WO2020215963A1 - 光学镜头、摄像模组及其制造方法 - Google Patents

光学镜头、摄像模组及其制造方法 Download PDF

Info

Publication number
WO2020215963A1
WO2020215963A1 PCT/CN2020/081056 CN2020081056W WO2020215963A1 WO 2020215963 A1 WO2020215963 A1 WO 2020215963A1 CN 2020081056 W CN2020081056 W CN 2020081056W WO 2020215963 A1 WO2020215963 A1 WO 2020215963A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
sub
lens barrel
optical
barrel
Prior art date
Application number
PCT/CN2020/081056
Other languages
English (en)
French (fr)
Inventor
吴雨榕
梅哲文
裴海鹏
田中武彦
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201920545569.4U external-priority patent/CN209858823U/zh
Priority claimed from CN201910321890.9A external-priority patent/CN111830659A/zh
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Publication of WO2020215963A1 publication Critical patent/WO2020215963A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • This application relates to the field of optical lenses. Specifically, this application relates to optical lenses, camera modules and manufacturing methods thereof.
  • auto-focus camera modules are widely used in digital products, such as smart phones, tablet computers, surveillance and other terminal devices, and are showing a trend of rapid development.
  • optical lenses In addition, as the number of lenses in optical lenses continues to increase, for example, from 5 lenses to 6 lenses, 7 lenses or even more lenses, while meeting the increasingly high volume and performance requirements, optical lenses The difficulty of assembling the optical lens is constantly increasing, resulting in a continuous decline in the yield of the optical lens during the production process of the optical lens.
  • the split optical lens at least partially solves the above problems.
  • a complete optical lens is divided into a plurality of sub-optical lenses, and the sub-optical lens includes a lens barrel and at least one optical lens assembled in the lens barrel.
  • the at least one optical lens is usually joined in the lens barrel by laying a ring of glue at a position where the non-optical zone contacts the lens barrel.
  • the assembly method of the conventional split optical lens is explained below.
  • the position between each sub-optical lens of the split optical lens and the photosensitive component is adjusted by means of Active Alignment (AA), until the imaging requirements are met;
  • AA Active Alignment
  • the sub-lens is fixedly connected at the relative position determined by the active calibration.
  • the split lens uses more glue to fix the entire optical system. Although this reduces the difficulty of assembly and improves the production yield of products, the temperature characteristics and mechanical characteristics of the rubber material itself are inconsistent with the materials of the lens barrel and lens.
  • the adhesive material in the sub-optical lens or the adhesive material connecting and fixing each optical sub-lens will expand or shrink when the temperature of the optical lens changes due to baking or other reasons. , Resulting in non-directional deformation, resulting in a greater change in the structure of the optical lens. Specifically, the expansion or contraction of the material in the sub-optical lens will cause the optical lens in the sub-optical lens to shift or tilt due to the force generated by the expansion or contraction, resulting in a serious degradation of the optical performance of the optical lens.
  • the module factory has compensated for the tilt of the photosensitive chip through an active calibration process when assembling the imaging lens and the photosensitive module.
  • this process has limited compensation capabilities. Since various aberrations that affect the resolution come from the capabilities of the optical system itself, when the resolution of the optical imaging lens itself is insufficient, the existing active calibration process of the photosensitive module is difficult to compensate.
  • an aspect of the present application provides an optical lens
  • the optical lens may include: a plurality of sub-lens components, the plurality of sub-lens components can be joined to each other, and each includes a lens barrel and a lens; at least among the plurality of sub-lens components One lens barrel and lens can be joined by a snap mechanism; and a connecting medium suitable for fixing the plurality of sub-lens components together.
  • the buckle mechanism may include a concave portion formed on the inner side of the lens barrel, and the lens may be fixed in the concave portion in a buckle manner.
  • the buckle mechanism may include a first concave portion and a second concave portion formed on the inner side of the lens barrel, and a convex portion formed on the edge of the lens.
  • the convex portion of the lens can pass through The first recessed portion enters the second recessed portion and can be fixed in the second recessed portion of the lens barrel in a snapping manner by rotating the lens.
  • the buckle mechanism may include a concave portion formed on the inner side of the lens barrel and a convex portion formed on the edge of the lens.
  • the convex portion of the lens can be fastened to the lens barrel in a snap-fit manner. In the depression.
  • the buckle mechanism may include a protrusion and a shading part formed on the inner side of the lens barrel, the lens barrel may be opened at the upper end to receive the lens and the shading part, and the edge of the lens may be connected to the lens barrel.
  • the inner part of the lens is matched with the convex part, and the shading part can be located above the lens and can be joined with the inner part of the lens barrel.
  • the lower surface of the buckle mechanism may be flush with the lower surface of the lens barrel of at least one of the plurality of sub-lens components.
  • the snap mechanism can be evenly distributed along the circumference of the lens barrel and the lens.
  • the buckle mechanism can be arranged along the circumference of the lens barrel and the lens.
  • the connecting medium of the optical lens includes a glue material.
  • the glue material can be located between the multiple sub-lens components to bond the multiple sub-lens components together.
  • the glue can also be located between the buckle mechanism and the lens. between.
  • the glue material may be light curing, thermal curing, moisture curing, anaerobic curing or oxidation curing glue material.
  • the sub-lens component with the buckle structure is close to the object side.
  • a camera module is also provided, which may include the aforementioned optical lens.
  • a method for manufacturing an optical lens may include: joining a lens barrel and a lens of at least one of a plurality of sub-lens components of the optical lens through a snap mechanism, wherein each of the plurality of sub-lens components includes a lens barrel and a lens;
  • the connecting medium is used to fix the multiple sub-lens components together.
  • the lens barrel and the lens that connect at least one of the plurality of sub-lens components of the optical lens by a snap mechanism may include: a lens barrel that fixes the lens to the snap mechanism in a snap manner In the depression formed by the inner part.
  • the lens barrel and the lens that join at least one of the plurality of sub-lens components of the optical lens through a snap mechanism may include: passing a protrusion formed on the edge of the lens through the snap mechanism The first recess formed on the inner side of the lens barrel enters the second recess formed on the inner side of the lens barrel; and by rotating the lens, the protrusion is fixed to the second recess of the lens barrel in a snap-fit manner Ministry.
  • joining the lens barrel and the lens of at least one of the plurality of sub-lens components of the optical lens by a snap mechanism may include: forming the snap mechanism on the edge of the lens in a snap manner.
  • the convex part is fixed in the concave part of the buckle mechanism formed on the inner side of the lens barrel.
  • the lens barrel and the lens that join at least one of the plurality of sub-lens components of the optical lens through a buckle mechanism may include: receiving the lens and a light shielding portion through the open upper end of the lens barrel to shield light
  • the part and the convex part formed on the inner side of the lens barrel form a snap mechanism; the edge of the lens is matched with the inner part and the raised part of the lens barrel; and the shading part is located above the lens and is connected to the inner part of the lens barrel.
  • the step of aligning the plurality of sub-lens components with each other includes: determining the relative positions of the plurality of sub-lens components through active calibration.
  • the manufacturing method may further include: evenly distributing the snap mechanism along the circumference of the lens barrel and the lens.
  • the manufacturing method may further include: setting a snap mechanism along the circumference of the lens barrel and the lens.
  • the manufacturing method may further include: applying a connecting medium that can be a glue between the buckle mechanism and the lens.
  • the glue material may be light curing, thermal curing, moisture curing, anaerobic curing or oxidation curing glue material.
  • one or more embodiments of the present application have at least one of the following technical effects:
  • the optical lens can be combined with the rigid buckle of the lens barrel, so that the optical lens components have good structural strength, good stability, and good assembly consistency. There is no deviation of the glue material, or the performance difference caused by the difference of the glue material;
  • the contact area between the rubber and the lens is reduced, and the variation caused by the expansion or contraction of the rubber during the production process is effectively reduced.
  • the expansion or contraction of the rubber drives the lens to deflect. Move or tilt, resulting in poor performance of the optical lens.
  • Figure 1 shows a schematic cross-sectional view of a conventional split optical lens in the prior art
  • Fig. 2 shows a schematic cross-sectional view of an optical lens according to an embodiment of the present application, wherein each sub-lens component of the optical lens is in an assembled state;
  • Fig. 3 shows a schematic cross-sectional view of a sub-lens component of an optical lens according to an embodiment of the present application, wherein the lens barrel and lens of the sub-lens component are in an unassembled state, and the lens barrel is provided along the inner circumferential direction thereof as Protrusions and depressions of the buckle mechanism;
  • FIG. 4 shows a schematic perspective view of a sub-lens component of an optical lens according to an embodiment of the present application, wherein the lens barrel and lens of the sub-lens component are in an unassembled state, and the lens barrel is evenly provided with As the raised and recessed parts of the buckle mechanism;
  • FIG. 5 shows a schematic cross-sectional view of a sub-lens component of the optical lens according to the embodiment shown in FIG. 3, wherein the lens barrel and lens of the sub-lens component are in an assembled state;
  • Fig. 6 shows a schematic perspective view of a sub-lens component of an optical lens according to an embodiment of the present application, wherein the lens barrel and lens of the sub-lens component are in an unassembled state, and the lens barrel is provided along the inner circumferential direction thereof as The annular protrusion and annular depression of the buckle mechanism;
  • FIG. 7 shows a schematic cross-sectional view of an optical lens according to an embodiment of the present application, in which a glue as a connecting medium is applied between two sub-lens components of the optical lens;
