WO2015037552A1 - 二次電池用セパレータおよび二次電池 - Google Patents

二次電池用セパレータおよび二次電池 Download PDF

Info

Publication number
WO2015037552A1
WO2015037552A1 PCT/JP2014/073637 JP2014073637W WO2015037552A1 WO 2015037552 A1 WO2015037552 A1 WO 2015037552A1 JP 2014073637 W JP2014073637 W JP 2014073637W WO 2015037552 A1 WO2015037552 A1 WO 2015037552A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
secondary battery
mass
fluororesin
organic resin
Prior art date
Application number
PCT/JP2014/073637
Other languages
English (en)
French (fr)
Inventor
甲斐信康
伊藤喜代彦
松田直樹
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020167005635A priority Critical patent/KR102225805B1/ko
Priority to JP2014544294A priority patent/JP6447129B2/ja
Priority to MYPI2016700817A priority patent/MY183711A/en
Priority to EP14844748.5A priority patent/EP3046163B1/en
Priority to CN201480049644.8A priority patent/CN105518905B/zh
Priority to US14/917,066 priority patent/US20160204407A1/en
Publication of WO2015037552A1 publication Critical patent/WO2015037552A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a separator for a secondary battery and a secondary battery.
  • Secondary batteries such as lithium-ion batteries are widely used in portable digital devices such as mobile phones, notebook computers, digital cameras, digital video cameras, and portable game machines. Recently, hybrid vehicles and electric vehicles have been used for automobiles. The use as a power source for plug-in hybrid vehicles is expanding.
  • a lithium ion battery includes a secondary battery separator and an electrolyte interposed between a positive electrode in which a positive electrode active material is laminated on a positive electrode current collector and a negative electrode in which a negative electrode active material is laminated on a negative electrode current collector. It has become.
  • a polyolefin-based porous substrate As a separator for secondary batteries, a polyolefin-based porous substrate is used.
  • the required characteristics include an electrolyte in the porous structure and the ability to move ions, and the lithium ion battery generates abnormal heat. In this case, the porous structure is closed by melting with heat, and the ion transfer is stopped to stop the power generation.
  • Patent Documents 1 and 2 adhere to an electrode by laminating a porous layer mainly composed of a vinylidene fluoride resin having adhesive properties on a porous substrate made of polyolefin. Secondary battery separators with improved properties have been proposed.
  • Patent Document 3 heat-resistant fine particles are laminated on a porous substrate, and in Patent Document 4, swellable fine particles are laminated on a porous substrate in addition to the heat-resistant fine particles. It has been proposed.
  • Patent Documents 1 and 2 the adhesion with the electrode is improved, but as a manufacturing method, an organic resin dissolved in an organic solvent is coated on a release film or a porous substrate, and the coagulation tank Although it has been proposed to form a porous layer by immersing in a metal, this manufacturing method is a high-cost manufacturing method and cannot meet the current demand for cost reduction.
  • an object of the present invention is to provide a secondary battery separator that expresses adhesiveness with an electrode at low cost.
  • the present inventors made extensive studies by paying attention to a method of forming a porous layer by laminating organic resin fine particles.
  • Patent Document 3 although an example of organic resin fine particles is given as the heat-resistant fine particles, only inorganic fine particles are actually laminated on the porous substrate, and the purpose is to improve heat resistance in the first place.
  • the present inventors thought that sufficient adhesiveness may not be exhibited because the laminated film thickness is large and the average particle size of the fine particles is large.
  • Patent Document 4 shows an example in which swellable fine particles, which are organic resin fine particles, are laminated on a porous substrate in addition to the heat resistant fine particles, but this is also aimed at improving heat resistance, The present inventors thought that sufficient adhesiveness may not be exhibited because the laminated film thickness is large and the average particle size of the fine particles is large.
  • the secondary battery separator of the present invention has the following configuration. (1) A porous layer containing organic resin fine particles having an average particle size of 0.02 ⁇ m or more and less than 0.40 ⁇ m is laminated on at least one surface of the porous substrate, and the film thickness of the porous layer is 0.10 ⁇ m. A separator for a secondary battery, wherein the separator is less than 2.5 ⁇ m. (2) The separator for secondary battery as described in 1 above, wherein the organic resin fine particles contain at least one resin selected from the group consisting of a fluororesin, an acrylic resin and a styrene-butadiene resin.
  • the organic resin fine particles are obtained by a method in which an organic resin is dissolved in a solvent and the organic resin solution is added to a poor solvent to precipitate the organic resin fine particles, and the organic resin is a fluororesin Water is added to the organic resin solution, and the amount of water to be added is 1 to 25% by mass when the total amount of solvent and water is 100% by mass, and the amount of fluororesin is the total amount of solvent and water. 10.
  • (11) The secondary battery separator as described in 10 above, wherein the method of adding the organic resin solution to a poor solvent is a flash crystallization method. (12) A secondary battery using the secondary battery separator according to any one of 1 to 11 above.
  • the contact area with the electrode is increased and the film thickness is reduced, so that the adhesion with the conventional electrode can be further improved, and the secondary battery Cycle characteristics can be improved.
  • the secondary battery separator of the present invention it is possible to provide a lithium ion battery with high capacity, high output, and low cost.
  • a porous layer containing organic resin fine particles having an average particle size of 0.02 ⁇ m or more and less than 0.40 ⁇ m is laminated on at least one surface of a porous substrate, and the porous layer
  • the secondary battery separator has a thickness of 0.10 ⁇ m or more and less than 2.5 ⁇ m.
  • Organic resin fine particles As the organic resin contained in the organic resin fine particles constituting the porous layer of the present invention, it has electrical insulating properties, is stable to non-aqueous electrolytes, and is redox when used in a secondary battery. It is difficult to be used and is required to be electrochemically stable.
  • Organic resins that satisfy these requirements include resins such as fluororesin, acrylic resin, styrene-butadiene resin, cross-linked polystyrene, methyl methacrylate-styrene copolymer, polyimide, melamine resin, phenol resin, polyacrylonitrile, silicon resin, and polycarbonate. These resins may be used alone or in combination of two or more.
  • organic resins selected from the group consisting of fluororesins, acrylic resins and styrene-butadiene resins because of their excellent electrical stability, oxidation resistance, and high swellability to electrolytes It is particularly preferable to use at least one kind of resin, and it is most preferable to use a fluororesin.
  • Fluoropolymers used include homopolymers such as polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl fluoride, and polychlorotrifluoroethylene, copolymers such as ethylene / tetrafluoroethylene polymer and ethylene-chlorotrifluoroethylene polymer Is mentioned. Moreover, the copolymer of a homopolymer type
  • a vinylidene fluoride resin particularly a resin made of a copolymer of vinylidene fluoride and hexafluoropropylene is preferably used from the viewpoint of electrical stability and oxidation resistance.
  • the weight average molecular weight of the fluororesin is preferably 600,000 to 1,500,000. More preferably, it is 800,000 or more and 1.2 million or less.
  • the weight average molecular weight is less than 600,000, adhesiveness with the electrode is developed, but the strength is weak, so that it may be easily peeled off.
  • the swellability with respect to the electrolytic solution is lowered, and the adhesiveness may be weakened.
  • the fluororesin is preferably acid-modified in order to improve the adhesion with the electrode.
  • the acid modification include acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, and the like. May be.
  • the average particle diameter of the organic resin fine particles is 0.02 ⁇ m or more and less than 0.40 ⁇ m. More preferably, it is 0.05 ⁇ m or more and less than 0.35 ⁇ m. More preferably, it is 0.08 ⁇ m or more and less than 0.15 ⁇ m.
  • the average particle size is smaller than 0.02 ⁇ m, organic resin fine particles are densely stacked, and the increase in air permeability may be increased.
  • the average particle size is 0.40 ⁇ m or more, the contact area with the electrode becomes small, and sufficient adhesion may not be obtained.
  • the average particle diameter in this case is, as described in Examples, one side of a square or a long side of a rectangle (major axis diameter) in which organic resin fine particles observed by microscopic observation of the surface of the porous layer are completely surrounded ) was measured and the number average was calculated. A detailed measurement method will be described later.
  • the shape of the organic resin fine particles examples include a spherical shape, a plate shape, a needle shape, a rod shape, and an oval shape, and any shape may be used. Among these, spherical and plate shapes are particularly preferable from the viewpoints of dispersibility, coatability, and porosity.
  • the aspect ratio of the organic resin fine particles is preferably 100 or less, more preferably 50 or less, and even more preferably 30 or less. When the aspect ratio is larger than 100, the handleability of the organic resin fine particles may be lowered.
  • the aspect ratio is a square or rectangle in which the particles are completely surrounded on the image of the particles obtained by an electron microscope, and the long side (major axis diameter) of the rectangle is drawn. It is the value divided by the short side (short axis diameter). In the case of a square, the aspect ratio is 1.
  • the method for producing the organic resin fine particles known production methods such as emulsion polymerization, suspension polymerization, and dispersion polymerization can be used. Further, the organic resin fine particles obtained by the above production method may be further processed in order to obtain a target average particle diameter and shape. Examples thereof include a coagulation method, a phase separation method, a dry pulverization method, a wet pulverization method, and a spray dryer method.
  • Examples of the coagulation method include a method of precipitating organic resin fine particles by dissolving an organic resin in a solvent and adding the organic resin solution to a poor solvent.
  • the solvent used for dissolving the fluororesin may be a solvent that dissolves the fluororesin and can be mixed with water.
  • N-alkylpyrrolidones such as N-methyl-2-pyrrolidone (hereinafter sometimes abbreviated as NMP), 1,3-dimethyl-2-imidazolidinone (hereinafter also abbreviated as DMI).
  • a chain amide solvent such as N, N-dimethylacetamide (hereinafter sometimes abbreviated as DMAc), N, N-dimethylformamide (hereinafter also abbreviated as DMF), dimethyl From among sulfoxides (hereinafter sometimes abbreviated as DMSO), polar sulfur solvents such as dimethylsulfone and tetramethylenesulfone, ketone solvents such as acetone and methylethylketone, and nitrile solvents such as acetonitrile and propionitrile.
  • the solvent chosen at least 1 type is mentioned.
  • NMP, DMI, acetone, methyl ethyl ketone, and acetonitrile are preferable, and NMP and acetonitrile are more preferable because of the stability of the solvent and ease of industrial handling.
  • the dissolution tank atmosphere In order to suppress decomposition and deterioration of the fluororesin, it is preferable to lower the oxygen gas concentration in the dissolution tank atmosphere, and it is preferable to dispose the dissolution tank in an inert gas atmosphere.
  • the inert gas include nitrogen gas, carbon dioxide gas, helium gas, and argon gas. In consideration of economy and availability, nitrogen gas, argon gas, and carbon dioxide gas are preferable, and particularly preferable. Nitrogen gas or argon gas is used.
  • the dissolution method is not particularly limited, but when making a fluororesin solution, the fluororesin, solvent and water are placed in a predetermined container and dissolved while stirring. If not dissolved at room temperature, dissolve by heating.
  • water After dissolving the fluororesin in a solvent, water may be added.
  • a fluororesin solution is prepared in a predetermined container, and then water is added to the fluororesin solution.
  • liquid pumps, Komagome pipettes, etc. can be used, but if a large amount of water is added at once, the fluororesin will precipitate and it will take a long time to dissolve the fluororesin. It is preferable.
  • undissolved fluororesin exists. May be.
  • the amount of water to be added varies depending on the concentration of the fluororesin to be dissolved and the type of solvent, but is preferably 1% by mass or more and 25% by mass or less in the total amount of the solvent and water of 100% by mass. If the amount of water is too small, irregular shaped particles are generated, and if the amount of water is too large, the fluororesin may precipitate.
  • the dissolution temperature varies depending on the type of solvent used and the concentration of the fluororesin, but is usually from room temperature to 200 ° C, preferably from room temperature to 100 ° C, or below the boiling point of the solvent.
  • the dissolution time varies depending on the type of solvent, the concentration of the fluororesin, and the dissolution temperature, but is usually in the range of 5 minutes to 50 hours, and preferably in the range of 10 minutes to 40 hours.
  • the amount of the fluororesin in the fluororesin solution when added to the poor solvent of the fluororesin is usually 100 parts by mass of the solvent, and when water is added, the total amount of the solvent and water is 100 parts by mass.
  • the fluororesin is 0.1 parts by mass or more and 15 parts by mass or less, preferably 0.5 parts by mass or more and 10 parts by mass or less.
  • the fluororesin solution is subjected to a precipitation step.
  • Step a1 Step of adding fluororesin solution to poor solvent and precipitating fluororesin fine particles
  • step a2) Step of precipitating fluororesin fine particles by flash crystallization of fluororesin solution into poor solvent (step a1)
  • step a1 Step of precipitating fluororesin fine particles by flash crystallization of fluororesin solution into poor solvent
  • step a1 Step of precipitating fluororesin fine particles by flash crystallization of fluororesin solution into poor solvent
  • the fluororesin solution is added to the poor solvent for the fluororesin particles to precipitate the fluororesin fine particles.
  • the fluororesin solution When adding the fluororesin solution to the fluororesin poor solvent, continuously inject the fluororesin solution from the container containing the fluororesin solution into a container containing the fluororesin poor solvent (hereinafter sometimes referred to as a “receiving tank”). Or may be dropped.
  • the fluororesin solution may be added from above the poor solvent via the gas phase, but it is preferable to directly add the fluororesin solution into the poor solvent from the viewpoint of obtaining fine particles having a uniform particle size.
  • a fluororesin solution is added to a receiving tank containing a poor solvent to produce a granulated liquid, and then the granulated liquid is extracted and the next step
  • a method batch method
  • a continuous flow method sometimes abbreviated simply as a continuous method
  • the reactor used for the continuous flow type includes a continuous tank reactor (continuous tank reactor, abbreviated as CSTR) and a tube reactor (plug flow reactor, abbreviated as PFR). Any reactor can be applied to the formation of fluororesin particles.
  • a poor solvent is put into a receiving tank (sometimes called a reactor in a continuous type), a fluororesin solution is added to produce fluororesin particles, and then the fluororesin solution is added to the granulated liquid. And a poor solvent are dripped at the same time, and the fluororesin granulated liquid is continuously extracted from the receiving tank and continuously granulated.
  • the fluororesin solution and the poor solvent may be simultaneously dropped into the fluororesin particleized solution prepared by batch method, and the fluororesin particleized solution may be continuously extracted from the receiving tank to prepare the granulated solution. it can.
  • the fluororesin solution and the poor solvent are dropped simultaneously.
  • the ratio of the fluororesin solution dropping rate to the poor solvent dropping rate is not particularly limited as long as fluororesin particles can be produced. From the viewpoint of productivity, the ratio of the poor solvent dropping rate to the fluororesin solution dropping rate is 0.1. To 100 is preferable, and 0.2 to 50 is more preferable.
  • the residence time is not particularly limited as long as fine and uniform particles are obtained. Is preferably 1 second to 10 hours, more preferably 1 minute to 1 hour.
  • a mixing device may be installed in the receiving tank in order to maintain the uniformity of the granulated liquid.
  • the mixing device include a stirring blade, a biaxial mixer, a homogenizer, and ultrasonic irradiation.
  • the fluororesin solution and the poor solvent are passed through the pipe at a constant speed, and the fluororesin solution and the poor solvent are mixed in the pipe to form particles.
  • Various piping can be used by the method of taking out.
  • the fluororesin solution may be passed through the inner tube and the poor solvent through the outer tube at a constant speed, and the fluororesin solution and the poor solvent may be mixed in the outer tube to form particles. it can.
  • the fluororesin solution may be passed through the outer tube and the poor solvent may be passed through the inner tube.
  • a poor solvent is passed from 90 degrees with respect to the flow of the fluororesin solution to bring the fluororesin solution and the poor solvent into contact with each other. Can also be made into particles.
  • the PFR method is not limited to the above.
  • the flow rate of the fluororesin solution and the poor solvent are not particularly limited as long as the fluororesin particles can be generated. From the viewpoint of productivity, the flow rate of the fluororesin solution with respect to the flow rate of the poor solvent is not particularly limited.
