WO2015037454A1 - レンズユニット及び撮像装置 - Google Patents

レンズユニット及び撮像装置 Download PDF

Info

Publication number
WO2015037454A1
WO2015037454A1 PCT/JP2014/072698 JP2014072698W WO2015037454A1 WO 2015037454 A1 WO2015037454 A1 WO 2015037454A1 JP 2014072698 W JP2014072698 W JP 2014072698W WO 2015037454 A1 WO2015037454 A1 WO 2015037454A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens array
lens unit
unit according
array
Prior art date
Application number
PCT/JP2014/072698
Other languages
English (en)
French (fr)
Inventor
圭介 立林
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2015037454A1 publication Critical patent/WO2015037454A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between

Definitions

  • the present invention relates to a lens unit and an imaging apparatus suitable for a compound eye camera module.
  • Patent Document 1 discloses a compound eye camera module capable of reconstructing one image from a plurality of images captured by a plurality of imaging regions using disparity information of each image.
  • the Z axis in the optical axis direction for example, the central axis of the lens array
  • the X axis and Y of the imaging surface orthogonal to the Z axis An adjustment process is provided for aligning the axis and the X axis around the X axis, around the Y axis around the Y axis, and around the Z axis around the Z axis while observing the alignment marks. It is possible.
  • the adjustment process for simultaneously aligning the six axes requires high-precision equipment and takes a long adjustment time, and thus there is a problem that productivity is lowered and cost cannot be reduced.
  • the present invention has been made in view of the problems of the related art, and provides a lens unit and an imaging apparatus capable of accurately stacking a first lens array and a second lens array through a simple process. With the goal.
  • a lens unit reflecting one aspect of the present invention is a lens unit in which a first lens array and a second lens array are stacked.
  • the first lens array is formed by integrally forming a plurality of first lenses having optical axes arranged parallel to each other and a first flange portion
  • the second lens array is formed by integrally forming a plurality of second lenses arranged corresponding to the first lens and a second flange portion, respectively.
  • the first lens array and the second lens array have a contact portion that contacts at three points in the optical axis direction, and a restriction portion that restricts relative movement in the direction orthogonal to the optical axis.
  • the first flange portion and the second flange portion are provided.
  • the first lens array and the second lens array can be positioned in the optical axis direction by bringing the abutting part into contact with each other, thereby stacking in the optical axis direction.
  • the distance between the lenses can be easily adjusted with high precision, and the relative movement of the first lens array and the second lens array in the direction perpendicular to the optical axis is limited by the restricting portion. It is possible to easily match the optical axes of the lenses stacked in the axial direction with high accuracy.
  • the “lens array” includes one that is formed integrally as a whole, one that is formed by forming a lens portion on a transparent substrate, and plastic or glass is preferably used as a material.
  • This imaging apparatus has the lens unit described above.
  • the present invention it is possible to provide a lens unit and an imaging apparatus capable of accurately stacking the first lens array and the second lens array through a simple process.
  • FIG. 2 is a cross-sectional view of the imaging unit LU in FIG. 1.
  • FIG. 3 is an exploded view of the imaging unit LU in FIG. 2.
  • FIG. 4 is an exploded view of the lens unit LH of FIGS. 2 and 3. It is a figure which shows the image side surface of 1st lens array LA1. It is a figure which shows the object side surface of 2nd lens array LA2. It is a figure which shows typically the engagement state at the time of lamination
  • FIG. 13 is a partially enlarged view of FIG. 12. It is the perspective view which looked at the lens unit LH from another direction. It is a figure which shows the assembly
  • a compound eye optical system is an optical system in which a plurality of lens systems are arranged in an array for one image sensor, and each lens system has a different field of view and a super-resolution type in which each lens system images the same field of view. Usually, it is divided into a field division type that performs imaging of the above.
  • a super-resolution type that outputs a single composite image having higher resolution than individual images from a plurality of images obtained by a plurality of single-lens lenses that face the same direction and have a minute parallax. explain.
  • FIG. 1 schematically shows an imaging apparatus according to the present embodiment.
  • the imaging device DU includes an imaging unit LU, an image processing unit 1, a calculation unit 2, a memory 3, and the like.
  • the imaging unit LU has one imaging element SR and a lens unit LH that forms a plurality of images having minute parallax with respect to the imaging element SR.
  • the image sensor SR for example, a solid-state image sensor such as a CCD image sensor or a CMOS image sensor having a plurality of pixels is used. Since the lens unit LH is provided on the light receiving surface SS which is a photoelectric conversion unit of the image sensor SR so that an optical image of the subject is formed, the optical image formed by the lens unit LH is the image sensor SR. Is converted into an electrical signal.
  • the image composition unit 1a in the image processing unit 1 obtains one image data with higher resolution from a plurality of images based on electrical signals corresponding to a plurality of images sent from the image sensor SR. Execute the process.
  • FIG. 2 is an enlarged cross-sectional view of the imaging unit LU of FIG.
  • FIG. 3 is an exploded view of the imaging unit LU of FIG.
  • FIG. 4 is an exploded view of the lens unit LH of FIGS. 2 and 3
  • the imaging unit LU is composed of a lens unit LH, a fourth light shielding member SH4, and an IR cut filter F in this order from the object side, and these are held in a lens frame HLD.
  • the fourth light shielding member SH4 is made of a SUS plate having a thickness of 20 ⁇ m to 100 ⁇ m.
  • a black film formed on the object side surface of the IR cut filter F may be formed.
  • An object side wall HLLa is formed on the object side of the lens frame HLD, and a plurality of aperture stops S are formed therein.
  • the lens unit LH is composed of a first light shielding member SH1, a first lens array LA1, a second light shielding member SH2, a second lens array LA2, and a third light shielding member SH3 in order from the object side. They are glued together.
  • the first light shielding member SH1 to the third light shielding member SH3 may be made of a SUS plate having a thickness of 20 ⁇ m to 100 ⁇ m, or a lens array having a black film formed thereon.
  • the first light shielding member SH1 to the fourth light shielding member SH4 have a plurality of openings corresponding to the aperture stop S. Three or more lens arrays may be stacked.
  • Each lens array is formed by integrally forming a plurality of individual lenses La1 and Lb1 corresponding to the aperture stops S arranged in a matrix of 4 ⁇ 4, and the number of individual lenses is the number of images of the image sensor SR. It is made equal to the number of object images (called single eye images) formed on the surface SS (here, 4 ⁇ 4). That is, the light beams that have passed through the single-lens lenses La1 and Lb1 stacked in the optical axis direction form one image (single-eye image) on the imaging surface SS.
  • a plurality of images (single-eye images) Zn obtained by dividing the subject by the lens of the lens unit LH and imaged on the imaging surface SS of the imaging element SR are converted into electrical signals, respectively, and an image synthesis unit It is input to 1a.
  • the image composition unit 1a outputs a composite image ML related to one image data having a higher resolution from a plurality of images.
  • the composite image ML is compressed by the calculation unit 2 and stored in the memory 3.
  • the lens unit LH is configured by laminating the first lens array LA1 and the second lens array LA2, the Z axis direction, the X axis direction, the Y axis direction, the X axis direction, It is necessary to adjust the optical axes of the single-lens lenses La1 and Lb1 aligned in the optical axis direction with high accuracy by performing six-axis adjustment in which the Z-axis is added to the five axes around the axis.
  • the first lens array LA1 and the second lens array LA2 are overlapped to match the optical axes of the single-lens lenses La1 and Lb1. The configuration will be described.
  • FIG. 5 is a diagram showing the image side surface of the first lens array LA1.
  • a direction passing through the center of the first lens array LA1 and parallel to the optical axis of the single lens La1 is defined as a Z-axis.
  • the directions orthogonal to the Z axis are the X axis and the Y axis.
  • the first lens array LA1 integrally molded from resin has a rectangular plate-shaped flange portion (first flange portion) La2 on which the single lens La1 is formed.
  • the central region where the single lens (first lens) La1 of the flange portion La2 is formed is lowered one step to form a rectangular low portion La3.
  • the rectangular low part La3 functions as an adhesive application region when the second light shielding member SH2 is assembled.
  • first alignment marks AM1 are formed at four positions which are predetermined positions.
  • FIG. 6 is a diagram showing the object side surface of the second lens array LA2.
  • the second lens array LA2 integrally molded from resin has a rectangular plate-shaped flange portion (second flange portion) Lb2 on which a single lens (second lens) Lb1 is formed.