  • Figure 8a shows a schematic cross-sectional view of the lens barrel and lens of the prior art neutron lens component after being conventionally connected, wherein the lens barrel and the lens are connected by a glue as a connecting medium, and the lens barrel is used for The area of the connecting surface connected with the lens barrel of other sub-lens components is small;
  • FIG. 8b shows a schematic cross-sectional view of the snap-fit connection of the lens barrel and the lens of the sub-lens component of the optical lens according to an embodiment of the present application, wherein the lens barrel and the lens are connected by a snap mechanism, and the lens The connecting surface area of the tube used to connect with the lens tube of other sub-lens components is large;
  • Fig. 9 shows a schematic perspective view of a sub-lens component of an optical lens according to an embodiment of the present application, wherein the lens barrel and lens of the sub-lens component are in an unassembled state, and the lens barrel is evenly provided with The concave portion of the buckle mechanism and the lens have the convex portions of the buckle mechanism uniformly arranged along the inner circumferential direction thereof;
  • Figure 10 shows a schematic cross-sectional view of the snap-fit connection of the lens barrel and the lens of the sub-lens component of the optical lens according to an embodiment of the present application, wherein the lens barrel and the lens are connected by a snap mechanism, the card
  • the buckle structure includes a convex portion uniformly arranged in the inner circumferential direction of the lens barrel and a concave portion uniformly arranged in the outer circumferential direction of the lens, and the lens barrel and the lens of the sub-lens component are in an unassembled state;
  • FIG. 11 shows a schematic cross-sectional view of the snap-fit connection between the lens barrel and the lens of the sub-lens component of the optical lens shown in FIG. 10, wherein the lens barrel and the lens are connected by a snap mechanism.
  • the structure includes a convex portion uniformly arranged in the inner circumferential direction of the lens barrel and a concave portion uniformly arranged in the outer circumferential direction of the lens, and the lens barrel and the lens of the sub-lens component are in an assembled state;
  • Figure 12 shows a schematic cross-sectional view of the snap-fit connection of the lens barrel and the lens of the sub-lens component of the optical lens according to an embodiment of the present application, wherein the lens barrel and the lens are connected by a snap mechanism.
  • the buckle structure includes a concave portion uniformly arranged in the inner circumferential direction of the lens barrel and a convex portion uniformly arranged in the outer circumferential direction of the lens, and the lens barrel and the lens of the sub-lens component are in an assembled state;
  • FIG. 13 shows a schematic exploded perspective view of a sub-lens component of an optical lens according to an embodiment of the present application, in which the buckle mechanism includes a convex portion and a light shielding portion formed on the inner side of the lens barrel, and the lens barrel is at the upper end portion Open to receive the lens and the shading part, the edge of the lens is matched with the inner part and the convex part of the lens barrel, and the shading part is located above the lens and engages with the inner part of the lens barrel;
  • FIG. 14 shows a schematic cross-sectional view of a sub-lens component of the optical lens shown in FIG. 13, wherein the lens barrel and lens of the sub-lens component are in an assembled state;
  • the snap mechanism includes a protrusion formed on the inner side of the lens barrel and a connecting medium made of, for example, opaque glue
  • the formed shading part, the upper end of the lens barrel is opened to receive the lens and the shading part, the edge of the lens is matched with the inner part and the convex part of the lens barrel, and the shading part is located above the lens and is engaged with the inner part of the lens barrel;
  • FIG. 16 shows a schematic cross-sectional view of a camera module according to an embodiment of the present application.
  • Fig. 17 shows a flowchart of a method for manufacturing an optical lens according to an embodiment of the present application.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first lens component discussed below may also be referred to as the second lens component.
  • the thickness, size, and shape of each component may have been slightly exaggerated.
  • the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
  • the drawings are only examples and are not drawn strictly to scale.
  • FIG. 1 shows a schematic cross-sectional view of a conventional split optical lens 1000 in the prior art.
  • the split lens includes a first sub-lens part 1100 and a second sub-lens part 1200.
  • the first sub-lens component 1100 and the second sub-lens component 1200 respectively include a lens barrel (1110, 1210) and at least one lens (1120, 1220).
  • the relative position between the first sub-lens part 1100 and the second sub-lens part 1200 is determined by active calibration, and then the first sub-lens part 1100 is connected by a connecting medium 1300 such as glue And the second sub-lens part 1200, thereby fixing the positions of the first sub-lens part 1100 and the second sub-lens part 1200 determined during the active calibration.
  • active calibration refers to: placing the first sub-lens component 1100 and the second sub-lens component 1200 on the photosensitive path of the photosensitive chip respectively, and the first sub-lens component 1100 and the second sub-lens component 1200 are formed
  • the lens can normally image; the photosensitive component is energized to open the image, and the image formed by the split optical lens 1000 is obtained; according to the quality of the formed image (usually judged by TV line, MTF, SFR, etc.), adjust in at least one direction
  • the relative position of the first sub-lens part 1100 with respect to the second sub-lens part 1200, the at least one direction refers to the horizontal direction (xy), the vertical direction (z), the oblique direction (vw) and the circumferential direction (u) At least one of xyz (horizontal and vertical directions), uvw (respectively around z, x, y) six-axis directions; through the first sub-lens part 1100 and the second sub-
  • the lens part is provided with glue to fix the first sub-lens component 1100 and the second sub-lens component 1200; the first sub-lens component 1100 and the second sub-lens component 1200 are fixed to the lens (1120, 1220) and the lens barrel by glue (1110, 1210).
  • the reliability of the split optical lens 1000 is mainly due to the adhesive material bonded between the sub-lens components and the adhesive material used to fix the assembled lenses in the sub-lens components.
  • FIG. 2 shows a schematic cross-sectional view of an optical lens 2000 according to an embodiment of the present application.
  • the two sub-lens components (2100, 2300) of the optical lens 2000 are in an assembled state.
  • the two sub-lens components (2100, 2300) are joined to each other, and both include a lens barrel and a lens.
  • Fig. 3 shows a schematic cross-sectional view of a sub-lens component 2100 of an optical lens according to an embodiment of the present application. Only the sub-lens part 2100 as an example is shown in FIG. 2.
  • the optical lens 2000 may also include a connecting medium.
  • the connecting medium is suitable for fixing the plurality of sub-lens components together.
  • the optical lens 2000 also includes a buckle mechanism.
  • the lens barrel 2110 and the lens 2120 of at least one of the plurality of sub-lens components 2100 are joined by a snap mechanism 2200.
  • the lens barrel 2110 and the lens 2120 of the sub-lens component 2100 are assembled together by the buckle mechanism 2200 to form a firm structure to reduce the contact area between the rubber material and the lens 2120 in the sub-lens component 2100.
  • the glue material can be completely eliminated, or a small amount of glue material can be applied as a reinforcement to the structure of the sub-lens component 2100.
  • the glue can be light curing, heat curing, moisture curing, anaerobic curing or oxidation curing glue.
  • the lens barrel 2110 and the lens 2120 of the sub-lens component 2100 are in an unassembled state, and the lens barrel 2110 is provided with a protrusion 2210 and a recess 2220 as a buckle mechanism 2200 along the inner circumferential direction thereof.
  • Fig. 4 shows a schematic perspective view of a sub-lens component 3100 of an optical lens according to an embodiment of the present application.
  • the plurality of sub-lens components 3100 include a lens barrel 3110 and a lens 3120.
  • the optical lens also includes a connecting medium.
  • the connecting medium is suitable for fixing the plurality of sub-lens components together.
  • the optical lens also includes a snap mechanism 3200. The lens barrel and lens of at least one of the plurality of sub-lens components are joined by a snap mechanism 3200.
  • the lens barrel 3110 and the lens 3120 of the sub-lens component 3100 are assembled together by the buckle mechanism 3200 to form a firm structure to reduce the contact area between the rubber material and the lens 3120 in the sub-lens component 3100.
  • the glue material can be completely eliminated, or a small amount of glue material can be applied as a reinforcement to the sub-lens component 3100 structure.
  • the lens barrel 3110 and lens 3120 of the sub-lens component 3100 are in an unassembled state, and the lens barrel 3110 is uniformly provided with protrusions 3210 and recesses 3220 as the buckle mechanism 3200 along the inner circumferential direction thereof.
  • the buckle mechanism 3200 may include a plurality of protrusions 3210 and recesses 3220.
  • the buckle mechanism 3200 includes four protrusions 3210 and four corresponding recesses 3220.
  • the convex portion 3210 and the concave portion 3220 are uniformly arranged along the inner circumferential direction of the lens barrel 3110 to make the lens 3120 receive the force of the lens barrel 3110 uniformly.
  • FIG. 5 shows a schematic cross-sectional view of the sub-lens part 2100 of the optical lens according to the embodiment shown in FIG. 3.
  • the lens barrel 2110 and the lens 2120 of the sub-lens component 2100 are in an assembled state.
  • the circumferential edge of the lens 2120 is engaged in the recess 2220 of the buckle mechanism 2200, so that the lens 2120 and the lens barrel 2110 are firmly engaged.
  • Fig. 6 shows a schematic perspective view of a sub-lens component 4100 of an optical lens according to an embodiment of the present application.
  • the lens barrel 4110 and the lens 4120 of the sub-lens component 4100 are in an unassembled state.
  • the lens barrel 4110 is provided with an annular protrusion 4210 and an annular recess 4220 as the buckle mechanism 4200 along the inner circumferential direction thereof.
  • the annular convex portion 4210 and the annular concave portion 4220 are provided along the entire circumferential inner side of the lens barrel 4110.
  • the buckle mechanism 4200 includes only one annular convex portion 4210 and one annular concave portion 4220. Therefore, the lens 4120 receives the force of the lens barrel 4110 uniformly.
  • FIG. 7 shows a schematic cross-sectional view of an optical lens 5000 according to an embodiment of the present application.
  • the optical lens 5000 includes two sub-lens components-a first sub-lens component 5100 and a second sub-lens component 5200.
