WO2015045626A1 - 炭化珪素半導体装置およびその製造方法 - Google Patents

炭化珪素半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2015045626A1
WO2015045626A1 PCT/JP2014/070557 JP2014070557W WO2015045626A1 WO 2015045626 A1 WO2015045626 A1 WO 2015045626A1 JP 2014070557 W JP2014070557 W JP 2014070557W WO 2015045626 A1 WO2015045626 A1 WO 2015045626A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
carbide semiconductor
insulating film
semiconductor device
gate insulating
Prior art date
Application number
PCT/JP2014/070557
Other languages
English (en)
French (fr)
Inventor
透 日吉
拓 堀井
増田 健良
山田 俊介
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US15/023,987 priority Critical patent/US9741799B2/en
Publication of WO2015045626A1 publication Critical patent/WO2015045626A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28247Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon passivation or protection of the electrode, e.g. using re-oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Definitions

  • the present invention relates to a silicon carbide semiconductor device.
  • SiC Silicon carbide
  • MOSFETs Metal-Oxide-Semiconductor Field-Effect Transistors
  • Non-Patent Document 1 fluctuation of the threshold voltage as shown in Non-Patent Document 1 is an urgent issue.
  • fixed charges and mobile ions are likely to exist at the interface between the oxide film obtained by oxidizing SiC and the oxide film and the SiC semiconductor layer, which affects the stability of the threshold voltage. It is suggested that However, an effective method for stabilizing the threshold voltage in the silicon carbide semiconductor device has not yet been developed.
  • an object is to provide a silicon carbide semiconductor device having a stable threshold voltage.
  • a silicon carbide semiconductor device includes a silicon carbide semiconductor layer, a gate insulating film formed over the silicon carbide semiconductor layer, and a gate electrode provided over the gate insulating film.
  • a silicon carbide semiconductor device having a stable threshold voltage can be provided.
  • the present inventor conducted intensive research to solve the above-described problems.
  • many dangling bonds exist in the interface region between the gate electrode and the gate insulating film.
  • the knowledge that the threshold voltage is unstable has been obtained, and the present embodiment has been completed by further research based on the knowledge. That is, the silicon carbide semiconductor device according to the present embodiment has the following configuration.
  • a polysilicon layer 92 a is provided on the interface side with the insulating film 91, and the gate insulating film 91 is oxidized at the interface between the gate insulating film 91 and the polysilicon layer 92 a of the gate electrode 92.
  • a film 91a is provided.
  • the gate insulating film is formed by thermally oxidizing a silicon carbide semiconductor layer.
  • the silicon carbide semiconductor device can form an oxide film derived from the polysilicon layer 92 a in the interface region between the gate electrode 92 and the gate insulating film 91. That is, dangling bonds at the interface between the oxide film 91a and the polysilicon layer 92a can be reduced. Therefore, impurities are not easily trapped in the region, and a silicon carbide semiconductor device having a stable threshold voltage can be provided.
  • the thickness of the oxide film 91a is preferably 50 nm or less.
  • the oxide film 91 a is derived from the polysilicon layer 92 a that constitutes a part of the gate electrode 92.
  • silicon When silicon is oxidized, its volume becomes twice the original volume. Therefore, when the thickness of the oxide film 91a to be formed exceeds 50 nm, it may be difficult to control the thickness of the oxide film 91a. If oxide film 91a has a thickness of 50 nm or less, oxide film 91a having a desired thickness can be formed, and a silicon carbide semiconductor device having a stable threshold voltage can be obtained.
  • the gate electrode 92 is preferably composed of a polysilicon layer 92a. According to such an embodiment, by thermally oxidizing the gate electrode 92, the oxide film 91a derived from the polysilicon layer 92a can be easily formed at the interface between the gate insulating film 91 and the gate electrode 92.
  • the oxide film 91a extends to the side surface and the upper surface of the gate electrode 92.
  • Silicon carbide semiconductor layer 100 has a main surface MP, a first impurity region 81 having a first conductivity type, and a first impurity type provided in first impurity region 81 and different from the first conductivity type.
  • a second impurity region 82 having a conductivity type of 2 and a third impurity region 83 having a first conductivity type, which is part of the main surface MP and is provided in the second impurity region 82.
  • the main surface MP is provided with a trench TR in which the second impurity region 82 and the third impurity region 83 are exposed on the sidewall SW, and the gate insulating film 91 is formed on the sidewall SW. It is preferable.
  • Silicon carbide semiconductor layer 100 has a main surface MP, a part of main surface MP, a first impurity region 81 having a first conductivity type, and a part of main surface MP.
  • the third impurity region 83 having the first conductivity type, and the gate insulating film 91 is preferably formed on the main surface MP constituted by the second impurity region 82.
  • the sodium concentration in a region within 10 nm from the interface between the gate electrode 92 and the gate insulating film 91 (oxide film 91a) is preferably 1 ⁇ 10 16 / cm 3 or less.
  • sodium (Na) is an impurity that tends to be a mobile ion.
  • the threshold voltage tends to become unstable. Therefore, the stability of the threshold voltage can be further increased by limiting the sodium concentration in the region to 1 ⁇ 10 16 / cm 3 or less.
  • the nitrogen concentration in a region within 10 nm from the interface between silicon carbide semiconductor layer 100 and gate insulating film 91 (underlying insulating film 91b) is preferably 1 ⁇ 10 21 / cm 3 or more.
  • the silicon carbide conductor device is provided on the silicon carbide semiconductor layer 100, the gate insulating film 91 formed on the silicon carbide semiconductor layer 100, and the gate insulating film 91.
  • the sodium concentration in the gate insulating film 91 is 1 ⁇ 10 16 / cm 3 or less.
  • a silicon carbide semiconductor device with a stable threshold voltage can be provided by limiting the concentration of sodium, which is a variation factor of the threshold voltage, in the gate insulating film 91.
  • the sodium concentration in the region within 10 nm from the interface between gate electrode 92 and gate insulating film 91 (oxide film 91a) is 1 ⁇ 10 16 / cm 3 or less. It is preferable that A region within 10 nm from the interface between the gate electrode 92 and the gate insulating film 91 is a region where impurities are particularly likely to accumulate. Therefore, the threshold voltage can be further stabilized by limiting the sodium concentration in the region.
  • silicon carbide semiconductor layer 100 has a main surface MP, a first impurity region 81 having a first conductivity type, and a first impurity region. 81, a second impurity region 82 having a second conductivity type different from the first conductivity type, and a portion of the main surface MP that forms part of the main surface MP and is provided in the second impurity region 82.
  • a third impurity region 83 having a type, and a trench TR in which the second impurity region 82 and the third impurity region 83 are exposed on the side wall SW is provided on the main surface MP.
  • the insulating film 91 is preferably formed on the sidewall SW.
  • a silicon carbide semiconductor device having a trench gate structure and having a sodium concentration in gate insulating film 91 of 1 ⁇ 10 16 / cm 3 or less can be obtained.
  • silicon carbide semiconductor layer 100 has a main surface MP, constitutes part of main surface MP, and has a first conductivity type.
  • a third impurity region 83 having a first conductivity type provided in the second impurity region 82, and the gate insulating film 91 is a main impurity composed of the second impurity region 82. It is preferably formed on the surface MP.
  • a silicon carbide semiconductor device having a planar structure and having a sodium concentration in gate insulating film 91 of 1 ⁇ 10 16 / cm 3 or less can be obtained.
  • the silicon carbide semiconductor device of the present embodiment can be manufactured by the following manufacturing method. That is, in the method for manufacturing the silicon carbide semiconductor device of the present embodiment, step S1 for preparing silicon carbide semiconductor layer 100 and step S2 for forming base insulating film 91b constituting gate insulating film 91 on silicon carbide semiconductor layer 100 are provided. Step S4 of providing the gate electrode 92 on the base insulating film 91b, and heat-treating the gate electrode 92 in an oxygen-containing atmosphere, so that the oxide film 91a constituting the gate insulating film 91 derived from the gate electrode 92 is at least A step S5 of forming at the interface between the base insulating film 91b and the gate electrode 92.
  • step S4 of providing a gate electrode the gate electrode 92 is preferably provided so as to have a polysilicon layer 92a at least at the interface with the gate insulating film 91. Thereby, the oxide film 91a can be easily formed at the interface between the base insulating film 91b and the gate electrode 92 in step S5.
  • the method for manufacturing the silicon carbide semiconductor device further includes a step S3 of introducing at least one of nitrogen and phosphorus into the interface between the silicon carbide semiconductor layer 100 and the base insulating film 91b. Thereby, dangling bonds are reduced even at the interface between gate insulating film 91 and silicon carbide semiconductor layer 100, and a silicon carbide semiconductor device having a more stable threshold voltage can be manufactured.
  • a silicon carbide semiconductor device 201 according to this embodiment shown in FIG. 1 is configured as a vertical MOSFET having a planar structure.
  • Silicon carbide semiconductor device 201 includes single crystal substrate 80, silicon carbide semiconductor layer 100 (epitaxial layer), gate insulating film 91, gate electrode 92, interlayer insulating film 93, source electrode 94, and source wiring layer 95. And a drain electrode 98.
  • Gate insulating film 91 is formed on silicon carbide semiconductor layer 100, and includes a base insulating film 91b and an oxide film 91a.
  • the base insulating film 91b is preferably a silicon oxide film (SiO 2 ).
  • a gate electrode 92 is provided on the gate insulating film 91.
  • the gate electrode 92 has a stacked structure including a polysilicon layer 92a and an electrode layer 92b.
  • the electrode layer 92b is made of a conductor such as aluminum (Al).
  • the polysilicon layer 92a is located on the interface side with the gate insulating film 91 (oxide film 91a).
  • silicon carbide semiconductor device 201 has oxide film 91a at the interface between gate insulating film 91 and polysilicon layer 92a.
  • the oxide film 91a is an oxide film derived from the polysilicon layer 92a.
  • the oxide film 91a is a silicon oxide film formed by thermally oxidizing a part of the polysilicon layer 92a. Therefore, the oxide film 91a is a very clean film and has very few dangling bonds in the film.
  • Oxide film 91a forms gate insulating film 91 together with base insulating film 91b, and insulates between gate electrode 92 and silicon carbide semiconductor layer 100 (channel region).
  • the provision of the oxide film 91a obtained by thermally oxidizing polysilicon at the interface between the gate insulating film 91 and the gate electrode 92 (polysilicon layer 92a) causes variation in the threshold voltage in the region. Accumulation of impurities can be prevented.
  • an impurity which becomes a fluctuation factor of the threshold voltage for example, sodium (Na), potassium (K), calcium (Ca), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn) Etc. can be illustrated. If these impurities are contained in the gate insulating film, it becomes mobile ions, which are considered to cause a shift in threshold voltage because they move in the film depending on the temperature and electric field. And especially Na tends to become a mobile ion and has a great influence on the threshold voltage.
  • the Na concentration in a region within 10 nm from the interface between the gate electrode 92 and the oxide film 91a which is a part of the gate insulating film 91 is 1 ⁇ 10 16 / cm 3 or less. It is preferable that In the present embodiment, for example, by setting the thickness of the oxide film 91a to about 10 nm, the Na concentration in the region can be easily set to 1 ⁇ 10 16 / cm 3 or less.
  • the volume of the thermally oxidized silicon film obtained by thermally oxidizing polysilicon is about twice that of the original polysilicon.
  • the oxide film 91 a is integrated with the base insulating film 91 b and constitutes a part of the gate insulating film 91. Therefore, if the thickness of the oxide film 91a is excessively large, the amount of variation in the film thickness of the gate insulating film 91 increases, which is not preferable. From such a viewpoint, the thickness of the oxide film 91a is preferably 50 nm or less. Note that the thickness of the oxide film 91a is preferably 5 nm to 50 nm, more preferably 5 nm to 40 nm, and particularly preferably 10 nm to 30 nm.
  • accumulation of impurities is prevented at the interface between the gate electrode 92 and the gate insulating film 91, thereby stabilizing the threshold voltage. Furthermore, in this embodiment, in addition to this, accumulation of impurities can also be prevented at the interface between the gate insulating film 91 and the silicon carbide semiconductor layer 100.
  • nitrogen and phosphorus (P) are introduced into the interface between the silicon carbide semiconductor layer 100 and the gate insulating film 91 (the base insulating film 91b). That is, by introducing at least one of nitrogen (N) and phosphorus (P) into the interface between the silicon carbide semiconductor layer 100 and the gate insulating film 91 (the base insulating film 91b), dangling bonds are reduced also in the region. In addition, accumulation of impurities can be prevented. Specifically, nitrogen and phosphorus so that at least one of nitrogen concentration and phosphorus concentration in a region within 10 nm from the interface between silicon carbide semiconductor layer 100 and gate insulating film 91 is 1 ⁇ 10 21 / cm 3 or more. Is preferably introduced.
