WO2015050172A1 - 原子層堆積装置および原子層堆積方法 - Google Patents

原子層堆積装置および原子層堆積方法 Download PDF

Info

Publication number
WO2015050172A1
WO2015050172A1 PCT/JP2014/076322 JP2014076322W WO2015050172A1 WO 2015050172 A1 WO2015050172 A1 WO 2015050172A1 JP 2014076322 W JP2014076322 W JP 2014076322W WO 2015050172 A1 WO2015050172 A1 WO 2015050172A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gas
thin film
substrate
supply
Prior art date
Application number
PCT/JP2014/076322
Other languages
English (en)
French (fr)
Inventor
圭亮 鷲尾
Original Assignee
Jswアフティ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jswアフティ株式会社 filed Critical Jswアフティ株式会社
Priority to EP14850701.5A priority Critical patent/EP3048639A4/en
Priority to KR1020167009227A priority patent/KR20160067117A/ko
Priority to US15/026,942 priority patent/US20160258063A1/en
Publication of WO2015050172A1 publication Critical patent/WO2015050172A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement

Definitions

  • the present invention relates to an atomic layer deposition apparatus and an atomic layer deposition method for forming a thin film on a substrate.
  • An atomic layer deposition method (ALD: Atomic Layer Deposition) is known as a technique for forming a thin film uniformly with excellent step coverage.
  • ALD Atomic Layer Deposition
  • two types of gas raw material gas and reaction gas
  • the thin film is formed on the substrate in units of atomic layers.
  • a self-stopping action of the surface reaction is used.
  • the self-stopping action of the surface reaction is an action in which only one layer or several layers of source gas are adsorbed on the substrate surface while the source gas is supplied, and the excess source gas does not contribute to film formation. Therefore, a thin film having a desired film thickness can be formed by repeatedly forming a thin film on the substrate in atomic layer units using the ALD method.
  • the ALD method is excellent in step coverage and film thickness controllability. Therefore, the ALD method is used for forming a capacitor of a memory element and an insulating film called a “high-k gate”. In the ALD method, the insulating film can be formed at a temperature of 300 ° C. or lower. Therefore, in a display device using a glass substrate such as a liquid crystal display, an ALD method is used for forming a gate insulating film of a thin film transistor.
  • a valve for supplying a raw material gas is opened in a pulsed manner and discharged into a film formation container in a reduced pressure atmosphere.
  • gasify with a vaporizer When using a liquid raw material, gasify with a vaporizer. A thin film is formed using this source gas.
  • a liquid injection valve supply method in order to control the supply amount of the raw material to the film formation container in the atomic layer deposition device in which the supply of gas is difficult or the atomic layer deposition device in which a large amount of raw material needs to be supplied.
  • a liquid injection valve is opened for a certain period of time to supply a liquid source to a film forming container, and the liquid source is vaporized in the injector to become a source gas (Patent Document 1).
  • the exhaust port for exhausting the source gas and the reaction gas is provided extending in parallel with the surface on which the thin film of the substrate is formed. There is a tendency that it is more and less at both ends. For this reason, the flow rate of the raw material gas is larger at the center of the exhaust port, and the flow rate of the raw material gas is smaller at both ends of the exhaust port. For this reason, the flow rate of the source gas cannot be made uniform in the entire area of the substrate, and the film thickness becomes thin in the area of the substrate close to the central portion of the exhaust port, making it difficult to make the film thickness uniform. .
  • An object of the present invention is to uniformly control the film thickness over the entire area of the substrate.
  • a first aspect of the present invention is an atomic layer deposition apparatus for forming a thin film on a substrate, A film forming container provided with a substrate disposed therein and a plurality of exhaust ports for discharging the internal gas arranged in parallel with a surface on which the thin film of the substrate is formed with a space between each other, A raw material gas supply section for supplying the raw material gas for the thin film into the film formation container; A reaction gas supply unit that supplies a reaction gas that reacts with a component of the source gas adsorbed on the substrate to form the thin film into the film formation container; An exhaust valve connected to each exhaust port; And a control unit that controls the exhaust amount from each exhaust port by controlling the plurality of exhaust valves.
  • the atomic layer deposition apparatus further includes a film thickness measurement device that measures a film thickness distribution of the thin film after film formation, and the control unit outputs from each exhaust valve according to the measurement result of the film thickness measurement device. It is preferable to control the displacement.
  • the atomic layer deposition apparatus further includes a film quality measurement device that measures a film quality distribution of the thin film after film formation, and the control unit controls the exhaust amount from each exhaust valve according to the measurement result of the film quality measurement device. It is preferable to control.
  • a plurality of supply ports for supplying the source gas and the reaction gas into the film formation container are arranged in parallel with a surface on which the thin film of the substrate is formed, spaced from each other.
  • the source gas supply unit includes a plurality of source gas valves that adjust the supply amount of source gas supplied to each of the supply ports
  • the reaction gas supply unit includes a plurality of reaction gas valves for adjusting a supply amount of the reaction gas supplied to the supply ports.
  • the control unit preferably controls the supply amounts of the source gas and the reaction gas from the plurality of supply ports by controlling the plurality of source gas valves and the reaction gas valve.
  • control unit controls the supply amount of the source gas from each source gas valve and the supply amount of the reaction gas from each reaction gas valve according to the measurement result of the film thickness measuring device.
  • control unit controls a supply amount of the source gas from each source gas valve and a supply amount of the reaction gas from each reaction gas valve in accordance with a measurement result of the film quality measuring device.
  • a purge gas supply unit for supplying a purge gas for discharging the source gas or the reaction gas from the film formation container to the supply ports;
  • the purge gas supply unit includes a plurality of purge gas valves for adjusting the supply amount of purge gas supplied to the supply ports, It is preferable that the control unit controls a residence time of the source gas or the reaction gas in the film formation container by controlling the plurality of purge gas valves.
  • control unit controls the supply amount of the purge gas from each purge gas valve in accordance with the measurement result of the film quality measuring device.
  • a second aspect of the present invention is an atomic layer deposition method for forming a thin film on a substrate, comprising: A raw material gas obtained by vaporizing the liquid raw material, which is a raw material for the thin film, is supplied to the film forming container, and is provided in the film forming container so as to be spaced apart from each other and arranged in parallel with the surface on which the thin film of the substrate is formed.
  • Discharging the source gas from a plurality of exhaust ports Supplying a reaction gas that reacts with a component of the source gas adsorbed on the substrate to form the thin film to the film formation container, and discharging the reaction gas from the plurality of exhaust ports; Measuring the thickness of the thin film formed on the substrate at a plurality of locations; Repeating the step of adjusting the exhaust amount from the plurality of exhaust ports according to the measured thickness of the thin film.
  • a third aspect of the present invention is an atomic layer deposition method for forming a thin film on a substrate,
  • a raw material gas obtained by vaporizing the liquid raw material, which is a raw material for the thin film, is supplied to the film forming container, and is provided in the film forming container so as to be spaced apart from each other and arranged in parallel with the surface on which the thin film of the substrate is formed.
  • Discharging the source gas from a plurality of exhaust ports Supplying a reaction gas that reacts with a component of the source gas adsorbed on the substrate to form the thin film to the film formation container, and discharging the reaction gas from the plurality of exhaust ports; Measuring the film quality of the thin film formed on the substrate at a plurality of locations; The step of adjusting the exhaust amount from the plurality of exhaust ports according to the measured film quality of the thin film is repeated.
  • a fourth aspect of the present invention is an atomic layer deposition method for forming a thin film on a substrate, A step of supplying a raw material gas obtained by vaporizing a liquid raw material, which is a raw material of the thin film, to a film forming container from a plurality of supply ports provided to be arranged in parallel with a surface on which the thin film of the substrate is formed at an interval.
  • Supplying a reaction gas that reacts with the source gas to form the thin film from the plurality of supply ports to the film formation container Measuring the thickness of the thin film formed on the substrate at a plurality of locations;
  • the step of adjusting the supply amounts of the source gas and the reaction gas from the plurality of supply ports according to the measured thickness of the thin film is repeated.
  • an atomic layer deposition method for forming a thin film on a substrate A step of supplying a raw material gas obtained by vaporizing a liquid raw material, which is a raw material of the thin film, to a film forming container from a plurality of supply ports provided to be arranged in parallel with a surface on which the thin film of the substrate is formed at an interval.
  • a sixth aspect of the present invention is an atomic layer deposition method for forming a thin film on a substrate, A step of supplying a raw material gas obtained by vaporizing a liquid raw material, which is a raw material of the thin film, to a film forming container from a plurality of supply ports provided to be arranged in parallel with a surface on which the thin film of the substrate is formed at an interval.
  • a seventh aspect of the present invention is an atomic layer deposition method for forming a thin film on a substrate, A step of supplying a raw material gas obtained by vaporizing a liquid raw material, which is a raw material of the thin film, to a film forming container from a plurality of supply ports provided to be arranged in parallel with a surface on which the thin film of the substrate is formed at an interval.
  • a plurality of exhaust ports are provided in the film formation container in a horizontal direction, and the flow rates of the source gas and the reaction gas exhausted from each exhaust port are controlled.
  • the flow rates of the source gas and the reaction gas can be made uniform over the entire region of the substrate.
  • the film thickness can be uniformly controlled in the entire region of the substrate.
  • FIG. 3 is a view taken in the direction of arrow III in FIG. 2.
  • It is a flowchart which shows an example of the atomic layer deposition method of embodiment. It is a figure which shows the process in which a thin film is formed on a board
  • FIG. 1 is a schematic configuration diagram illustrating an example of an atomic layer deposition apparatus 10A of the present embodiment
  • FIG. 2 is a plan view of the atomic layer deposition apparatus 10A.
  • the atomic layer deposition apparatus 10A according to the present embodiment alternately supplies a source gas and a reactive gas, and forms a thin film on the substrate S in units of atomic layers. At that time, plasma can be generated to increase the reaction activity.
  • parallel plate electrodes are used for generating plasma, but the present invention is not limited to this method.
  • a thin film is formed using a raw material that is liquid at normal temperature and normal pressure.
  • the atomic layer deposition apparatus 10A of this embodiment includes a film forming container 20, an exhaust unit 40, a high frequency power supply 50, a control unit 52, a source gas supply unit 70, a reaction gas supply unit 80, and a purge gas supply unit 90. And comprising.
  • the film forming container 20 includes a vacuum chamber 30 and an injector 60.
  • the vacuum chamber 30 includes a support portion 32, an upper electrode 36, and a lower electrode 38.
  • a lower electrode 38 is provided on the upper surface of the support portion 32.
  • the lower electrode 38 is grounded.
  • the substrate S is supported by lift pins 44 that penetrate the support portion 32 from below the vacuum chamber 30.
  • the lift pins 44 can be moved up and down by a lift mechanism 46, and the lift mechanism 44 moves the lift pins 44 downward while the lift pins 44 support the substrate S, whereby the substrate S is placed on the lower electrode 38. Placed.