  • the first sub-lens part 5100 and the second sub-lens part 5200 are joined to each other, and each includes a lens barrel and a lens.
  • the optical lens 5000 further includes a connecting medium 5300.
  • the connecting medium 5300 is suitable for fixing the first sub-lens component 5100 and the second sub-lens component 5200 together.
  • the optical lens 5000 further includes a buckle mechanism 5400.
  • the lens barrel 5110 and the lens 5120 of the first sub-lens component 5100 are joined together by the buckle mechanism 5400 to form a firm structure to reduce the contact area between the rubber material in the first sub-lens component 5100 and the lens 5120.
  • the glue in the first sub-lens component 5100 can be completely eliminated, or a small amount of glue can be applied as a reinforcement to the structure of the first sub-lens component 5100.
  • a small amount of glue as a connecting medium is applied between the lens barrel 5110 and the lens 5120 of the first sub-lens component 5100 to further fix the position of the lens 5120 in the lens barrel 5110.
  • glue can be applied between the lens and the lens barrel of the sub-lens component to assist in fixing the lens and the lens barrel.
  • FIG. 8a shows a schematic cross-sectional view of the lens barrel 1110 and the lens 1120 of the first sub-lens component 1100 of the optical lens shown in FIG. 1 after being conventionally connected.
  • the glue is usually set on the lens barrel of the sub-lens component located below.
  • the lower sub-lens component usually has a larger glue area, but the upper sub-lens component has a relatively small area for bonding.
  • the lens barrel 1110 and the lens 1120 are connected by a glue 1130 as a connecting medium, and the lower connecting surface 1111 of the lens barrel 1110 for connecting with the lens barrels of other sub-lens components has a small area .
  • FIG. 8b shows a schematic cross-sectional view of the sub-lens part 2100 of the optical lens according to the embodiment shown in FIG. 3.
  • the lens barrel 2110 and lens 2120 of the sub-lens component 2100 are in an assembled state.
  • the circumferential edge of the lens 2120 is engaged in the recess 2220 of the buckle mechanism 2200, so that the lens 2120 and the lens barrel 2110 are firmly engaged.
  • the connecting surface 2111 of the lens barrel 2110 for connecting with the lens barrels of other sub-lens components has a larger area.
  • the sub-lens component 2100 has a relatively large bonding area, so that the bonding force between the sub-lens components is greater, and the split type
  • the reliability of the lens is better, and because of the larger bonding area, the layout of the glue can be more diversified.
  • the lateral size of the first sub-lens component can be set to be smaller, thereby further reducing the volume of the entire optical lens.
  • Fig. 9 shows a schematic perspective view of a sub-lens component 6100 of an optical lens according to an embodiment of the present application.
  • the lens barrel 6110 and the lens 6120 of the sub-lens component 6100 are in an unassembled state.
  • the lens barrel 6110 is uniformly provided with the recesses 6210 of the buckle mechanism 6200 along its inner circumferential direction, and the lens 6120 has the convex portions 6220 of the buckle mechanism 6200 evenly arranged along its outer circumferential direction.
  • the concave portion 6210 includes a first concave portion 6211 and a second concave portion 6212.
  • the convex portion 6220 of the lens 6120 enters the second concave portion 6212 through the first concave portion 6211, and is fixed to the second concave portion of the lens barrel 6110 by the rotating lens 6120. 6212 in.
  • the buckle mechanism 6200 may also be configured to include convex portions uniformly arranged along the inner circumferential direction of the lens barrel 6110 and concave portions uniformly arranged along the outer circumferential direction of the lens 6120.
  • FIG. 10 shows a schematic cross-sectional view of the snap-fit connection of the lens barrel 7110 and the lens 7120 of the sub-lens component 7100 of the optical lens (not shown) according to an embodiment of the present application.
  • the lens barrel 7110 and lens 7120 of the sub-lens component 7100 are in an unassembled state.
  • the buckle structure 7200 includes a convex portion 7220 located on the inner circumferential direction of the lens barrel 7110 and a concave portion 7210 located on the outer circumferential direction of the lens 7120 uniformly.
  • FIG. 11 shows a schematic cross-sectional view of the snap-fit connection of the lens barrel 7110 and the lens 7120 of the sub-lens component 7100 of the optical lens shown in FIG. 10.
  • the lens barrel 7110 and the lens 7120 of the sub-lens part 7100 are in an assembled state.
  • FIG. 12 shows a schematic cross-sectional view of the snap-fit connection of the lens barrel 8110 and the lens 8120 of the sub-lens component 8100 of the optical lens (not shown) according to an embodiment of the present application.
  • This embodiment is similar to the embodiment shown in FIG. 10 and FIG. 11, and the difference is that the snap structure 8200 includes a concave portion 8220 located on the inner circumferential direction of the lens barrel 8110 and located on the outer circumferential direction of the lens 8120.
  • the evenly arranged protrusions 8210 are similar to the embodiment shown in FIG. 10 and FIG. 11, and the difference is that the snap structure 8200 includes a concave portion 8220 located on the inner circumferential direction of the lens barrel 8110 and located on the outer circumferential direction of the lens 8120.
  • the evenly arranged protrusions 8210 are evenly arranged protrusions 8210.
  • Fig. 13 shows a schematic exploded perspective view of a sub-lens component 9100 of an optical lens (not shown) according to an embodiment of the present application.
  • the buckle mechanism 9200 includes a protrusion 9210 and a light shielding portion 9220 formed on the inner side of the lens barrel 9110.
  • the lens barrel 9110 is opened at the upper end to receive the lens 9120 and the light shielding portion 9220.
  • FIG. 14 shows a schematic cross-sectional view of the sub-lens component 9100 of the optical lens shown in FIG. 13, wherein the lens barrel 9110 and the lens 9120 of the sub-lens component 9100 are in an assembled state.
  • the edge of the lens 9120 is matched with the inner side of the lens barrel 9110 and the protrusion 9210.
  • the light shielding portion 9220 is located above the lens 9120 and is joined to the inner side of the lens barrel 9110. Glue is applied between the light shielding portion 9220 and the inner side of the lens barrel 9110 to fix the light shielding member.
  • the light shielding portion 9220 may be made of any suitable material, such as plastic, metal, black film.
  • the light-shielding portion 9220 may also be a glue material, such as a glue material that does not transmit light.
  • a convex portion 9210 and a light-shielding portion 9220 formed of a connecting medium such as a light-proof glue are formed on the inner side of the lens barrel 9110.
  • FIG. 16 shows a schematic cross-sectional view of the camera module 100 according to an embodiment of the present application.
  • the camera module 100 includes two sub-lens components-a first sub-lens component and a second sub-lens component 120.
  • the first sub-lens component is similar to the sub-lens component 2100 shown in FIG. 3.
  • the same reference numerals as in FIG. 3 are used in the following description.
  • the sub-lens part 2100 shown in FIG. 3 is used in this embodiment, it should be understood that the camera module 100 may include any of the above-mentioned embodiments of the sub-lens part having a buckle structure.
  • the first sub-lens part 2100 and the second sub-lens part 120 are joined to each other, and each includes a lens barrel and a lens.
  • the camera module 100 also includes other common components in the camera module. For the purpose of clarity, these well-known components in the art will not be described in detail.
  • the optical lens 100 includes a connection medium 130.
  • the connecting medium 130 fixes the first sub-lens part 2100 and the second sub-lens part 120 together.
  • the sub-lens component with the snap structure is closer to the object side than the sub-lens component without the snap structure.
  • the sub-lens component with the snap structure can also be closer to the image side.
  • Fig. 17 shows a flowchart of a method for manufacturing an optical lens according to an embodiment of the present application.
  • the manufacturing method of the optical lens includes the following steps:
  • Step S100 Join the lens barrel and lens of at least one of the plurality of sub-lens components of the optical lens by a buckle mechanism, wherein the plurality of sub-lens components are separated from each other and each includes the lens barrel and the lens;
  • Step S200 align the multiple sub-lens components with each other
  • Step S300 Use a connecting medium to fix the multiple sub-lens components together.
  • the step of joining the lens barrel and the lens of at least one of the plurality of sub-lens components of the optical lens through a buckle mechanism includes:
  • the lens is fixed in a recessed portion of the buckle mechanism formed on the inner side of the lens barrel in a snap-fit manner.
  • the step of joining the lens barrel and the lens of at least one of the plurality of sub-lens components of the optical lens by a buckle mechanism includes: passing a protrusion formed on the edge of the lens through the The first recessed portion formed on the inner side of the lens barrel of the snap mechanism enters the second recessed portion formed on the inner side of the lens barrel; and by rotating the lens, the lens The convex part is fixed in the second concave part of the lens barrel.
  • the step of joining the lens barrel and the lens of at least one of the plurality of sub-lens components of the optical lens through a buckle mechanism includes: buckling the buckle mechanism on the lens of the lens.
  • the protrusion formed on the edge is fixed in the recess formed in the inner side of the lens barrel of the buckle mechanism.
  • the step of joining the lens barrel and the lens of at least one of the plurality of sub-lens components of the optical lens through a buckle mechanism includes: receiving the lens through the open upper end of the lens barrel and shielding light Part, the shading part and the protrusion formed on the inner side of the lens barrel form the buckle mechanism; make the edge of the lens fit with the inner part of the lens barrel and the protrusion; and The light-shielding part is positioned above the lens and joined to the inner part of the lens barrel.
  • the step of aligning the plurality of sub-lens components with each other includes: determining the relative positions of the plurality of sub-lens components through active calibration. Specifically, by means of active calibration, the position between each sub-optical lens component of the split optical lens and the photosensitive component is adjusted until the imaging requirement is met.
  • the method for manufacturing an optical lens further includes the following step: evenly distributing the buckle mechanism along the circumference of the lens barrel and the lens.
  • the method for manufacturing an optical lens further includes the following steps: arranging the buckle mechanism along the circumference of the lens barrel and the lens.
  • the method for manufacturing an optical lens further includes the following step: applying glue between the buckle mechanism and the lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