  • the impurity concentration (Na concentration) in the gate insulating film 91 can be 1 ⁇ 10 16 / cm 3 or less.
  • the impurity concentration (Na concentration) in gate insulating film 91 is 1 ⁇ 10 16 / cm 3 or less, a silicon carbide semiconductor device in which the threshold voltage is further stabilized can be realized.
  • hydrogen (H) may be introduced into the interface between the silicon carbide semiconductor layer 100 and the gate insulating film 91 (the base insulating film 91b). That is, at least one of nitrogen concentration, phosphorus concentration, and hydrogen concentration in a region within 10 nm from the interface between silicon carbide semiconductor layer 100 and gate insulating film 91 may be 1 ⁇ 10 21 / cm 3 or more.
  • the Na concentration, nitrogen concentration, phosphorus concentration, and hydrogen concentration in each interface region described above can be measured by, for example, a secondary ion mass spectrometer (SIMS).
  • SIMS secondary ion mass spectrometer
  • each layer or region is merely an example, and each layer or region may have a different conductivity type.
  • the single crystal substrate 80 is made of SiC and has an n-type (first conductivity type). Silicon carbide semiconductor layer 100 is provided on single crystal substrate 80.
  • Silicon carbide semiconductor layer 100 is a SiC layer epitaxially grown on single crystal substrate 80. Silicon carbide semiconductor layer 100 preferably has a polytype 4H hexagonal crystal structure. This is because the on-resistance of silicon carbide semiconductor device 201 can be lowered by adopting such a crystal structure. Silicon carbide semiconductor layer 100 has a lower surface facing single crystal substrate 80 and main surface MP that is an upper surface opposite to the lower surface. Silicon carbide semiconductor layer 100 further includes an n drift layer 81 (first impurity region), a p body layer 82 (second impurity region), an n + layer 83 (third impurity region), and a p contact region 84. Including.
  • N drift layer 81 is provided on single crystal substrate 80 and has n type (first conductivity type).
  • N drift layer 81 includes a JFET (Junction Field Effect Transistor) region in a region sandwiched between a pair of p body layers 82.
  • the upper end of the JFET region constitutes a part of the main surface MP and is in contact with the gate insulating film 91 (the base insulating film 91b). That is, the gate insulating film 91 is formed on the main surface MP constituted by the n drift layer 81 (first impurity region).
  • the impurity concentration of n drift layer 81 is preferably lower than the impurity concentration of single crystal substrate 80.
  • the impurity concentration of n drift layer 81 is, for example, 1 ⁇ 10 15 / cm 3 or more and 5 ⁇ 10 16 / cm 3 or less.
  • P body layer 82 is provided in n drift layer 81 and has p type (second conductivity type different from the first conductivity type).
  • the p body layer 82 constitutes a part of the main surface MP, and is in contact with the gate insulating film 91 (the base insulating film 91b) in this part. That is, the gate insulating film 91 is formed on the main surface MP constituted by the p body layer 82 (second impurity region). A channel region is formed along a portion in contact with the gate insulating film 91.
  • the impurity concentration of p body layer 82 is preferably not less than 5 ⁇ 10 15 / cm 3 and not more than 2 ⁇ 10 18 / cm 3 , for example, about 1 ⁇ 10 18 / cm 3 .
  • n + layer 83 is provided in the p body layer 82, has n type (first conductivity type), and functions as a source region.
  • N + layer 83 constitutes a part of main surface MP.
  • a p contact region 84 is formed on p body layer 82 adjacent to n + layer 83.
  • the p contact region 84 has a p-type conductivity type and constitutes a part of the main surface MP.
  • the source electrode 94 is provided on the main surface MP and is in contact with each of the n + layer 83 and the p contact region 84.
  • the interlayer insulating film 93 is provided on the gate electrode 92 so as to cover the gate electrode 92 and insulates between the gate electrode 92 and the source electrode 94.
  • the source wiring layer 95 is formed in contact with the interlayer insulating film 93 and the source electrode 94.
  • Source wiring layer 95 is made of a conductor such as Al.
  • Drain electrode 98 is provided on the lower surface opposite to main surface MP of silicon carbide semiconductor layer 100 via single crystal substrate 80.
  • silicon carbide semiconductor device 201 is a MOSFET having a planar structure, and is a silicon carbide semiconductor device having a stable threshold voltage. Further, according to the research of the present inventor, a device having the following configuration among devices having the same configuration as that of the silicon carbide semiconductor device 201 has a particularly stable threshold voltage.
  • the silicon carbide semiconductor device is provided on silicon carbide semiconductor layer 100, gate insulating film 91 formed on silicon carbide semiconductor layer 100, and gate insulating film 91.
  • a sodium concentration in the gate insulating film 91 is 1 ⁇ 10 16 / cm 3 or less.
  • FIG. 16 is a flowchart schematically showing a method for manufacturing the silicon carbide semiconductor device according to this embodiment. As shown in FIG. 16, the manufacturing method includes step S1, step S2, step S4, and step S5, and preferably further includes step S3 after step S2. Hereinafter, each step will be described.
  • silicon carbide semiconductor layer 100 is prepared. Silicon carbide semiconductor layer 100 is prepared by, for example, epitaxial growth on single crystal substrate 80 and ion implantation.
  • n drift layer 81 to be a part of silicon carbide semiconductor layer 100 is formed on single crystal substrate 80 by epitaxial growth.
  • single crystal substrate 80 can be obtained by slicing an ingot (not shown) made of, for example, polytype 4H hexagonal silicon carbide.
  • the epitaxial growth of the n drift layer 81 is performed by CVD (Chemical) using, for example, a mixed gas of silane (SiH 4 ) and propane (C 3 H 8 ) as a source gas and using, for example, hydrogen gas (H 2 ) as a carrier gas. (Vapor Deposition) method. At this time, it is preferable to introduce, for example, nitrogen (N) or phosphorus (P) as impurities.
  • the upper surface of n drift layer 81 obtained in this way becomes main surface MP of silicon carbide semiconductor layer 100.
  • n drift layer 81 p body layer 82, n + layer 83 and p contact region 84 are formed in n drift layer 81. These can be formed, for example, by ion implantation on the entire surface of n drift layer 81.
  • an impurity such as Al for imparting a p-type is ion-implanted.
  • an impurity for imparting an n-type such as phosphorus (P) is ion-implanted.
  • a conventionally known implantation mask such as a photoresist is used.
  • epitaxial growth accompanied by addition of impurities may be performed.
  • the heat treatment temperature at this time is preferably 1500 ° C. or higher and 1900 ° C. or lower, for example, about 1700 ° C.
  • the heat treatment time can be about 30 minutes, for example.
  • the atmosphere of the heat treatment is preferably an inert gas atmosphere, for example, an argon (Ar) atmosphere is preferable.
  • Silicon carbide semiconductor layer 100 is prepared as described above.
  • Step S ⁇ b> 2 is a step of forming base insulating film 91 b constituting gate insulating film 91 on silicon carbide semiconductor layer 100.
  • base insulating film 91 b is formed on silicon carbide semiconductor layer 100.
  • Base insulating film 91b is, for example, silicon oxide, and is preferably formed by thermally oxidizing silicon carbide semiconductor layer 100. As thermal oxidation conditions at this time, for example, by heating silicon carbide semiconductor layer 100 to about 1300 ° C. in an atmosphere containing oxygen (O 2 ), base insulating film 91b which is a silicon oxide film can be formed.
  • step S3 of introducing at least one of nitrogen and phosphorus into the interface between silicon carbide semiconductor layer 100 and base insulating film 91b is preferably performed.
  • step S3 dangling bonds are terminated by nitrogen or phosphorus at the interface, and accumulation of impurities can be prevented. That is, the threshold voltage can be further stabilized.
  • At least one of nitrogen and phosphorus can be introduced by heat-treating the base insulating film 91b and the silicon carbide semiconductor layer 100 in an atmospheric gas containing these atoms.
  • hydrogen may be introduced together with nitrogen and phosphorus. That is, step S3 may be a step of introducing at least one of nitrogen, phosphorus, and hydrogen into the interface between silicon carbide semiconductor layer 100 and base insulating film 91b.
  • Examples of the gas (gas) containing nitrogen include nitrogen (N 2 ), nitric oxide (NO), dinitrogen monoxide (N 2 O), nitrogen dioxide (NO 2 ), and ammonia (NH 4 ). Can do.
  • Examples of the gas containing phosphorus include phosphoryl chloride (POCl 3 ).
  • Examples of the gas containing hydrogen include hydrogen (H 2 ) and water vapor (H 2 O).
  • As the heat treatment conditions for example, a heat treatment temperature of about 1300 ° C. to 1500 ° C. and a heat treatment time of about 1 hour are suitable.
  • step S3 may be a step in which the heat treatment in an atmosphere containing nitrogen, the heat treatment in an atmosphere containing phosphorus, and the heat treatment in an atmosphere containing hydrogen are sequentially performed individually.
  • POCl 3 , H 2, etc. may be used.
  • a heat treatment using an inert gas may be further performed.
  • heat treatment may be further performed in an Ar gas atmosphere.
  • the heat treatment conditions at this time are preferably set such that the heat treatment temperature is higher than the heat treatment temperature in step S3 and lower than the melting point of the base insulating film 91b.
  • the heat treatment time can be set to about 1 hour, for example.
  • step S4 of providing the gate electrode 92 on the base insulating film 91b is performed.
  • gate electrode 92 is formed on base insulating film 91b by stacking polysilicon layer 92a and electrode layer 92b in this order, for example, by a conventionally known CVD method or vapor deposition method. That is, in step S4, the gate electrode 92 is provided so as to have the polysilicon layer 92a at least at the interface with the gate insulating film 91 (the base insulating film 91b).
  • the gate electrode 92 only needs to be configured to have a polysilicon layer at least on the interface side with the gate insulating film 91, and may be entirely configured of a polysilicon layer as described later. As long as it has a polysilicon layer on the interface side, it may be composed of three or more layers.
  • the polysilicon layer 92a may be doped with an impurity such as phosphorus.
  • the electrode layer 92b may be a conductor, for example, an Al layer. Note that after the gate electrode 92 is formed, chemical mechanical polishing (CMP), reactive ion etching (RIE), or the like may be performed on the gate electrode 92.
  • CMP chemical mechanical polishing
  • RIE reactive ion etching
  • step S5 is performed with reference to FIG.
  • the gate electrode 92 is heat-treated in an oxygen (O 2 ) -containing atmosphere, so that the oxide film 91a that forms the gate insulating film 91 is derived from the gate electrode 92 (polysilicon layer 92a) at least under the base insulation. This is a step of forming at the interface between the film 91b and the gate electrode 92 (polysilicon layer 92a).
  • the polysilicon layer 92a is formed on the base insulating film 91b through the step S4. Therefore, by thermally oxidizing the polysilicon layer 92a, an oxide film 91a, which is a clean thermal oxide film derived from polysilicon, is formed at the interface between the base insulating film 91b and the polysilicon layer 92a.
  • the heat treatment temperature is preferably 700 ° C. or higher and lower than 1100 ° C. This is because if the heat treatment temperature is lower than 700 ° C., polysilicon may not be sufficiently oxidized, and if it is 1100 ° C. or higher, the silicon carbide semiconductor layer may also be oxidized.
  • the heat treatment time is, for example, about 1 hour to 2 hours.
  • a gas containing oxygen atoms in the molecule can be used in addition to oxygen (O 2 ).
  • oxygen oxygen
  • gases include NO, N 2 O, H 2 O, and the like. These atmospheric gases may be used alone or as a mixed gas.
  • oxide film 91a By forming oxide film 91a as described above, dangling bonds are reduced at the interface between gate electrode 92 and gate insulating film 91 as compared with the conventional case, and the threshold voltage of the silicon carbide semiconductor device is stabilized. Can be made.
  • interlayer insulating film 93 is formed so as to cover the exposed surfaces of gate electrode 92 (polysilicon layer 92a and electrode layer 92b) and oxide film 91a. Subsequently, etching is performed so that openings are formed in the interlayer insulating film 93 and the base insulating film 91b. Through this opening, each of n + layer 83 and p contact region 84 is exposed. Then, source electrode 94 is formed in contact with each of exposed n + layer 83 and p contact region 84. Furthermore, in single crystal substrate 80, drain electrode 98 is formed on the lower surface opposite to main surface MP. Then, referring again to FIG. 1, source wiring layer 95 is formed on source electrode 94.
  • the silicon carbide semiconductor device according to the present embodiment having a stable threshold voltage can be manufactured.
  • a silicon carbide semiconductor device 301 shown in FIG. 2 is a first modification of the present embodiment, and is configured as a vertical MOSFET having a planar structure, similarly to the silicon carbide semiconductor device 201 shown in FIG.
  • Silicon carbide semiconductor device 301 is different from silicon carbide semiconductor device 201 in that gate electrode 92 is formed of a polysilicon layer. That is, in silicon carbide semiconductor device 301, substantially the entire gate electrode 92 is a polysilicon layer. Here, “substantially the whole is a polysilicon layer” indicates that 80% or more of the volume of the gate electrode 92 is occupied by the polysilicon layer. Even if the gate electrode 92 includes a part of the gate electrode 92 that is different from the polysilicon layer, at least the interface side of the gate electrode 92 with the gate insulating film 91 is formed of the polysilicon layer.