  • a heater 34 is provided inside the support portion 32, and the temperature of the substrate S can be adjusted by the heater 34. For example, in the case of plasma ALD, the substrate S is heated to 50 to 200.degree.
  • the upper electrode 36 is provided above the substrate S and is connected to the high frequency power supply 50.
  • the high frequency power supply 50 supplies a high frequency current having a predetermined frequency, plasma is generated between the upper electrode 36 and the lower electrode 38.
  • the high frequency power supply 50 is connected to the control unit 52. The timing at which the high frequency power supply 50 supplies the high frequency current to the upper electrode 36 is controlled by the control unit 52.
  • a film thickness measuring device 56 and a film quality measuring device 57 are connected to the control unit 52.
  • the film thickness measuring device 56 measures the thickness of the thin film formed on the substrate S and inputs measurement information to the control unit 52.
  • the film thickness can be measured at four points on the outer peripheral portion of the substrate and one point on the central portion by, for example, reflectance spectroscopy (light interference method).
  • the film quality measuring device 57 measures the film quality of the thin film formed on the substrate S and inputs measurement information to the control unit 52.
  • the film quality is measured by, for example, measuring the refractive index of the thin film at four points on the outer peripheral portion of the substrate and one point on the central portion. For example, a high refractive index can be evaluated as a dense thin film.
  • the film thickness measuring device 56 is provided outside the vacuum chamber 30, and after the film formation, the thickness of the thin film on the substrate S taken out from the vacuum chamber 30 is measured. Further, the film thickness measuring device 56 may be provided inside the vacuum chamber 30 and the thickness of the thin film formed on the substrate S in the vacuum chamber 30 may be measured.
  • the control unit 52 generates a control signal and supplies the control signal to the source gas valve 78, the reaction gas valve 84, the exhaust valves 54A, 54B, 54C, 54D, and the purge gas valve 94.
  • FIG. 3 is an elevational view of the injector 60 of FIG. 2 as viewed from the direction of arrow III.
  • the injector 60 has a source gas supply port 62 that is elongated in the horizontal direction (perpendicular to the plane of FIG. 1), a reaction gas supply port 64 that is elongated in the horizontal direction, and a purge gas that is elongated in the horizontal direction.
  • a mouth 66 is formed.
  • the source gas supplied from the source gas supply unit 70 is supplied into the film forming container 20 through the source gas supply port 62.
  • the reaction gas supplied from the reaction gas supply unit 80 is supplied into the film forming container 20 through the reaction gas supply port 64.
  • the reaction gas supplied from the purge gas supply unit 90 is supplied into the film forming container 20 through the purge gas supply port 66.
  • the exhaust unit 40 exhausts the source gas, the reaction gas, and the purge gas supplied into the film forming container 20 (vacuum chamber 30) through the exhaust pipe.
  • the exhaust unit 40 is, for example, a dry pump.
  • the exhaust pipe 42 is connected to a plurality of exhaust ports 42 a, 42 b, 42 c, 42 d provided in the vacuum chamber 30.
  • the exhaust pipe 42 may be branched, or the exhaust pipe 42 and the exhaust part 40 may be provided for each of the exhaust ports 42a, 42b, 42c, and 42d.
  • the plurality of exhaust ports 42a, 42b, 42c, and 42d are arranged in a straight line at intervals in the horizontal direction at the end of the vacuum chamber 30 opposite to the injector 60.
  • Exhaust valves 54A, 54B, 54C, and 54D are respectively provided at the ends of the exhaust pipe 42 on the exhaust ports 42a, 42b, 42c, and 42d side.
  • the exhaust valves 54A, 54B, 54C, and 54D are indicated by one reference numeral 54.
  • the degree of opening and closing of the exhaust valves 54A, 54B, 54C, and 54D and the timing of opening and closing are controlled by the control unit 52, respectively.
  • the exhaust valves 54 ⁇ / b> A, 54 ⁇ / b> B, 54 ⁇ / b> C, 54 ⁇ / b> D are opened at a predetermined opening according to the control signal of the control unit 52, whereby the gas in the vacuum chamber 30 is exhausted by the exhaust unit 40 through the exhaust pipe 42.
  • the exhaust unit 40 exhausts the inside of the vacuum chamber 30, so that the degree of vacuum in the vacuum chamber 30 is maintained at about 10 Pa to 100 Pa even when the source gas, the reaction gas, and the purge gas are supplied into the vacuum chamber 30.
  • the source gas supply unit 70 includes a vaporizer 71, a liquid source storage unit 72, a hydraulic pressure gauge 74, a pressurization unit 76, and a source gas valve 78.
  • the vaporizer 71 vaporizes the liquid raw material stored in the liquid raw material storage unit 72 and generates a raw material gas to be supplied to the injector 60.
  • the liquid source storage unit 72 stores a liquid source used for forming a thin film.
  • the liquid raw material stored in the liquid raw material storage unit 72 is, for example, TMA (trimethylaluminum), TDMAS (trisdimethylaminosilane), TEMAZ (tetrakisethylmethylamino-zirconium), or TEMAH (tetrakisethylmethylamino-hafnium).
  • TMA trimethylaluminum
  • TDMAS trisdimethylaminosilane
  • TEMAZ tetrakisethylmethylamino-zirconium
  • TEMAH tetrakisethylmethylamino-hafnium
  • the hydraulic pressure gauge 74 detects the pressure of the liquid raw material storage unit 72.
  • the pressure data detected by the hydraulic pressure gauge 74 is transmitted to the pressurizing unit 76.
  • the pressurizing unit 76 pressurizes the liquid source so that the pressure of the liquid source stored in the liquid source storage unit 72 is constant.
  • the pressurizing unit 76 pressurizes the liquid source by introducing an inert gas such as N 2 gas or Ar gas into the liquid source storage unit 72, for example.
  • the raw material gas valve 78 adjusts the flow rate of the raw material gas vaporized by the vaporizer 71 and supplies it to the injector 60.
  • the source gas valve 78 for example, an ALD valve manufactured by Swagelok can be used.
  • the source gas valve 78 is connected to the control unit 52.
  • the flow rate of the source gas vaporized by the vaporizer 71 is controlled by adjusting the opening degree of the source gas valve 78 by the control unit 52.
  • the reactive gas supply unit 80 includes a reactive gas storage unit 82 and a reactive gas valve 84.
  • the reactive gas storage unit 82 stores a reactive gas used for forming a thin film.
  • the reaction gas stored in the reaction gas storage unit 82 is, for example, O 2 gas or N 2 gas.
  • the reactive gas valve 84 is connected to the control unit 52. The opening degree of the reaction gas valve 84 is controlled by the control unit 52. The reaction gas valve 84 is opened while the supply of the source gas into the film formation container 20 is stopped, and the reaction gas is supplied into the film formation container 20.
  • the purge gas supply unit 90 includes a purge gas storage unit 92 and a purge gas valve 94.
  • the purge gas storage unit 92 stores a purge gas such as Ar gas.
  • the purge gas valve 94 is connected to the control unit 52.
  • the opening degree of the purge gas valve 94 is controlled by the control unit 52.
  • N 2 gas may be used as the purge gas.
  • the reaction gas may be used instead of the purge gas, and the reaction gas supply unit 80 may be used instead of the purge gas supply unit 90.
  • the above is the schematic configuration of the atomic layer deposition apparatus 10A of the present embodiment.
  • the operation of the exhaust valves 54A, 54B, 54C, 54D will be described in more detail with reference to FIG.
  • the flow rates of the source gas and the reactive gas are larger in the vicinity of the central portion of the exhaust port, and the raw material gas and the reactive gas are further away from the central portion of the exhaust pipe 42.
  • the flow of was less.
  • the flow rates of the source gas and the reactive gas cannot be made uniform in the entire region of the substrate S, and the film thickness is reduced in the region far from the central portion of the exhaust port of the substrate S, and the film thickness is made uniform. It was difficult.
  • a plurality of exhaust ports 42a, 42b, 42c, 42d are provided in the vacuum chamber 30 so as to be distributed in the horizontal direction, and the exhaust pipes 42 corresponding to the respective exhaust ports 42a, 42b, 42c, 42d are provided.
  • Exhaust valves 54A, 54B, 54C, and 54D are provided, respectively. For this reason, by adjusting the opening degree of the exhaust valves 54A, 54B, 54C, 54D, the flow rates of the source gas and the reaction gas exhausted from the exhaust ports 42a, 42b, 42c, 42d can be controlled. Thereby, the flow rates of the source gas and the reaction gas can be made uniform in the entire region of the substrate S.
  • the film thickness measured by the film thickness measuring device 56 is thicker at the center portion of the substrate S and thinner at the outer peripheral portion, the flow rates of the source gas and the reaction gas are higher at the central portion of the substrate S and less at the outer peripheral portion. Presumed.
  • the opening degree of the exhaust ports 42a, 42d at both ends is increased, and the exhaust port 42b,
  • the opening degree of the exhaust ports 42a, 42d at both ends is increased, and the exhaust port 42b,
  • the opening degree of the exhaust ports 42a, 42d at both ends is increased, and the exhaust port 42b,
  • the flow rates of the source gas and the reaction gas in the outer peripheral portion of the substrate S are increased to the same amount as the flow rates of the source gas and the reaction gas in the central portion of the substrate S, The flow rates of the source gas and the reaction gas can be made uniform.
  • the film thickness measured by the film thickness measuring device 56 is thinner at the center portion of the substrate S and thicker at the outer peripheral portion, the openings of the exhaust ports 42a and 42d at both ends are reduced, and the exhaust port 42b at the center portion.
  • the film quality measured by the film quality measuring device 57 is denser (high refractive index) at the central part of the substrate S and sparse (low refractive index) at the outer peripheral part, the flow rates of the source gas and the reaction gas are the substrate. It is estimated that there is more at the center of S and less at the outer periphery.
  • the opening degree of the exhaust ports 42a and 42d at both ends is increased, and the opening degree of the central exhaust ports 42b and 42c is decreased, so that the substrate S Increasing the flow rates of the source gas and the reaction gas in the outer peripheral portion to the same amount as the flow rates of the source gas and the reaction gas in the central portion of the substrate S, and making the flow rates of the source gas and the reaction gas uniform in the entire region of the substrate S it can.
  • the film quality measured by the film quality measuring device 57 is sparse (low refractive index) at the center of the substrate S and dense (high refractive index) at the outer peripheral part, the exhaust ports 42a and 42d at both ends are provided.
  • the flow rates of the raw material gas and the reactive gas in the central portion of the substrate S are changed to the flow rates of the raw material gas and the reactive gas in the outer peripheral portion of the substrate S.
  • the flow rates of the source gas and the reaction gas can be made uniform in the entire region of the substrate S.
  • the opening degree of the exhaust valves 54A, 54B, 54C, 54D in accordance with the distribution of the film quality on the substrate S measured by the film quality measuring device 57, a thin film having a uniform film quality is formed on the substrate S. Can be formed.
  • FIG. 4 is a flowchart showing an example of one cycle of the atomic layer deposition method of the present embodiment.
  • 5A to 5D are diagrams showing a process of forming a thin film on the substrate S.
  • the source gas supply unit 70 supplies source gas into the film forming container 20 (step S101).
  • step S ⁇ b> 101 the liquid pressure gauge 74 detects the pressure of the liquid raw material storage unit 72, and the pressure of the liquid raw material stored in the liquid raw material storage unit 72 is constant based on the pressure data detected by the liquid pressure gauge 74.
  • the pressurizing unit 76 pressurizes the liquid raw material. Therefore, the liquid source is supplied to the source gas valve 78 from the liquid source storage unit 72 at a constant pressure.
  • the liquid source supplied from the liquid source storage unit 72 is vaporized by the vaporizer 71, and the source gas 110 is supplied from the source gas supply port 62 into the film forming container 20 at a timing controlled by the control unit 52.
  • the opening degree of the exhaust valves 54A, 54B, 54C, 54D is adjusted so that the flow rate of the source gas 110 is uniform in the entire region of the substrate S, and the exhaust unit 40 evacuates the gas inside the film formation container 20.
  • the source gas 110 is supplied into the film forming container 20, and the source gas 110 is adsorbed on the substrate S to form the adsorption layer 102.