公开了一种光学镜头、包括光学镜头的摄像模组和光学镜头的制造方法。一种光学镜头(2000),包括:多个子镜头部件(2100),多个子镜头部件(2100)彼此接合,且均包括镜筒(2110)和镜片(2120);卡扣机构(2200),多个子镜头部件(2100)中的至少一个的镜筒(2110)和镜片(2120)通过卡扣机构(2200)接合;以及连接介质(5300),适于将多个子镜头部件(2100)固定在一起。由此可降低制程不良损失,提高分体式镜头良率,提高光学镜头或摄像模组的成像品质。

Description

光学镜头、摄像模组及其制造方法
交叉引用
本申请要求于2019年04月22日向中国专利局提交的、发明名称为“光学镜头、摄像模组及其制造方法”的第201910321890.9号发明专利申请以及于2019年04月22日向中国专利局提交的、名称为“光学镜头、摄像模组”的第201920545569.4号实用新型专利申请的优先权,上述专利申请的全部内容通过引用并入本文。
技术领域
本申请涉及光学镜头领域,具体地,本申请涉及光学镜头、摄像模组及其制造方法。
背景技术
随着科技水平的不断发展进步,移动电子设备日益普及,用于移动电子设备来帮助使用者获取影像(例如视频或者图像)的可成像光学器件的相关技术得到了迅猛的发展和进步,并且在诸如医疗、安防、工业生产等诸多的领域都得到了广泛的应用。
为了满足消费者对于拍照不断提高的需求,自动对焦的摄像模组广泛应用于数码产品中,例如智能手机、平板电脑、监控等终端设备,并呈现出快速发展的趋势。
现在,数码产品朝着小型化、高性能化的趋势发展,相应的对于光学镜头的体积和性能提出了越来越高的要求。
大光圈高像素的光学镜头的光学设计复杂,光学镜头的敏感度很高。随着目前镜头规格不断升高,从20M、40M、48M到64M乃至更高的像素数量,需要在体积较小的空间内设计更高像素的镜头,这样的镜头的光学敏感性非常高。因此,对光学镜头制造过程中产生的偏心和倾斜(tilt)要求都很严格。在常规的光学镜头组立过程中,任何 一片光学镜片出现倾斜或者偏心的现象,就会对光学镜头的整体光学性能造成较大影响。另外,随着光学镜头内镜片的数量不断增加,例如,由5个镜片向着6个镜片、7个镜片甚至更多个镜片增加,在满足越来越高的体积和性能要求的同时,光学镜头的组装难度在不断提升,导致在光学镜头的生产过程中,光学镜头的成品良率在不断下降。
分体式光学镜头的至少部分地解决了上述问题。在分体式光学镜头中,将一个完整的光学镜头分成多个子光学镜头,子光学镜头包括镜筒和组装在镜筒中的至少一个光学镜片。该至少一个光学镜片通常通过在非光学区与镜筒接触的位置布设一圈胶材来接合在镜筒中。
以下解释常规的分体式光学镜头的组装方法。在该组装方法中,首先,通过主动校准(AA,Active Alignment)的方式,调整分体式光学镜头的各个子光学镜头与感光组件之间的位置,直至满足成像要求;然后,通过胶材将各子镜头固定连接在主动校准所确定的相对位置。
为了使整个分体式光学镜头的结构更加稳固,相较于普通光学镜头,分体式镜头采用了更多的胶水来固定整个光学系统。虽然这样降低了组装难度,提高了产品的生产良率,但是,胶材本身与镜筒和镜片的材质在温度特性、机械特性等方面不一致。在后期的组装过程或可靠性试验过程中,子光学镜头中的胶材或连接固定各光学子镜头的胶材在由于烘烤或其他原因造成光学镜头所处环境温度变化时,会膨胀或收缩,从而造成不定向的变形,因而光学镜头的结构产生较大的变化。具体而言,子光学镜头中材的膨胀或收缩,该膨胀或收缩产生的力会导致子光学镜头中的光学镜片发生偏移或者倾斜,从而使得光学镜头的光学性能严重下降。
另外,如上所述,因为影响镜头解像力的因素非常多,存在于多个元件中,每个因素的控制都存在制造精度的极限,如果只是单纯提升各个元件的精度,提升能力有限,提升成本高昂,而且不能满足市场日益提高的成像品质需求。
近些年来,模组厂通过在将成像镜头和感光模组组装时,通过主动校准工艺对感光芯片的倾斜进行补偿。然而这种工艺补偿能力有限。 由于多种影响解像力的像差来源于光学系统本身的能力,当光学成像镜头本身的解像力不足时,现有的感光模组主动校准工艺是难以补偿的。
发明内容
本申请的一方面提供了一种光学镜头,该光学镜头可包括:多个子镜头部件,所述多个子镜头部件可彼此接合,且均包括镜筒和镜片;所述多个子镜头部件中的至少一个的镜筒和镜片可通过卡扣机构接合;以及连接介质,适于将所述多个子镜头部件固定在一起。
在本申请的一个实施例中,卡扣机构可包括在镜筒的内侧部形成的凹陷部,镜片可以以卡扣方式固定在凹陷部中。
在本申请的一个实施例中,卡扣机构可包括在镜筒的内侧部形成的第一凹陷部和第二凹陷部以及在镜片的边缘上形成的凸起部,镜片的凸起部可通过第一凹陷部进入第二凹陷部,并可通过旋转镜片以卡扣方式固定在镜筒的第二凹陷部中。
在本申请的一个实施例中,卡扣机构可包括在镜筒的内侧部形成的凹陷部以及在镜片的边缘上形成的凸起部,镜片的凸起部可以卡扣方式固定在镜筒的凹陷部中。
在本申请的一个实施例中,卡扣机构可包括在镜筒的内侧部形成的凸起部和遮光部,镜筒可在上端部开放以接收镜片和遮光部,镜片的边缘可与镜筒的内侧部和凸起部配合,遮光部可位于镜片的上方,可与镜筒的内侧部接合。
在本申请的一个实施例中,卡扣机构的下表面可与多个子镜头部件中的至少一个的镜筒的下表面齐平。
在本申请的一个实施例中,卡扣机构可沿镜筒和镜片周向均匀分布。
在本申请的一个实施例中,卡扣机构可沿镜筒和镜片周向设置。
在本申请的一个实施例中,光学镜头的连接介质包括胶材,该胶材可位于多个子镜头部件之间以将多个子镜头部件粘结在一起,胶材还可位于卡扣机构与镜片之间。
在本申请的一个实施例中,胶材可为光固化、热固化、湿气固化、厌氧固化或氧化固化胶材。
在本申请的一个实施例中,具有所述卡扣结构的子镜头部件靠近物侧。
根据本申请的又一方面,还提供了一种摄像模组,其可包括前述的光学镜头。
根据本申请的又一方面,还提供了一种光学镜头的制造方法。该制造方法可包括:通过卡扣机构接合所述光学镜头的多个子镜头部件中的至少一个的镜筒和镜片,其中,所述多个子镜头部件均包括镜筒和镜片;
使所述多个子镜头部件彼此对齐;以及
采用连接介质将所述多个子镜头部件固定在一起。
在本申请的一个实施例中,通过卡扣机构接合所述光学镜头的多个子镜头部件中的至少一个的镜筒和镜片可包括:以卡扣方式将镜片固定在卡扣机构的在镜筒的内侧部形成的凹陷部中。
在本申请的一个实施例中,通过卡扣机构接合所述光学镜头的多个子镜头部件中的至少一个的镜筒和镜片可包括:使在镜片的边缘上形成的凸起部通过卡扣机构的、在镜筒的内侧部形成的第一凹陷部进入在镜筒的内侧部形成的第二凹陷部;以及通过旋转镜片,从而以卡扣方式将凸起部固定在镜筒的第二凹陷部中。
在本申请的一个实施例中,通过卡扣机构接合所述光学镜头的多个子镜头部件中的至少一个的镜筒和镜片可包括:以卡扣方式将卡扣机构的在镜片的边缘上形成的凸起部固定在卡扣机构的在镜筒的内侧部形成的凹陷部中。
在本申请的一个实施例中,通过卡扣机构接合所述光学镜头的多个子镜头部件中的至少一个的镜筒和镜片可包括:通过镜筒的开放的上端部接收镜片和遮光部,遮光部和在镜筒的内侧部形成的凸起部形成卡扣机构;使镜片的边缘与镜筒的内侧部和凸起部配合;以及使遮光部位于镜片的上方,并与镜筒的内侧部接合。
在本申请的一个实施例中,使所述多个子镜头部件彼此对齐的步 骤包括:通过主动校准来确定所述多个子镜头部件之间的相对位置。
在本申请的一个实施例中,制造方法还可包括:沿镜筒和镜片周向均匀分布卡扣机构。
在本申请的一个实施例中,制造方法还可包括:沿镜筒和镜片周向设置卡扣机构。
在本申请的一个实施例中,制造方法还可包括:在卡扣机构与镜片之间施加可为胶材的连接介质。
在本申请的一个实施例中,胶材可为光固化、热固化、湿气固化、厌氧固化或氧化固化胶材。
与现有技术相比,本申请的一个或多个实施例具有下列至少一个技术效果:
1、可通过减少胶材施加步骤,降低制造过程中的不良率,提高分体式镜头的制造良率;
2、可通过光学镜片与镜筒的刚性的卡扣结合,使得光学镜头部件结构强度好、稳定性好,组装一致性好,不存在胶材画偏,或者胶材多少差异引起的性能不同;
3、通过不用或只用少量的胶材补强,减少了胶材与镜片的接触面积,有效减少了生产过程中由胶材膨胀或者收缩带来的变异,比如胶材膨胀或者收缩带动镜片偏移或者倾斜,造成光学镜头性能不良。
4、减小了子镜头镜筒的横向尺寸;
5、增大了各子镜头之间的粘接面积;以及
6、提高了光学镜头的性能及可靠性。
附图说明
在参考附图中示出示例性实施例。本文中公开的实施例和附图应被视作说明性的,而非限制性的。
图1示出了现有技术中常规分体式光学镜头的示意性剖视图;
图2示出了根据本申请一个实施例的光学镜头的示意性剖视图, 其中,该光学镜头的各子镜头部件处于组装状态;
图3示出了根据本申请一个实施例的光学镜头的子镜头部件的示意性剖视图,其中,该子镜头部件的镜筒和镜片处于未组装状态,以及镜筒沿其内侧周向设置有作为卡扣机构的凸起部和凹陷部;
图4示出了根据本申请一个实施例的光学镜头的子镜头部件的示意性立体图,其中,该子镜头部件的镜筒和镜片处于未组装状态,以及镜筒沿其内侧周向均匀设置有作为卡扣机构的凸起部和凹陷部;