  • the liquid speed ratio is preferably from 0.1 to 100, more preferably from 0.2 to 50.
  • the mixing portion of the fluororesin solution and the poor solvent may be only a pipe, or a tubular mixing device may be installed.
  • the tubular mixing device include a tubular mixing device in which a static mixing structure such as the above-described mixing device or static mixer is stored.
  • the mixing time of the fluororesin solution and the poor solvent may be in the same range as the above residence time.
  • the inner diameter of the pipe is not particularly limited as long as the fluororesin solution and the poor solvent are mixed, but it is preferably 0.1 mm to 1 m, more preferably 1 mm to 1 m from the viewpoint of productivity.
  • Examples of the poor solvent for the fluororesin fine particles include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane and decane, and aromatics such as benzene, toluene, o-xylene, m-xylene, p-xylene and naphthalene.
  • aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane and decane
  • aromatics such as benzene, toluene, o-xylene, m-xylene, p-xylene and naphthalene.
  • Hydrocarbon solvents such as ethyl acetate, methyl acetate, butyl acetate and butyl propionate, ether solvents such as diethyl ether, diisopropyl ether, tetrahydrofuran and dioxane, methanol, ethanol, 1-propanol and 2-propanol And alcohol solvents such as methanol, ethanol, 1-propanol and 2-propanol, water and the like are preferable, and methanol, ethanol and water are particularly preferable.
  • the poor solvent of the fluororesin is preferably a solvent that is uniformly mixed with the solvent used for dissolution.
  • evenly mixed means that an interface does not appear even when two or more solvents are mixed and allowed to stand for one day.
  • NMP, DMF, DMAc, acetone, DMSO, tetrahydrofuran, acetonitrile, methanol, ethanol, and the like can be mentioned as a solvent in which they are uniformly mixed.
  • the poor solvent of the fluororesin may be a single solvent or a mixture of two or more solvents as long as it is uniformly mixed with the solvent used for dissolution.
  • a mixed solvent containing water such as a mixed solvent of water-alcohols and water-nitriles, from the viewpoint that particles having a uniform particle diameter are easily obtained.
  • the usage-amount of the poor solvent of a fluororesin is not specifically limited, The range of 0.1 to 100 mass parts can be illustrated with respect to 1 mass part of solvent used for melt
  • the receiving tank temperature can be set to 0 ° C. or higher and lower than the boiling point of the solvent, but depending on the solvent used, the particles may be fused together, and the particles cannot be obtained.
  • the temperature immediately before the addition is preferably 0 ° C. or higher and 40 ° C. or lower.
  • the dissolved fluororesin solution is flash crystallized to deposit fluororesin fine particles. That is, in the method of adding a fluororesin solution to a poor solvent, a flash crystallization method is used.
  • Flash crystallization refers to a method of rapidly solidifying and crystallizing a fluororesin solution. More specifically, the solution under heating and pressurization is below the boiling point of the solvent used for dissolution (below normal temperature). Or a method in which the liquid is jetted through a nozzle and transferred into a container (hereinafter also referred to as a receiving tank) and then crystallized. A method in which the above-mentioned solution under pressure is ejected through a nozzle into another container (hereinafter also referred to as a receiving tank) below the pressure under pressure (may be under reduced pressure), transferred, and crystallized. It is.
  • the fluorine solution When performing flash crystallization, it is preferable to eject the fluorine solution into the poor solvent. It is preferable to flush the nozzle tip from which the fluororesin solution is jetted in a poor solvent on the receiving tank side, but the nozzle tip may be separated from the poor solvent and flushed into the poor solvent via the gas phase. .
  • flash crystallization by spraying a fluororesin solution from a container held under pressure under heating or pressurization to a receiving tank under atmospheric pressure (or under reduced pressure).
  • a fluororesin solution from a container held under pressure under heating or pressurization to a receiving tank under atmospheric pressure (or under reduced pressure).
  • the inside of the container is pressurized by a self-made pressure by heating (may be further pressurized with an inert gas such as nitrogen).
  • fine-particles can be obtained by pressurizing a dissolution tank to arbitrary pressures and carrying out flash crystallization toward the poor solvent of a fluororesin.
  • the usage-amount of the poor solvent of a fluororesin is not specifically limited, The range of 0.1 to 100 mass parts can be illustrated with respect to 1 mass part of solvent used for melt
  • a method of performing flash crystallization in one stage or a method of performing flash crystallization in multiple stages in a vessel having a lower pressure than the inside of a tank containing a solution can be employed.
  • the melting step when heated and dissolved in a pressure-resistant vessel such as an autoclave, the inside of the vessel is pressurized by a self-made pressure by heating (even if further pressurized with an inert gas such as nitrogen) Good).
  • the pressurized solution is flushed toward an atmospheric pressure receiving tank containing a poor fluororesin solvent, or flushed toward a reduced pressure receiving tank.
  • the dissolved solution pressurized to an arbitrary pressure is flushed toward an atmospheric pressure receiving tank containing a fluorocarbon poor solvent. Or flush towards a receiving tank under reduced pressure.
  • the pressure (gauge pressure) of the solution for flash crystallization is preferably 0.2 MPa or more and 4 MPa or less. It is preferable to perform flash crystallization of the solution in this environment toward a receiving tank under atmospheric pressure.
  • the temperature of the receiving tank varies depending on the poor solvent of the fluororesin placed in the receiving tank, but the temperature at which the poor solvent of the fluororesin does not solidify is 50 to 50 ° C. Specifically, in the case of water, the temperature immediately before flash crystallization is 0 to 50 ° C. Is preferred.
  • the flash crystallization method there is a method in which the outlet of the connecting pipe from the dissolution tank is placed in the atmosphere of the receiving tank or in a poor solvent of a fluororesin, and flash crystallization is performed. Since resin fine particles are obtained, it is preferable.
  • the fluororesin fine particles obtained by the above precipitation step (a1 step), in particular, (a2 step) can be obtained in the state of a dispersion or suspension.
  • coarse particles such as an undissolved part of the prepared fluororesin, are included, it can be removed by filtration or the like.
  • fine and uniform fluororesin fine particles can be stably produced.
  • fluororesin fine particles in particular, vinylidene fluoride resin fine particles made of a copolymer of vinylidene fluoride and hexafluoropropylene, without reducing the air permeability, and between the porous substrate and the porous layer. The adhesion between them can be improved.
  • phase separation method examples include a method in which an organic resin is dissolved in a solvent, an organic resin solution is emulsified using a non-solvent or the like, and the organic resin fine particles are formed by contacting with a poor solvent.
  • dry pulverization method examples include a pulverization method in which organic resin fine particles collide with each other and a pulverization method in which the organic resin fine particles collide with a metal wall.
  • wet pulverization method examples include a method in which beads such as zirconia are added to a dispersion medium in which organic resin fine particles are dispersed, and the particles are pulverized by colliding the beads with the organic resin fine particles. The material and bead diameter of the beads can be used according to the shape and size of the target organic resin fine particles.
  • the spray dryer method there is a method in which an organic resin is dissolved in a solvent, droplets are produced by spraying the dissolved solution from a nozzle, and fine particles are formed by drying.
  • the solvent used in the spray dryer method is not particularly limited as long as it dissolves the organic resin, but a solvent having a boiling point lower than the melting point of the organic resin is preferable. Specifically, acetone, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol 1-propanol, 2-propanol, 1-butanol, ethyl acetate, propyl acetate, butyl acetate, tetrahydrofuran, cyclohexanone and the like.
  • binder In order to bind the organic resin fine particles to each other and the porous substrate, a binder may be used if necessary. Moreover, the adhesiveness with an electrode may improve by adding a binder.
  • Resins used for the binder include fluorine resin, acrylic resin, styrene-butadiene resin, cross-linked polystyrene, methyl methacrylate-styrene copolymer, polyimide, melamine resin, phenol resin, polyacrylonitrile, silicon resin, polycarbonate, carboxymethyl cellulose resin, etc. These resins may be used alone or in combination of two or more.
  • the binder resins it is particularly preferable to use a fluororesin, an acrylic resin, a styrene-butadiene resin, and carboxymethylcellulose from the viewpoint of electrical stability and oxidation resistance.
  • the binder to be used may be a binder that dissolves in a solvent or a particulate binder.
  • the form of the binder is not particularly limited, but a particulate binder is preferable for forming a porous structure.
  • As the fine particle binder a part or all of the fine binder may be formed during the formation of the porous layer, or a non-film formed binder may be used.
  • Examples of the method for forming a fine binder include film formation by heat when drying a solvent, N-methyl-2-pyrrolidone, dimethylacetamide, dipropylene glycol methyl ether, butyl glycol, propylene glycol, 2,2
  • the film may be formed by adding a film-forming aid such as 1,4-trimethyl-1,3-pentanediol monoisobutyrate.
  • the average particle size of the fine particle binder is preferably 1 ⁇ m or less. When it is larger than 1 ⁇ m, the amount of the binder necessary for binding the organic resin fine particles to the porous substrate increases, so that the battery performance may be lowered.
  • the content of the binder with respect to the organic resin fine particles is preferably 100 parts by mass or less, more preferably 80 parts by mass or less, and further preferably 70 parts by mass or less with respect to 100 parts by mass of the organic resin fine particles. Moreover, 1 mass part or more is preferable with respect to 100 mass parts of organic resin fine particles, More preferably, it is 2 mass parts or more, More preferably, it is 5 mass parts or more.
  • the content of the binder is larger than 100 parts by mass, the content of the organic resin fine particles is decreased, the contact area between the electrode and the organic resin fine particles may be decreased, and the adhesiveness may be weakened. In addition, the increase in air permeability increases, and the battery characteristics may deteriorate. When the amount is less than 1 part by mass, it becomes difficult to exhibit adhesiveness, and the organic resin fine particles laminated on the porous base material may be lost and it may be difficult to form a porous layer.
  • the separator for a secondary battery of the present invention can be obtained by laminating a porous layer containing organic resin fine particles on at least one surface of a porous substrate. The method will be described below.
  • Coating is performed by dispersing organic resin fine particles produced by a known production method such as emulsion polymerization, suspension polymerization, dispersion polymerization, or organic resin fine particles processed into a desired average particle size and shape after polymerization in a solvent. Adjust the liquid.
  • the solvent to be dispersed is preferably a solvent containing water as a main component from the viewpoint of suppressing impregnation of the porous substrate with the solvent.
  • the main component means that 50% by mass or more of water is contained in 100% by mass of the solvent.
  • the proportion of water in the water-based solvent is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more.
  • the coating liquid may be impregnated into the base material when it is applied to the porous base material, and a desired porous layer may not be formed. Further, the impregnation with the coating liquid makes it difficult to transport the porous substrate, and wrinkles may occur during the transport.
  • a dispersant When dispersing the organic resin fine particles, a dispersant may be used if necessary.
  • cationic surfactants such as an alkylamine salt and a quaternary ammonium salt, alkyl sulfate ester salt, polyoxyethylene alkyl ether sulfate ester salt, alkylbenzene sulfonate, fatty acid
  • Anionic surfactants such as salts, nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkylphenols, glycerin fatty acid esters, polyoxyethylene fatty acid esters, amphoteric surfactants such as alkylbetaines, alkylamine oxides, And the above cationic, anionic, nonionic, amphoteric fluorine-based surfactants, silicon-based surfactants, and the like.
  • the addition amount of the surfactant is preferably 0.1 part by mass or more and 40 parts by mass or less, more preferably 0.5 part by mass or more and 30 parts by mass or less, further preferably 100 parts by mass of the organic resin fine particles to be dispersed. 1 to 20 parts by mass.
  • the addition amount of the surfactant is more than 40 parts by mass, the adhesiveness may be lowered due to a decrease in the content of the organic resin fine particles with respect to the porous layer.
  • a known method may be used, and examples thereof include a ball mill, a bead mill, a sand mill, a roll mill, a homogenizer, an ultrasonic homogenizer, a high-pressure homogenizer, an ultrasonic device, and a paint shaker. You may disperse
  • the order of preparing the coating liquid is not particularly limited, but from the viewpoint of improving the efficiency of the dispersion process, a surfactant as a dispersant is added to and mixed with a solvent containing water as a main component, and an organic solution is added to the solution.
  • a surfactant as a dispersant is added to and mixed with a solvent containing water as a main component, and an organic solution is added to the solution.
  • the binder may be added if necessary.
  • inorganic fine particles such as aluminum oxide, boehmite, silica, titanium oxide, zirconium oxide, iron oxide, magnesium oxide may be added to the coating solution.
  • the addition amount of the inorganic fine particles is preferably less than 30% by volume with respect to the organic resin fine particles. If inorganic fine particles are added in an amount of 30% by volume or more, sufficient adhesion may not be obtained.
  • you may add antioxidant, a stabilizer, an antifoamer, a leveling agent, etc. suitably if necessary.
  • the obtained coating solution is applied onto a porous substrate, dried, and a porous layer is laminated.
  • a coating method a known method may be used. For example, gravure coating, slit die coating, knife coating, kiss coating, roll coating, bar coating, spray coating, dip coating, spin coating, screen printing, inkjet Printing, pad printing, and other types of printing can be used, but the present invention is not limited to these, and is applied in accordance with preferable conditions such as organic resin fine particles to be used, binder, surfactant, solvent to be used, and substrate. What is necessary is just to select a construction method. Moreover, in order to improve coating property, you may perform surface treatment of the coating surfaces, such as a corona treatment and a plasma processing, for example.
  • the porous layer When laminating a porous layer on both surfaces of a porous base material, it may be coated and dried one side at a time. However, it is preferable that both surfaces be coated and dried simultaneously in terms of productivity. Further, from the viewpoint of adhesiveness, it is preferable to laminate the porous layer on only one side because the adhesive property can be obtained on both sides of the positive electrode and the negative electrode because the cycle characteristics are excellent. If a heat resistant layer is required, the porous layer may be laminated after the heat resistant layer is laminated on the porous substrate, or a coating method in which the heat resistant layer and the porous layer are laminated at the same time may be used. Good.
  • the film thickness of the porous layer is 0.10 ⁇ m or more and less than 2.5 ⁇ m. More preferably, it is 0.5 ⁇ m or more and less than 2.0 ⁇ m. When the thickness of the porous layer is less than 0.10 ⁇ m, sufficient adhesion with the electrode may not be obtained. On the other hand, when the thickness is 2.5 ⁇ m or more, the increase in air permeability may be increased or the adhesiveness may not be sufficient. In addition, since the curling may be remarkable when laminated on only one side, it is preferable to laminate a porous layer on both sides of the porous substrate. Moreover, when laminating
  • the increase in air permeability due to the lamination of the porous layer is preferably 5 times or less. More preferably, it is 3 times or less. If the air permeability becomes greater than 5 times due to the lamination of the porous layer, the overall air permeability as a secondary battery separator also increases, and sufficient ion mobility cannot be obtained, resulting in deterioration of battery characteristics. There is a case.
  • the porous substrate is preferably composed of a resin that is electrically insulating, electrically stable, and stable to an electrolyte.
  • the resin used from the viewpoint of providing a shutdown function is preferably a thermoplastic resin having a melting point of 200 ° C. or lower.
  • the shutdown function is a function to stop power generation by closing the porous structure by melting with heat and stopping ion movement when the lithium ion battery abnormally generates heat.
  • the thermoplastic resin include polyolefin-based resins
  • the porous substrate is preferably a polyolefin-based porous substrate having a melting point of 200 ° C. or lower.
  • polystyrene resin examples include polyethylene, polypropylene, copolymers thereof, and mixtures thereof.
  • a single layer porous substrate containing 90% by mass or more of polyethylene, polyethylene and polypropylene A multilayer porous substrate made of