  • the purge gas supply unit 90 supplies the purge gas into the film forming container 20 (step S102).
  • the control unit 52 sends a control signal for opening the purge gas valve 94, and supplies the purge gas 112 from the purge gas storage unit 92 into the film forming container 20.
  • the purge gas valve 94 is opened for 0.1 second, and the purge gas 112 is supplied into the film forming container 20.
  • the exhaust unit 40 exhausts the source gas 110 and the purge gas 112 inside the film forming container 20.
  • the exhaust unit 40 exhausts the source gas 110 and the purge gas 112 inside the film forming container 20 for 2 seconds, for example.
  • the opening degree of the exhaust valves 54A, 54B, 54C, 54D is adjusted so that the flow rate of the source gas 110 is uniform in the entire region of the substrate S, and the exhaust unit 40 evacuates the gas inside the film formation container 20.
  • the purge gas 112 is supplied into the film formation container 20, and the source gas 110 that is not adsorbed on the substrate S is purged from the film formation container 20.
  • the purge gas 112 may be supplied simultaneously when the source gas 110 is supplied.
  • the reactive gas supply unit 80 supplies the reactive gas into the film forming container 20 (step S103).
  • the reaction gas valve 84 is opened at the timing controlled by the control unit 52, and the reaction gas 114 is supplied from the reaction gas supply port 64 into the film formation container 20.
  • the reactive gas supply unit 80 supplies the reactive gas 114 into the film forming container 20 for 1 second, for example.
  • the opening degree of the exhaust valves 54A, 54B, 54C, 54D is adjusted so that the flow rate of the reaction gas 114 is uniform in the entire region of the substrate S, and the exhaust unit 40 evacuates the gas inside the film formation container 20. Exhaust. As shown in FIG. 5C, the reaction gas 114 is supplied into the film forming container 20 in step S103.
  • the high frequency power supply 50 supplies a high frequency current having a predetermined frequency to the upper electrode 36, and plasma is generated between the upper electrode 36 and the lower electrode 38 (step S104).
  • the high frequency power supply 50 generates the plasma of the reaction gas 114 for 0.2 seconds, for example.
  • the reaction gas 114 reacts with the adsorption layer 102, and the thin film layer 104 is formed.
  • step S104 can be omitted.
  • the heater 34 heats the substrate S to 200 to 400 ° C. (thermal ALD) so that the reaction gas 114 sufficiently reacts with the adsorption layer 102.
  • the purge gas supply unit 90 supplies the purge gas 112 into the film forming container 20 (step S105).
  • the purge gas supply unit 90 supplies the purge gas 112 into the film forming container 20 for 0.1 seconds, for example.
  • the exhaust unit 40 exhausts the reaction gas 114 and the purge gas 112 inside the film formation container 20.
  • the opening degree of the exhaust valves 54A, 54B, 54C, 54D is adjusted so that the flow rate of the reaction gas 114 is uniform in the entire region of the substrate S, and the exhaust unit 40 evacuates the gas inside the film formation container 20.
  • the purge gas 112 is supplied into the film formation container 20 and the reaction gas 114 is purged from the film formation container 20 in step S ⁇ b> 105.
  • the thin film layer 104 for one atomic layer is formed on the substrate S by the steps S101 to S105 described above. Thereafter, by repeating steps S101 to S105, the thin film layer 104 having a desired film thickness can be formed.
  • the thickness of the exhaust valves 54A, 54B, 54C, and 54D may be adjusted by measuring the film thickness with the film thickness measuring device 56 every time the steps S101 to S105 are repeated a predetermined number of times. Thereby, a film having a uniform thickness can be formed in the entire region of the substrate S.
  • the vacuum chamber 30 is provided with the plurality of exhaust ports 42a, 42b, 42c, 42d dispersed in the horizontal direction, and the exhaust ports 42a, 42b. , 42c and 42d are provided with exhaust valves 54A, 54B, 54C and 54D, respectively.
  • the opening degree of the exhaust valves 54A, 54B, 54C, 54D it is possible to control the flow rates of the source gas and the reaction gas exhausted from the exhaust ports 42a, 42b, 42c, 42d. Thereby, the flow rates of the source gas and the reaction gas can be made uniform in the entire region of the substrate S.
  • each exhaust port 42a, 42b, 42c, 42d is adjusted by adjusting the opening degree of each exhaust valve 54A, 54B, 54C, 54D.
  • the invention is not limited to this, and the exhaust amount from each exhaust port 42a, 42b, 42c, 42d may be adjusted by adjusting the open time of the exhaust valves 54A, 54B, 54C, 54D.
  • FIG. 6 is a plan view similar to FIG. 2 showing an atomic layer deposition apparatus 10B according to a modification.
  • symbol is attached
  • a plurality of injectors 60A, 60B, 60C, and 60D that supply the source gas, the reaction gas, and the purge gas to the vacuum chamber 30 are linearly arranged at intervals in the horizontal direction.
  • the injectors 60A, 60B, 60C, and 60D are connected to pipes that supply a source gas, a reaction gas, or a purge gas, respectively. This pipe may be branched or may be provided in each of the injectors 60A, 60B, 60C, and 60D.
  • a source gas valve 78A, a reaction gas valve 84A, and a purge gas valve 94A are provided in each pipe for supplying the source gas, the reaction gas, and the purge gas to the injector 60A.
  • a source gas valve 78B, a reaction gas valve 84B, and a purge gas valve 94B are provided in each pipe for supplying the source gas, the reaction gas, and the purge gas to the injector 60B.
  • a raw material gas valve 78C, a reactive gas valve 84C, and a purge gas valve 94C are provided in each pipe for supplying the raw material gas, the reactive gas, and the purge gas to the injector 60C.
  • a raw material gas valve 78D, a reactive gas valve 84D, and a purge gas valve 94D are provided in each pipe for supplying the raw material gas, the reactive gas, and the purge gas to the injector 60D.
  • FIG. 7 is an elevational view of the injectors 60A, 60B, 60C, 60D of FIG. 6 as viewed from the direction of arrow VII.
  • each of the injectors 60A, 60B, 60C and 60D has a raw material gas supply port 62 elongated in the horizontal direction (direction perpendicular to the paper surface of FIG. 1) and the horizontal direction as shown in FIG.
  • An elongated reaction gas supply port 64 and a purge gas supply port 66 elongated in the horizontal direction are formed.
  • the flow rate of the source gas supplied from each source gas valve 78A, 78B, 78C, 78D can be controlled by adjusting the opening degree of the source gas valves 78A, 78B, 78C, 78D.
  • the film thickness measured by the film thickness measuring device 56 is thicker at the center portion of the substrate S and thinner at the outer peripheral portion, or the film quality measured by the film quality measuring device 57 is denser (high refractive index) at the center portion of the substrate S.
  • the outer peripheral portion is sparse (low refractive index)
  • it is estimated that the flow rates of the source gas and the reactive gas are larger in the central portion of the substrate S and smaller in the outer peripheral portion.
  • the injectors 60A and 60D at both ends are connected to the injectors 60A and 60D.
  • the opening of the source gas valves 78A and 78D for supplying the source gas is increased, and the opening of the source gas valves 78B and 78C for supplying the source gas to the central injectors 60B and 60C is decreased, so that the outer circumference of the substrate S is increased.
  • the flow rate of the source gas can be increased to about the same amount as the flow rate of the source gas in the central portion of the substrate S, and the flow rate of the source gas can be made uniform in the entire region of the substrate S.
  • the flow volume of the reaction gas supplied from each reaction gas valve 84A, 84B, 84C, 84D is controllable by adjusting the opening degree of the reaction gas valve 84A, 84B, 84C, 84D.
  • the reaction gas valves 84A, 84B, 84C, and 84D that supply reaction gas to the injectors 60A, 60B, 60C, and 60D that are linearly arranged at intervals in the horizontal direction, the reaction is performed on the injectors 60A and 60D at both ends.
  • Reactions in the outer peripheral portion of the substrate S are increased by increasing the opening of the reaction gas valves 84A and 84D for supplying gas and decreasing the opening of the reaction gas valves 84B and 84C for supplying the reaction gas to the injectors 60B and 60C in the center.
  • the flow rate of the reaction gas can be made uniform in the entire region of the substrate S by increasing the gas flow rate to the same amount as the flow rate of the source gas in the central portion of the substrate S.
  • the residence time of the source gas and the reaction gas can be made uniform in the entire region of the substrate S.
  • the purge gas valves 94A, 94B, 94C, 94D for supplying purge gas to the injectors 60A, 60B, 60C, 60D arranged linearly at intervals in the horizontal direction the purge gas is supplied to the central injectors 60B, 60C.
  • the opening of the purge gas valves 94B and 94C to be supplied is increased, and the opening of the purge gas valves 94A and 94D for supplying the purge gas to the injectors 60A and 60D at both ends is reduced, so that the source gas and reaction at the outer periphery of the substrate S are reduced.
  • the residence time of the gas can be increased to the same extent as the residence time of the source gas and the reaction gas in the central portion of the substrate S, and a film having a uniform thickness can be formed in the entire region of the substrate S.
  • the source gas valves 78A, 78B, 78C, 78D, the reaction gas valves 84A, 84B, 84C, 84D, the purge gas valves 94A, 94B, A film having a uniform thickness can be formed on the substrate S by adjusting the opening degree of the 94C and 94D and the exhaust valves 54A, 54B, 54C and 54D.
  • the supply amount of the source gas from each injector 60A, 60B, 60C, 60D is adjusted by adjusting the opening of each of the source gas valves 78A, 78B, 78C, 78D has been described.
  • the present invention is not limited to this, and the supply amount of the source gas from each injector 60A, 60B, 60C, 60D may be adjusted by adjusting the open time of the source gas valves 78A, 78B, 78C, 78D.
  • the supply amount of the reactive gas from each injector 60A, 60B, 60C, 60D was adjusted by adjusting the opening degree of the reactive gas valve 84A, 84B, 84C, 84D was demonstrated, respectively.
  • the present invention is not limited to this, and the supply amount of the reaction gas from each injector 60A, 60B, 60C, 60D may be adjusted by adjusting the open time of the reaction gas valves 84A, 84B, 84C, 84D.
  • the supply amount of the purge gas from each injector 60A, 60B, 60C, 60D is adjusted by adjusting the opening of the purge gas valves 94A, 94B, 94C, 94D has been described.
  • the present invention is not limited to this, and the supply amount of the purge gas from each injector 60A, 60B, 60C, 60D may be adjusted by adjusting the opening time of the purge gas valves 94A, 94B, 94C, 94D.
  • the number of source gas, reaction gas, and purge gas supply ports may be different from the number of exhaust ports, but the number of supply ports and the number of exhaust ports are preferably the same. This is because if the number of supply ports and the number of exhaust ports are the same, the adjustment of the supply amount and the exhaust amount can be performed in synchronization.
  • the supply port and the exhaust port are preferably provided so as to face each other with the substrate S interposed therebetween. By making the supply port and the exhaust port face each other, the raw material gas flow, the reaction gas flow, and the purge gas flow that flow on the substrate S from the supply port to the exhaust port become laminar flows, and generation of turbulent flow can be prevented. is there.
  • a film forming apparatus having four injectors 60A, 60B, 60C and 60D and four exhaust ports 42a, 42b, 42c and 42d is used to form a 1100 mm ⁇ 1300 mm G5 glass substrate.
  • a thin film of AlON was formed.
  • TMA trimethylaluminum
  • Al source oxygen and nitrogen were used as the reaction gas.
  • the opening time of the source gas valves 78A and 78D was set to 0.5 seconds
  • the opening time of the source gas valves 78B and 78C was set to 0.1 seconds.
  • the open time of any of the reaction gas valves 84A, 84B, 84C, and 84D was set to 1 second by adjusting the pulse length of the control signal.
  • the openings of the exhaust valves 54A, 54B, 54C, 54D are all 100% (fully open).
  • the present invention is not limited to the above embodiment. It goes without saying that various improvements and modifications may be made without departing from the spirit of the present invention.
  • the present invention is not limited to this, and any two or more exhaust valves may be used. Can be used. For example, two, eight, sixteen, thirty-two, etc., power-of-two ( 2n , index n is a natural number) exhaust valves may be used.
  • injectors 60A, 60B, 60C, and 60D are used.
  • the present invention is not limited to this, and an arbitrary number of two or more injectors can be used.
  • two, eight, sixteen, thirty-two, etc., power-of-two ( 2n , exponent n is a natural number) injectors may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