图5示出了根据图3所示实施例的光学镜头的子镜头部件的示意性剖视图,其中,该子镜头部件的镜筒和镜片处于组装状态;
图6示出了根据本申请一个实施例的光学镜头的子镜头部件的示意性立体图,其中,该子镜头部件的镜筒和镜片处于未组装状态,以及镜筒沿其内侧周向设置有作为卡扣机构的环状凸起部和环状凹陷部;
图7示出了根据本申请一个实施例的光学镜头的示意性剖视图,其中,该光学镜头的两个子镜头部件之间施加有作为连接介质的胶材;
图8a示出了现有技术中子镜头部件的镜筒和镜片经常规连接后的示意性剖视图,其中,镜筒和镜片之间通过作为连接介质的胶材来连接,且镜筒的用于与其他子镜头部件的镜筒连接的连接面面积较小;
图8b示出了根据本申请一个实施例的光学镜头的子镜头部件的镜筒和镜片的卡扣式连接的示意性剖视图,其中,镜筒和镜片之间通过卡扣机构来连接,且镜筒的用于与其他子镜头部件的镜筒连接的连接面面积较大;
图9示出了根据本申请一个实施例的光学镜头的子镜头部件的示意性立体图,其中,该子镜头部件的镜筒和镜片处于未组装状态,以及镜筒沿其内侧周向均匀设置有卡扣机构的凹陷部以及镜片具有沿其内侧周向均匀设置的卡扣机构的凸起部;
图10示出了根据本申请一个实施例的光学镜头的子镜头部件的镜筒和镜片的卡扣式连接的示意性剖视图,其中,镜筒和镜片之间通过卡扣机构来连接,该卡扣结构包括位于镜筒的内侧周向均匀设置的凸起部和位于镜片的外侧周向均匀设置的凹陷部,该子镜头部件的镜 筒和镜片处于未组装状态;
图11示出了图10中所示的光学镜头的子镜头部件的镜筒和镜片的卡扣式连接的示意性剖视图,其中,镜筒和镜片之间通过卡扣机构来连接,该卡扣结构包括位于镜筒的内侧周向均匀设置的凸起部和位于镜片的外侧周向均匀设置的凹陷部,该子镜头部件的镜筒和镜片处于组装状态;
图12示出了根据本申请一个实施例的光学镜头的子镜头部件的镜筒和镜片的卡扣式连接的示意性剖视图,其中,镜筒和镜片之间通过卡扣机构来连接,该卡扣结构包括位于镜筒的内侧周向均匀设置的凹陷部和位于镜片的外侧周向均匀设置的凸起部,该子镜头部件的镜筒和镜片处于组装状态;
图13示出了根据本申请一个实施例的光学镜头的子镜头部件的示意性分解立体图,其中,卡扣机构包括在镜筒的内侧部形成的凸起部和遮光部,镜筒在上端部开放以接收镜片和遮光部,镜片的边缘与镜筒的内侧部和凸起部配合,遮光部位于镜片的上方,与镜筒的内侧部接合;
图14示出了图13中所示的光学镜头的子镜头部件的示意性剖视图,其中,该子镜头部件的镜筒和镜片处于组装状态;
图15示出了根据本申请一个实施例的光学镜头的子镜头部件的示意性剖视图,其中,卡扣机构包括在镜筒的内侧部形成的凸起部和由例如不透光胶水的连接介质形成的遮光部,镜筒在上端部开放以接收镜片和遮光部,镜片的边缘与镜筒的内侧部和凸起部配合,遮光部位于镜片的上方,与镜筒的内侧部接合;
图16示出了根据本申请一个实施例的摄像模组的示意性剖视图;以及
图17示出了根据本申请一个实施例的光学镜头的制造方法的流程图。
具体实施例
为了更好地理解本申请,将参考附图对本申请的各个方面做出更 详细的说明。应理解,这些详细说明只是对本申请的示例性实施例的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一镜头部件也可被称作第二镜头部件。
在附图中,为了便于说明,可能已稍微夸大了各部件的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施例时,使用“可”表示“本申请的一个或多个实施例”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“大致”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。另外,除非明确限定或与上下文相矛盾,否则本申请所记载的方法中包含的具体步骤不必限于所记载的顺序,而 可以任意顺序执行或并行地执行。例如,本申请所记载的主动校准步骤可以与粘合剂布设步骤互换地执行而不影响本申请技术方案的实施。下面将参考附图并结合实施例来详细说明本申请。
图1示出了现有技术中常规分体式光学镜头1000的示意性剖视图。如图1所示,该分体式镜头包括第一子镜头部件1100和第二子镜头部件1200。第一子镜头部件1100和第二子镜头部件1200分别包括一个镜筒(1110、1210)和至少一个镜片(1120、1220)。
在本领域的常规组装过程中,通过主动校准来确定第一子镜头部件1100和第二子镜头部件1200之间的相对位置,然后,通过诸如胶水的连接介质1300来连接第一子镜头部件1100和第二子镜头部件1200,从而固定第一子镜头部件1100和第二子镜头部件1200在主动校准期间所确定的位置。
在本文中,主动校准是指:将第一子镜头部件1100和第二子镜头部件1200分别置于感光芯片的感光路径上,并使第一子镜头部件1100和第二子镜头部件1200所组成的镜头能正常成像;感光组件通电开图,获取该分体式光学镜头1000所成的图像;根据所成图像的品质(通常依据TV line、MTF、SFR等方式判断),在至少一个方向上调整第一子镜头部件1100相对于第二子镜头部件1200的相对位置,所述至少一个方向是指水平方向(xy)、竖直方向(z)、倾斜方向(vw)和圆周方向(u)中的至少一个,或者是xyz(水平及竖直方向)、uvw(分别是绕z、x、y)六轴方向上的至少一个;通过在第一子镜头部件1100和第二子镜头部件1200之间布设胶材并固化胶材来固定该相对位置。其中,布设胶材的步骤可以在主动校准步骤之前进行,即在调整相对位置之前进行,也可以在确定相对位置之后进行。
因此,对于分体式光学镜头1000来说,第一子镜头部件1100和第二子镜头部件1200之间必然存在间隙。在镜头部分设置胶材以固定连接第一子镜头部件1100和第二子镜头部件1200;第一子镜头部件1100和第二子镜头部件1200通过胶材来固定镜片(1120、1220)与镜筒(1110、1210)。
主要由于各子镜头部件之间粘接的胶材以及子镜头部件中用于固定所组立镜片的胶材,分体式光学镜头1000可靠性较差。
图2示出了根据本申请一个实施例的光学镜头2000的示意性剖视图。如图2所示,在该实施例中,该光学镜头2000的两个子镜头部件(2100、2300)处于组装状态。这两个子镜头部件(2100、2300)彼此接合,且均包括镜筒和镜片。
图3示出了根据本申请一个实施例的光学镜头的子镜头部件2100的示意性剖视图。在图2中仅示出作为示例的子镜头部件2100。
该光学镜头2000还可包括连接介质。该连接介质适于将该多个子镜头部件固定在一起。该光学镜头2000还包括卡扣机构。该多个子镜头部件2100中的至少一个的镜筒2110和镜片2120通过卡扣机构2200接合。
在该实施例中,子镜头部件2100的镜筒2110和镜片2120通过卡扣机构2200组装在一起,从而形成牢固的结构,以减少子镜头部件2100中胶材与镜片2120的接触面积。在这种情况下,胶材可完全取消,也可以涂少量胶材作为对子镜头部件2100结构的补强。胶材可为光固化、热固化、湿气固化、厌氧固化或氧化固化胶材。
如图3所示,该子镜头部件2100的镜筒2110和镜片2120处于未组装状态,并且镜筒2110沿其内侧周向设置有作为卡扣机构2200的凸起部2210和凹陷部2220。
图4示出了根据本申请一个实施例的光学镜头的子镜头部件3100的示意性立体图。
在该实施例中,该多个子镜头部件3100包括镜筒3110和镜片3120。
该光学镜头还包括连接介质。该连接介质适于将该多个子镜头部件固定在一起。该光学镜头还包括卡扣机构3200。该多个子镜头部件中的至少一个的镜筒和镜片通过卡扣机构3200接合。
在该实施例中,子镜头部件3100的镜筒3110和镜片3120通过卡扣机构3200组装在一起,从而形成牢固的结构,以减少子镜头部件3100中胶材与镜片3120的接触面积。在这种情况下,胶材可完全取消,也可以涂少量胶材作为对子镜头部件3100结构的补强。
如图4所示,该子镜头部件3100的镜筒3110和镜片3120处于未组装状态,并且镜筒3110沿其内侧周向均匀设置有作为卡扣机构3200的凸起部3210和凹陷部3220。换言之,卡扣机构3200可包括多个凸起部3210和凹陷部3220。在图4中所示的示例中,卡扣机构3200包括4个凸起部3210和相应的4个凹陷部3220。凸起部3210和凹陷部3220沿镜筒3110的内侧周向均匀设置是为了使镜片3120受到镜筒3110的力能够均匀。
图5示出了根据图3所示实施例的光学镜头的子镜头部件2100的示意性剖视图。在图5中,该子镜头部件2100的镜筒2110和镜片2120处于组装状态。
如图5所示,镜片2120的周向边缘接合在卡扣机构2200的凹陷部2220内,从而使镜片2120和镜筒2110牢固接合。
图6示出了根据本申请一个实施例的光学镜头的子镜头部件4100的示意性立体图。
在图6中,该子镜头部件4100的镜筒4110和镜片4120处于未组装状态。在该实施例中,镜筒4110沿其内侧周向设置有作为卡扣机构4200的环状凸起部4210和环状凹陷部4220。环状凸起部4210和环状凹陷部4220沿镜筒4110的整个周向内侧设置,换言之,卡扣机构4200仅包括一个环状凸起部4210和一个环状凹陷部4220。因而,镜片4120受到镜筒4110的力能够均匀。
