and personal computers; and light emitting devices for lighting and vehicle lamps. it can.
  • Synthesis Example 1 (Synthesis of Compound 1) Under an argon atmosphere, 4.53 g of the above raw material compound (A), 4.00 g of 3-fluorantheneboronic acid synthesized by a known method, 250 mg of tetrakis (triphenylphosphine) palladium, 25 mL of a 2 mol aqueous sodium carbonate solution, and 35 mL of toluene Then, 35 mL of dimethyl ether (DME) was charged into a 300 mL flask and heated to reflux with stirring for 4 hours. After cooling to room temperature, the reaction solution was extracted with dichloroethane and filtered through celite.
  • DME dimethyl ether
  • Synthesis Example 6 (Synthesis of Compound 6)
  • Synthesis Example 3 an experiment was performed in the same manner as in Example 6 except that the above raw material compound (E) synthesized by a known method was used instead of the raw material compound (B), to obtain a compound 6.
  • m / e 593 with respect to the molecular weight 593 of compound 6.
  • Synthesis Example 9 (Synthesis of Compound 9)
  • Example 1 Manufacture and evaluation of an organic EL element
  • a glass substrate with an ITO transparent electrode of 25 mm ⁇ 75 mm ⁇ thickness 1.1 mm (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes.
  • the thickness of the ITO transparent electrode was 100 nm.
  • the cleaned glass substrate with the transparent electrode line is mounted on the substrate holder of the vacuum deposition apparatus, and the following acceptor material (K-1) is deposited so as to cover the transparent electrode on the surface on which the transparent electrode line is formed. Then, an acceptor layer having a thickness of 5 nm was formed.
  • the following aromatic amine compound HT-1 was vapor-deposited to form a first hole transport layer having a thickness of 220 nm.
  • the following compound HT-2 was deposited to form a second hole transport layer having a thickness of 10 nm.
  • the compound 1 (host material) obtained in Synthesis Example 1 and the following compound RD-1 (dopant material) are co-evaporated to form a 40 nm-thick co-deposited film. did.
  • the concentration of Compound RD-1 was 5.0% by mass. This co-deposited film functions as a light emitting layer.
  • the manufactured organic EL element was made to emit light by direct current drive, the drive voltage (V) at a current density of 10 mA / cm 2 was obtained, and the external quantum efficiency (EQE) was evaluated. The results are shown in Table 1.
  • Example 1 Manufacture of organic EL elements
  • an organic EL device was produced in the same manner as in Example 1 except that the light-emitting layer was formed using the compounds shown in Table 1 instead of using Compound 1.
  • Table 1 shows the measurement results of drive voltage and external quantum efficiency (EQE).
  • Comparative Example 1 using Comparative Compound 1 in which two carbazolyl groups are substituted on the fluoranthene skeleton and substituted at the 9-position of the carbazolyl group the driving voltage is greatly increased as compared with Example 1, and the external quantum efficiency is increased. Also dropped significantly.
  • Comparative Example 2 using Comparative Compound 2 having two fluoranthene skeletons also greatly increased the driving voltage and greatly increased the external quantum efficiency. Declined. The reason why the above results are obtained is estimated as follows.
  • the compound (Comparative Compound 1) having two carbazole skeletons as in Comparative Compound 1 and bonded to fluoranthene at the 9-position of the carbazole tends to have a deep (large) ionization potential (Ip). (Ionization potential of Comparative Compound 1 ⁇ 6.0 eV). Therefore, the hole injection property is lowered and the carrier balance is lost, so that the driving voltage is increased and the light emission efficiency is estimated to be lowered. Further, a compound having two fluoranthene skeletons (Comparative Compound 2) has a deeper (larger) ionization potential and a shallower (smaller) electron affinity (Af) than a compound having one fluoranthene skeleton such as Compound 1 described above. Because of this tendency, the hole injecting property is lowered, and the electron injecting property is also lowered. Therefore, it is assumed that the driving voltage rises and the luminous efficiency is lowered.
  • Ip ionization potential of Comparative Compound 1 ⁇ 6.0 eV

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)

Abstract

 式(1)で表されるフルオランテン骨格を有する化合物、及び陰極と陽極の間に発光層を含む複数の有機薄膜層を有し、前記有機薄膜層のうち少なくとも1層が該化合物を含む有機エレクトロルミネッセンス素子、並びに該有機エレクトロルミネッセンス素子を備えた電子機器を提供する。前記有機エレクトロルミネッセンス素子は、より一層の低電圧駆動が可能であり、発光効率が高い。 [式(1)において、X~X10、L、R~R、nは、それぞれ明細書に記載のとおりである。]