 膜厚を基板の全領域において均一に制御する原子層堆積装置を提供する。 基板上に薄膜を形成する原子層堆積装置であって、内部に基板が配置されるとともに、内部の気体を排出する複数の排気口が互いに間隔を空けて前記基板の薄膜が形成される面と平行に配列されて設けられた成膜容器と、前記薄膜の原料ガスを前記成膜容器内に供給する原料ガス供給部と、前記基板に吸着した原料ガスの成分と反応して前記薄膜を形成する反応ガスを前記成膜容器内に供給する反応ガス供給部と、前記各排気口に接続された排気バルブと、前記複数の排気バルブを制御することで前記各排気口からの排気量を制御する制御部と、を備えることを特徴とする原子層堆積装置。

Description

原子層堆積装置および原子層堆積方法
 本発明は、基板上に薄膜を形成する原子層堆積装置および原子層堆積方法に関する。
 段差被覆性に優れ、薄膜を均一に形成する技術として、原子層堆積法(ALD:Atomic Layer Deposition)が知られている。ALD法では、形成しようとする薄膜を構成する元素を主成分とする2種類のガス(原料ガスおよび反応ガス)を基板上に交互に供給し、基板上に原子層単位で薄膜を形成する。ALD法では、表面反応の自己停止作用が用いられる。表面反応の自己停止作用とは、原料ガスを供給している間に、1層あるいは数層の原料ガスだけが基板表面に吸着し、余分な原料ガスは成膜に寄与しない作用である。そのため、ALD法を用いて原子層単位で繰り返し基板上に薄膜を形成することにより、所望の膜厚の薄膜を形成することができる。
 一般的なCVD(Chemical Vapor Deposition)法と比較して、ALD法は段差被覆性と膜厚制御性に優れている。そのため、メモリ素子のキャパシタや、「high-kゲート」と呼ばれる絶縁膜の形成にALD法が用いられる。
 また、ALD法では、300℃以下の温度で絶縁膜を形成することができる。そのため、液晶ディスプレイなどのようにガラス基板を用いる表示装置において、薄膜トランジスタのゲート絶縁膜の形成にALD法を用いることが行われている。
 ALD法では、原料ガスを供給するバルブをパルス的に開き、減圧雰囲気にある成膜容器内に吐出する。液体原料を使用する場合は、気化器によりガス化させる。この原料ガスを用いて薄膜が形成される。
 気体の供給が困難な原子層堆積装置や大量の原料供給が必要な原子層堆積装置において、原料の成膜容器への供給量を制御するには、リキッドインジェクションバルブ供給法がある。この方法では、一定時間リキッドインジェクションバルブを開けて液体原料が成膜容器に供給され、液体原料はインジェクタ内で気化して原料ガスとなる(特許文献1)。
特開2012-167317号公報
 ところで、従来の成膜容器では、原料ガスや反応ガスを排気する排気口が、基板の薄膜が形成される面と平行に延在して設けられていたが、排気量は排気口の中央部ほど多く、両端部ほど少ない傾向がある。このため、排気口の中央部ほど原料ガスの流量が多く、排気口の両端部ほど原料ガスの流量が少なくなっていた。このため、基板の全領域において原料ガスの流量を均一にすることができず、排気口の中央部に近い基板の領域では膜厚が薄くなり、膜厚を均一にすることが困難であった。
 本発明は、膜厚を基板の全領域において均一に制御することを目的とする。
 上記課題を解決するため、本発明の第1の態様は、基板上に薄膜を形成する原子層堆積装置であって、
 内部に基板が配置されるとともに、内部の気体を排出する複数の排気口が互いに間隔を空けて前記基板の薄膜が形成される面と平行に配列されて設けられた成膜容器と、
 前記薄膜の原料ガスを前記成膜容器内に供給する原料ガス供給部と、
 前記基板に吸着した原料ガスの成分と反応して前記薄膜を形成する反応ガスを前記成膜容器内に供給する反応ガス供給部と、
 前記各排気口に接続された排気バルブと、
 前記複数の排気バルブを制御することで前記各排気口からの排気量を制御する制御部と、を備えることを特徴とする。
 前記原子層堆積装置は、成膜後の薄膜の膜厚分布を計測する膜厚計測装置をさらに備え、前記制御部は、前記膜厚計測装置の計測結果に応じて、前記各排気バルブからの排気量を制御することが好ましい。
 前記原子層堆積装置は、成膜後の薄膜の膜質分布を計測する膜質計測装置をさらに備え、前記制御部は、前記膜質計測装置の計測結果に応じて、前記各排気バルブからの排気量を制御することが好ましい。
 前記成膜容器には、前記原料ガスおよび前記反応ガスを前記成膜容器内に供給する複数の供給口が互いに間隔を空けて前記基板の薄膜が形成される面と平行に配列されて設けられ、
 前記原料ガス供給部は、前記各供給口に供給する原料ガスの供給量を調節する複数の原料ガスバルブを備え、
 前記反応ガス供給部は、前記各供給口に供給する反応ガスの供給量を調節する複数の反応ガスバルブを備え、
 前記制御部は、前記複数の原料ガスバルブおよび反応ガスバルブを制御することで前記複数の供給口からの原料ガスおよび反応ガスの供給量を制御することが好ましい。
 成膜後の薄膜の膜厚分布を計測する膜厚計測装置をさらに備え、
 前記制御部は、前記膜厚計測装置の計測結果に応じて、前記各原料ガスバルブからの原料ガスの供給量および前記各反応ガスバルブからの反応ガスの供給量を制御することが好ましい。
 成膜後の薄膜の膜質分布を計測する膜厚計測装置をさらに備え、
 前記制御部は、前記膜質計測装置の計測結果に応じて、前記各原料ガスバルブからの原料ガスの供給量および前記各反応ガスバルブからの反応ガスの供給量を制御することが好ましい。
 原料ガスまたは反応ガスを前記成膜容器内から排出するためのパージガスを前記各供給口に供給するパージガス供給部をさらに備え、
 前記パージガス供給部は、前記各供給口に供給するパージガスの供給量を調節する複数のパージガスバルブを備え、
 前記制御部は、前記複数のパージガスバルブを制御することで前記原料ガスまたは前記反応ガスの前記成膜容器内の滞留時間を制御することが好ましい。
 成膜後の薄膜の膜厚分布を計測する膜厚計測装置をさらに備え、
 前記制御部は、前記膜厚計測装置の計測結果に応じて、前記各パージガスバルブからのパージガスの供給量を制御することが好ましい。
 成膜後の薄膜の膜厚分布を計測する膜質計測装置をさらに備え、
 前記制御部は、前記膜質計測装置の計測結果に応じて、前記各パージガスバルブからのパージガスの供給量を制御することが好ましい。
 本発明の第2の態様は、基板上に薄膜を形成する原子層堆積方法であって、
 前記薄膜の原料である液体原料を気化した原料ガスを成膜容器に供給するとともに、互いに間隔を空けて前記基板の薄膜が形成される面と平行に配列されて前記成膜容器に設けられた複数の排気口から前記原料ガスを排出するステップと、
 前記基板に吸着した原料ガスの成分と反応して前記薄膜を形成する反応ガスを前記成膜容器に供給するとともに、前記複数の排気口から前記反応ガスを排出するステップと、
 前記基板上に形成された薄膜の厚さを複数個所において計測するステップと、
 計測された薄膜の厚さに応じて、前記複数の排気口からの排気量を調節するステップと、を繰り返すことを特徴とする。
 本発明の第3の態様は、基板上に薄膜を形成する原子層堆積方法であって、
 前記薄膜の原料である液体原料を気化した原料ガスを成膜容器に供給するとともに、互いに間隔を空けて前記基板の薄膜が形成される面と平行に配列されて前記成膜容器に設けられた複数の排気口から前記原料ガスを排出するステップと、
 前記基板に吸着した原料ガスの成分と反応して前記薄膜を形成する反応ガスを前記成膜容器に供給するとともに、前記複数の排気口から前記反応ガスを排出するステップと、
 前記基板上に形成された薄膜の膜質を複数個所において計測するステップと、
 計測された薄膜の膜質に応じて、前記複数の排気口からの排気量を調節するステップと、を繰り返すことを特徴とする。
 本発明の第4の態様は、基板上に薄膜を形成する原子層堆積方法であって、
 前記薄膜の原料である液体原料を気化した原料ガスを、互いに間隔を空けて前記基板の薄膜が形成される面と平行に配列されて設けられた複数の供給口から成膜容器に供給するステップと、
 前記原料ガスと反応して前記薄膜を形成する反応ガスを前記複数の供給口から前記成膜容器に供給するステップと、
 前記基板上に形成された薄膜の厚さを複数個所において計測するステップと、
 計測された薄膜の厚さに応じて、前記複数の供給口からの前記原料ガスおよび前記反応ガスの供給量を調節するステップと、を繰り返すことを特徴とする。
 本発明の第5の態様は、基板上に薄膜を形成する原子層堆積方法であって、
 前記薄膜の原料である液体原料を気化した原料ガスを、互いに間隔を空けて前記基板の薄膜が形成される面と平行に配列されて設けられた複数の供給口から成膜容器に供給するステップと、
 前記原料ガスと反応して前記薄膜を形成する反応ガスを前記複数の供給口から前記成膜容器に供給するステップと、
 前記基板上に形成された薄膜の膜質を複数個所において計測するステップと、
 計測された薄膜の膜質に応じて、前記複数の供給口からの前記原料ガスおよび前記反応ガスの供給量を調節するステップと、を繰り返すことを特徴とする。
 本発明の第6の態様は、基板上に薄膜を形成する原子層堆積方法であって、
 前記薄膜の原料である液体原料を気化した原料ガスを、互いに間隔を空けて前記基板の薄膜が形成される面と平行に配列されて設けられた複数の供給口から成膜容器に供給するステップと、
 前記原料ガスを前記成膜容器内から排出するパージガスを前記複数の供給口から前記成膜容器に供給するステップと、
 前記原料ガスと反応して前記薄膜を形成する反応ガスを前記複数の供給口から前記成膜容器に供給するステップと、
 前記反応ガスを前記成膜容器内から排出するパージガスを前記複数の供給口から前記成膜容器に供給するステップと、
 前記基板上に形成された薄膜の厚さを複数個所において計測するステップと、
 計測された薄膜の厚さに応じて、前記複数の供給口からの前記パージガスの供給量を調節するステップと、を繰り返すことを特徴とする。
 本発明の第7の態様は、基板上に薄膜を形成する原子層堆積方法であって、
 前記薄膜の原料である液体原料を気化した原料ガスを、互いに間隔を空けて前記基板の薄膜が形成される面と平行に配列されて設けられた複数の供給口から成膜容器に供給するステップと、
 前記原料ガスを前記成膜容器内から排出するパージガスを前記複数の供給口から前記成膜容器に供給するステップと、
 前記原料ガスと反応して前記薄膜を形成する反応ガスを前記複数の供給口から前記成膜容器に供給するステップと、
 前記反応ガスを前記成膜容器内から排出するパージガスを前記複数の供給口から前記成膜容器に供給するステップと、
 前記基板上に形成された薄膜の膜質を複数個所において計測するステップと、
 計測された薄膜の膜質に応じて、前記複数の供給口からの前記パージガスの供給量を調節するステップと、を繰り返すことを特徴とする。
 本発明の原子層堆積装置および原子層堆積方法によれば、成膜容器に複数の排気口を水平方向に分散して設け、各排気口から排気される原料ガスおよび反応ガスの流量を制御することで、基板の全領域において原料ガスおよび反応ガスの流量を均一にすることができる。これにより、膜厚を基板の全領域において均一に制御することができる。
実施形態の原子層堆積装置の一例を示す概略図である。 原子層堆積装置の一例を示す平面図である。 図2のIII矢視図である。 実施形態の原子層堆積方法の一例を示すフローチャートである。 基板の上に薄膜が形成される工程を示す図である。 原子層堆積装置の一例を示す平面図である。 図6のVII矢視図である。
<実施形態>
(原子層堆積装置の構成)
 まず、図1を参照して、本実施形態の原子層堆積装置の構成を説明する。図1は、本実施形態の原子層堆積装置10Aの一例を示す概略構成図であり、図2は原子層堆積装置10Aの平面図である。本実施形態の原子層堆積装置10Aは、原料ガスと反応ガスとを交互に供給し、基板S上に原子層単位で薄膜を形成する。その際、反応活性を高めるため、プラズマを発生させることもできる。本実施形態では、プラズマの発生に平行平板電極を用いるが、この方式に限定されない。特に、本実施形態では、常温・常圧で液体である原料を用いて薄膜を形成する。
 本実施形態の原子層堆積装置10Aは、成膜容器20と、排気部40と、高周波電源50と、制御部52と、原料ガス供給部70と、反応ガス供給部80と、パージガス供給部90と、を備える。
 成膜容器20は、真空チャンバ30と、インジェクタ60と、を備える。
 まず、真空チャンバ30について説明する。真空チャンバ30は、支持部32と、上側電極36と、下側電極38と、を備える。支持部32の上面には下側電極38が設けられている。ここで、下側電極38は接地されている。基板Sは、真空チャンバ30の下方から支持部32を貫通するリフトピン44によって支持される。リフトピン44は昇降機構46によって上下方向に昇降可能であり、リフトピン44が基板Sを支持した状態で昇降機構46がリフトピン44を下方向に移動させることにより、基板Sは下側電極38の上に載置される。
 また、支持部32の内部には加熱ヒータ34が設けられており、加熱ヒータ34により基板Sの温度を調整することができる。例えば、プラズマALDの場合、基板Sを50~200℃に加熱する。
 上側電極36は基板Sの上方に設けられ、高周波電源50と接続されている。高周波電源50が所定の周波数の高周波電流を供給することにより、上側電極36と下側電極38との間でプラズマが生成される。