  • the region where the single lens Lb1 of the flange portion Lb2 is formed is raised one step to form a rectangular base portion Lb3.
  • the rectangular platform portion Lb3 corresponds to the rectangular low portion La3.
  • Three boss-like second convex portions Lb5 are formed in the rectangular frame region Lb4 outside the rectangular base portion Lb3 so as to face the first convex portion La5.
  • two engaging protrusions Lb7 are formed to face the engaging recesses La7, two for each side.
  • the flange portion Lb2 has second alignment marks AM2 formed at four positions which are predetermined positions.
  • the top surface of the first convex portion La5 and the top surface of the second convex portion Lb5 as contact portions
  • the first lens array LA1 and the second lens in the Z-axis direction (Z), around the X-axis ( ⁇ X), and around the Y-axis ( ⁇ Y).
  • the array LA2 can be positioned with high accuracy.
  • the first and second protrusions La5, Lb5, the first alignment mark AM1, the second alignment mark AM2, and the engagement recesses La7 and the rectangular frame regions La4, Lb4 other than the vicinity of the engagement protrusions Lb7 are in contact.
  • the engaging concave portion La7 and the engaging convex portion Lb7 as the restricting portion are engaged,
  • the relative movement in the direction perpendicular to the optical axis is restricted.
  • the engaging recess La7 can be engaged with the outer side surface of the second light shielding member SH2, and relative movement in the direction perpendicular to the optical axis can be used for regulation.
  • Either one is provided with an appropriate gap in the optical axis direction.
  • the gap may be filled with an adhesive.
  • FIG. 7 schematically shown, when positioning the first lens array LA1 and the second lens array LA2 in the X-axis (X) direction, the engaging portions K1 and K2 on the opposite sides are arranged. What is necessary is just to contact
  • the engaging portions K1 and K2 on the side facing the rotation target rotate around the Z axis ( ⁇ ) Is restricted, and the clockwise direction around the Z axis ( ⁇ ) is restricted by the engaging portions K3 and K4 on the side facing the rotation target. Therefore, if there are at least four engaging portions, the first lens array LA1 and the second lens array LA2 can be accurately positioned in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • a total of eight engaging concave portions La7 and engaging convex portions Lb7 are provided on each side of the first lens array LA1 and the second lens array LA2 so as to contact each other. It has become. This is because after the first lens array LA1 and the second lens array LA2 are molded using a mold, shape measurement may be performed in order to confirm the accuracy of the molded product. This is because it is preferable if the shape is symmetrical along the line DL of FIGS. 5 and 6 that passes through the engaging concave portion La7 or the engaging convex portion Lb7. The remaining first convex portion La5 and second convex portion Lb5 can also perform shape measurement along the center line DL2.
  • the first convex portion La5 and the second convex portion Lb5 are brought into contact with each other, and the engaging concave portion La7. Since the 6-axis positioning can be performed simply by engaging the engaging projection Lb7 with each other, accurate assembly can be performed with a simple configuration. In addition, the contact
  • first alignment mark AM1 and the second alignment mark AM2 overlap when the first lens array LA1 and the second lens array LA2 are stacked, positioning in the X-axis direction, the Y-axis direction, and the Z-axis direction is performed. It can be seen that is performed with high accuracy. This is effective when the mold is inspected.
  • a similar alignment mark is provided at the center of the optical surface of the single lens La1 and Lb1, and it is determined whether or not the first lens array LA1 and the second lens array LA2 are stacked. You can also check.
  • the alignment mark has various forms such as a circle, a ring, and a cross.
  • FIG. 8 is a diagram showing the object side surface of the first lens array LA1.
  • FIG. 9 is a perspective view of the first lens array LA1.
  • the object side surface of the flange portion La2 of the first lens array LA1 is raised by one step in the region where the single lens La1 shown in FIG. 8 is formed to form a rectangular base portion La8.
  • three boss-shaped third convex portions La10 are formed at substantially equal intervals in the rectangular frame region La9 outside the rectangular base portion La8.
  • a boundary slope portion La11 inclined with respect to the optical axis is provided between the rectangular platform La8 and the rectangular frame region La9.
  • a first alignment mark AM1 is provided in the rectangular platform La8 so that the object side and the image plane side overlap.
  • the alignment mark has various forms such as a circle, a ring, and a cross.
  • a plurality of reference surfaces La13 parallel to the optical axis (Z axis) are formed in a semicircular shape on the outer peripheral surface La12 of the flange portion La2 of the first lens array LA1.
  • the outer circumferential surfaces La12 intersecting with each other when one is an A surface and the other is a B surface, one reference surface La13 can be provided on the A surface, and two reference surfaces La13 can be provided on the B surface.
  • the outer peripheral surface La12 of the flange portion La2 is often given a draft in order to improve the releasability.
  • the positional relationship between the robot (not shown) that holds the outer peripheral surface La12 of the first lens array LA1 for conveyance and the first lens array LA1 cannot be accurately determined.
  • the positional relationship between the robot and the first lens array LA1 can be obtained with high accuracy by bringing a finger or sensor of the robot into contact with the reference plane La13.
  • a similar reference surface can be provided in the second lens array LA2.
  • FIG. 10 is a view showing the image side surface of the lens frame HLD.
  • 11 is a perspective view of the object side of the lens frame HLD
  • FIG. 15 is a perspective view of the image side of the lens frame HLD.
  • the region provided with the aperture stop S is lowered one step to form a rectangular low portion HLDc.
  • the rectangular low part HLDc corresponds to the rectangular base part La8 of the first lens array LA1.
  • a boundary slope HLDd inclined with respect to the optical axis is formed around the rectangular low part HLDc.
  • three boss-shaped fourth convex portions (lens frame contact portions) HLDe are formed to face the third convex portion La10.
  • ribs HLDn are formed at the intersection (corner) between the opposing surface (left and right surfaces in FIG. 10) of the four inner peripheral surfaces HLDm of the side surface portion HLDb and the object side wall HLLa.
  • ribs HLDp are formed at the intersection between another opposing surface (upper and lower surfaces in FIG. 10) of the inner peripheral surface HLDm and the object side wall HLPa.
  • the height in the optical axis direction of the substantially trapezoidal block-like ribs HLDn and HLDp when viewed in the direction shown in FIG. 10 is lower than the height of the first lens array LA1 in the assembled state as shown in FIG.
  • a sponge or the like may be packed between the ribs HLDn and between the ribs HLDp.
  • a plurality of reference surfaces HLDj parallel to the optical axis (Z axis) are formed in a semicircular shape on the outer peripheral surface HLDg of the side surface portion HLDb of the lens frame HLD, and the object side surface HLDi of the lens frame HLD is formed. Is formed with a reference surface HLDh orthogonal to the optical axis.
  • one of the outer peripheral surfaces HLDg intersecting each other is a C surface and the other is a D surface
  • one reference surface HLDj can be provided on the C surface
  • two reference surfaces HLDj can be provided on the D surface.
  • the outer peripheral surface HLDg of the side surface portion HLDb is often given a draft.
  • the positional relationship between the robot (not shown) that holds the outer peripheral surface HLDg of the lens frame HLD for conveyance and the lens frame HLD may not be accurately determined.
  • the three-dimensional positional relationship between the robot and the first lens array LA1 can be obtained with high accuracy by bringing the fingers and sensors of the robot into contact with the reference planes HLDj and HLDh.
  • the lens unit LH is manufactured by positioning the first lens array LA1 and the second lens array LA2 as described above while assembling the light shielding members SH1 to SH3.
  • the molded lens frame HLD is held with the object side facing downward, and the order of the lens unit LH, the light shielding member SH4, and the IR cut filter F is shown in FIG. Assemble with.
  • the lens unit LH is assembled with high accuracy by bringing the fourth convex portion HLDe and the third convex portion La10 into contact with the lens frame HLD.
  • the lens unit LH is installed with a gap between the ribs HLDn (HLDp) facing the lens frame HLD.
  • a gap is a gap that does not interfere with the ribs HLDn and HLDp even if thermal expansion of the lens unit LH due to environmental temperature changes occurs.
  • the UV curable adhesive BD Young's modulus after curing is 10 MPa or more and 500 MPa or less
  • the ribs HLDn and HLDp And the lens unit LH.
  • the adhesive BD is cured by being irradiated with UV light from the outside.
  • the lens unit LH is elastically fixed to the lens frame HLD by the adhesive BD having elasticity to some extent even if it is cured.
  • the light shielding member SH4 and the IR cut filter F are assembled.
  • the light shielding member SH4 is brought into contact with and adhered to the three fifth convex portions Lb8 (see FIG. 16) which are image side contact portions protruding to the image side of the second lens array LA2, and thereafter