Description

化合物、有機エレクトロルミネッセンス素子及び電子機器
 本発明は、化合物、該化合物を用いた有機エレクトロルミネッセンス素子、及び該有機エレクトロルミネッセンス素子を備えた電子機器に関する。
 一般に有機エレクトロルミネッセンス(EL)素子は、陽極、陰極、及び陽極と陰極に挟まれた1層以上の有機薄膜層から構成されている。両電極間に電圧が印加されると、陰極側から電子、陽極側から正孔が発光領域に注入され、注入された電子と正孔は発光領域において再結合して励起状態を生成し、励起状態が基底状態に戻る際に光を放出する。
 また、有機EL素子は、発光層に種々の発光材料を用いることにより、多様な発光色を得ることが可能であることから、ディスプレイなどへの実用化研究が盛んである。特に赤色、緑色、青色の三原色の発光材料の研究が最も活発であり、特性向上を目指して鋭意研究がなされている。
 有機EL素子における最大の課題の一つは、高発光効率と低駆動電圧の両立である。高効率な発光素子を得る手段としては、ホスト材料にドーパント材料を数%ドーピングすることにより発光層を形成する方法が知られている。ホスト材料には高いキャリア移動度、均一な成膜性などが要求され、ドーパント材料には高い蛍光量子収率、均一な分散性などが要求される。
 これまで、有機EL素子用の材料としては、カルバゾール基の9位にフルオランテン誘導体が置換した化合物(特許文献1~5参照)や、カルバゾリル基を有するビスフルオランテン誘導体(特許文献6及び7参照)なども知られている。しかし、これらの特許文献に開示された化合物では、特に、駆動電圧及び発光効率に更なる改善の余地があった。
国際公開第2012/108388号 国際公開第2012/108389号 特開平11-149987号公報 米国特許出願公開第2008/0122344号明細書 特開2012-140365号公報 特開2005-104981号公報 特開2002-69044号公報
 本発明は、このような状況下になされたもので、より一層の低電圧駆動が可能であり、発光効率が高い有機エレクトロルミネッセンス素子及び該有機エレクトロルミネッセンス素子を備えた電子機器、並びにそれらを実現するための化合物を提供することを課題とする。
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、フルオランテン骨格を有する特定構造の化合物により、その目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
 本発明の一態様は、下記[1]~[4]の通りである。
[1]下記式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000005
[式(1)において、X1~X10は、それぞれ独立に、C-R(Rは、水素原子、置換基又はLと結合する単結合を表す。)又は窒素原子を表す。
 Lは、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基、又は、該アリーレン基及び該ヘテロアリーレン基が2~4つ結合してなる2価の基を表す。
 R1~R8は、それぞれ独立に、水素原子、フッ素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~30のアリールチオ基、-Si(R1003で表されるシリル基[R100は、水素原子、炭素数1~30のアルキル基又は環形成炭素数6~60の芳香族炭化水素基である。3つのR100は、それぞれ同一であってもよいし、異なっていてもよい。]、置換もしくは無置換の炭素数2~30のアルキルアミノ基、置換もしくは無置換の環形成炭素数6~60のアリールアミノ基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の、ピロリル基、フリル基、チエニル基、ピリジル基、イミダゾピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、イソベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、インダゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基及びキサンテニル基から選択されるヘテロアリール基、又はLと結合する単結合を表す。
 R9は、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表す。
 nは、1~4の整数を表す。nが2~4の整数である場合、複数存在する括弧で囲まれた基は、それぞれ同一でも異なっていてもよい。但し、一般式(1)で表される化合物が有するフルオランテン構造は1つである。]
[2]上記[1]に記載の化合物からなる有機エレクトロルミネッセンス素子用材料。
[3]陰極と陽極の間に発光層を含む複数の有機薄膜層を有し、前記有機薄膜層のうち少なくとも1層が上記[1]に記載の化合物を含む有機エレクトロルミネッセンス素子。
[4]上記[3]に記載の有機エレクトロルミネッセンス素子を備えた電子機器。
 本発明によれば、より一層の低電圧駆動が可能であり、発光効率が高い有機エレクトロルミネッセンス素子及び該有機エレクトロルミネッセンス素子を備えた電子機器、並びにそれらを実現するための化合物を提供することができる。
本発明の実施形態に係る有機EL素子の一例の概略構成を示す図である。
 本発明において、「置換もしくは無置換の炭素数a~bのX基」という表現における「炭素数a~b」は、X基が無置換である場合の炭素数を表すものであり、X基が置換されている場合の置換基の炭素数は含めない。
 また、「環形成炭素」とは、飽和環、不飽和環、又は芳香環を構成する炭素原子を意味し、前記環に結合している置換基の炭素数は含まない。
 「環形成原子」とは、飽和環、不飽和環、芳香環又は複素環を構成する原子を意味し、前記環に結合している水素原子及び置換基の原子数は含まない。
 また、「水素原子」とは、中性子数が異なる同位体、すなわち、軽水素(protium)、重水素(deuterium)及び三重水素(tritium)を包含する。
 さらに、「置換基」、及び“置換もしくは無置換”というときの任意の置換基は、別途定義していない限り、炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基;環形成炭素数3~20(好ましくは3~6、より好ましくは5又は6)のシクロアルキル基;環形成炭素数6~30(好ましくは6~24、より好ましくは6~12)のアリール基;環形成炭素数6~30(好ましくは6~24、より好ましくは6~12)のアリール基を有する炭素数7~30(好ましくは7~10、より好ましくは7~12)のアラルキル基;アミノ基;炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基を有するモノ-又はジアルキルアミノ基;環形成炭素数6~30(好ましくは6~24、より好ましくは6~12)のアリール基を有するモノ-又はジアリールアミノ基;炭素数1~30(好ましくは1~10、より好ましくは1~6)のアルキル基を有するアルコキシ基;環形成炭素数6~30(好ましくは6~24、より好ましくは6~12)のアリール基を有するアリールオキシ基;炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基及び環形成炭素数6~30(好ましくは6~24、より好ましくは6~12)のアリール基から選ばれる基を有するモノ-、ジ-又はトリ置換シリル基;環形成原子数5~30(好ましくは5~24、より好ましくは5~12)でありヘテロ原子(窒素原子、酸素原子、硫黄原子)を1~5個(好ましくは1~3個、より好ましくは1~2個)含むヘテロアリール基;炭素数1~20(好ましくは1~10、より好ましくは1~6)のハロアルキル基;ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子);シアノ基;ニトロ基からなる群より選ばれるものが好ましい。
 上記置換基の中でも、とりわけ、炭素数1~6のアルキル基、炭素数5又は6のシクロアルキル基、及び環形成炭素数6~12のアリール基からなる群より選ばれるものが好ましい。
 これらの任意の置換基は、上記置換基によりさらに置換されていてもよい。
 “置換もしくは無置換”というときの任意の置換基の数は、1つであってもよいし、2つ以上であってもよい。置換基が2つ以上ある場合、それらの置換基は同一であっても異なっていてもよい。
 本明細書中、好ましいとする規定は任意に選択することができ、また、好ましいとする規定の組み合わせはより好ましいと言える。
 本発明の有機EL素子は、陰極と陽極の間に発光層を含む複数の有機薄膜層を有し、この有機薄膜層のうち少なくとも1層が、本発明の下記一般式(1)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000006
[式(1)において、X1~X10は、それぞれ独立に、C-R(Rは、水素原子、置換基又はLと結合する単結合を表す。)又は窒素原子を表す。
 Lは、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基、又は、該アリーレン基及び該ヘテロアリーレン基が2~4つ結合してなる2価の基を表す。
 R1~R8は、それぞれ独立に、水素原子、フッ素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~30のアリールチオ基、-Si(R1003で表されるシリル基[R100は、水素原子、炭素数1~30のアルキル基又は環形成炭素数6~60の芳香族炭化水素基である。3つのR100は、それぞれ同一であってもよいし、異なっていてもよい。]、置換もしくは無置換の炭素数2~30のアルキルアミノ基、置換もしくは無置換の環形成炭素数6~60のアリールアミノ基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の、ピロリル基、フリル基、チエニル基、ピリジル基、イミダゾピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、イソベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、インダゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基及びキサンテニル基から選択されるヘテロアリール基、又はLと結合する単結合を表す。
 R9は、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表す。
 nは、1~4の整数を表す。nが2~4の整数である場合、複数存在する括弧で囲まれた基は、それぞれ同一でも異なっていてもよい。但し、一般式(1)で表される化合物が有するフルオランテン構造は1つである。]
 X1~X10は、それぞれ独立に、C-R(Rは、水素原子、置換基又はLと結合する単結合を表す。)であることが好ましく、RがLと結合する単結合を表すもの以外は、Rは水素原子であることが好ましい。
 Lが表す環形成炭素数6~30(好ましくは6~24、より好ましくは6~18、さらに好ましくは6~12)のアリーレン基としては、例えば、フェニレン基、ナフチレン基、ビフェニリレン基、アントリレン基、アセナフチリレン基、アントラニレン基、フェナントリレン基、フェナレニレン基、キノリレン基、イソキノリレン基、s-インダセニレン基、as-インダセニレン基、クリセニレン基等が挙げられる。これらの中でも、フェニレン基、ナフチレン基、ビフェニリレン基が好ましく、フェニレン基がより好ましく、1,4-フェニレン基がさらに好ましい。
 Lが表す環形成原子数5~30(好ましくは5~24、より好ましくは5~12)のヘテロアリーレン基としては、例えば、ピロリレン基、フリレン基、チエニレン基、ピリジレン基、イミダゾピリジレン基、ピリダジニレン基、ピリミジニレン基、ピラジニレン基、トリアジニレン基、イミダゾリレン基、オキサゾリレン基、チアゾリレン基、ピラゾリレン基、イソオキサゾリレン基、イソチアゾリレン基、オキサジアゾリレン基、チアジアゾリレン基、トリアゾリレン基、テトラゾリレン基、インドリレン基、イソインドリレン基、ベンゾフラニレン基、イソベンゾフラニレン基、ベンゾチオフェニレン基、イソベンゾチオフェニレン基、インドリジニレン基、キノリジニレン基、キノリレン基、イソキノリレン基、シンノリレン基、フタラジニレン基、キナゾリニレン基、キノキサリニレン基、ベンズイミダゾリレン基、ベンズオキサゾリレン基、ベンズチアゾリレン基、インダゾリレン基、ベンズイソキサゾリレン基、ベンズイソチアゾリレン基、ジベンゾフラニレン基、ジベンゾチオフェニレン基、フェナントリジニレン基、アクリジニレン基、フェナントロリニレン基、フェナジニレン基、フェノチアジニレン基、フェノキサジニレン基及びキサンテニレン基が好ましく挙げられる。これらの中でも、フリレン基、チエニレン基、ピリジレン基、イミダゾピリジレン基、ピリダジニレン基、ピリミジニレン基、ピラジニレン基、ベンズイミダゾリレン基、ジベンゾフラニレン基、ジベンゾチオフェニレン基、フェナントロリニレン基が好ましい。
 前述の通り、Lは、前記アリーレン基と前記ヘテロアリーレン基が2~4つ結合してなる2価の基であってもよい。具体的には、ヘテロアリーレン基-アリーレン基、アリーレン基-ヘテロアリーレン基、アリーレン基-ヘテロアリーレン基-アリーレン基、ヘテロアリーレン基-アリーレン基-ヘテロアリーレン基、アリーレン基-ヘテロアリーレン基-アリーレン基-ヘテロアリーレン基、ヘテロアリーレン基-アリーレン基-ヘテロアリーレン基-アリーレン基等が挙げられる。好ましくは、前記アリーレン基と前記ヘテロアリーレン基が1つずつ結合してなる2価の基、つまりヘテロアリーレン基-アリーレン基、及びアリーレン基-ヘテロアリーレン基である。該アリーレン基及びヘテロアリーレン基の具体例は、前記アリーレン基及び前記ヘテロアリーレン基の具体例から任意に選択することができる。
 Lとしては、単結合又は置換もしくは無置換の環形成炭素数6~30のアリーレン基が好ましく、単結合又は置換もしくは無置換の環形成炭素数6~12のアリーレン基がより好ましく、単結合、置換もしくは無置換のフェニレン基、置換もしくは無置換のビフェニリレン基、置換もしくは無置換のターフェニリレン基、置換もしくは無置換のナフチレン基、置換もしくは無置換のアントリレン基、置換もしくは無置換のピレニレン基がさらに好ましく、単結合、フェニレン基、ナフチレン基又はビフェニリレン基が特に好ましい。
 R1~R9が表す炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基(異性体基を含む)、ヘキシル基(異性体基を含む)、ヘプチル基(異性体基を含む)、オクチル基(異性体基を含む)、ノニル基(異性体基を含む)、デシル基(異性体基を含む)、ウンデシル基(異性体基を含む)、及びドデシル基(異性体基を含む)などが挙げられる。これらの中でも、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基及びペンチル基(異性体基を含む)が好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基及びt-ブチル基がより好ましく、メチル基、エチル基、イソプロピル基及びt-ブチル基が特に好ましい。
 R1~R9が表す環形成炭素数3~20(好ましくは3~6、より好ましくは5又は6)のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、アダマンチル基などが挙げられる。これらの中でも、シクロペンチル基、シクロヘキシル基が好ましい。
 R1~R8が表す炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルコキシ基としては、アルキル基部位が前記炭素数1~20のアルキル基であるアルコキシ基が挙げられる。好ましいアルコキシ基の具体例としては、アルキル基部位が、前記好ましいアルキル基であるものが挙げられる。
 R1~R8が表す環形成炭素数6~30(好ましくは6~24、より好ましくは6~18、さらに好ましくは6~10)のアリールオキシ基としては、アリール基部位が、後述する環形成炭素数6~30のアリール基であるものが挙げられる。好ましいアリールオキシ基の具体例としては、アリール基部位が、後述の好ましいアリール基であるものが挙げられる。
 R1~R8が表す炭素数1~20(好ましくは炭素数1~10、より好ましくは炭素数1~6)のアルキルチオ基としては、アルキル基部位が前記炭素数1~20のアルキル基であるアルコキシ基が挙げられる。好ましいアルキルチオ基の具体例としては、アルキル基部位が、前記好ましいアルキル基であるものが挙げられる。
 R1~R8が表す環形成炭素数6~30(好ましくは6~24、より好ましくは6~18、さらに好ましくは6~10)のアリールチオ基としては、アリール基部位が、後述する環形成炭素数6~30のアリール基であるものが挙げられる。好ましいアリールチオ基の具体例としては、アリール基部位が、後述の好ましいアリール基であるものが挙げられる。
 R1~R8が表す-Si(R1003で表されるシリル基が有するR100は、水素原子、炭素数1~30のアルキル基又は環形成炭素数6~60のアリール基である。なお、ケイ素原子に置換する3つのR100は、それぞれ同一であってもよいし、異なっていてもよい。炭素数1~30のアルキル基を有するシリル基としては、具体的には、モノアルキルシリル基、ジアルキルシリル基、トリアルキルシリル基が挙げられる。
 モノアルキルシリル基は、例えば、水素原子を2つ有し、上記炭素数1~30のアルキル基を1つ有するモノアルキルシリル基が挙げられる。モノアルキルシリル基の炭素数は、1~30であることが好ましく、1~10であることがより好ましく、1~5であることがさらに好ましい。
 ジアルキルシリル基は、例えば、水素原子を1つ有し、上記炭素数1~30のアルキル基を2つ有するジアルキルシリル基が挙げられる。ジアルキルシリル基の合計炭素数は、2~30であることが好ましく、2~20であることがより好ましく、2~10であることがさらに好ましい。
 トリアルキルシリル基は、具体的にはトリメチルシリル基、トリエチルシリル基、トリ-n-ブチルシリル基、トリ-n-オクチルシリル基、トリイソブチルシリル基、ジメチルエチルシリル基、ジメチルイソプロピルシリル基、ジメチル-n-プロピルシリル基、ジメチル-n-ブチルシリル基、ジメチル-t-ブチルシリル基、ジエチルイソプロピルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、トリイソプロピルシリル基等が挙げられる。トリアルキルシリル基の合計炭素数は、3~30であることが好ましく、3~15であることがより好ましい。
 ジアルキルシリル基、トリアルキルシリル基における複数のアルキル基は、それぞれ同一でも異なっていてもよい。
 環形成炭素数6~60のアリール基を有するシリル基としては、具体的には、モノアリールシリル基、ジアリールシリル基、ジアルキルアリールシリル基、アルキルジアリールシリル基、トリアリールシリル基が挙げられる。
 モノアリールシリル基は、例えば、水素原子を2つ有し、後述する環形成炭素数6~30のアリール基を1つ有するモノアリールシリル基が挙げられる。
 ジアリールシリル基は、例えば、水素原子を1つ有し、後述する環形成炭素数6~30のアリール基を2つ有するジアリールシリル基が挙げられる。ジアリールシリル基の合計炭素数は、12~30であることが好ましい。
 ジアルキルアリールシリル基は、例えば、上記炭素数1~30のアルキル基で例示したアルキル基を2つ有し、後述する環形成炭素数6~30のアリール基を1つ有するジアルキルアリールシリル基が挙げられる。ジアルキルアリールシリル基の合計炭素数は、8~30であることが好ましい。
 アルキルジアリールシリル基は、例えば、上記炭素数1~30のアルキル基で例示したアルキル基を1つ有し、後述する環形成炭素数6~30のアリール基を2つ有するアルキルジアリールシリル基が挙げられる。アルキルジアリールシリル基の合計炭素数は、13~30であることが好ましい。
 トリアリールシリル基は、例えば、後述する環形成炭素数6~30のアリール基を3つ有するトリアリールシリル基が挙げられる。トリアリールシリル基の合計炭素数は、18~30であることが好ましい。
 ジアリールシリル基、アルキルジアリールシリル基、トリアリールシリル基における複数のアリール基は、それぞれ同一でも異なっていてもよい。
 R1~R8が表す炭素数2~30のアルキルアミノ基は、-NHRV、または-N(RV2と表される。-N(RV2における2つのRVは、それぞれ同一であってもよいし、異なっていてもよい。RVとしては、上記炭素数1~30のアルキル基が挙げられる。上記アルキル基部位の炭素数は、それぞれ、好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6である。アルキルアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基が好ましい。
 R1~R8が表す環形成炭素数6~60のアリールアミノ基は、-NHRW、または-N(RW2と表される。-N(Rw2における2つのRwは、それぞれ同一であってもよいし、異なっていてもよい。RWとしては、上記環形成炭素数6~30の芳香族炭化水素基が挙げられる。上記アリール基部位の環形成炭素数は、それぞれ、好ましくは6~30、より好ましくは6~24、さらに好ましくは6~18、特に好ましくは6~10である。アリールアミノ基としては、ジフェニルアミノ基が好ましい。
 R1~R9が表す環形成炭素数6~30(好ましくは6~24、より好ましくは6~18、さらに好ましくは6~10)のアリール基は、縮合環であっても非縮合環であってもよい。該アリール基としては、例えば、フェニル基、ナフチルフェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アセナフチレニル基、アントリル基、ベンゾアントリル基、アセアントリル基、フェナントリル基、ベンゾ[c]フェナントリル基、フェナレニル基、フルオレニル基、ピセニル基、ペンタフェニル基、ピレニル基、クリセニル基、ベンゾ[g]クリセニル基、s-インダセニル基、as-インダセニル基、フルオランテニル基、ベンゾ[k]フルオランテニル基、トリフェニレニル基、ベンゾ[b]トリフェニレニル基及びペリレニル基などが挙げられる。これらの中でも、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントリル基、ピレニル基、フルオランテニル基が好ましく、フェニル基、ビフェニリル基、ターフェニリル基がより好ましく、フェニル基がさらに好ましい。
 R9が表す環形成原子数5~30(好ましくは5~24、より好ましくは5~12)のヘテロアリール基は、少なくとも1個、好ましくは1~5個、より好ましくは1~4個、さらに好ましくは1~3個のヘテロ原子を含む。該へテロ原子としては、例えば、窒素原子、硫黄原子及び酸素原子が挙げられ、窒素原子、酸素原子が好ましく、窒素原子がより好ましい。
 該ヘテロアリール基としては、例えば、ピロリル基、フリル基、チエニル基、ピリジル基、イミダゾピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、イソベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、インダゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基及びキサンテニル基などが挙げられる。これらの中でも、フリル基、チエニル基、ピリジル基、イミダゾピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、ベンズイミダゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、フェナントロリニル基が好ましい。
 前述の通り、R1~R8は、Lと結合する単結合を表すことがあるが、R9は、Lと結合する単結合を表すことはない。また、R1~R9は、それらが結合して環を形成することはない。
 nは1~4の整数を表し、好ましくは1又は2、より好ましくは1である。nが2~4の整数である場合、複数存在する括弧で囲まれた基、つまり以下の基は、それぞれ同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000007
[A]前記式(1)で表される化合物において、X1~X10のうちの少なくとも1つが窒素原子である場合、X1~X4、X5、X7、X8及びX9から選択される少なくとも1つが窒素原子であることが好ましい。中でも、X7又はX8が窒素原子であるか、もしくは、X1及びX3、X2及びX4、X5及びX7、又はX8及びX10が窒素原子であることがより好ましい。特に、X7が窒素原子である場合、X6がC-Rを表し、該RがLと結合する単結合であるものがさらに好ましい。また特に、X1及びX3が窒素原子である場合、X2がC-Rを表し、該RがLと結合する単結合であるものがさらに好ましく、X2及びX4が窒素原子である場合、X3がC-Rを表し、該RがLと結合する単結合であるものがさらに好ましく、X5及びX7が窒素原子である場合、X6がC-Rを表し、該RがLと結合する単結合であるものがさらに好ましく、X8及びX10が窒素原子である場合、X9がC-Rを表し、該RがLと結合する単結合であるものがさらに好ましい。
[B]前記式(1)で表される化合物としては、低電圧駆動及び発光効率の観点から、下記式(1-1)で表される、X8がC-Rを表し、該RがLと結合する単結合であるものが好ましい。
Figure JPOXMLDOC01-appb-C000008
(式(1-1)において、X1~X7、X9、X10、L、R1~R9及びnは、前記定義の通りである。)
[C]本発明の化合物としては、低電圧駆動及び発光効率の観点から、下記式(1-2)で表される、X2がC-Rを表し、該RがLと結合する単結合であるものも好ましい。
Figure JPOXMLDOC01-appb-C000009
(式(1-2)において、X1、X3~X10、L、R1~R9及びnは、前記定義の通りである。)
 本発明の化合物としては、低電圧駆動及び発光効率の観点から、X1~X10のうち、8つ以上がC-R(該Rは、水素原子又はLとの単結合を表す。)であることが好ましく、9つ以上がC-R(該Rは、水素原子又はLとの単結合を表す。)であることがより好ましく、下記式(1’)で表される様に、全てがC-R(該Rは、水素原子又はLとの単結合を表す。)であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000010
 前記式(1')中、R1~R9、L及びnは、式(1)中のものと同じであり、好ましいものも同じである。
 また、前記式(1')で表される本発明の化合物の中でも、低電圧駆動及び発光効率の観点から、下記式(1'-1)又は(1'-2)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000011