 また、高周波電源50は制御部52と接続されている。高周波電源50が上側電極36に高周波電流を供給するタイミングは、制御部52により制御される。
 制御部52には、膜厚計測装置56および膜質計測装置57が接続されている。
 膜厚計測装置56は、基板S上に形成された薄膜の厚さを計測し、計測情報を制御部52へ入力する。膜厚の計測は、例えば反射率分光法(光干渉法)等により、基板の外周部の4点および中央部の1点において行うことができる。
 膜質計測装置57は、基板S上に形成された薄膜の膜質を計測し、計測情報を制御部52へ入力する。膜質の計測は、基板の外周部の4点および中央部の1点において、例えば薄膜の屈折率を計測することにより行う。例えば、屈折率が高ければ緻密な薄膜であると評価できる。
 なお、本実施形態では、膜厚計測装置56を真空チャンバ30の外部に設け、成膜後、真空チャンバ30から取り出された基板S上の薄膜の厚さを計測する。また、膜厚計測装置56を真空チャンバ30の内部に設け、真空チャンバ30内の基板S上に成膜された薄膜の厚さを計測してもよい。
 制御部52は、制御信号を生成して、原料ガスバルブ78、反応ガスバルブ84、排気バルブ54A、54B、54C、54D、パージガスバルブ94に制御信号を供給する。
 次に、インジェクタ60について説明する。インジェクタ60は、原料ガスおよび反応ガスを真空チャンバ30内に供給する。図3は図2のインジェクタ60を矢印III方向から見た立面図である。インジェクタ60には、図3に示すように、水平方向(図1の紙面に垂直な方向)に細長い原料ガス供給口62と、水平方向に細長い反応ガス供給口64と、水平方向に細長いパージガス供給口66と、が形成されている。原料ガス供給部70から供給される原料ガスは、原料ガス供給口62を通って、成膜容器20の内部に供給される。また、反応ガス供給部80から供給される反応ガスは、反応ガス供給口64を通って、成膜容器20の内部に供給される。また、パージガス供給部90から供給される反応ガスは、パージガス供給口66を通って、成膜容器20の内部に供給される。
 排気部40は、排気管42を介して成膜容器20(真空チャンバ30)内に供給された原料ガス、反応ガス、パージガスを排気する。排気部40は、例えば、ドライポンプである。
 排気管42は、真空チャンバ30に設けられた複数の排気口42a、42b、42c、42dと接続されている。排気管42は分岐していてもよいし、各排気口42a、42b、42c、42d毎にそれぞれ排気管42および排気部40を設けてもよい。
 複数の排気口42a、42b、42c、42dは、真空チャンバ30のインジェクタ60とは反対側の端部に、水平方向に間隔を空けて直線状に配列されている。排気管42の排気口42a、42b、42c、42d側の端部には、それぞれ排気バルブ54A、54B、54C、54D(図2参照)が設けられている。なお、図1では、排気バルブ54A、54B、54C、54Dを1つの符号54で示す。
 排気バルブ54A、54B、54C、54Dの開閉度および開閉のタイミングは、それぞれ制御部52により制御される。排気バルブ54A、54B、54C、54Dが、制御部52の制御信号に応じて所定の開度で開くことで、真空チャンバ30内のガスが排気管42を通じて排気部40により排気される。
 排気部40が真空チャンバ30内を排気することにより、原料ガス、反応ガス、パージガスが真空チャンバ30内に供給されても、真空チャンバ30内の真空度は、10Pa~100Pa程度に維持される。
 次に、原料ガス供給部70について説明する。原料ガス供給部70は、気化器71と、液体原料貯蔵部72と、液圧計74と、加圧部76と、原料ガスバルブ78と、を備える。
 気化器71は、液体原料貯蔵部72に貯蔵された液体原料を気化させ、インジェクタ60に供給する原料ガスを生成する。
 液体原料貯蔵部72は、薄膜の形成に用いられる液体原料を貯蔵する。液体原料貯蔵部72に貯蔵される液体原料は、例えば、TMA(トリメチルアルミニウム)、TDMAS(トリスジメチルアミノシラン)、TEMAZ(テトラキスエチルメチルアミノ・ジルコニウム)、TEMAH(テトラキスエチルメチルアミノ・ハフニウム)である。
 液圧計74は、液体原料貯蔵部72の圧力を検知する。液圧計74が検知した圧力のデータは、加圧部76へ送信される。
 液圧計74が検知した圧力のデータに基づいて、加圧部76は、液体原料貯蔵部72内に貯蔵されている液体原料の圧力が一定となるように、液体原料を加圧する。加圧部76は、例えば、NガスやArガスなどの不活性ガスを液体原料貯蔵部72内に導入することにより、液体原料を加圧する。
 原料ガスバルブ78は、気化器71により気化された原料ガス流量を調節してインジェクタ60に供給する。原料ガスバルブ78は、例えば、スウェジロック社製のALDバルブを用いることができる。
 また、原料ガスバルブ78は制御部52と接続されている。気化器71により気化された原料ガスの流量は、制御部52により原料ガスバルブ78の開度が調節されることで制御される。
 次に、反応ガス供給部80について説明する。反応ガス供給部80は、反応ガス貯蔵部82と、反応ガスバルブ84と、を備える。
 反応ガス貯蔵部82は、薄膜の形成に用いられる反応ガスを貯蔵する。反応ガス貯蔵部82に貯蔵される反応ガスは、例えば、Oガス、Nガスである。
 反応ガスバルブ84は、制御部52と接続されている。反応ガスバルブ84の開度は制御部52により制御される。反応ガスバルブ84は、原料ガスの成膜容器20内への供給が停止している間に、開き、反応ガスが成膜容器20内へ供給される。
 次に、パージガス供給部90について説明する。パージガス供給部90は、パージガス貯蔵部92と、パージガスバルブ94と、を備える。
 パージガス貯蔵部92は、Arガスなどのパージガスを貯蔵する。パージガスバルブ94は、制御部52と接続されている。パージガスバルブ94の開度は制御部52により制御される。
 なお、Nガスをパージガスとして用いてもよい。反応ガスとしてNガスを用いる場合には、パージガスの代わりに反応ガスを用い、パージガス供給部90の代わりに反応ガス供給部80を用いてもよい。
 以上が本実施形態の原子層堆積装置10Aの概略構成である。
 次に、排気バルブ54A、54B、54C、54Dの動作について、図2を用いてさらに詳細に説明する。
 排気管42が真空チャンバ30に接続される排気口が1つの場合、排気口の中央部の近傍ほど原料ガスおよび反応ガスの流量が多く、排気管42の中央部から遠いほど原料ガスおよび反応ガスの流量が少なくなっていた。このため、基板Sの全領域において原料ガスおよび反応ガスの流量を均一にすることができず、基板Sの排気口の中央部から遠い領域では膜厚が薄くなり、膜厚を均一にすることが困難であった。
 本実施形態においては、真空チャンバ30に複数の排気口42a、42b、42c、42dが水平方向に分散して設けられており、各排気口42a、42b、42c、42dに対応する排気管42にそれぞれ排気バルブ54A、54B、54C、54Dが設けられている。このため、排気バルブ54A、54B、54C、54Dの開度を調整することで、各排気口42a、42b、42c、42dから排気される原料ガスおよび反応ガスの流量を制御することができる。これにより、基板Sの全領域において原料ガスおよび反応ガスの流量を均一にすることができる。
 例えば、膜厚計測装置56により計測した膜厚が基板Sの中央部ほど厚く、外周部ほど薄い場合には、原料ガスおよび反応ガスの流量が基板Sの中央部ほど多く、外周部ほど少ないと推定される。この場合、水平方向に間隔を空けて直線状に配列された排気口42a、42b、42c、42dのうち、両端部の排気口42a、42dの開度を大きくし、中央部の排気口42b、42cの開度を小さくすることで、基板Sの外周部における原料ガスおよび反応ガスの流量を基板Sの中央部における原料ガスおよび反応ガスの流量と同量程度まで増やし、基板Sの全領域において原料ガスおよび反応ガスの流量を均一にすることができる。
 また、膜厚計測装置56により計測した膜厚が基板Sの中央部ほど薄く、外周部ほど厚い場合には、両端部の排気口42a、42dの開度を小さくし、中央部の排気口42b、42cの開度を大きくすることで、基板Sの中央部における原料ガスおよび反応ガスの流量を基板Sの外周部における原料ガスおよび反応ガスの流量と同量程度まで増やし、基板Sの全領域において原料ガスおよび反応ガスの流量を均一にすることができる。
 このように、膜厚計測装置56により計測された膜厚の基板Sにおける分布に応じて、排気バルブ54A、54B、54C、54Dの開度を調整することで、厚さの均一な膜を基板S上に形成することができる。
 また、膜質計測装置57により計測した膜質が基板Sの中央部ほど緻密(高屈折率)であり、外周部ほど疎(低屈折率)である場合には、原料ガスおよび反応ガスの流量が基板Sの中央部ほど多く、外周部ほど少ないと推定される。この場合、排気口42a、42b、42c、42dのうち、両端部の排気口42a、42dの開度を大きくし、中央部の排気口42b、42cの開度を小さくすることで、基板Sの外周部における原料ガスおよび反応ガスの流量を基板Sの中央部における原料ガスおよび反応ガスの流量と同量程度まで増やし、基板Sの全領域において原料ガスおよび反応ガスの流量を均一にすることができる。
 また、膜質計測装置57により計測した膜質が基板Sの中央部ほど疎(低屈折率)であり、外周部ほど緻密(高屈折率)である場合には、両端部の排気口42a、42dの開度を小さくし、中央部の排気口42b、42cの開度を大きくすることで、基板Sの中央部における原料ガスおよび反応ガスの流量を基板Sの外周部における原料ガスおよび反応ガスの流量と同量程度まで増やし、基板Sの全領域において原料ガスおよび反応ガスの流量を均一にすることができる。
 このように、膜質計測装置57により計測された膜質の基板Sにおける分布に応じて、排気バルブ54A、54B、54C、54Dの開度を調整することで、均一な膜質の薄膜を基板S上に形成することができる。
(原子層堆積方法)
 次に、図4、図5を参照して、本実施形態の原子層堆積装置10Aを用いた原子層堆積法について説明する。図4は、本実施形態の原子層堆積方法の1サイクルの一例を示すフローチャートである。また、図5(a)~(d)は、基板Sの上に薄膜が形成される工程を示す図である。
 まず、原料ガス供給部70が成膜容器20の内部に原料ガスを供給する(ステップS101)。
 ステップS101において、液圧計74は、液体原料貯蔵部72の圧力を検知し、液圧計74が検知した圧力のデータに基づいて、液体原料貯蔵部72内に貯蔵されている液体原料の圧力が一定となるように、加圧部76が液体原料を加圧する。そのため、原料ガスバルブ78には液体原料貯蔵部72から一定の圧力で液体原料が供給される。
 液体原料貯蔵部72から供給された液体原料を気化器71が気化し、制御部52によって制御されるタイミングで、原料ガス供給口62から成膜容器20の内部に原料ガス110が供給される。このとき、基板Sの全領域において原料ガス110の流量が均一となるように、排気バルブ54A、54B、54C、54Dの開度を調節し、排気部40が成膜容器20の内部の気体を排気する。
 図5(a)に示されるように、ステップS101によって、成膜容器20の内部に原料ガス110が供給され、基板Sの上に原料ガス110が吸着して、吸着層102が形成される。
 次に、パージガス供給部90が、成膜容器20の内部にパージガスを供給する(ステップS102)。制御部52は、パージガスバルブ94を開く制御信号を送り、パージガス貯蔵部92から、成膜容器20の内部にパージガス112を供給する。例えば、パージガスバルブ94を0.1秒間開き、成膜容器20の内部にパージガス112を供給する。また、排気部40が、成膜容器20の内部の原料ガス110やパージガス112を排気する。排気部40は、例えば、2秒間、成膜容器20の内部の原料ガス110やパージガス112を排気する。このとき、基板Sの全領域において原料ガス110の流量が均一となるように、排気バルブ54A、54B、54C、54Dの開度を調節し、排気部40が成膜容器20の内部の気体を排気する。
 図5(b)に示されるように、ステップS102によって、成膜容器20の内部にパージガス112が供給され、基板Sの上に吸着していない原料ガス110が成膜容器20からパージされる。なお、パージガス112は、原料ガス110が供給されるとき、同時に供給されてもよい。
 次に、反応ガス供給部80が、成膜容器20の内部に反応ガスを供給する(ステップS103)。制御部52によって制御されるタイミングによって、反応ガスバルブ84が開放され、反応ガス供給口64から成膜容器20の内部に反応ガス114が供給される。反応ガス供給部80は、例えば、1秒間、成膜容器20の内部に反応ガス114を供給する。このとき、基板Sの全領域において反応ガス114の流量が均一となるように、排気バルブ54A、54B、54C、54Dの開度を調節し、排気部40が成膜容器20の内部の気体を排気する。
 図5(c)に示されるように、ステップS103によって、成膜容器20の内部に反応ガス114が供給される。
 また、高周波電源50が上側電極36に所定の周波数の高周波電流を供給し、上側電極36と下側電極38との間でプラズマを発生させる(ステップS104)。高周波電源50は、例えば、0.2秒間、反応ガス114のプラズマを発生させる。高周波電源50が反応ガス114のプラズマを発生させることにより、反応ガス114が吸着層102と反応し、薄膜層104が形成される。