  • the IR cut filter F is brought into close contact with the UV curable adhesive BD (or a general adhesive) described above at three points on the back surface of the light shielding member SH4 facing the fifth convex portion Lb8.
  • the UV curable adhesive BD described above is applied to the four sides around the IR cut filter F so as to straddle the inner peripheral surface of the lens frame HLD, and UV is applied from the outside. Irradiate light to cure.
  • the lens unit LH is elastically fixed to the lens frame HLD by the adhesive BD having a certain degree of elasticity even when cured.
  • the three fifth convex portions Lb8 protruding toward the image side of the second lens array LA2 come into contact with the light shielding member SH4, so that the light shielding member SH4 can be assembled with high accuracy.
  • the IR cut filter F is bonded while being in contact with the light shielding member SH4 at three positions facing the fifth convex portion Lb8, even if the IR cut filter F is thin and easily warped, The optical axis orthogonality can be ensured with high accuracy while suppressing the lifting from the light shielding member SH4.
  • the lens unit LH is attached together with the lens frame HLD to the solid-state imaging device SR mounted on a host device such as a portable terminal.
  • FIG. 12 is a perspective view showing the lens unit LH assembled to the lens frame HLD by cutting
  • FIG. 13 is a partially enlarged view of FIG. 12
  • FIG. 14 is a view seen from another direction. is there.
  • the top surface of the third convex portion La10 and the top surface of the fourth convex portion HLDe are formed. Abutting and thereby reliably supporting at three points, the lens frame HLD in the Z-axis direction (Z), around the X-axis ( ⁇ X), and around the Y-axis ( ⁇ Y), the first lens array LA1 and The second lens array LA2 can be positioned with high accuracy. Thereby, the aperture stop S can be disposed at an appropriate position with respect to the single-lens lenses La1 and Lb1.
  • the contact surfaces of the first and second convex portions La5 and Lb5 and the contact surfaces of the third and fourth convex portions La10 and HLDe overlap in the optical axis direction. It is preferable. If the contact surfaces overlap in the optical axis direction in this way, the reaction force generated on one of the contact surfaces when the first lens array LA1 and the second lens array LA2 are assembled to the lens frame HLD. This is because the support is ensured by passing the other contact surface in the direction, and each member is less likely to be tilted.
  • the UV curable adhesive BD applied to the ribs HLDn and HLDp of the lens frame HLD has a predetermined Young's modulus after curing, so that the optical axis orthogonal direction
  • the UV curable adhesive BD is slightly deflected to provide a buffering effect, and the impact force is not directly transmitted to the lens unit LH, thereby suppressing the first lens array. Damage to LA1 and the second lens array LA2 can be suppressed.
  • the UV curable adhesive BD for fixing the IR cut filter F to the lens frame HLD is slightly bent to provide a buffering effect, and to the lens unit LH. It is possible to suppress the impact force from being directly transmitted, and thereby to prevent the first lens array LA1 and the second lens array LA2 from being damaged.
  • the ribs HLDn and HLDp may be provided only on one side.
  • the contact surface of the third convex portion La10 and the fourth convex portion HLDe may overlap with the optical axis direction. When it is difficult, it is desirable to arrange them as close as possible.
  • FIG. 19 is a cross-sectional view similar to FIG. 2 according to another embodiment, but a solid-state imaging device and the like are omitted.
  • the lens unit LH is attached to the lens frame HLD ′ using fingers HLDq instead of the adhesive applied on the ribs HLDn and HLDp.
  • a plurality of fingers HLDq extend along the optical axis from the image side surface of the object side wall HLDa of the lens frame HLD ′ through the ribs HLDn (HLDp).
  • Each finger HLDq is formed with a claw HLDr at its tip so as to face the inside of the lens unit LH.
  • the claw HLDr When the lens unit LH is moved closer to the lens frame HLD ′ during assembly, the claw HLDr is pushed and expanded by the lens unit LH, and the finger HLDq bends accordingly, allowing the lens unit LH to pass. And come into place. After the lens unit LH passes, the finger HLDq returns from elastic deformation, and the claw HLDr engages with the image surface side of the flange portion of the second lens array LA2, as shown in FIG. The lens unit LH is prevented from dropping from the frame HLD ′. When an impact is applied from the outside, the impact force transmitted to the lens unit LH can be reduced by bending the finger HLDq to some extent. Other configurations are the same as those in the above-described embodiment.
  • the restricting portion of the lens unit restricts relative rotation of the first lens array and the second lens array about an axis parallel to the optical axis.
  • the optical axes of the lenses stacked in the optical axis direction can be made to coincide with each other with high accuracy.
  • the alignment mark it is preferable to provide alignment marks on the first flange portion and the second flange portion. With the alignment mark, it can be confirmed that the optical axes of the lenses stacked in the optical axis direction coincide with each other with high accuracy.
  • the alignment mark it can be confirmed that the optical axes of the lenses stacked in the optical axis direction coincide with each other with high accuracy.
  • a reference plane parallel to the optical axis is formed on at least one side surface of the first flange portion and the second flange portion.
  • the first lens array and / or the second lens array may be gripped by a robot or the like.
  • the lens array gripped by the robot is used to accurately transport the assembly to the assembly position. It is necessary to recognize in advance the relative positional relationship with the robot.
  • the positional relationship between the lens array and the robot or the like can be accurately recognized by holding the reference surface by a robot or applying a contact sensor to the reference surface.
  • At least one of the side surfaces includes an A surface and a B surface intersecting each other, and one reference surface is provided on the A surface and two reference surfaces are provided on the B surface.
  • the A and B reference surfaces are brought into contact with the reference surface orthogonal to the optical axis of the finger of the robot at three points, so that the parallel movement and the rotational movement can be regulated and accurately supported.
  • a lens frame that holds the stacked first lens array and the second lens array is provided, and the lens frame includes an object side wall that faces the first lens array in an optical axis direction, It is preferable to have a side wall portion that intersects the object side wall.
  • a reference plane parallel to the optical axis is formed on the side surface of the lens frame.
  • the lens frame may be grasped by a robot or the like.
  • the relative positional relationship between the lens frame grasped by the robot and the robot is recognized in advance. It is necessary to keep.
  • it is possible to accurately recognize the positional relationship between the lens frame and the robot or the like by holding the reference surface by a robot or applying a contact sensor to the reference surface.
  • the outer peripheral surface of the side wall portion of the lens frame includes a C surface and a D surface that intersect each other, and the C surface is provided with one reference surface, and the D surface is provided with two reference surfaces.
  • the C plane and the D plane are brought into contact with an orthogonal reference plane parallel to the optical axis of the finger of the robot at three points, so that the parallel movement and the rotational movement can be regulated and accurately supported.
  • the lens frame abutting part at the time of assembly is the first lens. It is preferable to abut the array.
  • the first lens array is positioned with respect to the lens frame with high accuracy by bringing the lens frame contact portion into contact with the first lens array at the time of assembly.
  • a reference surface is provided on the object side surface of the object side wall of the lens frame.
  • a plate-like optical element having three image side contact portions on the image plane side of the second flange portion and arranged so as to contact the image side contact portion is provided with respect to the lens frame. It is preferably attached using an adhesive having a predetermined Young's modulus after curing. As a result, the adhesive exhibits the function of a buffer material against an impact such as a lens unit dropping, and a structure strong against the impact can be obtained.
  • the predetermined Young's modulus is preferably 10 MPa or more and 500 MPa or less after the adhesive is cured. Any adhesive such as photo-curing property and thermo-curing property can be used.
  • the plate-like optical element is preferably a light shielding member having an opening corresponding to each second lens and an IR cut filter.
  • the light shielding member and the IR cut filter are supported at three points with respect to the image-side contact portion of the second flange portion, and thus are accurately parallel to the second lens array. Accordingly, the optical performance of the lens unit is improved.
  • the lens unit according to the present embodiment may be used not only for a super-resolution type but also for a lens unit of an imaging apparatus including a compound-eye optical system of a field division type.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