  • a method for producing a porous substrate a method of making a polyolefin resin porous after being made into a sheet, or extracting a solvent after dissolving the polyolefin resin in a solvent such as liquid paraffin to form a sheet
  • a solvent such as liquid paraffin
  • the thickness of the porous substrate is preferably 5 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the porous substrate is greater than 50 ⁇ m, the internal resistance of the porous substrate may increase.
  • the thickness of the porous substrate is less than 5 ⁇ m, the production becomes difficult, and sufficient mechanical properties may not be obtained.
  • the air permeability of the porous substrate is preferably 50 seconds / 100 cc or more and 1,000 seconds / 100 cc or less. More preferably, it is 50 seconds / 100 cc or more and 500 seconds / 100 cc or less. If the air permeability is greater than 1,000 seconds / 100 cc, sufficient ion mobility cannot be obtained, and battery characteristics may be deteriorated. If it is less than 50 seconds / 100 cc, sufficient mechanical properties may not be obtained.
  • Heat resistant layer In order to improve the dimensional stability of the secondary battery separator, it is preferable to laminate a heat-resistant layer between the porous substrate and the porous layer.
  • the heat resistance required for the secondary battery separator is that the thermal shrinkage at 150 ° C. is within 10%.
  • the heat-resistant layer contains heat-resistant fine particles, and the heat-resistant fine particles are required to be electrically stable in the battery, to have electrical insulating properties, and to have heat resistance. As long as these characteristics are satisfied, the heat-resistant fine particles may be inorganic fine particles, organic resin fine particles, or other fine particles.
  • the inorganic fine particles include inorganic oxide fine particles such as aluminum oxide, boehmite, silica, titanium oxide, zirconium oxide, iron oxide and magnesium oxide, inorganic nitride fine particles such as aluminum nitride and silicon nitride, calcium fluoride, fluorine.
  • the organic resin fine particles include polyvinylidene fluoride, cross-linked polymethyl methacrylate, cross-linked polystyrene, methyl methacrylate-styrene copolymer, polyimide, melamine resin, and the like. A phenol resin, polyacrylonitrile, etc. are mentioned. These fine particles may be used alone or in combination of two or more.
  • the average particle size of the fine particles used is preferably 0.1 ⁇ m or more and 5 ⁇ m or less. If it is smaller than 0.1 ⁇ m, the air permeability may be increased due to the dense functional porous layer. In addition, since the pore diameter is reduced, the impregnation property of the electrolytic solution is lowered, which may affect the productivity.
  • Examples of the shape of the fine particles to be used include a spherical shape, a plate shape, a needle shape, a rod shape, and an oval shape, and any shape may be used.
  • the spherical shape is preferable from the viewpoints of surface modification, dispersibility, and coatability.
  • the film thickness of the heat-resistant layer is preferably 0.5 ⁇ m or more and 10 ⁇ m or less. More preferably, it is 1 ⁇ m to 5 ⁇ m. When the thickness of the heat resistant layer is thinner than 0.5 ⁇ m, sufficient heat resistance may not be obtained. Moreover, when it is thicker than 10 ⁇ m, the increase in air permeability may be large. Further, the heat-resistant layer may be only one side or both sides of the porous substrate, and is not particularly limited.
  • the secondary battery separator of the present invention is a secondary battery separator in which a porous layer containing organic resin fine particles is laminated on at least one surface of a porous substrate as described above.
  • the laminated porous layer is preferably sufficiently porous to have ion permeability, and the air permeability of the secondary battery separator is 50 seconds / 100 cc or more and 1,000 seconds / 100 cc or less. It is preferable that More preferably, it is 50 seconds / 100 cc or more and 500 seconds / 100 cc or less. If the air permeability is greater than 1,000 seconds / 100 cc, sufficient ion mobility cannot be obtained, and battery characteristics may be deteriorated. If it is less than 50 seconds / 100 cc, sufficient mechanical properties may not be obtained.
  • the separator for a secondary battery of the present invention can be suitably used for a secondary battery such as a lithium ion battery.
  • a lithium ion battery has a configuration in which a secondary battery separator and an electrolyte are interposed between a positive electrode in which a positive electrode active material is laminated on a positive electrode current collector and a negative electrode in which a negative electrode active material is laminated on a negative electrode current collector. Yes.
  • the positive electrode is obtained by laminating a positive electrode agent composed of an active material, a binder resin, and a conductive additive on a current collector.
  • the active material include LiCoO 2 , LiNiO 2 , Li (NiCoMn) O 2 , and the like.
  • examples thereof include lithium-containing transition metal oxides having a layered structure, spinel-type manganese oxides such as LiMn 2 O 4 , and iron-based compounds such as LiFePO 4 .
  • the binder resin a resin having high oxidation resistance may be used. Specific examples include a fluororesin, an acrylic resin, and a styrene-butadiene resin.
  • the conductive assistant carbon materials such as carbon black and graphite are used.
  • As the current collector a metal foil is suitable, and in particular, aluminum is often used.
  • the negative electrode is made by laminating a negative electrode agent consisting of an active material and a binder resin on a current collector.
  • the active material carbon materials such as artificial graphite, natural graphite, hard carbon, and soft carbon, tin, silicon, etc.
  • Lithium metal materials such as Li, metal materials such as Li, and lithium titanate (Li 4 Ti 5 O 12 ).
  • the binder resin fluorine resin, acrylic resin, styrene-butadiene resin, or the like is used.
  • a metal foil is suitable, and in particular, a copper foil is often used.
  • the electrolytic solution is a place where ions are moved between the positive electrode and the negative electrode in the secondary battery, and the electrolyte is dissolved in an organic solvent.
  • an organic solvent As the electrolyte, LiPF 6, LiBF 4, and the like LiClO 4 and the like, solubility in organic solvents, LiPF 6 is preferably used in view of ion conductivity.
  • the organic solvent include ethylene carbonate, propylene carbonate, fluoroethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, gamma butyrolactone, sulfolane, and the like. Good.
  • a method for producing a secondary battery first, an active material and a conductive additive are dispersed in a binder solution to prepare a coating solution for an electrode, and this coating solution is applied onto a current collector and the solvent is dried. Thus, a positive electrode and a negative electrode are obtained.
  • the thickness of the coating film after drying is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • a secondary battery separator is arranged between the positive electrode and the negative electrode so that the active material layers of the respective electrodes are in contact with each other, sealed in an exterior material such as an aluminum laminate film, and injected with an electrolyte after hot pressing. Or you may heat-press after inject
  • the average particle diameter a square or rectangle having the smallest area completely surrounding one particle is drawn on the obtained image, that is, a square in which the end of the particle is in contact with four sides of the square or rectangle or A rectangle was drawn.
  • the length of one side in the case of a square and the length of the long side (major axis diameter) in the case of a rectangle were used as the particle diameter of the organic resin fine particles.
  • the particle size of each of 100 arbitrary particles was measured, and the number average value thereof was defined as the average particle size of the organic resin fine particles.
  • the average particle diameter is defined as the number average of arbitrary 100 particle diameters in the image, and 100 particles are not observed in the image. In this case, a plurality of images were taken, and the number average of a total of 100 particles was defined as the average particle size.
  • Air permeability Select one arbitrary location from each of three samples of 100 mm ⁇ 100 mm size, and use JIS using an air permeability measuring device (EG01-5-1MR manufactured by Asahi Seiko Co., Ltd.). P was measured in accordance with P 8117 (2009), and the average value was defined as the air permeability (seconds / 100 cc).
  • Adhesive strength A solvent in which diethyl carbonate and ethylene carbonate were mixed at a mass ratio of 7: 3 was prepared, and a secondary battery separator film 15 mm ⁇ 100 mm produced in the following examples was used in the solvent. LiCoO 2 , vinylidene fluoride resin binder, carbon black positive electrode 15 mm ⁇ 100 mm conductive soaked for 10 minutes, taken out, installed so that the active material and the porous layer are in contact, with a hot press machine Hot pressing was performed at 0.5 MPa, 80 ° C. for 2 minutes, the film was manually peeled off using tweezers, and the adhesive strength was evaluated in the following four stages.
  • the adhesive strength between the negative electrode and the secondary battery separator, in which the active material is graphite, the binder is vinylidene fluoride resin, and the conductive additive is carbon black, is measured, and each of the positive electrode and the negative electrode is evaluated.
  • -Adhesive strength S After peeling, the active material of the electrode partially adhered to the secondary battery separator side.
  • -Adhesive strength A The electrode and secondary battery separator peeled off with a slightly strong force.
  • -Adhesive strength B Weak The electrode and the secondary battery separator were peeled by force.
  • Adhesive strength C The electrode and the secondary battery separator were peeled by extremely weak force.
  • Example 1 A resin composed of a copolymer of vinylidene fluoride and hexafluoropropylene (hereinafter referred to as vinylidene fluoride resin, weight average molecular weight 1,000,000) was added to 9,000 parts by mass of acetonitrile with respect to 100 parts by mass of the copolymer. It melt
  • vinylidene fluoride resin weight average molecular weight 1,000,000
  • vinylidene fluoride resin solution to a water bath (room temperature), 100 parts by mass of a 10% by mass magnesium acetate aqueous solution with respect to 100 parts by mass of the vinylidene fluoride resin is added to the mixed solution.
  • the vinylidene fluoride resin fine particles were aggregated, filtered with a membrane filter, and washed with water to obtain a wet cake of the vinylidene fluoride resin fine particles (solid content concentration of vinylidene fluoride resin fine particles: 25.6% by mass).
  • Table 1 shows the measurement results of the average particle diameter of the vinylidene fluoride resin fine particles, the thickness of the porous layer, the air permeability, and the adhesive strength of the obtained secondary battery separator. The measurement results are also shown in Table 1 for the following examples and comparative examples.
  • Example 2 A secondary battery separator of the present invention is obtained in the same manner as in Example 1 except that 40 parts by mass of an acrylic resin (manufactured by Showa Denko KK) as a binder is added to 100 parts by mass of vinylidene fluoride resin fine particles. It was.
  • an acrylic resin manufactured by Showa Denko KK
  • Example 3 Using vinylidene fluoride resin fine particles having an average particle size of 0.05 ⁇ m, adding 100 parts by mass of carboxymethyl cellulose (weight average molecular weight 400,000) as a binder to 100 parts by mass of vinylidene fluoride resin fine particles.
  • a separator for a secondary battery of the present invention was obtained in the same manner as Example 1 except that was prepared.
  • Example 4 A separator for a secondary battery of the present invention was obtained in the same manner as in Example 1 except that vinylidene fluoride resin fine particles having an average particle size of 0.15 ⁇ m were used and the thickness of the porous layer was 0.3 ⁇ m.
  • Example 5 A secondary battery separator of the present invention was obtained in the same manner as in Example 1 except that vinylidene fluoride resin fine particles having an average particle size of 0.20 ⁇ m were used and the thickness of the porous layer was changed to 2.3 ⁇ m. .
  • Example 6 Acrylic resin (Showa Denko) was used as a binder using vinylidene fluoride resin fine particle water dispersion produced without adding surfactant (nonionic polyoxyethylene alkyl ether) during the production of vinylidene fluoride fine particle water dispersion
  • a separator for a secondary battery of the present invention was obtained in the same manner as in Example 1 except that 20 parts by mass of “Polysol” (registered trademark) LB manufactured by Co., Ltd. was added to 100 parts by mass of the fluororesin fine particles.
  • Example 7 Using an organic resin fine particle dispersion in which an acrylic resin having an average particle size of 0.35 ⁇ m is dispersed in water, 100 parts by mass of acrylic resin (“Polysol” (registered trademark) LB manufactured by Showa Denko KK) is used as a binder. A separator for a secondary battery of the present invention was obtained in the same manner as in Example 1, except that 10 parts by mass was added.
  • Acrylic resin (“Polysol” (registered trademark) LB manufactured by Showa Denko KK)
  • Example 8 Except for adding 10 parts by weight of nonionic polyoxyethylene alkyl ether as a surfactant to 100 parts by weight of vinylidene fluoride resin fine particles during the production of the aqueous dispersion of vinylidene fluoride resin fine particles, the same as in Example 1. Thus, a separator for a secondary battery of the present invention was obtained.
  • Example 9 The present invention was carried out in the same manner as in Example 1 except that 20 parts by mass of acrylic resin (“Polysol” (registered trademark) LB manufactured by Showa Denko KK) as a binder was added to 100 parts by mass of vinylidene fluoride resin fine particles. A secondary battery separator was obtained.
  • Acrylic resin (“Polysol” (registered trademark) LB manufactured by Showa Denko KK) as a binder was added to 100 parts by mass of vinylidene fluoride resin fine particles.
  • a secondary battery separator was obtained.
  • Example 10 Except that polyvinylpyrrolidone was changed to 5 parts by mass with respect to 100 parts by mass of the vinylidene fluoride resin fine particles instead of the surfactant (nonionic polyoxyethylene alkyl ether) during the production of the aqueous dispersion of vinylidene fluoride resin fine particles, In the same manner as in Example 1, a secondary battery separator of the present invention was obtained.
  • Example 11 A vinylidene fluoride resin was dissolved in 9,000 parts by mass of acetonitrile at 100 ° C. with respect to 100 parts by mass of the copolymer at 80 ° C., and 11 parts by mass of water was added to 100 parts by mass of acetonitrile.
  • a vinylidene resin solution was prepared. The above-mentioned vinylidene fluoride resin solution at 76 ° C. was cooled to room temperature water (9,500 parts by mass with respect to 100 parts by mass of the vinylidene fluoride resin) and acetonitrile (500 parts by mass with respect to 100 parts by mass of the vinylidene fluoride resin).
  • a secondary battery separator of the present invention was obtained in the same manner as in Example 1 except that the above coating solution was used.
  • Example 12 A vinylidene fluoride resin was dissolved in 9,000 parts by mass of acetonitrile at 100 ° C. with respect to 100 parts by mass of the copolymer at 80 ° C., and 11 parts by mass of water was added to 100 parts by mass of acetonitrile. A vinylidene resin solution was prepared. The above-mentioned vinylidene fluoride resin solution at 76 ° C. was continuously added to a water bath at room temperature of 5,000 parts by mass with respect to 100 parts by mass of the copolymer to obtain a granulated liquid.
  • Acetonitrile is removed from the particleized liquid A, the particleized liquid B, and the particleized liquid C remaining in the water tank, and nonionic polyoxyethylene alkyl is used as a surfactant with respect to 100 parts by mass of the vinylidene fluoride resin fine particles.
  • 374 parts by mass of ion-exchanged water was added and predispersed with a homomixer.
  • the preliminary dispersion was treated with ultrasonic waves (output 120 W), and then the coarse particles were separated by centrifugal sedimentation to obtain an aqueous dispersion composed of vinylidene fluoride resin fine particles having an average particle diameter of 0.1 ⁇ m.
  • a secondary battery separator of the present invention was obtained in the same manner as in Example 1 except that the above coating solution was used.
  • Example 1 A separator for a secondary battery of the present invention was obtained in the same manner as in Example 1 except that the thickness of the porous layer was 0.05 ⁇ m.
  • Comparative Example 2 A separator for a secondary battery of the present invention was obtained in the same manner as in Example 1 except that the thickness of the porous layer was 4.0 ⁇ m.
  • Example 3 The secondary battery of the present invention was carried out in the same manner as in Example 7 except that a dispersion liquid in which acrylic resin particles having an average particle diameter of 0.35 ⁇ m were dispersed in water was used and the thickness of the porous layer was 4.0 ⁇ m. A separator was obtained.
  • Examples 1 to 12 of the present invention all have organic resin fine particles having an average particle size of 0.02 ⁇ m or more and less than 0.40 ⁇ m, and the porous layer has a film thickness of 0.10 ⁇ m or more and less than 2.5 ⁇ m. Therefore, an increase in air permeability is suppressed, and good adhesive strength with the electrode can be obtained.
  • Comparative Example 1 although the average particle diameter of the organic resin fine particles is small, the desired adhesive strength cannot be obtained because the porous layer is thin.
  • Comparative Examples 2 and 3 the average particle diameter of the organic resin fine particles is small, but since the porous layer is thick, the increase in air permeability becomes large, and the adhesive strength cannot be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の目的は、低コストで有機樹脂微粒子を積層させ、電極との接着性を発現する二次電池用セパレータを提供することにあり、本発明は、多孔質基材の少なくとも片面に、平均粒径が0.02μm以上0.40μm未満である有機樹脂微粒子を含有する多孔質層が積層され、前記多孔質層の膜厚が0.10μm以上2.5μm未満であることを特徴とする二次電池用セパレータである。