 なお、高周波電源50が反応ガス114のプラズマを発生させるタイミングは、反応ガス供給部80が成膜容器20の内部に反応ガス114を供給するタイミングと同時でもよい。
 また、プラズマを発生させることなく、反応ガス114が吸着層102と反応する場合、ステップS104は省略することができる。この場合、反応ガス114が吸着層102と十分に反応するよう、加熱ヒータ34が基板Sを200~400℃に加熱する(熱ALD)。
 次に、パージガス供給部90が、成膜容器20の内部にパージガス112を供給する(ステップS105)。パージガス供給部90は、例えば、0.1秒間、成膜容器20の内部にパージガス112を供給する。また、排気部40が、成膜容器20の内部の反応ガス114やパージガス112を排気する。このとき、基板Sの全領域において反応ガス114の流量が均一となるように、排気バルブ54A、54B、54C、54Dの開度を調節し、排気部40が成膜容器20の内部の気体を排気する。
 図5(d)に示されるように、ステップS105によって、成膜容器20の内部にパージガス112が供給され、反応ガス114が成膜容器20からパージされる。
 以上説明したステップS101~S105により、基板Sの上に一原子層分の薄膜層104が形成される。以下、ステップS101~S105を繰り返すことにより、所望の膜厚の薄膜層104を形成することができる。
 なお、ステップS101~S105を所定回数繰り返すごとに膜厚計測装置56により膜厚を計測し、排気バルブ54A、54B、54C、54Dの開度を調節してもよい。これにより、基板Sの全領域において均一な厚さの膜を形成することができる。
 以上説明したように、本実施形態の原子層堆積装置10Aでは、真空チャンバ30に複数の排気口42a、42b、42c、42dが水平方向に分散して設けられており、各排気口42a、42b、42c、42dに対応する排気管42にそれぞれ排気バルブ54A、54B、54C、54Dが設けられている。このため、排気バルブ54A、54B、54C、54Dの開度を調整することで、排気口42a、42b、42c、42dから排気される原料ガスおよび反応ガスの流量を制御することができる。これにより、基板Sの全領域において原料ガスおよび反応ガスの流量を均一にすることができる。
 なお、上記実施形態においては、排気バルブ54A、54B、54C、54Dの開度をそれぞれ調節することで各排気口42a、42b、42c、42dからの排気量を調整する場合について説明したが、本発明はこれに限らず、排気バルブ54A、54B、54C、54Dの開時間を調整することで各排気口42a、42b、42c、42dからの排気量を調整してもよい。
<変形例>
 図6は変形例に係る原子層堆積装置10Bを示す図2と同様の平面図である。なお、上記実施形態と同様の構成については、同符号を付して説明を割愛する。
 本変形例においては、原料ガス、反応ガスおよびパージガスを真空チャンバ30に供給する複数のインジェクタ60A、60B、60C、60Dが、水平方向に間隔を空けて直線状に配列されている。インジェクタ60A、60B、60C、60Dには、それぞれ原料ガス、反応ガスまたはパージガスを供給する配管が接続されている。この配管は分岐していてもよいし、インジェクタ60A、60B、60C、60Dにそれぞれ設けてもよい。
 インジェクタ60Aに原料ガス、反応ガス、パージガスを供給する各配管には、原料ガスバルブ78A、反応ガスバルブ84A、パージガスバルブ94Aが設けられている。インジェクタ60Bに原料ガス、反応ガス、パージガスを供給する各配管には、原料ガスバルブ78B、反応ガスバルブ84B、パージガスバルブ94Bが設けられている。インジェクタ60Cに原料ガス、反応ガス、パージガスを供給する各配管には、原料ガスバルブ78C、反応ガスバルブ84C、パージガスバルブ94Cが設けられている。インジェクタ60Dに原料ガス、反応ガス、パージガスを供給する各配管には、原料ガスバルブ78D、反応ガスバルブ84D、パージガスバルブ94Dが設けられている。
 図7は図6のインジェクタ60A、60B、60C、60Dを矢印VII方向から見た立面図である。図7に示すように、各インジェクタ60A、60B、60C、60Dには、図3に示すように、水平方向(図1の紙面に垂直な方向)に細長い原料ガス供給口62と、水平方向に細長い反応ガス供給口64と、水平方向に細長いパージガス供給口66と、が形成されている。
 本変形例においては、原料ガスバルブ78A、78B、78C、78Dの開度を調整することで、各原料ガスバルブ78A、78B、78C、78Dから供給される原料ガスの流量を制御することができる。
 例えば、膜厚計測装置56により計測した膜厚が基板Sの中央部ほど厚く、外周部ほど薄い場合や、膜質計測装置57により計測した膜質が基板Sの中央部ほど緻密(高屈折率)であり、外周部ほど疎(低屈折率)である場合には、原料ガスおよび反応ガスの流量が基板Sの中央部ほど多く、外周部ほど少ないと推定される。
 この場合、水平方向に間隔を空けて直線状に配列されたインジェクタ60A、60B、60C、60Dに原料ガスを供給する原料ガスバルブ78A、78B、78C、78Dのうち、両端部のインジェクタ60A、60Dに原料ガスを供給する原料ガスバルブ78A、78Dの開度を大きくし、中央部のインジェクタ60B、60Cに原料ガスを供給する原料ガスバルブ78B、78Cの開度を小さくすることで、基板Sの外周部における原料ガスの流量を基板Sの中央部における原料ガスの流量と同量程度まで増やし、基板Sの全領域において原料ガスの流量を均一にすることができる。
 また、反応ガスバルブ84A、84B、84C、84Dの開度を調整することで、各反応ガスバルブ84A、84B、84C、84Dから供給される反応ガスの流量を制御することができる。
 例えば、水平方向に間隔を空けて直線状に配列されたインジェクタ60A、60B、60C、60Dに反応ガスを供給する反応ガスバルブ84A、84B、84C、84Dのうち、両端部のインジェクタ60A、60Dに反応ガスを供給する反応ガスバルブ84A、84Dの開度を大きくし、中央部のインジェクタ60B、60Cに反応ガスを供給する反応ガスバルブ84B、84Cの開度を小さくすることで、基板Sの外周部における反応ガスの流量を基板Sの中央部における原料ガスの流量と同量程度まで増やし、基板Sの全領域において反応ガスの流量を均一にすることができる。
 さらに、パージガスバルブ94A、94B、94C、94Dの開度を調整することで、基板Sの全領域において原料ガスおよび反応ガスの滞留時間を均一にすることができる。
 例えば、水平方向に間隔を空けて直線状に配列されたインジェクタ60A、60B、60C、60Dにパージガスを供給するパージガスバルブ94A、94B、94C、94Dのうち、中央部のインジェクタ60B、60Cにパージガスを供給するパージガスバルブ94B、94Cの開度を大きくし、両端部のインジェクタ60A、60Dにパージガスを供給するパージガスバルブ94A、94Dの開度を小さくすることで、基板Sの外周部における原料ガスおよび反応ガスの滞留時間を基板Sの中央部における原料ガスおよび反応ガスの滞留時間と同程度まで長くし、基板Sの全領域において均一な厚さの膜を形成することができる。
 このように、膜厚計測装置56により計測された膜厚の基板Sにおける分布に応じて、原料ガスバルブ78A、78B、78C、78D、反応ガスバルブ84A、84B、84C、84D、パージガスバルブ94A、94B、94C、94D、排気バルブ54A、54B、54C、54Dの開度を調整することで、厚さの均一な膜を基板S上に形成することができる。
 なお、上記実施形態においては、原料ガスバルブ78A、78B、78C、78Dの開度をそれぞれ調節することで各インジェクタ60A、60B、60C、60Dからの原料ガスの供給量を調整する場合について説明したが、本発明はこれに限らず、原料ガスバルブ78A、78B、78C、78Dの開時間を調整することで各インジェクタ60A、60B、60C、60Dからの原料ガスの供給量を調整してもよい。
 また、上記実施形態においては、反応ガスバルブ84A、84B、84C、84Dの開度をそれぞれ調節することで各インジェクタ60A、60B、60C、60Dからの反応ガスの供給量を調整する場合について説明したが、本発明はこれに限らず、反応ガスバルブ84A、84B、84C、84Dの開時間を調整することで各インジェクタ60A、60B、60C、60Dからの反応ガスの供給量を調整してもよい。
 また、上記実施形態においては、パージガスバルブ94A、94B、94C、94Dの開度をそれぞれ調節することで各インジェクタ60A、60B、60C、60Dからのパージガスの供給量を調整する場合について説明したが、本発明はこれに限らず、パージガスバルブ94A、94B、94C、94Dの開時間を調整することで各インジェクタ60A、60B、60C、60Dからのパージガスの供給量を調整してもよい。
 なお、原料ガス、反応ガス、パージガスの供給口の数は、排気口の数と異なっていてもよいが、供給口の数と排気口の数は同数であることが好ましい。供給口の数と排気口の数が同数であれば、供給量と排気量の調整を同期させて行うことができるためである。
 また、供給口と排気口は、図6に示すように、間に基板Sを挟んで対向するように設けられていることが好ましい。供給口と排気口を対向させることで、供給口から排気口に向かって基板S上を流れる原料ガス流、反応ガス流、パージガス流が層流となり、乱流の発生を防ぐことができるからである。
<実施例>
 図6に示すのと同様に、4個のインジェクタ60A、60B、60C、60Dおよび4個の排気口42a、42b、42c、42dを有する成膜装置を用いて、1100mm×1300mmのG5ガラス基板に、AlONの薄膜を形成した。液体原料(Al源)としてTMA(トリメチルアルミニウム)、反応ガスとして酸素および窒素を用いた。
 原料ガスを供給する際に、制御信号のパルス長を調整することで、原料ガスバルブ78A、78Dの開時間を0.5秒、原料ガスバルブ78B、78Cの開時間を0.1秒とした。また、反応ガスを供給する際に、制御信号のパルス長を調整することで、いずれの反応ガスバルブ84A、84B、84C、84Dの開時間も1秒とした。
 排気バルブ54A、54B、54C、54Dの開度はいずれも100%(全開)とした。図4に示すのと同様のサイクルを600回繰り返すことで、AlONの薄膜を形成した。反射率分光法により、基板の外周部の4点および中央部の1点において膜厚を計測したところ、平均膜厚は100nmであり、バラツキは±4%であった。
<比較例>
 1個のインジェクタおよび1個の排気口のみを有する成膜装置を用いて、1100mm×1300mmのG5ガラス基板に、AlONの薄膜を形成した。液体原料(Al源)としてTMA(トリメチルアルミニウム)、反応ガスとして酸素および窒素を用いた。
 原料ガスおよび反応ガスを供給する際に、制御信号のパルス長を調整することで、原料ガスバルブの開時間を0.3秒とした。反応ガスバルブの開時間を1秒とした。排気バルブの開度は100%(全開)とした。図4に示すのと同様のサイクルを600回繰り返すことで、AlONの薄膜を形成した。反射率分光法により、基板の外周部の4点および中央部の1点において膜厚を計測したところ、平均膜厚は100nmであり、バラツキは±15%であった。
 以上、本発明の原子層堆積装置および原子層堆積方法について詳細に説明したが、本発明は上記実施形態に限定されるものではない。また、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
 例えば、上記実施形態および変形例においては、4個の排気バルブ54A、54B、54C、54Dを用いる場合について説明したが、本発明はこれに限らず、2個以上の任意の数の排気バルブを用いることができる。例えば、2個、8個、16個、32個等、2のべき乗個(2個、指数nは自然数)の排気バルブを用いてもよい。
 同様に、上記変形例においては、4個のインジェクタ60A、60B、60C、60Dを用いる場合について説明したが、本発明はこれに限らず、2個以上の任意の数のインジェクタを用いることができる。例えば、2個、8個、16個、32個等、2のべき乗個(2個、指数nは自然数)のインジェクタを用いてもよい。
 10A、10B 原子層堆積装置
 20 成膜容器
 30 真空チャンバ
 32 支持部
 34 加熱ヒータ
 36 上側電極
 38 下側電極
 40 排気部
 42 排気管
 44 リフトピン
 46 昇降機構
 50 高周波電源
 52 制御部
 54、54A、54B、54C、54D 排気バルブ
 56 膜厚計測装置
 60 インジェクタ
 62 原料ガス供給口
 64 反応ガス供給口
 66 パージガス供給口
 70 原料ガス供給部
 71 気化器
 72 液体原料貯蔵部
 74 液圧計
 76 加圧部
 78 原料ガスバルブ
 80 反応ガス供給部
 82 反応ガス貯蔵部
 84、84A、84B、84C、84D 反応ガスバルブ
 90 パージガス供給部
 92 パージガス貯蔵部
 94、94A、94B、94C、94D パージガスバルブ
 102 吸着層
 104 薄膜層
 110 原料ガス
 112 パージガス
 114 反応ガス
 S 基板