  • silicon carbide semiconductor device 301 also has oxide film 91a derived from the polysilicon layer at the interface between gate insulating film 91 and gate electrode 92, it can have a stable threshold voltage. Further, since the entire gate electrode 92 is composed of the polysilicon layer, the manufacturing process can be simplified.
  • a silicon carbide semiconductor device 401 shown in FIG. 3 is a second modification of the present embodiment. Silicon carbide semiconductor device 401 is different from silicon carbide semiconductor device 301 shown in FIG. 2 in that oxide film 91a extends to the side surface and upper surface of gate electrode 92. Such a configuration can be easily realized by substantially configuring the entire gate electrode 92 with a polysilicon layer.
  • silicon carbide semiconductor device 401 also has oxide film 91a derived from the polysilicon layer at the interface between gate insulating film 91 and gate electrode 92, silicon carbide semiconductor device 401 can have a stable threshold voltage.
  • oxide film 91a extends to the side surface and upper surface of gate electrode 92, oxide film 91a, which is a clean thermal oxide film, is also provided at the interface between interlayer insulating film 93 and gate electrode 92. be able to. Thereby, accumulation of impurities is prevented also at the interface, and the threshold voltage can be further stabilized. From the same viewpoint, it is more preferable that the oxide film 91a covers the entire surface of the gate electrode 92.
  • a silicon carbide semiconductor device 501 shown in FIG. 10 is a third modification of the present embodiment.
  • Silicon carbide semiconductor device 501 is configured as a vertical MOSFET having a trench gate structure.
  • Silicon carbide semiconductor device 501 includes single crystal substrate 80, silicon carbide semiconductor layer 100 (epitaxial layer), gate insulating film 91, gate electrode 92, interlayer insulating film 93, source electrode 94, and source wiring layer 95. And a drain electrode 98.
  • Silicon carbide semiconductor layer 100 has a main surface MP, a first impurity region (n drift layer 81) having n-type (first conductivity type), and a second having p-type (second conductivity type). Impurity region (p body layer 82), n-type third impurity region (n + layer 83), and p-type p contact region 84.
  • the p body layer 82 is provided in the n drift layer 81.
  • n + layer 83 and p contact region 84 are provided in p body layer 82.
  • the n + layer 83 and the p contact region 84 constitute a part of the main surface MP.
  • the trench TR is provided in the main surface MP of the silicon carbide semiconductor layer 100.
  • Trench TR has a bottom portion BT where n drift layer 81 is exposed, and sidewall SW where n drift layer 81, p body layer 82 and n + layer 83 are exposed.
  • Gate insulating film 91 (oxide film 91a and base insulating film 91b) is formed on bottom BT and sidewall SW of trench TR.
  • the oxide film 91 a is an oxide film derived from the gate electrode 92.
  • a gate electrode 92 made of a polysilicon layer is provided on the oxide film 91a in the trench TR.
  • a channel region is formed along p body layer 82 exposed on side wall SW.
  • the source electrode 94 is provided on the n + layer 83 and the p contact region 84 in contact with each of the n + layer 83 and the p contact region 84.
  • Interlayer insulating film 93 is formed above gate electrode 92 so as to cover gate insulating film 91 (oxide film 91a and base insulating film 91b).
  • the source wiring layer 95 is formed on and in contact with the interlayer insulating film 93 and the source electrode 94.
  • Drain electrode 98 is provided on the lower surface opposite to main surface MP of silicon carbide semiconductor layer 100 via single crystal substrate 80.
  • gate electrode 92 has a polysilicon layer on the interface side with gate insulating film 91, and gate insulating film 91 further includes gate insulating film 91 and gate electrode 92 (polyester).
  • An oxide film 91a derived from the polysilicon layer is provided at the interface with the silicon layer. That is, silicon carbide semiconductor device 501 is a silicon carbide semiconductor device having a trench gate structure, dangling bonds being reduced at the interface between gate insulating film 91 and gate electrode 92, and having a stable threshold voltage.
  • the trench TR has been described as having the inclined side wall SW and the flat bottom BT, and has a trapezoidal cross-sectional shape.
  • a rectangular shape as shown in FIG. 11 or a V-shape as shown in FIG. 12 may be used.
  • the cross-sectional shape of trench TR may be a U-shape in which bottom portion BT is not a flat surface as shown in FIG.
  • the silicon carbide semiconductor device according to the present embodiment has been described by taking the MOSFET as an example.
  • the present embodiment is not limited to this, and may be, for example, an IGBT (Insulated Gate Bipolar Transistor) or the like. Even so, the same effect as described above is exhibited.
  • IGBT Insulated Gate Bipolar Transistor
  • Silicon carbide semiconductor device A according to the example was manufactured as follows.
  • a single crystal substrate 80 made of SiC single crystal and having a thickness of 300 ⁇ m was prepared.
  • the single crystal substrate 80 had an off angle of 4 ° with respect to the (0001) plane.
  • a silicon carbide semiconductor layer having a thickness of 15 ⁇ m is formed on single crystal substrate 80 by a CVD method using a mixed gas of SiH 4 and C 3 H 8 as a source gas and H 2 as a carrier gas. 100 (n drift layer 81) was grown.
  • n drift layer 81 N concentration: 7 ⁇ 10 15 / cm 3
  • p body layer 82 Al concentration: 5 ⁇ 10 16 / cm 3
  • n + layer P concentration: 2 ⁇ 10 19 / cm 3
  • p-contact region Al concentration: 7 ⁇ 10 19 / cm 3
  • the implanted impurities were activated by performing heat treatment at 1700 ° C. for 30 minutes in an Ar atmosphere.
  • Silicon carbide semiconductor layer 100 was prepared as described above.
  • silicon carbide semiconductor layer 100 is heat-treated at 1300 ° C. for 1 hour in an atmosphere containing O 2 , so that an underlayer having a thickness of 45 nm, which is a SiO 2 film derived from silicon carbide semiconductor layer 100.
  • An insulating film 91b was formed.
  • a gate electrode 92 made of a polysilicon layer 92a having a thickness of 300 nm and an Al layer (electrode layer 92b) having a thickness of 100 nm was formed on the base insulating film 91b by the CVD method.
  • a 10 nm thick oxide film 91a was formed by thermally oxidizing a 5 nm thick polysilicon layer 92a.
  • the thermal oxidation at this time was performed at 900 ° C. for 1 hour in an atmosphere containing O 2 .
  • silicon carbide semiconductor device A was obtained by forming interlayer insulating film 93, source electrode 94, source wiring layer 95, and drain electrode 98.
  • a portion of gate insulating film 91 in contact with polysilicon layer 92a is composed of base insulating film 91b having a thickness of 40 nm and oxide film 91a having a thickness of 10 nm, and has a total thickness of 50 nm.
  • a silicon carbide semiconductor device B according to a comparative example was manufactured in the same manner as silicon carbide semiconductor device A, except that a base insulating film having a thickness of 50 nm was formed in step S2 and steps S3 and S5 were not performed. That is, in silicon carbide semiconductor device B according to the comparative example, the gate insulating film (thickness 50 nm) is configured only from a silicon oxide film derived from the silicon carbide semiconductor layer, and the gate insulating film and the silicon carbide semiconductor layer are Nitrogen is not introduced into the interface.
  • Silicon carbide semiconductor devices A and B obtained as described above were evaluated as follows.
  • FIG. 14 is a graph showing a Na concentration distribution in a region from the gate electrode 92 through the gate insulating film 91 to the silicon carbide semiconductor layer 100 in the silicon carbide semiconductor device.
  • the horizontal axis indicates the depth of the measurement target position from the reference point (for example, the vertical position in FIG. 1 and the like), and the vertical axis indicates the Na concentration (unit: atoms / cm 3 ) at the measurement target position. Is a logarithmic axis.
  • a region having a depth of 0.15 ⁇ m or more and less than 0.25 ⁇ m corresponds to the gate electrode 92 (polysilicon layer), and a region having a depth of 0.25 ⁇ m or more and 0.30 ⁇ m or less is the gate insulating film 91 (oxide film). 91 a and the base insulating film 91 b), and a region having a depth exceeding 0.30 ⁇ m corresponds to the silicon carbide semiconductor layer 100.
  • the solid line in FIG. 14 shows the measurement result in silicon carbide semiconductor device A according to the example, and the dotted line shows the measurement result in silicon carbide semiconductor device B according to the comparative example.
  • the horizontal scale is 0.01 ⁇ m (10 nm).
  • the Na concentration is 1 ⁇ 10 16 / cm 3 or less over the entire region having a depth of 0.15 ⁇ m or more and 0.40 ⁇ m or less.
  • the Na concentration in a region within ⁇ 10 nm from the interface (position at a depth of 0.25 ⁇ m in FIG. 14) between the gate electrode 92 and the gate insulating film 91 (oxide film 91a) is 1 ⁇ 10 16 / cm 3 or less. It has become. The reason for this is considered that, in the silicon carbide semiconductor device A according to the example, the oxide film 91a derived from the polysilicon layer is formed, so that it is difficult for impurities to accumulate around the interface.
  • the Na concentration is 1 ⁇ 10 17 / cm 3 near the depth of 0.25 ⁇ m (that is, near the interface between the gate electrode and the gate insulating film).
  • a large peak is shown. This is a result of a large amount of dangling bonds existing in the vicinity of the interface between the gate electrode and the gate insulating film (particularly in a region of ⁇ 10 nm from the interface), and Na being an impurity is trapped in the dangling bond. Conceivable.
  • the interface between gate insulating film 91 and silicon carbide semiconductor layer 100 will be considered.
  • the interface corresponds to a position having a depth of 0.30 ⁇ m in FIG.
  • the Na concentration in a region within ⁇ 10 nm from the interface is 1 ⁇ 10 16 / cm 3 or less. This is because, by introducing nitrogen into the interface between the gate insulating film 91 (the base insulating film 91b) and the silicon carbide semiconductor layer 100, dangling bonds around the interface are terminated, and impurities (Na) accumulate. This is thought to be a difficult result.
  • the Na concentration shows a large peak exceeding 1 ⁇ 10 17 / cm 3 in the vicinity of the depth of 0.30 ⁇ m. This is a result of the presence of a large amount of dangling bonds in the vicinity of the interface between the gate insulating film and the silicon carbide semiconductor layer (especially in the region of ⁇ 10 nm from the interface), and the impurity Na was trapped in the dangling bonds. It is believed that there is.
  • the silicon carbide semiconductor device A it should be noted that Na is formed over the entire region of the gate insulating film 91 (that is, a region having a depth of 0.25 ⁇ m to 0.30 ⁇ m).
  • the concentration is 1 ⁇ 10 16 / cm 3 or less.
  • the reason why the Na concentration in the gate insulating film 91 is 1 ⁇ 10 16 / cm 3 or less as described above is that the interface between the gate electrode 92 and the gate insulating film 91 which is a portion where impurities are particularly likely to accumulate as described above.
  • the accumulation of Na is prevented at both the interface between the gate insulating film 91 and the silicon carbide semiconductor layer 100, it can be considered that the abundance of Na is also reduced in the region sandwiched between the two interfaces.
  • FIG. 15 is a graph showing the relationship between gate voltage application time (unit: hour) and threshold voltage fluctuation amount (unit: V) in an endurance test.
  • the legend and solid line represented by white circles show the measurement results in silicon carbide semiconductor device A according to the example, and the legend and dotted line represented by black circles represent measurement in silicon carbide semiconductor device B according to the comparative example. Results are shown.
  • the threshold voltage decreased from the beginning of the test, and after 100 hours had elapsed, the initial threshold voltage was shifted to the minus side by nearly 4V.
  • the threshold voltage remained substantially constant from the start of the test, and the fluctuation amount was substantially zero even after 100 hours had elapsed.
  • the impurity (Na) concentration in the region from the gate electrode to the silicon carbide semiconductor layer was 1 ⁇ 10 16 / cm 3 or less. It is thought that.
  • silicon carbide semiconductor layer 100, gate insulating film 91 formed on silicon carbide semiconductor layer 100, and gate electrode 92 provided on gate insulating film 91 are provided. At least the polysilicon layer 92a is provided on the interface side with the gate insulating film 91, and the gate insulating film 91 is derived from the polysilicon layer 92a at the interface between the gate insulating film 91 and the polysilicon layer 92a of the gate electrode 92. It was confirmed that the silicon carbide semiconductor device according to the example having the oxide film 91a to be performed was a silicon carbide semiconductor device having a stable threshold voltage.
  • a silicon carbide semiconductor device includes a silicon carbide semiconductor layer 100, a gate insulating film 91 formed on the silicon carbide semiconductor layer 100, a gate electrode 92 provided on the gate insulating film 91, And the sodium concentration in the gate insulating film 91 is 1 ⁇ 10 16 / cm 3 or less, and thus has a stable threshold voltage.
  • 80 single crystal substrate 81 n drift layer (first impurity region), 82 p body layer (second impurity region), 83 n + layer (third impurity region), 84 p contact region, 91 gate insulating film, 91a oxide film, 91b base insulating film, 92 gate electrode, 92a polysilicon layer, 92b electrode layer, 93 interlayer insulating film, 94 source electrode, 95 source wiring layer, 98 drain electrode, 100 silicon carbide semiconductor layer, 201, 301, 401,501 Silicon carbide semiconductor device, MP main surface, TR trench, BT bottom, SW side wall.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 炭化珪素半導体装置は、炭化珪素半導体層(100)と、炭化珪素半導体層(100)上に形成されたゲート絶縁膜(91)と、ゲート絶縁膜(91)上に設けられたゲート電極(92)と、を備え、ゲート電極(92)は、少なくともゲート絶縁膜(91)との界面側にポリシリコン層(92a)を有し、さらに、ゲート絶縁膜(91)は、ゲート絶縁膜(91)とゲート電極(92)のポリシリコン層(92a)との界面に、ポリシリコン層(92a)に由来する酸化膜(91a)を有する。