Figure JPOXMLDOC01-appb-C000012
 前記式(1'-1)及び(1'-2)中、R1~R9、L及びnは、式(1)及び(1')中のものと同じであり、好ましいものも同じである。
 前記式(1)、(1-1)、(1-2)、(1’)、(1'-1)及び(1'-2)において、低電圧駆動及び発光効率の観点から、特に、以下の化合物が好ましい。
[D]nが1又は2である化合物。
[E]R3がLと結合する単結合である化合物。さらにこの場合、R9が置換もしくは無置換の環形成炭素数6~30(好ましくは6~24、より好ましくは6~18、さらに好ましくは6~10)のアリール基であることがより好ましく、置換もしくは無置換のフェニル基、置換もしくは無置換のビフェニリル基、置換もしくは無置換のナフチル基がさらに好ましく、フェニル基、ビフェニリル基、ナフチル基が特に好ましい。
[F]R2がLと結合する単結合である化合物。さらにこの場合、R9が置換もしくは無置換の環形成炭素数6~30(好ましくは6~24、より好ましくは6~18、さらに好ましくは6~10)のアリール基であることがより好ましく、置換もしくは無置換のフェニル基、置換もしくは無置換のビフェニリル基、置換もしくは無置換のナフチル基がさらに好ましく、フェニル基、ビフェニリル基、ナフチル基が特に好ましい。
[G]R9が、置換もしくは無置換の環形成炭素数6~30のアリール基である化合物。さらにこの場合、該アリール基としては、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントリル基、ピレニル基が好ましい。
[H]R9が、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である化合物。さらにこの場合、該ヘテロアリール基としては、フリル基、チエニル基、ピリジル基、イミダゾピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、ベンズイミダゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、フェナントロリニル基が好ましい。
[I]Lが、単結合又は置換もしくは無置換の環形成炭素数6~30(より好ましくは6~12)のアリーレン基である化合物。さらにこの場合、該アリーレン基としては、フェニレン基、ビフェニリレン基、ターフェニリレン基、ナフチレン基、アントリレン基、ピレニレン基が好ましい。
[J]さらに、本発明の化合物としては、下記式(1-3)、(1-4)、(1-5)、(1-5-1)、(1-6)、(1-6-1)、(1-7)、(1-8)、(1-9)及び(1-10)のうちのいずれかで表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
(上記式(1-3)、(1-4)、(1-5)、(1-5-1)、(1-6)、(1-6-1)、(1-7)、(1-8)、(1-9)及び(1-10)中、各基の定義は、式(1)中のものと同じであり、好ましいものも同じである。)
 本発明の化合物の具体例を以下に示すが、特にこれらに制限されるものではない。
Figure JPOXMLDOC01-appb-C000023