 簡素な工程を経て第1のレンズアレイと第2のレンズアレイとを精度良く積層できるレンズユニット及び撮像装置を提供する。このレンズユニットの第1のレンズアレイは、光軸を互いに平行に配置してなる複数の第1レンズと、第1フランジ部とを一体的に形成してなり、第2のレンズアレイは、それぞれ第1レンズに対応して配置された複数の第2レンズと、第2フランジ部とを一体的に形成してなり、第1のレンズアレイと第2のレンズアレイは、積層したときに、光軸方向において3点で当接する当接部位を有し、且つ光軸直交方向の相対移動を制限する規制部を第1フランジ部と第2フランジ部とに設けた。

Description

レンズユニット及び撮像装置
 本発明は、複眼カメラモジュールに好適なレンズユニット及び撮像装置に関する。
 近年、スマートフォンやタブレット型パーソナルコンピュータなどに代表される薄型のカメラモジュール付き携帯端末が急速に普及している。ここで、薄型の携帯端末に搭載される撮像装置には、高解像度を有しながらも薄形でコンパクトであることが要求されている。このような要求に対応するために、撮像レンズの光学設計による全長短縮やそれに伴う誤差感度増大に対応した製造精度向上を行ってきたが、さらなる要求に対応するためには、従来の単一の撮像レンズと撮像素子の組み合わせで像を得るという構成では限界があり、従来とは発想を変えた光学系の開発が期待されている。
 これに対し、撮像素子の撮像領域を分割して、それぞれにレンズ(以下、個眼光学系という)を配置し、得られた画像を処理することで、最終的な画像出力を行う複眼光学系と呼ばれる光学系が、薄形化への要求に対応するために注目されている。特許文献1には、複数の撮像領域により撮像された複数の画像から各画像の視差情報を利用して1つの画像を再構成することができる複眼カメラモジュールが開示されている。
特開2007-180653号公報
 ところで、特許文献1の複眼カメラモジュールではレンズアレイを1枚のみ使用しているが、1枚のレンズアレイでは収差補正などに限界があり、より高画質な画像を形成するために複数枚のレンズアレイを積層して用いたいという要求がある。ところが、複数のレンズを形成したレンズアレイを積層する場合、各レンズの光軸をどのように位置決めすべきかという問題がある。
 1つの方策としては、積層する2枚のレンズアレイにアライメントマークを付した上で、光軸方向のZ軸(例えばレンズアレイの中心軸)と、Z軸と直交する撮像面のX軸およびY軸、そしてX軸を中心とするX軸回り、Y軸を中心とするY軸回り、Z軸を中心とするZ軸回りの計6軸について、アライメントマークを観察しながら合わせ込む調整工程を設けることが考えられる。しかしながら、6軸同時に合わせ込む調整工程には高精度な設備が必要で、且つ調整時間も長くかかるため、生産性が低くなり低コスト化が図れないという問題がある。
 本発明は、かかる従来技術の問題点に鑑みてなされたものであり、簡素な工程を経て第1のレンズアレイと第2のレンズアレイとを精度良く積層できるレンズユニット及び撮像装置を提供することを目的とする。
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映したレンズユニットは、第1のレンズアレイと第2のレンズアレイとを積層したレンズユニットにおいて、
 前記第1のレンズアレイは、光軸を互いに平行に配置してなる複数の第1レンズと、第1フランジ部とを一体的に形成してなり、
 前記第2のレンズアレイは、それぞれ前記第1レンズに対応して配置された複数の第2レンズと、第2フランジ部とを一体的に形成してなり、
 前記第1のレンズアレイと前記第2のレンズアレイは、積層したときに、光軸方向において3点で当接する当接部位を有し、且つ光軸直交方向の相対移動を制限する規制部を前記第1フランジ部と前記第2フランジ部とに設けたことを特徴とする。
 このレンズユニットによれば、前記当接部位を当接させることで、前記第1のレンズアレイと前記第2のレンズアレイの光軸方向の位置決めを行うことが出来、これにより光軸方向に積層されたレンズ間距離を容易に精度良く合わせ込むことが可能となり、また前記規制部により前記第1のレンズアレイと前記第2のレンズアレイの光軸直交方向の相対移動を制限されるので、光軸方向に積層されたレンズ同士の光軸を容易に精度良く一致させることが可能となる。「レンズアレイ」とは、全体が一体に形成されるものや、透明な基板上にレンズ部を形成してなるもの等を含み、素材としてはプラスチックやガラスが用いられると好ましい。
 本撮像装置は、上述のレンズユニットを有することを特徴とする。
 本発明によれば、簡素な工程を経て第1のレンズアレイと第2のレンズアレイとを精度良く積層できるレンズユニット及び撮像装置を提供することができる。
本実施形態にかかるカメラモジュールの模式図である。 図1の撮像ユニットLUの断面図である。 図2の撮像ユニットLUの分解図である。 図2,図3のレンズユニットLHの分解図である。 第1のレンズアレイLA1の像側面を示す図である。 第2のレンズアレイLA2の物体側面を示す図である。 第1のレンズアレイLA1と第2のレンズアレイLA2の積層時の係合状態を模式的に示す図である。 第1のレンズアレイLA1の物体側面を示す図である。 第1のレンズアレイLA1の斜視図である。 鏡枠HLDの像側面を示す図である。 鏡枠HLDの斜視図である。 レンズユニットLHを切断して示す斜視図である。 図12の一部拡大図である。 レンズユニットLHを別の方向から見た斜視図である。 撮像ユニットLUの組み付け工程を示す図である。 撮像ユニットLUの組み付け工程を示す図である。 撮像ユニットLUの組み付け工程を示す図である。 撮像ユニットLUの組み付け工程を示す図である。 別な実施形態にかかる図2と同様な断面図である。
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、図面の寸法比率は、説明の都合上誇張され、実際の比率とは異なる場合がある。
 まず、複眼光学系としてのレンズユニットを用いた複眼カメラモジュールについて説明する。複眼光学系は、1つの撮像素子に対して複数のレンズ系がアレイ状に配置された光学系であり、各レンズ系が同じ視野の撮像を行う超解像タイプと、各レンズ系が異なる視野の撮像を行う視野分割タイプと、に通常分けられる。ここでは、同じ方向を向き、かつ、微小に視差を有する複数の個眼レンズによって得られる複数の像から、個々の像よりも高い解像度を持つ1枚の合成画像を出力する超解像タイプについて説明する。
 図1に、本実施形態にかかる撮像装置を模式的に示す。図1に示すように、撮像装置DUは、撮像ユニットLU,画像処理部1,演算部2,メモリー3等を有している。そして、撮像ユニットLUは、1つの撮像素子SRと、その撮像素子SRに対して、互いに微小な視差を有する複数の像を結像するレンズユニットLHと、を有している。撮像素子SRとしては、例えば複数の画素を有するCCD型イメージセンサー,CMOS型イメージセンサー等の固体撮像素子が用いられる。撮像素子SRの光電変換部である受光面SS上には、被写体の光学像が形成されるようにレンズユニットLHが設けられているので、レンズユニットLHによって形成された光学像は、撮像素子SRによって電気的な信号に変換される。画像処理部1内の画像合成部1aにおいては、撮像素子SRから送られる複数の画像に相当する電気信号に基づいて、複数枚の画像からより解像度の高い1枚の画像データを得るように画像処理を実行する。
 図2は、図1の撮像ユニットLUの拡大断面図である。図3は、図2の撮像ユニットLUの分解図である。図4は、図2,図3のレンズユニットLHの分解図である。図2、3において、撮像ユニットLUは、物体側より順に、レンズユニットLH,第4遮光部材SH4、IRカットフィルタFからなり、これらは鏡枠HLDに保持されている。第4遮光部材SH4は、本実施形態では20μm~100μmであるSUSの板製とするが、黒色膜をIRカットフィルタFの物体側面に形成された黒色膜形成したものであってもよい。また鏡枠HLDの物体側には、物体側壁HLDaが形成され、ここに複数の開口絞りSが形成されている。
 図2,4において、レンズユニットLHは、物体側より順に、第1遮光部材SH1、第1のレンズアレイLA1、第2遮光部材SH2,第2のレンズアレイLA2,第3遮光部材SH3からなり、これらは互いに接着されている。但し、第1遮光部材SH1~第3遮光部材SH3は、20μm~100μmであるSUSの板製であっても良いし、レンズアレイに黒色膜を形成したものであってもよい。第1遮光部材SH1~第4遮光部材SH4は、開口絞りSに対応する複数の開口部を有する。尚、レンズアレイは3枚以上積層されていても良い。
