WO2015037718A1 - 金属/樹脂複合構造体 - Google Patents

金属/樹脂複合構造体 Download PDF

Info

Publication number
WO2015037718A1
WO2015037718A1 PCT/JP2014/074287 JP2014074287W WO2015037718A1 WO 2015037718 A1 WO2015037718 A1 WO 2015037718A1 JP 2014074287 W JP2014074287 W JP 2014074287W WO 2015037718 A1 WO2015037718 A1 WO 2015037718A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
resin
composite structure
metal member
resin composite
Prior art date
Application number
PCT/JP2014/074287
Other languages
English (en)
French (fr)
Inventor
浩士 奥村
正毅 三隅
窪田 俊策
井上 悟郎
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to EP14843821.1A priority Critical patent/EP3045308B1/en
Priority to KR1020167007757A priority patent/KR101793851B1/ko
Priority to US15/021,650 priority patent/US11020936B2/en
Priority to JP2015536650A priority patent/JP6074513B2/ja
Priority to CN201480049459.9A priority patent/CN105517795B/zh
Publication of WO2015037718A1 publication Critical patent/WO2015037718A1/ja
Priority to US17/241,173 priority patent/US20210245474A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/06Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for producing matt surfaces, e.g. on plastic materials, on glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/263Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers

Definitions

  • the present invention relates to a metal / resin composite structure.
  • Resin is used as an alternative to metal from the viewpoint of weight reduction of various parts.
  • a technique capable of joining and integrating a metal molded body and a resin molded body with an industrially advantageous method with high bonding strength has not been put into practical use.
  • Patent Documents 1 to 5 As a technology for joining and integrating metal moldings and resin moldings, engineering plastics with polar groups that have affinity with the metal member are joined to the metal member surface with fine irregularities (For example, Patent Documents 1 to 5).
  • Patent Documents 1 to 3 an aluminum alloy is immersed in a hydrazine aqueous solution to form a recess having a diameter of 30 to 300 nm on the surface, and then a polybutylene terephthalate resin (hereinafter referred to as “PBT”) is formed on the treated surface. )) or a technique of joining a polyphenylene sulfide resin (hereinafter referred to as “PPS”).
  • PBT polybutylene terephthalate resin
  • PPS polyphenylene sulfide resin
  • Patent Document 4 an aluminum material is anodized in an electrolytic bath of phosphoric acid or sodium hydroxide to form an anodized film having a recess having a diameter of 25 nm or more on the surface of the aluminum material, A technique for joining an engineering plastic to a processing surface is disclosed.
  • Patent Document 5 discloses a technique in which fine irregularities or holes are formed in an aluminum alloy with a specific etching agent, and polyamide 6 resin, polyamide 6 resin, and PPS are injected and bonded to the holes.
  • Patent Documents 1 to 5 engineering plastics having polar groups are used as resin members.
  • non-polar polyolefin resins that have no affinity for metal members examples of applying the above technology include those using acid-modified polyolefin resins in which polar groups are introduced into polyolefin resins (patents) Reference 6).
  • the joining is performed by a laminating method or a pressing method by melt extrusion. It was.
  • the laminating method, the pressing method, etc. have a low degree of freedom in applicable shapes, and the acid-modified polyolefin-based resin adheres to places other than the places where bonding is desired. There was a drawback that the appearance could not be utilized.
  • the present invention has been made in view of the above circumstances, and is a metal / resin composite structure capable of directly bonding a metal member and a resin member and having excellent bonding strength between the metal member and the resin member. Is to provide.
  • the present inventors include a resin containing a nonpolar resin having no affinity for a metal member typified by a polyolefin-based resin in a metal member whose metal surface typified by Patent Documents 1 to 5 is roughened.
  • Various studies were made on techniques for directly joining resin members made of the composition. However, even if the roughened metal member and the resin member made of nonpolar resin are to be joined, the interface between the metal member and the resin member is peeled off because the joining strength is weak, and the joining strength is high. A composite structure has not yet been formed.
  • the present invention involves modification of the resin even when a resin composition containing a non-polar resin having no affinity for a metal member, such as a polyolefin resin, is used as the resin member.
  • the present invention provides a metal / resin composite structure that can be directly bonded and has excellent bonding strength between a metal member and a resin member.
  • the present inventors diligently studied to solve the above problems. As a result, a metal / resin composite structure having excellent bonding strength between the resin member and the metal member can be obtained by directly joining the metal member having the uneven shape with two or more different characteristics and the resin member.
  • the headline and the present invention were completed.
  • the present invention relates to the following [1] to [7].
  • [1] In a metal / resin composite structure formed by joining a metal member and a resin member, The metal / resin composite structure which has the uneven
  • the average length (RSm) of the contour curve element is 150 ⁇ m or more and 1500 ⁇ m or less, and the maximum height roughness (Rz) is 170 ⁇ m or more and 800 ⁇ m or less.
  • the average length (RSm) of the contour curve element is 100 nm or more.
  • the metal member is made of a metal material containing one or more metals selected from iron, stainless steel, aluminum, aluminum alloy, magnesium, magnesium alloy, copper, copper alloy, titanium and titanium alloy, The metal / resin composite structure according to any one of [1] to [3].
  • the thermoplastic resin (A) is a polyolefin resin.
  • the resin composition includes (B) a filler, and the content of the (B) filler is 1 part by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the (A) thermoplastic resin.
  • a concavo-convex shape satisfying the above characteristic (ii) is further formed on the surface of the metal member by a chemical etching method to be immersed, and then the metal member is made of at least one selected from hydrazine hydrate, ammonia and a water-soluble amine compound.
  • the resin member is made of a resin composition containing a non-polar resin having no affinity with a metal member, typified by polyolefin resin. Even if it exists, the metal / resin composite structure by which the metal member and the resin member were joined by high intensity
  • FIG. 1 It is the external view which showed typically an example of the structure of the metal / resin composite structure which concerns on this embodiment. It is the block diagram which showed typically an example of the process which manufactures the metal / resin composite structure which concerns on this embodiment. It is a figure which shows the electron micrograph ((a) magnification 250 times, (b) magnification 100000 times, (c) magnification 300000 times) of the metal member surface prepared by the preparation example 1. FIG. It is a figure which shows the electron micrograph ((a) magnification 250 times, (b) magnification 100000 times, (c) magnification 300000 times) of the metal member surface prepared in the preparation example 4. FIG.
  • FIG. 1 It is a figure which shows the electron micrograph ((a) magnification 100000 times, (b) magnification 300000 times) of the metal member surface prepared in the preparation example 5.
  • FIG. It is a figure which shows the electron micrograph (magnification 100000 times) of the joining surface resin side of the metal / resin composite structure produced in Example 1.
  • FIG. It is a figure which shows the electron micrograph (magnification 100000 times) of the joining surface resin side of the metal / resin composite structure produced in the comparative example 1.
  • FIG. 1 is an external view schematically showing an example of the structure of the metal / resin composite structure 106 according to the present embodiment.
  • the metal / resin composite structure 106 is obtained by joining a metal member 103 and a resin member 105 to each other, and joining the metal member 103 and the resin member 105.
  • the joining surface 104 of the metal member 103 with the resin member 105 has an uneven shape that satisfies the following characteristics (i) and (ii).
  • the average length (RSm) of the contour curve element is 150 ⁇ m or more and 1500 ⁇ m or less, and the maximum height roughness (Rz) is 170 ⁇ m or more and 800 ⁇ m or less.
  • the average length (RSm) of the contour curve element is 100 nm or more. 10000 nm or less, maximum height roughness (Rz) is 100 nm or more and 10000 nm or less
  • Metal type of metal member As a kind of metal which comprises the metal member 103, 1 type, or 2 or more types selected from iron, stainless steel, aluminum, aluminum alloy, magnesium, magnesium alloy, copper, copper alloy, titanium, and titanium alloy It is desirable that the metal material includes a metal.
  • the metal constituting the metal member 103 is preferably iron, stainless steel, aluminum alloy, magnesium alloy, copper alloy, or titanium alloy, and more preferably stainless steel, aluminum alloy, magnesium alloy, or copper alloy. is there.
  • aluminum (aluminum simple substance) and aluminum alloy are preferable from the viewpoint of light weight and high strength, and aluminum alloy is more preferable.
  • the aluminum alloy alloy numbers 1050, 1100, 2014, 2024, 3003, 5052, and 7075 defined in JIS H4000 are preferably used.
  • the shape of the metal member 103 is not particularly limited as long as it can be joined to the resin member 105.
  • the metal member 103 can have a flat plate shape, a curved plate shape, a rod shape, a cylindrical shape, a lump shape, or the like.
  • the structure which consists of these combination may be sufficient.
  • the shape of the joint surface 104 to be joined to the resin member 105 is not particularly limited, and examples thereof include a flat surface and a curved surface.
  • the metal member 103 constituting the metal / resin composite structure 106 according to the present embodiment is characterized by having an uneven shape having two or more different characteristics on the bonding surface 104 side with the resin member 105.
  • the characteristic is expressed by the average length (RSm) and the maximum height roughness (Rz) of the contour curve element, and the surface 110 of the metal member 103 has at least the following (i) and (ii) ) Has an average length (RSm) and a maximum height roughness (Rz) of contour curve elements in a range represented by.
  • the average length (RSm) and the maximum height roughness (Rz) of the contour curve element are measured by the method defined in JIS B 0633-2001.
  • the average length (RSm) of the contour curve element is 150 ⁇ m or more and 1500 ⁇ m or less, and the maximum height roughness (Rz) is 170 ⁇ m or more and 800 ⁇ m or less.
  • the average length (RSm) of the contour curve element is 100 nm or more. 10,000 nm or less, maximum height roughness (Rz) is 100 nm or more and 10,000 nm or less
  • Rz maximum height roughness
  • the average length (RSm) of the contour curve elements is 150 ⁇ m or more and 1500 ⁇ m or less, preferably 175 ⁇ m.
  • a concavo-convex shape having a height of 1300 ⁇ m or less, more preferably 600 ⁇ m or more and 1000 ⁇ m or less, and a maximum height roughness (Rz) of 170 ⁇ m or more and 800 ⁇ m or less, preferably 200 ⁇ m or more and 600 ⁇ m or less, more preferably 300 ⁇ m or more and 500 ⁇ m or less.
  • a method for forming the concavo-convex shape physical treatment such as blasting or knurling may be performed on the surface 110 of the metal member 103, and blasting is preferable.
  • the blasting process there are a shot blasting process in which an impeller is used to project a blasting material using centrifugal force of an impeller, and an air blasting process in which an air compressor is used to project a blasting material with compressed air.
  • the surface 110 of the metal member 103 with an uneven shape having the above characteristics. Adjustment of the average length (RSm) and maximum height roughness (Rz) of the contour curve element can be achieved by adjusting the rotation speed of the impeller in the case of shot blasting, and the compressed air in the case of air blasting. This can be achieved by adjusting the injection pressure.
  • the air-blast treatment since the spray pressure of the blast material is higher than that in the shot blast treatment, a more uniform uneven shape can be formed. Therefore, the air-blast treatment is preferable as the blast treatment method.
  • blast material examples include silica sand, alumina, aluminum cut wire, steel grid, and steel shot, but they can be used according to the purpose.
  • the bonding with the resin it is preferable to use silica sand from the viewpoint of higher anchor effect, cost and efficiency.
  • the average length (RSm) of the contour curve elements is 100 nm or more and 10,000 nm or less, preferably 300 nm.
  • the concavo-convex shape is further formed on the surface 110 on which the concavo-convex shape having the average length (RSm) and the maximum height roughness (Rz) of the contour curve element indicated by the characteristic (i) is formed. It is characterized by being.