图7示出了根据本申请一个实施例的光学镜头5000的示意性剖视图。
在该实施例中,该光学镜头5000包括两个子镜头部件-第一子镜 头部件5100和第二子镜头部件5200。第一子镜头部件5100和第二子镜头部件5200彼此接合,且均包括镜筒和镜片。
该光学镜头5000还包括连接介质5300。该连接介质5300适于将第一子镜头部件5100和第二子镜头部件5200固定在一起。该光学镜头5000还包括卡扣机构5400。第一子镜头部件5100的镜筒5110和镜片5120通过卡扣机构5400接合在一起,从而形成牢固的结构,以减少第一子镜头部件5100中胶材与镜片5120的接触面积。在这种情况下,第一子镜头部件5100中的胶材可完全取消,也可以涂少量胶材作为对第一子镜头部件5100结构的补强。
如图7所示,该第一子镜头部件5100的镜筒5110和镜片5120之间施加有少量作为连接介质的胶材,以进一步固定镜片5120在镜筒5110中的位置。
在各个实施中,子镜头部件的镜片与镜筒之间均可施加胶材,从而辅助固定镜片与镜筒。
图8a示出了图1中所示的光学镜头的第一子镜头部件1100的镜筒1110和镜片1120经常规连接后的示意性剖视图。
在组装分体式光学镜头时,胶材通常设置在位于下方的子镜头部件的镜筒上。下子镜头部件通常具有较大的施胶面积,但上子镜头部件可用于粘接的面积相对较小。
如图8a所示,镜筒1110和镜片1120之间通过作为连接介质的胶材1130来连接,且镜筒1110的用于与其他子镜头部件的镜筒连接的下连接面1111的面积较小。
图8b示出了根据图3所示实施例的光学镜头的子镜头部件2100的示意性剖视图。在图8b中,该子镜头部件2100的镜筒2110和镜片2120处于组装状态。
如图8b所示,镜片2120的周向边缘接合在卡扣机构2200的凹陷部2220内,从而使镜片2120和镜筒2110牢固接合。另外,与图8a所示的第一子镜头部件1100相比,镜筒2110的用于与其他子镜头部 件的镜筒连接的连接面2111的面积较大。
因此,在第一子镜头部件的横向尺寸(xy方向)一定的情况下,子镜头部件2100具有相对较大的粘接面积,以使得个子镜头部件之间的粘接力更大,使分体式镜头的可靠性更好,并且由于具有较大的粘接面积,使得胶水的布设方式可以更加的多样化。同样,在粘接面积一定的情况下,第一子镜头部件的横向尺寸可设置为更小,从而进一步减小整个光学镜头的体积。
图9示出了根据本申请一个实施例的光学镜头的子镜头部件6100的示意性立体图。在图9中,该子镜头部件6100的镜筒6110和镜片6120处于未组装状态。镜筒6110沿其内侧周向均匀设置有卡扣机构6200的凹陷部6210,以及镜片6120具有沿其外侧周向均匀设置的卡扣机构6200的凸起部6220。凹陷部6210包括第一凹陷部分6211和第二凹陷部分6212。
在组装该子镜头部件6100时,镜片6120的凸起部6220通过第一凹陷部分6211进入第二凹陷部分6212,并通过旋转镜片6120,从而以卡扣方式固定在镜筒6110的第二凹陷部分6212中。
可选择地,可在凸起部6220与凹陷部6210的结合处施加胶材,以补强作用。可设想到的是,卡扣机构6200也可设置为包括沿镜筒6110的内侧周向均匀设置的凸起部和沿镜片6120的外侧周向均匀设置的凹陷部。
图10示出了根据本申请一个实施例的光学镜头(未示出)的子镜头部件7100的镜筒7110和镜片7120的卡扣式连接的示意性剖视图。该子镜头部件7100的镜筒7110和镜片7120处于未组装状态。
如图10所示,镜筒7110和镜片7120之间通过卡扣机构7200来连接。该卡扣结构7200包括位于镜筒7110的内侧周向均匀设置的凸起部7220和位于镜片7120的外侧周向均匀设置的凹陷部7210。
图11示出了图10中所示的光学镜头的子镜头部件7100的镜筒7110和镜片7120的卡扣式连接的示意性剖视图。在图11中,该子镜 头部件7100的镜筒7110和镜片7120处于组装状态。
图12示出了根据本申请一个实施例的光学镜头(未示出)的子镜头部件8100的镜筒8110和镜片8120的卡扣式连接的示意性剖视图。
该实施例与图10和图11中所示的实施例相似,其不同之处在于,卡扣结构8200包括位于镜筒8110的内侧周向均匀设置的凹陷部8220和位于镜片8120的外侧周向均匀设置的凸起部8210。
图13示出了根据本申请一个实施例的光学镜头(未示出)的子镜头部件9100的示意性分解立体图。
如图13所示,卡扣机构9200包括在镜筒9110的内侧部形成的凸起部9210和遮光部9220。镜筒9110在上端部开放以接收镜片9120和遮光部9220。
图14示出了图13中所示的光学镜头的子镜头部件9100的示意性剖视图,其中,该子镜头部件9100的镜筒9110和镜片9120处于组装状态。
如图14所示,镜片9120的边缘与镜筒9110的内侧部和凸起部9210配合。遮光部9220位于镜片9120的上方,并且与镜筒9110的内侧部接合。在遮光部9220与镜筒9110的内侧部之间施加胶材,以固定遮光件。
遮光部9220可由任意适合材料制成,诸如塑料、金属、黑膜。
遮光部部9220也可以是胶材,例如不透光的胶材。例如,如图15所示,在镜筒9110的内侧部形成凸起部9210和由例如不透光胶材的连接介质形成的遮光部9220。
图16示出了根据本申请一个实施例的摄像模组100的示意性剖视图。
如图16所示,在该示例中,摄像模组100包括两个子镜头部件-第一子镜头部件和第二子镜头部件120。其中,第一子镜头部件为图3中示出的子镜头部件2100类似,出于清晰的目的,在以下描述中使用 与图3中相同的附图标记。虽然在该实施例中采用了图3中示出的子镜头部件2100,但应理解的是,摄像模组100可包括上述具有卡扣结构的子镜头部件的实施例中的任意一个。
第一子镜头部件2100和第二子镜头部件120彼此接合,且均包括镜筒和镜片。
该摄像模组100还包括摄像模组中常见的其他部件,出于清晰的目的,对这些本领域众所周知的部件不再进行详细描述。
光学镜头100包括连接介质130。该连接介质130将第一子镜头部件2100和第二子镜头部件120固定在一起。
在上文所述的实施方式中,具有卡扣结构的子镜头部件比没有卡扣结构的子镜头部件更靠近物侧。另外,具有卡扣结构的子镜头部件也可更靠近像侧。
图17示出了根据本申请一个实施例的光学镜头的制造方法的流程图。
如图17所示,该光学镜头的制造方法包括以下步骤:
步骤S100:通过卡扣机构接合光学镜头的多个子镜头部件中的至少一个的镜筒和镜片,其中,所述多个子镜头部件彼此分离且均包括镜筒和镜片;
步骤S200:使所述多个子镜头部件彼此对齐;
步骤S300:采用连接介质将所述多个子镜头部件固定在一起。
在本申请的一个实施例中,通过卡扣机构接合光学镜头的多个子镜头部件中的至少一个的镜筒和镜片的步骤包括:
以卡扣方式将所述镜片固定在所述卡扣机构的在所述镜筒的内侧部形成的凹陷部中。
在本申请的一个实施例中,通过卡扣机构接合光学镜头的多个子镜头部件中的至少一个的镜筒和镜片的步骤包括:使在所述镜片的边缘上形成的凸起部通过所述卡扣机构的、在所述镜筒的内侧部形成的第一凹陷部进入在所述镜筒的内侧部形成的第二凹陷部;以及通过旋转所述镜片,从而以卡扣方式将所述凸起部固定在所述镜筒的第二凹 陷部中。
在本申请的一个实施例中,通过卡扣机构接合光学镜头的多个子镜头部件中的至少一个的镜筒和镜片的步骤包括:以卡扣方式将所述卡扣机构的在所述镜片的边缘上形成的凸起部固定在所述卡扣机构的在所述镜筒的内侧部形成的凹陷部中。
在本申请的一个实施例中,通过卡扣机构接合光学镜头的多个子镜头部件中的至少一个的镜筒和镜片的步骤包括:通过所述镜筒的开放的上端部接收所述镜片和遮光部,所述遮光部和在所述镜筒的内侧部形成的凸起部形成所述卡扣机构;使所述镜片的边缘与所述镜筒的内侧部和所述凸起部配合;以及使所述遮光部位于所述镜片的上方,并与所述镜筒的内侧部接合。
在本申请的一个实施例中,使所述多个子镜头部件彼此对齐的步骤包括:通过主动校准来确定所述多个子镜头部件之间的相对位置。具体地,通过主动校准的方式,调整分体式光学镜头的各个子光学镜头部件与感光组件之间的位置,直至满足成像要求。
在本申请的一个实施例中,光学镜头的制造方法还包括以下步骤:沿所述镜筒和所述镜片周向均匀分布所述卡扣机构。
在本申请的一个实施例中,光学镜头的制造方法还包括以下步骤:沿所述镜筒和所述镜片周向设置所述卡扣机构。
在本申请的一个实施例中,光学镜头的制造方法还包括以下步骤:在所述卡扣机构与所述镜片之间施加胶材。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的保护范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述技术构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (21)