Description

炭化珪素半導体装置およびその製造方法
 本発明は炭化珪素半導体装置に関する。
 炭化珪素(以下「SiC」とも記す)は、次世代のパワー半導体装置用の材料として注目されている。特に近年は、スイッチング素子として有力であるSiCを用いたMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)の開発が盛んに行なわれている(たとえば非特許文献1参照。)。
M.Grieb et al., "Comparison of the threshold-voltage stability of SiC MOSFETs with thermally grown and deposited gate oxides" Materials Science Forum Vols. 645-648 (2010) pp681-684
 近年、炭化珪素半導体装置の実用化が進められる中で、いくつかの課題が明らかになってきている。その中でも、たとえば非特許文献1に示されるような閾値電圧の変動は、とりわけ喫緊の課題である。これまでの研究で、SiCを酸化して得た酸化膜や、当該酸化膜とSiC半導体層との界面には固定電荷や可動イオンが存在しやすく、それらが閾値電圧の安定性に影響していることが示唆されている。しかしながら、炭化珪素半導体装置において閾値電圧を安定化する有効な方法は未だ開発されていない。
 そこで上記のような課題に鑑み、安定した閾値電圧を有する炭化珪素半導体装置を提供することを目的とする。
 本発明の一態様に係る炭化珪素半導体装置は、炭化珪素半導体層と、炭化珪素半導体層上に形成されたゲート絶縁膜と、ゲート絶縁膜上に設けられたゲート電極と、を備え、ゲート電極は、少なくともゲート絶縁膜との界面側にポリシリコン層を有し、さらに、ゲート絶縁膜は、ゲート絶縁膜とゲート電極のポリシリコン層との界面に、ポリシリコン層に由来する酸化膜を有する。
 上記によれば、安定した閾値電圧を有する炭化珪素半導体装置を提供することができる。
本発明の一実施形態における炭化珪素半導体装置の構成の一例を概略的に示す断面図である。 本発明の一実施形態における炭化珪素半導体装置の構成の一例を概略的に示す断面図である。 本発明の一実施形態における炭化珪素半導体装置の構成の一例を概略的に示す断面図である。 本発明の一実施形態における炭化珪素半導体装置の製造過程の一部を概略的に示す断面図である。 本発明の一実施形態における炭化珪素半導体装置の製造過程の一部を概略的に示す断面図である。 本発明の一実施形態における炭化珪素半導体装置の製造過程の一部を概略的に示す断面図である。 本発明の一実施形態における炭化珪素半導体装置の製造過程の一部を概略的に示す断面図である。 本発明の一実施形態における炭化珪素半導体装置の製造過程の一部を概略的に示す断面図である。 本発明の一実施形態における炭化珪素半導体装置の製造過程の一部を概略的に示す断面図である。 本発明の一実施形態における炭化珪素半導体装置の構成の一例を概略的に示す断面図である。 本発明の一実施形態に係わるトレンチの断面形状の一例を概略的に示す図である。 本発明の一実施形態に係わるトレンチの断面形状の一例を概略的に示す図である。 本発明の一実施形態に係わるトレンチの断面形状の一例を概略的に示す図である。 本発明の一実施形態に係わる炭化珪素半導体装置における二次イオン質量分析法によるナトリウム濃度の測定結果の一例を示すグラフである。 本発明の一実施形態に係わる炭化珪素半導体装置におけるゲート電圧の印加時間と閾値電圧の変動量との関係の一例を示すグラフである。 本発明の一実施形態における炭化珪素半導体装置の製造方法の概略を示すフローチャートである。
 以下、本発明の一実施形態についてさらに詳細に説明する。なお、以下の図面において同一または相当する部分には同一の参照符号を付し、その説明は繰り返さない。また、本明細書中の結晶学的な記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面{}で、それぞれ示すものとする。なおまた、結晶学上の指数が負であることは、通常、”-”(バー)を数字の上に付すことによって表現されるが、本明細書中では数字の前に負の符号を付すことで表現するものとする。
 [本願発明の実施形態の説明]
 まず、本願発明の一実施形態(以下、「本実施形態」とも記す)の概要を以下の(1)~(15)に列記して説明する。
 本発明者は、上記課題を解決するため鋭意研究を行なったところ、炭化珪素半導体装置では、ゲート電極とゲート絶縁膜との界面領域にダングリングボンドが多く存在しており、このダングリングボンドに可動イオンとなる不純物がトラップされることにより、閾値電圧が不安定になっているという知見を得、該知見に基づきさらに研究を重ねることにより本実施形態を完成させるに至った。すなわち、本実施形態に係る炭化珪素半導体装置は、以下の構成を備える。
 (1)炭化珪素半導体層100と、炭化珪素半導体層100上に形成されたゲート絶縁膜91と、ゲート絶縁膜91上に設けられたゲート電極92と、を備え、ゲート電極92は、少なくともゲート絶縁膜91との界面側にポリシリコン層92aを有し、さらに、ゲート絶縁膜91は、ゲート絶縁膜91とゲート電極92のポリシリコン層92aとの界面に、ポリシリコン層92aに由来する酸化膜91aを有する。
 従来、ゲート絶縁膜は、炭化珪素半導体層を熱酸化することにより形成されている。しかしながら、炭化珪素半導体層に由来するゲート絶縁膜とゲート電極との界面にはダングリンボンドが多く存在しており、このダングリングボンドの存在によってゲート絶縁膜とゲート電極との界面に不純物が蓄積しやすい状態にある。
 本実施形態によれば、炭化珪素半導体装置は、ゲート電極92とゲート絶縁膜91との界面領域に、ポリシリコン層92aに由来する酸化膜を形成できる。すなわち当該酸化膜91aとポリシリコン層92aとの界面におけるダングリングボンドを低減できる。したがって、当該領域に不純物がトラップされ難くなり、閾値電圧の安定した炭化珪素半導体装置を提供することができる。
 (2)酸化膜91aの厚さは、50nm以下であることが好ましい。本実施形態において酸化膜91aは、ゲート電極92の一部を構成するポリシリコン層92aに由来するものである。シリコンは酸化されると元の体積の2倍の体積となる。そのため、形成されるべき酸化膜91aの厚さが50nmを超えると、酸化膜91aの厚さの制御が困難になる場合もある。酸化膜91aの厚さが50nm以下であれば、所望の厚さの酸化膜91aを形成することができ、さらに閾値電圧の安定した炭化珪素半導体装置を得ることができる。
 (3)ゲート電極92は、ポリシリコン層92aにより構成されることが好ましい。このような態様によれば、ゲート電極92を熱酸化することにより、ゲート絶縁膜91とゲート電極92との界面に、ポリシリコン層92aに由来する酸化膜91aを容易に形成することができる。
 (4)酸化膜91aは、ゲート電極92の側部表面および上部表面上にまで延在することが好ましい。これにより炭化珪素半導体装置は、ゲート電極92を覆う層間絶縁膜93を形成した際に、ゲート電極92と層間絶縁膜93との界面におけるダングリングボンドを低減した状態とすることができる。したがって、炭化珪素半導体装置において不純物の蓄積がさらに低減され、信頼性を向上させることができる。
 (5)炭化珪素半導体層100は、主面MPを有し、第1の導電型を有する第1の不純物領域81と、第1の不純物領域81内に設けられ第1の導電型と異なる第2の導電型を有する第2の不純物領域82と、主面MPの一部を構成し第2の不純物領域82内に設けられ第1の導電型を有する第3の不純物領域83と、を含み、さらに主面MPには、第2の不純物領域82および第3の不純物領域83が側壁SWに表出したトレンチTRが設けられており、ゲート絶縁膜91は、側壁SW上に形成されていることが好ましい。
 これによりトレンチゲート構造を有し、かつ閾値電圧の安定した炭化珪素半導体装置とすることができる。
 (6)炭化珪素半導体層100は、主面MPを有し、主面MPの一部を構成し第1の導電型を有する第1の不純物領域81と、主面MPの一部を構成し第1の不純物領域81内に設けられ第1の導電型と異なる第2の導電型を有する第2の不純物領域82と、主面MPの一部を構成し第2の不純物領域82内に設けられ第1の導電型を有する第3の不純物領域83と、を含み、さらにゲート絶縁膜91は、第2の不純物領域82により構成される主面MP上に形成されていることが好ましい。
 これによりプレーナ構造を有し、かつ閾値電圧の安定した炭化珪素半導体装置とすることができる。
 (7)ゲート電極92とゲート絶縁膜91(酸化膜91a)との界面から10nm以内の領域におけるナトリウム濃度は、1×1016/cm3以下であることが好ましい。本発明者の研究によれば、ナトリウム(Na)は特に可動イオンとなりやすい不純物である。そして、ゲート絶縁膜91中のナトリウム濃度が1×1016/cm3を超えると閾値電圧が不安定になりやすい傾向にある。したがって、当該領域におけるナトリウム濃度を1×1016/cm3以下に制限することにより、閾値電圧の安定性をさらに高めることができる。
 (8)炭化珪素半導体層100とゲート絶縁膜91(下地絶縁膜91b)との界面から10nm以内の領域における窒素濃度は、1×1021/cm3以上であることが好ましい。これにより、炭化珪素半導体層100とゲート絶縁膜91との界面においてもダングリングボンドを低減し、不純物の蓄積を抑制することができる。したがって、閾値電圧をより一層安定化させることできる。
 (9)本実施形態の別の局面に従えば、炭化珪素導体装置は、炭化珪素半導体層100と、炭化珪素半導体層100上に形成されたゲート絶縁膜91と、ゲート絶縁膜91上に設けられたゲート電極92と、を備え、ゲート絶縁膜91中のナトリウム濃度が、1×1016/cm3以下である。
 上記のように、ゲート絶縁膜91中において、閾値電圧の変動要因となるナトリウムの濃度を制限することにより、閾値電圧の安定した炭化珪素半導体装置を提供することができる。
 (10)本実施形態の別局面に従う炭化珪素半導体装置において、ゲート電極92とゲート絶縁膜91(酸化膜91a)との界面から10nm以内の領域におけるナトリウム濃度は、1×1016/cm3以下であることが好ましい。ゲート電極92とゲート絶縁膜91との界面から10nm以内の領域は、とりわけ不純物が蓄積しやすい領域である。したがって、当該領域におけるナトリウム濃度を制限することにより、さらに閾値電圧を安定化させることができる。
 (11)本実施形態の別局面に従う炭化珪素半導体装置において、炭化珪素半導体層100は、主面MPを有し、第1の導電型を有する第1の不純物領域81と、第1の不純物領域81内に設けられ第1の導電型と異なる第2の導電型を有する第2の不純物領域82と、主面MPの一部を構成し第2の不純物領域82内に設けられ第1の導電型を有する第3の不純物領域83と、を含み、さらに主面MPには、第2の不純物領域82および第3の不純物領域83が側壁SWに表出したトレンチTRが設けられており、ゲート絶縁膜91は、側壁SW上に形成されていることが好ましい。
 これによりトレンチゲート構造を有し、かつゲート絶縁膜91中のナトリウム濃度が1×1016/cm3以下である炭化珪素半導体装置とすることができる。
 (12)本実施形態の別局面に従う炭化珪素半導体装置において、炭化珪素半導体層100は、主面MPを有し、主面MPの一部を構成し第1の導電型を有する第1の不純物領域81と、主面MPの一部を構成し第1の不純物領域81内に設けられ第1の導電型と異なる第2の導電型を有する第2の不純物領域82と、主面MPの一部を構成し第2の不純物領域82内に設けられ第1の導電型を有する第3の不純物領域83と、を含み、さらにゲート絶縁膜91は、第2の不純物領域82により構成される主面MP上に形成されていることが好ましい。