Claims (15)

  1.  基板上に薄膜を形成する原子層堆積装置であって、
     内部に基板が配置されるとともに、内部の気体を排出する複数の排気口が互いに間隔を空けて前記基板の薄膜が形成される面と平行に配列されて設けられた成膜容器と、
     前記薄膜の原料ガスを前記成膜容器内に供給する原料ガス供給部と、
     前記基板に吸着した原料ガスの成分と反応して前記薄膜を形成する反応ガスを前記成膜容器内に供給する反応ガス供給部と、
     前記各排気口に接続された排気バルブと、
     前記複数の排気バルブを制御することで前記各排気口からの排気量を制御する制御部と、を備えることを特徴とする原子層堆積装置。
  2.  成膜後の薄膜の膜厚分布を計測する膜厚計測装置をさらに備え、
     前記制御部は、前記膜厚計測装置の計測結果に応じて、前記各排気バルブからの排気量を制御する、請求項1に記載の原子層堆積装置。
  3.  成膜後の薄膜の膜質分布を計測する膜質計測装置をさらに備え、
     前記制御部は、前記膜質計測装置の計測結果に応じて、前記各排気バルブからの排気量を制御する、請求項1又は2に記載の原子層堆積装置。
  4.  前記成膜容器には、前記原料ガスおよび前記反応ガスを前記成膜容器内に供給する複数の供給口が互いに間隔を空けて前記基板の薄膜が形成される面と平行に配列されて設けられ、
     前記原料ガス供給部は、前記各供給口に供給する原料ガスの供給量を調節する複数の原料ガスバルブを備え、
     前記反応ガス供給部は、前記各供給口に供給する反応ガスの供給量を調節する複数の反応ガスバルブを備え、
     前記制御部は、前記複数の原料ガスバルブおよび反応ガスバルブを制御することで前記複数の供給口からの原料ガスおよび反応ガスの供給量を制御する、請求項1~3のいずれか一項に記載の原子層堆積装置。
  5.  成膜後の薄膜の膜厚分布を計測する膜厚計測装置をさらに備え、
     前記制御部は、前記膜厚計測装置の計測結果に応じて、前記各原料ガスバルブからの原料ガスの供給量および前記各反応ガスバルブからの反応ガスの供給量を制御する、請求項4に記載の原子層堆積装置。
  6.  成膜後の薄膜の膜質分布を計測する膜質計測装置をさらに備え、
     前記制御部は、前記膜質計測装置の計測結果に応じて、前記各原料ガスバルブからの原料ガスの供給量および前記各反応ガスバルブからの反応ガスの供給量を制御する、請求項4又は5に記載の原子層堆積装置。
  7.  原料ガスまたは反応ガスを前記成膜容器内から排出するためのパージガスを前記各供給口に供給するパージガス供給部をさらに備え、
     前記パージガス供給部は、前記各供給口に供給するパージガスの供給量を調節する複数のパージガスバルブを備え、
     前記制御部は、前記複数のパージガスバルブを制御することで前記原料ガスまたは前記反応ガスの前記成膜容器内の滞留時間を制御する、請求項4~6のいずれか一項に記載の原子層堆積装置。
  8.  成膜後の薄膜の膜厚分布を計測する膜厚計測装置をさらに備え、
     前記制御部は、前記膜厚計測装置の計測結果に応じて、前記各パージガスバルブからのパージガスの供給量を制御する、請求項7に記載の原子層堆積装置。
  9.  成膜後の薄膜の膜質分布を計測する膜質計測装置をさらに備え、
     前記制御部は、前記膜質計測装置の計測結果に応じて、前記各パージガスバルブからのパージガスの供給量を制御する、請求項7又は8に記載の原子層堆積装置。
  10.  基板上に薄膜を形成する原子層堆積方法であって、
     前記薄膜の原料である液体原料を気化した原料ガスを成膜容器に供給するとともに、互いに間隔を空けて前記基板の薄膜が形成される面と平行に配列されて前記成膜容器に設けられた複数の排気口から前記原料ガスを排出するステップと、
     前記基板に吸着した原料ガスの成分と反応して前記薄膜を形成する反応ガスを前記成膜容器に供給するとともに、前記複数の排気口から前記反応ガスを排出するステップと、
     前記基板上に形成された薄膜の厚さを複数個所において計測するステップと、
     計測された薄膜の厚さに応じて、前記複数の排気口からの排気量を調節するステップと、を繰り返すことを特徴とする原子層堆積方法。
  11.  基板上に薄膜を形成する原子層堆積方法であって、
     前記薄膜の原料である液体原料を気化した原料ガスを成膜容器に供給するとともに、互いに間隔を空けて前記基板の薄膜が形成される面と平行に配列されて前記成膜容器に設けられた複数の排気口から前記原料ガスを排出するステップと、
     前記基板に吸着した原料ガスの成分と反応して前記薄膜を形成する反応ガスを前記成膜容器に供給するとともに、前記複数の排気口から前記反応ガスを排出するステップと、
     前記基板上に形成された薄膜の膜質を複数個所において計測するステップと、
     計測された薄膜の膜質に応じて、前記複数の排気口からの排気量を調節するステップと、を繰り返すことを特徴とする原子層堆積方法。
  12.  基板上に薄膜を形成する原子層堆積方法であって、
     前記薄膜の原料である液体原料を気化した原料ガスを、互いに間隔を空けて前記基板の薄膜が形成される面と平行に配列されて設けられた複数の供給口から成膜容器に供給するステップと、
     前記原料ガスと反応して前記薄膜を形成する反応ガスを前記複数の供給口から前記成膜容器に供給するステップと、
     前記基板上に形成された薄膜の厚さを複数個所において計測するステップと、
     計測された薄膜の厚さに応じて、前記複数の供給口からの前記原料ガスおよび前記反応ガスの供給量を調節するステップと、を繰り返すことを特徴とする原子層堆積方法。
  13.  基板上に薄膜を形成する原子層堆積方法であって、
     前記薄膜の原料である液体原料を気化した原料ガスを、互いに間隔を空けて前記基板の薄膜が形成される面と平行に配列されて設けられた複数の供給口から成膜容器に供給するステップと、
     前記原料ガスと反応して前記薄膜を形成する反応ガスを前記複数の供給口から前記成膜容器に供給するステップと、
     前記基板上に形成された薄膜の膜質を複数個所において計測するステップと、
     計測された薄膜の膜質に応じて、前記複数の供給口からの前記原料ガスおよび前記反応ガスの供給量を調節するステップと、を繰り返すことを特徴とする原子層堆積方法。
  14.  基板上に薄膜を形成する原子層堆積方法であって、
     前記薄膜の原料である液体原料を気化した原料ガスを、互いに間隔を空けて前記基板の薄膜が形成される面と平行に配列されて設けられた複数の供給口から成膜容器に供給するステップと、
     前記原料ガスを前記成膜容器内から排出するパージガスを前記複数の供給口から前記成膜容器に供給するステップと、
     前記原料ガスと反応して前記薄膜を形成する反応ガスを前記複数の供給口から前記成膜容器に供給するステップと、
     前記反応ガスを前記成膜容器内から排出するパージガスを前記複数の供給口から前記成膜容器に供給するステップと、
     前記基板上に形成された薄膜の厚さを複数個所において計測するステップと、
     計測された薄膜の厚さに応じて、前記複数の供給口からの前記パージガスの供給量を調節するステップと、を繰り返すことを特徴とする原子層堆積方法。
  15.  基板上に薄膜を形成する原子層堆積方法であって、
     前記薄膜の原料である液体原料を気化した原料ガスを、互いに間隔を空けて前記基板の薄膜が形成される面と平行に配列されて設けられた複数の供給口から成膜容器に供給するステップと、
     前記原料ガスを前記成膜容器内から排出するパージガスを前記複数の供給口から前記成膜容器に供給するステップと、
     前記原料ガスと反応して前記薄膜を形成する反応ガスを前記複数の供給口から前記成膜容器に供給するステップと、
     前記反応ガスを前記成膜容器内から排出するパージガスを前記複数の供給口から前記成膜容器に供給するステップと、
     前記基板上に形成された薄膜の膜質を複数個所において計測するステップと、
     計測された薄膜の膜質に応じて、前記複数の供給口からの前記パージガスの供給量を調節するステップと、を繰り返すことを特徴とする原子層堆積方法。
PCT/JP2014/076322 2013-10-03 2014-10-01 原子層堆積装置および原子層堆積方法 WO2015050172A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14850701.5A EP3048639A4 (en) 2013-10-03 2014-10-01 Atomic layer deposition device and atomic layer deposition method
KR1020167009227A KR20160067117A (ko) 2013-10-03 2014-10-01 원자층 퇴적 장치 및 원자층 퇴적 방법
US15/026,942 US20160258063A1 (en) 2013-10-03 2014-10-01 Atomic layer deposition apparatus and atomic layer deposition method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013208177A JP6334880B2 (ja) 2013-10-03 2013-10-03 原子層堆積装置および原子層堆積方法
JP2013-208177 2013-10-03