  1. 一种光学镜头,其特征在于,包括:
    多个子镜头部件,所述多个子镜头部件彼此接合,且均包括镜筒和镜片;
    卡扣机构,所述多个子镜头部件中的至少一个的镜筒和镜片通过所述卡扣机构接合;以及
    连接介质,适于将所述多个子镜头部件固定在一起。
  2. 根据权利要求1所述的光学镜头,其中,所述卡扣机构包括在所述镜筒的内侧部形成的凹陷部,所述镜片以卡扣方式固定在所述凹陷部中。
  3. 根据权利要求1所述的光学镜头,其中,所述卡扣机构包括在所述镜筒的内侧部形成的第一凹陷部和第二凹陷部以及在所述镜片的边缘上形成的凸起部,所述镜片的凸起部通过所述第一凹陷部进入第二凹陷部,并通过旋转所述镜片以卡扣方式固定在所述镜筒的第二凹陷部中。
  4. 根据权利要求1所述的光学镜头,其中,所述卡扣机构包括在所述镜筒的内侧部形成的凹陷部以及在所述镜片的边缘上形成的凸起部,所述镜片的凸起部以卡扣方式固定在所述镜筒的凹陷部中。
  5. 根据权利要求1所述的光学镜头,其中,所述卡扣机构包括在所述镜筒的内侧部形成的凸起部和遮光部,所述镜筒在上端部开放以接收所述镜片和所述遮光部,所述镜片的边缘与所述镜筒的内侧部和所述凸起部配合,所述遮光部位于所述镜片的上方,与所述镜筒的内侧部接合。
  6. 根据权利要求1-5中的任一项所述的光学镜头,其中,所述卡 扣机构沿所述镜筒和所述镜片周向均匀分布。
  7. 根据权利要求1-5中的任一项所述的光学镜头,其中,所述卡扣机构沿所述镜筒和所述镜片周向设置。
  8. 根据权利要求1-5中的任一项所述的光学镜头,其中,所述连接介质包括胶材,所述胶材位于所述多个子镜头部件之间以将所述多个子镜头部件粘结在一起,所述胶材还位于所述卡扣机构与所述镜片之间。
  9. 根据权利要求8所述的光学镜头,其中,所述胶材为光固化、热固化、湿气固化、厌氧固化或氧化固化胶材。
  10. 根据权利要求1-5中的任一项所述的光学镜头,其中,具有所述卡扣结构的子镜头部件靠近物侧。
  11. 一种摄像模组,其中,包括权利要求1-10中任一项所述的光学镜头。
  12. 一种光学镜头的制造方法,其中,所述制造方法包括:
    通过卡扣机构接合所述光学镜头的多个子镜头部件中的至少一个的镜筒和镜片,其中,所述多个子镜头部件均包括镜筒和镜片;
    使所述多个子镜头部件彼此对齐;以及
    采用连接介质将所述多个子镜头部件固定在一起。
  13. 根据权利要求12所述的光学镜头的制造方法,其中,通过卡扣机构接合所述光学镜头的多个子镜头部件中的至少一个的镜筒和镜片包括:
    以卡扣方式将所述镜片固定在所述卡扣机构的在所述镜筒的内侧部形成的凹陷部中。
  14. 根据权利要求12所述的光学镜头的制造方法,其中,通过卡扣机构接合所述光学镜头的多个子镜头部件中的至少一个的镜筒和镜片包括:
    使在所述镜片的边缘上形成的凸起部通过所述卡扣机构的、在所述镜筒的内侧部形成的第一凹陷部进入在所述镜筒的内侧部形成的第二凹陷部;以及
    通过旋转所述镜片,从而以卡扣方式将所述凸起部固定在所述镜筒的第二凹陷部中。
  15. 根据权利要求12所述的光学镜头的制造方法,其中,通过卡扣机构接合所述光学镜头的多个子镜头部件中的至少一个的镜筒和镜片包括:
    以卡扣方式将所述卡扣机构的在所述镜片的边缘上形成的凸起部固定在所述卡扣机构的在所述镜筒的内侧部形成的凹陷部中。
  16. 根据权利要求12所述的光学镜头的制造方法,其中,通过卡扣机构接合所述光学镜头的多个子镜头部件中的至少一个的镜筒和镜片包括:
    通过所述镜筒的开放的上端部接收所述镜片和遮光部,所述遮光部和在所述镜筒的内侧部形成的凸起部形成所述卡扣机构;
    使所述镜片的边缘与所述镜筒的内侧部和所述凸起部配合;以及
    使所述遮光部位于所述镜片的上方,并与所述镜筒的内侧部接合。
  17. 根据权利要求12所述的光学镜头的制造方法,其中,使所述多个子镜头部件彼此对齐的步骤包括:通过主动校准来确定所述多个子镜头部件之间的相对位置。
  18. 根据权利要求12-17所述的光学镜头的制造方法,其中,所述制造方法还包括:
    沿所述镜筒和所述镜片周向均匀分布所述卡扣机构。
  19. 根据权利要求12-17所述的光学镜头的制造方法,其中,所述制造方法还包括:
    沿所述镜筒和所述镜片周向设置所述卡扣机构。
  20. 根据权利要求12-17所述的光学镜头的制造方法,其中,所述制造方法还包括:
    在所述卡扣机构与所述镜片之间施加胶材。
  21. 根据权利要求20所述的光学镜头,其中,所述胶材为光固化、热固化、湿气固化、厌氧固化或氧化固化胶材。
PCT/CN2020/081056 2019-04-22 2020-03-25 光学镜头、摄像模组及其制造方法 WO2020215963A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201920545569.4U CN209858823U (zh) 2019-04-22 2019-04-22 光学镜头、摄像模组
CN201920545569.4 2019-04-22
CN201910321890.9A CN111830659A (zh) 2019-04-22 2019-04-22 光学镜头、摄像模组及其制造方法
CN201910321890.9 2019-04-22