 これによりプレーナ構造を有し、かつゲート絶縁膜91中のナトリウム濃度が1×1016/cm3以下である炭化珪素半導体装置とすることができる。
 (13)本実施形態の炭化珪素半導体装置は、次のような製造方法によって製造することができる。すなわち本実施形態の炭化珪素半導体装置の製造方法は、炭化珪素半導体層100を準備する工程S1と、炭化珪素半導体層100上にゲート絶縁膜91を構成する下地絶縁膜91bを形成する工程S2と、下地絶縁膜91b上にゲート電極92を設ける工程S4と、ゲート電極92を酸素含有雰囲気中で熱処理することにより、ゲート電極92に由来し、ゲート絶縁膜91を構成する酸化膜91aを、少なくとも下地絶縁膜91bとゲート電極92との界面に形成する工程S5と、を備える。
 上記の製造方法によれば、ゲート電極92とゲート絶縁膜91との界面においてダングリングボンドが低減され、安定した閾値電圧を有する本実施形態の炭化珪素半導体装置を容易に製造することができる。
 (14)ゲート電極を設ける工程S4において、ゲート電極92は、少なくともゲート絶縁膜91との界面にポリシリコン層92aを有するように設けられることが好ましい。これにより、工程S5において酸化膜91aを下地絶縁膜91bとゲート電極92との界面に容易に形成することができる。
 (15)上記の炭化珪素半導体装置の製造方法は、炭化珪素半導体層100と下地絶縁膜91bとの界面に窒素およびリンの少なくともいずれかを導入する工程S3を、さらに備えることが好ましい。これにより、ゲート絶縁膜91と炭化珪素半導体層100との界面においてもダングリングボンドが低減され、より一層安定した閾値電圧を有する炭化珪素半導体装置を製造することができる。
 [本願発明の実施形態の詳細]
 以下、本実施形態に係る炭化珪素半導体装置について、より詳細に説明するが、本実施形態はこれらに限定されるものではない。
 <炭化珪素半導体装置>
 図1に示す本実施形態に係る炭化珪素半導体装置201はプレーナ構造を有する縦型MOSFETとして構成されている。炭化珪素半導体装置201は、単結晶基板80と、炭化珪素半導体層100(エピタキシャル層)と、ゲート絶縁膜91と、ゲート電極92と、層間絶縁膜93と、ソース電極94と、ソース配線層95と、ドレイン電極98とを有する。
 ゲート絶縁膜91は、炭化珪素半導体層100上に形成されており、下地絶縁膜91bと酸化膜91aとから構成されている。下地絶縁膜91bは酸化珪素膜(SiO2)であることが好ましい。そしてゲート絶縁膜91上にはゲート電極92が設けられている。ゲート電極92は、ポリシリコン層92aと電極層92bとを含む積層構造を有している。電極層92bは、たとえばアルミニウム(Al)等の導体から構成される。ポリシリコン層92aはゲート絶縁膜91(酸化膜91a)との界面側に位置している。すなわち炭化珪素半導体装置201は、ゲート絶縁膜91とポリシリコン層92aとの界面に、酸化膜91aを有している。酸化膜91aはポリシリコン層92aに由来の酸化膜であり、具体的にはポリシリコン層92aの一部を熱酸化することにより形成された酸化珪素膜である。したがって酸化膜91aは非常に清浄な膜であり、膜中のダングリングボンドが極めて少ない。そして、酸化膜91aは下地絶縁膜91bと一体となってゲート絶縁膜91を構成し、ゲート電極92と炭化珪素半導体層100(チャネル領域)との間を絶縁している。
 このように、ゲート絶縁膜91とゲート電極92(ポリシリコン層92a)との界面にポリシリコンを熱酸化して得た酸化膜91aが設けられることにより、当該領域において閾値電圧の変動要因となる不純物の蓄積を防止することができる。
 ここで、閾値電圧の変動要因となる不純物としては、たとえば、ナトリウム(Na)、カリウム(K)、カルシウム(Ca)、鉄(Fe)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)等を例示することができる。これらの不純物がゲート絶縁膜中に含まれると可動イオンとなり、温度や電界によって膜中を移動するため閾値電圧のシフトを引き起こすと考えられる。そして、特にNaは可動イオンとなりやすく、閾値電圧への影響が大きい。したがって、閾値電圧をより安定化させるとの観点から、ゲート電極92とゲート絶縁膜91の一部である酸化膜91aとの界面から10nm以内の領域におけるNa濃度は1×1016/cm3以下であることが好ましい。本実施形態では、たとえば、酸化膜91aの厚さを10nm程度とすることにより、当該領域におけるNa濃度を容易に1×1016/cm3以下とすることができる。
 ここで、ポリシリコンを熱酸化して得られた熱酸化珪素膜の体積は、元のポリシリコンの約2倍となることが知られている。前述のように酸化膜91aは下地絶縁膜91bと一体となっており、ゲート絶縁膜91の一部を構成するものである。そのため、酸化膜91aの厚さが過度に厚くなると、ゲート絶縁膜91の膜厚の変動量が大きくなり好ましくない。このような観点から、酸化膜91aの厚さは50nm以下であることが好ましい。なお酸化膜91aの厚さは、好ましくは5nm以上50nm以下であり、より好ましくは5nm以上40nm以下であり、特に好ましくは10nm以上30nm以下である。
 以上のように、本実施形態ではゲート電極92とゲート絶縁膜91との界面において不純物の蓄積が防止され、以って閾値電圧が安定化される。さらに本実施形態では、これに加えてゲート絶縁膜91と炭化珪素半導体層100との界面においても不純物の蓄積が防止することもできる。
 すなわち、炭化珪素半導体層100とゲート絶縁膜91(下地絶縁膜91b)との界面に窒素(N)およびリン(P)の少なくともいずれかを導入することにより、当該領域においてもダングリングボンドを低減し、不純物の蓄積を防止することができる。具体的には、炭化珪素半導体層100とゲート絶縁膜91との界面から10nm以内の領域における窒素濃度およびリン濃度の少なくともいずれかが1×1021/cm3以上となるように、窒素およびリンが導入されていることが好ましい。
 そして、このような態様によれば、ゲート電極92からゲート絶縁膜91を通って炭化珪素半導体層100に至る領域において不純物の蓄積が防止される。すなわち、ゲート絶縁膜91中の不純物濃度(Na濃度)を1×1016/cm3以下とすることも可能である。このように、ゲート絶縁膜91中の不純物濃度(Na濃度)が1×1016/cm3以下であれば、より一層閾値電圧が安定化された炭化珪素半導体装置を実現することができる。
 さらに、ダングリングボンドを低減するとの観点から、炭化珪素半導体層100とゲート絶縁膜91(下地絶縁膜91b)との界面に水素(H)が導入されていてもよい。すなわち、炭化珪素半導体層100とゲート絶縁膜91との界面から10nm以内の領域における窒素濃度、リン濃度および水素濃度の少なくともいずれかが1×1021/cm3以上であってもよい。
 なお、上記で説明した各界面領域等におけるNa濃度、窒素濃度、リン濃度および水素濃度は、たとえば二次イオン質量分析装置(SIMS:Secondary Ion Mass Spectrometer)によって計測することができる。
 以下、炭化珪素半導体装置201のその他の構成について説明する。なお以下において各層または領域における導電型はあくまで例示であり、各層または領域はこれらと異なる導電型を有していてもよい。
 単結晶基板80はSiCからなり、n型(第1の導電型)を有している。単結晶基板80上には炭化珪素半導体層100が設けられている。
 炭化珪素半導体層100は、単結晶基板80上にエピタキシャル成長させられたSiC層である。炭化珪素半導体層100はポリタイプ4Hの六方晶の結晶構造を有することが好ましい。かかる結晶構造を採用することにより、炭化珪素半導体装置201のオン抵抗を低くすることができるからである。炭化珪素半導体層100は、単結晶基板80に面する下面と、当該下面と反対の上面である主面MPとを有している。さらに炭化珪素半導体層100は、nドリフト層81(第1の不純物領域)と、pボディ層82(第2の不純物領域)と、n+層83(第3の不純物領域)と、pコンタクト領域84とを含んでいる。
 nドリフト層81は単結晶基板80上に設けられ、n型(第1の導電型)を有する。nドリフト層81は一対のpボディ層82に挟まれた領域にJFET(Junction Field Effect Transistor)領域を含んでいる。そして、JFET領域の上端は主面MPの一部を構成しており、ゲート絶縁膜91(下地絶縁膜91b)と接している。すなわち、ゲート絶縁膜91はnドリフト層81(第1の不純物領域)により構成される主面MP上に形成されている。nドリフト層81の不純物濃度は単結晶基板80の不純物濃度よりも低いことが好ましい。nドリフト層81の不純物濃度は、たとえば1×1015/cm3以上5×1016/cm3以下である。
 pボディ層82はnドリフト層81内に設けれ、p型(第1の導電型と異なる第2の導電型)を有している。pボディ層82は主面MPの一部を構成しており、当該部分においてゲート絶縁膜91(下地絶縁膜91b)と接している。すなわち、ゲート絶縁膜91はpボディ層82(第2の不純物領域)により構成される主面MP上に形成されている。そして、このゲート絶縁膜91と接する部分に沿ってチャネル領域が形成される。pボディ層82の不純物濃度は5×1015/cm3以上2×1018/cm3以下であることが好ましく、たとえば1×1018/cm3程度とすることができる。
 n+層83はpボディ層82内に設けられ、n型(第1の導電型)を有し、かつソース領域として機能する。n+層83は、主面MPの一部を構成している。さらにn+層83に隣接して、pコンタクト領域84がpボディ層82上に形成されている。pコンタクト領域84はp型の導電型を有し、主面MPの一部を構成している。
 ソース電極94は主面MP上に設けられており、n+層83およびpコンタクト領域84の各々に接している。層間絶縁膜93はゲート電極92を覆うように、ゲート電極92上に設けられており、ゲート電極92とソース電極94との間を絶縁している。ソース配線層95は層間絶縁膜93およびソース電極94に接して形成されている。ソース配線層95は、たとえばAl等の導体から構成される。ドレイン電極98は炭化珪素半導体層100の主面MPとは反対の下面に単結晶基板80を介して設けられている。
 以上のように、炭化珪素半導体装置201はプレーナ構造を有するMOSFETであり、安定した閾値電圧を有する炭化珪素半導体装置である。また本発明者の研究によれば、炭化珪素半導体装置201と同様の構成を有する装置のうち次の構成を有する装置は、特に安定した閾値電圧を有するものである。
 すなわち、本実施形態の別の局面に従えば、炭化珪素半導体装置は、炭化珪素半導体層100と、炭化珪素半導体層100上に形成されたゲート絶縁膜91と、ゲート絶縁膜91上に設けられたゲート電極92と、を備え、ゲート絶縁膜91中のナトリウム濃度が、1×1016/cm3以下である。
 <炭化珪素半導体装置の製造方法>
 以上に説明した本実施形態に係る炭化珪素半導体装置は、以下に説明する製造方法によって製造することができる。図16は本実施形態に係る炭化珪素半導体装置の製造方法の概略を示すフローチャートである。図16に示すように、当該製造方法は工程S1、工程S2、工程S4および工程S5を備えるものであり、好ましくは工程S2の後に工程S3をさらに備える。以下、各工程について説明する。
 (工程S1)
 工程S1では炭化珪素半導体層100が準備される。炭化珪素半導体層100は、たとえば単結晶基板80上でのエピタキシャル成長と、イオン注入によって準備される。