Publications (1)

Publication Number Publication Date
WO2015050172A1 true WO2015050172A1 (ja) 2015-04-09

Family

ID=52778760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076322 WO2015050172A1 (ja) 2013-10-03 2014-10-01 原子層堆積装置および原子層堆積方法

Country Status (6)

Country Link
US (1) US20160258063A1 (ja)
EP (1) EP3048639A4 (ja)
JP (1) JP6334880B2 (ja)
KR (1) KR20160067117A (ja)
TW (1) TWI661078B (ja)
WO (1) WO2015050172A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150225847A1 (en) * 2012-07-25 2015-08-13 Roth & Rau Ag Gas Separation

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6050860B1 (ja) 2015-05-26 2016-12-21 株式会社日本製鋼所 プラズマ原子層成長装置
JP6054470B2 (ja) 2015-05-26 2016-12-27 株式会社日本製鋼所 原子層成長装置
JP6054471B2 (ja) 2015-05-26 2016-12-27 株式会社日本製鋼所 原子層成長装置および原子層成長装置排気部
JP5990626B1 (ja) 2015-05-26 2016-09-14 株式会社日本製鋼所 原子層成長装置
JP6794184B2 (ja) * 2016-08-31 2020-12-02 株式会社日本製鋼所 プラズマ原子層成長装置
JP6309598B2 (ja) * 2016-11-24 2018-04-11 株式会社日本製鋼所 原子層成長装置
JP6298141B2 (ja) * 2016-11-29 2018-03-20 株式会社日本製鋼所 原子層成長装置および原子層成長装置排気部
JP6760833B2 (ja) * 2016-12-20 2020-09-23 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
TW202129061A (zh) * 2019-10-02 2021-08-01 美商應用材料股份有限公司 環繞式閘極輸入/輸出工程
KR102361065B1 (ko) * 2020-02-27 2022-02-09 고려대학교 산학협력단 리텐션 밸브를 이용한 원자층 증착 공정의 흐름 정체 시스템
KR102474890B1 (ko) * 2020-10-27 2022-12-05 고려대학교 산학협력단 고분자 전해질막 연료전지의 전극 촉매층 제조 방법 및 시스템과 이를 통해 제조된 전극 촉매층

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306468A (ja) * 1992-04-30 1993-11-19 Nec Yamaguchi Ltd プラズマ気相成長装置
JPH11329117A (ja) * 1998-05-13 1999-11-30 Fujikura Ltd Cvd反応装置
JP2000058518A (ja) * 1998-07-31 2000-02-25 Kokusai Electric Co Ltd 基板処理装置
JP2008177501A (ja) * 2007-01-22 2008-07-31 Elpida Memory Inc 半導体装置の製造方法及び装置
JP2010153467A (ja) * 2008-12-24 2010-07-08 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法
JP2010226092A (ja) * 2009-02-27 2010-10-07 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法
JP2010538498A (ja) * 2007-09-05 2010-12-09 インターモレキュラー,インク. 蒸気に基づく組合せ処理
JP2012134387A (ja) * 2010-12-22 2012-07-12 Tokyo Electron Ltd 成膜装置
JP2012167317A (ja) 2011-02-14 2012-09-06 Mitsui Eng & Shipbuild Co Ltd 原子層堆積装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677142A (ja) * 1992-08-25 1994-03-18 Fujitsu Ltd 気相成長装置
US6828218B2 (en) * 2001-05-31 2004-12-07 Samsung Electronics Co., Ltd. Method of forming a thin film using atomic layer deposition
WO2005124859A2 (en) * 2004-06-10 2005-12-29 Avansys, Inc. Methods and apparatuses for depositing uniform layers
EP1824960A2 (en) * 2004-11-22 2007-08-29 Applied Materials, Inc. Substrate processing apparatus using a batch processing chamber
WO2006121264A1 (en) * 2005-05-09 2006-11-16 Asm Genitech Korea Ltd. Multiple inlet tomic layer deposition reactor
JP5113705B2 (ja) * 2007-10-16 2013-01-09 東京エレクトロン株式会社 薄膜形成装置の洗浄方法、薄膜形成方法、薄膜形成装置及びプログラム
US8067061B2 (en) * 2007-10-25 2011-11-29 Asm America, Inc. Reaction apparatus having multiple adjustable exhaust ports
WO2009099776A1 (en) * 2008-01-31 2009-08-13 Applied Materials, Inc. Closed loop mocvd deposition control

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306468A (ja) * 1992-04-30 1993-11-19 Nec Yamaguchi Ltd プラズマ気相成長装置
JPH11329117A (ja) * 1998-05-13 1999-11-30 Fujikura Ltd Cvd反応装置
JP2000058518A (ja) * 1998-07-31 2000-02-25 Kokusai Electric Co Ltd 基板処理装置
JP2008177501A (ja) * 2007-01-22 2008-07-31 Elpida Memory Inc 半導体装置の製造方法及び装置
JP2010538498A (ja) * 2007-09-05 2010-12-09 インターモレキュラー,インク. 蒸気に基づく組合せ処理
JP2010153467A (ja) * 2008-12-24 2010-07-08 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法
JP2010226092A (ja) * 2009-02-27 2010-10-07 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法
JP2012134387A (ja) * 2010-12-22 2012-07-12 Tokyo Electron Ltd 成膜装置
JP2012167317A (ja) 2011-02-14 2012-09-06 Mitsui Eng & Shipbuild Co Ltd 原子層堆積装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3048639A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150225847A1 (en) * 2012-07-25 2015-08-13 Roth & Rau Ag Gas Separation
US9556517B2 (en) * 2012-07-25 2017-01-31 Meyer Burger (Germany) Ag Gas separation

Also Published As

Publication number Publication date
US20160258063A1 (en) 2016-09-08
KR20160067117A (ko) 2016-06-13
JP2015073019A (ja) 2015-04-16
JP6334880B2 (ja) 2018-05-30
EP3048639A4 (en) 2017-09-27
EP3048639A1 (en) 2016-07-27
TW201525180A (zh) 2015-07-01
TWI661078B (zh) 2019-06-01

Similar Documents

Publication Publication Date Title
JP6334880B2 (ja) 原子層堆積装置および原子層堆積方法
KR101161020B1 (ko) 원자층 성장 장치
JP5327147B2 (ja) プラズマ処理装置
CN103966576B (zh) 基板处理装置、半导体器件的制造方法及程序
KR20120056878A (ko) 곡면상에 박막을 형성하기 위한 기상증착 반응기
JP2015185837A (ja) 成膜装置
JP2015230948A (ja) 成膜装置、成膜方法、記憶媒体
WO2012111295A1 (ja) 原子層堆積装置及び原子層堆積方法
JP2015073020A (ja) 原子層堆積装置および原子層堆積方法
JP6319171B2 (ja) 成膜装置
JP2015073021A (ja) 原子層堆積装置および原子層堆積方法
KR102142813B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치, 및 프로그램
JP5547762B2 (ja) 薄膜形成装置
JP2014210946A (ja) 原子層堆積装置
JP2012175055A (ja) 原子層堆積装置
US10262865B2 (en) Methods for manufacturing semiconductor devices
JP2011198885A (ja) 原子層堆積装置及び原子層堆積方法
US20130008382A1 (en) Thin-film forming device
JP6452199B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP5692337B2 (ja) 成膜装置、成膜方法及び記憶媒体
JP2017034067A (ja) 基板処理装置およびそれを用いた半導体装置の製造方法並びにそれに用いるプログラム
KR20240040659A (ko) 기판 처리 장치, 플라스마 생성 장치, 기판 처리 방법, 반도체 장치의 제조 방법 및 프로그램
JP2023098683A (ja) ガス供給ユニットおよびガス供給ユニットを含む基材プロセッシング装置
JP5284298B2 (ja) 薄膜形成装置
CN114293174A (zh) 气体供应单元和包括气体供应单元的衬底处理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850701

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15026942

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167009227

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014850701

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014850701

Country of ref document: EP