  • Examples of the method for forming the concavo-convex shape include a chemical etching method in which a metal is immersed in an erodible aqueous solution or an erodible suspension, a method using an anodic oxidation method, and the like. These methods can be selectively used depending on the metal type of the metal member 103 to be used and the uneven shape formed within the range of the average length (RSm) and the maximum height roughness (Rz) of the contour curve element. .
  • a chemical etching method in which the substrate is immersed in an inorganic base aqueous solution such as NaOH and / or an inorganic acid aqueous solution such as HCl or HNO 3 is preferably employed as an erodant.
  • the average length (RSm) of the contour curve element according to the characteristic (ii) and Ultrafine pores are formed in accordance with the method of immersing metal in an erodible aqueous solution or erodible suspension or the method of anodizing, which is performed when forming an uneven shape with the maximum height roughness (Rz).
  • one kind selected from hydrated hydrazine, ammonia, and a water-soluble amine compound as disclosed in, for example, International Publication No. 2009/31632 Pamphlet Ultrafine pores may be positively formed by immersing in the above aqueous solution.
  • the diameter of the ultrafine hole is 5 nm to 100 nm, preferably 10 nm to 70 nm, and more preferably 15 nm to 50 nm.
  • the depth of the hole is 10 nm or more and 500 nm or less, preferably 15 nm or more and 300 nm or less, and more preferably 20 nm or more and 70 nm or less.
  • the diameter of the ultrafine hole and the depth of the hole can be measured as follows. First, regarding the diameter, the surface 110 of the metal member 103 is photographed by a scanning electron microscope (SEM). From the observation image, arbitrarily select 50 ultrafine holes and measure their diameters. The sum of all the diameters divided by 50 is taken as the diameter of the ultrafine hole.
  • TEM transmission electron microscope
  • the resin composition constituting the resin member 105 described later can enter the holes, and the metal member 103 and the resin member Since a physical resistance force (anchor effect) is developed between the first layer 105 and the second layer 105, the bonding strength can be expected to be improved.
  • the surface 110 of the metal member 103 is formed into a concavo-convex shape having the characteristic (i) by physical treatment such as blast treatment, and then is immersed in an inorganic base aqueous solution and / or an inorganic acid aqueous solution.
  • a method of forming a concavo-convex shape having the characteristic (ii) by a method and then forming an ultrafine concavo-convex shape by an aqueous solution containing one or more selected from hydrated hydrazine, ammonia, and a water-soluble amine compound is preferably used. .
  • the uneven shape having two or more different characteristics formed on the bonding surface 104 side of the metal member 103 with the resin member 105 is a method of forming each of the above characteristics (i) and (ii). Can be formed.
  • the concavo-convex shape as described above, first, the corresponding concavo-convex shape is formed by the method of forming the characteristic (i), and then the concavo-convex corresponding by the method of forming the characteristic (ii). Form a shape. If the method of forming the characteristics of (i) and (ii) is performed in the reverse order, the one that was formed first and that has a relatively fine concavo-convex shape will be destroyed by subsequent processing. The desired shape may not be formed.
  • the method for forming the characteristic (ii) is applied to the metal member 103 following the method for forming the characteristic (i), so that In addition, a relatively small uneven shape is formed. Therefore, in the joining with the resin member 105 to be described later, a higher anchor effect is exhibited as compared with the prior art, and as a result, it is considered that the joining strength between the metal member 103 and the resin member 105 can be increased. .
  • the metal member 103 was processed by the above method after being processed into the above-described predetermined shape by metal removal such as cutting, pressing, etc., metal processing, punching, cutting, polishing, electric discharge processing, etc. Those are preferred. In short, it is preferable to use a material processed into a necessary shape by various processing methods. It is preferable that the metal member 103 processed into a necessary shape is not oxidized or hydroxylated on the surface to be bonded to the resin member 105 described later, and the presence of rust that is an oxide film on the surface 110 is allowed to stand for a long period of time. What is obvious is preferably removed by polishing, chemical treatment or the like.
  • a primer layer may be formed on the surface 110 of the metal member 103 that has been treated by the above method.
  • bonding with the resin member 105 described later is formed with high strength.
  • a primer layer can be formed.
  • the resin member 105 is made of a resin composition containing a polyolefin-based resin, a metal / resin composite structure 106 with even higher bonding strength is obtained by forming a primer layer on the surface 110 of the metal member 103. be able to.
  • the material which comprises a primer layer is not specifically limited, Usually, it consists of a primer resin material containing a resin component.
  • the primer resin material is not particularly limited, and known materials can be used. Specific examples include known polyolefin-based primers, epoxy-based primers, urethane-based primers, and the like.
  • the method for forming the primer layer is not particularly limited.
  • the primer layer can be formed by applying a solution of the primer resin material or an emulsion of the primer resin material to the metal member 103 subjected to the surface treatment.
  • the solvent used for preparing the solution include toluene, methyl ethyl ketone (MEK) dimethylformamide (DMF), and the like.
  • the medium for the emulsion include an aliphatic hydrocarbon medium and water.
  • the resin member 105 constituting the metal / resin composite structure 106 according to this embodiment is made of a resin composition containing (A) a thermoplastic resin and (B) a filler as required. Furthermore, this resin composition contains another compounding agent as needed. For convenience, it is described that the resin member 105 is made of a resin composition even when the resin member 105 is made of only the thermoplastic resin (A).
  • thermoplastic resin (A) As the thermoplastic resin (A) as a raw material of the resin member 105 in the present embodiment, polyamide resins such as polyamide 6, polyamide 66, and aromatic polyamide resin; polyolefin resins such as polyethylene resin and polypropylene resin; polyethylene terephthalate Resins, polyester resins such as polybutylene terephthalate resin, acrylonitrile / butadiene / styrene copolymer resins, polycarbonate resins, polymethyl methacrylate resins, and other amorphous resins; other polyphenylene sulfide resins, polyphenylene ether resins, polyether ether ketones Examples thereof include resins, polyimide resins, and combinations of these two or more.
  • polyamide resins such as polyamide 6, polyamide 66, and aromatic polyamide resin
  • polyolefin resins such as polyethylene resin and polypropylene resin
  • polyethylene terephthalate Resins polyester resins such as polybut
  • polyamide resins polyolefin resins, amorphous resins, polyester resins, acrylic / butadiene / styrene copolymer resins, polycarbonate resins, and polyphenylene sulfide resins are preferable. More preferred are polyamide resins, polyolefin resins, polyester resins, acrylic / butadiene / styrene copolymer resins, polycarbonate resins, and polyphenylene sulfide resins. As the polyolefin resin, a polypropylene resin is preferably used.
  • thermoplastic resins may be used individually by 1 type, and may be used in combination of 2 or more types.
  • polystyrene-based resin a polymer obtained by polymerizing olefin can be used without any particular limitation.
  • examples of the olefin constituting the polyolefin-based resin include ethylene, ⁇ -olefin, and cyclic olefin.
  • Examples of the ⁇ -olefin include linear or branched ⁇ -olefins having 3 to 30 carbon atoms, preferably 3 to 20 carbon atoms. More specifically, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-octene, Decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene and the like can be mentioned.
  • cyclic olefins examples include cyclic olefins having 3 to 30 carbon atoms, and preferably 3 to 20 carbon atoms. More specifically, cyclopentene, cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, 2-methyl-1,4,5,8-dimethano-1,2,3,4,4a, 5 , 8,8a-octahydronaphthalene and the like.
  • the olefin constituting the polyolefin resin is preferably ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1- Examples include pentene. Of these, ethylene, propylene, 1-butene, 1-hexene and 4-methyl-1-pentene are more preferable, and ethylene or propylene is more preferable.
  • the polyolefin resin may be obtained by polymerizing the above-mentioned olefin alone, or may be obtained by random copolymerization, block copolymerization, or graft copolymerization in combination of two or more. .
  • polyolefin resin may be a linear resin or one having a branched structure introduced therein.
  • the bonding with the metal member 103 is firmly formed.
  • the resin member 105 is made of the above-described resin composition containing the thermoplastic resin (A)
  • the bonding with the metal member 103 is firmly formed.
  • the resin member 105 is made of a resin composition containing a polyolefin resin
  • the resin member 105 is made of a resin composition containing such a polyolefin-based resin
  • the bonding strength with the metal member 103 has been dramatically improved, so that the utility value in the industry is very high. . Therefore, it is one of preferred embodiments to select a polyolefin-based resin as the (A) thermoplastic resin.
  • the melt flow rate (MFR) and density of the thermoplastic resin can be appropriately selected and used depending on the performance required for the metal / resin composite structure 106.
  • the MFR measured under conditions of 230 ° C. and 2.16 kg load in accordance with ASTM D1238 of the polypropylene resin is preferably 0.1 g / 10 min or more. 800 g / 10 min or less, more preferably 0.5 g / 10 min or more and 100 g / 10 min or less, and further preferably 1.0 g / 10 min or more and 20 g / 10 min or less.
  • the MFR measured under the conditions of 260 ° C. and 2.16 kg load of the polyamide resin is preferably 1 g / 10 min or more and 200 g. / 10 min or less, more preferably 1 g / 10 min or more and 150 g / 10 min or less, and further preferably 1 g / 10 min or more and 100 g / 10 min or less.
  • the resin composition constituting the resin member 105 in the present embodiment includes (A) a thermoplastic resin as an essential component, and may further include (B) a filler in accordance with a required application. Good.
  • one or more kinds can be selected from the group consisting of glass fiber, carbon fiber, carbon particle, clay, talc, silica, mineral, and cellulose fiber.
  • they are 1 type, or 2 or more types selected from glass fiber, carbon fiber, talc, and a mineral.
  • the shape of the filler may be any shape such as fiber, particle, or plate.
  • a resin composition contains (B) filler
  • the content becomes with respect to 100 mass parts of said (A) thermoplastic resins, Preferably it is 1 mass part or more and 100 mass parts or less, More preferably 5 parts by mass or more and 90 parts by mass or less, and particularly preferably 10 parts by mass or more and 80 parts by mass or less.
  • the resin member 105 may include a compounding agent for the purpose of imparting individual functions.
  • Examples of the above compounding agents include heat stabilizers, antioxidants, pigments, weathering agents, flame retardants, plasticizers, dispersants, lubricants, mold release agents, and antistatic agents.
  • the resin composition comprises (A) a thermoplastic resin, (B) a filler as required, and other compounding agents as needed, a Banbury mixer, a single screw extruder, a twin screw extruder, a high speed It can be obtained by mixing or melt-mixing using a mixing device such as a twin screw extruder.
  • the metal / resin composite structure 106 includes a metal member 103 and a resin member 105.
  • the resin composition constituting the resin member 105 is formed on the uneven shape portion having two or more different characteristics formed on the surface 110 of the metal member 103. It is obtained by intruding and joining a metal and a resin to form a metal-resin interface.
  • the reason why the high bonding strength with the resin member 105 is expressed by forming the above-described uneven shape having two or more different characteristics on the surface 110 of the metal member 103 is not clear, but (ii) It is considered that the uneven shape and the ultra-porosity based on the above characteristics act as a vent effect and air escape occurs. That is, when only the concavo-convex shape based on the characteristic (i) is used to join the resin composition constituting the resin member based on the metal / resin composite structure manufacturing method described later, the metal member and the resin member It is assumed that the resin composition cannot penetrate to the deep part of the concave portion due to the presence of the air layer between.
  • the manufacturing method of the metal / resin composite structure 106 of the present embodiment is not particularly limited, while the resin composition is molded into the desired shape of the resin member 105 on the metal member 103 having the above characteristics. It is obtained by bonding.