 図4を参照して、炭化珪素半導体層100の一部となるべきnドリフト層81が、単結晶基板80上にエピタキシャル成長によって形成される。ここで単結晶基板80は、たとえばポリタイプ4Hの六方晶炭化珪素からなるインゴット(図示せず)をスライスすることによって得ることができる。nドリフト層81のエピタキシャル成長は、原料ガスとして、たとえばシラン(SiH4)とプロパン(C38)との混合ガスを用い、キャリアガスとして、たとえば水素ガス(H2)を用いたCVD(Chemical Vapor Deposition)法により行なうことができる。この際、不純物として、たとえば窒素(N)やリン(P)を導入することが好ましい。このようにして得られたnドリフト層81の上面は、炭化珪素半導体層100の主面MPとなる。
 次に、図5を参照して、nドリフト層81内に、pボディ層82、n+層83およびpコンタクト領域84が形成される。これらの形成は、たとえばnドリフト層81の全面上へのイオン注入によって行なうことができる。pボディ層82およびpコンタクト領域84を形成するためのイオン注入では、たとえばAl等のp型を付与するための不純物がイオン注入される。また、n+層83を形成するためのイオン注入では、たとえばリン(P)等のn型を付与するための不純物がイオン注入される。各層および領域のイオン注入には、従来公知のフォトレジスト等の注入マスク(図示せず)が用いられる。なお、イオン注入の代わりに、不純物の添加を伴うエピタキシャル成長を行なってもよい。
 次に、不純物を活性化するための熱処理が行なわれる。これにより、各不純物領域において所望のキャリアが生成される。このときの熱処理温度は、好ましくは1500℃以上1900℃以下であり、たとえば1700℃程度である。熱処理時間は、たとえば30分程度とすることができる。熱処理の雰囲気は不活性ガス雰囲気であることが好ましく、たとえばアルゴン(Ar)雰囲気が好ましい。以上のようにして炭化珪素半導体層100が準備される。
 (工程S2)
 工程S2は、炭化珪素半導体層100上にゲート絶縁膜91を構成する下地絶縁膜91bを形成する工程である。図6を参照して、炭化珪素半導体層100上に下地絶縁膜91bが形成される。下地絶縁膜91bは、たとえば酸化珪素であり、炭化珪素半導体層100を熱酸化することにより形成されることが好ましい。このときの熱酸化条件は、たとえば酸素(O2)を含む雰囲気中において炭化珪素半導体層100を1300℃程度に加熱することにより、酸化珪素膜である下地絶縁膜91bを形成することができる。
 (工程S3)
 本実施形態では、工程S2の後、炭化珪素半導体層100と下地絶縁膜91bとの界面に窒素およびリンの少なくともいずれかを導入する工程S3が実行されることが好ましい。工程S3が実行されることにより、当該界面においてダングリングボンドが窒素またはリンよって終端化され、不純物の蓄積を防止することができる。すなわち、閾値電圧をより安定化させることができる。
 窒素およびリンの少なくともいずれかは、これらの原子を含む雰囲気ガス中において、下地絶縁膜91bおよび炭化珪素半導体層100を熱処理することによって導入することができる。なおこのとき、窒素およびリンとともに水素が導入されてもよい。すなわち工程S3は、炭化珪素半導体層100と下地絶縁膜91bとの界面に窒素、リンおよび水素の少なくともいずれかを導入する工程であってもよい。
 窒素を含む気体(ガス)としては、たとえば窒素(N)、一酸化窒素(NO)、一酸化二窒素(N2O)、二酸化窒素(NO2)およびアンモニア(NH4)等を挙げることができる。また、リンを含む気体としては、たとえば塩化ホスホリル(POCl3)等である。また、水素を含む気体としては、水素(H2)および水蒸気(H2O)を挙げることができる。熱処理条件としては、たとえば熱処理温度を1300℃以上1500℃以下程度、熱処理時間を1時間程度とする条件が好適である。
 なお工程S3は、窒素を含む雰囲気中での熱処理、リンを含む雰囲気中での熱処理および水素を含む雰囲気中での熱処理が、個別に順次行なわれる工程であってもよく、上記に例示したNO、POCl3、H2等の混合ガスを用いた熱処理が行なわれる工程であってもよい。
 工程S3の後、さらに不活性ガスを用いた熱処理が行なわれてもよい。具体的には、Arガス雰囲気中でさらに熱処理が行なわれてもよい。このときの熱処理条件は、熱処理温度を工程S3での熱処理温度よりも高く、かつ下地絶縁膜91bの融点よりも低くすることが好ましい。また、熱処理時間は、たとえば1時間程度とすることができる。この処理を行なうことにより、ダングリングボンドがさらに低減され、閾値電圧がより安定化される。
 (工程S4)
 下地絶縁膜91bが形成された後、下地絶縁膜91b上にゲート電極92を設ける工程S4が実行される。図7を参照して、下地絶縁膜91b上に、たとえば従来公知のCVD法や蒸着法によってポリシリコン層92aおよび電極層92bがこの順に積層されることによりゲート電極92が形成される。すなわち、工程S4において、ゲート電極92は、少なくともゲート絶縁膜91(下地絶縁膜91b)との界面にポリシリコン層92aを有するように設けられる。なお、ゲート電極92は、少なくともゲート絶縁膜91との界面側にポリシリコン層を有するように構成されていればよく、後述するように全体がポリシリコン層から構成されていてもよいし、当該界面側にポリシリコン層を有する限り3以上の層から構成されていてもよい。
 ポリシリコン層92aは、たとえばリン等の不純物がドープされたものであってもよい。電極層92bは導体であればよく、たとえばAl層である。なおゲート電極92の形成後、ゲート電極92に対して、化学機械研磨(CMP:Chemical Mechanical Polishing)または反応性イオンエッチング(RIE:Reactive Ion Etching)等が行なわれてもよい。
 (工程S5)
 工程S4の後、図8を参照して工程S5が実行される。工程S5は、ゲート電極92を酸素(O2)含有雰囲気中で熱処理することにより、ゲート電極92(ポリシリコン層92a)に由来し、ゲート絶縁膜91を構成する酸化膜91aを、少なくとも下地絶縁膜91bとゲート電極92(ポリシリコン層92a)との界面に形成する工程である。
 前述のように、工程S4を経ることにより下地絶縁膜91b上にはポリシリコン層92aが形成されている。したがって、このポリシリコン層92aを熱酸化することにより、下地絶縁膜91bとポリシリコン層92aとの界面にポリシリコンに由来する清浄な熱酸化膜である酸化膜91aが形成される。
 この熱処理温度は、700℃以上1100℃未満であることが好ましい。熱処理温度が700℃未満であると、ポリシリコンが十分酸化されない場合があり、他方1100℃以上となると炭化珪素半導体層も酸化されてしまう場合があるからである。熱処理時間は、たとえば1時間以上2時間以下程度である。
 また熱処理に用いられる雰囲気ガスとしては、酸素(O2)の他、酸素原子を分子中に含む気体を用いることができる。そのような気体としては、たとえばNO、N2O、H2O等を挙げることができる。これらの雰囲気ガスは、それぞれ単独で用いてもよいし、混合ガスとして用いてもよい。
 以上のようにして、酸化膜91aが形成されることにより、ゲート電極92とゲート絶縁膜91との界面において、従来に比しダングリングボンドが低減され、炭化珪素半導体装置の閾値電圧を安定化させることができる。
 (後工程)
 以下、図9を参照して、後工程について説明する。まず、ゲート電極92(ポリシリコン層92aおよび電極層92b)および酸化膜91aの露出面を覆うように、層間絶縁膜93が形成される。続いて、層間絶縁膜93および下地絶縁膜91bに開口部が形成されるようにエッチングが行なわれる。この開口部により、n+層83およびpコンタクト領域84の各々が露出される。そして、露出したn+層83およびpコンタクト領域84の各々に接してソース電極94が形成される。さらに単結晶基板80において、主面MPと反対側の下面上にドレイン電極98が形成される。そして再び図1を参照して、ソース電極94上にソース配線層95が形成される。
 以上のようにして、安定した閾値電圧を有する本実施形態に係る炭化珪素半導体装置を製造することができる。
 <第1の変形例>
 次に本実施形態の変形例について説明する。図2に示す炭化珪素半導体装置301は、本実施形態の第1の変形例であり、図1に示す炭化珪素半導体装置201と同様に、プレーナ構造を有する縦型MOSFETとして構成されている。
 炭化珪素半導体装置301は、ゲート電極92がポリシリコン層により構成されている点において炭化珪素半導体装置201と相違する。すなわち、炭化珪素半導体装置301においては、実質的にゲート電極92の全体がポリシリコン層である。ここで、「実質的に全体がポリシリコン層である」とは、ゲート電極92の体積のうち80%以上がポリシリコン層で占められることを示す。なお、ゲート電極92が一部にポリシリコン層と異なるものを含んでいたとしても、ゲート電極92のうち少なくともゲート絶縁膜91との界面側はポリシリコン層によって構成されているものとする。
 炭化珪素半導体装置301も、ゲート絶縁膜91とゲート電極92との界面に、ポリシリコン層に由来する酸化膜91aを有するため、安定した閾値電圧を有することができる。また、ゲート電極92の全体がポリシリコン層により構成されることによって、製造プロセスを簡易化することができる。
 <第2の変形例>
 図3に示す炭化珪素半導体装置401は、本実施形態の第2の変形例である。炭化珪素半導体装置401は、酸化膜91aがゲート電極92の側部表面および上部表面上にまで延在する点において、図2に示す炭化珪素半導体装置301と相違する。このような構成は、実質的にゲート電極92の全体がポリシリコン層により構成されることで容易に実現される。
 炭化珪素半導体装置401も、ゲート絶縁膜91とゲート電極92との界面に、ポリシリコン層に由来する酸化膜91aを有するため、安定した閾値電圧を有することができる。また、酸化膜91aがゲート電極92の側部表面および上部表面上にまで延在することにより、層間絶縁膜93とゲート電極92との界面にも清浄な熱酸化膜である酸化膜91aを有することができる。これにより、当該界面においても、不純物の蓄積が防止され、閾値電圧をより一層安定化することができる。なお同様の観点から、酸化膜91aはゲート電極92の表面全体を覆うことがより好ましい。
 <第3の変形例>
 図10に示す炭化珪素半導体装置501は、本実施形態の第3の変形例である。炭化珪素半導体装置501は、トレンチゲート構造を有する縦型MOSFETとして構成されている。炭化珪素半導体装置501は、単結晶基板80と、炭化珪素半導体層100(エピタキシャル層)と、ゲート絶縁膜91と、ゲート電極92と、層間絶縁膜93と、ソース電極94と、ソース配線層95と、ドレイン電極98とを有する。
 炭化珪素半導体層100は主面MPを有し、n型(第1の導電型)を有する第1の不純物領域(nドリフト層81)と、p型(第2の導電型)を有する第2の不純物領域(pボディ層82)と、n型を有する第3の不純物領域(n+層83)と、p型を有するpコンタクト領域84とを含む。
 ここで、図10に示すように、pボディ層82はnドリフト層81内に設けられている。また、n+層83およびpコンタクト領域84はpボディ層82内に設けられている。そして、n+層83およびpコンタクト領域84は主面MPの一部を構成している。
 そして、炭化珪素半導体層100の主面MPにはトレンチTRが設けられている。トレンチTRは、nドリフト層81が表出する底部BTと、nドリフト層81、pボディ層82およびn+層83が表出した側壁SWとを有している。そして、ゲート絶縁膜91(酸化膜91aおよび下地絶縁膜91b)は、トレンチTRの底部BTおよび側壁SW上に形成されている。ここで酸化膜91aはゲート電極92に由来する酸化膜である。さらにトレンチTR内において酸化膜91a上にはポリシリコン層により構成されるゲート電極92が設けられている。これにより、側壁SWに表出したpボディ層82に沿ってチャネル領域が形成される。