 各レンズアレイは,4×4でマトリクス状に配列された開口絞りSに対応して複数の個眼レンズLa1,Lb1を一体に形成してなり、個眼レンズの数は、撮像素子SRの撮像面SS上に形成される物体像(個眼像という)の数と等しく(ここでは4×4)させてなる。つまり、光軸方向に積層された個眼レンズLa1,Lb1を通過した光線が、それぞれ撮像面SS上で1つの像(個眼像)を形成する。
 図1において、レンズユニットLHのレンズにより、被写体を分割して、撮像素子SRの撮像面SSに結像された複数の像(個眼像)Znは、それぞれ電気信号に変換され、画像合成部1aに入力される。画像合成部1aは、複数枚の画像からより解像度の高い1枚の画像データにかかる合成画像MLを出力する。合成画像MLは、演算部2で圧縮されてメモリー3に記憶される。
 ところで、第1のレンズアレイLA1と第2のレンズアレイLA2とを積層してレンズユニットLHを構成する場合、光軸に平行なZ軸方向、X軸方向、Y軸方向、X軸回り、Y軸回りの5軸に、Z軸回りを加えた6軸調整を行って、光軸方向に並んだ個眼レンズLa1,Lb1の光軸を高い精度で一致させる必要がある。本発明によれば、第1のレンズアレイLA1と第2のレンズアレイLA2とを重ね合わせることで、個眼レンズLa1,Lb1の光軸を一致させることができる。その構成について説明する。
 図5は、第1のレンズアレイLA1の像側面を示す図である。ここで、第1のレンズアレイLA1の中心を通り、個眼レンズLa1の光軸に平行な方向をZ軸とする。又、Z軸に直交する方向をX軸、Y軸とする。樹脂から一体的に成形された第1のレンズアレイLA1は、個眼レンズLa1を形成した矩形板状のフランジ部(第1フランジ部)La2を有する。図において、フランジ部La2の個眼レンズ(第1レンズ)La1を形成した中央の領域は、一段下がって矩形低部La3を形成している。矩形低部La3は、第2遮光部材SH2を組み付ける際の接着剤塗布領域として機能する。
 矩形低部La3の外側の矩形枠状領域La4に、ボス状の第1凸部La5が略等間隔に離れて3つ形成されている。又、矩形低部La3と矩形枠状領域La4との間の境界斜面部La6には、各辺毎に2つずつ、中央側にへこんだ係合凹部La7が形成されている。尚、フランジ部La2には、所定の位置である4カ所に第1アライメントマークAM1が形成されている。
 図6は、第2のレンズアレイLA2の物体側面を示す図である。樹脂から一体的に成形された第2のレンズアレイLA2は、個眼レンズ(第2レンズ)Lb1を形成した矩形板状のフランジ部(第2フランジ部)Lb2を有する。図において、フランジ部Lb2の個眼レンズLb1を形成した領域は、一段盛り上がって矩形台部Lb3を形成している。矩形台部Lb3は、矩形低部La3に対応している。
 矩形台部Lb3の外側の矩形枠状領域Lb4に、ボス状の第2凸部Lb5が、第1凸部La5に対向して3つ形成されている。又、矩形台部Lb3と矩形枠状領域Lb4との間の境界斜面部Lb6には、各辺毎に2つずつ、係合凹部La7に対向して係合凸部Lb7が形成されている。尚、フランジ部Lb2には、所定の位置である4カ所に第2アライメントマークAM2が形成されている。
 本実施形態によれば、第1のレンズアレイLA1と第2のレンズアレイLA2とを積層したときに、当接部位としての第1凸部La5の頂面と第2凸部Lb5の頂面とが当接し、これにより3点で確実に支持されるため、Z軸方向(Z)と、X軸回り(φX)と、Y軸回り(φY)における第1のレンズアレイLA1と第2のレンズアレイLA2の位置決めを精度良く行うことができる。尚、当接する第1凸部La5と第2凸部Lb5と第1アライメントマークAM1、第2アライメントマークAM2、係合凹部La7と係合凸部Lb7近傍以外の矩形枠状領域La4,Lb4間に接着剤を塗布することで、第1のレンズアレイLA1と第2のレンズアレイLA2とを強固に接合できる。
 更に、本実施形態によれば、第1のレンズアレイLA1と第2のレンズアレイLA2とを積層したときに、規制部としての係合凹部La7と係合凸部Lb7とが係合して、光軸直交方向の相対移動を規制する。係合凹部La7は第2遮光部材SH2の外形側面と係合して、光軸直交方向の相対移動を規制に用いることもできる。当接部位としての第1凸部La5の頂面と第2凸部Lb5を当接させる観点から、第2遮光部材SH2と第1のレンズアレイ、もしくは第2のレンズアレイLA2との間において、いずれか一方には光軸方向に適度な隙間を設ける。その隙間は接着剤で充填して埋めてもよい。
 ここで、模式的に示す図7において、第1のレンズアレイLA1と第2のレンズアレイLA2とのX軸(X)方向の位置決めを行う場合、対向する辺にある係合部K1、K2を当接させれば良い。又、第1のレンズアレイLA1と第2のレンズアレイLA2とのY軸方向(Y)の位置決めを行う場合、対向する辺にある係合部K3、K4を当接させれば良い。更に、第1のレンズアレイLA1と第2のレンズアレイLA2とのZ軸回り(θ)方向の位置決めを行う場合、回転対象に対向する辺にある係合部K1、K2でZ軸回り(θ)の反時計方向が規制され、回転対象に対向する辺にある係合部K3、K4でZ軸回り(θ)の時計方向が規制される。従って、係合部が最低4カ所あれば、X軸方向と、Y軸方向と、Z軸回りにおける第1のレンズアレイLA1と第2のレンズアレイLA2の位置決めを精度良く行うことができる。
 しかしながら、本実施形態では、第1のレンズアレイLA1と第2のレンズアレイLA2の各辺に2つずつ計8つの係合凹部La7と係合凸部Lb7とを設けて、互いに当接させるようになっている。これは、第1のレンズアレイLA1と第2のレンズアレイLA2を、金型を用いて成形した後で、成形品の精度を確認するために形状測定を行うことがあるが、かかる形状測定を、係合凹部La7又は係合凸部Lb7を通過する図5,6のラインDLに沿って行えば対称形状となっていれば好ましいからである。残る第1凸部La5と第2凸部Lb5も中央ラインDL2に沿って形状測定を行うことができる。仮に第1のレンズアレイLA1に反りが発生しても、ラインDLと中央ラインDL2に沿った形状測定データを用いて、3箇所の第1凸部Laが平面になるようにアライメントすれば、当接する条件での係合凹部La7の形状がわかる。第2のレンズアレイLA2の係合凸部Lb7も同様である。平面アライメントした測定結果で、係合凹部La7又は係合凸部Lb7を重ね合わせれば、係合部の隙間が許容公差範囲内に入っているかを容易に確認できる。
 このように、本実施形態によれば、第1のレンズアレイLA1と第2のレンズアレイLA2の積層時に、第1凸部La5と第2凸部Lb5とを当接させ、且つ係合凹部La7と係合凸部Lb7とを係合させるのみで、6軸の位置決めを行えるから、簡素な構成で精度の良い組付けを行うことができる。尚、係合凹部La7と係合凸部Lb7との当接は、いずれか3箇所で足りる。この場合、残りの係合凹部La7と係合凸部Lb7との間に隙間が生じるが、その隙間は微小であるから、X軸方向と、Y軸方向と、Z軸回りにおける位置決め精度を大きく低下させることはない。本実施形態の係合凹部La7と係合凸部Lb7は斜面形状にしてあるが、光軸に平行な垂直面としても構わない。
 第1のレンズアレイLA1と第2のレンズアレイLA2の積層時に、第1アライメントマークAM1と第2アライメントマークAM2とが重なっていれば、X軸方向と、Y軸方向と、Z軸回りにおける位置決めが精度良く行われているかが分かる。これは、金型の検査時に有効である。尚、図示していないが、個眼レンズLa1,Lb1の光学面中央に、同様なアライメントマークを設けて、第1のレンズアレイLA1と第2のレンズアレイLA2の積層時に重なっているか否かをチェックすることもできる。アライメントマークは、円形、環状、十字形など種々の形態がある。
 図8は、第1のレンズアレイLA1の物体側面を示す図である。図9は、第1のレンズアレイLA1の斜視図である。第1のレンズアレイLA1のフランジ部La2の物体側面は、図8に示す個眼レンズLa1を形成した領域において、一段盛り上がって矩形台部La8を形成している。又、矩形台部La8の外側の矩形枠状領域La9に、ボス状の第3凸部La10が略等間隔に3つ形成されている。矩形台部La8と矩形枠状領域La9との間には、光軸に対して傾いた境界斜面部La11が設けられている。矩形台部La8内に物体側と像面側が重なるように第1アライメントマークAM1が設けられており、物体側と像面側とが重なっていれば、物体側と像面側の個眼レンズLa1のX軸方向と、Y軸方向と、Z軸回りにおける位置決めが精度良く行われているかが分かる。このアライメントマークは、円形、環状、十字形など種々の形態がある。