  • the molding method of the resin member 105 includes injection molding, extrusion molding, heat press molding, compression molding, transfer molding molding, casting molding, laser welding molding, reaction injection molding (RIM molding), rim molding (LIM molding), and thermal spraying.
  • a resin molding method such as molding can be employed.
  • the injection molding method is preferable, and specifically, it is preferable to manufacture by the injection molding method in which the metal member 103 is inserted into the cavity portion of the injection mold and the resin composition is injected into the mold.
  • steps (1) to (3) are included.
  • Step of preparing the resin composition (2) Step of installing the metal member 103 in a mold for injection molding (3) The above metal mold so that the resin composition is in contact with at least a part of the metal member 103 Steps for injection molding in a mold
  • Each step will be described below.
  • thermoplastic resin thermoplastic resin
  • filler as necessary, and other compounding agents as needed
  • Banbury It can be obtained by mixing or melt mixing with a mixing device such as a mixer, a single screw extruder, a twin screw extruder, or a high speed twin screw extruder.
  • a mold for injection molding is prepared, the mold is opened, and the metal member 103 is installed in a part thereof. Thereafter, the mold is closed, and the resin composition obtained in the step (1) is injected into the mold so that at least a part of the resin composition is in contact with the surface of the metal member 103 where the concave shape is formed. Solidify. Thereafter, the metal / resin composite structure 106 can be obtained by opening the mold and releasing the mold.
  • injection foam molding by the steps (1) to (3), injection foam molding, and high-speed heat cycle molding (RHCM, heat & cool molding) for rapidly heating and cooling the mold may be used in combination.
  • Injection foam molding methods include adding a chemical foaming agent to the resin, injecting nitrogen gas or carbon dioxide directly into the cylinder of the injection molding machine, and injection molding machine in a supercritical state of nitrogen gas or carbon dioxide. Examples include a MuCell injection foaming method for injecting into the cylinder part of the above.
  • the metal / resin composite structure 106 in which the resin member 105 is a foam can be obtained.
  • a counter pressure can be used as a mold control method, or a core back can be used depending on the shape of a molded product.
  • High-speed heat cycle molding can be carried out by connecting a rapid heating / cooling device to a mold.
  • the rapid heating / cooling apparatus may be a generally used system.
  • any one of a steam type, a pressurized hot water type, a hot water type, a hot oil type, an electric heater type, an electromagnetic induction overheating type, or a combination of them may be used.
  • ⁇ As a cooling method one of a cold water type and a cold oil type or a combination thereof may be used.
  • the injection mold is heated to a temperature of 100 ° C. to 250 ° C., and after the injection of the resin composition is completed, the injection mold is cooled. desirable.
  • the temperature at which the mold is heated has a preferable range depending on the thermoplastic resin (A) constituting the resin composition. If the resin is a crystalline resin and a melting point of less than 200 ° C, it is preferably 100 ° C or higher and 150 ° C or lower, In the case of a crystalline resin having a melting point of 200 ° C. or higher, 140 ° C. or higher and 250 ° C. or lower is desirable. About an amorphous resin, 100 degreeC or more and 180 degrees C or less are desirable.
  • applications for household goods such as structural parts for vehicles, on-vehicle equipment, housings for electronic equipment, housings for home appliances, structural parts, mechanical parts, various automotive parts, electronic parts, furniture, kitchenware, etc. , Medical equipment, building material parts, other structural parts and exterior parts.
  • the following parts are designed so that the metal supports the parts where the strength is insufficient with resin alone.
  • An ECU box, an electrical component, etc. are mentioned.
  • building materials and furniture include glass window frames, handrails, curtain rails, chests, drawers, closets, bookcases, desks, and chairs.
  • precision electronic parts include connectors, relays, and gears.
  • a transport container, a suitcase, a trunk, etc. are mentioned as a transport container.
  • home appliances such as refrigerators, washing machines, vacuum cleaners, microwave ovens, air conditioners, lighting equipment, electric water heaters, televisions, watches, ventilation fans, projectors, speakers, personal computers, mobile phones, smartphones, digital cameras, tablet PCs, Examples include portable music players, portable game machines, chargers, and electronic information devices such as batteries.
  • toys sports equipment, shoes, sandals, bags, forks and knives, spoons, dishes such as dishes, ballpoint pens and mechanical pencils, files, binders and other stationery, frying pans and pans, kettles, frying, Cooking utensils such as a ladle, a hole insulator, a whisk, a tong, a lithium ion secondary battery component, a robot, and the like.
  • metal / resin composite structure 106 of the present invention has been described above, but these are examples of the use of the present invention, and various configurations other than those described above can be adopted.
  • FIGS. 1 and 2 are used as a common view of each embodiment.
  • FIG. 1 is an external view schematically showing an example of the structure of a metal / resin composite structure 106 of a metal member 103 and a resin member 105.
  • FIG. 2 is a configuration diagram schematically showing an example of a process of manufacturing the metal / resin composite structure 106 of the metal member 103 and the resin member 105.
  • a metal member 103 processed into a predetermined shape and having a surface treatment region (joint surface 104) having a fine uneven surface on the surface 110 is placed in an injection mold 102, and an injection molding machine 101 is provided.
  • the process of injecting the resin composition through the gate / runner 107 to manufacture the metal / resin composite structure 106 integrated with the metal member 103 having the fine uneven surface is schematically shown.
  • the average length (RSm) and the maximum height roughness (Rz) of the contour curve element in the characteristic (ii) were measured with a scanning probe microscope (SPM-9700 manufactured by Shimadzu Corporation).
  • Preparation Example 2 A commercially available 1.6 mm thick A5052 aluminum alloy plate was cut into 18 mm ⁇ 45 mm rectangular pieces, and ACR-1 air blasting device (compressed pressure of compressed air; 3.25 kg / mm) made on the plate surface. cm 2 ), and a concavo-convex shape with RSm of 200 ⁇ m and Rz of 250 ⁇ m was prepared by air nozzle blasting using silica sand (Ube Sand Industries, No. 5A) as a blast material. Next, surface treatment was performed according to the method of Experimental Example 1 of International Publication No. 2009/31632 pamphlet to obtain a metal member.
  • Preparation Example 3 A commercially available 1.6 mm thick A5052 aluminum alloy plate was cut into 18 mm ⁇ 45 mm rectangular pieces, and ACR-1 air blasting device (compressed pressure of compressed air; 5.25 kg / mm) on the plate surface. cm 2 ), and quartz sand (Ube sand industry, No. 5A) was used as the blast material, and the uneven shape of RSm of 900 ⁇ m and Rz of 400 ⁇ m was adjusted by air nozzle blasting. Next, the method of Experimental Example 1 of International Publication No. 2009/31632 pamphlet was partially changed (without immersion in a hydrazine aqueous solution) to perform a surface treatment to obtain a metal member.
  • Preparation Example 4 A commercially available 1.6 mm thick A5052 aluminum alloy plate was cut into 18 mm ⁇ 45 mm rectangular pieces, and ACR-1 air blasting device (compressed pressure of compressed air; 5.25 kg / mm) on the plate surface. cm 2 ), using silica sand (Ube sand industry, No. 5A) as a blasting material, an uneven shape with RSm of 900 ⁇ m and Rz of 400 ⁇ m was prepared by air nozzle blasting to obtain a metal member.
  • ACR-1 air blasting device compressed pressure of compressed air; 5.25 kg / mm
  • the metal member was observed with a scanning electron microscope (manufactured by JEOL, model number JSM-6701F) at a magnification of 300,000, but the uneven shape and the ultrafine holes observed in Preparation Example 1 were not observed. A photograph is shown in FIG.
  • Preparation Example 5 A commercially available 1.6 mm thick A5052 aluminum alloy plate was cut into 18 mm x 45 mm rectangular pieces, and surface-treated according to the method of Experimental Example 1 of International Publication No. 2009/31632 pamphlet without performing blasting treatment, A metal member was obtained.
  • Preparation Example 6 A commercially available 1.6 mm thick A5052 aluminum alloy plate was cut into 18 mm ⁇ 45 mm rectangular pieces, and ACR-1 air blasting device (compressed pressure of compressed air; 3.25 kg / mm) made on the plate surface. cm 2 ), using silica sand (Ube Sand Industries, No. 6A) as a blast material, an irregular shape with RSm of 120 ⁇ m and Rz of 150 ⁇ m was prepared by air nozzle blasting. Next, surface treatment was performed according to the method of Experimental Example 1 of International Publication No. 2009/31632 pamphlet to obtain a metal member.
  • Example 1 A small dumbbell metal insert mold 102 was attached to JSW J85AD manufactured by Nippon Steel Works, and the aluminum piece (metal member 103) prepared in Preparation Example 1 was installed in the mold 102. Next, a glass fiber reinforced polypropylene (primary polymer V7100, polypropylene (MFR (230 ° C., 2.16 kg load): 18 g / 10 min) 80 parts by mass, glass fiber 20 parts by mass) as a resin composition in the mold 102 was subjected to injection molding under the conditions of a cylinder temperature of 250 ° C., a mold temperature of 120 ° C., an injection speed of 25 mm / sec, a holding pressure of 80 MPa, and a holding pressure time of 10 seconds to obtain a metal / resin composite structure. Table 1 shows the evaluation results of the bonding strength.
  • Example 2 A metal / resin composite structure was obtained in the same manner as in Example 1 except that the aluminum piece used was changed to that prepared in Preparation Example 2. Table 1 shows the evaluation results of the bonding strength.
  • Example 3 A metal / resin composite structure was obtained in the same manner as in Example 1 except that the aluminum piece used was changed to that prepared in Preparation Example 3. Table 1 shows the evaluation results of the bonding strength.
  • Example 1 The aluminum pieces used in Example 1 satisfy the above-mentioned ranges for both RSm and Rz formed by blasting corresponding to characteristic (i) and RSm and Rz formed by etching corresponding to characteristic (ii). And since the ultra-fine unevenness
  • the metal side of the metal / resin bonding member is dissolved with a 5% nitric acid aqueous solution and the surface structure of the resin side is observed with a scanning electron microscope (model number JSM-6701F, manufactured by JEOL) at a magnification of 100,000, it is about 20 nm. It was found that the resin member penetrated into the ultrafine holes formed on the surface of the metal member. A photograph is shown in FIG.
  • the RSm formed by the blasting process corresponding to the characteristic (i) is 900 ⁇ m and Rz is 400 ⁇ m, both satisfying the above-mentioned range, but etching for forming the characteristic (ii) Since the processing is not performed, the characteristics of the present invention are not satisfied.
  • the RSm formed by the etching process corresponding to the characteristic (ii) is 800 nm and Rz is 240 nm, both satisfy the above-described range, and the ultra-fine unevenness formed in the uneven surface.
  • the blast treatment for forming the characteristic (i) is not performed, the characteristics of the present invention are not satisfied.
  • the metal side of the metal / resin bonding member of Comparative Example 1 was dissolved with a 5% nitric acid aqueous solution, and the surface structure of the resin side was observed with a scanning electron microscope (manufactured by JEOL, model number JSM-6701F) at a magnification of 100,000. did. However, an ultra fine convex shape of nanometer order was not observed. A photograph is shown in FIG. In Comparative Example 2, since the metal member and the resin member were peeled immediately after the injection integral molding, the surface structure on the resin side of the metal / resin bonding member was not observed. However, it is considered that the resin member does not penetrate into the ultrafine holes formed on the surface of the metal member.
  • Comparative Examples 1 and 2 the bonding strength with the resin member is also low. Further, for Comparative Example 3, although an attempt was made to increase the bonding area with the resin member by forming uneven shapes of different orders on the surface of the metal member for the purpose of improving the bonding strength with the resin member, the desired effect was obtained. There wasn't. This is considered to be because RSm and Rz formed by blasting do not satisfy the characteristics of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明の金属/樹脂複合構造体(106)は金属部材(103)と樹脂部材(105)が接合してなる。 そして、金属部材(103)の、樹脂部材(105)との接合表面(104)に、下記(i)および(ii)の特性を満たす凹凸形状を有する。 (i)輪郭曲線要素の平均長さ(RSm)が150μm以上1500μm以下、最大高さ粗さ(Rz)が170μm以上800μm以下である (ii)輪郭曲線要素の平均長さ(RSm)が100nm以上10000nm以下、最大高さ粗さ(Rz)が100nm以上10000nm以下である