 ソース電極94は、n+層83およびpコンタクト領域84の各々に接して、n+層83およびpコンタクト領域84上に設けられている。また層間絶縁膜93は、ゲート電極92の上方においてゲート絶縁膜91(酸化膜91aおよび下地絶縁膜91b)を覆うように形成されている。さらにソース配線層95は層間絶縁膜93およびソース電極94に接して、これらの上に形成されている。ドレイン電極98は炭化珪素半導体層100の主面MPとは反対の下面に単結晶基板80を介して設けられている。
 以上のように、炭化珪素半導体装置501においても、ゲート電極92はゲート絶縁膜91との界面側にポリシリコン層を有し、さらにゲート絶縁膜91は、ゲート絶縁膜91とゲート電極92(ポリシリコン層)との界面に、ポリシリコン層に由来する酸化膜91aを有している。すなわち、炭化珪素半導体装置501はトレンチゲート構造を有し、ゲート絶縁膜91とゲート電極92との界面においてダングリングボンドが低減され、かつ安定した閾値電圧を有する炭化珪素半導体装置である。
 なお第3の変形例においては、トレンチTRを、傾斜した側壁SWと平坦面である底部BTとを有し、台形状の断面形状を有するものとして説明したが、トレンチTRの断面形状はこれに限定されず、たとえば図11に示すような矩形状であってもよいし、図12に示すようにV字形状であってもよい。またあるいは、トレンチTRの断面形状は、図13に示すように底部BTが平坦面ではないU字状であってもよい。
 以上のように本実施形態に係わる炭化珪素半導体装置を、MOSFETを例示して説明したが、本実施形態はこれに限定されず、たとえばIGBT(Insulated Gate Bipolar Transistor)等であってもよく、IGBTであっても上記と同様の効果が示される。
 以下、実施例を用いて本実施形態をより詳細に説明するが、本実施形態はこれに限定されるものではない。
 <実施例>
 以下のようにして実施例に係る炭化珪素半導体装置Aを製造した。
 (工程S1)
 まず、SiC単結晶からなり、厚さ300μmである単結晶基板80を準備した。単結晶基板80は、(0001)面に対して4°のオフ角度を有するものであった。
 次いで図4を参照して、原料ガスとしてSiH4とC38との混合ガスを、キャリアガスとしてH2を用いたCVD法によって、単結晶基板80上に厚さ15μmの炭化珪素半導体層100(nドリフト層81)を成長させた。
 次いで、図5を参照して、注入マスク(図示せず)を用いたイオン注入によってnドリフト層81内に、pボディ層82、n+層83およびpコンタクト領域84を形成した。各層または領域における不純物(ドナーまたはアクセプタ)の濃度は、nドリフト層81(N濃度:7×1015/cm3)、pボディ層82(Al濃度:5×1016/cm3)、n+層(P濃度:2×1019/cm3)、pコンタクト領域(Al濃度:7×1019/cm3)である。続いて、Ar雰囲気中において、1700℃で30分間熱処理を行なうことにより注入された不純物を活性化した。以上のようにして炭化珪素半導体層100を準備した。
 (工程S2)
 次に図6を参照して、炭化珪素半導体層100を、O2を含む雰囲気中1300℃で1時間熱処理することにより、炭化珪素半導体層100に由来するSiO2膜である厚さ45nmの下地絶縁膜91bを形成した。
 (工程S3)
 続いて、NOを含む雰囲気中1400℃で1時間熱処理することにより、炭化珪素半導体層100と下地絶縁膜91bとの界面に窒素を導入した。炭化珪素半導体層100と下地絶縁膜91bとの界面から10nm以内の領域における窒素濃度をSIMSによって測定したところ、窒素濃度は1×1021/cm3以上であった。
 (工程S4)
 次に図7を参照して下地絶縁膜91b上に厚さ300nmのポリシリコン層92aと厚さ100nmのAl層(電極層92b)とからなるゲート電極92をCVD法によって形成した。
 (工程S5)
 続いて図8を参照して、厚さ5nmのポリシリコン層92aを熱酸化することにより、厚さ10nmの酸化膜91aを形成した。このときの熱酸化は、O2を含む雰囲気中900℃で1時間行なった。
 その後、図9および図1を参照して、層間絶縁膜93、ソース電極94、ソース配線層95およびドレイン電極98を形成することにより、実施例に係る炭化珪素半導体装置Aを得た。なお炭化珪素半導体装置Aにおいて、ゲート絶縁膜91のうちポリシリコン層92aと接する部分は、厚さ40nmの下地絶縁膜91bと厚さ10nmの酸化膜91aとから構成され、合計50nmの厚さを有している。
 <比較例>
 工程S2において厚さ50nmの下地絶縁膜を形成し、工程S3および工程S5を行なわない以外は炭化珪素半導体装置Aと同様にして、比較例に係る炭化珪素半導体装置Bを製造した。すなわち、比較例に係る炭化珪素半導体装置Bでは、ゲート絶縁膜(厚さ50nm)は炭化珪素半導体層に由来する酸化珪素膜のみから構成されており、かつゲート絶縁膜と炭化珪素半導体層との界面に窒素が導入されていない。
 <評価>
 以上のようにして得た炭化珪素半導体装置AおよびBを以下のようにして評価した。
 (ナトリウム濃度の測定)
 まずSIMSによって、各炭化珪素半導体装置のゲート電極92と炭化珪素半導体層100との間における不純物(Na)濃度の分布を測定した。測定結果を図14に示す。
 図14は、炭化珪素半導体装置においてゲート電極92からゲート絶縁膜91を通って炭化珪素半導体層100に至る領域のNa濃度の分布を示すグラフである。図14中、横軸は測定対象位置の基準点からの深さ(たとえば、図1等の縦方向の位置)を示し、縦軸は測定対象位置でのNa濃度(単位:atoms/cm3)を示す対数軸である。ここで、深さが0.15μm以上0.25μm未満の領域はゲート電極92(ポリシリコン層)に相当し、深さが0.25μm以上0.30μm以下の領域はゲート絶縁膜91(酸化膜91aおよび下地絶縁膜91b)に相当し、深さが0.30μmを超える領域は炭化珪素半導体層100に相当する。また図14中の実線は実施例に係る炭化珪素半導体装置Aでの測定結果を示し、点線は比較例に係る炭化珪素半導体装置Bでの測定結果を示している。なお図14中、横軸の一目盛は0.01μm(10nm)である。
 図14に示すように、実施例に係る炭化珪素半導体装置Aでは深さが0.15μm以上0.40μm以下の領域の全域に亘って、Na濃度が1×1016/cm3以下である。特に、ゲート電極92とゲート絶縁膜91(酸化膜91a)との界面(図14中において深さ0.25μmの位置)から±10nm以内の領域におけるNa濃度が1×1016/cm3以下となっている。この理由は、実施例に係る炭化珪素半導体装置Aでは、ポリシリコン層に由来する酸化膜91aが形成されることにより、この界面周辺に不純物が蓄積し難くなったためであると考えられる。
 これに対して、比較例に係る炭化珪素半導体装置Bでは、深さが0.25μmである近傍(すなわちゲート電極とゲート絶縁膜の界面近傍)で、Na濃度は1×1017/cm3を超える大きなピークを示している。これはゲート電極とゲート絶縁膜との界面近傍(特に界面から±10nmの領域)に多量のダングリングボンドが存在しており、該ダングリングボンドに不純物であるNaがトラップされた結果であると考えられる。
 次に、ゲート絶縁膜91と炭化珪素半導体層100との界面について考察する。当該界面は、図14中で深さ0.30μmの位置に相当する。実施例に係る炭化珪素半導体装置Aでは、当該界面から±10nm以内の領域におけるNa濃度が1×1016/cm3以下となっている。これは、ゲート絶縁膜91(下地絶縁膜91b)と炭化珪素半導体層100との界面に窒素が導入されたことにより、当該界面周辺のダングリングボンドが終端化され、不純物(Na)が蓄積し難くなった結果であると考えられる。
 これに対して、比較例に係る炭化珪素半導体装置Bでは、深さ0.30μmの近傍で、Na濃度は1×1017/cm3を超える大きなピークを示している。これはゲート絶縁膜と炭化珪素半導体層との界面近傍(特に界面から±10nmの領域)に多量のダングリングボンドが存在しており、該ダングリングボンドに不純物であるNaがトラップされた結果であると考えられる。
 また以上の結果の中で、特筆すべき点として実施例に係る炭化珪素半導体装置Aでは、ゲート絶縁膜91中(すなわち深さ0.25μm以上0.30μm以下の領域)の全域に亘ってNa濃度が1×1016/cm3以下であることが挙げられる。このようにゲート絶縁膜91中のNa濃度が1×1016/cm3以下となった理由は、上記のように特に不純物が蓄積しやすい部分であるゲート電極92とゲート絶縁膜91との界面、およびゲート絶縁膜91と炭化珪素半導体層100との界面の両方においてNaの蓄積が防止されたことにより、両界面に挟まれる領域においてもNaの存在量が低下したものと考えることができる。
 (耐久試験)
 次に各炭化珪素半導体装置の閾値電圧の安定性を、高温における連続動作試験(耐久試験)によって評価した。すなわち、150℃の環境下において各炭化珪素半導体装置に-10Vのゲート電圧を連続印加し、閾値電圧の変動量を測定した。測定結果を図15に示す。
 図15は、耐久試験におけるゲート電圧の印加時間(単位:hour)と閾値電圧の変動量(単位:V)の関係を示すグラフである。図15中の白抜き丸で表わされる凡例および実線は実施例に係る炭化珪素半導体装置Aでの測定結果を示し、黒丸で表わされる凡例および点線は比較例に係る炭化珪素半導体装置Bでの測定結果を示している。
 図15に示すように、比較例の炭化珪素半導体装置Bでは、試験開始当初から閾値電圧が低下していき、100時間経過後には当初の閾値電圧から4V近くマイナス側へシフトしていた。
 これに対し、実施例に係る炭化珪素半導体装置Aでは、閾値電圧は試験開始からほぼ一定のまま推移し、100時間経過後も変動量はほぼゼロであった。このような結果が得られた理由は、実施例に係る炭化珪素半導体装置Aでは、ゲート電極から炭化珪素半導体層に至る領域において不純物(Na)濃度が1×1016/cm3以下であったからであると考えられる。
 以上の評価結果から、炭化珪素半導体層100と、炭化珪素半導体層100上に形成されたゲート絶縁膜91と、ゲート絶縁膜91上に設けられたゲート電極92と、を備え、ゲート電極92は、少なくともゲート絶縁膜91との界面側にポリシリコン層92aを有し、さらにゲート絶縁膜91は、ゲート絶縁膜91とゲート電極92のポリシリコン層92aとの界面に、ポリシリコン層92aに由来する酸化膜91aを有する実施例に係る炭化珪素半導体装置は、安定した閾値電圧を有する炭化珪素半導体装置であることが確かめられた。
 そして、この実施例に係る炭化珪素半導体装置は、炭化珪素半導体層100と、炭化珪素半導体層100上に形成されたゲート絶縁膜91と、ゲート絶縁膜91上に設けられたゲート電極92と、を備え、ゲート絶縁膜91中のナトリウム濃度が、1×1016/cm3以下であり、以って安定した閾値電圧を有する炭化珪素半導体装置である。
 以上のように本発明の実施形態および実施例について説明を行なったが、上述の実施形態、各変形例および実施例の構成を適宜組み合わせることも当初から予定している。今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 80 単結晶基板、81 nドリフト層(第1の不純物領域)、82 pボディ層(第2の不純物領域)、83 n+層(第3の不純物領域)、84 pコンタクト領域、91 ゲート絶縁膜、91a 酸化膜、91b 下地絶縁膜、92 ゲート電極、92a ポリシリコン層、92b 電極層、93 層間絶縁膜、94 ソース電極、95 ソース配線層、98 ドレイン電極、100 炭化珪素半導体層、201,301,401,501 炭化珪素半導体装置、MP 主面、TR トレンチ、BT 底部、SW 側壁。

Claims (15)

  1.  炭化珪素半導体層と、
     前記炭化珪素半導体層上に形成されたゲート絶縁膜と、
     前記ゲート絶縁膜上に設けられたゲート電極と、を備え、
     前記ゲート電極は、少なくとも前記ゲート絶縁膜との界面側にポリシリコン層を有し、さらに、
     前記ゲート絶縁膜は、前記ゲート絶縁膜と前記ゲート電極の前記ポリシリコン層との界面に、前記ポリシリコン層に由来する酸化膜を有する、炭化珪素半導体装置。
  2.  前記酸化膜の厚さは、50nm以下である、請求項1に記載の炭化珪素半導体装置。
  3.  前記ゲート電極は、前記ポリシリコン層により構成される、請求項1または請求項2に記載の炭化珪素半導体装置。
  4.  前記酸化膜は、前記ゲート電極の側部表面および上部表面上にまで延在する、請求項1~請求項3のいずれか1項に記載の炭化珪素半導体装置。
  5.  前記炭化珪素半導体層は、主面を有し、
     第1の導電型を有する第1の不純物領域と、
     前記第1の不純物領域内に設けられ前記第1の導電型と異なる第2の導電型を有する第2の不純物領域と、
     前記主面の一部を構成し、前記第2の不純物領域内に設けられ前記第1の導電型を有する第3の不純物領域と、を含み、さらに
     前記主面には、前記第2の不純物領域および前記第3の不純物領域が側壁に表出したトレンチが設けられており、
     前記ゲート絶縁膜は、前記側壁上に形成されている、請求項1~請求項4のいずれか1項に記載の炭化珪素半導体装置。
  6.  前記炭化珪素半導体層は、主面を有し、
     前記主面の一部を構成し、第1の導電型を有する第1の不純物領域と、
     前記主面の一部を構成し、前記第1の不純物領域内に設けられ前記第1の導電型と異なる第2の導電型を有する第2の不純物領域と、
     前記主面の一部を構成し、前記第2の不純物領域内に設けられ前記第1の導電型を有する第3の不純物領域と、を含み、さらに
     前記ゲート絶縁膜は、前記第2の不純物領域により構成される前記主面上に形成されている、請求項1~請求項4のいずれか1項に記載の炭化珪素半導体装置。
  7.  前記ゲート電極と前記ゲート絶縁膜との界面から10nm以内の領域におけるナトリウム濃度が、1×1016/cm3以下である、請求項1~請求項6のいずれか1項に記載の炭化珪素半導体装置。
  8.  前記炭化珪素半導体層と前記ゲート絶縁膜との界面から10nm以内の領域における窒素濃度が、1×1021/cm3以上である、請求項1~請求項7のいずれか1項に記載の炭化珪素半導体装置。
  9.  炭化珪素半導体層と、
     前記炭化珪素半導体層上に形成されたゲート絶縁膜と、
     前記ゲート絶縁膜上に設けられたゲート電極と、を備え、
     前記ゲート絶縁膜中のナトリウム濃度が、1×1016/cm3以下である、炭化珪素半導体装置。
  10.  前記ゲート電極と前記ゲート絶縁膜との界面から10nm以内の領域におけるナトリウム濃度が、1×1016/cm3以下である、請求項9に記載の炭化珪素半導体装置。
  11.  前記炭化珪素半導体層は、主面を有し、
     第1の導電型を有する第1の不純物領域と、
     前記第1の不純物領域内に設けられ前記第1の導電型と異なる第2の導電型を有する第2の不純物領域と、
     前記主面の一部を構成し、前記第2の不純物領域内に設けられ前記第1の導電型を有する第3の不純物領域と、を含み、さらに
     前記主面には、前記第2の不純物領域および前記第3の不純物領域が側壁に表出したトレンチが設けられており、
     前記ゲート絶縁膜は、前記側壁上に形成されている、請求項9または請求項10に記載の炭化珪素半導体装置。
  12.  前記炭化珪素半導体層は、主面を有し、
     前記主面の一部を構成し、第1の導電型を有する第1の不純物領域と、
     前記主面の一部を構成し、前記第1の不純物領域内に設けられ前記第1の導電型と異なる第2の導電型を有する第2の不純物領域と、
     前記主面の一部を構成し、前記第2の不純物領域内に設けられ前記第1の導電型を有する第3の不純物領域と、を含み、さらに
     前記ゲート絶縁膜は、前記第2の不純物領域により構成される前記主面上に形成されている、請求項9または請求項10に記載の炭化珪素半導体装置。
  13.  炭化珪素半導体層を準備する工程と、
     前記炭化珪素半導体層上にゲート絶縁膜を構成する下地絶縁膜を形成する工程と、
     前記下地絶縁膜上にゲート電極を設ける工程と、
     前記ゲート電極を酸素含有雰囲気中で熱処理することにより、前記ゲート電極に由来し、前記ゲート絶縁膜を構成する酸化膜を、少なくとも前記下地絶縁膜と前記ゲート電極との界面に形成する工程と、を備える、炭化珪素半導体装置の製造方法。
  14.  前記ゲート電極を設ける工程において、前記ゲート電極は、少なくとも前記ゲート絶縁膜との界面にポリシリコン層を有するように設けられる、請求項13に記載の炭化珪素半導体装置の製造方法。
  15.  前記炭化珪素半導体層と前記下地絶縁膜との界面に窒素およびリンの少なくともいずれかを導入する工程を、さらに備える、請求項13または請求項14に記載の炭化珪素半導体装置の製造方法。
PCT/JP2014/070557 2013-09-25 2014-08-05 炭化珪素半導体装置およびその製造方法 WO2015045626A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/023,987 US9741799B2 (en) 2013-09-25 2014-08-05 Silicon carbide semiconductor device and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-198198 2013-09-25
JP2013198198A JP6237046B2 (ja) 2013-09-25 2013-09-25 炭化珪素半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
WO2015045626A1 true WO2015045626A1 (ja) 2015-04-02

Family

ID=52742782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070557 WO2015045626A1 (ja) 2013-09-25 2014-08-05 炭化珪素半導体装置およびその製造方法

Country Status (3)

Country Link
US (1) US9741799B2 (ja)
JP (1) JP6237046B2 (ja)
WO (1) WO2015045626A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020150242A (ja) * 2019-03-15 2020-09-17 株式会社東芝 半導体装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9728608B2 (en) * 2015-03-24 2017-08-08 Kabushiki Kaisha Toshiba Semiconductor device, inverter circuit, and vehicle
JP2016213419A (ja) 2015-05-13 2016-12-15 住友電気工業株式会社 炭化珪素半導体装置
JP6602263B2 (ja) 2016-05-30 2019-11-06 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP7013685B2 (ja) * 2017-06-08 2022-02-01 富士電機株式会社 炭化珪素半導体装置の選別方法
JP7095500B2 (ja) * 2018-08-31 2022-07-05 株式会社デンソー スイッチング素子
JP7047734B2 (ja) * 2018-12-06 2022-04-05 株式会社デンソー トレンチゲート型半導体装置の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224277A (ja) * 2002-01-31 2003-08-08 Denso Corp 炭化珪素半導体装置とその製造方法
JP2003243653A (ja) * 2002-02-19 2003-08-29 Nissan Motor Co Ltd 炭化珪素半導体装置の製造方法
JP2006173642A (ja) * 2000-12-05 2006-06-29 Seiko Instruments Inc 半導体装置とその製造方法
JP2009253072A (ja) * 2008-04-08 2009-10-29 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2010186905A (ja) * 2009-02-13 2010-08-26 Kyushu Institute Of Technology 絶縁膜形成方法、及び該方法により得られた酸化膜をゲート絶縁膜として用いる半導体装置
JP2011165941A (ja) * 2010-02-10 2011-08-25 Toshiba Corp 半導体装置および半導体装置の製造方法
JP2012054505A (ja) * 2010-09-03 2012-03-15 Mitsubishi Electric Corp 炭化珪素半導体装置およびその製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5907188A (en) * 1995-08-25 1999-05-25 Kabushiki Kaisha Toshiba Semiconductor device with conductive oxidation preventing film and method for manufacturing the same
JPH10223900A (ja) * 1996-12-03 1998-08-21 Toshiba Corp 半導体装置及び半導体装置の製造方法
JP2000058839A (ja) * 1998-08-05 2000-02-25 Semiconductor Energy Lab Co Ltd 半導体素子からなる半導体回路を備えた半導体装置およびその作製方法
US7402467B1 (en) * 1999-03-26 2008-07-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6596593B2 (en) * 2000-12-05 2003-07-22 Seiko Instruments Inc. Method of manufacturing semiconductor device employing oxygen implantation
JP3559971B2 (ja) * 2001-12-11 2004-09-02 日産自動車株式会社 炭化珪素半導体装置およびその製造方法
JP4742545B2 (ja) * 2004-09-09 2011-08-10 日産自動車株式会社 炭化珪素半導体装置の製造方法
JP2007287992A (ja) * 2006-04-18 2007-11-01 Fuji Electric Holdings Co Ltd 炭化珪素半導体装置およびその製造方法
ATE531076T1 (de) * 2006-09-01 2011-11-15 Nxp Bv Verfahren zur verbesserung der mobilität einer inversionsschicht in einem siliciumcarbid-mosfet
US20080108190A1 (en) * 2006-11-06 2008-05-08 General Electric Company SiC MOSFETs and self-aligned fabrication methods thereof
JP2008244456A (ja) * 2007-02-28 2008-10-09 Denso Corp 炭化珪素半導体装置およびその製造方法
JP4858791B2 (ja) * 2009-05-22 2012-01-18 住友電気工業株式会社 半導体装置およびその製造方法
JP5610492B2 (ja) * 2009-12-16 2014-10-22 国立大学法人 奈良先端科学技術大学院大学 SiC半導体素子およびその作製方法
US8450750B2 (en) * 2010-01-27 2013-05-28 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method of manufacturing thereof
JP5668576B2 (ja) * 2011-04-01 2015-02-12 住友電気工業株式会社 炭化珪素半導体装置
US9984894B2 (en) * 2011-08-03 2018-05-29 Cree, Inc. Forming SiC MOSFETs with high channel mobility by treating the oxide interface with cesium ions
JP5811829B2 (ja) * 2011-12-22 2015-11-11 住友電気工業株式会社 半導体装置の製造方法
US9087894B2 (en) * 2012-02-10 2015-07-21 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device and method of manufacturing the device
KR20150031122A (ko) * 2013-09-13 2015-03-23 현대자동차주식회사 반도체 소자의 제조 방법
US20150236151A1 (en) * 2014-02-18 2015-08-20 General Electric Company Silicon carbide semiconductor devices, and methods for manufacturing thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173642A (ja) * 2000-12-05 2006-06-29 Seiko Instruments Inc 半導体装置とその製造方法
JP2003224277A (ja) * 2002-01-31 2003-08-08 Denso Corp 炭化珪素半導体装置とその製造方法
JP2003243653A (ja) * 2002-02-19 2003-08-29 Nissan Motor Co Ltd 炭化珪素半導体装置の製造方法
JP2009253072A (ja) * 2008-04-08 2009-10-29 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2010186905A (ja) * 2009-02-13 2010-08-26 Kyushu Institute Of Technology 絶縁膜形成方法、及び該方法により得られた酸化膜をゲート絶縁膜として用いる半導体装置
JP2011165941A (ja) * 2010-02-10 2011-08-25 Toshiba Corp 半導体装置および半導体装置の製造方法
JP2012054505A (ja) * 2010-09-03 2012-03-15 Mitsubishi Electric Corp 炭化珪素半導体装置およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020150242A (ja) * 2019-03-15 2020-09-17 株式会社東芝 半導体装置
JP7204547B2 (ja) 2019-03-15 2023-01-16 株式会社東芝 半導体装置

Also Published As

Publication number Publication date
US20160218188A1 (en) 2016-07-28
US9741799B2 (en) 2017-08-22
JP2015065288A (ja) 2015-04-09
JP6237046B2 (ja) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6237046B2 (ja) 炭化珪素半導体装置およびその製造方法
CN205452292U (zh) 隧穿场效应晶体管
US9755064B2 (en) Semiconductor device and method for manufacturing the same
US9362121B2 (en) Method of manufacturing a silicon carbide semiconductor device
JP6025007B2 (ja) 炭化ケイ素半導体装置の製造方法
JP5920684B2 (ja) 半導体装置
US8941120B2 (en) Semiconductor device and method for manufacturing the same
JP6017127B2 (ja) 炭化珪素半導体装置
WO2011092808A1 (ja) 炭化ケイ素半導体装置およびその製造方法
WO2012165008A1 (ja) 炭化珪素半導体装置およびその製造方法
US20160126347A1 (en) Silicon carbide semiconductor device
US9799515B2 (en) Silicon carbide semiconductor device and method of manufacturing the same
WO2014112214A1 (ja) 炭化珪素半導体装置
WO2014024568A1 (ja) 炭化珪素半導体装置およびその製造方法
JP6135383B2 (ja) 炭化珪素半導体装置
US9960040B2 (en) Manufacturing method of silicon carbide semiconductor device
CN102150271A (zh) Mosfet和制造mosfet的方法
JP2018206872A (ja) 半導体装置
US9647072B2 (en) Silicon carbide semiconductor device
US9728633B2 (en) Silicon carbide semiconductor device and method for manufacturing the same
WO2015049925A1 (ja) 炭化珪素半導体装置およびその製造方法
US20190319102A1 (en) Semiconductor device
JP2014033031A (ja) 炭化珪素半導体装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848427

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15023987

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848427

Country of ref document: EP

Kind code of ref document: A1