Description

二次電池用セパレータおよび二次電池
 本発明は、二次電池用セパレータおよび二次電池に関するものである。
 リチウムイオン電池のような二次電池は、携帯電話、ノートパソコン、デジタルカメラ、デジタルビデオカメラ、携帯ゲーム機などのポータブルデジタル機器に広く用いられており、近年は自動車用途として、ハイブリッド車、電気自動車、プラグインハイブリッド車などの電源としての使用が拡大してきている。
 リチウムイオン電池は一般的に、正極活物質を正極集電体に積層した正極と、負極活物質を負極集電体に積層した負極との間に、二次電池用セパレータと電解質が介在した構成となっている。
 二次電池用セパレータとしては、ポリオレフィン系多孔質基材が用いられており、求められる特性としては、多孔構造中に電解液を含み、イオン移動を可能にする特性と、リチウムイオン電池が異常発熱した場合に、熱で溶融することで多孔構造が閉鎖され、イオン移動を停止させて、発電を停止させる特性が挙げられる。
 しかしながら、近年のリチウムイオン電池の高容量化、高出力化に伴い、前記特性のみならず、充放電を繰り返すことで電極と二次電池用セパレータの間に隙間が発生し、サイクル特性が悪化することを防ぐための電極との接着性が求められてきている。また、二次電池の普及に伴い、製造コストを下げることが求められており、二次電池用セパレータに関しても低価格での提供が求められている。
 これらの要求に対して、特許文献1、2では、接着性を保有するフッ化ビニリデン系樹脂を主成分とする多孔質層をポリオレフィンからなる多孔質基材上に積層することで電極との接着性を向上した二次電池用セパレータが提案されている。
 一方で、近年のリチウムイオン電池の高容量化、高出力化に伴い、前記特性のみならず、優れた負荷特性および安全性が求められ、すなわち耐熱性の向上が求められてきている。
 これらの要求に対して、特許文献3では、耐熱性微粒子を多孔質基材上に積層することが、特許文献4では、耐熱性微粒子に加えて膨潤性微粒子を多孔質基材上に積層することが提案されている。
特開2004-146190号公報 特開2012-221741号公報 特開2010-15917号公報 特開2012-48932号公報
 しかしながら、特許文献1、2では、電極との接着性は向上されるが、製造方法として、有機溶媒に溶解させた有機樹脂を離形フィルムや多孔質基材上にコーティングし、それを凝固槽に浸漬させて多孔質層を形成することが提案されているが、この製造方法では高コストの製法となり現在の低コスト化への要求には応えられない。
 従って、本発明の目的は、上記問題に鑑み、低コストで、電極との接着性を発現する二次電池用セパレータを提供することにある。
 そこで、本発明者らは、有機樹脂微粒子を積層させて多孔質層を形成する方法に着目し、鋭意検討を重ねた。
 ここで、特許文献3では、耐熱性微粒子として有機樹脂微粒子の例が挙げられているものの、実際には無機微粒子しか多孔質基材上に積層させておらず、そもそも耐熱性向上を目的としており、積層膜厚が厚く、微粒子の平均粒径が大きいために、十分な接着性を発現しないのではないかと本発明者らは考えた。
 また、特許文献4では、耐熱性微粒子に加えて、有機樹脂微粒子である膨潤性微粒子を多孔質基材上に積層させた例が示されているが、これも耐熱性向上を目的としており、積層膜厚が厚く、微粒子の平均粒径が大きいために、十分な接着性を発現しないのではないかと本発明者らは考えた。
 このように、多孔質層の膜厚の制御と有機樹脂微粒子の平均粒径の制御が重要であることを見出し、さらに検討を重ね、それらが特定の範囲内であれば顕著な効果を発現することを見出した。また、これまでは有機樹脂微粒子の平均粒径を特定の範囲内に制御することが難しかったために、最適な多孔質層の膜厚にすることが困難であったが、有機樹脂微粒子の平均粒径を特定の範囲内に制御する方法についても鋭意検討し、最適な方法を見出すことができた。
 上記課題を解決するため本発明の二次電池用セパレータは次の構成を有する。
(1)多孔質基材の少なくとも片面に、平均粒径が0.02μm以上0.40μm未満である有機樹脂微粒子を含有する多孔質層が積層され、前記多孔質層の膜厚が0.10μm以上2.5μm未満であることを特徴とする二次電池用セパレータ。
(2)前記有機樹脂微粒子がフッ素樹脂、アクリル樹脂およびスチレン-ブタジエン樹脂からなる群より選択される少なくとも一種の樹脂を含有する上記1に記載の二次電池用セパレータ。
(3)前記有機樹脂微粒子がフッ素樹脂を含有し、前記フッ素樹脂の重量平均分子量が60万以上150万以下である上記2に記載の二次電池用セパレータ。
(4)前記多孔質層における前記有機樹脂微粒子の割合が50質量%以上100質量%未満である上記1~3のいずれかに記載の二次電池用セパレータ。
(5)前記多孔質層が前記多孔質基材の両面に積層されている上記1~4のいずれかに記載の二次電池用セパレータ。
(6)前記多孔質基材が、ポリオレフィン系多孔質基材である上記1~5のいずれかに記載の二次電池用セパレータ。
(7)水を主成分とする溶媒中に前記有機樹脂微粒子を分散した分散液を塗布することで多孔質層が積層される上記1~6のいずれかに記載の二次電池用セパレータ。
(8)前記多孔質基材と前記多孔質層との間に耐熱層を有する上記1~7のいずれかに記載の二次電池用セパレータ。
(9)前記多孔質層に、バインダーが有機樹脂微粒子100質量部に対して1質量部以上100質量部以下含まれる上記1~8のいずれかに記載の二次電池用セパレータ。
(10)前記有機樹脂微粒子が、有機樹脂を溶媒に溶解し、有機樹脂溶液を貧溶媒に添加することで有機樹脂微粒子を析出させる方法で得られたものであり、有機樹脂がフッ素樹脂であり、有機樹脂溶液には水が添加されており、添加する水の量は溶媒と水との合計量100質量%において1~25質量%であり、フッ素樹脂の量は溶媒と水との合計量100質量部に対して0.5~15質量部であることを特徴とする上記1~9のいずれかに記載の二次電池用セパレータ。
(11)前記有機樹脂溶液を貧溶媒に添加する方法がフラッシュ晶析方法である上記10に記載の二次電池用セパレータ。
(12)上記1~11のいずれかに記載の二次電池用セパレータを用いることを特徴とする二次電池。
 本発明によれば、特定の有機樹脂微粒子を用いることで、電極との接触面積が増えるため、および薄膜化するため、従来の電極との接着性をさらに向上させることができ、二次電池のサイクル特性を向上することができる。本発明の二次電池用セパレータを用いることで、高容量、高出力、低コストのリチウムイオン電池を提供することが可能となる。
 本発明の二次電池用セパレータは、多孔質基材の少なくとも片面に、平均粒径が0.02μm以上0.40μm未満である有機樹脂微粒子を含有する多孔質層が積層され、前記多孔質層の膜厚が0.10μm以上2.5μm未満であることを特徴とする二次電池用セパレータである。以下、本発明について詳細に説明する。
 [多孔質層]
 (有機樹脂微粒子)
 本発明の多孔質層を構成する有機樹脂微粒子に含有される有機樹脂としては、電気絶縁性を有し、非水電解質に対して安定であり、二次電池内で使用された際に酸化還元されにくく電気化学的に安定であることが求められる。これらを満たす有機樹脂としては、フッ素樹脂、アクリル樹脂、スチレン-ブタジエン樹脂、架橋ポリスチレン、メチルメタクリレート-スチレン共重合体、ポリイミド、メラミン樹脂、フェノール樹脂、ポリアクリロニトリル、シリコン樹脂、ポリカーボネート、などの樹脂が挙げられ、これらの樹脂を1種類で用いてもよく、2種類以上を混合して用いてもよい。また、前記有機樹脂の中でも、電気的安定性、耐酸化性が優れていること、および電解液に対して膨潤性が高いことから、フッ素樹脂、アクリル樹脂およびスチレン-ブタジエン樹脂からなる群より選択される少なくとも一種の樹脂を用いるのが特に好ましく、フッ素樹脂を用いるのが最も好ましい。
 用いられるフッ素樹脂としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリクロロトリフルオロエチレンなどのホモポリマー系、エチレン・テトラフルオロエチレンポリマー、エチレン-クロロトリフルオロエチレンポリマー、などのコポリマー系が挙げられる。また、ホモポリマー系とテトラフルオロエチレン、ヘキサフルオロプロピレン、トリフルオロエチレンなどとのコポリマーなども挙げられる。これらのフッ素樹脂の中でもフッ化ビニリデン樹脂、特には、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体からなる樹脂が、電気的安定性と耐酸化性の点から好適に用いられる。
 前記フッ素樹脂の重量平均分子量は、60万以上150万以下が好ましい。より好ましくは、80万以上であり、また120万以下である。重量平均分子量が60万より小さい場合、電極との接着性は発現するがその強度が弱いために剥離しやすくなる場合がある。また、150万より大きい場合、電解液に対する膨潤性が低くなるために接着性が弱くなる場合がある。
 また、前記フッ素樹脂は、電極との接着性を向上させるために酸変性されていることが好ましい。酸変性としては、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、シトラトコン酸などが挙げられ、これらのうちの1種類での酸変性でもよく、2種類以上で酸変性してもよい。
 前記有機樹脂微粒子の平均粒径は、0.02μm以上0.40μm未満である。より好ましくは0.05μm以上であり、また0.35μm未満である。さらに好ましくは0.08μm以上であり、また0.15μm未満である。平均粒径が0.02μmより小さい場合、有機樹脂微粒子が密に積層されてしまい透気度上昇が大きくなる場合がある。また、平均粒径が0.40μm以上の場合、電極との接触面積が小さくなり十分な接着性が得られない場合がある。なお、この場合の平均粒径とは、実施例に記載のとおり、多孔質層表面の顕微鏡観察により観察された有機樹脂微粒子が完全に囲まれる正方形の1辺または長方形の長辺(長軸径)の長さを測定し、数平均を算出したものである。詳細の測定方法については後述する。
 前記有機樹脂微粒子の形状としては、球状、板状、針状、棒状、楕円状などが挙げられ、いずれの形状であってもよい。その中でも、分散性、塗工性、多孔質化の観点から球状、板状が特に好ましい。前記有機樹脂微粒子のアスペクト比としては、好ましくは100以下、より好ましくは50以下、さらに好ましくは30以下である。アスペクト比が100よりも大きい場合、有機樹脂微粒子の取り扱い性が低下する場合がある。なお、ここでアスペクト比とは、実施例に記載のとおり、電子顕微鏡にて得られた粒子の画像上で粒子が完全に囲まれる正方形または長方形を描き、長方形の長辺(長軸径)を短辺(短軸径)で除した値のことである。なお、正方形の場合はアスペクト比は1となる。
 前記有機樹脂微粒子の製法としては、乳化重合、懸濁重合、分散重合などの公知の製法を用いることができる。また、上記製法で得られた有機樹脂微粒子を、目的の平均粒径および形状にするためにさらに加工を加えてもよい。例えば、凝固法、相分離法、乾式粉砕法、湿式粉砕法、スプレードライヤー法、などが挙げられる。
 凝固法としては、有機樹脂を溶媒に溶解し、有機樹脂溶液を貧溶媒に添加することで有機樹脂微粒子を析出させる方法が挙げられる。
 例えば、有機樹脂がフッ素樹脂の場合、フッ素樹脂の溶解に使用する溶媒は、フッ素樹脂を溶解する溶媒で、水と混じり合う溶媒であればよい。
 具体的には、N-メチル-2-ピロリドン(以下、NMPと略することもある)等のN-アルキルピロリドン類、1,3-ジメチル-2-イミダゾリジノン(以下、DMIと略すこともある)等のウレア類、N,N-ジメチルアセトアミド(以下、DMAcと略すこともある)、N,N-ジメチルホルムアミド(以下、DMFと略することもある)等の鎖状アミド系溶媒、ジメチルスルホキシド(以下、DMSOと略することもある)、ジメチルスルホン、テトラメチレンスルホン等のイオウ酸化物系極性溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、アセトニトリル、プロピオニトリル等のニトリル系溶媒の中から少なくとも一種選ばれる溶媒が挙げられる。中でも、溶媒の安定性と工業的取り扱いのしやすさから、NMP、DMI、アセトン、メチルエチルケトン、アセトニトリルが好ましく、より好ましくはNMP、アセトニトリルである。
 溶解槽の雰囲気は、フッ素樹脂の分解、劣化を抑制するため、更には安全に作業を進めるために酸素ガス濃度を低くする方が好ましく、不活性ガス雰囲気下に溶解槽を配置することが好ましい。不活性ガスとしては、窒素ガス、二酸化炭素ガス、ヘリウムガス、アルゴンガスなどが挙げられるが、経済性、入手容易性を勘案して、窒素ガス、アルゴンガス、二酸化炭素ガスが好ましく、特に好ましくは窒素ガスあるいはアルゴンガスが用いられる。
 溶解方法は特に限定しないが、フッ素樹脂溶液を作る場合、所定の容器にフッ素樹脂、溶媒と水を入れ、撹拌しながら溶解する。常温で溶解しない場合、加熱することにより溶解させる。
 フッ素樹脂を溶媒に溶解した後、水を添加してもよい。溶解後に水を添加する方法では、所定の容器でフッ素樹脂溶液を作製した後、フッ素樹脂溶液に水を添加する。水の添加には、送液ポンプ、駒込ピペット等を用いることができるが、一度に大量の水を入れるとフッ素樹脂が析出し、フッ素樹脂の溶解に長時間を要するので、徐々に水を加えることが好ましい。粒径の揃ったフッ素樹脂微粒子を製造するにはフッ素樹脂を溶媒に完全溶解させてから貧溶媒へ添加、もしくはフラッシュ晶析して析出させることが好ましいが、未溶解のフッ素樹脂が存在していてもよい。
 添加する水の量は、溶解させるフッ素樹脂濃度、溶媒の種類によって異なるが、溶媒と水との合計量100質量%において、好ましくは、1質量%以上25質量%以下である。水の量が少なすぎると異形粒子が生成し、水の量が多すぎるとフッ素樹脂が析出する場合がある。