Description

金属/樹脂複合構造体
 本発明は、金属/樹脂複合構造体に関する。
 各種部品の軽量化の観点から、金属の代替品として樹脂が使用されている。しかし、全ての金属部品を樹脂で代替することは難しい場合も多い。そのような場合には、金属成形体と樹脂成形体を接合一体化することで新たな複合部品を製造することが考えられる。しかしながら、金属成形体と樹脂成形体を工業的に有利な方法で、かつ高い接合強度で接合一体化できる技術は実用化されていない。
 近年、金属成形体と樹脂成形体を接合一体化する技術として、金属部材の表面に微細な凹凸を形成させたものに、その金属部材と親和性を有する極性基を持つエンジニアリングプラスチックを接合させることが検討されている(例えば、特許文献1~5など)。
 例えば、特許文献1~3には、アルミニウム合金をヒドラジン水溶液で浸漬処理することによって、その表面に30~300nm径の凹部を形成した後、該処理面にポリブチレンテレフタレート樹脂(以下「PBT」という。)、またはポリフェニレンスルフィド樹脂(以下「PPS」という。)を接合させる技術が開示されている。
 また、特許文献4には、アルミニウム素材を燐酸または水酸化ナトリウムの電解浴で陽極酸化処理することにより、アルミニウム素材の表面に直径が25nm以上である凹部を有する陽極酸化皮膜を形成した後、該処理面にエンジニアリングプラスチックを接合させる技術が開示されている。
 さらに、特許文献5には、アルミニウム合金に対し、特定のエッチング剤により微細な凹凸もしくは孔を形成し、その孔にポリアミド6樹脂、ポリアミド6樹脂、PPSを射出接合させる技術を開示している。
 近年、これらの技術により、金属とエンジニアリングプラスチックとを接合した金属/樹脂複合構造体が得られてきている。しかし、実用化するに当たっては、金属と樹脂の間で、より高い接合強度を有することが望まれている。
 また、上記特許文献1~5では、樹脂部材として極性基を持つエンジニアリングプラスチックが用いられている。その一方で、金属部材と親和性を有しない非極性のポリオレフィン系樹脂に関して、上記の技術を適用した事例としては、ポリオレフィン系樹脂に極性基を導入した酸変性ポリオレフィン樹脂を用いるものがある(特許文献6)。
 しかしながら、当該樹脂と金属部材とを接合させるためには、樹脂を溶融させた状態に保ち、高圧で長時間接触させる必要があり、通常は溶融押出によるラミネート法、プレス法などで接合が行われていた。ただし、ラミネート法、プレス法などは、適用可能な形状の自由度が低い上、接合させたい場所以外にも酸変性ポリオレフィン系樹脂が付着することにより、部品の形状によっては、金属部材の性能や外観を活かせなくなるという欠点があった。
特開2004-216425号公報 特開2009-6721号公報 国際公開第2003/064150号パンフレット 国際公開第2004/055248号パンフレット 特開2013-52671号公報 特開2002-3805号公報
 本発明は上記事情に鑑みてなされたものであり、金属部材と樹脂部材とを、直接接合することができ、かつ、金属部材と樹脂部材との接合強度に優れた、金属/樹脂複合構造体を提供するものである。
 本発明者らは、上記特許文献1~5に代表される金属表面が粗化処理された金属部材に、ポリオレフィン系樹脂に代表される金属部材と親和性を有しない非極性の樹脂を含む樹脂組成物からなる樹脂部材を直接接合させる技術について種々検討を行った。しかし、当該粗化処理がなされた金属部材と非極性の樹脂からなる樹脂部材を接合させようとしても、接合強度が弱いため金属部材と樹脂部材の界面が剥離してしまい、高い接合強度を有する複合構造体を形成するには至っていない。
 したがって、本発明は、樹脂部材として、ポリオレフィン系樹脂に代表される、金属部材と親和性を有しない非極性の樹脂を含む樹脂組成物を用いた場合であっても、樹脂の変性などを伴うことなく、直接接合することができ、かつ、金属部材と樹脂部材との接合強度に優れた、金属/樹脂複合構造体を特に提供するものである。
 本発明者らは、上記課題を解決すべく鋭意検討した。その結果、二種以上の異なる特性の凹凸形状を有する金属部材と、樹脂部材とを直接接合することにより、樹脂部材と金属部材との接合強度に優れる金属/樹脂複合構造体が得られることを見出し、本発明を完成させた。
 すなわち、本発明は以下の[1]~[7]に関する。
[1]
 金属部材と樹脂部材が接合してなる、金属/樹脂複合構造体において、
 上記金属部材の、上記樹脂部材との接合表面に、下記(i)および(ii)の特性を満たす凹凸形状を有する、金属/樹脂複合構造体。
(i)輪郭曲線要素の平均長さ(RSm)が150μm以上1500μm以下、最大高さ粗さ(Rz)が170μm以上800μm以下である
(ii)輪郭曲線要素の平均長さ(RSm)が100nm以上10000nm以下、最大高さ粗さ(Rz)が100nm以上10000nm以下である
[2]
 上記金属部材の表面に、直径が5nm以上100nm以下、深さが10nm以上500nm以下の超微細凹凸形状が形成されている、上記[1]に記載の金属/樹脂複合構造体。
[3]
 上記(ii)の特性を満たす凹凸形状が、上記(i)の特性を満たす凹凸形状上に形成されている、上記[1]または[2]に記載の金属/樹脂複合構造体。
[4]
 上記金属部材が、鉄、ステンレス、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、銅、銅合金、チタンおよびチタン合金から選択される一種または二種以上の金属を含む金属材料からなるものである、上記[1]~[3]のいずれか1つに記載の金属/樹脂複合構造体。
[5]
 上記樹脂部材が(A)熱可塑性樹脂を含む樹脂組成物からなる上記[1]~[4]のいずれか1つに記載の金属/樹脂複合構造体。
[6]
 上記(A)熱可塑性樹脂がポリオレフィン系樹脂である、上記[5]に記載の金属/樹脂複合構造体。
[7]
 上記樹脂組成物が(B)充填材を含み、上記(A)熱可塑性樹脂100質量部に対して、上記(B)充填材の含有量が1質量部以上100質量部以下である、上記[5]または[6]に記載の金属/樹脂複合構造体。
[8]
 金属部材をブラスト処理することによって上記金属部材の表面上に上記(i)の特性を満たす凹凸形状を形成させ、次いで、上記金属部材を無機塩基水溶液および無機酸水溶液から選ばれる少なくとも一種の水溶液に浸漬させる化学的エッチング方法によって上記金属部材の表面上に上記特性(ii)を満たす凹凸形状をさらに形成させ、次いで、上記金属部材を水和ヒドラジン、アンモニアおよび水溶性アミン化合物から選ばれる一種以上を含む水溶液に浸漬させることによって上記金属部材の表面上に上記超微細凹凸形状をさらに形成させることにより得られることを特徴とする、上記[2]に記載の金属/樹脂複合構造体。
 本発明によれば、金属部材と樹脂部材との接合強度に優れた、金属/樹脂複合構造体を得ることができる。
 特に本発明においては、従来技術では達成することが困難であった、樹脂部材がポリオレフィン系樹脂に代表される、金属部材と親和性を有しない非極性の樹脂を含む樹脂組成物からなる場合であっても、金属部材と樹脂部材とが高い強度で接合された金属/樹脂複合構造体を得ることができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態に係る金属/樹脂複合構造体の構造の一例を模式的に示した外観図である。 本実施形態に係る金属/樹脂複合構造体を製造する過程の一例を模式的に示した構成図である。 調製例1で調製した金属部材表面の電子顕微鏡写真((a)倍率250倍、(b)倍率100000倍、(c)倍率300000倍)を示す図である。 調製例4で調製した金属部材表面の電子顕微鏡写真((a)倍率250倍、(b)倍率100000倍、(c)倍率300000倍)を示す図である。 調製例5で調製した金属部材表面の電子顕微鏡写真((a)倍率100000倍、(b)倍率300000倍)を示す図である。 実施例1で作製した金属/樹脂複合構造体の接合面樹脂側の電子顕微鏡写真(倍率100000倍)を示す図である。 比較例1で作製した金属/樹脂複合構造体の接合面樹脂側の電子顕微鏡写真(倍率100000倍)を示す図である。
 以下に、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。なお、文中の数字の間にある「~」は特に断りがなければ、以上から以下を表す。
 図1は、本実施形態に係る金属/樹脂複合構造体106の構造の一例を模式的に示した外観図である。
 金属/樹脂複合構造体106は、金属部材103と、樹脂部材105とが接合されており、金属部材103と樹脂部材105とを接合することにより得られる。
 金属部材103の、樹脂部材105との接合表面104は、下記(i)および(ii)の特性を満たす凹凸形状を有する。
(i)輪郭曲線要素の平均長さ(RSm)が150μm以上1500μm以下、最大高さ粗さ(Rz)が170μm以上800μm以下である
(ii)輪郭曲線要素の平均長さ(RSm)が100nm以上10000nm以下、最大高さ粗さ(Rz)が100nm以上10000nm以下である
 以下、本実施形態にかかる金属/樹脂複合構造体106を構成する各構成要素およびその調製方法、さらに、金属/樹脂複合構造体106の特徴について説明する。
<金属部材>
〔金属部材の金属種類〕
 本実施形態において、金属部材103を構成する金属の種類としては、鉄、ステンレス、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、銅、銅合金、チタンおよびチタン合金から選択される一種または二種以上の金属を含む金属材料からなることが望ましい。これらのうち、金属部材103を構成する金属の種類としては、好ましくは鉄、ステンレス、アルミニウム合金、マグネシウム合金、銅合金、チタン合金であり、より好ましくはステンレス、アルミニウム合金、マグネシウム合金、銅合金である。
 これらの中でも、軽量かつ高強度の点から、アルミニウム(アルミニウム単体)およびアルミニウム合金が好ましく、アルミニウム合金がより好ましい。
 アルミニウム合金としては、JIS H4000に規定された合金番号1050、1100、2014、2024、3003、5052、7075などが好ましく用いられる。
 金属部材103の形状は、樹脂部材105と接合できる形状であれば特に限定されず、例えば、平板状、曲板状、棒状、筒状、塊状などとすることができる。また、これらの組み合わせからなる構造体であってもよい。
 また、樹脂部材105と接合する接合部表面104の形状は、特に限定されないが、平面、曲面などが挙げられる。
〔金属部材の表面形状〕
 本実施形態にかかる金属/樹脂複合構造体106を構成する金属部材103は、樹脂部材105との接合表面104側に、二種以上の異なる特性の凹凸形状を有することを特徴とする。
 当該特性とは、輪郭曲線要素の平均長さ(RSm)と最大高さ粗さ(Rz)で表されるものであり、当該金属部材103の表面110は、少なくとも、下記(i)および(ii)で表される範囲の輪郭曲線要素の平均長さ(RSm)および最大高さ粗さ(Rz)を有する。なお、輪郭曲線要素の平均長さ(RSm)、最大高さ粗さ(Rz)は、JIS B 0633-2001で規定された方法により測定されたものである。
(i)輪郭曲線要素の平均長さ(RSm)が150μm以上1500μm以下、最大高さ粗さ(Rz)が170μm以上800μm以下である
(ii)輪郭曲線要素の平均長さ(RSm)が100nm以上10000nm以下、最大高さ粗さ(Rz)が100nm以上10000nm以下である
 以下、該凹凸形状の特性としての(i),(ii)の範囲、および、該凹凸形状を形成させる方法について説明する。
<(i)の特性について>
 本実施形態にかかる金属/樹脂複合構造体106を構成する金属部材103の樹脂部材105との接合表面104側には、輪郭曲線要素の平均長さ(RSm)が150μm以上1500μm以下、好ましくは175μm以上1300μm以下、さらに好ましくは600μm以上1000μm以下、最大高さ粗さ(Rz)が170μm以上800μm以下、好ましくは200μm以上600μm以下、さらに好ましくは300μm以上500μm以下の凹凸形状が形成されている。
 上記凹凸形状を形成する方法としては、金属部材103の表面110に対して、例えばブラスト処理やローレット加工のような物理的処理が挙げられ、好ましくはブラスト処理が挙げられる。
 ここで、ブラスト処理としては、インペラーと呼ばれる羽根車の遠心力を利用してブラスト材を投射するショットブラスト処理と、エアーコンプレッサーを用いて圧縮空気によりブラスト材を投射するエアーブラスト処理があり、どちらも金属部材103の表面110に上記特性の凹凸形状を付与することが可能である。輪郭曲線要素の平均長さ(RSm)、最大高さ粗さ(Rz)の調整は、ショットブラスト処理の場合はインペラーの回転数を調整することにより達成でき、エアーブラスト処理の場合は圧縮空気の噴射圧力を調整することにより達成することができる。
 エア―ブラスト処理ではショットブラスト処理と比較してブラスト材の噴射圧力が高いため、より均一な凹凸形状を形成させることができるためブラスト処理の方式としてエア―ブラスト処理が好ましい。
 上記ブラスト材として、珪砂、アルミナ、アルミカットワイヤー、スチールグリッド、スチールショットなどの材料が挙げられるが、それぞれ目的に応じて使用が可能である。樹脂との接合に関して、より高いアンカー効果、およびコストや効率の観点から珪砂の利用が好ましい。
<(ii)の特性について>
 本実施形態にかかる金属/樹脂複合構造体106を構成する金属部材103の樹脂部材105との接合表面104側には、輪郭曲線要素の平均長さ(RSm)が100nm以上10000nm以下、好ましくは300nm以上5000nm以下、さらに好ましくは600nm以上1000nm以下、最大高さ粗さ(Rz)が100nm以上10000nm以下、好ましくは150nm以上400nm以下、さらに好ましくは200nm以上300nm以下の凹凸形状が形成されている。
 当該凹凸形状は、上記(i)の特性で示した輪郭曲線要素の平均長さ(RSm)および最大高さ粗さ(Rz)の凹凸形状が形成された表面110上に、さらに形成されたものであることを特徴とする。
 上記凹凸形状を形成する方法としては、侵食性水溶液または侵食性懸濁液に金属を浸漬する化学的エッチング方法や、陽極酸化法による方法などが挙げられる。これらの方法は、使用する金属部材103の金属種類や、上記輪郭曲線要素の平均長さ(RSm)および最大高さ粗さ(Rz)の範囲内において形成する凹凸形状によって使い分けることが可能である。これらの方法の中では、浸食剤としてNaOH等の無機塩基水溶液および/またはHCl、HNO等の無機酸水溶液に浸漬する化学的エッチング方法が好んで採用される。
<その他好ましい特性>
 本実施形態にかかる金属/樹脂複合構造体106を構成する金属部材103の樹脂部材105との接合表面104側には、上記(ii)の特性にかかる輪郭曲線要素の平均長さ(RSm)および最大高さ粗さ(Rz)の凹凸形状を形成する際に行う、侵食性水溶液または侵食性懸濁液に金属を浸漬する方法や陽極酸化法による方法に伴い、超微細孔が形成されていてもよいし、上記特性(ii)の凹凸形状を形成させた後に、例えば国際公開2009/31632号パンフレットに開示されているような、水和ヒドラジン、アンモニア、及び水溶性アミン化合物から選ばれる1種以上の水溶液に浸漬させることによって積極的に超微細孔を形成させてもよい。
 当該超微細孔の直径は、5nm以上100nm以下であり、好ましくは10nm以上70nm以下であり、より好ましくは15nm以上50nm以下である。また、孔の深さは10nm以上500nm以下であり、好ましくは15nm以上300nm以下であり、より好ましくは20nm以上70nm以下である。
 当該超微細孔の直径および孔の深さは、以下のように測定することができる。
 まず、直径について、走査型電子顕微鏡(SEM)により、金属部材103の表面110を撮影する。その観察像から、超微細孔を任意に50個選択し、それらの直径を測定する。直径の全てを積算して50で除したものを超微細孔の直径とする。
 次いで、孔深さについて、透過型電子顕微鏡(TEM)によって金属部材103の表面近傍の断面を撮影する。その観察像から、超微細孔で形成された孔の深さを任意に10ヶ所選択し、それらの孔の深さを測定する。孔の深さの全てを積算して10で除したものを超微細孔の孔の深さとする。
 金属部材103の表面110上に上記のような超微細孔が存在していると、当該孔内に後述する樹脂部材105を構成する樹脂組成物が入り込むことが可能となり、金属部材103と樹脂部材105との間に物理的な抵抗力(アンカー効果)が発現するため、接合強度が向上することが期待できる。
 本実施形態においては、金属部材103の表面110にブラスト処理などの物理的処理によって、特性(i)の凹凸形状を形成させ、次いで、無機塩基水溶液および/または無機酸水溶液に浸漬する化学的エッチング方法によって特性(ii)の凹凸形状を形成させ、次いで、水和ヒドラジン、アンモニア、および水溶性アミン化合物から選ばれる1種以上を含有する水溶液による超微細凹凸形状を形成させる方法が好んで用いられる。
〔金属部材の調製方法〕
 本実施形態において、金属部材103の樹脂部材105との接合表面104側に形成される二種以上の異なる特性の凹凸形状は、上述の(i)、(ii)の各々の特性を形成する方法により形成させることが可能である。なお、当該凹凸形状を形成させるに当たっては、上記の通り、まず、(i)の特性を形成する方法により該当する凹凸形状を形成させる、次いで、(ii)の特性を形成する方法により該当する凹凸形状を形成させる。仮に、(i)と(ii)の特性を形成する方法を上記と逆の順番で行ってしまうと、初めに形成した、相対的に凹凸形状が細かいものが、後の処理によって破壊されてしまい、所望の形状が形成しないおそれがある。
 したがって、本実施形態においては、上記の通り、(i)の特性を形成する方法に引き続き、(ii)の特性を形成する方法を金属部材103に施すことによって、相対的に大きな凹凸形状の中に、相対的に小さな凹凸形状が形成することになる。そのため、後述する樹脂部材105との接合において、従来技術と比べて、より高いアンカー効果が発現し、その結果として、金属部材103と樹脂部材105との接合強度を高めることができるものと考えられる。
 なお、金属部材103は、金属を切断、プレスなどによる塑性加工、打ち抜き加工、切削、研磨、放電加工などの除肉加工によって上述した所定の形状に加工された後に、上記方法による処理がなされたものが好ましい。要するに、種々の加工法により、必要な形状に加工されたものを用いることが好ましい。必要な形状に加工された金属部材103は、後述する樹脂部材105と接合する面が酸化や水酸化されていないことが好ましく、長期間の自然放置で表面110に酸化被膜である錆の存在が明らかなものは研磨、化学処理などでこれを取り除くことが好ましい。
 なお、上記方法による処理がなされた金属部材103の表面110にはプライマー層を形成させてもよい。本実施形態においては、上記方法によって金属部材103の表面110に特定の凹凸形状を形成すれば、後述する樹脂部材105との間の接合が高い強度で形成される。しかし、より強固な接合強度を求める場合には、プライマー層を形成させることも可能である。特に、樹脂部材105がポリオレフィン系樹脂を含む樹脂組成物からなる場合には、金属部材103の表面110にプライマー層を形成することで、接合強度がより一層高い金属/樹脂複合構造体106を得ることができる。
 プライマー層を構成する材料は特に限定されないが、通常は樹脂成分を含むプライマー樹脂材料からなる。プライマー樹脂材料は特に限定されず、公知のものを用いることができる。具体的には、公知のポリオレフィン系プライマー、エポキシ系プライマー、ウレタン系プライマーなどを挙げることができる。プライマー層の形成方法は特に限定されないが、例えば上記のプライマー樹脂材料の溶液や、上記のプライマー樹脂材料のエマルジョンを、上記表面処理を行った金属部材103に塗工して形成することができる。溶液とする際に用いる溶媒としては、トルエン、メチルエチルケトン(MEK)ジメチルホルムアミド(DMF)などが挙げられる。エマルジョン用の媒体としては、脂肪族炭化水素媒体や、水などが挙げられる。
<樹脂部材>
 本実施形態にかかる金属/樹脂複合構造体106を構成する樹脂部材105は、(A)熱可塑性樹脂と、必要に応じて(B)充填材を含む樹脂組成物からなる。さらに、該樹脂組成物は必要に応じてその他の配合剤を含む。なお、便宜上、樹脂部材105が(A)熱可塑性樹脂のみからなる場合であっても、樹脂部材105は樹脂組成物からなると記載する。
 以下、(A)熱可塑性樹脂、(B)充填材、その他の配合剤について説明し、さらに樹脂組成物の調製方法を説明する。
〔(A)熱可塑性樹脂〕
 本実施形態における樹脂部材105の原料としての(A)熱可塑性樹脂としては、ポリアミド6、ポリアミド66、芳香族ポリアミド樹脂などのポリアミド系樹脂;ポリエチレン樹脂、ポリプロピレン樹脂などのポリオレフィン系樹脂;ポリエチレンテレフタラート樹脂、ポリブチレンテレフタラート樹脂などのポリエステル系樹脂、アクリロニトリル・ブタジエン・スチレン共重合樹脂、ポリカーボネート樹脂、ポリメチルメタクリレート樹脂などの非晶性樹脂;その他、ポリフェニレンサルファイド樹脂、ポリフェニレンエーテル樹脂、ポリエーテルエーテルケトン樹脂、ポリイミド樹脂や、これら2種類以上を組み合わせたものなどを挙げることができる。
 これらのうち、好ましくは、ポリアミド系樹脂、ポリオレフィン系樹脂、非晶性樹脂、ポリエステル系樹脂、アクリル・ブタジエン・スチレン共重合樹脂、ポリカーボネート樹脂、ポリフェニレンサルファイド樹脂である。より好ましくは、ポリアミド系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、アクリル・ブタジエン・スチレン共重合樹脂、ポリカーボネート樹脂、ポリフェニレンサルファイド樹脂である。ポリオレフィン系樹脂については、ポリプロピレン樹脂が好ましく用いられる。これらの(A)熱可塑性樹脂は一種単独で使用してもよいし、二種以上組み合わせて使用してもよい。
 上記ポリオレフィン系樹脂は、オレフィンを重合して得られる重合体を特に限定なく使用することができる。
 上記ポリオレフィン系樹脂を構成するオレフィンとしては、例えば、エチレン、α-オレフィン、環状オレフィンなどが挙げられる。
 上記α-オレフィンとしては、炭素原子数3~30、好ましくは炭素原子数3~20の直鎖状または分岐状のα-オレフィンが挙げられる。より具体的には、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどが挙げられる。
 上記環状オレフィンとしては、炭素原子数3~30の環状オレフィンが挙げられ、好ましくは炭素原子数3~20である。より具体的には、シクロペンテン、シクロヘプテン、ノルボルネン、5-メチル-2-ノルボルネン、テトラシクロドデセン、2-メチル-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレンなどが挙げられる。
 上記ポリオレフィン系樹脂を構成するオレフィンとして好ましくは、エチレン、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテンなどが挙げられる。これらのうち、より好ましくは、エチレン、プロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテンであり、さらに好ましくはエチレンまたはプロピレンである。
 上記ポリオレフィン系樹脂は、上述したオレフィンを一種単独で重合して得られたもの、または二種以上を組み合わせてランダム共重合、ブロック共重合、グラフト共重合して得られたものであってもよい。
 また、上記ポリオレフィン系樹脂としては、直鎖状のものであっても、分岐構造を導入したものであってもよい。 
 本実施形態においては、樹脂部材105が上述した(A)熱可塑性樹脂を含む樹脂組成物からなる場合、金属部材103との接合が強固に形成される。それらの中でも特に、樹脂部材105がポリオレフィン系樹脂を含む樹脂組成物からなるものについては、従来行われてきた金属表面粗化処理後の金属部材では接合が困難であったところ、本実施形態では、このようなポリオレフィン系樹脂を含む樹脂組成物からなる樹脂部材105であっても、金属部材103との接合強度が飛躍的に向上しているため、産業における利用価値は非常に高いものと言える。したがって、(A)熱可塑性樹脂としてポリオレフィン系樹脂を選択するのは好ましい態様の一つである。
 (A)熱可塑性樹脂のメルトフローレート(MFR)や密度については、金属/樹脂複合構造体106として求められる性能によって適宜選択して使用することができる。例えば、(A)熱可塑性樹脂として、ポリプロピレン樹脂を用いる場合、ポリプロピレン樹脂のASTM D1238に準拠し、230℃、2.16kg荷重の条件で測定されるMFRは、好ましくは0.1g/10分以上800g/10分以下であり、より好ましくは0.5g/10分以上100g/10分以下であり、さらに好ましくは1.0g/10分以上20g/10分以下である。
 また、(A)熱可塑性樹脂として、ポリアミド6、ポリアミド66などのポリアミド樹脂を用いる場合、ポリアミド樹脂の260℃、2.16kg荷重の条件で測定されるMFRは、好ましくは1g/10分以上200g/10分以下、より好ましくは1g/10分以上150g/10分以下、さらに好ましくは1g/10分以上100g/10分以下である。
〔(B)充填材〕
 本実施形態における樹脂部材105を構成する樹脂組成物は、(A)熱可塑性樹脂を必須の成分とするほか、必要とされる用途などに合わせて、さらに(B)充填材を含んでいてもよい。
 (B)充填材としては、例えば、ガラス繊維、炭素繊維、炭素粒子、粘土、タルク、シリカ、ミネラル、セルロース繊維からなる群から一種または二種以上を選ぶことができる。これらのうち、好ましくは、ガラス繊維、炭素繊維、タルク、ミネラルから選択される一種または二種以上である。
 (B)充填材の形状は繊維状、粒子状、板状などどのような形状であってもよい。
 なお、樹脂組成物が(B)充填材を含む場合、その含有量は、上記(A)熱可塑性樹脂100質量部に対して、好ましくは1質量部以上100質量部以下であり、より好ましくは5質量部以上90質量部以下であり、特に好ましくは10質量部以上80質量部以下である。
 これらの(B)充填材は、樹脂部材105の剛性を高める効果の他、樹脂部材105の線膨張係数を低減、制御できる効果がある。特に、本実施形態の金属部材103と樹脂部材105との複合体の場合は、金属部材103と樹脂部材105との形状安定性の温度依存性が大きく異なることが多いので、大きな温度変化が起こると複合体に歪みが掛かりやすい。樹脂部材105が上記(B)充填材を含有することにより、この歪みを低減することができる。また、(B)充填材の含有量が上記範囲内であることにより、靱性の低減を抑制することができる。
〔その他配合剤〕
 本実施形態において、樹脂部材105には、個々の機能を付与する目的で配合剤を含んでもよい。
 上記配合剤としては、熱安定剤、酸化防止剤、顔料、耐候剤、難燃剤、可塑剤、分散剤、滑剤、離型剤、帯電防止剤などが挙げられる。
〔樹脂組成物の調製〕
 上記樹脂組成物は、(A)熱可塑性樹脂と、必要に応じて(B)充填材と、さらに必要に応じてその他配合剤とを、バンバリーミキサー、単軸押出機、2軸押出機、高速2軸押出機などの混合装置を用いて、混合または溶融混合することにより得ることができる。
<金属/樹脂複合構造体>
 本実施形態にかかる金属/樹脂複合構造体106は、金属部材103と、樹脂部材105から構成される。
 より詳細には、本実施形態における金属/樹脂複合構造体106は、樹脂部材105を構成する樹脂組成物が、金属部材103の表面110に形成された二種以上の異なる特性の凹凸形状部に侵入して金属と樹脂が接合し、金属―樹脂界面を形成することにより得られる。
 本実施形態において、金属部材103の表面110に上述した二種以上の異なる特性の凹凸形状を形成することによって、樹脂部材105との高い接合強度が発現した理由は明らかではないが、(ii)の特性に基づく凹凸形状および超微多孔がベント効果として作用し、エア抜けが起こることによると考えられる。すなわち、(i)の特性に基づく凹凸形状のみでは、樹脂部材を構成する樹脂組成物を後述する金属/樹脂複合構造体の製造方法に基づいて接合させようとした場合に、金属部材と樹脂部材の間の空気層の存在により、樹脂組成物が凹部深部まで侵入することができないことが想定される。しかし、(ii)の特性に基づく凹凸形状および超微多孔を(i)の特性に基づく凹凸形状と組み合わせることで、上記(ii)の特性に基づく凹凸形状および超微多孔に空気が侵入し、樹脂組成物が(i)の特性に基づく凹部深部まで侵入することができるようになると考えられる。このような事象により、(i)と(ii)の特性を金属部材103の表面110に形成することにより、金属部材103と樹脂部材105が高い接合強度を発現すると考えられる。
<金属/樹脂複合構造体の製造方法>
 本実施形態の金属/樹脂複合構造体106の製造方法は特に限定されず、上記特徴を有する金属部材103に対して、上記樹脂組成物を所望の樹脂部材105の形状になるように成形しながら接合させることにより得られる。
 樹脂部材105の成形方法としては、射出成形、押出成形、加熱プレス成形、圧縮成形、トランスファーモールド成形、注型成形、レーザー溶着成形、反応射出成形(RIM成形)、リム成形(LIM成形)、溶射成形などの樹脂成形方法が採用できる。
 これらの中でも、射出成形法が好ましく、具体的には、金属部材103を射出成形金型のキャビティ部にインサートし、樹脂組成物を金型に射出する射出成形法により製造するのが好ましい。具体的には、以下の(1)~(3)の工程を含んでいる。
(1)樹脂組成物を調製する工程
(2)金属部材103を射出成形用の金型内に設置する工程
(3)樹脂組成物を、金属部材103の少なくとも一部と接するように、上記金型内に射出成形する工程
 以下、各工程について説明する。
 (1)樹脂組成物を調製する工程については、上述の通り、上記した(A)熱可塑性樹脂と、必要に応じて(B)充填材と、さらに必要に応じてその他配合剤とを、バンバリーミキサー、単軸押出機、2軸押出機、高速2軸押出機などの混合装置により、混合または溶融混合することにより得ることができる。
 次いで、(2)、(3)の工程による射出成形方法について説明する。
 まず、射出成形用の金型を用意し、その金型を開いてその一部に金属部材103を設置する。
 その後、金型を閉じ、樹脂組成物の少なくとも一部が金属部材103の凹部形状を形成した面に接するように、上記金型内に(1)の工程で得られた樹脂組成物を射出して固化する。その後、金型を開き、離型することにより、金属/樹脂複合構造体106を得ることができる。
 また、上記(1)~(3)の工程による射出成形と、射出発泡成形や、金型を急速に加熱冷却する高速ヒートサイクル成形(RHCM,ヒート&クール成形)とを併用してもよい。
 射出発泡成形の方法としては、化学発泡剤を樹脂に添加する方法、射出成形機のシリンダー部に直接、窒素ガスや炭酸ガスを注入する方法、窒素ガスや炭酸ガスを超臨界状態で射出成形機のシリンダー部に注入するMuCell射出発泡成形法などが挙げられる。
 いずれの方法でも樹脂部材105が発泡体である金属/樹脂複合構造体106を得ることができる。また、いずれの方法でも、金型の制御方法として、カウンタープレッシャーを使用したり、成形品の形状によってはコアバックを利用したりすることも可能である。
 高速ヒートサイクル成形は、急速加熱冷却装置を金型に接続することにより、実施することができる。急速加熱冷却装置は、一般的に使用されている方式で構わない。加熱方法として、蒸気式、加圧熱水式、熱水式、熱油式、電気ヒータ式、電磁誘導過熱式のいずれか1方式またはそれらを複数組み合わせた方式でよい。
 冷却方法としては、冷水式、冷油式のいずれか1方式またはそれらを組み合わせた方式でよい。高速ヒートサイクル成形法の条件としては、例えば、射出成形金型を100℃以上250℃以下の温度に加熱し、上記樹脂組成物の射出が完了した後、上記射出成形金型を冷却することが望ましい。金型を加熱する温度は、樹脂組成物を構成する(A)熱可塑性樹脂によって好ましい範囲が異なり、結晶性樹脂で融点が200℃未満の樹脂であれば、100℃以上150℃以下が好ましく、結晶性樹脂で融点が200℃以上の樹脂であれば、140℃以上250℃以下が望ましい。非晶性樹脂については、100℃以上180℃以下が望ましい。
<金属/樹脂複合構造体の用途>
 本実施形態の金属/樹脂複合構造体106は、生産性が高く、形状制御の自由度も高いので、様々な用途に展開することが可能である。
 例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品などの家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品などが挙げられる。
 より具体的には、樹脂だけでは強度が足りない部分を金属がサポートする様にデザインされた次のような部品である。車両関係では、インスツルメントパネル、コンソールボックス、ドアノブ、ドアトリム、シフトレバー、ペダル類、グローブボックス、バンパー、ボンネット、フェンダー、トランク、ドア、ルーフ、ピラー、座席シート、ラジエータ、オイルパン、ステアリングホイール、ECUボックス、電装部品などが挙げられる。また、建材や家具類として、ガラス窓枠、手すり、カーテンレール、たんす、引き出し、クローゼット、書棚、机、椅子などが挙げられる。また、精密電子部品類として、コネクタ、リレー、ギヤなどが挙げられる。また、輸送容器として、輸送コンテナ、スーツケース、トランクなどが挙げられる。
 また、各種家電にも用いることができる。例えば、冷蔵庫、洗濯機、掃除機、電子レンジ、エアコン、照明機器、電気湯沸かし器、テレビ、時計、換気扇、プロジェクター、スピーカーなどの家電製品類、パソコン、携帯電話、スマートフォン、デジタルカメラ、タブレット型PC、携帯音楽プレーヤー、携帯ゲーム機、充電器、電池など電子情報機器などが挙げられる。
 その他の用途として、玩具、スポーツ用具、靴、サンダル、鞄、フォークやナイフ、スプーン、皿などの食器類、ボールペンやシャープペン、ファイル、バインダーなどの文具類、フライパンや鍋、やかん、フライ返し、おたま、穴杓子、泡だて器、トングなどの調理器具、リチウムイオン2次電池用部品やロボットなどが挙げられる。
 以上、本発明の金属/樹脂複合構造体106の用途について述べたが、これらは本発明の用途の例示であり、上記以外の様々な構成を採用することもできる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 以下に、本発明の実施形態を実施例により説明するが、本実施形態はこれらに限定されるものではない。
 なお、図1、2は各実施例の共通の図として使用する。
 図1は、金属部材103と樹脂部材105との金属/樹脂複合構造体106の構造の一例を模式的に示した外観図である。
 図2は、金属部材103と樹脂部材105との金属/樹脂複合構造体106を製造する過程の一例を模式的に示した構成図である。具体的には所定形状に加工され、表面110に微細凹凸面を有する表面処理領域(接合表面104)が形成された金属部材103を射出成形用の金型102内に設置し、射出成形機101により、樹脂組成物をゲート/ランナー107を通して射出し、微細凹凸面が形成された金属部材103と一体化された金属/樹脂複合構造体106を製造する過程を模式的に示している。
(金属表面分析)
 特性(i)における輪郭曲線要素の平均長さ(RSm)、最大高さ粗さ(Rz)は、レーザー顕微鏡(KEYENCE製VK-X100)により測定した。
 また、特性(ii)における輪郭曲線要素の平均長さ(RSm)、最大高さ粗さ(Rz)は、走査型プローブ顕微鏡(島津製作所製SPM-9700)により測定した。
(接合強度の評価方法および合否判定)
 引っ張り試験機「モデル1323(アイコーエンジニヤリング社製)」を使用し、引張試験機に専用の治具を取り付け、室温(23℃)にて、チャック間距離60mm、引張速度10mm/minの条件にて測定をおこなった。破断荷重(N)を金属/樹脂接合部分の面積で除することにより接合強度(MPa)を得た。
(金属の表面処理)
[調製例1]
 市販の1.6mm厚のA5052アルミニウム合金板を、18mm×45mmの長方形片に切断し、該板表面上に、厚地鉄工製ACR-1のエアーブラスト装置(圧縮空気の噴射圧力;5.25kg/cm)を用い、ブラスト材に珪砂(宇部サンド工業、5号A)を用いて、エアーノズル式ブラスト処理によりRSmを900μm、Rzを400μmの凹凸形状を調製した。次いで、国際公開2009/31632号パンフレットの実験例1の方法に準じて表面処理し、金属部材を得た。
 金属部材を走査型プローブ顕微鏡(島津製作所社製、型番SPM-9700)で視野4μmにて観察すると、ブラスト処理により形成された凹凸面内にRSmが800nm、Rzが240nmの凹凸形状が形成されていた。さらに走査型電子顕微鏡(JEOL社製、型番JSM-6701F)で拡大倍率300000倍にて観察すると、金属部材表面上に20nm程度の超微細孔が形成されていた。写真を図3に示す。
[調製例2]
 市販の1.6mm厚のA5052アルミニウム合金板を、18mm×45mmの長方形片に切断し、該板表面上に、厚地鉄工製ACR-1のエアーブラスト装置(圧縮空気の噴射圧力;3.25kg/cm)を用い、ブラスト材に珪砂(宇部サンド工業、5号A)を用いて、エアーノズル式ブラスト処理によりRSmを200μm、Rzを250μmの凹凸形状を調製した。次いで、国際公開2009/31632号パンフレットの実験例1の方法に準じて表面処理し、金属部材を得た。
 金属部材を走査型プローブ顕微鏡(島津製作所社製、型番SPM-9700)で視野4μmにて観察すると、ブラスト処理により形成された凹凸面内にRSmが800nm、Rzが240nmの凹凸形状が形成されていた。さらに走査型電子顕微鏡(JEOL社製、型番JSM-6701F)で拡大倍率300000倍にて観察すると、金属部材表面上に20nm程度の超微細孔が形成されていた。
[調製例3]
 市販の1.6mm厚のA5052アルミニウム合金板を、18mm×45mmの長方形片に切断し、該板表面上に、厚地鉄工製ACR-1のエアーブラスト装置(圧縮空気の噴射圧力;5.25kg/cm)を用い、ブラスト材に珪砂(宇部サンド工業、5号A)を用いて、エアーノズル式ブラスト処理によりRSmを900μm、Rzを400μmの凹凸形状を調整した。次いで、国際公開2009/31632号パンフレットの実験例1の方法を一部変更(ヒドラジン水溶液への浸漬行わず)して表面処理し、金属部材を得た。
 金属部材を走査型プローブ顕微鏡(島津製作所社製、型番SPM-9700)で視野4μmにて観察すると、ブラスト処理により形成された凹凸面内にRSmが800nm、Rzが240nmの凹凸形状が形成されていた。さらに走査型電子顕微鏡(JEOL社製、型番JSM-6701F)で拡大倍率300000倍にて観察したが、調製例1で観察された超微細孔は観察されなかった。
[調製例4]
 市販の1.6mm厚のA5052アルミニウム合金板を、18mm×45mmの長方形片に切断し、該板表面上に、厚地鉄工製ACR-1のエアーブラスト装置(圧縮空気の噴射圧力;5.25kg/cm)を用い、ブラスト材に珪砂(宇部サンド工業、5号A)を用いて、エアーノズル式ブラスト処理によりRSmを900μm、Rzを400μmの凹凸形状を調製し、金属部材を得た。
 金属部材を走査型電子顕微鏡(JEOL社製、型番JSM-6701F)で拡大倍率300000倍にて観察したが、調製例1で観察された凹凸形状および超微細孔は観察されなかった。写真を図4に示す。
[調製例5]
 市販の1.6mm厚のA5052アルミニウム合金板を、18mm×45mmの長方形片に切断し、ブラスト処理を施すことなく、国際公開2009/31632号パンフレットの実験例1の方法に準じて表面処理し、金属部材を得た。
 金属部材を走査型プローブ顕微鏡(島津製作所社製、型番SPM-9700)で視野4μmにて観察すると、RSmが800nm、Rzが240nmの凹凸形状が形成されていた。さらに走査型電子顕微鏡(JEOL社製、型番JSM-6701F)で拡大倍率300000倍にて観察すると、上記凹凸面内に20nm程度の超微細孔が形成されていた。写真を図5に示す。
[調製例6]
 市販の1.6mm厚のA5052アルミニウム合金板を、18mm×45mmの長方形片に切断し、該板表面上に、厚地鉄工製ACR-1のエアーブラスト装置(圧縮空気の噴射圧力;3.25kg/cm)を用い、ブラスト材に珪砂(宇部サンド工業、6号A)を用いて、エアーノズル式ブラスト処理によりRSmを120μm、Rzを150μmの凹凸形状を調製した。次いで、国際公開2009/31632号パンフレットの実験例1の方法に準じて表面処理し、金属部材を得た。
 金属部材を走査型プローブ顕微鏡(島津製作所社製、型番SPM-9700)で視野4μmにて観察すると、ブラスト処理により形成された凹凸面内にRSmが800nm、Rzが240nmの凹凸形状が形成されていた。さらに走査型電子顕微鏡(JEOL社製、型番JSM-6701F)で拡大倍率300000倍にて観察すると、上記凹凸面内に20nm程度の超微細孔が形成されていた。
[実施例1]
 日本製鋼所社製のJSW J85ADに小型ダンベル金属インサート金型102を装着し、金型102内に調製例1によって調製されたアルミニウム片(金属部材103)を設置した。次いで、その金型102内に樹脂組成物として、ガラス繊維強化ポリプロピレン(プライムポリマー製V7100、ポリプロピレン(MFR(230℃、2.16kg荷重):18g/10min)80質量部、ガラス繊維20質量部)を、シリンダー温度250℃、金型温度120℃、射出速度25mm/sec、保圧80MPa、保圧時間10秒の条件にて射出成形を行い、金属/樹脂複合構造体を得た。接合強度の評価結果を表1に示す。
[実施例2]
 使用したアルミニウム片を調製例2で調製したものに変更した以外は実施例1と同様の方法により金属/樹脂複合構造体を得た。接合強度の評価結果を表1に示す。
[実施例3]
 使用したアルミニウム片を調製例3で調整したものに変更した以外は実施例1と同様の
方法により金属/樹脂複合構造体を得た。接合強度の評価結果を表1に示す。
[比較例1]
 使用したアルミニウム片を調製例4で調製したものに変更した以外は実施例1と同様の方法により金属/樹脂複合構造体を得た。接合強度の評価結果を表1に示す。
[比較例2]
 使用したアルミニウム片を調製例5で調製したものに変更した以外は実施例1と同様の方法により金属/樹脂複合構造体を得た。接合強度の評価結果を表1に示す。
[比較例3]
 使用したアルミニウム片を調製例6で調製したものに変更した以外は実施例1と同様の方法により金属/樹脂複合構造体を得た。接合強度の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1で用いたアルミニウム片は、特性(i)に相当するブラスト処理により形成されたRSm、Rz、特性(ii)に相当するエッチングにより形成されたRSm、Rz、共に上述した範囲を満たし、且つ、上記凹凸面内に形成された超微細凹凸が存在するため、樹脂部材との接合強度が非常に高いものが得られた。金属/樹脂接合部材の金属側を5%の硝酸水溶液で溶解させ、樹脂側の表面構造を走査型電子顕微鏡(JEOL社製、型番JSM-6701F)で拡大倍率100000倍にて観察すると、20nm程度の超微細凸形状が観察され、金属部材表面に形成された超微細孔に樹脂部材が侵入していることが判明した。写真を図6に示す。
 一方、比較例1では、特性(i)に相当するブラスト処理により形成されたRSmが900μm、Rzが400μmであり、共に上述した範囲を満たしているが、特性(ii)を形成させるためのエッチング処理を施していないため、本発明の特徴を満たさない。
 また、比較例2では、特性(ii)に相当するエッチング処理により形成されたRSmが800nm、Rzが240nmであり、共に上述した範囲を満たし、且つ、上記凹凸面内に形成された超微細凹凸が存在するが、特性(i)を形成させるためのブラスト処理を施していないため、本発明の特徴を満たさない。
 比較例1の金属/樹脂接合部材の金属側を5%の硝酸水溶液で溶解させ、樹脂側の表面構造を走査型電子顕微鏡(JEOL社製、型番JSM-6701F)で拡大倍率100000倍にて観察した。しかし、ナノメートルオーダーの超微細凸形状は観察されなかった。写真を図7に示す。
 比較例2では射出一体成形直後に金属部材と樹脂部材が剥離したため、金属/樹脂接合部材の樹脂側の表面構造を観察することはしていない。しかし、金属部材表面に形成された超微細孔に樹脂部材が侵入していないと考えられる。それに伴い、比較例1および2では、樹脂部材との接合強度も低いものとなっている。
 さらに比較例3については、樹脂部材との接合強度を向上させる目的で金属部材表面に異なるオーダーの凹凸形状を形成して樹脂部材との接合面積を増やすことを企図したが、所望の効果得られなかった。これは、ブラスト処理により形成されたRSm、Rzが、共に本発明の特徴を満たさないことに起因すると考えられる。
 この出願は、2013年9月13日に出願された日本出願特願2013-190607号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (8)

  1.  金属部材と樹脂部材が接合してなる、金属/樹脂複合構造体において、
     前記金属部材の、前記樹脂部材との接合表面に、下記(i)および(ii)の特性を満たす凹凸形状を有する、金属/樹脂複合構造体。
    (i)輪郭曲線要素の平均長さ(RSm)が150μm以上1500μm以下、最大高さ粗さ(Rz)が170μm以上800μm以下である
    (ii)輪郭曲線要素の平均長さ(RSm)が100nm以上10000nm以下、最大高さ粗さ(Rz)が100nm以上10000nm以下である
  2.  前記金属部材の表面に、直径が5nm以上100nm以下、深さが10nm以上500nm以下の超微細凹凸形状が形成されている、請求項1に記載の金属/樹脂複合構造体。
  3.  前記(ii)の特性を満たす凹凸形状が、前記(i)の特性を満たす凹凸形状上に形成されている、請求項1または2に記載の金属/樹脂複合構造体。
  4.  前記金属部材が、鉄、ステンレス、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、銅、銅合金、チタンおよびチタン合金から選択される一種または二種以上の金属を含む金属材料からなるものである、請求項1~3のいずれか1項に記載の金属/樹脂複合構造体。
  5.  前記樹脂部材が(A)熱可塑性樹脂を含む樹脂組成物からなる請求項1~4のいずれか1項に記載の金属/樹脂複合構造体。
  6.  前記(A)熱可塑性樹脂がポリオレフィン系樹脂である、請求項5に記載の金属/樹脂複合構造体。
  7.  前記樹脂組成物が(B)充填材を含み、前記(A)熱可塑性樹脂100質量部に対して、前記(B)充填材の含有量が1質量部以上100質量部以下である、請求項5または6に記載の金属/樹脂複合構造体。
  8.  金属部材をブラスト処理することによって前記金属部材の表面上に前記(i)の特性を満たす凹凸形状を形成させ、次いで、前記金属部材を無機塩基水溶液および無機酸水溶液から選ばれる少なくとも一種の水溶液に浸漬させる化学的エッチング方法によって前記金属部材の表面上に前記特性(ii)を満たす凹凸形状をさらに形成させ、次いで、前記金属部材を水和ヒドラジン、アンモニアおよび水溶性アミン化合物から選ばれる一種以上を含む水溶液に浸漬させることによって前記金属部材の表面上に前記超微細凹凸形状をさらに形成させることにより得られることを特徴とする、請求項2に記載の金属/樹脂複合構造体。
PCT/JP2014/074287 2013-09-13 2014-09-12 金属/樹脂複合構造体 WO2015037718A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14843821.1A EP3045308B1 (en) 2013-09-13 2014-09-12 Metal/resin composite structure
KR1020167007757A KR101793851B1 (ko) 2013-09-13 2014-09-12 금속/수지 복합 구조체
US15/021,650 US11020936B2 (en) 2013-09-13 2014-09-12 Metal/resin composite structure
JP2015536650A JP6074513B2 (ja) 2013-09-13 2014-09-12 金属/樹脂複合構造体
CN201480049459.9A CN105517795B (zh) 2013-09-13 2014-09-12 金属/树脂复合结构体
US17/241,173 US20210245474A1 (en) 2013-09-13 2021-04-27 Metal/resin composite structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-190607 2013-09-13
JP2013190607 2013-09-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/021,650 A-371-Of-International US11020936B2 (en) 2013-09-13 2014-09-12 Metal/resin composite structure
US17/241,173 Continuation US20210245474A1 (en) 2013-09-13 2021-04-27 Metal/resin composite structure

Publications (1)

Publication Number Publication Date
WO2015037718A1 true WO2015037718A1 (ja) 2015-03-19

Family

ID=52665814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074287 WO2015037718A1 (ja) 2013-09-13 2014-09-12 金属/樹脂複合構造体

Country Status (6)

Country Link
US (2) US11020936B2 (ja)
EP (1) EP3045308B1 (ja)
JP (1) JP6074513B2 (ja)
KR (1) KR101793851B1 (ja)
CN (1) CN105517795B (ja)
WO (1) WO2015037718A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017061142A (ja) * 2015-09-25 2017-03-30 三ツ星ベルト株式会社 金属樹脂接合体、金属樹脂接合体の製造方法、金属樹脂接合体からなるブロック、金属樹脂接合体からなるブロックの製造方法、並びに、金属樹脂接合体からなるブロックを備えた伝動ベルト
JP2019136872A (ja) * 2018-02-06 2019-08-22 三井化学株式会社 物品、金属樹脂接合体、金属樹脂接合体の製造方法、コールドプレートおよび冷却装置
US20190299503A1 (en) * 2016-05-31 2019-10-03 Mitsui Chemicals, Inc. Metal-resin composite structure, metal member, and manufacturing method of metal member
WO2019198610A1 (ja) 2018-04-10 2019-10-17 Dic株式会社 複合構造体およびその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105889489A (zh) * 2016-06-13 2016-08-24 常州展华机器人有限公司 一种可吸附静电的汽车变速杆手轴
DE102016116783A1 (de) * 2016-09-07 2018-03-08 Bernd Gross Verfahren zum Herstellen oder Wiederherstellen eines Verschleißteils
CN106584985A (zh) * 2016-11-01 2017-04-26 河池学院 一种自动化机器人机械臂用金属材料
CN111801442B (zh) * 2018-03-08 2022-11-01 三井化学株式会社 镁合金/树脂复合结构体及其制造方法
KR20190135193A (ko) 2018-05-28 2019-12-06 삼성전자주식회사 스테인리스 스틸 및 레진의 복합체 및 그 제조 방법
KR102079457B1 (ko) * 2018-10-19 2020-02-19 주식회사 지원산업 전도성 나노 복합체가 코팅된 전자회로기판 실장용 가스켓 및 이의 제조방법
WO2020203006A1 (ja) * 2019-04-05 2020-10-08 三菱瓦斯化学株式会社 多層体および多層体の製造方法
JP7290083B2 (ja) 2019-07-31 2023-06-13 株式会社オートネットワーク技術研究所 配線部材
KR102470590B1 (ko) * 2020-07-07 2022-11-25 주식회사 플라스탈 티타늄-수지 접합체 제조방법 및 이를 위한 티타늄 처리 용액
KR20220029973A (ko) * 2020-09-02 2022-03-10 현대자동차주식회사 자동차용 샌드위치 판넬 제조 방법 및 자동차용 샌드위치 판넬

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003805A (ja) 2000-06-22 2002-01-09 Toyo Mooton Kk ポリオレフィン系接着剤組成物
WO2003064150A1 (fr) 2001-12-28 2003-08-07 Taisei Plas Co., Ltd. Materiau composite en alliage d'aluminium et en resine, procede de production correspondant
WO2004055248A1 (ja) 2002-12-16 2004-07-01 Corona International Corporation アルミニウム材と合成樹脂成形体の複合品及びその製造法
JP2004216425A (ja) 2003-01-15 2004-08-05 Taisei Plas Co Ltd アルミニウム合金パイプの連結継手とその製造方法
JP2004216609A (ja) * 2003-01-10 2004-08-05 Taisei Plas Co Ltd 金属と熱可塑性樹脂組成物の複合体とその製造方法
JP2006213991A (ja) * 2005-02-07 2006-08-17 Grandex Co Ltd アルミニウム材料の鍛造防食処理方法及び鍛造防食アルミニウム材料
JP2009006721A (ja) 2002-11-08 2009-01-15 Taisei Plas Co Ltd アルミニウム合金と樹脂の複合体とその製造方法
WO2009031632A1 (ja) 2007-09-05 2009-03-12 Taisei Plas Co., Ltd. 金属樹脂複合体の製造方法
JP2009298144A (ja) * 2008-05-14 2009-12-24 Taisei Plas Co Ltd 複数金属形状物の接合複合体とその製造方法
JP2013052671A (ja) 2011-07-15 2013-03-21 Mec Kk アルミニウム−樹脂複合体の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100304083A1 (en) 2006-12-22 2010-12-02 Taisei Plas Co., Ltd. Composite of metal and resin and method for manufacturing the same
US20100028602A1 (en) 2006-12-28 2010-02-04 Taisei Plas Co., Ltd. Composite of metal and resin and method for manufacturing the same
WO2008133096A1 (ja) * 2007-04-13 2008-11-06 Taisei Plas Co., Ltd. マグネシウム合金複合体とその製造方法
JP2011042030A (ja) 2007-12-18 2011-03-03 Taisei Plas Co Ltd 金属と被着物の接合体、及びその製造方法
JP4903897B2 (ja) 2008-03-17 2012-03-28 大成プラス株式会社 亜鉛系鍍金鋼板と被着材の接合体及びその製造方法
US8394507B2 (en) * 2009-06-02 2013-03-12 Integran Technologies, Inc. Metal-clad polymer article
IN2012DN02733A (ja) 2009-10-16 2015-09-11 Aisin Seiki
JP5798535B2 (ja) * 2012-09-07 2015-10-21 ダイセルポリマー株式会社 複合成形体の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003805A (ja) 2000-06-22 2002-01-09 Toyo Mooton Kk ポリオレフィン系接着剤組成物
WO2003064150A1 (fr) 2001-12-28 2003-08-07 Taisei Plas Co., Ltd. Materiau composite en alliage d'aluminium et en resine, procede de production correspondant
JP2009006721A (ja) 2002-11-08 2009-01-15 Taisei Plas Co Ltd アルミニウム合金と樹脂の複合体とその製造方法
WO2004055248A1 (ja) 2002-12-16 2004-07-01 Corona International Corporation アルミニウム材と合成樹脂成形体の複合品及びその製造法
JP2004216609A (ja) * 2003-01-10 2004-08-05 Taisei Plas Co Ltd 金属と熱可塑性樹脂組成物の複合体とその製造方法
JP2004216425A (ja) 2003-01-15 2004-08-05 Taisei Plas Co Ltd アルミニウム合金パイプの連結継手とその製造方法
JP2006213991A (ja) * 2005-02-07 2006-08-17 Grandex Co Ltd アルミニウム材料の鍛造防食処理方法及び鍛造防食アルミニウム材料
WO2009031632A1 (ja) 2007-09-05 2009-03-12 Taisei Plas Co., Ltd. 金属樹脂複合体の製造方法
JP2009298144A (ja) * 2008-05-14 2009-12-24 Taisei Plas Co Ltd 複数金属形状物の接合複合体とその製造方法
JP2013052671A (ja) 2011-07-15 2013-03-21 Mec Kk アルミニウム−樹脂複合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3045308A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017061142A (ja) * 2015-09-25 2017-03-30 三ツ星ベルト株式会社 金属樹脂接合体、金属樹脂接合体の製造方法、金属樹脂接合体からなるブロック、金属樹脂接合体からなるブロックの製造方法、並びに、金属樹脂接合体からなるブロックを備えた伝動ベルト
US20190299503A1 (en) * 2016-05-31 2019-10-03 Mitsui Chemicals, Inc. Metal-resin composite structure, metal member, and manufacturing method of metal member
JP2019136872A (ja) * 2018-02-06 2019-08-22 三井化学株式会社 物品、金属樹脂接合体、金属樹脂接合体の製造方法、コールドプレートおよび冷却装置
JP7130382B2 (ja) 2018-02-06 2022-09-05 三井化学株式会社 物品、金属樹脂接合体、金属樹脂接合体の製造方法、コールドプレートおよび冷却装置
WO2019198610A1 (ja) 2018-04-10 2019-10-17 Dic株式会社 複合構造体およびその製造方法
KR20200128553A (ko) 2018-04-10 2020-11-13 디아이씨 가부시끼가이샤 복합 구조체 및 그 제조 방법
US11999112B2 (en) 2018-04-10 2024-06-04 Dic Corporation Composite structure and manufacturing method therefor

Also Published As

Publication number Publication date
EP3045308B1 (en) 2018-06-13
US20210245474A1 (en) 2021-08-12
JP6074513B2 (ja) 2017-02-01
EP3045308A4 (en) 2017-05-31
CN105517795A (zh) 2016-04-20
EP3045308A1 (en) 2016-07-20
US20160221301A1 (en) 2016-08-04
CN105517795B (zh) 2017-06-16
JPWO2015037718A1 (ja) 2017-03-02
KR20160048138A (ko) 2016-05-03
KR101793851B1 (ko) 2017-11-03
US11020936B2 (en) 2021-06-01

Similar Documents

Publication Publication Date Title
JP6074513B2 (ja) 金属/樹脂複合構造体
JP5714193B1 (ja) 金属/樹脂複合構造体および金属部材
KR102437457B1 (ko) 금속/수지 복합 구조체, 금속 부재 및 금속 부재의 제조 방법
JP6469403B2 (ja) 金属/樹脂複合構造体の製造方法
JP6000910B2 (ja) 金属/樹脂複合構造体
JP2018144475A (ja) アルミニウム系金属/樹脂複合構造体、アルミニウム系金属部材、アルミニウム系金属部材の製造方法およびアルミニウム系金属/樹脂複合構造体の製造方法
JP6899639B2 (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP6259644B2 (ja) 金属/樹脂複合構造体
JP6867814B2 (ja) 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法、ニッケルめっき化鉄鋼部材およびニッケルめっき化鉄鋼部材の製造方法
JP6810538B2 (ja) 表面粗化金属部材の製造方法および金属/樹脂複合構造体の製造方法
JP6422751B2 (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP6882855B2 (ja) 表面粗化金属部材の製造方法および金属/樹脂複合構造体の製造方法
JP6941953B2 (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP2015071266A (ja) 金属/樹脂複合構造体および該構造体の製造方法
JP6049536B2 (ja) 金属/樹脂複合構造体
JP6333542B2 (ja) 複合構造体および複合構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015536650

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15021650

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014843821

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014843821

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167007757

Country of ref document: KR

Kind code of ref document: A