 図9において、第1のレンズアレイLA1のフランジ部La2の外周面La12には、光軸(Z軸)と平行な複数の基準面La13が半円形状に形成されている。互いに交差する外周面La12のうち、一方をA面、他方をB面としたときに、A面に1つの基準面La13を設け、B面には2つの基準面La13を設けることができる。第1のレンズアレイLA1を金型から成形する際に、離型性を高めるため、フランジ部La2の外周面La12に抜き勾配を持たせることが多い。かかる場合、搬送のため第1のレンズアレイLA1の外周面La12を把持したロボット(不図示)と、第1のレンズアレイLA1との位置関係が精度良く定まらない恐れがある。本実施形態によれば、ロボットのフィンガーやセンサを基準面La13に当接させることで、ロボットと、第1のレンズアレイLA1との位置関係を精度良く求めることができる。同様な基準面を、第2のレンズアレイLA2に設けることもできる。
 図10は、鏡枠HLDの像側面を示す図である。図11は、鏡枠HLDの物体側の斜視図であり、図15は、鏡枠HLDの像側の斜視図である。図10に示す鏡枠HLDの物体側壁HLDaの像側面において、開口絞りSを設けた領域は一段低くなって矩形低部HLDcを形成している。矩形低部HLDcは、第1のレンズアレイLA1の矩形台部La8に対応している。矩形低部HLDcの周囲には、光軸に対して傾いた境界斜面部HLDdが形成されている。矩形低部HLDcの外縁近傍に、ボス状の第4凸部(鏡枠当接部位)HLDeが、第3凸部La10に対向して3つ形成されている。
 鏡枠HLDにおいて、側面部HLDbの4つの内周面HLDmのうち対向する面(図10で左右の面)と、物体側壁HLDaとの交差部(角部)には5つのリブHLDnが形成され、内周面HLDmの別の対向する面(図10で上下の面)と、物体側壁HLDaとの交差部には4つのリブHLDpが形成されている。図10に示す方向に見て略台形ブロック状のリブHLDn、HLDpの光軸方向高さは、図2に示すように、組み付けた状態で第1のレンズアレイLA1の高さより低くなっている。なお、リブHLDn間、及びリブHLDp間に、スポンジ等を詰めても良い。
 図11において、鏡枠HLDの側面部HLDbの外周面HLDgには、光軸(Z軸)と平行な複数の基準面HLDjが半円形状に形成されており、また鏡枠HLDの物体側面HLDiには、光軸と直交する基準面HLDhが形成されている。互いに交差する外周面HLDgのうち、一方をC面、他方をD面としたときに、C面に1つの基準面HLDjを設け、D面には2つの基準面HLDjを設けることができる。
 鏡枠HLDを金型から樹脂成形する場合、離型性を高めるため、側面部HLDbの外周面HLDgに抜き勾配を持たせることが多い。かかる場合、搬送のため鏡枠HLDの外周面HLDgを把持したロボット(不図示)と、鏡枠HLDとの位置関係が精度良く定まらない恐れがある。本実施形態によれば、ロボットのフィンガーやセンサを基準面HLDj、HLDhに当接させることで、ロボットと、第1のレンズアレイLA1との3次元の位置関係を精度良く求めることができる。
 ここで、本実施形態の撮像ユニットLUの組み立て方法について説明する。まず、別工程で、遮光部材SH1~SH3を組み付けながら、上述したようにして第1のレンズアレイLA1と第2のレンズアレイLA2を位置決めしてレンズユニットLHを製作する。次に、図15に示すように、成形した鏡枠HLDを、物体側を下方に向けた状態で保持し、図3に示すように、レンズユニットLH,遮光部材SH4,IRカットフィルタFの順序で組み付けてゆく。
 鏡枠HLDに対して、レンズユニットLHは、第4凸部HLDeと第3凸部La10とを当接させることで、精度良く組み付けられる。このとき、レンズユニットLHは、図2に示すように、鏡枠HLDの対向するリブHLDn(HLDp)間に隙間を空けて設置される。かかる隙間は、環境温度変化によるレンズユニットLHの熱膨張が生じても、リブHLDn、HLDpに干渉しない程度の隙間である。かかる中間組立状態を、図16に示す。
 ここで、リブHLDn、HLDpの上面(像側面)に、図16ではハッチングで示すようにUV硬化性接着剤BD(硬化後のヤング率が10MPa以上、500MPa以下)を塗布すると、リブHLDn、HLDpとレンズユニットLHとの間の隙間に入り込む。かかる状態で、この接着剤BDに外部からUV光を照射して硬化させる。硬化してもある程度弾性を有する接着剤BDにより、レンズユニットLHが鏡枠HLDに対して弾性的に固定される。その後、図17に示すように、遮光部材SH4とIRカットフィルタFを組み付ける。具体的には、第2のレンズアレイLA2の像側に突出した像側当接部位である3つの第5凸部Lb8(図16参照)に、遮光部材SH4を当接させて接着し、その後、遮光部材SH4の裏面における第5凸部Lb8に対向する位置3点に、上述のUV硬化性接着剤BD(又は一般の接着剤)を付与した状態でIRカットフィルタFを密着させる。更に、図18に示すように、IRカットフィルタFの周囲4辺に、鏡枠HLDの内周面に跨がるようにして、上述のUV硬化性接着剤BDを付与して、外部からUV光を照射して硬化させる。同様にして、硬化してもある程度弾性を有する接着剤BDにより、レンズユニットLHが鏡枠HLDに対して弾性的に固定される。このとき、第2のレンズアレイLA2の像側に突出した3つの第5凸部Lb8(図16参照)が、遮光部材SH4に当接することで、遮光部材SH4の精度良い組み付けが可能になる。また、IRカットフィルタFが、第5凸部Lb8に対向する位置3点にて遮光部材SH4に当接した状態で接着されるので、薄く反りなどが生じやすいIRカットフィルタFであっても、遮光部材SH4からの浮き上がりを抑制しつつ光軸直交度を精度良く確保できる。その後、図2に示すように,携帯端末などの上位機器に実装された固体撮像素子SRに対して、レンズユニットLHは鏡枠HLDとともに取り付けられる。
 図12は、鏡枠HLDに組み付けられたレンズユニットLHを切断して示す斜視図であり、図13は、図12の一部拡大図であり、図14は、別の方向から見た図である。
 本実施形態によれば、鏡枠HLDに、第1のレンズアレイLA1及び第2のレンズアレイLA2を組み付けたときに、第3凸部La10の頂面と第4凸部HLDeの頂面とが当接し、これにより3点で確実に支持されるため、Z軸方向(Z)と、X軸回り(φX)と、Y軸回り(φY)における鏡枠HLDと、第1のレンズアレイLA1及び第2のレンズアレイLA2の位置決めを精度良く行うことができる。これにより、個眼レンズLa1,Lb1に対して開口絞りSを適正な位置に配置することができる。
 図13において、第1のレンズアレイLA1の係合凹部La7以外の境界斜面部La6と、第2のレンズアレイLA2の係合凸部Lb7以外の境界斜面部Lb6との間に、許容公差範囲内の隙間があると好ましい。又、鏡枠HLDの境界斜面部HLDdと、第1のレンズアレイLA1の境界斜面部La11との間に、許容公差範囲内の隙間があると好ましい。矩形枠状領域HLDkは、境界斜面部La11を組み付ける際の接着剤塗布領域として機能する
 更に、図14に示すように、第1凸部La5と第2凸部Lb5の当接面と、第3凸部La10と第4凸部HLDeの当接面とが、光軸方向に重なっていると好ましい。このように当接面が光軸方向に重なっていると、鏡枠HLDに第1のレンズアレイLA1及び第2のレンズアレイLA2を組み付けたときに、一方の当接面に生じた反力の方向が他方の当接面を通ることで支持が確保され、各部材が傾く恐れが少なくなるからである。
 ここで、撮像ユニットLHを組み付けた携帯端末などを誤って落下させた場合など、落下の衝撃力が撮像ユニットLHに付与される恐れがある。本実施形態によれば、図2,16に示すように、鏡枠HLDのリブHLDn、HLDpに塗布されたUV硬化性接着剤BDが、硬化後に所定のヤング率を有するので、光軸直交方向に衝撃力を付与されたとき、UV硬化性接着剤BDが微小に撓むことで緩衝効果をもたらし、レンズユニットLHに衝撃力が直接伝達されることを抑制し、これにより第1のレンズアレイLA1及び第2のレンズアレイLA2の破損を抑制できる。
 一方、光軸方向に衝撃力が付与されたときは、IRカットフィルタFを鏡枠HLDに固定するためのUV硬化性接着剤BDが微小に撓むことで緩衝効果をもたらし、レンズユニットLHに衝撃力が直接伝達されることを抑制し、これにより第1のレンズアレイLA1及び第2のレンズアレイLA2の破損を抑制できる。なお、リブHLDn、HLDpは、それぞれ片側だけ設けても良い。
 尚、鏡枠HLDの側面部HLDbに、固体撮像素子との接合用の基準面HLDfを設けたとき、第3凸部La10と第4凸部HLDeの当接面と光軸方向に重ねることが困難な場合には、極力近い位置に配置することが望ましい。
 図19は、別な実施形態にかかる図2と同様な断面図であるが、固体撮像素子等は省略している。本実施形態では、リブHLDn、HLDp上に付与する接着剤の代わりに、フィンガーHLDqを用いて鏡枠HLD’にレンズユニットLHを取り付ける。図19において、鏡枠HLD’の物体側壁HLDaの像側面から、リブHLDn(HLDp)の間を通り、複数のフィンガーHLDqが光軸に沿って延在している。各フィンガーHLDqは、その先端に鈎爪HLDrを、レンズユニットLHの内側を向くようにして形成している。
 組み付け時に、鏡枠HLD’に対してレンズユニットLHを接近させてゆくと、レンズユニットLHにより鈎爪HLDrが押し広げられ、それに応じてフィンガーHLDqが外側に曲がるので、レンズユニットLHの通過が許容され所定位置に収まるようになる。レンズユニットLHが通過した後には、フィンガーHLDqが弾性変形より復帰して、図19に示すように、鈎爪HLDrが第2のレンズアレイLA2のフランジ部の像面側に係合するので、鏡枠HLD’からレンズユニットLHが脱落することが阻止される。外部から衝撃を受けたときは、フィンガーHLDqがある程度撓むことで、レンズユニットLHに伝達される衝撃力を緩和することができる。それ以外の構成は,上述した実施形態と同様である。
 以下、好ましい実施態様についてまとめて説明する。
 上記レンズユニットの前記規制部は、前記第1のレンズアレイと前記第2のレンズアレイとの、光軸に平行な軸回りの相対回動を規制することが好ましい。これにより、光軸方向に積層されたレンズ同士の光軸を精度良く一致させることが可能となる。
 また、前記第1フランジ部と前記第2フランジ部とに、アライメントマークを設けることが好ましい。前記アライメントマークによって、光軸方向に積層されたレンズ同士の光軸が精度良く一致していることが確認できる。
 また、前記第1レンズ部と前記第2レンズ部とに、アライメントマークを設けることが好ましい。前記アライメントマークによって、光軸方向に積層されたレンズ同士の光軸が精度良く一致していることが確認できる。
 また、前記第1フランジ部と前記第2フランジ部のうち少なくとも一方の側面には、光軸に平行な基準面が形成されていることが好ましい。組み付け時に、前記第1のレンズアレイ及び/又は前記第2のレンズアレイをロボット等で把持することがあるが、かかる場合、組付け位置へと精度良く搬送するには、ロボットが把持したレンズアレイと、ロボットとの相対位置関係を予め認識しておく必要がある。本発明によれば、前記基準面をロボットなどが把持したり、前記基準面に接触センサを当てたりすることで、レンズアレイとロボット等との位置関係を精度良く認識することができる。
 また、前記少なくとも一方の側面は、互いに交差するA面とB面とを備え、A面には1つの基準面、B面には2つの基準面が設けられていることが好ましい。これにより、例えばロボットのフィンガーの光軸に平行な直交する基準面に、A面とB面の基準面を3点で当接することにより、平行移動と回転移動を規制し精度良く支持できる。
 また、積層された前記第1のレンズアレイと前記第2のレンズアレイとを保持する鏡枠が設けられ、前記鏡枠は、光軸方向において前記第1のレンズアレイに対向する物体側壁と、前記物体側壁に交差する側壁部とを有することが好ましい。前記鏡枠により、積層された前記第1のレンズアレイと前記第2のレンズアレイとを保持しつつ、固体撮像素子等に組み付けることで撮像装置を形成できる。
 また、前記鏡枠の側面には、光軸に平行な基準面が形成されていることが好ましい。組み付け時に、前記鏡枠をロボット等で把持することがあるが、かかる場合、組付け位置へと精度良く搬送するには、ロボットが把持した鏡枠と、ロボットとの相対位置関係を予め認識しておく必要がある。本発明によれば、前記基準面をロボットなどが把持したり、前記基準面に接触センサを当てたりすることで、鏡枠とロボット等との位置関係を精度良く認識することができる。
 また、前記鏡枠の側壁部の外周面は、互いに交差するC面とD面とを備え、C面には1つの基準面、D面には2つの基準面が設けられていることが好ましい。これにより、例えばロボットのフィンガーの光軸に平行な直交する基準面に、C面とD面の基準面を3点で当接することにより、平行移動と回転移動を規制し精度良く支持できる。
 また、前記鏡枠の物体側壁の像側面には、前記当接部位に対応して3つの鏡枠当接部位が設けられており、組み付け時に前記鏡枠当接部位が、前記第1のレンズアレイに当接することが好ましい。組み付け時に前記鏡枠当接部位を、前記第1のレンズアレイに当接させることで、前記鏡枠に対して前記第1のレンズアレイの位置決めが精度良く行われ、よって固体撮像素子に対して前記鏡枠を所定位置に組み付けることで、前記第1レンズ及び前記第2レンズにより結像された被写体像が、固体撮像素子の撮像面に適正に結像することができる。
 また、前記鏡枠の物体側壁の物体側面には、基準面が設けられていることが好ましい。これにより、前記基準面を用いて例えばロボットにより精度良く把持できる。
 また、前記第2フランジ部の像面側に3点の像側当接部位を有し、前記像側当接部位に当接するように配置した板状の光学素子を、前記鏡枠に対して、硬化後に所定のヤング率を有する接着剤を用いて取り付けたことが好ましい。これによりレンズユニット落下などの衝撃に対して前記接着剤が緩衝材の機能を発揮し、衝撃に対して強い構造とすることができる。なお、所定のヤング率とは、接着剤の硬化後において、10MPa以上、500MPa以下であると好ましい。接着剤は光硬化性、熱硬化性等、任意のものを用いることもできる。
 また、前記板状の光学素子は、各第2レンズに対応した開口部を有する遮光部材とIRカットフィルタであることが好ましい。これにより、前記遮光部材と前記IRカットフィルタが、前記第2フランジ部の像側当接部位に対して3点で支持されるようになるため、前記第2のレンズアレイに対して精度良く平行に設置されることとなり、前記レンズユニットの光学性能が良好なものとなる。
 本発明は、本明細書に記載の実施形態に限定されるものではなく、他の実施形態・変形例を含むことは、本明細書に記載された実施形態や技術思想から本分野の当業者にとって明らかである。例えば、本実施形態にかかるレンズユニットは、超解像タイプのみならず、視野分割タイプの複眼光学系を備える撮像装置のレンズユニットに用いてもよい。
AM1      第1アライメントマーク
AM2      第2アライメントマーク
DL       ライン
DL2      中央ライン
DU       撮像装置
F        IRカットフィルタ
HLD      鏡枠
HLDa     物体側壁
HLDb     側面部
HLDc     矩形低部
HLDd     境界斜面部
HLDe     第4凸部
HLDf     基準面
HLDg     外周面
HLDh     基準面
HLDi     物体側面
HLDj     基準面
HLDk     矩形枠状領域
HLDm     内周面
HLDn     リブ
HLDp     リブ
HLDq     フィンガー
K1~K4    係合部
LA1      第1のレンズアレイ
La1      個眼レンズ
La2      フランジ部
La3      矩形低部
La4      矩形枠状領域
La5      第1凸部
La6      境界斜面部
La7      係合凹部
La8      矩形台部
La9      矩形枠状領域
La10     凸部
La11     境界斜面部
La12     外周面
La13     基準面
LA2      第2のレンズアレイ
Lb1      個眼レンズ
Lb2      フランジ部
Lb3      矩形台部
Lb4      矩形枠状領域
Lb5      第2凸部
Lb6      境界斜面部
Lb7      係合凸部
Lb8      第5凸部
LH       レンズユニット
LU       撮像ユニット
SH1      第1遮光部材
SH2      第2遮光部材
SH3      第3遮光部材
SH4      第4遮光部材
SR       撮像素子
SS       撮像面

Claims (14)

  1.  第1のレンズアレイと第2のレンズアレイとを積層したレンズユニットにおいて、
     前記第1のレンズアレイは、光軸を互いに平行に配置してなる複数の第1レンズと、第1フランジ部とを一体的に形成してなり、
     前記第2のレンズアレイは、それぞれ前記第1レンズに対応して配置された複数の第2レンズと、第2フランジ部とを一体的に形成してなり、
     前記第1のレンズアレイと前記第2のレンズアレイは、積層したときに、光軸方向において3点で当接する当接部位を有し、且つ光軸直交方向の相対移動を制限する規制部を前記第1フランジ部と前記第2フランジ部とに設けたことを特徴とするレンズユニット。
  2.  前記規制部は、前記第1のレンズアレイと前記第2のレンズアレイとの、光軸に平行な軸回りの相対回動を規制することを特徴とする請求項1に記載のレンズユニット。
  3.  前記第1フランジ部と前記第2フランジ部とに、アライメントマークを設けたことを特徴とする請求項1又は2に記載のレンズユニット。
  4.  前記第1レンズ部と前記第2レンズ部とに、アライメントマークを設けたことを特徴とする請求項1~3のいずれかに記載のレンズユニット。
  5.  前記第1フランジ部と前記第2フランジ部のうち少なくとも一方の側面には、光軸に平行な基準面が形成されていることを特徴とする請求項1~4のいずれかに記載のレンズユニット。
  6.  前記少なくとも一方の側面は、互いに交差するA面とB面とを備え、A面には1つの基準面、B面には2つの基準面が設けられていることを特徴とする請求項5に記載のレンズユニット。
  7.  積層された前記第1のレンズアレイと前記第2のレンズアレイとを保持する鏡枠が設けられ、前記鏡枠は、光軸方向において前記第1のレンズアレイに対向する物体側壁と、前記物体側壁に交差する側壁部とを有することを特徴とする請求項1~6のいずれかに記載のレンズユニット。
  8.  前記鏡枠の側面には、光軸に平行な基準面が形成されていることを特徴とする請求項7に記載のレンズユニット。
  9.  前記鏡枠の側壁部の外周面は、互いに交差するC面とD面とを備え、C面には1つの基準面、D面には2つの基準面が設けられていることを特徴とする請求項8に記載のレンズユニット。
  10.  前記鏡枠の物体側壁の像側面には、前記当接部位に対応して3つの鏡枠当接部位が設けられており、組み付け時に前記鏡枠当接部位が、前記第1のレンズアレイに当接することを特徴とする請求項7~9のいずれかに記載のレンズユニット。
  11.  前記鏡枠の物体側壁の物体側面には、基準面が設けられていることを特徴とする請求項7~10のいずれかに記載のレンズユニット。
  12.  前記第2フランジ部の像面側に3点の像側当接部位を有し、前記像側当接部位に当接するように配置した板状の光学素子を、前記鏡枠に対して、硬化後に所定のヤング率を有する接着剤を用いて取り付けたことを特徴とする請求項7~11のいずれかに記載のレンズユニット。
  13.  前記板状の光学素子は,各第2レンズに対応した開口部を有する遮光部材とIRカットフィルタであることを特徴とする請求項12に記載のレンズユニット。
  14.  請求項1~13のいずれかに記載のレンズユニットを有することを特徴とする撮像装置。
PCT/JP2014/072698 2013-09-12 2014-08-29 レンズユニット及び撮像装置 WO2015037454A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-188975 2013-09-12
JP2013188975 2013-09-12
JP2014-006406 2014-01-17
JP2014006406 2014-01-17

Publications (1)

Publication Number Publication Date
WO2015037454A1 true WO2015037454A1 (ja) 2015-03-19

Family

ID=52665567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072698 WO2015037454A1 (ja) 2013-09-12 2014-08-29 レンズユニット及び撮像装置

Country Status (1)

Country Link
WO (1) WO2015037454A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284158A (ja) * 1999-03-31 2000-10-13 Rohm Co Ltd レンズアレイアッセンブリおよびこれを用いた光学装置
JP2003114308A (ja) * 2001-10-03 2003-04-18 Sony Corp 撮像光学系および撮像用カメラ装置
JP2004205776A (ja) * 2002-12-25 2004-07-22 Konica Minolta Holdings Inc 光学ユニット
JP2005234334A (ja) * 2004-02-20 2005-09-02 Sony Corp 光学部品保持装置、光学部品及びハウジング
JP2011095337A (ja) * 2009-10-27 2011-05-12 Olympus Corp 接合レンズの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284158A (ja) * 1999-03-31 2000-10-13 Rohm Co Ltd レンズアレイアッセンブリおよびこれを用いた光学装置
JP2003114308A (ja) * 2001-10-03 2003-04-18 Sony Corp 撮像光学系および撮像用カメラ装置
JP2004205776A (ja) * 2002-12-25 2004-07-22 Konica Minolta Holdings Inc 光学ユニット
JP2005234334A (ja) * 2004-02-20 2005-09-02 Sony Corp 光学部品保持装置、光学部品及びハウジング
JP2011095337A (ja) * 2009-10-27 2011-05-12 Olympus Corp 接合レンズの製造方法

Similar Documents

Publication Publication Date Title
JP7080260B2 (ja) マルチレンズグループアセンブリ、撮影モジュール及びその組み立て方法、電子機器
CN110824653B (zh) 光学镜头、摄像模组及其组装方法
WO2019047534A1 (zh) 摄像模组及其组装方法
TWI703401B (zh) 光學組件的組裝設備及組裝方法
JP2015130614A (ja) カメラモジュールの製造方法
JP5794032B2 (ja) 光学ユニット、光学ユニットの製造方法、および撮像装置
JP7205486B2 (ja) 撮像装置
WO2014126092A1 (ja) 撮像装置、レンズユニット及び撮像装置の製造方法
WO2014203676A1 (ja) 位置決め装置、位置決め方法及び複眼カメラモジュール
JP2013174784A (ja) カメラモジュール、カメラモジュールの組み付け方法、レンズアレイの製造方法及び金型
US20210048595A1 (en) Optical lens, camera module and assembly method therefor
EP3859419B1 (en) Optical zoom camera module and assembling method therefor
CN110275264B (zh) 光学镜头、摄像模组及其组装方法
WO2015037454A1 (ja) レンズユニット及び撮像装置
JP2010147917A (ja) 撮像素子ユニット及び撮像装置
JP2014240947A (ja) レンズユニット、撮像装置及びレンズユニットの製造方法
CN110542969B (zh) 光学镜头、摄像模组及其组装方法
KR102443493B1 (ko) 광학 렌즈, 카메라 모듈 및 이의 조립 방법
JP4213439B2 (ja) レンズブロック
JP2009251401A (ja) レンズユニット、カメラモジュール、及びレンズユニットの製造方法
JP2009251402A (ja) レンズユニット、カメラモジュール、及びレンズユニットの製造方法
JP2015178197A (ja) 保持装置、光学ユニットの製造方法及び光学ユニット
JP2015119318A (ja) 撮像装置及び撮像装置の製造方法
JP2014235307A (ja) レンズアレイユニット及び撮像装置
JP6561840B2 (ja) 積層型レンズアレイユニット及び撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14843334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP