WO2019047534A1 - 摄像模组及其组装方法 - Google Patents

摄像模组及其组装方法 Download PDF

Info

Publication number
WO2019047534A1
WO2019047534A1 PCT/CN2018/083923 CN2018083923W WO2019047534A1 WO 2019047534 A1 WO2019047534 A1 WO 2019047534A1 CN 2018083923 W CN2018083923 W CN 2018083923W WO 2019047534 A1 WO2019047534 A1 WO 2019047534A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
sub
camera module
relative
resolution
Prior art date
Application number
PCT/CN2018/083923
Other languages
English (en)
French (fr)
Inventor
王明珠
廖海龙
刘春梅
王一琪
褚水佳
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to KR1020207007290A priority Critical patent/KR102321746B1/ko
Priority to US16/643,194 priority patent/US11506857B2/en
Priority to EP18854093.4A priority patent/EP3684044A4/en
Priority to JP2020514291A priority patent/JP6953625B2/ja
Priority to CN201880056739.0A priority patent/CN111034169B/zh
Publication of WO2019047534A1 publication Critical patent/WO2019047534A1/zh
Priority to US17/900,484 priority patent/US11774698B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/62Optical apparatus specially adapted for adjusting optical elements during the assembly of optical systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/022Mountings, adjusting means, or light-tight connections, for optical elements for lenses lens and mount having complementary engagement means, e.g. screw/thread
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/023Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/025Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the present invention relates to the field of optical technology, and in particular to a solution for a camera module.
  • the factors affecting the lens resolution force are derived from errors in components and their assembly, errors in the thickness of the lens spacer elements, errors in the assembly fit of the lenses, and changes in the refractive index of the lens material.
  • the error of each component and its assembly includes the optical surface thickness of each lens unit, the optical height of the lens, the optical surface type, the radius of curvature, the eccentricity of the lens and the surface, the tilt of the optical surface of the lens, etc.
  • the size depends on the accuracy of the mold and the ability to control the forming accuracy.
  • the error in the thickness of the lens spacer depends on the processing accuracy of the component.
  • the tolerance of the assembly fit of each lens depends on the dimensional tolerances of the components being assembled and the assembly accuracy of the lens.
  • the error introduced by the change in the refractive index of the lens material depends on the stability of the material and the batch consistency.
  • the existing resolution solution is to compensate for the tolerance of the components with high relative sensitivity and the lens rotation to improve the resolution.
  • the tolerance is strict. For example, some sensitive lenses are 1um.
  • the lens eccentricity will bring the 9' image plane tilt, which makes the lens processing and assembly more and more difficult.
  • the process assembly index (CPK) of the lens assembly is low and fluctuates, resulting in the defect rate. high.
  • each structural member such as the sensor chip mounting, motor lens locking process, etc.
  • the assembly process of each structural member may cause the sensor chip to tilt, and multiple tilt stacks may cause the imaging module.
  • the resolution of the module cannot reach the established specifications, which in turn leads to a low yield of the module factory.
  • the module factory compensated for the tilt of the sensor chip by the Active Alignment process when assembling the imaging lens and the photosensitive module.
  • this process has limited compensation capabilities. Since the aberrations affecting the resolution force are derived from the ability of the optical system itself, when the resolution of the optical imaging lens itself is insufficient, the active calibration process of the existing photosensitive module is difficult to compensate.
  • the present invention is directed to providing a solution that overcomes at least one of the above-discussed deficiencies of the prior art.
  • a camera module assembly method including:
  • the first sub-lens and the second sub-lens are connected such that the relative positions of the first sub-lens and the second sub-lens remain unchanged.
  • adjusting the relative position includes:
  • the measured resolution of the optical system imaging is increased by moving the first sub-lens along the adjustment plane relative to the second sub-lens.
  • the moving along the adjustment plane comprises translating and/or rotating on the adjustment plane.
  • adjusting the relative position comprises: adjusting an axis of the first sub-lens relative to the first The angle between the axes of the two sub-lenses.
  • the step of adjusting the relative position of the first sub-lens relative to the second sub-lens includes the following sub-steps:
  • the step of adjusting the relative position of the first sub-lens relative to the second sub-lens further includes:
  • the measured image plane of the optical system image obtained by the photosensitive element is matched with a target surface, wherein the z direction is along The direction of the optical axis.
  • the adjustment plane is perpendicular to the z direction.
  • the method for obtaining the measured image plane tilt includes:
  • An image based on the output of the photosensitive member acquires a resolution power defocus curve corresponding to each of the test positions.
  • the reaching the second threshold is to reduce the positional deviation of the peak of the resolution power defocus curve corresponding to the different test positions of the test field in the optical axis direction to the second threshold.
  • the reaching the second threshold is to reduce the positional shift of the peak of the resolution power defocus curve corresponding to the different test positions of the test field in the optical axis direction to +/- 5 ⁇ m.
  • the method for obtaining the measured resolution of the optical system imaging includes:
  • An image based on the output of the photosensitive member acquires a resolution power defocus curve corresponding to each of the test positions.
  • the reaching the corresponding threshold is: dissolving the resolution of different test positions corresponding to the reference field of view The peak of the focal curve rises to the corresponding threshold.
  • the reaching the corresponding threshold comprises: making different test positions corresponding to the test field of view The smallest one of the peaks of the multiple resolution power defocus curves reaches a corresponding threshold.
  • the step of adjusting the relative position of the first sub-lens relative to the second sub-lens includes the following sub-steps:
  • the repeating step includes:
  • the tilt of the measured image plane of the optical system image obtained by the photosensitive element is reduced by adjusting an angle of a central axis of the first sub-lens with respect to a central axis of the second sub-lens.
  • the first sub-lens and the second sub-lens are connected by a bonding or soldering process.
  • the welding process includes laser welding or ultrasonic welding.
  • the second sub-lens and the photosensitive component are fixed by inactive calibration to form the second sub-assembly.
  • the non-active calibration method refers to a method other than active calibration, such as mechanical alignment, which does not require illumination of the module chip.
  • the active calibration English name is Active Alignment, which can be abbreviated as AA.
  • a camera module including:
  • a first sub-lens including a first lens barrel and at least one first lens
  • a second subassembly comprising a second sub-lens and a photosensitive component fixed together, the second sub-lens comprising a second lens barrel and at least one second lens; the photosensitive component comprising a photosensitive element;
  • first sub-lens is disposed on an optical axis of the second sub-lens, and constitutes an imageable optical system including the at least one first lens and the at least one second lens;
  • the first sub-lens and the second sub-lens are fixed together by a connection medium, and the connection medium is adapted to have an inclination of a central axis of the first sub-lens relative to a central axis of the second sub-lens .
  • connecting medium is further adapted to shift the central axis of the first sub-lens from the central axis of the second sub-lens.
  • the connecting medium is further adapted to have a structural gap between the first sub-lens and the second sub-lens.
  • the connecting medium is a bonding medium or a welding medium.
  • the central axis of the first sub-lens is offset from the central axis of the second sub-lens by 0-15 ⁇ m.
  • the central axis of the first sub-lens has an inclination angle of less than 0.5 degrees with respect to the central axis of the second sub-lens.
  • connection medium is further adapted to maintain a relative position of the first sub-lens and the second sub-lens, and the relative position is such that the optical imaging obtained by the photosensitive element is measured
  • the resolution is increased to a first threshold, and the measured image plane tilt of the optical system image obtained by the photosensitive element is reduced to a second threshold.
  • the second sub-lens further includes a motor, and the measured resolution is the measured resolution of the motor in an open state, and the measured image plane tilt is a measured image plane tilt in a motor-on state.
  • the outer faces of the first sub-lens and the second sub-lens have contact faces for easy ingestion.
  • the second sub-lens and the photosensitive member have a gap of 10-50 ⁇ m.
  • the present invention has at least one of the following technical effects:
  • the invention can improve the resolution of the camera module.
  • the present invention can increase the process capability index (CPK) of a mass-produced camera module.
  • the present invention reduces the overall cost of the optical imaging lens and the module by making the requirements for the accuracy of the optical imaging lens and the various components of the module and the assembly accuracy thereof loose.
  • the invention can adjust various aberrations of the camera module in real time during the assembly process, reduce the defect rate, reduce the production cost, and improve the image quality.
  • the invention adjusts the relative position of the multi-degree of freedom of the first sub-lens and the second sub-assembly to realize the one-time aberration adjustment of the whole module, thereby improving the overall imaging quality of the module.
  • the invention can fix the photosensitive component and the second sub-lens by a non-active calibration method, thereby reducing the cost and improving the production efficiency.
  • FIG. 1 is a flow chart showing a method of assembling a camera module according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing a first sub-lens, a second sub-assembly, and an initial arrangement position thereof in one embodiment of the present invention
  • Figure 3 illustrates a relative position adjustment mode in one embodiment of the present invention
  • Figure 4 illustrates a rotation adjustment in another embodiment of the present invention
  • FIG. 5 is a diagram showing a relative position adjustment manner in which v and w direction adjustments are added in still another embodiment of the present invention.
  • Figure 6 shows an MTF defocus curve in an original state in one embodiment of the present invention
  • FIG. 7 shows an example of an MTF defocus curve adjusted by step 310
  • FIG. 8 shows a first sub-lens and a second sub-assembly adjusted by step 310 in an embodiment of the present invention and their positional relationship;
  • Figure 9 is a schematic view showing the tilt of the image plane
  • Figure 10 is a view showing a comparison of the center position and the image of the periphery 1 and the periphery 1' position;
  • Figure 11 shows an MTF defocus curve adjusted by step 400 in one embodiment of the invention
  • Figure 12 is a diagram showing the relative positional relationship between the first sub-lens and the second sub-lens adjusted in step 320 in one embodiment of the present invention
  • FIG. 13 is a diagram showing a camera module formed after the connection is completed in an embodiment of the present invention.
  • Figure 14 illustrates an example of a target setting manner in one embodiment
  • Figure 15 shows a camera module in one embodiment of the present invention
  • Figure 16 shows an assembled camera module with a motor and a motor not turned on in one embodiment of the present invention
  • Fig. 17 shows an assembled camera module with a motor and a motor in an assembled state in one embodiment of the present invention.
  • first, second, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first subject discussed below may also be referred to as a second subject, without departing from the teachings of the present application.
  • FIG. 1 is a flow chart showing a method of assembling a camera module according to an embodiment of the present invention. Referring to FIG. 1, the assembly method includes the following steps 100-400:
  • Step 100 Prepare the first sub-lens and the second sub-assembly.
  • the first sub-lens 1000 includes a first barrel 1100 and at least one first lens 1200.
  • the first lenses 1200 may also be other numbers, such as one, three or four, and the like.
  • the second subassembly 6000 includes a second sub-lens 2000 and a photosensitive assembly 3000 that are fixed together.
  • the second sub-lens 2000 includes a second barrel 2100 and at least one second lens 2200. In this embodiment, there are three second lenses 2200, but it is easy to understand. In other embodiments, the second lenses 2200 may also be other numbers, such as one, two or four, and the like.
  • the second lens barrel 2100 of the second sub-lens 2000 includes an inner lens barrel 2110 and an outer lens barrel 2120 nested together (the outer lens barrel 2120 is also also a lens holder), the inner lens barrel 2110 and the outer tube The lens barrel 2120 is screwed. It should be noted that the threaded connection is not the only connection between the inner barrel 2110 and the outer barrel 2120. Of course, it is easy to understand that in other embodiments, the second lens barrel 2100 may also be a one-piece lens barrel.
  • the photosensitive member 3000 includes a wiring board 3100, a photosensitive member 3200 mounted on the wiring board 3100, a cylindrical member formed on the wiring board 3100 and surrounding the photosensitive member 3200.
  • the cylindrical support body 3400 has an extension portion that extends inward (in the direction toward the photosensitive member 3200) as a frame on which the color filter element 3300 is mounted.
  • the cylindrical support body 3400 also has an upper surface through which the photosensitive member can be coupled to other components of the camera module (e.g., the second sub-lens 2000).
  • the photosensitive member 3000 may be other structures, for example, the wiring board of the photosensitive assembly has a through hole, and the photosensitive element is installed in the through hole of the circuit board; for example, the support Formed by molding around the photosensitive element and extending inwardly and contacting the photosensitive element (eg, the support covers at least a portion of the non-photosensitive area at the edge of the photosensitive element); for example, the photosensitive member may also omit the filter Color component.
  • the second sub-lens 2000 and the photosensitive component 3000 are fixed by inactive calibration to form the second sub-assembly 6000.
  • the active calibration English name is Active Alignment, which can be abbreviated as AA.
  • the non-active calibration method refers to a method other than active calibration.
  • the second sub-lens 2000 and the photosensitive assembly 3000 can be secured together in a mechanical alignment to form the second sub-assembly 6000.
  • Step 200 Arranging the first sub-lens 1000 on an optical axis of the second sub-assembly 6000 to form an imageable optical system including the at least one first lens 1200 and the at least one second lens 2200.
  • arranging the first sub-lens 1000 on the optical axis of the second sub-assembly 6000 means initially aligning the two to form an imageable optical system. That is, as long as the optical system including all of the first lens 1200 and all of the second lenses 2200 can be imaged, it can be considered that the arrangement work of this step is completed.
  • the central axes of the first barrel 1100 and the second barrel 1200 do not necessarily overlap with the optical axis.
  • Step 300 Maximize the actual resolution of the optical system imaging by adjusting the relative position of the first sub-lens 1000 relative to the second sub-lens 2000 (to increase the measured resolution to a preset threshold, which may be regarded as The measured resolution is maximized, and the measured image plane tilt of the optical system image is minimized (the tilt of the measured image plane is reduced to a preset threshold, which can be regarded as minimizing the measured image plane tilt).
  • the adjustment of the relative position between the first sub-lens 1000 and the second sub-lens 2000 may include multiple degrees of freedom.
  • Figure 3 illustrates the relative position adjustment mode in one embodiment of the invention.
  • the first sub-lens can be moved in the x, y, and z directions with respect to the second sub-lens (ie, the relative position adjustment in this embodiment has three degrees of freedom).
  • the z direction is the direction along the optical axis
  • the x, y direction is the direction perpendicular to the optical axis.
  • the x and y directions are all in one adjustment plane P, and the translation in the adjustment plane P can be decomposed into two components in the x and y directions.
  • Figure 4 illustrates the rotation adjustment in another embodiment of the present invention.
  • the relative position adjustment has an increase in the degree of freedom of rotation, i.e., the adjustment in the r direction, in addition to the three degrees of freedom of FIG.
  • the adjustment in the r direction is the rotation in the adjustment plane P, that is, the rotation about the axis perpendicular to the adjustment plane P.
  • FIG. 5 shows a relative position adjustment manner in which the v and w direction adjustments are added in still another embodiment of the present invention.
  • the v direction represents a rotation angle of the xoz plane
  • the w direction represents a rotation angle of the yoz plane
  • the rotation angles of the v direction and the w direction may synthesize a vector angle
  • this vector angle represents a total tilt state. That is, the tilting posture of the first sub-lens relative to the second sub-lens can be adjusted by adjusting the v direction and the w direction (that is, the optical axis of the first sub-lens relative to the optical axis of the second sub-lens The slope).
  • the above adjustment of the six degrees of freedom of x, y, z, r, v, w may affect the imaging quality of the optical system (for example, affecting the magnitude of the resolution).
  • the relative position adjustment manner may be to adjust only one of the above six degrees of freedom, or a combination of two or more of them.
  • the method for obtaining the measured resolution of the optical system imaging includes:
  • Step 301 Set a plurality of targets corresponding to the reference field of view and/or the test field of view. For example, a central field of view can be selected as the reference field of view, and one or more fields of view corresponding to the region of interest can be selected as the test field of view (eg, 80% field of view).
  • Step 302 Acquire an image processing power defocus curve corresponding to each target based on an image output by the photosensitive component. According to the resolution power defocus curve, the measured resolution of the corresponding field of view can be obtained.
  • the resolution can be represented by MTF (Modulation Transfer Function).
  • MTF Modulation Transfer Function
  • the resolution of the optical system imaging can be obtained in real time according to the MTF defocus curve obtained by the image output by the photosensitive module.
  • the change of the MTF defocus curve it can be judged whether the state of maximizing the image force is currently reached.
  • 6 shows an MTF defocus curve in an original state in one embodiment of the present invention, including an MTF defocus curve of a central field of view and an MTF of a sagittal direction and a meridional direction of two target images located in the test field of view. Defocus curve.
  • Fig. 9 shows a schematic view of the image plane tilt. It can be seen that the object plane perpendicular to the optical axis in Fig. 9 is imaged by the lens to form an inclined image plane.
  • the incident light of the central field of view passes through the lens and is focused at the central focus position.
  • the incident field of the off-axis field 1 passes through the lens and is focused at the peripheral focus 1'.
  • the position has an axial deviation D2 from the central focus position.
  • the external field of view 1' incident light passes through the lens and is focused at the peripheral focus 1 position, which has an axial offset D1 from the central focus position.
  • Fig. 10 is a view showing a comparison of the center position and the image of the periphery 1 and the periphery 1' position, and it can be seen that the images of the periphery 1 and the peripheral 1' position are clearly blurred to the image of the center position.
  • the image plane tilt can be compensated by adjusting the tilt angle between the first sub-lens and the second sub-lens.
  • the method of obtaining the measured image plane tilt includes:
  • Step 303 For any test field of view (eg, 80% field of view), a plurality of targets corresponding to different test locations of the test field of view are set.
  • Figure 14 shows an example of a target setting in one embodiment. As shown in Figure 14, the test field of view is 80% field of view, and the four targets are placed at the four corners of the plate.
  • Step 304 Acquire an image defocus curve corresponding to each of different positions of the same field of view based on the image output by the photosensitive component.
  • the resolution defocus curves converge on the abscissa axis (the axis representing the defocus amount along the optical axis direction)
  • the image plane tilt corresponding to the test field has been compensated, that is, on the test field of view.
  • the measured image plane tilt described above has been minimized.
  • the positional deviation of the peak of the resolution power defocus curve corresponding to the different test positions of the test field of view in the optical axis direction is reduced to a corresponding threshold, indicating that the image plane tilt corresponding to the test field has been Get compensation.
  • the step 300 includes the following sub-steps:
  • Step 310 By moving the first sub-lens 1000 relative to the second sub-lens 2000 along the adjustment plane P, the measured resolution of the optical system imaging is raised to a corresponding threshold.
  • the adjustment of six degrees of freedom of x, y, z, r, v, w is described in the foregoing. Among them, the translation in the x and y directions and the rotation in the r direction can be regarded as moving along the adjustment plane P in this step.
  • a plurality of targets corresponding to the reference field of view and the test field of view are set, and then a resolution power defocus curve corresponding to each of the targets is acquired based on the image output by the photosensitive member.
  • the first sub-lens 1000 is moved in the x, y, and r directions with respect to the second sub-lens 2000, so that the peak of the resolution power defocus curve corresponding to the target image of the reference field of view is raised to a corresponding threshold.
  • the reference field of view may select a central field of view, but it should be noted that the reference field of view is not limited to the central field of view, and in some embodiments, other fields of view may also be selected as the reference field of view.
  • the reaching the corresponding threshold is that the peak of the resolution power defocus curve of the target image corresponding to the reference field of view is raised to a corresponding threshold.
  • FIG. 7 shows an example of an MTF defocus curve adjusted by step 310. It can be seen that after adjustment, the MTF values of the sagittal direction and the meridional direction of the two target images are significantly improved.
  • FIG. 8 shows the first sub-lens 1000 and the second sub-assembly 6000 adjusted by step 310 in an embodiment of the present invention and their positional relationship. It can be seen that the central axis of the first sub-lens 1000 is offset by ⁇ x in the x direction with respect to the central axis of the second sub-lens 2000. It should be noted that Figure 8 is merely exemplary. Although the shift in the y direction is not shown in FIG. 8, those skilled in the art will readily understand that the central axis of the first sub-lens 1000 may also have ⁇ y in the y direction with respect to the central axis of the second sub-lens 2000. Offset.
  • Step 320 By tilting the axis of the first sub-lens 1000 relative to the axis of the second sub-lens 2000, the measured resolution of the optical system imaging of the test field of view is raised to a corresponding threshold, and the test is made The measured image plane tilt of the optical system image of the field is reduced to a corresponding threshold.
  • the rotation in the v and w directions corresponds to the tilt adjustment in this step.
  • the fact that the measured resolution force in the step reaches the corresponding threshold comprises: raising a minimum one of the peaks of the resolution power defocus curve of the plurality of targets corresponding to different test positions of the test field to a corresponding threshold.
  • the measured resolution reaches the corresponding threshold may further include: increasing the uniformity of the peak of the resolution defocus curve of the plurality of targets corresponding to the different test positions of the test field to Corresponding threshold.
  • the uniformity improvement includes reducing a variance of a peak of the resolution power defocus curve of the plurality of targets corresponding to the test field of view to a corresponding threshold. Decreasing the measured image plane tilt of the optical system imaging of the test field of view to a corresponding threshold comprises shifting the peak of the resolution power defocus curve corresponding to the different test positions of the test field in the optical axis direction Reduce to the corresponding threshold.
  • FIG. 12 shows the relative positional relationship between the first sub-lens and the second sub-lens adjusted in step 320 in one embodiment of the present invention.
  • the central axis of the first sub-lens 1000 is also relative to the second, based on the offset of the central axis of the first sub-lens relative to the central axis of the second sub-lens in the x-direction by ⁇ x.
  • the center axis of the sub-lens 2000 is tilted by ⁇ v2. It is to be noted that although the tilt in the w direction is not shown in FIG. 12, it will be easily understood by those skilled in the art that the axis of the photosensitive member 3000 may have an oblique angle with respect to the central axis of the second sub-lens 2000 in the w direction.
  • Step 400 The first sub-lens 1000 and the second sub-lens 2000 are connected such that the relative positions of the first sub-lens 1000 and the second sub-lens 2000 remain unchanged.
  • FIG. 13 shows a camera module formed after the connection is completed in one embodiment of the present invention.
  • the process of connecting the first sub-lens and the second sub-lens can be selected according to the situation.
  • the first sub-lens and the second sub-lens are connected by a bonding process, as shown in FIG. 13, in this embodiment, the first sub-lens 1000 and the second sub-lens are bonded by a glue 4000. 2000.
  • the first sub-lens and the second sub-lens may be connected by a laser welding process.
  • the first sub-lens and the second sub-lens may be connected by an ultrasonic welding process.
  • other welding processes are also available. It should be noted that in the present invention, the term "connected" is not limited to direct connection.
  • the first sub-lens and the second sub-lens may be connected by an intermediary (the intermediary may be a rigid intermediary) as long as the connection through the intermediary enables the first sub-lens and the first
  • the relative position (including the relative distance and attitude) between the two sub-shots (between the photosensitive component and the second sub-lens) remains unchanged, then within the meaning of the word "connection".
  • the camera module assembly method of the above embodiment can improve the resolution of the camera module; the process capability index (CPK) of the mass production camera module can be improved; and the accuracy of each component of the optical imaging lens and the module can be improved
  • the assembly accuracy requirements are loosened, which reduces the overall cost of the optical imaging lens and the module; it can adjust various aberrations of the camera module in real time during the assembly process, thereby reducing the fluctuation of imaging quality, reducing the defect rate, and reducing Production costs and improved image quality.
  • the step 300 may further include: imaging the optical system by moving the first sub-lens in the optical axis direction with respect to the second sub-lens
  • the measured image plane matches the target surface.
  • the adjustment of six degrees of freedom of x, y, z, r, v, w is described in the foregoing.
  • the movement in the z direction can be regarded as the movement in the direction of the optical axis in this step.
  • the target surface is flat.
  • the desired imaging surface of the optical lens is also a plane for achieving optimal imaging quality, that is, the target surface is flat at this time.
  • the target surface may also be a convex or concave curved surface, or a wavy curved surface.
  • the target surface of the photosensitive element of the camera module corresponding to the optical lens is a convex or concave curved surface
  • the target surface should also be a convex or concave curved surface for optimal imaging quality
  • the photosensitive surface of the photosensitive element of the corresponding camera module is a wave-shaped curved surface
  • the target surface should also be a wave-shaped curved surface.
  • whether the measured image plane matches the target surface is identified based on the image output by the photosensitive element.
  • matching the measured image surface with the target surface includes: obtaining an actual measured field curvature of the module by the image output by the photosensitive element, so that the module is measured The curve is in the range of +/- 5 ⁇ m. This embodiment can further improve the imaging quality of the camera module.
  • the targets are set in pairs for the selected test field of view.
  • a pair of first targets respectively located at both ends of the center position are disposed in the first direction
  • a pair of second targets respectively located at both ends of the center position are disposed in the second direction.
  • the test field of view is 80% field of view
  • the four targets are placed at the four corners of the plate.
  • the two lower left and upper right targets can be used as a pair of first targets in the first direction
  • the upper left and lower right targets can serve as a pair of second targets in the second direction.
  • the optical image image of the optical system can be identified as the first
  • the tilt component in the direction according to the offset vector of the defocusing force defocus curve of the pair of second targets in the direction of the abscissa axis, the second direction of the measured image plane of the optical system image can be identified a tilt component thereon, and then adjusting a posture of the first sub-lens relative to the second sub-lens such that an angle of an axis of the first sub-lens relative to an axis of the second sub-lens is changed to compensate The tilt component in the first direction and the tilt component in the second direction.
  • the first sub-lens is moved in the first range along the adjustment plane with respect to the second sub-lens;
  • the repeating step 330 is further performed until the measured image plane tilt falls within the preset interval;
  • the repeating step 330 includes:
  • Step 331 Move the first sub-lens in the second range along the adjustment plane with respect to the second sub-lens.
  • the second range is smaller than the first range, that is, relative to step 310, the relative position of the first sub-lens and the second sub-lens is adjusted on the adjustment plane in a small range in step 331, on the one hand, Since the adjustment range is small, the actual resolution obtained by the adjustment of step 310 can be substantially maintained, and on the other hand, the degree of image plane tilt can be reduced, so that the image plane tilt is compensated in step 332.
  • Step 332 The tilt of the measured image plane of the optical system image obtained by the photosensitive element is reduced by adjusting an angle of a central axis of the first sub-lens relative to a central axis of the second sub-lens Corresponding threshold. If the measured image plane tilt cannot be reduced to the preset interval, the above steps 331 and 332 are cyclically executed until the measured image plane tilt is lowered into the preset interval.
  • a camera module corresponding to the foregoing camera module assembly method is further provided.
  • Fig. 15 shows the camera module in this embodiment.
  • the camera module includes a first sub-lens 1000 and a second sub-assembly 6000.
  • the first sub-lens 1000 includes a first barrel 1100 and at least one first lens 1200.
  • the second sub-assembly 6000 includes a second sub-lens 2000 and a photosensitive assembly 3000 that are fixed together, the second sub-lens 2000 includes a second barrel 2100 and at least one second lens 2200; the photosensitive assembly 3000 includes a photosensitive element 3300 .
  • the first sub-lens 1000 is disposed on an optical axis of the second sub-lens 2000 to form an imageable optical system including the at least one first lens 1200 and the at least one second lens 2200;
  • the first sub-lens 1000 and the second sub-lens 2000 are fixed together by a connection medium 4000, and the connection medium 4000 is adapted to make a central axis of the first sub-lens 1000 relative to the second sub-lens
  • the center axis of 2000 has an inclination of less than 0.5 degrees.
  • the connection medium 4000 is further adapted to maintain a relative position of the first sub-lens 1000 and the second sub-lens 2000, and the relative position enables imaging of the optical system obtained by the photosensitive element 3300
  • the measured resolution is increased to a first threshold, and the measured image plane tilt of the optical system image obtained by the photosensitive element 3300 is reduced to a second threshold.
  • the joining medium can be a glue or a solder sheet (eg, a metal sheet).
  • the second connecting medium may be a glue or a solder sheet (eg, a metal sheet).
  • the connection medium connecting the first sub-lens and the second sub-lens and fixing the two together is neither part of the first sub-lens nor part of the second sub-lens.
  • the connecting medium is further adapted to offset the central axis of the first sub-lens from the central axis of the second sub-lens by 0-15 ⁇ m.
  • connection medium is further adapted to have a structural gap between the first sub-lens and the second sub-lens.
  • the first sub-lens 1000 and the second sub-lens 2000 each have an optical surface and a structural surface.
  • the optical surface is the surface through which the effective light on the lens passes.
  • the surface of the lens that does not belong to the optical surface is a structural surface.
  • the faces on the lens barrel are all structural surfaces.
  • the structural gap is the gap between the structural faces.
  • the second sub-lens 2000 and the photosensitive member 3000 are assembled together by mechanical alignment to form the second sub-assembly 6000.
  • the second sub-lens 2000 and the photosensitive member 3000 have a gap 5000 suitable for mechanical alignment of 10-50 ⁇ m.
  • the central axis of the first sub-lens 1000 can be understood as the central axis of the optical surface 1201 closest to the second sub-lens 2000 in the first sub-lens 1000; it can also be understood as the second sub-lens.
  • 2000 is the central axis defined by the structural face 1202 of the first lens 1200; when the first lens 1200 of the first sub-lens 1000 and the first lens barrel 1100 are tightly fitted, the central axis of the first sub-lens 1000 is also understandable It is the central axis defined by the inner side of the first barrel.
  • the central axis of the second sub-lens 2000 can be understood as the central axis of the optical surface 2201 closest to the first sub-lens 1000 in the second sub-lens 2000; it can also be understood as the first sub-lens 1000.
  • the central axis defined by the structural face 2202 of the second lens 2200; when the second lens 2200 of the second sub-lens 2000 and the second lens barrel 2100 are tightly fitted, the central axis of the second sub-lens 2000 can also be understood as The central axis defined by the inner side of the second barrel.
  • the invention is particularly suitable for a miniaturized camera module for a smart terminal with a lens diameter of less than 10 mm.
  • the outer faces of the first sub-lens and the second sub-lens have sufficient contact faces for the robot arm (or other ingestion device) to take up through the contact surface (eg, clamping or adsorbing)
  • the first sub-lens and the second sub-lens thereby achieving precise adjustment of the relative position between the first sub-lens and the second sub-lens.
  • This precise adjustment can be an adjustment of six degrees of freedom.
  • the adjustment step size can be on the order of micrometers or less.
  • the second sub-lens 2000 may further include a motor to implement autofocus of the camera module of the mobile phone.
  • Figure 16 shows an assembled camera module with a motor and a motor not turned on in one embodiment of the present invention.
  • Fig. 17 shows an assembled camera module with a motor and a motor in an assembled state in one embodiment of the present invention.
  • the motor includes a motor base 2310 and a motor support 2320 mounted on the motor base 2310.
  • the motor support body 2320 surrounds the second barrel 2100, and a driving mechanism (not shown) of the motor is mounted on the motor support body 2320.
  • the motor support 2320 is coupled to the second barrel 2100 via a reed 2330.
  • the second sub-barrel moves along the optical axis, and the reed 2330 is deformed (as shown in FIG. 17).
  • steps 310 and 320 the motor, the second barrel 2100, and the second lens 2200 mounted in the second barrel 2100 are moved and adjusted as a second sub-lens 2000.
  • step 500 the connection of the second sub-lens 2000 to the photosensitive assembly 3000 is achieved by connecting the motor base 2310 to the photosensitive assembly 3000.
  • step 310 when the relative positions of the first sub-lens and the second sub-lens are adjusted, the motor is kept in an open state (for example, the motor is energized as a motor-on), so that the acquired resolution is the motor-on state.
  • the measured resolution when the tilt angle of the photosensitive member with respect to the central axis of the second sub-lens is adjusted, the motor is also kept open, so that the acquired measured image plane tilt is the measured image plane tilt in the motor open state. When the motor is turned on, the reed will deform accordingly.
  • the deformation of the reed caused by the motor opening may cause the central axis of the second sub-barrel to produce an additional tilt with respect to the central axis of the first sub-lens (refer to the tilt angle ⁇ v4 in FIG. 17).
  • the solution of this embodiment can compensate the additional tilt of the second lens barrel caused by the opening of the motor in the adjustment of step 310 and step 320, thereby further improving the imaging quality of the autofocus camera module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)

Abstract

本发明提供了一种摄像模组组装方法,包括:准备第一子镜头和第二子组件,其中第二子组件包括固定在一起的第二子镜头和感光组件;将所述第一子镜头布置于所述第二子镜头的光轴,构成可成像的光学系;通过调整所述第一子镜头相对于所述第二子镜头的相对位置,使得通过所述感光元件获得的所述光学系成像的实测解像力提升达到第一阈值,并且使通过所述感光元件获得的实测像面倾斜减小达到第二阈值;以及连接所述第一子镜头和所述第二子镜头。本发明还提供了相应的摄像模组。本发明能够提升摄像模组的解像力;能够使大批量生产的摄像模组的过程能力指数提升;能够降低光学成像镜头以及模组的整体成本;能够降低不良率,降低生产成本,提升成像品质。

Description

摄像模组及其组装方法
相关申请的交叉引用
本申请要求于2017年9月11日向中国国家知识产权局提交的第201710814250.2号中国专利申请的优先权和权益,该申请的全部内容通过引用并入本文。
技术领域
本发明涉及光学技术领域,具体地说,本发明涉及摄像模组的解决方案。
背景技术
随着移动电子设备的普及,被应用于移动电子设备的用于帮助使用者获取影像(例如视频或者图像)的摄像模组的相关技术得到了迅猛的发展和进步,并且在近年来,摄像模组在诸如医疗、安防、工业生产等诸多的领域都得到了广泛的应用。
为了满足越来越广泛的市场需求,高像素,小尺寸,大光圈是现有摄像模组不可逆转的发展趋势。市场对摄像模组的成像质量提出了越来越高的需求。影响既定光学设计的摄像模组解像力的因素包括光学成像镜头的品质和模组封装过程中的制造误差。
具体来说,在光学成像镜头的制造过程中,影响镜头解像力因素来自于各元件及其装配的误差、镜片间隔元件厚度的误差、各镜片的装配配合的误差以及镜片材料折射率的变化等。其中,各元件及其装配的误差包含各镜片单体的光学面厚度、镜片光学面矢高、光学面面型、曲率半径、镜片单面及面间偏心,镜片光学面倾斜等误差,这些误差的大小取决于模具精度与成型精度控制能力。镜片间隔元件厚度的误差取决于元件的加工精度。各镜片的装配配合的误差取决于被装配元件的尺寸公差以及镜头的装配精度。镜片材料折射率的变化所引 入的误差则取决于材料的稳定性以及批次一致性。
上述各个元件影响解像力的误差存在累积恶化的现象,这个累计误差会随着透镜数量的增多而不断增大。现有解像力解决方案为对于对各相对敏感度高的元件的尺寸进行公差控制、镜片回转进行补偿提高解像力,但是由于高像素大光圈的镜头较敏感,要求公差严苛,如:部分敏感镜头1um镜片偏心会带来9′像面倾斜,导致镜片加工及组装难度越来越大,同时由于在组装过程中反馈周期长,造成镜头组装的过程能力指数(CPK)低、波动大,导致不良率高。且如上所述,因为影响镜头解像力的因素非常多,存在于多个元件中,每个因素的控制都存在制造精度的极限,如果只是单纯提升各个元件的精度,提升能力有限,提升成本高昂,而且不能满足市场日益提高的成像品质需求。
另一方面,在摄像模组的加工过程中,各个结构件的组装过程(例如感光芯片贴装、马达镜头锁附过程等)都可能导致感光芯片倾斜,多项倾斜叠加,可能导致成像模组的解析力不能达到既定规格,进而造成模组厂良品率低下。近些年来,模组厂通过在将成像镜头和感光模组组装时,通过主动校准(Active Alignment)工艺对感光芯片的倾斜进行补偿。然而这种工艺补偿能力有限。由于多种影响解像力的像差来源于光学系统本身的能力,当光学成像镜头本身的解像力不足时,现有的感光模组主动校准工艺是难以补偿的。
发明内容
本发明旨在提供一种能够克服现有技术的上述至少一个缺陷的解决方案。
根据本发明的一个方面,提供了一种摄像模组组装方法,包括:
准备第一子镜头和第二子组件;其中所述第一子镜头包括第一镜筒和至少一个第一镜片,所述第二子组件包括固定在一起的第二子镜头和感光组件,所述第二子镜头包括第二镜筒和至少一个第二镜片;所述感光组件包括感光元件;
将所述第一子镜头布置于所述第二子镜头的光轴,构成包含所述至少一个第一镜片和所述至少一个第二镜片的可成像的光学系;
通过调整所述第一子镜头相对于所述第二子镜头的相对位置,使得通过所述感光元件获得的所述光学系成像的实测解像力提升达到第一阈值,并且使通过所述感光元件获得的实测像面倾斜减小达到第二阈值;以及
连接所述第一子镜头和所述第二子镜头,使得所述第一子镜头和所述第二子镜头的相对位置保持不变。
其中,在所述的调整所述第一子镜头相对于所述第二子镜头的相对位置的步骤中,调整所述的相对位置包括:
通过使所述第一子镜头相对于所述第二子镜头沿着调整平面移动,使所述光学系成像的实测解像力提升。
其中,在所述的调整所述第一子镜头相对于所述第二子镜头的相对位置的步骤中,所述沿着调整平面移动包括在所述调整平面上平移和/或转动。
其中,在所述的调整所述第一子镜头相对于所述第二子镜头的相对位置的步骤中,调整所述的相对位置包括:调节所述第一子镜头的轴线相对于所述第二子镜头的轴线的夹角。
其中,所述的调整所述第一子镜头相对于所述第二子镜头的相对位置的步骤包括下列子步骤:
通过使所述第一子镜头相对于所述第二子镜头沿着调整平面移动,使得通过所述感光元件获得的所述光学系成像的在参考视场的实测解像力提升达到对应的阈值;以及
调节所述第一子镜头的轴线相对于所述第二子镜头的轴线的夹角,使得通过所述感光元件获得的所述光学系成像的在测试视场的实测解像力提升达到对应的阈值,并且使通过所述感光元件获得的在测试视场的实测像面倾斜减小达到所述第二阈值。
其中,所述的调整所述第一子镜头相对于所述第二子镜头的相对位置的步骤还包括:
通过使所述第一子镜头相对于所述第二子镜头在z方向上移动, 使通过所述感光元件获得的所述光学系成像的实测像面与目标面匹配,其中z方向是沿着所述光轴的方向。
其中,所述调整平面垂直于所述z方向。
其中,获取实测像面倾斜的方法包括:
对于测试视场,设置对应于该测试视场的不同测试位置的多个标靶;以及
基于所述感光组件输出的图像获取对应于每一个测试位置的解像力离焦曲线。
其中,所述达到第二阈值是使对应于测试视场的不同测试位置的解像力离焦曲线的峰值在所述光轴方向的位置偏移降低达到所述第二阈值。
其中,所述达到第二阈值是使对应于测试视场的不同测试位置的解像力离焦曲线的峰值在所述光轴方向的位置偏移降低至+/-5μm的范围内。
其中,获得所述光学系成像的实测解像力的方法包括:
设置对应于参考视场和测试视场的多个不同测试位置的标靶;以及
基于所述感光组件输出的图像获取对应于每一个测试位置的解像力离焦曲线。
其中,在使所述第一子镜头相对于所述第二子镜头沿着调整平面移动的子步骤中,所述的达到对应的阈值是:使对应于参考视场的不同测试位置的解像力离焦曲线的峰值提升达到对应的阈值。
其中,在调节所述第一子镜头的轴线相对于所述第二子镜头的轴线的夹角的子步骤中,所述的达到对应的阈值包括:使对应于测试视场的不同测试位置的多个解像力离焦曲线的峰值中的最小一个提升达到对应的阈值。
其中,所述的调整所述第一子镜头相对于所述第二子镜头的相对位置的步骤包括下列子步骤:
通过使所述第一子镜头相对于所述第二子镜头沿着调整平面在第一范围内移动,使得通过所述感光元件获得的所述光学系成像的在参 考视场的实测解像力提升达到对应的阈值;
然后调节所述第一子镜头的轴线相对于所述第二子镜头的轴线的夹角,使得通过所述感光元件获得的所述光学系成像的在测试视场的实测解像力提升达到对应的阈值,并且使通过所述感光元件获得的在测试视场的实测像面倾斜减小,如果实测像面倾斜无法达到所述第二阈值,则进一步执行复调步骤,直至实测像面倾斜减小达到所述第二阈值;
其中,所述复调步骤包括:
通过使所述第一子镜头相对于所述第二子镜头沿着所述调整平面在第二范围内移动,其中所述第二范围小于第一范围;以及
通过调整所述第一子镜头的中轴线相对于所述第二子镜头的中轴线的夹角,使通过所述感光元件获得的所述光学系成像的实测像面倾斜减小。
其中,在所述连接步骤中,通过粘结或焊接工艺连接所述第一子镜头和所述第二子镜头。
其中,所述焊接工艺包括激光焊或超声焊。
其中,所述准备第一子镜头和第二子组件的步骤中,通过非主动校准方式固定所述第二子镜头和所述感光组件,形成所述第二子组件。非主动校准方式指主动校准以外的方式,例如机械对准等不需要点亮模组芯片的对准方式。主动校准英文名为Active Alignment,可缩写为AA。
根据本发明的另一方面,还提供了一种摄像模组,包括:
第一子镜头,其包括第一镜筒和至少一个第一镜片;以及
第二子组件,其包括固定在一起的第二子镜头和感光组件,所述第二子镜头包括第二镜筒和至少一个第二镜片;所述感光组件包括感光元件;
其中,所述第一子镜头布置于所述第二子镜头的光轴,构成包含所述至少一个第一镜片和所述至少一个第二镜片的可成像的光学系;
所述第一子镜头和所述第二子镜头通过连接介质固定在一起,并 且所述连接介质适于使所述第一子镜头的中轴线相对于所述第二子镜头的中轴线具有倾角。
其中,所述连接介质还适于使所述第一子镜头的中轴线与所述第二子镜头的中轴线错开。
其中,所述连接介质还适于使所述第一子镜头与第二子镜头之间具有结构间隙。
其中,所述连接介质为粘结介质或焊接介质。
其中,所述第一子镜头的中轴线与所述第二子镜头的中轴线错开0~15μm。
其中,所述第一子镜头的中轴线相对于所述第二子镜头的中轴线具有小于0.5度的倾角。
其中,所述连接介质还适于使所述第一子镜头与所述第二子镜头的相对位置保持不变,并且所述相对位置使得通过所述感光元件获得的所述光学系成像的实测解像力提升达到第一阈值,以及使通过所述感光元件获得的所述光学系成像的实测像面倾斜减小达到第二阈值。
其中,所述第二子镜头还包括马达,所述实测解像力为马达开启状态下的实测解像力,所述实测像面倾斜为马达开启状态下的实测像面倾斜。
其中,所述第一子镜头和所述第二子镜头的外侧面均具有便于摄取的接触面。
所述第二子镜头和所述感光组件之间具有10-50μm的间隙。
与现有技术相比,本发明具有下列至少一个技术效果:
1、本发明能够提升摄像模组的解像力。
2、本发明能够使大批量生产的摄像模组的过程能力指数(CPK)提升。
3、本发明通过使得对光学成像镜头以及模组的各个元件精度及其装配精度的要求变宽松,降低了光学成像镜头以及模组的整体成本。
4、本发明能够在组装过程中对摄像模组的各种像差进行实时 调整,降低不良率,降低生产成本,提升成像品质。
5、本发明通过第一子镜头和第二子组件的多自由度的相对位置调整,实现模组整体的一次性像差调整,进而实现模组整体的成像质量的提升。
6、本发明可以通过非主动校准方式将感光组件与第二子镜头固定,从而降低成本,提升生产效率。
附图说明
在参考附图中示出示例性实施例。本文中公开的实施例和附图应被视作说明性的,而非限制性的。
图1示出了本发明一个实施例的摄像模组组装方法的流程图;
图2示出了本发明一个实施例中第一子镜头、第二子组件及其初始布置位置的示意图;
图3示出了本发明一个实施例中的相对位置调节方式;
图4示出了本发明另一个实施例中的旋转调节;
图5示出了本发明又一个实施例中的增加了v、w方向调节的相对位置调节方式;
图6示出了本发明一个实施例中原始状态下的MTF离焦曲线;
图7示出了经步骤310调整后的MTF离焦曲线的示例;
图8示出了本发明一个实施例中经步骤310调整后的第一子镜头和第二子组件及其位置关系;
图9示出了像面倾斜的示意图;
图10示出了中心位置和周边1和周边1’位置的像的对比示意图;
图11示出了本发明一个实施例中经步骤400调整后的MTF离焦曲线;
图12示出了本发明一个实施例中经步骤320调整后的第一子镜头和第二子镜头的相对位置关系;
图13示出了本发明一个实施例中完成连接后所形成的摄像模组;
图14示出了一个实施例中的标靶设置方式的示例;
图15示出了本发明一个实施例中的摄像模组;
图16示出了本发明一个实施例中组装后的带有马达且马达未开启状态下的摄像模组;
图17示出了本发明一个实施例中组装后的带有马达且马达开启状态下的摄像模组。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一主体也可被称作第二主体。
在附图中,为了便于说明,已稍微夸大了物体的厚度、尺寸和形状。附图仅为示例而并非严格按比例绘制。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。 还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
图1示出了本发明一个实施例的摄像模组组装方法的流程图。参考图1,所述组装方法包括下列步骤100~400:
步骤100:准备第一子镜头和第二子组件。图2示出了本发明一个实施例中第一子镜头1000、第二子组件6000及其初始布置位置的示意图。参考图2,所述第一子镜头1000包括第一镜筒1100和至少一个第一镜片1200。本实施例中,第一镜片1200有两个,但容易理解,在其它实施例中,第一镜片1200也可以是其它数目,例如一个、三个或四个等。
所述第二子组件6000包括固定在一起的第二子镜头2000和感光组件3000。所述第二子镜头2000包括第二镜筒2100和至少一个第二镜片2200。本实施例中,第二镜片2200有三个,但容易理解,在其它实施例中,第二镜片2200也可以是其它数目,例如一个、两个或四个等。本实施例中,第二子镜头2000的第二镜筒2100包含嵌套在一起的内镜筒2110和外镜筒2120(外镜筒2120有时也镜座),所述内镜筒2110和外镜筒2120螺纹连接。需注意,螺纹连接并非所述内镜筒2110和外镜筒2120之间的唯一连接方式。当然,容易理解,在其它实施例中,第二镜筒2100也可以是一体式镜筒。
仍然参考图2,在一个实施例中,所述感光组件3000包括线路板3100、安装在线路板3100上的感光元件3200、制作在线路板3100上且围绕在所述感光元件3200周围的筒状支撑体3400,以及安装在支撑体3400上的滤色元件3300。筒状支撑体3400具有向内(指朝向感光元件3200的方向)延伸的可作为镜架的延伸部,所述滤色元件3300安装在所述延伸部上。所述筒状支撑体3400还具有上表面,所述感光 组件可通过该上表面与摄像模组的其它组件(例如第二子镜头2000)连接在一起。当然,容易理解,在其它实施例中,感光组件3000也可以是其它结构,例如所述感光组件的线路板具有通孔,感光元件安装在所述线路板的通孔中;又例如所述支撑部通过模塑形成在感光元件周围并向内延伸并接触所述感光元件(例如支撑部覆盖位于所述感光元件边缘的至少一部分非感光区域);再例如所述感光组件还可以省略所述滤色元件。
进一步地,在一个实施例中,通过非主动校准方式固定所述第二子镜头2000和所述感光组件3000,形成所述第二子组件6000。主动校准英文名为Active Alignment,可缩写为AA。非主动校准方式指主动校准以外的方式。例如,在一个例子中,可以采用机械对准方式将所述第二子镜头2000和所述感光组件3000固定在一起,形成所述的第二子组件6000。
步骤200:将所述第一子镜头1000布置于所述第二子组件6000的光轴,构成包含所述至少一个第一镜片1200和所述至少一个第二镜片2200的可成像的光学系。本步骤中,将所述第一子镜头1000布置于所述第二子组件6000的光轴是指对二者进行初步对准,形成一个可成像的光学系。也就是说,只要包含所有第一镜片1200和所有第二镜片2200的光学系能够成像,即可视为完成了本步骤的布置工作。需要说明,由于子镜头与感光组件的制作过程中存在各种制作公差或其它原因,完成布置后,第一镜筒1100和第二镜筒1200的中轴线并不一定与光轴重叠。
步骤300:通过调整所述第一子镜头1000相对于所述第二子镜头2000的相对位置,使得所述光学系成像的实测解像力最大化(使实测解像力提升达到预设的阈值,可视为实现了实测解像力最大化),并且使得所述光学系成像的实测像面倾斜最小化(使实测像面倾斜减小达到预设的阈值,可视为实现了实测像面倾斜最小化)。其中,第一子镜头1000和第二子镜头2000之间相对位置的调整可以包含多个自由度。
图3示出了本发明一个实施例中的相对位置调节方式。在该调节方式中,所述第一子镜头可以相对于所述第二子镜头沿着x、y、z方向移动(即该实施例中的相对位置调整具有三个自由度)。其中z方向为沿着光轴的方向,x,y方向为垂直于光轴的方向。x、y方向均处于一个调整平面P内,在该调整平面P内平移均可分解为x、y方向的两个分量。
图4示出了本发明另一个实施例中的旋转调节。在该实施例中,相对位置调整除了具有图3的三个自由度外,还增加了旋转自由度,即r方向的调节。本实施例中,r方向的调节是在所述调整平面P内的旋转,即围绕垂直于所述调整平面P的轴线的旋转。
进一步地,图5示出了本发明又一个实施例中的增加了v、w方向调节的相对位置调节方式。其中,v方向代表xoz平面的旋转角,w方向代表yoz平面的旋转角,v方向和w方向的旋转角可合成一个矢量角,这个矢量角代表总的倾斜状态。也就是说,通过v方向和w方向调节,可以调节第一子镜头相对于第二子镜头的倾斜姿态(也就是所述第一子镜头的光轴相对于所述第二子镜头的光轴的倾斜)。
上述x、y、z、r、v、w六个自由度的调节均可能影响到所述光学系的成像品质(例如影响到解像力的大小)。在本发明的其它实施例中,相对位置调节方式可以是仅调节上述六个自由度中的任一项,也可以其中任两项或者更多项的组合。
进一步地,在一个实施例中,获得所述光学系成像的实测解像力的方法包括:
步骤301:设置对应于参考视场和/或测试视场的多个标靶。例如,可以选择中心视场作为参考视场,选择一个或多个对应于感兴趣区域的视场作为测试视场(例如80%视场)。
步骤302:基于所述感光组件输出的图像获取对应于每一个标靶的解像力离焦曲线。根据所述解像力离焦曲线即可获得对应视场的实测解像力。
该实施例中,解像力可以用MTF(调制传递函数)代表。MTF值越高表示解像力越好。这样,根据所述感光组件输出的图像获取的 MTF离焦曲线,即可实时地获得所述光学系成像的解像力。根据MTF离焦曲线的变化情况,即可判断当前是否达到了解像力最大化的状态。图6示出了本发明一个实施例中原始状态下的MTF离焦曲线,其中包含中心视场的MTF离焦曲线和位于测试视场的两个标靶成像的弧矢方向和子午方向的MTF离焦曲线。
另一方面,光学系的成像往往存在像面倾斜的情况。图9示出了像面倾斜的示意图。可以看出,图9中垂直于光轴的物面经过透镜成像后形成了倾斜的像面。其中,中心视场的入射光线经过透镜后在中心焦点位置聚焦,轴外视场1入射光线经过透镜后在周边焦点1’位置聚焦,该位置与中心焦点位置之间具有轴向偏离D2,轴外视场1’入射光线经过透镜后在周边焦点1位置聚焦,该位置与中心焦点位置之间具有轴向偏离D1。这就导致当感光元件接收面垂直于光轴布置时,周边1和周边1’位置均无法清晰成像。图10示出了中心位置和周边1和周边1’位置的像的对比示意图,可以看出周边1和周边1’位置的像均明显模糊于中心位置的像。本发明中,可通过调整第一子镜头和第二子镜头之间的倾角来对上述像面倾斜进行补偿。
在一个实施例中,获取实测像面倾斜的方法包括:
步骤303:对于任一测试视场(例如80%视场),设置对应于该测试视场的不同测试位置的多个标靶。图14示出了一个实施例中的标靶设置方式的示例。如图14所示,测试视场为80%视场,四个标靶分别设置在标版的四角。
步骤304:基于所述感光组件输出的图像获取对应于同一视场的不同位置的每一个解像力离焦曲线。当这些解像力离焦曲线在横坐标轴(代表沿光轴方向的离焦量的坐标轴)上汇聚时,表示对应于该测试视场的像面倾斜已获得补偿,即在该测试视场上已实现所述的实测像面倾斜最小化。在一个实施例中,对应于测试视场的不同测试位置的解像力离焦曲线的峰值在所述光轴方向的位置偏移降低达到对应的阈值,表示对应于该测试视场的像面倾斜已获得补偿。
进一步地,在一个实施例中,所述步骤300包括下列子步骤:
步骤310:通过使所述第一子镜头1000相对于所述第二子镜头2000沿着调整平面P移动,使所述光学系成像的实测解像力提升达到对应的阈值。前文中描述了x、y、z、r、v、w六个自由度的调整。其中,x、y方向上的平移以及r方向的转动可视为本步骤中的沿着调整平面P移动。本步骤中,设置对应于参考视场和测试视场的多个标靶,然后基于所述感光组件输出的图像获取对应于每一个标靶的解像力离焦曲线。使所述第一子镜头1000相对于所述第二子镜头2000在x、y和r方向上移动,使对应于参考视场的标靶成像的解像力离焦曲线的峰值提升达到对应的阈值。参考视场可选择中心视场,但需注意,参考视场并不限于中心视场,在一些实施例中,也可以选择其它视场作为参考视场。本步骤中,所述的达到对应的阈值是:使对应于参考视场的标靶成像的解像力离焦曲线的峰值提升达到对应的阈值。
图7示出了经步骤310调整后的MTF离焦曲线的示例。可以看出,在调整后,两个标靶成像的弧矢方向和子午方向的MTF值均获得明显提升。图8示出了本发明一个实施例中经步骤310调整后的第一子镜头1000和第二子组件6000及其位置关系。可以看出,第一子镜头1000的中轴线相对于第二子镜头2000的中轴线在x方向上偏移了△x。需要注意,图8仅仅是示例性的。虽然图8中未示出在y方向上偏移,但本领域技术人员容易理解,第一子镜头1000的中轴线相对于第二子镜头2000的中轴线在y方向上也可以具有△y的偏移。
步骤320:通过使所述第一子镜头1000的轴线相对于所述第二子镜头2000的轴线倾斜,使测试视场的所述光学系成像的实测解像力提升达到对应的阈值,并使测试视场的所述光学系成像的实测像面倾斜减小到达对应的阈值。其中,v、w方向上的转动对应于本步骤中的倾斜调整。本步骤中所述的实测解像力达到对应的阈值包括:使对应于该测试视场的不同测试位置的多个标靶成像的解像力离焦曲线的峰值中的最小的一个提升达到对应的阈值。在其它实施例中,所述的实测解像力达到对应的阈值还可以包括:使对应于该测试视场的不同测试位置的所述多个标靶成像的解像力离焦曲线的峰值的均匀性提升达到对应的阈值。所述的均匀性提升包括:使对应于该测试视场的所述多 个标靶成像的解像力离焦曲线的峰值的方差降低达到对应的阈值。使测试视场的所述光学系成像的实测像面倾斜减小到达对应的阈值包括:使对应于测试视场的不同测试位置的解像力离焦曲线的峰值在所述光轴方向的位置偏移降低达到对应的阈值。
图11示出了本发明一个实施例中经步骤320调整后的MTF离焦曲线。图12示出了本发明一个实施例中经步骤320调整后的第一子镜头和第二子镜头的相对位置关系。可以看出,图12中,在第一子镜头的中轴线相对于第二子镜头的中轴线在x方向上偏移Δx基础上,第一子镜头1000的中轴线还相对于所述第二子镜头2000的中轴线倾斜了Δv2。需要注意,虽然图12中未示出w方向上的倾斜,但本领域技术人员容易理解,在w方向上感光组件3000的轴线相对于第二子镜头2000的中轴线也可以具有倾斜角。
步骤400:连接所述第一子镜头1000和所述第二子镜头2000,使得所述第一子镜头1000和所述第二子镜头2000的相对位置保持不变。图13示出了本发明一个实施例中完成连接后所形成的摄像模组。
连接第一子镜头和第二子镜头的工艺可以根据情况选择。例如,在一个实施例中,通过粘结工艺连接第一子镜头和第二子镜头,如图13所示,该实施例中,通过胶材4000粘结第一子镜头1000和第二子镜头2000。在另一个实施例中,可通过激光焊接工艺连接第一子镜头和第二子镜头。在又一个实施例中,可通过超声焊工艺连接第一子镜头和第二子镜头。除了上述工艺以外,其它焊接工艺也可供选择。需注意,本发明中,“连接”一词并不限于直接连接。例如,在一个实施例中,第一子镜头和第二子镜头可以通过中介物(该中介物可以是刚性的中介物)连接,只要这种通过中介物的连接能够使第一子镜头和第二子镜头之间(感光组件和第二子镜头之间)的相对位置(包含相对距离及姿态)保持不变,那么就在“连接”一词的含义之内。
上述实施例的摄像模组组装方法能够提升摄像模组的解像力;能够使大批量生产的摄像模组的过程能力指数(CPK)提升;能够使得对光学成像镜头以及模组的各个元件精度及其装配精度的要求变宽松, 降低了光学成像镜头以及模组的整体成本;能够在组装过程中对摄像模组的各种像差进行实时调整,因而降低成像品质的波动性,降低不良率,降低生产成本,提升成像品质。
进一步地,在你一个实施例中,所述步骤300还可以包括:通过使所述第一子镜头相对于所述第二子镜头在所述光轴方向上移动,使所述光学系成像的实测像面与目标面匹配。前文中描述了x、y、z、r、v、w六个自由度的调整。其中,z方向上的移动可视为本步骤中的在所述光轴方向上的移动。
对于组装完成的光学镜头,会有一个所期望的成像面,本文中将这个所期望的成像面称为目标面。在一些情形下,目标面为平面。例如,如果光学镜头所对应的摄像模组的感光元件的感光面为平面,那么为达到最佳成像品质,所述光学镜头所期望的成像面也是平面,也就是说,此时目标面为平面。在另一些情形下,所述目标面也可以是凸形或凹形的曲面,或者波浪形的曲面。例如,如果光学镜头所对应的摄像模组的感光元件的感光面为凸形或凹形的曲面,那么为达到最佳成像品质,目标面也应是凸形或凹形的曲面;如果光学镜头所对应的摄像模组的感光元件的感光面为波浪形的曲面,目标面也应是波浪形的曲面。
在一个实施例中,根据所述感光元件所输出的图像识别实测像面是否与目标面匹配。在使所述实测像面与目标面匹配的步骤中,使所述实测像面与目标面匹配包括:通过所述感光元件所输出的图像获得模组实测场曲,使所述模组实测场曲处于+/-5μm范围内。该实施例可以进一步提高摄像模组的成像品质。
进一步地,在一个实施例中,在所述步骤320中,对于所选择的测试视场,成对地设置标靶。例如在第一方向上设置分别位于中心位置两端的一对第一标靶,在第二方向上设置分别位于中心位置两端的一对第二标靶。如图14所示,测试视场为80%视场,四个标靶分别设置在标版的四角。左下和右上的两个标靶可作为第一方向上的一对第 一标靶,左上和右下的两个标靶可作为第二方向上的一对第二标靶。根据所述的一对第一标靶的解像力离焦曲线的在横坐标轴方向上(即光轴方向上)的偏移矢量,可识别出所述光学系成像的实测像面的在第一方向上的倾斜分量,根据所述的一对第二标靶的解像力离焦曲线的在横坐标轴方向上的偏移矢量,可识别出所述光学系成像的实测像面的在第二方向上的倾斜分量,然后调整所述第一子镜头相对于所述第二子镜头的姿态使得所述第一子镜头的轴线相对于所述第二子镜头的轴线的夹角改变,以补偿所述在第一方向上的倾斜分量和所述在第二方向上的倾斜分量。
进一步地,在一个实施例中,所述步骤310中,使所述第一子镜头相对于所述第二子镜头沿着所述调整平面在第一范围内移动;
所述步骤320中,如果实测像面倾斜无法降至预设区间内,则进一步执行复调步骤330,直至实测像面倾斜降至预设区间内;
其中,所述复调步骤330包括:
步骤331:通过使所述第一子镜头相对于所述第二子镜头沿着所述调整平面在第二范围内移动。其中所述第二范围小于第一范围,也就是说,相对于步骤310,步骤331中在一个小范围内在调整平面上对第一子镜头和第二子镜头的相对位置进行调整,一方面,由于调节范围较小,通过步骤310的调整所达到的实测解像力可基本保持,另一方面,可减小像面倾斜的程度,以便于像面倾斜在步骤332中获得补偿。
步骤332:通过调整所述第一子镜头的中轴线相对于所述第二子镜头的中轴线的夹角,使通过所述感光元件获得的所述光学系成像的实测像面倾斜减小达到对应的阈值。如果实测像面倾斜无法降至预设区间内,则上述步骤331和332循环执行,直至实测像面倾斜降至预设区间内。
根据本发明的一个实施例,还提供了一种对应于前述摄像模组组装方法的摄像模组。图15示出了该实施例中的摄像模组。参考图15,该摄像模组包括:第一子镜头1000和第二子组件6000。其中第一子 镜头1000包括第一镜筒1100和至少一个第一镜片1200。第二子组件6000包括固定在一起的第二子镜头2000和感光组件3000,所述第二子镜头2000包括第二镜筒2100和至少一个第二镜片2200;所述感光组件3000包括感光元件3300。
其中,所述第一子镜头1000布置于所述第二子镜头2000的光轴,构成包含所述至少一个第一镜片1200和所述至少一个第二镜片2200的可成像的光学系;
所述第一子镜头1000和所述第二子镜头2000通过连接介质4000固定在一起,并且所述连接介质4000适于使所述第一子镜头1000的中轴线相对于所述第二子镜头2000的中轴线具有小于0.5度的倾角。所述连接介质4000还适于使所述第一子镜头1000与所述第二子镜头2000的相对位置保持不变,并且所述相对位置使得通过所述感光元件3300获得的所述光学系成像的实测解像力提升达到第一阈值,以及使通过所述感光元件3300获得的所述光学系成像的实测像面倾斜减小达到第二阈值。
在一个实施例中,连接介质可以是胶材或焊接片(例如金属片)。第二连接介质可以是胶材或焊接片(例如金属片)。连接第一子镜头和第二子镜头并使二者固定在一起的连接介质既不属于第一子镜头的一部分,也不属于第二子镜头的一部分。
在一个实施例中,所述连接介质还适于使所述第一子镜头的中轴线与所述第二子镜头的中轴线错开0~15μm。
在一个实施例中,所述连接介质还适于使所述第一子镜头与第二子镜头之间具有结构间隙。第一子镜头1000和第二子镜头2000均具有光学面和结构面。在镜头中,光学面是镜片上有效光线所经过的面。镜片上不属于光学面的面为结构面。而位于镜筒的面均为结构面。结构间隙是结构面之间的间隙。
进一步地,在一个实施例中,所述第二子镜头2000和所述感光组件3000通过机械对准方式组装在一起,形成所述第二子组件6000。所述第二子镜头2000和所述感光组件3000之间具有10-50μm的适于机械对准的间隙5000。
本文中多处涉及到第一子镜头的中轴线和第二子镜头的中轴线。参考图16,为便于测量,第一子镜头1000的中轴线可以理解为第一子镜头1000中与第二子镜头2000最接近的光学面1201的中轴线;也可以理解为与第二子镜头2000最接近的第一镜片1200的结构面1202所限定的中轴线;当第一子镜头1000的第一镜片1200和第一镜筒1100紧配时,第一子镜头1000的中轴线还可以理解为第一镜筒内侧面所限定的中轴线。
类似地,为便于测量,第二子镜头2000的中轴线可以理解为第二子镜头2000中与第一子镜头1000最接近的光学面2201的中轴线;也可以理解为与第一子镜头1000最接近的第二镜片2200的结构面2202所限定的中轴线;当第二子镜头2000的第二镜片2200和第二镜筒2100紧配时,第二子镜头2000的中轴线还可以理解为第二镜筒内侧面所限定的中轴线。
本发明特别适合于镜头直径小于10mm的用于智能终端的小型化摄像模组。在一个实施例中,所述第一子镜头和所述第二子镜头的外侧面均具有足够的接触面,以便机械臂(或其它摄取装置)通过该接触面摄取(例如夹持或吸附)所述第一子镜头和所述第二子镜头,从而实现第一子镜头和第二子镜头之间相对位置的精确调节。这种精确调节可以是六个自由度的调节。调节步长可达到微米量级及以下。
进一步地,在一个实施例中,所述第二子镜头2000还可以包括马达,以便实现手机摄像模组的自动对焦。图16示出了本发明一个实施例中组装后的带有马达且马达未开启状态下的摄像模组。图17示出了本发明一个实施例中组装后的带有马达且马达开启状态下的摄像模组。该实施例中,马达包括马达基座2310和安装在马达基座2310上的马达支撑体2320。所述马达支撑体2320围绕所述第二镜筒2100,马达的驱动机构(图中未示出)安装在该马达支撑体2320上。马达支撑体2320通过簧片2330连接第二镜筒2100。驱动机构通电时,第二子镜筒沿着光轴移动,簧片2330发生形变(如图17所示)。在步骤 310和步骤320中,马达、第二镜筒2100和第二镜筒2100中所安装的第二镜片2200作为一个整体的第二子镜头2000进行移动和调整。步骤500中,通过将马达基座2310与感光组件3000连接来实现所述第二子镜头2000与感光组件3000的连接。进一步地,在步骤310中,调整第一子镜头和第二子镜头的相对位置时,使马达保持开启状态(例如马达通电可视为马达开启),这样,所获取实测解像力是马达开启状态下的实测解像力。在步骤320中,调整感光组件相对于第二子镜头中轴线的倾角时,也使马达保持开启状态,这样,所获取实测像面倾斜是马达开启状态下的实测像面倾斜。马达开启后,簧片会发生相应的形变。然而,相对于马达未开启状态,马达开启导致的簧片的形变可能导致第二子镜筒的中轴相对于第一子镜头的中轴产生额外的倾斜(参考图17中的倾角Δv4)。本实施例的方案可使马达开启导致的第二镜筒的额外倾斜在步骤310和步骤320的调整中被一并补偿,从而进一步提升自动对焦摄像模组的成像品质。
以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (27)

  1. 一种摄像模组组装方法,其特征在于,包括:
    准备第一子镜头和第二子组件;其中所述第一子镜头包括第一镜筒和至少一个第一镜片,所述第二子组件包括固定在一起的第二子镜头和感光组件,所述第二子镜头包括第二镜筒和至少一个第二镜片;所述感光组件包括感光元件;
    将所述第一子镜头布置于所述第二子镜头的光轴,构成包含所述至少一个第一镜片和所述至少一个第二镜片的可成像的光学系;
    通过调整所述第一子镜头相对于所述第二子镜头的相对位置,使得通过所述感光元件获得的所述光学系成像的实测解像力提升达到第一阈值,并且使通过所述感光元件获得的实测像面倾斜减小达到第二阈值;以及
    连接所述第一子镜头和所述第二子镜头,使得所述第一子镜头和所述第二子镜头的相对位置保持不变。
  2. 根据权利要求1所述的摄像模组组装方法,其特征在于,在所述的调整所述第一子镜头相对于所述第二子镜头的相对位置的步骤中,调整所述的相对位置包括:
    通过使所述第一子镜头相对于所述第二子镜头沿着调整平面移动,使所述光学系成像的实测解像力提升。
  3. 根据权利要求2所述的摄像模组组装方法,其特征在于,在所述的调整所述第一子镜头相对于所述第二子镜头的相对位置的步骤中,所述沿着调整平面移动包括在所述调整平面上平移和/或转动。
  4. 根据权利要求1所述的摄像模组组装方法,其特征在于,在所述的调整所述第一子镜头相对于所述第二子镜头的相对位置的步骤中,调整所述的相对位置包括:调节所述第一子镜头的轴线相对于所述第二子镜头的轴线的夹角。
  5. 根据权利要求1所述的摄像模组组装方法,其特征在于,所述的调整所述第一子镜头相对于所述第二子镜头的相对位置的步骤包括下列子步骤:
    通过使所述第一子镜头相对于所述第二子镜头沿着调整平面移动,使得通过所述感光元件获得的所述光学系成像的在参考视场的实测解像力提升达到对应的阈值;以及
    调节所述第一子镜头的轴线相对于所述第二子镜头的轴线的夹角,使得通过所述感光元件获得的所述光学系成像的在测试视场的实测解像力提升达到对应的阈值,并且使通过所述感光元件获得的在测试视场的实测像面倾斜减小达到所述第二阈值。
  6. 根据权利要求5所述的摄像模组组装方法,其特征在于,根据权利要求X所述的摄像模组组装方法,其特征在于,所述的调整所述第一子镜头相对于所述第二子镜头的相对位置的步骤还包括:
    通过使所述第一子镜头相对于所述第二子镜头在z方向上移动,使通过所述感光元件获得的所述光学系成像的实测像面与目标面匹配,其中z方向是沿着所述光轴的方向。
  7. 根据权利要求6所述的摄像模组组装方法,其特征在于,所述调整平面垂直于所述z方向。
  8. 根据权利要求5所述的摄像模组组装方法,其特征在于,获取实测像面倾斜的方法包括:
    对于测试视场,设置对应于该测试视场的不同测试位置的多个标靶;以及
    基于所述感光组件输出的图像获取对应于每一个测试位置的解像力离焦曲线。
  9. 根据权利要求8所述的摄像模组组装方法,其特征在于,所 述达到第二阈值是使对应于测试视场的不同测试位置的解像力离焦曲线的峰值在所述光轴方向的位置偏移降低达到所述第二阈值。
  10. 根据权利要求9所述的摄像模组组装方法,其特征在于,所述达到第二阈值是使对应于测试视场的不同测试位置的解像力离焦曲线的峰值在所述光轴方向的位置偏移降低至+/-5μm的范围内。
  11. 根据权利要求5所述的摄像模组组装方法,其特征在于,获得所述光学系成像的实测解像力的方法包括:
    设置对应于参考视场和测试视场的多个不同测试位置的标靶;以及
    基于所述感光组件输出的图像获取对应于每一个测试位置的解像力离焦曲线。
  12. 根据权利要求11所述的摄像模组组装方法,其特征在于,在使所述第一子镜头相对于所述第二子镜头沿着调整平面移动的子步骤中,所述的达到对应的阈值是:使对应于参考视场的不同测试位置的解像力离焦曲线的峰值提升达到对应的阈值。
  13. 根据权利要求11所述的摄像模组组装方法,其特征在于,在调节所述第一子镜头的轴线相对于所述第二子镜头的轴线的夹角的子步骤中,所述的达到对应的阈值包括:使对应于测试视场的不同测试位置的多个解像力离焦曲线的峰值中的最小一个提升达到对应的阈值。
  14. 根据权利要求1所述的摄像模组组装方法,其特征在于,所述的调整所述第一子镜头相对于所述第二子镜头的相对位置的步骤包括下列子步骤:
    通过使所述第一子镜头相对于所述第二子镜头沿着调整平面在第一范围内移动,使得通过所述感光元件获得的所述光学系成像的在参 考视场的实测解像力提升达到对应的阈值;
    然后调节所述第一子镜头的轴线相对于所述第二子镜头的轴线的夹角,使得通过所述感光元件获得的所述光学系成像的在测试视场的实测解像力提升达到对应的阈值,并且使通过所述感光元件获得的在测试视场的实测像面倾斜减小,如果实测像面倾斜无法达到所述第二阈值,则进一步执行复调步骤,直至实测像面倾斜减小达到所述第二阈值;
    其中,所述复调步骤包括:
    通过使所述第一子镜头相对于所述第二子镜头沿着所述调整平面在第二范围内移动,其中所述第二范围小于第一范围;以及
    通过调整所述第一子镜头的中轴线相对于所述第二子镜头的中轴线的夹角,使通过所述感光元件获得的所述光学系成像的实测像面倾斜减小。
  15. 根据权利要求1所述的摄像模组组装方法,其特征在于,在所述连接步骤中,通过粘结或焊接工艺连接所述第一子镜头和所述第二子镜头。
  16. 根据权利要求15所述的摄像模组组装方法,其特征在于,所述焊接工艺包括激光焊或超声焊。
  17. 根据权利要求1-16中任意一项所述的摄像模组组装方法,所述准备第一子镜头和第二子组件的步骤中,通过非主动校准方式固定所述第二子镜头和所述感光组件,形成所述第二子组件。
  18. 一种摄像模组,其特征在于,包括:
    第一子镜头,其包括第一镜筒和至少一个第一镜片;以及
    第二子组件,其包括固定在一起的第二子镜头和感光组件,所述第二子镜头包括第二镜筒和至少一个第二镜片;所述感光组件包括感光元件;
    其中,所述第一子镜头布置于所述第二子镜头的光轴,构成包含所述至少一个第一镜片和所述至少一个第二镜片的可成像的光学系;
    所述第一子镜头和所述第二子镜头通过连接介质固定在一起,并且所述连接介质适于使所述第一子镜头的中轴线相对于所述第二子镜头的中轴线具有倾角。
  19. 根据权利要求18所述的摄像模组,其特征在于,所述连接介质还适于使所述第一子镜头的中轴线与所述第二子镜头的中轴线错开。
  20. 根据权利要求18所述的摄像模组,其特征在于,所述连接介质还适于使所述第一子镜头与第二子镜头之间具有结构间隙。
  21. 根据权利要求18所述的摄像模组,其特征在于,所述连接介质为粘结介质或焊接介质。
  22. 根据权利要求18所述的摄像模组,其特征在于,所述第一子镜头的中轴线与所述第二子镜头的中轴线错开0~15μm。
  23. 根据权利要求18所述的摄像模组,其特征在于,所述第一子镜头的中轴线相对于所述第二子镜头的中轴线具有小于0.5度的倾角。
  24. 根据权利要求18所述的摄像模组,其特征在于,所述连接介质还适于使所述第一子镜头与所述第二子镜头的相对位置保持不变,并且所述相对位置使得通过所述感光元件获得的所述光学系成像的实测解像力提升达到第一阈值,以及使通过所述感光元件获得的所述光学系成像的实测像面倾斜减小达到第二阈值。
  25. 根据权利要求24所述的摄像模组,其特征在于,所述第二 子镜头还包括马达,所述实测解像力为马达开启状态下的实测解像力,所述实测像面倾斜为马达开启状态下的实测像面倾斜。
  26. 根据权利要求18-25中任意一项所述的摄像模组,其特征在于,所述第二子镜头和所述感光组件通过非主动校准的方式固定在一起。
  27. 根据权利要求18-25中任意一项所述的摄像模组,其特征在于,所述第二子镜头和所述感光组件之间具有10-50μm的间隙。
PCT/CN2018/083923 2017-09-11 2018-04-20 摄像模组及其组装方法 WO2019047534A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207007290A KR102321746B1 (ko) 2017-09-11 2018-04-20 카메라 모듈 및 그 조립방법
US16/643,194 US11506857B2 (en) 2017-09-11 2018-04-20 Camera module and assembly method therefor
EP18854093.4A EP3684044A4 (en) 2017-09-11 2018-04-20 CAMERA MODULE, AND ASSOCIATED ASSEMBLY METHOD
JP2020514291A JP6953625B2 (ja) 2017-09-11 2018-04-20 撮像モジュール及びその組立方法
CN201880056739.0A CN111034169B (zh) 2017-09-11 2018-04-20 摄像模组及其组装方法
US17/900,484 US11774698B2 (en) 2017-09-11 2022-08-31 Camera module and method for assembling same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710814250.2 2017-09-11
CN201710814250.2A CN109495672B (zh) 2017-09-11 2017-09-11 摄像模组及其组装方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/643,194 A-371-Of-International US11506857B2 (en) 2017-09-11 2018-04-20 Camera module and assembly method therefor
US17/900,484 Continuation US11774698B2 (en) 2017-09-11 2022-08-31 Camera module and method for assembling same

Publications (1)

Publication Number Publication Date
WO2019047534A1 true WO2019047534A1 (zh) 2019-03-14

Family

ID=65634646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083923 WO2019047534A1 (zh) 2017-09-11 2018-04-20 摄像模组及其组装方法

Country Status (6)

Country Link
US (2) US11506857B2 (zh)
EP (1) EP3684044A4 (zh)
JP (1) JP6953625B2 (zh)
KR (1) KR102321746B1 (zh)
CN (2) CN109495672B (zh)
WO (1) WO2019047534A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495673B (zh) * 2017-09-11 2020-09-25 宁波舜宇光电信息有限公司 摄像模组及其组装方法
CN111757092A (zh) * 2019-03-28 2020-10-09 宁波舜宇光电信息有限公司 摄像模组对焦组装系统和方法、镜头组件参数获取装置和感光组件参数获取装置
CN111766672A (zh) * 2019-03-30 2020-10-13 华为技术有限公司 一种镜头、摄像头和终端
WO2020215963A1 (zh) * 2019-04-22 2020-10-29 宁波舜宇光电信息有限公司 光学镜头、摄像模组及其制造方法
CN112540436B (zh) * 2019-09-04 2023-06-06 宁波舜宇光电信息有限公司 分体式镜头及其第一镜头部分、测试方法、组装方法和摄像模组
CN110650290B (zh) * 2019-10-12 2021-06-15 惠州市德赛自动化技术有限公司 一种摄像头主动对焦调整方法
CN113079277B (zh) * 2020-01-03 2023-05-19 北京小米移动软件有限公司 终端设备、摄像头模组及拍摄方法
CN113824853B (zh) * 2020-06-18 2023-04-07 宁波舜宇光电信息有限公司 摄像模组组装方法和设备
CN113064248A (zh) * 2021-03-29 2021-07-02 南昌欧菲光电技术有限公司 摄像头的光学对位方法、摄像头及电子设备
CN115150526A (zh) * 2021-03-31 2022-10-04 北京小米移动软件有限公司 镜头及移动终端
CN113472983B (zh) * 2021-06-18 2023-04-07 深圳睿晟自动化技术有限公司 一种摄像头模组场曲校正方法以及系统
CN113483994B (zh) * 2021-06-30 2022-04-26 湖北华鑫光电有限公司 一种镜头的最优组立角度的确定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1624515A (zh) * 2003-12-05 2005-06-08 鸿富锦精密工业(深圳)有限公司 数码相机镜头模组调整方法
CN101105567A (zh) * 2006-07-11 2008-01-16 普立尔科技股份有限公司 镜头及调整镜头偏心的方法
CN105487248A (zh) * 2015-12-16 2016-04-13 宁波舜宇光电信息有限公司 通过调整镜片实现光学系统成像质量的补偿方法
CN106888344A (zh) * 2015-12-16 2017-06-23 宁波舜宇光电信息有限公司 摄像模组及其像面倾斜的获取方法和调整方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121122A (ja) 2005-10-28 2007-05-17 Omron Corp 変位センサ
JP4860378B2 (ja) * 2006-07-06 2012-01-25 富士フイルム株式会社 レンズの偏芯調整方法及び装置
CN101153949B (zh) * 2006-09-29 2011-07-27 鸿富锦精密工业(深圳)有限公司 相机模组及便携式电子装置
CN101726986B (zh) * 2008-10-10 2011-11-09 鸿富锦精密工业(深圳)有限公司 组装测试装置及方法
JP2010156887A (ja) * 2008-12-29 2010-07-15 Sharp Corp レンズユニット及びこれを用いた撮像素子と電子機器
JP5322722B2 (ja) * 2009-03-26 2013-10-23 株式会社Suwaオプトロニクス レンズ調芯装置およびレンズ調芯装置の制御方法
JP5540120B2 (ja) 2011-01-21 2014-07-02 富士フイルム株式会社 スタック型レンズアレイ及びレンズモジュール
KR20160027852A (ko) * 2014-09-02 2016-03-10 삼성전기주식회사 렌즈의 틸트각 측정 및 보정 시스템 및 그 방법
US9709769B2 (en) * 2014-12-10 2017-07-18 Becton, Dickinson And Company Methods for optically aligning light collection components and optically aligned light collection systems thereof
CN106559615B (zh) * 2015-09-29 2020-04-03 宁波舜宇光电信息有限公司 摄像模组光学防抖系统的校正设备及其校正方法
CN105445885B (zh) 2015-10-30 2019-06-18 宁波舜宇光电信息有限公司 可调光学镜头和摄像模组及其制造方法
CN109541774B (zh) * 2015-12-02 2021-01-29 宁波舜宇光电信息有限公司 采用分体式镜头的摄像模组及其组装方法
JP6664493B2 (ja) * 2015-12-16 2020-03-13 ▲寧▼波舜宇光▲電▼信息有限公司 レンズの調整による光学システムの結像品質補償方法
CN106937107B (zh) * 2015-12-29 2019-03-12 宁波舜宇光电信息有限公司 基于色差的摄像模组调焦方法
US10466501B2 (en) * 2016-05-26 2019-11-05 Ams Sensors Singapore Pte. Ltd. Optoelectronic modules including an optical system tilted with respect to a focal plane
CN207340018U (zh) * 2016-11-28 2018-05-08 宁波舜宇光电信息有限公司 摄像模组
CN107147904B (zh) 2017-06-08 2019-05-24 Oppo广东移动通信有限公司 摄像头模组的测试方法、装置及及计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1624515A (zh) * 2003-12-05 2005-06-08 鸿富锦精密工业(深圳)有限公司 数码相机镜头模组调整方法
CN101105567A (zh) * 2006-07-11 2008-01-16 普立尔科技股份有限公司 镜头及调整镜头偏心的方法
CN105487248A (zh) * 2015-12-16 2016-04-13 宁波舜宇光电信息有限公司 通过调整镜片实现光学系统成像质量的补偿方法
CN106888344A (zh) * 2015-12-16 2017-06-23 宁波舜宇光电信息有限公司 摄像模组及其像面倾斜的获取方法和调整方法

Also Published As

Publication number Publication date
EP3684044A1 (en) 2020-07-22
US20220413251A1 (en) 2022-12-29
KR20200042493A (ko) 2020-04-23
CN109495672B (zh) 2023-06-02
US11506857B2 (en) 2022-11-22
JP6953625B2 (ja) 2021-10-27
KR102321746B1 (ko) 2021-11-05
CN109495672A (zh) 2019-03-19
CN111034169B (zh) 2021-09-21
US11774698B2 (en) 2023-10-03
EP3684044A4 (en) 2021-04-21
CN111034169A (zh) 2020-04-17
US20200192051A1 (en) 2020-06-18
JP2020533636A (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
WO2019047534A1 (zh) 摄像模组及其组装方法
TWI720343B (zh) 攝像模組及其組裝方法
CN207340018U (zh) 摄像模组
CN110824653B (zh) 光学镜头、摄像模组及其组装方法
US11711604B2 (en) Camera module array and assembly method therefor
TWI756521B (zh) 光學鏡頭、攝像模組及其組裝方法
EP3859419B1 (en) Optical zoom camera module and assembling method therefor
WO2019228348A1 (zh) 光学镜头、摄像模组及其组装方法
CN116953873A (zh) 一种光学镜头组件及摄像模组
CN116953871A (zh) 一种光学镜头及摄像模组
CN110941061A (zh) 光学镜头、摄像模组及组装方法
CN115412653A (zh) 光学镜头及摄像模组
CN112824964B (zh) 潜望式摄像模组及其组装方法
WO2020063190A1 (zh) 光学镜头、摄像模组及组装方法
WO2020088039A1 (zh) 光学镜头、摄像模组及其组装方法
JP2019168609A (ja) 光学部品保持装置及び、その撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514291

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207007290

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018854093

Country of ref document: EP

Effective date: 20200414