Publications (1)

Publication Number Publication Date
WO2020215963A1 true WO2020215963A1 (zh) 2020-10-29

Family

ID=72940820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081056 WO2020215963A1 (zh) 2019-04-22 2020-03-25 光学镜头、摄像模组及其制造方法

Country Status (1)

Country Link
WO (1) WO2020215963A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859011A (zh) * 2009-04-08 2010-10-13 鸿富锦精密工业(深圳)有限公司 镜头模组
CN102331611A (zh) * 2010-07-13 2012-01-25 鸿富锦精密工业(深圳)有限公司 镜筒及采用该镜筒的镜头模组
JP2014112156A (ja) * 2012-12-05 2014-06-19 Tamron Co Ltd レンズユニット及び撮像装置
JP2018128554A (ja) * 2017-02-08 2018-08-16 キヤノン株式会社 レンズ鏡筒内面反射防止構造
CN207799211U (zh) * 2018-02-26 2018-08-31 上饶市鼎欣光电科技有限公司 车载光学被动式消热差高清变焦镜头
CN208141016U (zh) * 2018-05-07 2018-11-23 瑞声光电科技(苏州)有限公司 一种镜头模组
JP2019028295A (ja) * 2017-07-31 2019-02-21 日本電産コパル株式会社 可動レンズ連動スイッチ機構及び撮像装置
CN208569141U (zh) * 2018-06-06 2019-03-01 东莞市玖洲光学有限公司 一种流媒体或网络摄像头的镜头
CN109495672A (zh) * 2017-09-11 2019-03-19 宁波舜宇光电信息有限公司 摄像模组及其组装方法
CN208654414U (zh) * 2018-09-20 2019-03-26 上饶市新丰光学仪器有限公司 一种光学镜头用的防震型封装装置
CN209858823U (zh) * 2019-04-22 2019-12-27 宁波舜宇光电信息有限公司 光学镜头、摄像模组

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859011A (zh) * 2009-04-08 2010-10-13 鸿富锦精密工业(深圳)有限公司 镜头模组
CN102331611A (zh) * 2010-07-13 2012-01-25 鸿富锦精密工业(深圳)有限公司 镜筒及采用该镜筒的镜头模组
JP2014112156A (ja) * 2012-12-05 2014-06-19 Tamron Co Ltd レンズユニット及び撮像装置
JP2018128554A (ja) * 2017-02-08 2018-08-16 キヤノン株式会社 レンズ鏡筒内面反射防止構造
JP2019028295A (ja) * 2017-07-31 2019-02-21 日本電産コパル株式会社 可動レンズ連動スイッチ機構及び撮像装置
CN109495672A (zh) * 2017-09-11 2019-03-19 宁波舜宇光电信息有限公司 摄像模组及其组装方法
CN207799211U (zh) * 2018-02-26 2018-08-31 上饶市鼎欣光电科技有限公司 车载光学被动式消热差高清变焦镜头
CN208141016U (zh) * 2018-05-07 2018-11-23 瑞声光电科技(苏州)有限公司 一种镜头模组
CN208569141U (zh) * 2018-06-06 2019-03-01 东莞市玖洲光学有限公司 一种流媒体或网络摄像头的镜头
CN208654414U (zh) * 2018-09-20 2019-03-26 上饶市新丰光学仪器有限公司 一种光学镜头用的防震型封装装置
CN209858823U (zh) * 2019-04-22 2019-12-27 宁波舜宇光电信息有限公司 光学镜头、摄像模组

Similar Documents

Publication Publication Date Title
US11703654B2 (en) Camera lens module and manufacturing method thereof
US20230247274A1 (en) Split lens and camera module and electronic apparatus
WO2020182145A1 (zh) 光学镜头、摄像模组及其制造方法
CN209858823U (zh) 光学镜头、摄像模组
US11711604B2 (en) Camera module array and assembly method therefor
CN102162903A (zh) 摄像镜头以及摄像模块
CN110998405B (zh) 光学镜头、摄像模组及其组装方法
JP2021009385A (ja) レンズモジュール及び電子機器
CN111830659A (zh) 光学镜头、摄像模组及其制造方法
WO2020215963A1 (zh) 光学镜头、摄像模组及其制造方法
WO2021143410A1 (zh) 分体式变焦镜头、摄像模组及相应的组装方法
TW202021792A (zh) 光學鏡頭及電子裝置
WO2015019768A1 (ja) レンズアレイ、レンズアレイ積層体、及び、これらの製造方法
CN209842189U (zh) 镜片群组件、光学镜头及摄像模组
WO2019228348A1 (zh) 光学镜头、摄像模组及其组装方法
US20200041749A1 (en) Lens and lens module including the same
WO2021027431A1 (zh) 屏下摄像组件、摄像模组和光学镜头及其制作方法
KR102250168B1 (ko) 접합 렌즈 및 이를 구비한 촬상 장치
EP3835843B1 (en) Optical lens, camera module and assembling method
KR102443493B1 (ko) 광학 렌즈, 카메라 모듈 및 이의 조립 방법
US20090290237A1 (en) Lens assembly and lens module incorporating the same
WO2020082928A1 (zh) 光学镜头、摄像模组及其组装方法以及相应的终端设备
WO2018171714A1 (zh) 分体式镜头和摄像模组
WO2019228347A1 (zh) 光学镜头及其组装方法以及摄像模组
CN110554470A (zh) 光学镜头及其组装方法以及摄像模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795025

Country of ref document: EP

Kind code of ref document: A1