 溶解温度は使用する溶媒の種類やフッ素樹脂の濃度によって異なるが、通常は常温~200℃、好ましくは常温~100℃、または溶媒の沸点以下である。
 溶解時間は溶媒の種類、フッ素樹脂の濃度、溶解温度によって異なるが、通常、5分~50時間の範囲であり、好ましくは、10分~40時間の範囲である。
 フッ素樹脂濃度が高いと、フッ素樹脂溶液を貧溶媒へ添加してフッ素樹脂微粒子を析出させる際にフッ素樹脂微粒子同士の融着等が生じ、粒径の小さなフッ素樹脂微粒子や粒径の揃ったフッ素樹脂微粒子が得られない場合がある。
 そのため、フッ素樹脂の貧溶媒へ添加する場合のフッ素樹脂溶液中のフッ素樹脂の量は、通常は溶媒100質量部、水が添加されている場合は、溶媒と水との合計100質量部に対してフッ素樹脂が0.1質量部以上15質量部以下とし、好ましくは0.5質量部以上10質量部以下である。
 上記範囲であれば、工業生産に適用可能である。本実施態様においては前記溶媒にフッ素樹脂を溶解させた後、フッ素樹脂溶液を析出工程に供する。
 析出工程としては、下記(a1工程)、特には(a2工程)が挙げられる。
(a1工程)貧溶媒へフッ素樹脂溶液を添加してフッ素樹脂微粒子を析出させる工程
(a2工程)貧溶媒へフッ素樹脂溶解液をフラッシュ晶析してフッ素樹脂微粒子を析出させる工程
 (a1工程)では、フッ素樹脂粒子の貧溶媒へフッ素樹脂溶液を添加してフッ素樹脂微粒子を析出させる。
 フッ素樹脂溶液をフッ素樹脂の貧溶媒へ添加するにあたっては、フッ素樹脂溶液を入れた容器からフッ素樹脂の貧溶媒を入れた容器(以下「受槽」と称することがある)に連続的に注入してもよいし、滴下してもよい。また、フッ素樹脂溶液を貧溶媒の上から気相を介して添加してもよいが、微細で粒径の揃った粒子が得られる点から直接貧溶媒中に入れることが好ましい。
 フッ素樹脂と貧溶媒とを接触させてフッ素樹脂粒子を作製する方法には、貧溶媒を入れた受槽へフッ素樹脂溶液を添加して粒子化液を作製した後、粒子化液を抜き出し、次工程に供する方法(回分式)と連続流通式(単に連続式と略することがある)の2つの方法がある。連続流通式に用いる反応器には、連続槽型反応器(continuous stirred tank reactor、略称:CSTR)と管型反応器(plug flow reactor、略称:PFR)とがある。フッ素樹脂の粒子化には、いずれの反応器も適応可能である。
 CSTRを用いる方法は、受槽(連続式では反応器ということがある)に貧溶媒を入れ、フッ素樹脂溶液を添加してフッ素樹脂粒子を作製した後、続いて、その粒子化液にフッ素樹脂溶液と貧溶媒とを同時に滴下しつつ、受槽からフッ素樹脂の粒子化液を連続的に抜き出して、連続的に粒子化する方法である。また、回分式により作製したフッ素樹脂の粒子化液に、フッ素樹脂溶液と貧溶媒とを同時に滴下しつつ、受槽からフッ素樹脂の粒子化液を連続的に抜き出して粒子化液を作製することもできる。
 CSTRを用いる場合、フッ素樹脂溶液と貧溶媒とを同時に滴下することが好ましい。貧溶媒の滴下速度に対するフッ素樹脂溶液滴下速度の比は、フッ素樹脂粒子が生成できればよく、特に限定されないが、生産性の観点からフッ素樹脂溶液滴下速度に対する貧溶媒の滴下速度比は、0.1~100が好ましく、0.2~50がより好ましい。
 また、受槽(反応器)からの粒子化液抜き出し流量に対する受槽内の粒子化液質量の比を滞留時間とすると、滞留時間は、微細で粒径の揃った粒子が得られれば特に限定されないが、1秒間~10時間が好ましく、1分間~1時間がより好ましい。
 受槽には粒子化液の均一性を保持するために混合装置を設置してもよい。混合装置の例として攪拌羽や2軸混合機、ホモジナイザー、超音波照射等を挙げることができる。
 PFRを用いる方法は、フッ素樹脂溶液と貧溶媒とを配管の中へ一定速度で通液して配管中でフッ素樹脂溶液と貧溶媒を混合させて粒子化を行い、連続的に粒子化液を取り出す方法で、種々の配管を使用することができる。例えば、2つの配管を使用する場合、フッ素樹脂溶液を内管、貧溶媒を外管に一定速度で通液し、外管中でフッ素樹脂溶液と貧溶媒とを混合させて粒子化することもできる。また、フッ素樹脂溶液を外管、貧溶媒を内管に通液してもよい。
 1つの配管を用いて連続粒子化する場合、例えば、T字型配管では、フッ素樹脂溶液の流れに対して90度の方向から貧溶媒を通液してフッ素樹脂溶液と貧溶媒とを接触させて粒子化することもできる。
 種々の配管を用いてフッ素樹脂溶液と貧溶媒とを混合させて連続的に粒子化することができるので、PFRの方法は、上記に限定されるものではない。
 PFRを用いる場合、フッ素樹脂溶液通液速度と貧溶媒との通液速度は、フッ素樹脂粒子が生成できればよく、特に限定されないが、生産性の観点から貧溶媒の通液速度に対するフッ素樹脂溶液通液速度の比は、0.1~100が好ましく、0.2~50がより好ましい。
 また、フッ素樹脂溶液と貧溶媒との混合部分は配管のみでもよく、管状混合装置を設置してもよい。管状混合装置として上記混合装置やスタティックミキサー等の静的混合構造物を格納した管状混合装置等を挙げることができる。
 フッ素樹脂溶液と貧溶媒の混合時間は上記滞留時間と同じ範囲内であれば良い。配管の内径はフッ素樹脂溶液と貧溶媒とが混合すればよく、特に限定されないが、生産性の観点から0.1mm~1mが好ましく、1mm~1mがより好ましい。
 2つの配管を内管と外管として用いる場合、内管径と外管径との比は、粒子化液ができれば特に限定しないが、外管径/内管径=1.1~500が好ましく、外管径/内管径=1.1~100がより好ましい。
 フッ素樹脂微粒子の貧溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカンなどの脂肪族炭化水素系溶媒、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、ナフタレンなどの芳香族炭化水素系溶媒、酢酸エチル、酢酸メチル、酢酸ブチル、プロピオン酸ブチル等のエステル系溶媒、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、エタノール、1-プロパノール、2-プロパノールなどのアルコール系溶媒、水などが挙げられ、好ましくは、メタノール、エタノール、1-プロパノール、2-プロパノールなどのアルコール系溶媒、水などであり、特に好ましくは、メタノール、エタノールおよび水である。
 また、フッ素樹脂微粒子を貧溶媒中に均一に分散させる観点からは、フッ素樹脂の貧溶媒は溶解に使用する溶媒と均一に混ざり合う溶媒であることが好ましい。ここで均一に混ざり合うとは、2つ以上の溶媒を混合して1日静置しても界面が現れないことをいう。例えば、水に対しては、NMP、DMF、DMAc、アセトン、DMSO、テトラヒドロフラン、アセトニトリル、メタノール、エタノール等が均一に混ざり合う溶媒として挙げることができる。
 また、フッ素樹脂の貧溶媒は、溶解で使用する溶媒と均一に混ざり合うならば、単一の溶媒を用いてもよいし、2種類以上の溶媒を混合して用いてもよいが、特に微細かつ粒径の揃った粒子が得られやすい点から、水-アルコール類、水-ニトリル類の混合溶媒等、水を含む混合溶媒を用いるのが好ましい。
 フッ素樹脂の貧溶媒の使用量は特に限定しないが、溶解に用いる溶媒1質量部に対して0.1質量部以上100質量部以下の範囲を例示することができ、好ましくは0.1質量部以上50質量部以下、更に好ましくは0.1質量部以上10質量部以下である。
 フッ素樹脂の貧溶媒中にフッ素樹脂溶液を添加する場合の受槽温度は、0℃以上で溶媒の沸点以下まで設定できるが、用いる溶媒によっては、粒子同士の融着が起こり、粒子が得られない場合があるので、添加直前の温度として0℃以上40℃以下が好ましい。この添加によりフッ素樹脂溶液からフッ素樹脂微粒子が析出し、フッ素樹脂微粒子の分散した液もしくは懸濁した液が得られる。また、フッ素樹脂溶液を加える際に、フッ素樹脂の貧溶媒を攪拌することが好ましい。
 (a2工程)では、溶解させたフッ素樹脂溶液をフラッシュ晶析してフッ素樹脂微粒子を析出させる。すなわち、貧溶媒へフッ素樹脂溶液を添加する方法において、フラッシュ晶析方法を用いるものである。
 フラッシュ晶析とは、フッ素樹脂溶液を急速に固化・結晶化させる方法のことをいい、より具体的には、加熱・加圧下にある上記溶液を、溶解に用いた溶媒の沸点以下(常温以下でもよい)で加圧されている圧力以下(減圧下でもよい)の他の容器(以下受槽と称する場合もある)中にノズルを介して噴出させて移液し、晶析させる方法、または加圧下にある上記溶液を、加圧されている圧力以下(減圧下でもよい)の他の容器(以下受槽と称する場合もある)中にノズルを介して噴出させて移液し、晶析させる方法である。
 フラッシュ晶析する際、貧溶媒中に向けてフッ素溶液を噴出させることが好ましい。フッ素樹脂溶液が噴出するノズルの先端を受槽側の貧溶媒中に入れた状態でフラッシュさせることが好ましいが、ノズル先端を貧溶媒から離し、気相を介して貧溶媒中にフラッシュさせてもよい。
 具体的に説明すると、加熱・加圧下、または加圧下に保持した容器からフッ素樹脂溶液を大気圧下(減圧下でもよい)の受槽に向けて噴出させることによりフラッシュ晶析を行うことが好ましい。例えば前記溶解工程において、オートクレーブ等の耐圧容器中で加熱・溶解させると容器内は加熱による自製圧により加圧状態となる(窒素等の不活性ガスでさらに加圧してもよい)。この状態から放圧して大気圧下の受槽に放出させることにより、より一層簡便に行うことができる。また、常温で溶解させた場合、溶解槽を任意の圧力に加圧し、フッ素樹脂の貧溶媒中に向けてフラッシュ晶析することによりフッ素樹脂微粒子を得ることができる。
 貧溶媒中にフラッシュ晶析する場合に用いる貧溶媒としては、特に制限はなく、(a1工程)で説明した貧溶媒と同様のものを用いることができる。
 フッ素樹脂の貧溶媒の使用量は特に限定しないが、溶解に用いた溶媒1質量部に対して0.1質量部以上100質量部以下の範囲を例示することができ、好ましくは0.2質量部以上50質量部以下、更に好ましくは0.3質量部以上10質量部以下である。
 フラッシュ晶析時の操作条件としては、通常、常温~200℃、好ましくは常温~100℃の範囲で溶解させた溶液を、後述する範囲で加圧されている圧力以下、あるいは減圧下の容器に1段でフラッシュ晶析する方法、または溶解液を入れた槽内よりも圧力の低い容器に多段でフラッシュ晶析する方法等が採用できる。具体的には、例えば前記溶解工程において、オートクレーブ等の耐圧容器中で加熱・溶解させると、容器内は加熱による自製圧により加圧状態となる(窒素等の不活性ガスでさらに加圧してもよい)。この加圧状態とした溶解液を、フッ素樹脂の貧溶媒を入れた大気圧の受槽に向けてフラッシュさせるか、減圧下の受槽に向けてフラッシュさせる。また、オートクレーブ等の耐圧容器中で加熱しないで溶解させた場合、任意の圧力に加圧して加圧状態とした溶解液を、フッ素樹脂の貧溶媒を入れた大気圧の受槽に向けてフラッシュさせるか、減圧下の受槽に向けてフラッシュさせる。フラッシュ晶析する溶解液の圧力(ゲージ圧)は0.2MPa以上4MPa以下であることが好ましい。この環境にある溶解液を大気圧下の受槽に向けてフラッシュ晶析することが好ましい。
 受槽の温度は、受槽に入れるフッ素樹脂の貧溶媒により異なるが、フッ素樹脂の貧溶媒が凝固しない温度~50℃、具体的には水の場合、フラッシュ晶析直前の温度として0℃~50℃が好ましい。
 フラッシュ晶析方法では、溶解槽からの連結管出口を受槽の大気中、またはフッ素樹脂の貧溶媒中に入れ、フラッシュ晶析する方法が挙げられるが、貧溶媒中に入れる方がより微細なフッ素樹脂微粒子が得られるので好ましい。
 上記析出工程(a1工程)、特には(a2工程)により得られるフッ素樹脂微粒子は、分散液もしくは懸濁液の状態で得ることができる。なお、仕込んだフッ素樹脂の未溶解分等の粗粒を含む場合には、ろ過等により除くことも可能である。
 本実施態様の方法を採用することにより、微細で、粒度の揃ったフッ素樹脂微粒子を安定的に製造することができる。フッ素樹脂微粒子、特にはフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体からなるフッ化ビニリデン系樹脂微粒子を用いることで透気度を低下させることなく、かつ多孔質基材と多孔質層との間の密着性を向上させることができる。
 相分離法としては、有機樹脂を溶媒に溶解し、非溶媒などを利用して、有機樹脂溶液をエマルジョン化させ、貧溶媒と接触させることで有機樹脂微粒子を形成させる方法が挙げられる。乾式粉砕法としては、有機樹脂微粒子同士を衝突させることで粉砕する方式や、金属壁に衝突させることで粉砕する方式が挙げられる。湿式粉砕法としては、有機樹脂微粒子を分散させた分散媒にジルコニア等のビーズを添加し、攪拌してビーズと有機樹脂微粒子を衝突させることで粉砕する方式が挙げられる。ビーズの材質およびビーズ径は目的の有機樹脂微粒子の形状、サイズに合わせて用いることができる。
 また、スプレードライヤー法としては、有機樹脂を溶媒に溶解させ、溶かした溶液をノズルから噴霧することで液滴を作製し、乾燥することで微粒子化する方式が挙げられる。スプレードライヤー方式に用いる溶媒としては、有機樹脂を溶解すれば特に限定はされないが、有機樹脂の融点よりも沸点が低い溶媒が好ましく、具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトン、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、酢酸エチル、酢酸プロピル、酢酸ブチル、テトラヒドロフラン、シクロヘキサノン等が挙げられる。
 (バインダー)
 前記有機樹脂微粒子同士、および多孔質基材と結着させるために、必要であればバインダーを用いてもよい。また、バインダーを添加することで電極との接着性が向上する場合もある。