Figure JPOXMLDOC01-appb-C000024

Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
 本発明の化合物は、有機EL素子用材料として有用である。なお、有機EL素子の発光層が本発明の化合物を含有することが好ましい。
 また、本発明の有機EL素子としては、正孔輸送層(正孔注入層)を有し、該正孔輸送層(正孔注入層)が本発明の化合物を含有している態様も好ましい。
 以下、本発明の有機EL素子の一態様について、詳細に説明する。
(有機EL素子の構成)
 有機EL素子の代表的な素子構成としては、
(1)陽極/発光層/陰極
(2)陽極/正孔輸送層/発光層/陰極
(3)陽極/発光層/電子輸送層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/有機半導体層/発光層/陰極
(6)陽極/有機半導体層/電子障壁層/発光層/陰極
(7)陽極/有機半導体層/発光層/付着改善層/陰極
(8)陽極/正孔輸送層/発光層/電子輸送層/陰極
(9)陽極/絶縁層/発光層/絶縁層/陰極
(10)陽極/無機半導体層/絶縁層/発光層/絶縁層/陰極
(11)陽極/有機半導体層/絶縁層/発光層/絶縁層/陰極
(12)陽極/絶縁層/正孔輸送層/発光層/絶縁層/陰極
(13)陽極/絶縁層/正孔輸送層/発光層/電子輸送層/陰極
などの構造を挙げることができる。
 上記の中で(8)の構成が好ましく用いられるが、もちろんこれらに限定されるものではない。
 また、各発光層の間に、燐光発光層で生成された励起子が蛍光発光層に拡散することを防ぐ目的で、スペース層を有していてもよい。
 図1に、本発明の実施形態における有機EL素子の一例の概略構成を示す。
 有機EL素子1は、透明な基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機薄膜層10とを有する。
 有機薄膜層10は、ホスト材料としての燐光ホスト及び燐光材料としての燐光ドーパントを含む燐光発光層5を有するが、燐光発光層5と陽極3との間に正孔輸送層6等、燐光発光層5と陰極4との間に電子輸送層7等を備えていてもよい。
 また、燐光発光層5の陽極3側に電子障壁層を、燐光発光層5の陰極4側に正孔障壁層を、それぞれ設けてもよい。
 これにより、電子や正孔を燐光発光層5に閉じ込めて、燐光発光層5における励起子の生成確率を高めることができる。
 また、本発明の有機EL素子は、蛍光又は燐光発光型の単色発光素子であっても、蛍光/燐光ハイブリッド型の白色発光素子であってもよいし、単独の発光ユニットを有するシンプル型であっても、複数の発光ユニットを有するタンデム型であってもよい。ここで、「発光ユニット」とは、一層以上の有機層を含み、そのうちの一層が発光層であり、注入された正孔と電子が再結合することにより発光することができる最小単位をいう。発光ユニットの代表的な層構成を以下に示す。
(a)正孔輸送層/発光層(/電子輸送層)
(b)正孔輸送層/第一燐光発光層/第二燐光発光層(/電子輸送層)
(c)正孔輸送層/燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(d)正孔輸送層/第一燐光発光層/第二燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(e)正孔輸送層/第一燐光発光層/スペース層/第二燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(f)正孔輸送層/燐光発光層/スペース層/第一蛍光発光層/第二蛍光発光層(/電子輸送層)
 タンデム型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
 陽極/第一発光ユニット/中間層/第二発光ユニット/陰極
 ここで、上記第一発光ユニット及び第二発光ユニットとしては、例えば、それぞれ独立に上述の発光ユニットと同様のものを選択することができる。
 上記中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、第一発光ユニットに電子を、第二発光ユニットに正孔を供給する、公知の材料構成を用いることができる。
 ここで、ホスト材料は、蛍光ドーパントと組み合わされたときには蛍光ホストと称され、燐光ドーパントと組み合わされたときには燐光ホストと称されるものであり、分子構造のみから一義的に蛍光ホスト又は燐光ホストに限定的に区分されるものではない。
 つまり、本明細書における燐光ホストとは、燐光ドーパントを含有する燐光発光層を構成する材料を意味し、燐光材料のホストにしか利用できないものを意味しているわけではない。
(透明性基板)
 本発明の有機EL素子は、透光性の基板上に作製する。ここでいう透光性基板は有機EL素子を支持する基板であり、400nm~700nmの可視領域の光の透過率が50%以上で平滑な基板が好ましい。
 具体的には、ガラス板、ポリマー板等が挙げられる。
 ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を原料として用いてなるものを挙げられる。
 またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を原料として用いてなるものを挙げることができる。
(陽極及び陰極)
 有機EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する役割を担うものであり、4.5eV以上の仕事関数を有することが効果的である。
 陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、酸化インジウム亜鉛酸化物、金、銀、白金、銅等が挙げられる。
 陽極はこれらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。
 本実施形態のように、発光層からの発光を陽極から取り出す場合、陽極の可視領域の光の透過率を10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百Ω/□以下が好ましい。陽極の膜厚は、材料にもよるが、通常10nm~1μm、好ましくは10nm~200nmの範囲で選択される。
 陰極としては、電子輸送層又は発光層に電子を注入する目的で、仕事関数の小さい材料が好ましい。
 陰極材料は特に限定されないが、具体的にはインジウム、アルミニウム、マグネシウム、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、アルミニウム-リチウム合金、アルミニウム-スカンジウム-リチウム合金、マグネシウム-銀合金等が使用できる。
 陰極も、陽極と同様に、蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。また、陰極側から、発光を取り出す態様を採用することもできる。
(発光層)
 有機EL素子の発光層は以下の機能を併せ持つものである。
 すなわち、
(1)注入機能;電界印加時に陽極又は正孔輸送層より正孔を注入することができ、陰極又は電子輸送層より電子を注入することができる機能、
(2)輸送機能;注入した電荷(電子と正孔)を電界の力で移動させる機能、
(3)発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能、
がある。
 ただし、正孔の注入されやすさと電子の注入されやすさには違いがあってもよく、また、正孔と電子の移動度で表される輸送能に大小があってもよい。
 この発光層を形成する方法としては、例えば蒸着法、スピンコート法、LB法等の公知の方法を適用することができる。
 発光層は、分子堆積膜であることが好ましい。
 ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。
 また、樹脂等の結着剤と材料化合物とを溶剤に溶かして溶液とした後、これをスピンコート法等により薄膜化することによっても、発光層を形成することができる。
 本発明の有機EL素子は、陰極と陽極との間に、1層又は複数層からなる有機薄膜層を備える。該有機薄膜層は、少なくとも1つの発光層を有し、該有機薄膜層の少なくとも1層が、燐光材料を少なくとも1種と、本発明の化合物を少なくとも1種含む。また、発光層の少なくとも1つが、本発明の化合物と燐光材料とをそれぞれ1種以上ずつ含むことが好ましい。
-燐光材料-
 本発明において、前記燐光材料は、金属錯体を含有し、前記金属錯体は、Ir、Pt、Os、Au、Cu、Re及びRuから選択される金属原子と、配位子と、を有することが好ましい。特に、前記配位子は、オルトメタル結合を有することが好ましい。
 燐光量子収率が高く、発光素子の外部量子効率をより向上させることができるという点で、Ir、Os及びPtから選ばれる金属原子を含有する化合物であると好ましく、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体(好ましくはオルトメタク化錯体)であるとさらに好ましく、中でもイリジウム錯体及び白金錯体(いずれも好ましくはオルトメタク化錯体)がより好ましく、オルトメタル化イリジウム錯体が最も好ましい。
 好ましい金属錯体の具体例を、以下に示すが、特にこれらに制限されるものではない。
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
 本発明では、前記発光層に含まれる前記燐光材料のうち少なくとも1種は、発光波長の極大値が450nm以上750nm以下であることが好ましい。好適な例としては、極大値が450nm以上495nm以下、495nm以上590nm以下、590nm以上750nm以下、である。
 このような発光波長の燐光材料(燐光ドーパント)を、本発明で用いる特定のホスト材料にドープして発光層を構成することにより、高効率な有機EL素子とできる。
 発光層の膜厚は、特に限定されるものではないが、好ましくは5~100nm、より好ましくは7~70nm、さらに好ましくは10~50nmである。5nm以上であると発光層の形成が容易であり、100nm以下であると駆動電圧の上昇が避けられる。
(還元性ドーパント)
 本発明の有機EL素子は、陰極と有機薄膜層との界面領域に還元性ドーパントを有することも好ましい。
 このような構成によれば、有機EL素子における発光輝度の向上や長寿命化が図られる。
 還元性ドーパントとしては、アルカリ金属、アルカリ金属錯体、アルカリ金属化合物、アルカリ土類金属、アルカリ土類金属錯体、アルカリ土類金属化合物、希土類金属、希土類金属錯体、及び希土類金属化合物等から選ばれた少なくとも一種類が挙げられる。
 アルカリ金属としては、Na(仕事関数:2.36eV)、K(仕事関数:2.28eV)、Rb(仕事関数:2.16eV)、Cs(仕事関数:1.95eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち好ましくはK、Rb、Cs、さらに好ましくはRb又はCsであり、最も好ましくはCsである。
 アルカリ土類金属としては、Ca(仕事関数:2.9eV)、Sr(仕事関数:2.0eV~2.5eV)、Ba(仕事関数:2.52eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。
 希土類金属としては、Sc、Y、Ce、Tb、Yb等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。
 以上の金属のうち好ましい金属は、特に還元能力が高く、電子注入域への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が可能である。
 アルカリ金属化合物としては、Li2O、Cs2O、K2O等のアルカリ酸化物、LiF、NaF、CsF、KF等のアルカリハロゲン化物等が挙げられ、LiF、Li2O、NaFが好ましい。
 アルカリ土類金属化合物としては、BaO、SrO、CaO及びこれらを混合したBaxSr1-xO(0<x<1)、BaxCa1-xO(0<x<1)等が挙げられ、BaO、SrO、CaOが好ましい。
 希土類金属化合物としては、YbF3、ScF3、ScO3、Y23、Ce23、GdF3、TbF3等が挙げられ、YbF3、ScF3、TbF3が好ましい。
 アルカリ金属錯体、アルカリ土類金属錯体、希土類金属錯体としては、それぞれ金属イオンとしてアルカリ金属イオン、アルカリ土類金属イオン、希土類金属イオンの少なくとも一つ含有するものであれば特に限定はない。また、配位子にはキノリノール、ベンゾキノリノール、アクリジノール、フェナントリジノール、ヒドロキシフェニルオキサゾール、ヒドロキシフェニルチアゾール、ヒドロキシジアリールオキサジアゾール、ヒドロキシジアリールチアジアゾール、ヒドロキシフェニルピリジン、ヒドロキシフェニルベンゾイミダゾール、ヒドロキシベンゾトリアゾール、ヒドロキシフルボラン、ビピリジル、フェナントロリン、フタロシアニン、ポルフィリン、シクロペンタジエン、βージケトン類、アゾメチン類、及びそれらの誘導体などが好ましいが、これらに限定されるものではない。
 還元性ドーパントの添加形態としては、界面領域に層状又は島状に形成すると好ましい。形成方法としては、抵抗加熱蒸着法により還元性ドーパントを蒸着しながら、界面領域を形成する発光材料や電子輸送材料である有機物を同時に蒸着させ、有機物中に還元ドーパントを分散する方法が好ましい。分散濃度はモル比で有機物:還元性ドーパント=100:1~1:100、好ましくは5:1~1:5である。
 還元性ドーパントを層状に形成する場合は、界面の有機層である発光材料や電子輸送材料を層状に形成した後に、還元ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは層の厚み0.1nm~15nmで形成する。
 還元性ドーパントを島状に形成する場合は、界面の有機層である発光材料や電子輸送材料を島状に形成した後に、還元ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは島の厚み0.05nm~1nmで形成する。
 また、本発明の有機EL素子における、主成分と還元性ドーパントの割合としては、モル比で主成分:還元性ドーパント=5:1~1:5であると好ましく、2:1~1:2であるとさらに好ましい。
(電子輸送層)
 電子輸送層は、発光層と陰極との間に形成される有機層であって、電子を陰極から発光層へ輸送する機能を有する。電子輸送層が複数層で構成される場合、陰極に近い有機層を電子注入層と定義することがある。電子注入層は、陰極から電子を効率的に有機層ユニットに注入する機能を有する。
 なお、本発明の化合物は、電子輸送層に含有される電子輸送材料として用いることもできる。
 電子輸送層に用いる電子輸送性材料としては、分子内にヘテロ原子を1個以上含有する芳香族ヘテロ環化合物が好ましく用いられ、特に含窒素環誘導体が好ましい。また、含窒素環誘導体としては、含窒素6員環もしくは5員環骨格を有する芳香族環、又は含窒素6員環もしくは5員環骨格を有する縮合芳香族環化合物が好ましい。
 この含窒素環誘導体としては、例えば、下記式(A)で表される含窒素環金属キレート錯体が好ましい。
Figure JPOXMLDOC01-appb-C000053
 一般式(A)におけるR2~R7は、それぞれ独立に、水素原子、ハロゲン原子、オキシ基、アミノ基、炭素数1~40(好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6)の炭化水素基、炭素数1~40(好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6)のアルコキシ基、環形成炭素数6~40(好ましくは6~20、より好ましくは6~12)のアリールオキシ基、炭素数2~40(好ましくは2~20、より好ましくは2~10、さらに好ましくは2~5)のアルコキシカルボニル基又は環形成原子数9~40(好ましくは9~30、より好ましくは9~20)の芳香族複素環基であり、これらは置換されていてもよい。
 ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素等が挙げられる。また、置換されていてもよいアミノ基の例としては、アルキルアミノ基、アリールアミノ基、アラルキルアミノ基が挙げられる。
 アルコキシカルボニル基は-COOY’と表され、Y’の例としては前記アルキル基と同様のものが挙げられる。アルキルアミノ基及びアラルキルアミノ基は-NQ12と表される。Q1及びQ2の具体例としては、それぞれ独立に、前記アルキル基、前記アラルキル基で説明したものと同様のものが挙げられ、好ましい例も同様である。Q1及びQ2の一方は水素原子であってもよい。
 アリールアミノ基は-NAr1Ar2と表され、Ar1及びAr2の具体例としては、それぞれ独立に前記非縮合芳香族炭化水素基及び縮合芳香族炭化水素基で説明した基と同様である。Ar1及びAr2の一方は水素原子であってもよい。
 Mは、アルミニウム(Al)、ガリウム(Ga)又はインジウム(In)であり、Inであると好ましい。
 上記式(A)のLは、下記式(A’)又は(A”)で表される基である。
Figure JPOXMLDOC01-appb-C000054
 前記式(A’)中、R8~R12は、それぞれ独立に、水素原子又は置換もしくは無置換の炭素数1~40(好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6)の炭化水素基であり、互いに隣接する基が環状構造を形成していてもよい。また、前記式(A”)中、R13~R27は、それぞれ独立に、水素原子又は置換もしくは無置換の炭素数1~40(好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6)の炭化水素基であり、互いに隣接する基が環状構造を形成していてもよい。
 前記式(A’)及び式(A”)のR8~R12及びR13~R27が示す炭素数1~40の炭化水素基としては、前記式(A)中のR2~R7の具体例と同様のものが挙げられる。
 また、R8~R12及びR13~R27の互いに隣接する基が環状構造を形成した場合の2価の基としては、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ジフェニルメタン-2,2’-ジイル基、ジフェニルエタン-3,3’-ジイル基、ジフェニルプロパン-4,4’-ジイル基等が挙げられる。
 電子輸送層に用いられる電子伝達性化合物としては、8-ヒドロキシキノリン又はその誘導体の金属錯体、オキサジアゾール誘導体、含窒素複素環誘導体が好適である。上記8-ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、オキシン(一般に8-キノリノール又は8-ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物、例えばトリス(8-キノリノール)アルミニウムを用いることができる。そして、オキサジアゾール誘導体としては、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000055
 前記式中、Ar17、Ar18、Ar19、Ar21、Ar22及びAr25は、それぞれ置換基を有するもしくは有さない芳香族炭化水素基又は縮合芳香族炭化水素基を示し、Ar17とAr18、Ar19とAr21、Ar22とAr25は、互いに同一でも異なっていてもよい。芳香族炭化水素基又は縮合芳香族炭化水素基としては、フェニル基、ナフチル基、ビフェニル基、アントラニル基、ペリレニル基、ピレニル基などが挙げられる。そして、これらへの置換基としては炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又はシアノ基等が挙げられる。
 Ar20、Ar23及びAr24は、それぞれ置換基を有するもしくは有さない2価の芳香族炭化水素基又は縮合芳香族炭化水素基を示し、Ar23とAr24は、互いに同一でも異なっていてもよい。
 2価の芳香族炭化水素基又は縮合芳香族炭化水素基としては、フェニレン基、ナフチレン基、ビフェニレン基、アントラニレン基、ペリレニレン基、ピレニレン基などが挙げられる。そして、これらへの置換基としては炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又はシアノ基等が挙げられる。
 これらの電子伝達性化合物は、薄膜形成性の良好なものが好ましく用いられる。そして、これら電子伝達性化合物の具体例としては、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000056
 電子伝達性化合物としての含窒素複素環誘導体は、以下の一般式を有する有機化合物からなる含窒素複素環誘導体であって、金属錯体でない含窒素化合物が挙げられる。例えば、下記式(B)に示す骨格を含有する5員環もしくは6員環や、下記式(C)に示す構造のものが挙げられる。
Figure JPOXMLDOC01-appb-C000057
 前記式(C)中、Xは炭素原子もしくは窒素原子を表す。Z1ならびにZ2は、それぞれ独立に含窒素ヘテロ環を形成可能な原子群を表す。
 含窒素複素環誘導体は、さらに好ましくは、5員環もしくは6員環からなる含窒素芳香多環族を有する有機化合物である。さらには、このような複数窒素原子を有する含窒素芳香多環族の場合は、上記式(B)と(C)もしくは上記式(B)と下記式(D)を組み合わせた骨格を有する含窒素芳香多環有機化合物が好ましい。
Figure JPOXMLDOC01-appb-C000058
 前記の含窒素芳香多環有機化合物の含窒素基は、例えば、以下の一般式で表される含窒素複素環基から選択される。
Figure JPOXMLDOC01-appb-C000059
 上記各式中、Rは、環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基又は環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基又は環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)縮合芳香族複素環基、炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基、又は炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルコキシ基である。
 nは0~5の整数であり、nが2以上の整数であるとき、複数のRは互いに同一又は異なっていてもよい。
 さらに、好ましい具体的な化合物として、下記式で表される含窒素複素環誘導体が挙げられる。
    HAr-L1-Ar1-Ar2
 前記式中、HArは、置換基を有していてもよい環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の含窒素複素環基である。
 L1は、単結合、置換基を有していてもよい環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基又は縮合芳香族炭化水素基又は置換基を有していてもよい環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基又は置換基を有していてもよい環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族複素環基である。
 Ar1は、単結合、置換基を有していてもよい環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の2価の芳香族炭化水素基であり、Ar2は、置換基を有していてもよい環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~14)の芳香族炭化水素基もしくは置換基を有していてもよい環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、又は置換基を有していてもよい環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基もしくは置換基を有していてもよい環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の縮合芳香族複素環基である。
 HArは、例えば、下記の群から選択される。
Figure JPOXMLDOC01-appb-C000060
 L1は、例えば、下記の群から選択される基が好ましく、フェニレン基がより好ましい。また、該L1は、カルバゾリル基、特に9-カルバゾリル基などの置換基を有しているものも好ましく、9-カルバゾリル基を2つ有しているものがより好ましい。
Figure JPOXMLDOC01-appb-C000061
 Ar1は、単結合であるものも好ましく、また、例えば、下記のアリールアントラニレン基から選択される基であることも好ましい。
Figure JPOXMLDOC01-appb-C000062
 上記式中、R1~R14は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基、炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルコキシ基、環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)のアリールオキシ基、置換基を有していてもよい環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基もしくは置換基を有していてもよい環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、又は環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基又は環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の縮合芳香族複素環基である。
 Ar3は、置換基を有していてもよい環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基もしくは置換基を有していてもよい環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、又は環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基又は環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の縮合芳香族複素環基である。
 また、R1~R8は、いずれも水素原子である含窒素複素環誘導体であってもよい。
 Ar2は、例えば、下記の群から選択される基であることが好ましく、また、カルバゾリル基、特に9-カルバゾリル基などの複素環基であることも好ましい。
Figure JPOXMLDOC01-appb-C000063
 電子伝達性化合物としての含窒素芳香多環有機化合物には、この他、下記の化合物(特開平9-3448号公報参照)も好適に用いられる。
Figure JPOXMLDOC01-appb-C000064
 上記式中、R1~R4は、それぞれ独立に、水素原子、置換もしくは無置換の脂肪族基、置換もしくは未無置換の脂肪族式環基、置換もしくは無置換の炭素環式芳香族環基、置換もしくは無置換の複素環基を表し、X1、X2は、それぞれ独立に、酸素原子、硫黄原子、又はジシアノメチレン基を表す。
 また、電子伝達性化合物として、下記の化合物(特開2000-173774号公報参照)も好適に用いられる。
Figure JPOXMLDOC01-appb-C000065
 上記式中、R1、R2、R3及びR4は、それぞれ独立に、下記式で表わされる芳香族炭化水素基であるか、又は縮合芳香族炭化水素基である。
Figure JPOXMLDOC01-appb-C000066
 上記式中、R5、R6、R7、R8及びR9は、それぞれ独立に、水素原子、或いはそれらの少なくとも1つが飽和もしくは不飽和アルコキシル基、アルキル基、アミノ基、又はアルキルアミノ基である。
 さらに、電子伝達性化合物は、該含窒素複素環基又は含窒素複素環誘導体を含む高分子化合物であってもよい。
 また、電子輸送層は、下記式(201)~(203)で表される含窒素複素環誘導体の少なくともいずれか1つを含有することが好ましい。
Figure JPOXMLDOC01-appb-C000067
 前記式(201)~(203)中、Rは、水素原子、置換基を有していてもよい環形成炭素数6~60(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基もしくは置換基を有していてもよい環形成炭素数6~60(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、置換基を有していてもよい環形成原子数5~60(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基もしくは置換基を有していてもよい環形成原子数5~60(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の縮合芳香族複素環基、置換基を有していてもよい炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基、又は置換基を有していてもよい炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルコキシ基である。
 nは0~4の整数である。
 前記式(201)~(203)中、R1は、置換基を有していてもよい環形成炭素数6~60(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基もしくは置換基を有していてもよい環形成炭素数6~60(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、置換基を有していてもよい環形成原子数5~60(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基もしくは置換基を有していてもよい環形成原子数5~60(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の縮合芳香族複素環基、置換基を有していてもよい炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基、又は炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルコキシ基である。
 R2及びR3は、それぞれ独立に、水素原子、置換基を有していてもよい環形成炭素数6~60(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基もしくは置換基を有していてもよい環形成炭素数6~60(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、置換基を有していてもよい環形成原子数5~60(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基もしくは置換基を有していてもよい環形成原子数5~60(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の縮合芳香族複素環基、置換基を有していてもよい炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基、又は置換基を有していてもよい炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルコキシ基である。
 前記式(201)~(203)中、Lは、置換基を有していてもよい環形成炭素数6~60(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基もしくは置換基を有していてもよい環形成炭素数6~60(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、置換基を有していてもよい環形成原子数5~60(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基もしくは置換基を有していてもよい環形成原子数5~60(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の縮合芳香族複素環基である。
 Ar1は、置換基を有していてもよい環形成炭素数6~60(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基もしくは置換基を有していてもよい環形成炭素数6~60(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、置換基を有していてもよい環形成原子数5~60(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基もしくは置換基を有していてもよい環形成原子数5~60(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の縮合芳香族複素環基である。
 Ar2は、置換基を有していてもよい環形成炭素数6~60(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基もしくは置換基を有していてもよい環形成炭素数6~60(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、置換基を有していてもよい環形成原子数5~60(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基もしくは置換基を有していてもよい環形成原子数5~60(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の縮合芳香族複素環基、置換基を有していてもよい炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基、又は置換基を有していてもよい炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルコキシ基である。
 Ar3は、置換基を有していてもよい環形成炭素数6~60(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基もしくは置換基を有していてもよい環形成炭素数6~60(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、置換基を有していてもよい環形成原子数5~60(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基もしくは置換基を有していてもよい環形成原子数5~60(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の縮合芳香族複素環基、置換基を有していてもよい炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基、置換基を有していてもよい炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルコキシ基、又は-Ar1-Ar2で表される基(Ar1及びAr2は、それぞれ前記と同じ)である。
 なお、前記式(201)~(203)において、Rは、水素原子、置換基を有していてもよい炭素数6~60の芳香族炭化水素基又は縮合芳香族炭化水素基、置換基を有していてもよいピリジル基、置換基を有していてもよいキノリル基、置換基を有していてもよい炭素数1~20のアルキル基、又は置換基を有していてもよい炭素数1~20のアルコキシ基である。
 なお、電子輸送層の膜厚は、特に限定されないが、好ましくは、1nm~100nmである。
 また、電子輸送層に隣接して設けることができる電子注入層の構成成分として、含窒素環誘導体の他に無機化合物として、絶縁体又は半導体を使用することが好ましい。電子注入層が絶縁体や半導体で構成されていれば、電流のリークを有効に防止して、電子注入性を向上させることができる。
 このような絶縁体としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲニド等で構成されていれば、電子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲニドとしては、例えば、Li2O、K2O、Na2S、Na2Se及びNa2Oが挙げられ、好ましいアルカリ土類金属カルコゲニドとしては、例えば、CaO、BaO、SrO、BeO、BaS及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KCl及びNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF2、BaF2、SrF2、MgF2及びBeF2等のフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
 また、半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnの少なくとも一つの元素を含む酸化物、窒化物又は酸化窒化物等の一種単独又は二種以上の組み合わせが挙げられる。また、電子注入層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好ましい。電子注入層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、このような無機化合物としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物等が挙げられる。
 このような絶縁体又は半導体を使用する場合、その層の好ましい厚みは、0.1nm~15nm程度である。また、電子注入層は、前述の還元性ドーパントを含有していても好ましい。
(正孔輸送層)
 発光層と陽極との間に形成される有機層であって、正孔を陽極から発光層へ輸送する機能を有する。正孔輸送層が複数層で構成される場合、陽極に近い有機層を正孔注入層と定義することがある。正孔注入層は、陽極から正孔を効率的に有機層ユニットに注入する機能を有する。本発明の化合物は、正孔輸送層(第1の電荷輸送層)に含有される正孔輸送材料として用いることもできる。
 正孔輸送層を形成する他の材料としては、芳香族アミン化合物、例えば、下記式(H)で表される芳香族アミン誘導体が好適に用いられる。
Figure JPOXMLDOC01-appb-C000068
 前記式(H)において、Ar211~Ar214は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基又は置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基又は置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の縮合芳香族複素環基、又は、それら芳香族炭化水素基又は縮合芳香族炭化水素基と芳香族複素環基又は縮合芳香族複素環基が結合した基を表す。Ar211とAr212、Ar213とAr214は、結合してそれらが結合している窒素原子と共に環を形成していてもよく、該環としては、例えばカルバゾール環などが挙げられる。
 また、前記式(H)において、L211は、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基又は置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基又は置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の縮合芳香族複素環基を表す。
 式(H)の化合物の具体例を以下に記すが、特にこれらに制限されるものではない。
Figure JPOXMLDOC01-appb-C000069
 また、下記式(J)の芳香族アミン化合物も正孔輸送層の形成に好適に用いられる。
Figure JPOXMLDOC01-appb-C000070
 前記式(J)において、Ar221~Ar223の定義は前記式(H)のAr211~Ar214の定義と同様である。以下に式(J)の化合物の具体例を記すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
 本発明の一実施態様の有機EL素子の正孔輸送層は、第一正孔輸送層(陽極側)と第二正孔輸送層(陰極側)の2層構造にしてもよい。
 正孔輸送層の膜厚は特に限定されないが、10nm~300nmであるのが好ましい。なお、正孔輸送層が前記2層構造である場合は、特に限定されないが、第一正孔輸送層の膜厚は、好ましくは50~300nm、より好ましくは50~250nm、さらに好ましくは100~250nm、特に好ましくは150~250nmであり、第二正孔輸送層の膜厚は、好ましくは5~100nm、より好ましくは5~50nm、さらに好ましくは5~30nm、特に好ましくは5~20nmである。
 本発明の一実施態様の有機EL素子では、正孔輸送層又は第1正孔輸送層の陽極側にアクセプター材料を含有する層を接合してもよい。これにより駆動電圧の低下及び製造コストの低減が期待される。
 アクセプター材料としては、下記式(K)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000074
(上記式(K)中、R311~R316は互いに同一でも異なっていてもよく、それぞれ独立にシアノ基、-CONH2、カルボキシル基、又は-COOR317(R317は炭素数1~20のアルキル基又は炭素数3~20のシクロアルキル基を表す)を表す。ただし、R311及びR312、R313及びR314、並びにR315及びR316の1又は2以上の対が一緒になって-CO-O-CO-で示される基を形成してもよい。)
 R317としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 アクセプター材料を含有する層の膜厚は特に限定されないが、5~20nmであるのが好ましい。
 アクセプター材料としては、下記の材料も好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
(スペース層)
 上記スペース層とは、例えば、蛍光発光層と燐光発光層とを積層する場合に、燐光発光層で生成する励起子を蛍光発光層に拡散させない、あるいは、キャリアバランスを調整する目的で、蛍光発光層と燐光発光層との間に設けられる層である。また、スペース層は、複数の燐光発光層の間に設けることもできる。
 スペース層は発光層間に設けられるため、電子輸送性と正孔輸送性を兼ね備える材料であることが好ましい。また、隣接する燐光発光層内の三重項エネルギーの拡散を防ぐため、三重項エネルギーが2.6eV以上であることが好ましい。スペース層に用いられる材料としては、上述の正孔輸送層に用いられるものと同様のものが挙げられる。スペース層用の材料として、本発明の化合物を用いることもできる。
(障壁層)
 本発明の一実施態様の有機EL素子は、発光層に隣接する部分に、電子障壁層、正孔障壁層、トリプレット障壁層といった障壁層を有することが好ましい。ここで、電子障壁層とは、発光層から正孔輸送層へ電子が漏れることを防ぐ層であり、正孔障壁層とは、発光層から電子輸送層へ正孔が漏れることを防ぐ層である。正孔障壁層用の材料として、本発明の化合物を用いることもできる。
 トリプレット障壁層は、発光層で生成する三重項励起子が、周辺の層へ拡散することを防止し、三重項励起子を発光層内に閉じ込めることによって三重項励起子の発光ドーパント以外の電子輸送層の分子上でのエネルギー失活を抑制する機能を有する。
 トリプレット障壁層を設ける場合、燐光素子においては、発光層中の燐光発光性ドーパントの三重項エネルギーをET d、トリプレット障壁層として用いる化合物の三重項エネルギーをET TBとすると、ET d<ET TBのエネルギー大小関係であれば、エネルギー関係上、燐光発光性ドーパントの三重項励起子が閉じ込められ(他分子へ移動できなくなり)、該ドーパント上で発光する以外のエネルギー失活経路が断たれ、高効率に発光することができると推測される。ただし、ET d<ET TBの関係が成り立つ場合であってもこのエネルギー差ΔET=ET TB-ET dが小さい場合には、実際の素子駆動環境である室温程度の環境下では、周辺の熱エネルギーにより吸熱的にこのエネルギー差ΔETを乗り越えて三重項励起子が他分子へ移動することが可能であると考えられる。特に燐光発光の場合は蛍光発光に比べて励起子寿命が長いため、相対的に吸熱的励起子移動過程の影響が現れやすくなる。室温の熱エネルギーに対してこのエネルギー差ΔETは大きい程好ましく、0.1eV以上であるとさらに好ましく、0.2eV以上であると特に好ましい。一方、蛍光素子においては、国際公開第2010/134350号に記載するTTF素子構成のトリプレット障壁層用の材料として、本発明の一実施態様の有機EL素子用材料を用いることもできる。
 また、トリプレット障壁層を構成する材料の電子移動度は、電界強度0.04~0.5MV/cmの範囲において、10-6cm2/Vs以上であることが望ましい。有機材料の電子移動度の測定方法としては、Time of Flight法等幾つかの方法が知られているが、ここではインピーダンス分光法で決定される電子移動度をいう。
 電子注入層は、電界強度0.04~0.5MV/cmの範囲において、10-6cm2/Vs以上であることが望ましい。これにより陰極からの電子輸送層への電子注入が促進され、ひいては隣接する障壁層、発光層への電子注入も促進し、より低電圧での駆動を可能にするためである。
 なお、本発明は、上記の説明に限られるものではなく、本発明の趣旨を逸脱しない範囲での変更は本発明に含まれる。例えば、次のような変更も本発明の好適な変形例である。
 本発明では、前記発光層が電荷注入補助材を含有していることも好ましい。
 エネルギーギャップが広いホスト材料を用いて発光層を形成した場合、ホスト材料のイオン化ポテンシャル(Ip)と正孔輸送層等のIpとの差が大きくなり、発光層への正孔の注入が困難となり、十分な輝度を得るための駆動電圧が上昇するおそれがある。
 このような場合、発光層に、正孔輸送性の電荷注入補助剤を含有させることで、発光層への正孔注入を容易にし、駆動電圧を低下させることができる。
 電荷注入補助剤としては、例えば、一般的な正孔輸送材料、正孔注入材料等が利用できる。
 具体例としては、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ポリシラン系、アニリン系共重合体、導電性高分子オリゴマー(特にチオフェンオリゴマー)等を挙げることができる。
 正孔注入性を有する材料(正孔注入材料)としては上記のものを挙げることができるが、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物、特に芳香族第三級アミン化合物が好ましい。
 また、2個の縮合芳香族環を分子内に有する、例えば、4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニル[NPDと称されることもある]、またトリフェニルアミンユニットが3つスターバースト型に連結された4,4’,4”-トリス(N-(3-メチルフェニル)-N-フェニルアミノ)トリフェニルアミン(MTDATAと称されることもある)等を挙げることができる。
 また、ヘキサアザトリフェニレン誘導体等も正孔注入性の材料として好適に用いることができる。
 また、p型Si、p型SiC等の無機化合物も正孔注入材料として使用することができる。
 本発明の有機EL素子の各層の形成方法は特に限定されない。従来公知の真空蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の有機EL素子に用いる、前記本発明の化合物を含有する有機薄膜層は、真空蒸着法、分子線蒸着法(MBE法)あるいは溶媒に解かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法による公知の方法で形成することができる。
 本発明の有機EL素子の各有機層の膜厚は特に制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから1μmの範囲が好ましい。
 本発明の一実施態様である有機EL素子の各層の形成方法は特に限定されない。従来公知の真空蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の一実施態様である有機EL素子に用いる、本発明の他の実施態様である化合物を含有する有機薄膜層は、真空蒸着法、分子線蒸着法(MBE法)、あるいは当該化合物を溶媒に解かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法による公知の方法で形成することができる。
[電子機器]
 本発明の化合物を用いて得られる有機EL素子は、有機ELパネルモジュールなどの表示部品;テレビ、携帯電話、パーソナルコンピュータなどの表示装置;照明、車両用灯具の発光装置、などの電子機器に使用できる。
 次に、実施例及び比較例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例の記載内容になんら制限されるものではない。
合成例1(化合物1の合成)
Figure JPOXMLDOC01-appb-C000089

 アルゴン雰囲気下、上記原料化合物(A)4.53g、既知の方法で合成した3-フルオランテンボロン酸4.00g、テトラキス(トリフェニルホスフィン)パラジウム250mg、2モルの炭酸ナトリウム水溶液25mL、トルエン35mL、ジメチルエーテル(DME)35mLを300mLのフラスコに仕込み、4時間加熱還流撹拌した。
 室温まで冷却した後、反応溶液をジクロロエタンで抽出し、セライトろ過した。ろ液を濃縮し、残渣をシリカゲルカラムクロマトグラフィで精製し、化合物1(3,85g、収率62%)を得た。マススペクトル分析の結果、化合物1の分子量443に対し、m/e=443であった。
合成例2(化合物2の合成)
Figure JPOXMLDOC01-appb-C000090

 合成例1において、原料化合物(A)の代わりに既知の方法で合成した上記原料化合物(B)を用いたこと以外は同様の方法で実験を行い、化合物2を得た。マススペクトル分析の結果、化合物2の分子量519に対し、m/e=519であった。
合成例3(化合物3の合成)
Figure JPOXMLDOC01-appb-C000091

 合成例2において、3-フルオランテンボロン酸の代わりに8-フルオランテンボロン酸を用いたこと以外は同様の方法で実験を行い、化合物3を得た。マススペクトル分析の結果、化合物3の分子量519に対し、m/e=519であった。
合成例4(化合物4の合成)
Figure JPOXMLDOC01-appb-C000092

 合成例1において、原料化合物(A)の代わりに既知の方法で合成した上記原料化合物(C)を用いたこと以外は同様の方法で実験を行い、化合物4を得た。マススペクトル分析の結果、化合物4の分子量443に対し、m/e=443であった。
合成例5(化合物5の合成)
Figure JPOXMLDOC01-appb-C000093

 合成例4において、原料化合物(C)の代わりに既知の方法で合成した上記原料化合物(D)を用いたこと以外は同様の方法で実験を行い、化合物5を得た。マススペクトル分析の結果、化合物5の分子量519に対し、m/e=519であった。
合成例6(化合物6の合成)
Figure JPOXMLDOC01-appb-C000094
 合成例3において、原料化合物(B)の代わりに既知の方法で合成した上記原料化合物(E)を用いたこと以外は同様の方法で実験を行い、化合物6を得た。マススペクトル分析の結果、化合物6の分子量593に対し、m/e=593であった。
合成例7(化合物7の合成)
Figure JPOXMLDOC01-appb-C000095

 合成例6において、原料化合物(E)の代わりに既知の方法で合成した上記原料化合物(F)を用いたこと以外は同様の方法で実験を行い、化合物7を得た。マススペクトル分析の結果、化合物7の分子量669に対し、m/e=669であった。
合成例8(化合物8の合成)
Figure JPOXMLDOC01-appb-C000096

 合成例7において、原料化合物(F)の代わりに既知の方法で合成した上記原料化合物(G)を用いたこと以外は同様の方法で実験を行い、化合物8を得た。マススペクトル分析の結果、化合物8の分子量669に対し、m/e=669であった。
合成例9(化合物9の合成)
Figure JPOXMLDOC01-appb-C000097

 合成例1において、原料化合物(A)の代わりに、原料化合物(A)から既知の方法で合成した上記原料化合物(H)2等量を用い、且つ3-フルオランテンボロン酸の代わりに、既知の方法で合成した3,8-ジブロモフルオランテンを用いたこと以外は同様の方法で実験を行い、化合物9を得た。マススペクトル分析の結果、化合物9の分子量684に対し、m/e=684であった。
合成例10(化合物10の合成)
Figure JPOXMLDOC01-appb-C000098
 合成例1において、原料化合物(A)と既知の合成法(例えば、国際公開第2008/078824号、p.68参照)によって得た化合物(I)を用いたこと以外は同様の方法で化合物10を得た。マススペクトル分析の結果、化合物10の分子量444に対し、m/e=444であった。
実施例1(有機EL素子の製造及び評価)
 25mm×75mm×厚さ1.1mmのITO透明電極付きガラス基板(ジオマティック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行った。ITO透明電極の厚さは100nmとした。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている面上に前記透明電極を覆うようにして下記アクセプター材料(K-1)を蒸着し、膜厚5nmのアクセプター層を成膜した。このアクセプター層上に、下記芳香族アミン化合物HT-1を蒸着し、膜厚220nmの第一正孔輸送層を成膜した。第一正孔輸送層の成膜に続けて、下記化合物HT-2を蒸着し、膜厚10nmの第二正孔輸送層を成膜した。
 次に、この第二正孔輸送層上に、合成例1で得た化合物1(ホスト材料)と下記化合物RD-1(ドーパント材料)を共蒸着し、膜厚40nmの共蒸着膜を成膜した。化合物RD-1の濃度は5.0質量%であった。この共蒸着膜は発光層として機能する。
 そして、この発光層の上に、下記化合物ET-1(50質量%)及び還元性ドーパントであるLiq(8-ヒドロキシキノリノラトリチウム)(50質量%)を二元蒸着して膜厚36nmのET-1膜を成膜し、電子輸送層を形成した。
 次に、このET-1膜上に、LiFを成膜速度0.1オングストローム/minで蒸着して膜厚1nmのLiF膜を成膜し、電子注入性電極(陰極)を形成した。
 そして、このLiF膜上に金属Alを蒸着して膜厚80nmの金属Al膜を成膜し、金属Al陰極を形成し、有機EL素子を製造した。
(有機EL素子の評価)
 製造した有機EL素子を直流電流駆動により発光させ、電流密度10mA/cm2における駆動電圧(V)を求め、外部量子効率(EQE)の評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-C000099
比較例1~2(有機EL素子の製造)
 実施例1において、化合物1を用いる代わりに表1に記載の化合物を用いて発光層を形成した以外は実施例1と同様にして有機EL素子を作製した。駆動電圧及び外部量子効率(EQE)の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-C000101
 フルオランテン骨格にカルバゾリル基が2つ置換し、且つカルバゾリル基の9位で置換している比較化合物1を用いた比較例1では、実施例1に比べ、駆動電圧が大きく上昇すると共に、外部量子効率も大幅に低下した。
 フルオランテン骨格が1つである化合物1を用いた実施例1に比べ、フルオランテン骨格が2つである比較化合物2を用いた比較例2においても、駆動電圧が大きく上昇すると共に、外部量子効率も大幅に低下した。
 以上のような結果が得られた理由について、次のように推測する。つまり、比較化合物1のようなカルバゾール骨格を2つ有し、且つ該カルバゾールの9位にてフルオランテンに結合している化合物(比較化合物1)は、イオン化ポテンシャル(Ip)が深く(大きく)なる傾向(比較化合物1のイオン化ポテンシャル≒6.0eV)にあり、そのために正孔注入性が低下し、キャリアバランスが崩れるため、駆動電圧が上昇し、発光効率が低下するものと推測する。また、フルオランテン骨格を2つ有する化合物(比較化合物2)は、前記化合物1のようなフルオランテン骨格が1つの化合物に比べてイオン化ポテンシャルが深く(大きく)、且つ電子親和力(Af)が浅い(小さい)傾向にあるため、正孔注入性が低下し、かつ、電子注入性も低下するため、駆動電圧が上昇し、発光効率が低下するものと推測する。
  1 有機エレクトロルミネッセンス素子
  2 基板
  3 陽極
  4 陰極
  5 燐光発光層
  6 正孔輸送層
  7 電子輸送層
 10 有機薄膜層

Claims (26)

  1.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)において、X1~X10は、それぞれ独立に、C-R(Rは、水素原子、置換基又はLと結合する単結合を表す。)又は窒素原子を表す。
     Lは、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基、又は、該アリーレン基及び該ヘテロアリーレン基が2~4つ結合してなる2価の基を表す。
     R1~R8は、それぞれ独立に、水素原子、フッ素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~30のアリールチオ基、-Si(R1003で表されるシリル基[R100は、水素原子、炭素数1~30のアルキル基又は環形成炭素数6~60の芳香族炭化水素基である。3つのR100は、それぞれ同一であってもよいし、異なっていてもよい。]、置換もしくは無置換の炭素数2~30のアルキルアミノ基、置換もしくは無置換の環形成炭素数6~60のアリールアミノ基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の、ピロリル基、フリル基、チエニル基、ピリジル基、イミダゾピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、イソベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、インダゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基及びキサンテニル基から選択されるヘテロアリール基、又はLと結合する単結合を表す。
     R9は、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表す。
     nは、1~4の整数を表す。nが2~4の整数である場合、複数存在する括弧で囲まれた基は、それぞれ同一でも異なっていてもよい。但し、一般式(1)で表される化合物が有するフルオランテン構造は1つである。]
  2.  式(1)において、X1~X10から選択される少なくとも1つが窒素原子である、請求項1に記載の化合物。
  3.  X8がC-Rを表し、該RがLと結合する単結合である、請求項1に記載の化合物。
  4.  X2がC-Rを表し、該RがLと結合する単結合である、請求項1に記載の化合物。
  5.  下記式(1')で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式(1')において、
     Lは、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基、又は、該アリーレン基及び該ヘテロアリーレン基が2~4つ結合してなる2価の基を表す。
     R1~R8は、それぞれ独立に、水素原子、フッ素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~30のアリールチオ基、-Si(R1003で表されるシリル基[R100は、水素原子、炭素数1~30のアルキル基又は環形成炭素数6~60の芳香族炭化水素基である。3つのR100は、それぞれ同一であってもよいし、異なっていてもよい。]、置換もしくは無置換の炭素数2~30のアルキルアミノ基、置換もしくは無置換の環形成炭素数6~60のアリールアミノ基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の、ピロリル基、フリル基、チエニル基、ピリジル基、イミダゾピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、イソベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、インダゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基及びキサンテニル基から選択されるヘテロアリール基、又はLと結合する単結合を表す。
     R9は、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表す。
     nは、1~4の整数を表す。nが2~4の整数である場合、複数存在する括弧で囲まれた基は、それぞれ同一でも異なっていてもよい。但し、一般式(1')で表される化合物が有するフルオランテン構造は1つである。)
  6.  下記式(1'-1)で表される、請求項5に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式(1'-1)において、L、R1~R9及びnは、前記定義の通りである。)
  7.  下記式(1'-2)で表される、請求項5に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    (式(1'-2)において、L、R1~R9及びnは、前記定義の通りである。)
  8.  前記nが1又は2である、請求項1~7のいずれかに記載の化合物。
  9.  R3がLと結合する単結合である、請求項1~8のいずれかに記載の化合物。
  10.  R2がLと結合する単結合である、請求項1~8のいずれかに記載の化合物。
  11.  R9が、置換もしくは無置換の環形成炭素数6~30のアリール基である、請求項1~10のいずれかに記載の化合物。
  12.  R9が、置換もしくは無置換のフェニル基、置換もしくは無置換のビフェニリル基、置換もしくは無置換のターフェニリル基、置換もしくは無置換のナフチル基、置換もしくは無置換のアントリル基又は置換もしくは無置換のピレニル基である、請求項1~11のいずれかに記載の化合物。
  13.  R9が、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である、請求項1~11のいずれかに記載の化合物。
  14.  Lが、単結合又は置換もしくは無置換の環形成炭素数6~30のアリーレン基である、請求項1~13のいずれかに記載の化合物。
  15.  Lが、単結合、又は置換もしくは無置換のフェニレン基、置換もしくは無置換のビフェニリレン基、置換もしくは無置換のターフェニリレン基、置換もしくは無置換のナフチレン基、置換もしくは無置換のアントリレン基又は置換もしくは無置換のピレニレン基である、請求項1~13のいずれかに記載の化合物。
  16.  請求項1~15のいずれかに記載の化合物からなる有機エレクトロルミネッセンス素子用材料。
  17.  陰極と陽極の間に発光層を含む複数の有機薄膜層を有し、前記有機薄膜層のうち少なくとも1層が請求項1~15のいずれかに記載の化合物を含む有機エレクトロルミネッセンス素子。
  18.  前記発光層が、前記化合物を含有する、請求項17に記載の有機エレクトロルミネッセンス素子。
  19.  前記発光層がさらに燐光材料を含有する、請求項18に記載の有機エレクトロルミネッセンス素子。
  20.  前記燐光材料が、イリジウム(Ir)、オスミウム(Os)及び白金(Pt)から選択される金属原子のオルトメタル化錯体である、請求項19に記載の有機エレクトロルミネッセンス素子。
  21.  陰極と発光層の間に電子注入層を有し、該電子注入層が含窒素環誘導体を含む、請求項17~20のいずれかに記載の有機エレクトロルミネッセンス素子。
  22.  陽極と発光層の間に正孔輸送層を有し、該正孔輸送層が芳香族アミン化合物を含む請求項17~21のいずれかに記載の有機エレクトロルミネッセンス素子。
  23.  前記正孔輸送層が2層からなる、請求項22に記載の有機エレクトロルミネッセンス素子。
  24.  陽極と正孔輸送層との間にアクセプター材料を含有するアクセプター層を有する、請求項22又は23に記載の有機エレクトロルミネッセンス素子。
  25.  陰極と有機薄膜層との界面に還元性ドーパントを含有する請求項17~24のいずれかに記載の有機エレクトロルミネッセンス素子。
  26.  請求項17~25のいずれかに記載の有機エレクトロルミネッセンス素子を備えた電子機器。
PCT/JP2014/076326 2013-10-03 2014-10-01 化合物、有機エレクトロルミネッセンス素子及び電子機器 WO2015050173A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480043471.9A CN105408311B (zh) 2013-10-03 2014-10-01 化合物、有机电致发光元件和电子设备
US14/917,174 US10622569B2 (en) 2013-10-03 2014-10-01 Compound, organic electroluminescent element, and electronic device
KR1020167002761A KR102282552B1 (ko) 2013-10-03 2014-10-01 화합물, 유기 전기발광 소자 및 전자 기기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-208532 2013-10-03
JP2013208532A JP6298608B2 (ja) 2013-10-03 2013-10-03 フルオランテン誘導体、有機エレクトロルミネッセンス素子及び電子機器

Publications (1)

Publication Number Publication Date
WO2015050173A1 true WO2015050173A1 (ja) 2015-04-09

Family

ID=52778761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076326 WO2015050173A1 (ja) 2013-10-03 2014-10-01 化合物、有機エレクトロルミネッセンス素子及び電子機器

Country Status (5)

Country Link
US (1) US10622569B2 (ja)
JP (1) JP6298608B2 (ja)
KR (1) KR102282552B1 (ja)
CN (1) CN105408311B (ja)
WO (1) WO2015050173A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9373802B2 (en) 2011-02-07 2016-06-21 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
WO2016163372A1 (ja) * 2015-04-08 2016-10-13 出光興産株式会社 化合物、これを用いた有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子並びに電子機器
WO2017071791A1 (en) 2015-10-27 2017-05-04 Merck Patent Gmbh Materials for organic electroluminescent devices
US10147888B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
CN110785863A (zh) * 2017-06-19 2020-02-11 三星Sdi株式会社 有机光电二极管和显示设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016204150A1 (ja) * 2015-06-16 2018-04-05 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP6646955B2 (ja) * 2015-06-23 2020-02-14 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機電界発光素子
JP2017109521A (ja) * 2015-12-14 2017-06-22 豊田合成株式会社 ステアリングホイール
US20200091435A1 (en) * 2017-03-24 2020-03-19 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and electronic device
US20210005825A1 (en) * 2017-04-03 2021-01-07 Idemitsu Kosan Co., Ltd. Organic electroluminescent element and electronic device
CN111755618B (zh) * 2019-03-28 2022-09-09 江苏三月科技股份有限公司 一种含有覆盖层的有机电致发光装置及用途
CN111755619B (zh) * 2019-03-28 2022-08-30 江苏三月科技股份有限公司 一种含有覆盖层的有机电致发光装置及用途
CN114057752B (zh) * 2021-11-12 2023-04-07 上海八亿时空先进材料有限公司 一种四氮杂荧蒽化合物及其应用
CN114456167A (zh) * 2022-02-14 2022-05-10 上海八亿时空先进材料有限公司 一种氮杂荧蒽衍生物及其应用

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314510A (ja) * 2006-04-27 2007-12-06 Canon Inc フルオランテン誘導体およびそれを有する有機発光素子
JP2008137978A (ja) * 2006-12-05 2008-06-19 Canon Inc カルバゾール誘導体及びこれを用いた有機発光素子
JP2008156315A (ja) * 2006-12-26 2008-07-10 Canon Inc ベンゾフルオランテン化合物及びこれを使用した有機発光素子
WO2009099133A1 (ja) * 2008-02-08 2009-08-13 Toyo Ink Mfg. Co., Ltd. カルバゾリル基を有する化合物およびその用途
JP2009256348A (ja) * 2008-03-28 2009-11-05 Semiconductor Energy Lab Co Ltd アセナフトピリジン誘導体、発光素子用材料、発光素子、発光装置、及び電子機器
WO2012036482A1 (en) * 2010-09-17 2012-03-22 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR20120044523A (ko) * 2010-10-28 2012-05-08 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2012108388A1 (ja) * 2011-02-07 2012-08-16 出光興産株式会社 ビスカルバゾール誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2012108389A1 (ja) * 2011-02-07 2012-08-16 出光興産株式会社 ビスカルバゾール誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2012121561A1 (en) * 2011-03-08 2012-09-13 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2012134124A1 (en) * 2011-03-25 2012-10-04 Rohm And Haas Electronic Materials Korea Ltd. Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2012165844A1 (en) * 2011-05-30 2012-12-06 Rohm And Haas Electronic Materials Korea Ltd. Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2013032278A1 (en) * 2011-09-01 2013-03-07 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
CN103319535A (zh) * 2012-03-19 2013-09-25 海洋王照明科技股份有限公司 一种有机半导体材料、制备方法和电致发光器件
WO2013146942A1 (ja) * 2012-03-28 2013-10-03 出光興産株式会社 新規化合物、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
WO2013182046A1 (zh) * 2012-06-06 2013-12-12 广东阿格蕾雅光电材料有限公司 有机电子材料和有机电致发光器件
WO2014057874A1 (ja) * 2012-10-12 2014-04-17 東レ株式会社 フルオランテン誘導体、それを含有する発光素子材料および発光素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3801326B2 (ja) 1997-11-18 2006-07-26 三井化学株式会社 有機電界発光素子
JP4562884B2 (ja) 2000-08-25 2010-10-13 出光興産株式会社 有機エレクトロルミネッセンス素子
KR100569187B1 (ko) 2003-09-27 2006-04-10 한국과학기술연구원 시클로펜타디엔온으로부터 유도되는 화합물, 이의 제조방법 및 이를 이용한 el 소자
KR20080047210A (ko) 2006-11-24 2008-05-28 삼성전자주식회사 유기 발광 화합물 및 이를 구비한 유기 발광 소자
KR20080047209A (ko) * 2006-11-24 2008-05-28 삼성전자주식회사 유기 발광 화합물 및 이를 구비한 유기 발광 소자
US8244265B2 (en) 2007-11-28 2012-08-14 Motorola Mobility Llc Techniques for aligning application output and uplink resource allocation in wireless communication systems
JP5756288B2 (ja) 2010-12-28 2015-07-29 出光興産株式会社 縮合多環化合物、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314510A (ja) * 2006-04-27 2007-12-06 Canon Inc フルオランテン誘導体およびそれを有する有機発光素子
JP2008137978A (ja) * 2006-12-05 2008-06-19 Canon Inc カルバゾール誘導体及びこれを用いた有機発光素子
JP2008156315A (ja) * 2006-12-26 2008-07-10 Canon Inc ベンゾフルオランテン化合物及びこれを使用した有機発光素子
WO2009099133A1 (ja) * 2008-02-08 2009-08-13 Toyo Ink Mfg. Co., Ltd. カルバゾリル基を有する化合物およびその用途
JP2009256348A (ja) * 2008-03-28 2009-11-05 Semiconductor Energy Lab Co Ltd アセナフトピリジン誘導体、発光素子用材料、発光素子、発光装置、及び電子機器
WO2012036482A1 (en) * 2010-09-17 2012-03-22 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR20120044523A (ko) * 2010-10-28 2012-05-08 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2012108388A1 (ja) * 2011-02-07 2012-08-16 出光興産株式会社 ビスカルバゾール誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2012108389A1 (ja) * 2011-02-07 2012-08-16 出光興産株式会社 ビスカルバゾール誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2012121561A1 (en) * 2011-03-08 2012-09-13 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2012134124A1 (en) * 2011-03-25 2012-10-04 Rohm And Haas Electronic Materials Korea Ltd. Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2012165844A1 (en) * 2011-05-30 2012-12-06 Rohm And Haas Electronic Materials Korea Ltd. Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2013032278A1 (en) * 2011-09-01 2013-03-07 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
CN103319535A (zh) * 2012-03-19 2013-09-25 海洋王照明科技股份有限公司 一种有机半导体材料、制备方法和电致发光器件
WO2013146942A1 (ja) * 2012-03-28 2013-10-03 出光興産株式会社 新規化合物、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
WO2013182046A1 (zh) * 2012-06-06 2013-12-12 广东阿格蕾雅光电材料有限公司 有机电子材料和有机电致发光器件
WO2014057874A1 (ja) * 2012-10-12 2014-04-17 東レ株式会社 フルオランテン誘導体、それを含有する発光素子材料および発光素子

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10147888B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
US10230057B2 (en) 2011-02-07 2019-03-12 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US11271171B2 (en) 2011-02-07 2022-03-08 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
US9818958B2 (en) 2011-02-07 2017-11-14 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US10147889B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
US9373802B2 (en) 2011-02-07 2016-06-21 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US10629821B2 (en) 2015-04-08 2020-04-21 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements using same, and organic electroluminescent element and electronic device each using same
WO2016163372A1 (ja) * 2015-04-08 2016-10-13 出光興産株式会社 化合物、これを用いた有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子並びに電子機器
CN108349932A (zh) * 2015-10-27 2018-07-31 默克专利有限公司 用于有机电致发光器件的材料
KR20180077216A (ko) * 2015-10-27 2018-07-06 메르크 파텐트 게엠베하 유기 전계발광 소자용 재료
TWI726924B (zh) * 2015-10-27 2021-05-11 德商麥克專利有限公司 用於有機電致發光裝置之材料
WO2017071791A1 (en) 2015-10-27 2017-05-04 Merck Patent Gmbh Materials for organic electroluminescent devices
US11355714B2 (en) 2015-10-27 2022-06-07 Merck Patent Gmbh Materials for organic electroluminescent devices
KR102678422B1 (ko) 2015-10-27 2024-06-25 메르크 파텐트 게엠베하 유기 전계발광 소자용 재료
CN110785863A (zh) * 2017-06-19 2020-02-11 三星Sdi株式会社 有机光电二极管和显示设备

Also Published As

Publication number Publication date
JP6298608B2 (ja) 2018-03-20
JP2015071567A (ja) 2015-04-16
US10622569B2 (en) 2020-04-14
CN105408311A (zh) 2016-03-16
KR102282552B1 (ko) 2021-07-27
US20160218299A1 (en) 2016-07-28
CN105408311B (zh) 2019-03-01
KR20160061307A (ko) 2016-05-31

Similar Documents

Publication Publication Date Title
JP6298608B2 (ja) フルオランテン誘導体、有機エレクトロルミネッセンス素子及び電子機器
KR102245875B1 (ko) 유기 전계발광소자용 재료, 이것을 이용한 유기 전계발광소자 및 전자 기기
JP5870045B2 (ja) ビスカルバゾール誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP6298769B2 (ja) 含酸素縮合環アミン化合物、含硫黄縮合環アミン化合物及び有機エレクトロルミネッセンス素子
JP6346187B2 (ja) 有機エレクトロルミネッセンス素子及び電子機器
KR101838833B1 (ko) 축합 플루오란텐 화합물, 이것을 이용한 유기 전기발광 소자용 재료, 및 이것을 이용한 유기 전기발광 소자 및 전자 기기
JP6278894B2 (ja) 有機エレクトロルミネッセンス素子
WO2012165256A1 (ja) 有機エレクトロルミネッセンス素子
KR101709031B1 (ko) 헤테로환 화합물, 이것을 이용한 유기 전기발광 소자용 재료, 및 이것을 이용한 유기 전기발광 소자 및 전자 기기
EP2492986A1 (en) Organic electroluminescent element
EP2589591A1 (en) Compound with carbazole ring structure and organic electroluminescent element
KR20140108637A (ko) 유기 전기발광 소자용 재료 및 유기 전기발광 소자
KR20160014613A (ko) 축합 플루오란텐 화합물, 이것을 포함하는 유기 전기발광 소자용 재료, 및 이것을 이용한 유기 전기발광 소자 및 전자 기기
KR20160002675A (ko) 화합물, 유기 전기발광 소자용 재료, 유기 전기발광 소자 및 전자 기기
JP2014072417A (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
WO2014054263A1 (ja) 有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
JP6088323B2 (ja) 含窒素芳香族複素環誘導体、有機エレクトロルミネッセンス素子用材料、及び有機エレクトロルミネッセンス素子
JP6088324B2 (ja) 含窒素芳香族複素環誘導体、有機エレクトロルミネッセンス素子用材料、及び有機エレクトロルミネッセンス素子
JP2018046154A (ja) 有機エレクトロルミネッセンス素子、電子機器及び化合物
JP2014196251A (ja) ヘテロアレーン誘導体、有機エレクトロルミネッセンス素子用材料、及び有機エレクトロルミネッセンス素子
JP2014196252A (ja) ヘテロアレーン誘導体、有機エレクトロルミネッセンス素子用材料、及び有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043471.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167002761

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14850143

Country of ref document: EP

Kind code of ref document: A1