 バインダーに用いられる樹脂としては、フッ素樹脂、アクリル樹脂、スチレン-ブタジエン樹脂、架橋ポリスチレン、メチルメタクリレート-スチレン共重合体、ポリイミド、メラミン樹脂、フェノール樹脂、ポリアクリロニトリル、シリコン樹脂、ポリカーボネート、カルボキシメチルセルロース樹脂などが挙げられ、これらの樹脂を1種類で用いてもよく、2種類以上を混合して用いてもよい。また、前記バインダー樹脂の中でも、電気的安定性と耐酸化性の点から、フッ素樹脂、アクリル樹脂、スチレン-ブタジエン樹脂、およびカルボキシメチルセルロースを用いるのが特に好ましい。
 また、用いるバインダーは溶媒に溶解するバインダーでも、微粒子状のバインダーでもよく、特にその形態は限定されないが、多孔質構造を形成する上では微粒子状のバインダーが好ましい。微粒子状のバインダーとしては、多孔質層形成時に一部またはすべてが造膜するものでもよく、また造膜しないものを用いてもよい。微粒子状のバインダーを造膜させる方法としては、溶媒を乾燥させる際の熱による造膜や、N-メチル-2-ピロリドン、ジメチルアセトアミド、ジプロピレングリコールメチルエーテル、ブチルグリコール、プロピレングリコール、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレートなどの造膜助剤を添加することで造膜させてもよい。
 微粒子状のバインダーの平均粒径は、1μm以下が好ましい。1μmより大きい場合は、有機樹脂微粒子を多孔質基材に結着させるのに必要なバインダーの量が増加するため、電池性能を低下させる場合がある。
 有機樹脂微粒子に対するバインダーの含有量としては、有機樹脂微粒子100質量部に対して100質量部以下が好ましく、より好ましくは80質量部以下、さらに好ましくは70質量部以下である。また、有機樹脂微粒子100質量部に対して1質量部以上が好ましく、より好ましくは2質量部以上、さらに好ましくは5質量部以上である。バインダーの含有量が100質量部よりも大きい場合、有機樹脂微粒子の含有量が少なくなり、電極と有機樹脂微粒子との接触面積が小さくなり接着性が弱くなる場合がある。また、透気度の上昇も大きくなり、電池特性が低下する場合がある。1質量部未満の場合接着性を発現しにくくなり、多孔質基材上に積層された有機樹脂微粒子が欠落して多孔質層を形成しにくくなる場合がある。
 (多孔質層の形成)
 本発明の二次電池用セパレータは、多孔質基材の少なくとも片面に、有機樹脂微粒子を含有する多孔質層を積層することで得られるが、その方法について以下に説明する。
 乳化重合、懸濁重合、分散重合などの公知の製法により製造された有機樹脂微粒子、もしくは重合後に目的の平均粒径、形状に加工された有機樹脂微粒子を、溶媒中に分散させることで塗工液を調整する。ここで、分散させる溶媒としては、多孔質基材への溶媒の含浸を抑制させる点から、水を主成分とする溶媒が好ましい。なお、ここで主成分とは溶媒100質量%中、水が50質量%以上含まれていることをいう。
 この水を主成分とする溶媒中に占める水の割合は50質量%以上が好ましく、より好ましくは60質量%以上、さらに好ましくは70質量%以上である。水の割合が50質量%未満の場合は、多孔質基材へ塗工する際に基材に塗工液が含浸し所望の多孔質層を形成することができない場合がある。また、塗工液が含浸されることで多孔質基材の搬送が困難になり搬送中にシワが発生する場合がある。
 有機樹脂微粒子を分散させる場合、必要であれば分散剤を用いてもよい。分散剤の種類としては特に限定されないが、例えば、アルキルアミン塩、第四級アンモニウム塩などのカチオン系界面活性剤、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、アルキルベンゼンスルホン酸塩、脂肪酸塩などのアニオン系界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノール、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステルなどのノニオン系界面活性剤、アルキルベタイン、アルキルアミンオキサイドなどの両性界面活性剤、および上記カチオン系、アニオン系、ノニオン系、両性のフッ素系界面活性剤、シリコン系界面活性剤などが挙げられる。これらの界面活性剤を1種類で用いてもよく、2種類以上を混合して用いてもよい。界面活性剤の添加量としては、分散させる有機樹脂微粒子100質量部に対して0.1質量部以上40質量部以下が好ましく、より好ましくは0.5質量部以上30質量部以下、さらに好ましくは1質量部以上20質量部以下である。界面活性剤の添加量が40質量部よりも多くなると、多孔質層に対する有機樹脂微粒子の含有量が小さくなることで、接着性が低下する場合がある。
 有機樹脂微粒子を分散させる方法としては、公知の手法を用いればよく、ボールミル、ビーズミル、サンドミル、ロールミル、ホモジナイザー、超音波ホモジナイザー、高圧ホモジナイザー、超音波装置、ペイントシェーカーなどが挙げられるが、これら複数の混合分散機を組み合わせて段階的に分散を行ってもよい。
 塗工液を調製する順序としては特に限定はされないが、分散工程の効率化の観点から、水を主成分とする溶媒に分散剤として界面活性剤を添加、混合し、その溶液の中に有機樹脂微粒子、および有機樹脂微粒子同士や多孔質基材と結着させるために、必要であれば前記バインダーを添加してもよい。
 また、多孔質層の耐熱性を向上させるために、酸化アルミニウム、ベーマイト、シリカ、酸化チタン、酸化ジルコニウム、酸化鉄、酸化マグネシウムなどの無機微粒子を塗工液に添加してもよい。この場合、無機微粒子の添加量は有機樹脂微粒子に対して30体積%未満であることが好ましい。無機微粒子を30体積%以上添加すると十分な接着性が得られなくなる場合がある。また、必要であれば適宜、酸化防止剤、安定化剤、消泡剤、レベリング剤等を添加してもよい。
 次に、得られた塗工液を多孔質基材上に塗工し、乾燥を行い、多孔質層を積層する。塗工方法としては、公知の方法で塗工すればよく、例えば、グラビアコーティング、スリットダイコーティング、ナイフコーティング、キスコーティング、ロールコーティング、バーコーティング、吹き付け塗装、浸漬コーティング、スピンコーティング、スクリーン印刷、インクジェット印刷、パット印刷、他の種類の印刷などが利用できるが、これらに限定されることはなく、用いる有機樹脂微粒子、バインダー、界面活性剤、使用する溶媒、基材などの好ましい条件に合わせて塗工方法を選択すればよい。また、塗工性を向上させるために、例えば、コロナ処理、プラズマ処理などの塗工面の表面処理を行ってもよい。
 多孔質基材の両面に多孔質層を積層させる場合は、片面ずつ塗工して乾燥させてもよいが、両面同時に塗工して乾燥させる方が、生産性が良く好ましい。また、接着性の観点から、片面のみに多孔質層を積層するよりも両面に積層した方が、正極、負極の両面で接着性が得られることから、サイクル特性が優れるため好ましい。また、耐熱層が必要である場合は、多孔質基材上に耐熱層を積層した後に多孔質層を積層させてもよく、耐熱層と多孔質層を同時に積層させる塗工方式を用いてもよい。
 多孔質層の膜厚は、0.10μm以上2.5μm未満である。より好ましくは、0.5μm以上2.0μm未満である。多孔質層の厚みが0.10μmよりも薄い場合、電極との十分な接着性が得られない場合がある。また、2.5μm以上の場合、透気度の上昇が大きくなる、あるいは接着性が十分でなくなる場合がある。また、片面のみに積層した場合、カールが著しくなる場合があるため、多孔質基材の両面に多孔質層を積層させることが好ましい。また、同様の理由で両面に積層する場合は、それぞれの面の多孔質層の膜厚差は、1μm以下にすることが好ましい。
 多孔質層の積層による透気度の上昇は5倍以下であることが好ましい。より好ましくは3倍以下である。多孔質層の積層により透気度が5倍よりも大きくなると、二次電池用セパレータとしての全体の透気度も大きくなり、十分なイオン移動性が得られず、電池特性が低下してしまう場合がある。
 [多孔質基材]
 本発明において、多孔質基材としては、電気絶縁性であり、電気的に安定で、電解液にも安定である樹脂から構成されていることが好ましい。また、シャットダウン機能を付与する観点から用いる樹脂は融点が200℃以下の熱可塑性樹脂が好ましい。ここでのシャットダウン機能とは、リチウムイオン電池が異常発熱した場合に、熱で溶融することで多孔構造を閉鎖し、イオン移動を停止させて、発電を停止させる機能のことである。熱可塑性樹脂としては、例えばポリオレフィン系樹脂が挙げられ、前記多孔質基材は融点が200℃以下であるポリオレフィン系多孔質基材であることが好ましい。ポリオレフィン系樹脂としては、具体的にはポリエチレン、ポリプロピレン、その共重合体、およびこれらを組み合わせた混合物などが挙げられ、例えばポリエチレンを90質量%以上含有する単層の多孔質基材、ポリエチレンとポリプロピレンからなる多層の多孔質基材などが挙げられる。
 多孔質基材の製造方法としては、ポリオレフィン系樹脂をシートにした後に延伸することで多孔質化する方法やポリオレフィン系樹脂を流動パラフィンなどの溶剤に溶解させてシートにした後に溶剤を抽出することで多孔質化する方法が挙げられる。
 多孔質基材の厚みは、5μm以上50μm以下が好ましく、より好ましくは5μm以上30μm以下である。多孔質基材の厚みが50μmより厚くなると多孔質基材の内部抵抗が高くなる場合がある。また、多孔質基材の厚みが5μmより薄くなると製造が困難になり、また十分な力学特性が得られない場合がある。
 多孔質基材の透気度は、50秒/100cc以上1,000秒/100cc以下であることが好ましい。より好ましくは50秒/100cc以上~500秒/100cc以下である。透気度が1,000秒/100ccよりも大きいと、十分なイオン移動性が得られず、電池特性が低下してしまう場合がある。50秒/100ccよりも小さい場合は、十分な力学特性が得られない場合がある。
 [耐熱層]
 二次電池用セパレータの寸法安定性を向上するため、前記多孔質基材と前記多孔質層との間に耐熱層を積層することが好ましい。二次電池用セパレータに求められる耐熱性は、150℃での熱収縮が10%以内であることである。耐熱層には耐熱性微粒子が含有されており、耐熱性微粒子としては、電池内で電気的に安定であること、電気絶縁性を有すること、および耐熱性が求められる。これらの特性を満たせば、耐熱性微粒子としては、無機微粒子でも有機樹脂微粒子でも、また他の微粒子でも用いることができる。
 具体的に無機微粒子としては、酸化アルミニウム、ベーマイト、シリカ、酸化チタン、酸化ジルコニウム、酸化鉄、酸化マグネシウムなどの無機酸化物微粒子、窒化アルミニウム、窒化硅素などの無機窒化物微粒子、フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶粒子などが挙げられ、有機樹脂微粒子としては、ポリフッ化ビニリデン、架橋ポリメタクリル酸メチル、架橋ポリスチレン、メチルメタクリレート-スチレン共重合体、ポリイミド、メラミン樹脂、フェノール樹脂、ポリアクリロニトリルなどが挙げられる。これらの微粒子を1種類で用いてもよく、2種類以上を混合して用いてもよい。
 用いる微粒子の平均粒径は、0.1μm以上5μm以下であることが好ましい。0.1μmより小さいと、機能性多孔質層が緻密になることで透気度が高くなる場合がある。また、空孔径が小さくなることから電解液の含浸性が低下し生産性に影響を与える場合がある。
 用いる微粒子の形状としては、球状、板状、針状、棒状、楕円状などが挙げられ、いずれの形状であってもよい。その中でも、表面修飾性、分散性、塗工性の観点から球状であることが好ましい。
 耐熱層の膜厚は、0.5μm以上10μm以下であることが好ましい。より好ましくは、1μm以上~5μm以下である。耐熱層の厚みが0.5μmよりも薄い場合、十分な耐熱性が得られない場合がある。また、10μmよりも厚い場合、透気度の上昇が大きくなる場合がある。また、耐熱層は多孔質基材の片面のみでも両面でもよく、特に限定されない。
 [二次電池用セパレータ]
 本発明の二次電池用セパレータは、上記のように多孔質基材の少なくとも片面に、有機樹脂微粒子を含有する多孔質層が積層された二次電池用セパレータである。積層された多孔質層には、イオン透過性を有するために十分に多孔化されていることが好ましく、二次電池用セパレータの透気度として、50秒/100cc以上1,000秒/100cc以下であることが好ましい。より好ましくは50秒/100cc以上500秒/100cc以下である。透気度が1,000秒/100ccよりも大きいと、十分なイオン移動性が得られず、電池特性が低下してしまう場合がある。50秒/100ccよりも小さい場合は、十分な力学特性が得られない場合がある。
 [二次電池]
 本発明の二次電池用セパレータは、リチウムイオン電池等の二次電池に好適に用いることができる。リチウムイオン電池は、正極活物質を正極集電体に積層した正極と、負極活物質を負極集電体に積層した負極との間に、二次電池用セパレータと電解質が介在した構成となっている。
 正極は、活物質、バインダー樹脂、および導電助剤からなる正極剤が集電体上に積層されたものであり、活物質としては、LiCoO、LiNiO、Li(NiCoMn)O、などの層状構造のリチウム含有遷移金属酸化物、LiMnなどのスピネル型マンガン酸化物、およびLiFePOなどの鉄系化合物などが挙げられる。バインダー樹脂としては、耐酸化性が高い樹脂を使用すればよく、具体的にはフッ素樹脂、アクリル樹脂、スチレン-ブタジエン樹脂などが挙げられる。導電助剤としては、カーボンブラック、黒鉛などの炭素材料が用いられている。集電体としては、金属箔が好適であり、特にアルミニウムが用いられることが多い。
 負極は、活物質およびバインダー樹脂からなる負極剤が集電体上に積層されたものであり、活物質としては、人造黒鉛、天然黒鉛、ハードカーボン、ソフトカーボンなどの炭素材料、スズやシリコンなどのリチウム合金系材料、Liなどの金属材料、およびチタン酸リチウム(LiTi12)などが挙げられる。バインダー樹脂としては、フッ素樹脂、アクリル樹脂、スチレン-ブタジエン樹脂などが用いられる。集電体としては、金属箔が好適であり、特に銅箔が用いられることが多い。
 電解液は、二次電池の中で正極と負極との間でイオンを移動させる場となっており、電解質を有機溶媒にて溶解させた構成をしている。電解質としては、LiPF、LiBF、およびLiClOなどが挙げられるが、有機溶媒への溶解性、イオン電導度の観点からLiPFが好適に用いられている。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ガンマブチロラクトン、およびスルホランなどが挙げられ、これらの有機溶媒を2種類以上混合して使用してもよい。
 二次電池の作製方法としては、まず活物質と導電助剤をバインダー溶液中に分散して電極用塗布液を調製し、この塗布液を集電体上に塗工して、溶媒を乾燥させることで正極、負極がそれぞれ得られる。乾燥後の塗工膜の膜厚は50μm以上500μm以下とすることが好ましい。得られた正極と負極の間に二次電池用セパレータを、それぞれの電極の活物質層を接するように配置し、アルミラミネートフィルム等の外装材に封入し、熱プレス後に電解液を注入する。もしくは、電解液を注入した後に熱プレスをしてもよい。その後、負極リードや安全弁を設置し、外装材を封止する。このようにして得られた二次電池は、電極と二次電池用セパレータとの接着性が良いため、サイクル特性に優れ、かつ低コストでの製造が可能となる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれにより何ら制限されるものではない。本実施例で用いた測定法を以下に示す。
 [測定方法]
 (1)有機樹脂微粒子の平均粒径
 電解放射型走査電子顕微鏡((株)日立製作所製S-3400N)を用いて、多孔質層の表面を倍率5万倍にて観察した。その際の画像サイズは2.5μm×1.8μmである。なお、画素数は1,280画素×960画素であり、1画素の大きさは2.0nm×1.9nmであった。
 また、平均粒径については、得られた画像上で1つの粒子を完全に囲む面積が最も小さい正方形または長方形を描き、すなわち、正方形または長方形の4辺に粒子の端部が接している正方形または長方形を描き、正方形の場合は1辺の長さ、長方形の場合は長辺の長さ(長軸径)を有機樹脂微粒子の粒径とした。任意の100個の粒子についてそれぞれの粒径を測定し、その数平均値を有機樹脂微粒子の平均粒径とした。なお、撮影した画像中に100個以上の粒子が観察された場合は、当該画像中の任意の100個の粒径の数平均を平均粒径とし、画像中に100個の粒子が観察されなかった場合は、複数の画像を撮影し、合計100個の粒径の数平均を平均粒径とした。
 (2)多孔質層の膜厚
 ミクロトームにてサンプル断面を切り出し、その断面を電解放射型走査電子顕微鏡((株)日立製作所製S-3400N)にて観察して、多孔質基材との界面から最も高いところを多孔質層の膜厚として計測した。100mm×100mmサイズのサンプルから任意の5箇所についてそれぞれ計測し平均した。
 (3)透気度
 100mm×100mmサイズの試料3枚からそれぞれ任意の一箇所を選び、王研式透気度測定装置(旭精工(株)社製EG01-5-1MR)を用いて、JIS P 8117(2009)に準拠して測定し、その平均値を透気度(秒/100cc)とした。
 (4)接着強度
 ジエチルカーボネートとエチレンカーボネートを質量比で7:3に混合した溶媒を調整し、その溶媒中に下記実施例にて作製した二次電池用セパレータフィルム15mm×100mmと、活物質がLiCoO、バインダーがフッ化ビニリデン樹脂、導電助剤がカーボンブラックの正極15mm×100mmを10分間浸漬させ、取り出した後に、活物質と多孔質層が接触するように設置し、熱プレス機にて0.5MPa、80℃、2分で熱プレスを行い、ピンセットを用いて手動で剥離させ、接着強度を下記4段階にて評価を行った。同様に、活物質が黒鉛、バインダーがフッ化ビニリデン樹脂、導電助剤がカーボンブラックの負極と二次電池用セパレータとの接着強度も測定し、正極および負極のそれぞれの評価を行い、接着強度とした。
・接着強度S: 剥離後、電極の活物質が部分的に二次電池用セパレータ側に付着した
・接着強度A: やや強い力で電極と二次電池用セパレータが剥離した
・接着強度B: 弱い力で電極と二次電池用セパレータが剥離した
・接着強度C: 極弱い力で電極と二次電池用セパレータが剥離した。
 (実施例1)
 フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体からなる樹脂(以下、フッ化ビニリデン系樹脂、重量平均分子量100万)を該共重合体100質量部に対して9,000質量部のアセトニトリルに80℃で溶解させ、その溶液にアセトニトリル100質量部に対して11質量部の水を加え、フッ化ビニリデン系樹脂溶液を作製した。76℃の前記フッ化ビニリデン系樹脂溶液を水槽(常温)へ連続添加した後、その混合液にフッ化ビニリデン系樹脂100質量部に対して10質量%の酢酸マグネシウム水溶液を100質量部加え、フッ化ビニリデン系樹脂微粒子を凝集させ、メンブレンフィルターでろ過、水洗し、上記フッ化ビニリデン系樹脂微粒子の含水ウエットケーク(フッ化ビニリデン系樹脂微粒子固形分濃度:25.6質量%)を得た。
 上記含水ウエットケークのフッ化ビニリデン系樹脂微粒子100質量部に対して、界面活性剤としてノニオン系ポリオキシエチレンアルキルエーテルを15質量部添加後、イオン交換水を374質量部加えてホモミキサーで予備分散した。その予備分散液を超音波(出力120W)で処理した後、粗粒を遠心沈降により分離して平均粒径が0.10μmのフッ化ビニリデン系樹脂微粒子からなる水分散液を得た。
 上記フッ化ビニリデン系樹脂微粒子水分散液に、バインダーとしてアクリル樹脂(昭和電工株式会社製“ポリゾール”(登録商標)LB)をフッ化ビニリデン系樹脂微粒子100質量部に対して10質量部添加して塗工液を調製した。多孔質層におけるフッ化ビニリデン系樹脂微粒子の割合は77質量%である。この塗工液をグラビアコーティングにて片面に耐熱層が積層されたポリエチレン多孔質基材(厚み9μm、透気度200秒/100cc)の両面に塗工し、含有される溶媒が揮発するまで乾燥することで多孔質層を形成し、本発明の二次電池用セパレータを得た。得られた二次電池セパレータについて、フッ化ビニリデン系樹脂微粒子の平均粒径、多孔質層の膜厚、透気度、接着強度の測定結果を表1に示す。なお、以下の実施例および比較例についても同様に測定結果を表1に示す。
 (実施例2)
 バインダーとしてアクリル樹脂(昭和電工株式会社製”)をフッ化ビニリデン系樹脂微粒子100質量部に対して40質量部添加した以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (実施例3)
 平均粒径が0.05μmのフッ化ビニリデン系樹脂微粒子を用い、バインダーとしてカルボキシメチルセルロース(重量平均分子量40万)をフッ化ビニリデン系樹脂微粒子100質量部に対して100質量部添加して塗工液を調製した以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (実施例4)
 平均粒径が0.15μmのフッ化ビニリデン系樹脂微粒子用い、多孔質層の膜厚を0.3μmにした以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (実施例5)
 平均粒径が0.20μmのフッ化ビニリデン系樹脂微粒子を用い、多孔質層の膜厚を2.3μmにした以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (実施例6)
 フッ化ビニリデン系樹脂微粒子水分散液の製造時に界面活性剤(ノニオン系ポリオキシエチレンアルキルエーテル)を添加せずに製造したフッ化ビニリデン系樹脂微粒子水分散液を用い、バインダーとしてアクリル樹脂(昭和電工株式会社製“ポリゾール”(登録商標)LB)をフッ素樹脂系微粒子100質量部に対して20質量部添加した以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (実施例7)
 平均粒径が0.35μmのアクリル樹脂が水中に分散された有機樹脂微粒子分散液を用い、バインダーとしてアクリル樹脂(昭和電工株式会社製“ポリゾール”(登録商標)LB)をアクリル樹脂微粒子100質量部に対して10質量部添加した以外は、実施例1と同様にして、本発明の二次電池用セパレータを得た。
 (実施例8)
 フッ化ビニリデン系樹脂微粒子水分散液の製造時に界面活性剤としてノニオン系ポリオキシエチレンアルキルエーテルをフッ化ビニリデン系樹脂微粒子100質量部に対して10質量部添加した以外は、実施例1と同様にして、本発明の二次電池用セパレータを得た。
 (実施例9)
 バインダーとしてアクリル樹脂(昭和電工株式会社製“ポリゾール”(登録商標)LB)をフッ化ビニリデン系樹脂微粒子100質量部に対して20質量部添加した以外は、実施例1と同様にして、本発明の二次電池用セパレータを得た。
 (実施例10)
 フッ化ビニリデン系樹脂微粒子水分散液の製造時に界面活性剤(ノニオン系ポリオキシエチレンアルキルエーテル)の代わりにポリビニルピロリドンをフッ化ビニリデン系樹脂微粒子100質量部に対して5質量部にした以外は、実施例1と同様にして、本発明の二次電池用セパレータを得た。
 (実施例11)
 フッ化ビニリデン系樹脂を該共重合体100質量部に対して9,000質量部のアセトニトリルに80℃で溶解させ、その溶液にアセトニトリル100質量部に対して11質量部の水を加え、フッ化ビニリデン系樹脂溶液を作製した。76℃の前記フッ化ビニリデン系樹脂溶液を常温の水(フッ化ビニリデン系樹脂100質量部に対して9,500質量部)とアセトニトリル(フッ化ビニリデン系樹脂100質量部に対して500質量部)との混合液からなる槽へ連続添加し、粒子化液を得た。粒子化液よりアセトニトリルを除去し、フッ化ビニリデン系樹脂微粒子100質量部に対して、界面活性剤としてノニオン系ポリオキシエチレンアルキルエーテルを3質量部、ポリビニルピロリドンを2質量部添加後、イオン交換水を374質量部加えてホモミキサーで予備分散した。その予備分散液を超音波(出力120W)で処理した後、粗粒を遠心沈降により分離して平均粒径が0.1μmのフッ化ビニリデン系樹脂微粒子からなる水分散液を得た。
 上記フッ化ビニリデン系樹脂微粒子水分散液に、バインダーとしてアクリル樹脂(昭和電工株式会社製“コーガム”(登録商標))をフッ化ビニリデン系樹脂微粒子100質量部に対して10質量部添加して塗工液を調製した。
 上記塗工液を使用した以外は、実施例1と同様にして、本発明の二次電池用セパレータを得た。
 (実施例12)
 フッ化ビニリデン系樹脂を該共重合体100質量部に対して9,000質量部のアセトニトリルに80℃で溶解させ、その溶液にアセトニトリル100質量部に対して11質量部の水を加え、フッ化ビニリデン系樹脂溶液を作製した。76℃の前記フッ化ビニリデン系樹脂溶液を該共重合体100質量部に対して5,000質量部の常温の水の槽へ連続添加し、粒子化液を得た。
 次に、別途調整したフッ化ビニリデン系樹脂溶液(76℃)と該共重合体100質量部に対して5,000質量部の水(常温)を、各々6分間で滴下終了する速度で前記水槽へ同時に滴下しながら、粒子化液の液面を保つように、粒子化槽底部から粒子化液を抜き出した(粒子化液A)。続いて、別途調整したフッ化ビニリデン系樹脂溶液(76℃)と該共重合体100質量部に対して5,000質量部の水(常温)を、各々6分間で滴下終了する速度で前記水槽へ同時に滴下しながら、粒子化液の液面を保つように、粒子化槽底部から粒子化液を抜き出した(粒子化液B)。
 粒子化液A、粒子化液B、および前記水槽に残っている粒子化液Cよりアセトニトリルを除去し、フッ化ビニリデン系樹脂微粒子100質量部に対して、界面活性剤としてノニオン系ポリオキシエチレンアルキルエーテルを3質量部、ポリビニルピロリドンを2質量部添加後、イオン交換水を374質量部加えてホモミキサーで予備分散した。その予備分散液を超音波(出力120W)で処理した後、粗粒を遠心沈降により分離して平均粒径が0.1μmのフッ化ビニリデン系樹脂微粒子からなる水分散液を得た。
 上記フッ化ビニリデン系樹脂微粒子水分散液に、バインダーとしてアクリル樹脂(昭和電工株式会社製“コーガム”(登録商標))をフッ化ビニリデン系樹脂微粒子100質量部に対して10質量部添加して塗工液を調製した。
 上記塗工液を使用した以外は、実施例1と同様にして、本発明の二次電池用セパレータを得た。
 (比較例1)
 多孔質層の膜厚を0.05μmにした以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (比較例2)
 多孔質層の膜厚を4.0μmにした以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (比較例3)
 平均粒径が0.35μmのアクリル樹脂粒子が水中に分散された分散液を用い、多孔質層の膜厚を4.0μmにした以外は、実施例7と同様にして本発明の二次電池用セパレータを得た。
Figure JPOXMLDOC01-appb-T000001
 表1から、本発明の実施例1~12は、いずれも、有機樹脂微粒子の平均粒径が0.02μm以上0.40μm未満で、多孔質層の膜厚が0.10μm以上2.5μm未満であるため、透気度上昇が抑制され、電極との良好な接着強度が得られる。
 一方、比較例1は、有機樹脂微粒子の平均粒径は小さいが多孔質層の膜厚が薄いために所望の接着強度が得られない。また、比較例2、3は、有機樹脂微粒子の平均粒径は小さいが多孔質層の膜厚が厚いために透気度上昇が大きくなってしまい、また接着強度も得られない。

Claims (12)

  1.  多孔質基材の少なくとも片面に、平均粒径が0.02μm以上0.40μm未満である有機樹脂微粒子を含有する多孔質層が積層され、前記多孔質層の膜厚が0.10μm以上2.5μm未満であることを特徴とする二次電池用セパレータ。
  2.  前記有機樹脂微粒子がフッ素樹脂、アクリル樹脂およびスチレン-ブタジエン樹脂からなる群より選択される少なくとも一種の樹脂を含有する請求項1に記載の二次電池用セパレータ。
  3.  前記有機樹脂微粒子がフッ素樹脂を含有し、前記フッ素樹脂の重量平均分子量が60万以上150万以下である請求項2に記載の二次電池用セパレータ。
  4.  前記多孔質層における前記有機樹脂微粒子の割合が50質量%以上100質量%未満である請求項1~3のいずれかに記載の二次電池用セパレータ。
  5.  前記多孔質層が前記多孔質基材の両面に積層されている請求項1~4のいずれかに記載の二次電池用セパレータ。
  6.  前記多孔質基材が、ポリオレフィン系多孔質基材である請求項1~5のいずれかに記載の二次電池用セパレータ。
  7.  水を主成分とする溶媒中に前記有機樹脂微粒子を分散した分散液を塗布することで多孔質層が積層される請求項1~6のいずれかに記載の二次電池用セパレータ。
  8.  前記多孔質基材と前記多孔質層との間に耐熱層を有する請求項1~7のいずれかに記載の二次電池用セパレータ。
  9.  前記多孔質層に、バインダーが有機樹脂微粒子100質量部に対して1質量部以上100質量部以下含まれる請求項1~8のいずれかに記載の二次電池用セパレータ。
  10.  前記有機樹脂微粒子が、有機樹脂を溶媒に溶解し、有機樹脂溶液を貧溶媒に添加することで有機樹脂微粒子を析出させる方法で得られたものであり、有機樹脂がフッ素樹脂であり、有機樹脂溶液には水が添加されており、添加する水の量は溶媒と水との合計量100質量%において1~25質量%であり、フッ素樹脂の量は溶媒と水との合計量100質量部に対して0.5~15質量部であることを特徴とする請求項1~9のいずれかに記載の二次電池用セパレータ。
  11.  前記有機樹脂溶液を貧溶媒に添加する方法がフラッシュ晶析方法である請求項10に記載の二次電池用セパレータ。
  12.  請求項1~11のいずれかに記載の二次電池用セパレータを用いることを特徴とする二次電池。
PCT/JP2014/073637 2013-09-10 2014-09-08 二次電池用セパレータおよび二次電池 WO2015037552A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020167005635A KR102225805B1 (ko) 2013-09-10 2014-09-08 2차 전지용 세퍼레이터 및 2차 전지
JP2014544294A JP6447129B2 (ja) 2013-09-10 2014-09-08 二次電池用セパレータおよび二次電池
MYPI2016700817A MY183711A (en) 2013-09-10 2014-09-08 Secondary battery separator and secondary battery
EP14844748.5A EP3046163B1 (en) 2013-09-10 2014-09-08 Separator for secondary cell, and secondary cell
CN201480049644.8A CN105518905B (zh) 2013-09-10 2014-09-08 二次电池用隔膜及二次电池
US14/917,066 US20160204407A1 (en) 2013-09-25 2014-09-08 Secondary battery separator and secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-186964 2013-09-10
JP2013186964 2013-09-10
JP2014038202 2014-02-28
JP2014-038202 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015037552A1 true WO2015037552A1 (ja) 2015-03-19

Family

ID=52665657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073637 WO2015037552A1 (ja) 2013-09-10 2014-09-08 二次電池用セパレータおよび二次電池

Country Status (6)

Country Link
EP (1) EP3046163B1 (ja)
JP (1) JP6447129B2 (ja)
KR (1) KR102225805B1 (ja)
CN (1) CN105518905B (ja)
MY (1) MY183711A (ja)
WO (1) WO2015037552A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093146A1 (ja) * 2014-12-09 2016-06-16 東レ株式会社 二次電池用セパレータ、二次電池用セパレータの製造方法および二次電池
JP2016207616A (ja) * 2015-04-28 2016-12-08 日立マクセル株式会社 電気化学素子用セパレータ、および電気化学素子の製造方法
US9567016B2 (en) 2014-06-25 2017-02-14 Garth L. Magee Wheel fairing deflecting wind onto lower wheel
WO2017082671A1 (ko) * 2015-11-11 2017-05-18 주식회사 엘지화학 전극접착층을 구비한 세퍼레이터 및 이를 포함하는 전기화학소자
JP2018200780A (ja) * 2017-05-26 2018-12-20 旭化成株式会社 リチウムイオン二次電池用セパレータ
JP2019079807A (ja) * 2017-10-24 2019-05-23 住友化学株式会社 非水電解液二次電池用多孔質層
CN110668899A (zh) * 2019-10-28 2020-01-10 湖北大学 一种生活污泥快速肥熟方法
CN110668900A (zh) * 2019-10-28 2020-01-10 湖北大学 一种河湖库疏浚黑臭底泥堆肥球制备方法
CN111430643A (zh) * 2019-01-10 2020-07-17 三星Sdi株式会社 隔板及其制备方法以及包括其的可再充电锂电池
JP2020531323A (ja) * 2017-08-25 2020-11-05 北京▲師▼▲範▼大学 複合多孔質膜及びその製造方法と用途
CN111969159A (zh) * 2016-04-01 2020-11-20 宁德新能源科技有限公司 锂离子电池及其隔离膜
JPWO2020105672A1 (ja) * 2018-11-22 2021-10-14 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
JP7493616B2 (ja) 2020-06-26 2024-05-31 エルジー エナジー ソリューション リミテッド リチウム二次電池用セパレータ、及びそれを含むリチウム二次電池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY174160A (en) * 2013-12-03 2020-03-11 Toray Industries Polyvinylidene fluoride resin particles and method for producing same
CN109075296B (zh) * 2016-07-25 2021-03-12 东丽株式会社 电池用隔膜
US11394083B2 (en) * 2017-05-26 2022-07-19 Daikin Industries, Ltd. Secondary battery separator including porous film having fluorine-containing polymer of vinylidene fluoride, tetrafluoroethylene, and vinyl carboxylic acid or salt and secondary battery including the same
CN109698302A (zh) * 2017-10-24 2019-04-30 住友化学株式会社 非水电解液二次电池用多孔层
EP3843176A4 (en) * 2018-08-24 2022-05-11 Zeon Corporation SLURRY COMPOSITION FOR NON-AQUEOUS SECONDARY BATTERY FUNCTIONAL LAYER, NON-AQUEOUS SECONDARY BATTERY FUNCTIONAL LAYER, NON-AQUEOUS SECONDARY BATTERY SEPARATOR, AND NON-AQUEOUS SECONDARY BATTERY
KR102477643B1 (ko) * 2019-05-09 2022-12-13 주식회사 엘지에너지솔루션 전기화학소자용 분리막 및 이를 포함하는 전기화학소자

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020055036A1 (en) * 2000-08-30 2002-05-09 Sumitomo Chemical Company, Limited Separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2004146190A (ja) 2002-10-24 2004-05-20 Tomoegawa Paper Co Ltd リチウムイオン二次電池用セパレータおよびこれを備えたリチウムイオン二次電池
JP2010015917A (ja) 2008-07-07 2010-01-21 Hitachi Maxell Ltd 電池用セパレータおよび非水電解液電池
JP2010092718A (ja) * 2008-10-08 2010-04-22 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池
JP2010219037A (ja) * 2009-02-23 2010-09-30 Toray Ind Inc 多孔性フィルムおよび蓄電デバイス
JP2012048932A (ja) 2010-08-26 2012-03-08 Hitachi Ltd リチウムイオン二次電池
JP2012221741A (ja) 2011-04-08 2012-11-12 Teijin Ltd 非水系二次電池用セパレータおよび非水系二次電池
JP2014044826A (ja) * 2012-08-24 2014-03-13 Dainippon Printing Co Ltd 二次電池用セパレータの製造方法、二次電池用セパレータ、二次電池、および電池パック
JP2014175055A (ja) * 2013-03-06 2014-09-22 Nippon Zeon Co Ltd 二次電池用多孔膜、二次電池多孔膜用スラリー、及び二次電池用多孔膜の製造方法、並びに二次電池用電極、二次電池用セパレータ、及び二次電池
JP2014182875A (ja) * 2013-03-18 2014-09-29 Toray Ind Inc 二次電池用セパレータおよび二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100573358B1 (ko) * 2002-09-17 2006-04-24 가부시키가이샤 도모에가와 세이시쇼 리튬이온2차전지용 세퍼레이터 및 이를 포함한리튬이온2차전지
US20110195295A1 (en) * 2008-07-31 2011-08-11 Teruaki Manago Laminated microporous film and method for manufacturing the same, and separator for battery
JP2011108515A (ja) * 2009-11-18 2011-06-02 Teijin Ltd 非水系二次電池用セパレータ及びそれを用いた非水系二次電池
EP2502952B1 (en) * 2009-11-19 2018-06-13 Toray Industries, Inc. Process for production of polyamideimide resin microparticles
JP5712629B2 (ja) * 2010-01-21 2015-05-07 東レ株式会社 多孔性フィルムおよび蓄電デバイス
JP5664941B2 (ja) * 2011-03-28 2015-02-04 トヨタ自動車株式会社 リチウムイオン二次電池
JP2013020769A (ja) * 2011-07-08 2013-01-31 Teijin Ltd 非水電解質電池用セパレータ及び非水電解質電池
JP5355823B1 (ja) * 2011-11-15 2013-11-27 帝人株式会社 非水系二次電池用セパレータ及びその製造方法、並びに非水系二次電池
JP2015028840A (ja) * 2011-11-29 2015-02-12 日立マクセル株式会社 非水電解液電池用セパレータおよび非水電解液電池
CN102522516A (zh) * 2011-12-22 2012-06-27 中国科学院青岛生物能源与过程研究所 锂离子二次电池用不对称复合隔膜及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020055036A1 (en) * 2000-08-30 2002-05-09 Sumitomo Chemical Company, Limited Separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2004146190A (ja) 2002-10-24 2004-05-20 Tomoegawa Paper Co Ltd リチウムイオン二次電池用セパレータおよびこれを備えたリチウムイオン二次電池
JP2010015917A (ja) 2008-07-07 2010-01-21 Hitachi Maxell Ltd 電池用セパレータおよび非水電解液電池
JP2010092718A (ja) * 2008-10-08 2010-04-22 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池
JP2010219037A (ja) * 2009-02-23 2010-09-30 Toray Ind Inc 多孔性フィルムおよび蓄電デバイス
JP2012048932A (ja) 2010-08-26 2012-03-08 Hitachi Ltd リチウムイオン二次電池
JP2012221741A (ja) 2011-04-08 2012-11-12 Teijin Ltd 非水系二次電池用セパレータおよび非水系二次電池
JP2014044826A (ja) * 2012-08-24 2014-03-13 Dainippon Printing Co Ltd 二次電池用セパレータの製造方法、二次電池用セパレータ、二次電池、および電池パック
JP2014175055A (ja) * 2013-03-06 2014-09-22 Nippon Zeon Co Ltd 二次電池用多孔膜、二次電池多孔膜用スラリー、及び二次電池用多孔膜の製造方法、並びに二次電池用電極、二次電池用セパレータ、及び二次電池
JP2014182875A (ja) * 2013-03-18 2014-09-29 Toray Ind Inc 二次電池用セパレータおよび二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3046163A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9567016B2 (en) 2014-06-25 2017-02-14 Garth L. Magee Wheel fairing deflecting wind onto lower wheel
WO2016093146A1 (ja) * 2014-12-09 2016-06-16 東レ株式会社 二次電池用セパレータ、二次電池用セパレータの製造方法および二次電池
JP2016207616A (ja) * 2015-04-28 2016-12-08 日立マクセル株式会社 電気化学素子用セパレータ、および電気化学素子の製造方法
WO2017082671A1 (ko) * 2015-11-11 2017-05-18 주식회사 엘지화학 전극접착층을 구비한 세퍼레이터 및 이를 포함하는 전기화학소자
CN108352482A (zh) * 2015-11-11 2018-07-31 株式会社Lg化学 具有电极粘合剂层的隔离件和包括其的电化学装置
EP3349270A4 (en) * 2015-11-11 2018-08-22 LG Chem, Ltd. Separator provided with electrode bonding layer, and electrochemical device comprising same
US20180315971A1 (en) * 2015-11-11 2018-11-01 Lg Chem, Ltd. Separator having electrode adhesive layer and electrochemical device including the same
US10991926B2 (en) 2015-11-11 2021-04-27 Lg Chem, Ltd. Separator having electrode adhesive layer and electrochemical device including the same
CN111969159A (zh) * 2016-04-01 2020-11-20 宁德新能源科技有限公司 锂离子电池及其隔离膜
JP2018200780A (ja) * 2017-05-26 2018-12-20 旭化成株式会社 リチウムイオン二次電池用セパレータ
JP2020531323A (ja) * 2017-08-25 2020-11-05 北京▲師▼▲範▼大学 複合多孔質膜及びその製造方法と用途
JP7273415B2 (ja) 2017-08-25 2023-05-15 北京▲師▼▲範▼大学 複合多孔質膜及びその製造方法と用途
JP2019079807A (ja) * 2017-10-24 2019-05-23 住友化学株式会社 非水電解液二次電池用多孔質層
JPWO2020105672A1 (ja) * 2018-11-22 2021-10-14 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
JP7234941B2 (ja) 2018-11-22 2023-03-08 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
CN111430643A (zh) * 2019-01-10 2020-07-17 三星Sdi株式会社 隔板及其制备方法以及包括其的可再充电锂电池
US11355815B2 (en) 2019-01-10 2022-06-07 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery, and method for preparing the same, and rechargeable lithium battery including the same
CN110668900A (zh) * 2019-10-28 2020-01-10 湖北大学 一种河湖库疏浚黑臭底泥堆肥球制备方法
CN110668900B (zh) * 2019-10-28 2021-09-14 湖北大学 一种河湖库疏浚黑臭底泥堆肥球制备方法
CN110668899B (zh) * 2019-10-28 2021-09-14 湖北大学 一种生活污泥快速肥熟方法
CN110668899A (zh) * 2019-10-28 2020-01-10 湖北大学 一种生活污泥快速肥熟方法
JP7493616B2 (ja) 2020-06-26 2024-05-31 エルジー エナジー ソリューション リミテッド リチウム二次電池用セパレータ、及びそれを含むリチウム二次電池

Also Published As

Publication number Publication date
JP6447129B2 (ja) 2019-01-09
MY183711A (en) 2021-03-09
EP3046163B1 (en) 2020-07-22
KR102225805B1 (ko) 2021-03-10
EP3046163A4 (en) 2017-07-26
CN105518905B (zh) 2017-12-22
KR20160051767A (ko) 2016-05-11
EP3046163A1 (en) 2016-07-20
JPWO2015037552A1 (ja) 2017-03-02
CN105518905A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
JP6447129B2 (ja) 二次電池用セパレータおよび二次電池
JP7151082B2 (ja) 二次電池用セパレータおよび二次電池
JP6724364B2 (ja) 二次電池用セパレータの製造方法
US20160204407A1 (en) Secondary battery separator and secondary battery
KR102670623B1 (ko) 다공성 필름, 이차 전지용 세퍼레이터 및 이차 전지
JP2016072150A (ja) 電池用セパレータ
JP7327044B2 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
TW201225383A (en) Slurry and method for producing separator using the slurry
JP7115319B2 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP7331692B2 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP2021057338A (ja) 電気化学素子用セパレータの製造方法
JP2020001249A (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014544294

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844748

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014844748

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014844748

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167005635

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14917066

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE