WO2019228347A1 - 光学镜头及其组装方法以及摄像模组 - Google Patents

光学镜头及其组装方法以及摄像模组 Download PDF

Info

Publication number
WO2019228347A1
WO2019228347A1 PCT/CN2019/088813 CN2019088813W WO2019228347A1 WO 2019228347 A1 WO2019228347 A1 WO 2019228347A1 CN 2019088813 W CN2019088813 W CN 2019088813W WO 2019228347 A1 WO2019228347 A1 WO 2019228347A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
component
lens component
active calibration
Prior art date
Application number
PCT/CN2019/088813
Other languages
English (en)
French (fr)
Inventor
田中武彦
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810540984.0A external-priority patent/CN110554470A/zh
Priority claimed from CN201820824623.4U external-priority patent/CN208569148U/zh
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Publication of WO2019228347A1 publication Critical patent/WO2019228347A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • the present application relates to the field of optical imaging technology, and in particular, the present application relates to an optical lens, an assembly method thereof, and a camera module.
  • the mainstream mobile phone camera modules in the market place a color filter (such as an IR filter) between the lens group (referring to the lens group used for imaging) and the photosensitive chip to filter out infrared light.
  • the imaging result of the photosensitive chip causes interference (the human eye cannot see infrared light, but the photosensitive chip can sense, if not filtered, the image received by the photosensitive chip will deviate from the image observed by the human eye).
  • the space occupied by the color filter and the structure supporting the color filter cannot be ignored. In many cases, the presence of color filters makes it difficult to further reduce the size of the camera module.
  • the material of the lens is generally glass or resin (resin lenses are sometimes called plastic lenses).
  • the glass lens is generally coated with an infrared filter film on the glass lens with an intermediate medium, and then the coating process is performed through the intermediate medium to meet the connection strength required for the infrared filter film.
  • This is due to the poor adhesion between organic and inorganic substances, so an intermediate medium is needed to transition between organic and inorganic substances.
  • tolerances may be introduced into the intermediate medium and the infrared filter film, which may cause the optical parameters of the lens to deviate from the original design and cause a reduction in imaging quality.
  • the lens when the lens is coated with an infrared filter film, it needs to be performed in some special environments.
  • the evaporation material in the method of resistive evaporation coating, the evaporation material is directly heated and evaporated, and the evaporated material adheres to the object to be plated. Finish coating.
  • the size of the lens during coating may be inconsistent with the size of the lens under normal environment due to the influence of temperature.
  • the coated film is mutated, which affects the imaging quality of the lens.
  • there may be similar problems when coating infrared filter films on resin lenses and there may be variations due to material shrinkage when molding resin lenses. If the infrared filter films are plated, this problem will More prominent.
  • considering the Abbe number and the like in optical design many resin materials cannot meet the design requirements.
  • the present application aims to provide a solution capable of overcoming at least one drawback of the prior art.
  • an optical lens including: a first lens component including at least one first lens, and the first lens has a curved optical surface; and a second lens component including the first lens Two lens barrels and at least one second lens mounted on the second lens barrel, the second lens has a curved optical surface, and the at least one first lens and the at least one second lens together form an imageable An optical system, and at least one of the at least one first lens and the at least one second lens is a lens having a color filtering function; and a connecting glue is located on a bottom surface of the first lens component and the Between the top surfaces of the second lens components and adapted to support the first lens component and the second lens component and fix the relative position therebetween.
  • the first lens component further includes a first lens barrel, the at least one first lens is installed inside the first lens barrel, and the connecting glue is suitable for supporting and fixing the first lens barrel.
  • the lens component and the second lens component so that the two are maintained at a relative position determined by active calibration, and there is a non-zero clip between the axis of the first lens component and the axis of the second lens component Angle, wherein the active calibration is a relative position adjustment of the first lens component and the second lens component according to an actual imaging result of the optical system.
  • the optical sensitivity of the first lens is greater than that of the second lens.
  • the number of the lens having a color filtering function is one, and the lens having a color filtering function is the second lens.
  • the lens with a color filter function is the second lens located at a rear end of the optical lens.
  • the lens with a color filter function is made of plastic doped with a light selective absorber by injection molding.
  • the plastic doped with a light selective absorber is an organic glass, and the organic glass is doped with a resin mixture containing a light selective absorber.
  • the lens with a color filter function is made of a glass material doped with a light selective absorber.
  • the lens having a color filter function includes an injection-molded lens body and a color filter film plated on a surface of the lens body.
  • the number of the first lens is one, and the lens having a color filtering function is the first lens.
  • the first lens includes an injection-molded lens body, and a color filter film and an anti-reflection film plated on a surface of the lens body.
  • the thickness of the connecting glue in the optical axis direction of the optical lens is 30-100 ⁇ m.
  • the positions of the geometric centers of the first lens component and the second lens component do not coincide.
  • a camera module is further provided, which includes any one of the foregoing optical lenses.
  • the camera module further includes a photosensitive component
  • the optical lens is mounted on the photosensitive component
  • the photosensitive component includes a photosensitive chip, and there is no The surface is a flat color filter.
  • an optical lens assembly method including: pre-positioning a first lens component and a second lens component, wherein the first lens component includes a first lens barrel and is mounted on the lens barrel. At least one first lens of a first lens barrel, and the first lens has a curved optical surface, and the second lens component includes a second lens barrel and at least one second lens mounted on the second lens barrel And the second lens has a curved optical surface, wherein at least one of the at least one first lens and the at least one second lens is a lens having a color filtering function, and the predetermined position causes the at least A first lens and the at least one second lens together form an imageable optical system; and actively calibrate the relative positions of the first lens component and the second lens component based on the measured imaging results of the optical system; And bonding the first lens component and the second lens component with a connecting glue to keep the first lens component and the second lens component in active alignment Determined relative position.
  • the active calibration step further includes: adjusting and determining the first lens component and / or the second lens component by clamping or adsorbing the first lens component and / or the second lens component according to the measured resolution of the optical system. The relative positional relationship between the first lens component and the second lens component.
  • the step of bonding with a connecting glue material includes: arranging the connecting glue material on a top surface of the second lens component; and moving the first lens component and the second lens component To the relative position determined by active calibration; and curing the connecting glue.
  • the step of actively calibrating is performed first, and then the step of arranging the connecting glue is performed.
  • the step of arranging the connection glue is performed first, and then the step of active calibration is performed.
  • the lens with a color filtering function is made of plastic that is doped with a light selective absorber by injection molding.
  • the lens with a color filter function is made of a glass material doped with a light selective absorber.
  • the active calibration step further includes: adjusting the relative positions of the first lens component and the second lens component until the measured resolution of the optical system and the index for identifying the color filtering effect are both The respective thresholds are reached.
  • the active calibration step further includes: moving the first lens component along the adjustment plane, and determining an edge between the first lens and the second lens component according to the measured resolution of the optical system. A relative position in a moving direction of the adjustment plane, wherein the movement includes a rotation on the adjustment plane.
  • the movement further includes a translation on the adjustment plane.
  • the active calibration further includes: adjusting and determining an included angle of an axis of the first lens component with respect to an axis of the second lens component according to a measured resolution of the optical system.
  • the active calibration further includes: moving the first lens component in a direction perpendicular to the adjustment plane, and determining the first lens component and the first lens component according to a measured resolution of the optical system. A relative position between the second lens members in a direction perpendicular to the adjustment plane.
  • This application can integrate the color filtering function to a lens with a curved optical surface, so that additional color filters can be omitted, thereby reducing the size of the camera module.
  • the present application can compensate the manufacturing tolerance of the curved lens with color filtering function through active calibration, thereby obtaining excellent imaging quality.
  • This application can calibrate the color filtering effect in the active calibration stage, thereby improving the imaging quality of the camera module (for example, it can reduce shadow problems).
  • This application can reduce the size of the camera module along the optical axis direction.
  • This application can reduce the size of the camera module perpendicular to the optical axis direction.
  • FIG. 1 is a schematic cross-sectional view of an optical lens according to an embodiment of the present application.
  • FIG. 2 shows a schematic diagram of a lens shape 902 deviating from a designed lens shape 901 after molding
  • FIG. 3 is a schematic cross-sectional view of an optical lens according to another embodiment of the present application.
  • FIG. 4 is a schematic diagram of coating a color filter film 903 on the surface of a formed lens body 904 in an embodiment of the present application;
  • FIG. 5 shows a camera module in an embodiment of the present application
  • FIG. 6 shows a camera module in another embodiment of the present application
  • FIG. 7 shows a camera module in another embodiment of the present application.
  • FIG. 8 shows a camera module in another embodiment of the present application.
  • FIG. 9 shows an example of a shadow picture.
  • the expressions of the first, second, etc. are only used to distinguish one feature from another feature, and do not indicate any limitation on the feature. Therefore, without departing from the teachings of this application, the first subject discussed below may also be referred to as the second subject.
  • FIG. 1 is a schematic cross-sectional view of an optical lens according to an embodiment of the present application.
  • the optical lens includes a first lens component 100, a second lens component 200, and a connection adhesive 300.
  • the first lens component 100 includes a first lens barrel 102 and a first lens 101 mounted on the first lens barrel 102.
  • the first lens 101 has a curved optical surface.
  • the second lens component 200 includes a second lens barrel 202 and four second lenses 201 mounted on the second lens barrel 202.
  • Each of the second lenses 201 has a curved optical surface.
  • the one first lens 101 and the four second lenses 201 together form an imageable optical system.
  • the second lens 201 at the rear end (referring to the second lens 201 closest to the photosensitive chip 401, that is, the second lens 201 at the bottom in FIG. 1) has a color filtering function.
  • the connecting glue 300 is located between the first lens component 100 and the second lens component 200, and is suitable for supporting the first lens component 100 and the second lens component 200 and fixing the relative between them. Position so that the two remain at the relative position determined by active calibration, where the active calibration is performed on the first lens component 100 and the second lens component 200 according to the actual imaging results of the optical system Relative position adjustment.
  • active calibration is performed on the first lens component 100 and the second lens component 200 according to the actual imaging results of the optical system Relative position adjustment.
  • the lens 900 with a color filter function is made of plastic doped with a light selective absorber by injection molding.
  • the plastic doped with a light selective absorber may be an organic glass (ie, polymethyl methacrylate, which is abbreviated as PMMA in English), and the organic glass is doped with a resin mixture containing a light selective absorber in order to realize filtration. Color function.
  • the choice of light absorber can be: using organic or inorganic dyes / pigments, examples of which include nitroso, nitro, monoazo, diazo, diphenylmethane, triphenylmethane, azine type, triazine type , Triazole type, quinoline type, indigo type, anthraquinone type, phthalocyanine type, organic compounds such as nickel, cobalt, scandium, neodymium, scandium, scandium, scandium. In order to adjust the light transmittance of each wavelength band, they may be appropriately selected, and one or two or more of them may be combined.
  • the lens 900 with a color filtering function may be made of a glass material doped with a light selective absorber by injection molding.
  • the injection-molded material used to form the lens 900 with a color filter function may also be disclosed in any of the patent documents JP15560898, JP19843698, JP2003337499, JP2005292702, CN03108353.6, CN201610487336.4, etc. Method is obtained, which will not be repeated one by one in this article.
  • the molding difficulty of the lens 900 having a color filter function is greater than that of the ordinary lens without the light absorbing agent.
  • the manufacturing tolerance of the lens 900 with color filtering function may be larger than that of ordinary lenses.
  • the molding difficulty will further increase, resulting in a corresponding increase in manufacturing tolerances.
  • the addition of the light absorber may also cause inconsistent shrinkage at different positions of the molding material. Therefore, the optical performance of the formed lens may deviate from the designed lens.
  • FIG. 2 shows a schematic diagram of a lens shape 902 that deviates from a designed lens shape 901 after molding.
  • the lens obtained by injection molding may have a thickness change compared to the original design, and the degree of shrinkage at each location may be inconsistent, so there is non-uniform transmission in terms of optical performance.
  • the optical properties of the lens actually deviate from the original design.
  • the variation of each lens (referring to the variation from the original design) in the same batch of products may be different (such as different types of mutations and different positions of mutations), which will give lens assembly (especially large-scale mass production) ) Brings great difficulties.
  • the lens group (or lens group) used for imaging is divided into two groups in the optical design stage, and the two groups are respectively installed in two lens barrels to form two separate lens groups. Lens parts. Then, based on the actual imaging results, the relative positions of the two lens components are actively calibrated to obtain an optical system with imaging quality that meets preset design standards. Finally, based on the relative position obtained by the active calibration, the two lens parts are bonded with the connection glue 300.
  • the connection glue 300 is located between the first lens component 100 and the second lens component 200, and is suitable for supporting and fixing the first lens component 100 and the second lens component 200.
  • the first lens component 100 and the second lens component 200 are completely separated in the active calibration phase, they have sufficient degrees of freedom (for example, they can be six-axis adjustable) to actively calibrate the optical system, thereby Compensates for manufacturing tolerances of the lens 900 with a color filter function. And, the above compensation can be personalized.
  • the relative positions of the first lens component 100 and the second lens component 200 may be different, so it is very suitable to be formed by injection molding in which a light absorbing agent is incorporated into the molding material. The manufacturing tolerances of the lenses are individually compensated to ensure the overall imaging quality of the optical lens.
  • a separate color filter (such as a special flat color filter located between the optical lens and the photosensitive chip 401) can no longer be provided in the camera module, thereby reducing the size of the camera module (including the optical filter along the optical axis). Dimensions and dimensions perpendicular to the optical axis). Specifically, on the one hand, since the special flat color filter is canceled, the lens group (such as the second lens 201 at the rear end) can be set closer to the photosensitive chip 401, which helps to reduce the length of the camera module. Optical axis dimension. On the other hand, the traditional special flat color filter needs to be supported by the corresponding lens holder.
  • the special flat filter When the special flat filter is adhered to the lens holder, it needs to occupy a certain adhesion surface, resulting in the size of the camera module perpendicular to the optical axis direction. It is larger, and in this embodiment, since a flat color filter can be omitted, the size of the camera module perpendicular to the optical axis direction can be reduced.
  • the lens having a color filtering function is a second lens 201 (referring to the second lens 201 closest to the photosensitive chip, which is the second lens 201 at the bottom in FIG. 1) at the rear end.
  • Lens 201 in order to reduce the influence of manufacturing tolerances of lenses with color filter function on imaging quality.
  • Active calibration requires at least one lens component to be picked up by an external pickup mechanism in order to adjust the relative position relationship between the two lens components with a high degree of freedom (for example, six-axis adjustable).
  • the sensitivity of the first lens 101 is greater than the sensitivity of the second lens 201.
  • the first lens 101 may also be designed as a lens with a higher curvature.
  • the curvature of the first lens 101 may be greater than the curvature radius of the second lens 201 (here, the curvature refers to the curvature of the optical surface) so that Get a larger optical state compensation effect with smaller position adjustments.
  • the manufacturing tolerance of the lens 900 with color filter function can be Decrease. Coupled with personalized active calibration, the manufacturing tolerances of the lens 900 with color filtering function can be better compensated, so as to obtain a compact optical lens or camera module with high imaging quality.
  • FIG. 3 is a schematic cross-sectional view of an optical lens according to another embodiment of the present application.
  • the lens 900 having a color filtering function is the first lens 101.
  • the first lens 101 may be implemented by coating a color filter film on the surface of the formed lens.
  • the first lens 101 is plated with an infrared filter film.
  • the infrared filter film can absorb visible light bands (shorter wavelengths) in the light source and reduce interference of the light sources in the visible light band. Therefore, the image formed by the lens is made. Some factors that interfere with the band are excluded.
  • FIG. 4 is a schematic diagram of coating a color filter film 903 on a surface of a formed lens body 904 in an embodiment of the present application. As shown in FIG. 4, when the lens is coated, the optical performance of the lens is different from the original design of the lens due to the problem of size difference.
  • the film formation process of a material is a process in which the material form of the material undergoes a change, so that there is inevitably a stress in the film layer formed.
  • the film layer uses different materials and different thicknesses, it will show different stresses. These stresses may be tensile stresses, compressive stresses, or thermal stresses of the film layer and the lens. These stresses may change the shape of the lens and affect the optical performance.
  • the variation caused by the lens coating can be compensated by the split design and personalized active calibration.
  • the surface of the first lens 101 is further plated with an anti-reflective optical film (Anti-Reflective Coating, AR for short) to increase light transmittance and anti-reflection.
  • Anti-Reflective Coating AR for short
  • Optical films are sometimes referred to as antireflection films. If the performance of filtering out light is customized, the cooperation of multiple membranes is required, so there may be many kinds of superposition of membrane layers.
  • the surface of the lens having a color filtering function includes a color filter film 903 and an anti-reflection optical film.
  • the antireflection optical film may be a single-sided antireflection optical film.
  • the filter film can improve the light transmittance of 3 to 5%. If double or even four layers of anti-reflection optical film are added, the lens with both color filter function can achieve a light transmittance of more than 98%, which makes the image clearer and Make the filter difficult to fog.
  • the axis of the first lens component 100 and the second lens component 200 may have non-zero included angles.
  • the first lens component is on a projection plane perpendicular to the optical axis.
  • the positions of 100 and the geometric center of the second lens component 200 may not coincide.
  • the thickness of the connecting glue 300 in the optical axis direction of the optical lens may be As determined by active calibration, the thickness can be 30-100 ⁇ m.
  • FIG. 5 illustrates a camera module in an embodiment of the present application.
  • the camera module may be an auto focus (AF) module.
  • the camera module includes a first lens component 100, a second lens component 200, and a photosensitive component 400.
  • the lens component 200 further includes a motor 500 (or other type of optical actuator).
  • the second lens barrel is mounted on the motor carrier.
  • the first lens component 100 is connected to the second lens component 200 through the connection glue 300.
  • the connecting glue 300 can support and fix the first lens component 100 and the second lens component 200 so that the two maintain a relative position relationship determined by active calibration.
  • the second lens member 200 and the photosensitive member 400 may be connected by a HA (Holder Attach) process.
  • the photosensitive assembly 400 may include a circuit board 403, a photosensitive chip 401 mounted on the surface of the circuit board 403, and a ring-shaped molding portion 402 formed on the surface of the circuit board 403 by a molding process, and the ring-shaped molding portion 402 surrounds the photosensitive chip 401 and cover an edge region of the photosensitive chip 401 (for example, an edge region surrounding the photosensitive region).
  • the annular molding portion 402 has a flat top surface, and the annular bottom surface of the second lens component 200 (the annular bottom surface of the second lens component 200 in this embodiment is located on the base of the motor 500) bears on The top surface 4028 of the annular molding portion 402 is described.
  • a light through hole is formed in the center of the annular molding portion 402.
  • the side wall of the light through hole is an inclined surface 4029, and the area of the light through hole gradually decreases from top to bottom.
  • the annular molding part 402 can form a diaphragm to prevent or suppress stray light from entering the photosensitive area of the photosensitive chip 401.
  • the second lens component 200 may be bonded to the photosensitive component 400 through an AA process (ie, a conventional active calibration process).
  • the thickness of the adhesive material is preferably 30-70 ⁇ m and the width is 100-150 ⁇ m.
  • the thickness of the adhesive material is preferably 100-150 m, and the width of the adhesive material is 300-400 m.
  • the thickness of the glue material refers to the size of the glue material in the direction of the optical axis, and the width of the glue material refers to the size of the glue material in the direction perpendicular to the optical axis.
  • the AA calibration between the second lens component 200 and the light-sensing component 400 is mainly used to calibrate the image plane tilt problem, and this calibration will not change or optimize the optical performance of the optical lens itself.
  • the active calibration between the first lens component 100 and the second lens component 200 described above can change and optimize the optical performance of the optical lens itself.
  • the active calibration mentioned herein refers to the active calibration between the first lens component 100 and the second lens component 200. It should be noted that, in an embodiment of the present application, the active calibration between the first lens component 100 and the second lens component 200 may be completed first and the first glue material is cured to obtain an optical lens, and then the optical lens and the photosensitive component 400 AA calibration and gluing between the camera modules.
  • active calibration between the first lens component 100 and the second lens component 200 and AA calibration between the second lens component 200 and the photosensitive component 400 may be performed simultaneously, and then bonded The first lens component 100 and the second lens component 200 and the second lens component 200 and the light-sensitive component 400 are bonded to obtain a camera module.
  • the camera module may also be a fixed focus module (FF module), and the motor in the fixed focus module may be cancelled.
  • FIG. 6 illustrates a camera module in another embodiment of the present application.
  • the annular molding portion 402 is replaced with an annular lens holder 402 ', and the annular bottom surface of the second lens member 200 bears on the top surface of the annular lens holder 402', and
  • This embodiment is a fixed focus module (the motor is cancelled).
  • the annular lens holder 402 ' can be used as a diaphragm to prevent stray light from entering the photosensitive area of the photosensitive chip 401.
  • FIG. 7 illustrates a camera module in another embodiment of the present application.
  • the camera module of this embodiment is an auto focus (AF) module.
  • the second lens component 200 includes a motor 500.
  • the connecting adhesive 300 is located in a gap 309 between the top surface of the second lens barrel and the bottom surface of the first lens component.
  • the bottom surface of the first lens barrel can be regarded as the bottom surface of the first lens component.
  • FIG. 8 illustrates a camera module in another embodiment of the present application.
  • the camera module of this embodiment is an auto focus (AF) module.
  • AF auto focus
  • the first lens barrel is eliminated in this embodiment, and the first lens component 100 includes only one first lens 101.
  • the connecting glue 300 is located in a gap between the top surface of the second lens barrel 202 and the bottom surface of the first lens 101 (the bottom surface of the structural region of the first lens).
  • the bottom surface of the first lens can be regarded as the bottom surface of the first lens component.
  • the first lens is a single lens. It should be noted that this application is not limited to this. In other embodiments, the first lens may be composed of a plurality of sub-lenses that fit together.
  • the connecting glue is disposed between the bottom surface of the first lens component and the top surface of the second lens component, so that the first lens component and the second lens component are maintained at a relative position determined by active calibration.
  • the top surface of the second lens component generally refers to the top surface of the second lens barrel and / or the second lens, and the top surface of the second lens component generally does not include the top surface of the motor.
  • the bottom surface of the first lens component generally refers to the bottom surface of the first lens barrel and / or the first lens.
  • an optical lens assembly method is further provided, which includes steps S10 to S40.
  • the first lens component 100 and the second lens component 200 are pre-positioned.
  • the first lens component 100 includes a first lens barrel 102 and at least one first lens 101 mounted on the first lens barrel 102, and the first lens 101 has a curved optical surface
  • the lens component 200 includes a second lens barrel 202 and at least one second lens 201 mounted on the second lens barrel 202, and the second lens 201 has a curved optical surface, wherein the at least one first lens 101 And at least one of the at least one second lens 201 is a lens having a color filtering function.
  • the predetermined position enables the at least one first lens 101 and the at least one second lens 201 to jointly form an imageable optical system.
  • Step S20 Actively calibrate the relative positions of the first lens component 100 and the second lens component 200 based on the measured imaging results of the optical system.
  • step S30 the first lens component 100 and the second lens component 200 are adhered with a connecting adhesive 300, so that the first lens component 100 and the second lens component 200 are maintained at a position determined by active calibration. relative position.
  • the step 40 includes: arranging the connecting glue material 300 on the top surface of the second lens component 200; moving the first lens component 100 and the second lens component 200 to active The determined relative position is calibrated; and the connecting glue 300 is cured.
  • the step of actively calibrating may be performed first, and then the step of arranging the connection glue 300 may be performed, or the step of arranging the connection glue 300 may be performed first, and then the step of actively calibrating.
  • the first lens component 100 is captured and moved by the taking mechanism to keep it at the position determined by the active calibration (ie, the active calibration in step S30), and then the arranged connection is made.
  • the adhesive material 300 is pre-cured (for example, pre-cured by exposure).
  • the pickup mechanism releases the first lens component 100, and at this time, the first lens component 100 and the second lens component 200 are supported and fixed by the pre-cured connection glue 300, so that the relative positions of the two are still maintained as determined by the active calibration. relative position.
  • the combination of the first lens component 100 and the second lens component 200 is permanently cured to enhance the connection strength of the first lens component 100 and the second lens component 200 and improve the cost reliability.
  • the permanent curing may be that the combination of the first lens component 100 and the second lens component 200 is unloaded and baked for a certain period of time after the unloading, so that the connection glue 300 is permanently cured.
  • the method for manufacturing a lens with a color filtering function may be: introducing colored additives into the molten glass to achieve coloring, and then forming the molten glass into (for example, by injection molding) Forming method) A lens having a desired shape.
  • a method for manufacturing a lens having a color filtering function may be: coloring plastic, and then injection molding the colored plastic particles to obtain a lens having a desired surface shape.
  • a method for manufacturing a lens having a color filter function may be: immersing a hard resin lens in a hot liquid fuel solution, and obtaining a colored lens after the dye enters the resin.
  • the step S20 includes testing and calibration of a color filtering function.
  • the test light source is configured to be switchable between two states.
  • One of the states is to emit light containing a color cutoff band (for example, a band of about 700 nm), and the other is to emit light that does not contain a color cutoff band (for example, a band of about 700 nm).
  • Test the color filter function of the optical system by switching the light source state during active calibration. For example, it is possible to judge whether the effect of color filtering reaches a preset standard by actively calibrating the quality of the image when the target plate is photographed.
  • the effect of color filtering can be evaluated by, for example, a shading index (ie, a Shading index).
  • FIG. 9 shows an example of a shadow image. From FIG.
  • the shadow index of the current optical system can be obtained by comparing an image taken based on light with a color cutoff band and an image taken based on light without a color cutoff band.
  • the test light source may include two light sources arranged side by side, which are a first light source that emits light including a color cutoff band (for example, a wavelength band of about 700 nm), and does not contain color A second light source that cuts light in a band (for example, a band of about 700 nm).
  • the captured image will have regions corresponding to the first light source and the second light source, respectively. Comparing the area corresponding to the first light source and the area corresponding to the second light source, the shadow index of the current optical system can be obtained.
  • the step S20 may include: adjusting the relative positions of the first lens component 100 and the second lens component 200 so that the measured resolution of the optical system reaches a preset threshold value, and at the same time, The shadow index of the optical system reaches a preset threshold.
  • the relative position where the measured resolution and the shading index meet the target is taken as the relative position determined by the active calibration. It can be seen that compared with the active calibration without the color filter function, the active calibration of this embodiment takes into account the shading index, that is, it is necessary to determine whether the relative positions of the first lens component 100 and the second lens component 200 can ensure the optical system. Shading indicators are up to the mark. If in a relative position, the measured resolution can meet the standard but the shadow index cannot meet the standard, the relative positions of the first lens component 100 and the second lens component 200 need to be further adjusted until the measured resolution and shadow index both meet the standard.
  • the active calibration described in this application can adjust the relative positions of the first lens component 100 and the second lens component 200 in multiple degrees of freedom.
  • the first lens component 100 (which may also be the first lens 101) may be moved in the x, y, and z directions relative to the second lens component 200 (that is, in this embodiment) (The relative position adjustment has three degrees of freedom).
  • the z direction is a direction along the optical axis, and the x and y directions are directions perpendicular to the optical axis. Both the x and y directions are in an adjustment plane P, and the translation in the adjustment plane P can be decomposed into two components in the x and y directions.
  • the relative position adjustment in addition to the three degrees of freedom of the previous embodiment, also increases the degree of freedom of rotation, that is, the adjustment in the r direction.
  • the adjustment in the r direction is a rotation in the adjustment plane P, that is, a rotation about an axis perpendicular to the adjustment plane P.
  • the active calibration adds a relative position adjustment method for v and w direction adjustment.
  • the v direction represents the rotation angle of the xoz plane
  • the w direction represents the rotation angle of the yoz plane
  • the rotation angles of the v direction and the w direction can be combined into a vector angle
  • this vector angle represents the total tilt state. That is, by adjusting the v direction and the w direction, the tilting attitude of the first lens component 100 relative to the second lens component 200 (that is, the optical axis of the first lens component 100 relative to the second lens component can be adjusted. 200 optical axis tilt).
  • the relative position adjustment method may be to adjust only any one of the above six degrees of freedom, or a combination of any two or more of them.
  • the movement further includes a translation on the adjustment plane, that is, a movement in the x and y directions.
  • the active calibration further includes: adjusting and determining a clamp of an axis of the first lens component 100 with respect to an axis of the second lens component 200 according to a measured resolution of the optical system. Angle, that is, adjustment in the w and v directions. In the assembled optical lens or camera module, an angle between the axis of the first lens component 100 and the axis of the second lens component 200 may be non-zero.
  • the active calibration further includes: moving the first lens component 100 (ie, adjustment in the z direction) along a direction perpendicular to the adjustment plane, according to the actual measurement of the optical system
  • the resolving power determines a relative position between the first lens component 100 and the second lens component 200 in a direction perpendicular to the adjustment plane.
  • a gap is formed between a bottom surface of the first lens component 100 and a top surface of the second lens component 200; and in the bonding step, The glue material is arranged in the gap.
  • the second lens component 200 may be fixed, the first lens component 100 may be clamped by a clamp, and the first lens component 100 may be moved by a six-axis movement mechanism connected to the clamp, thereby The relative movement between the first lens component 100 and the second lens component 200 in the above six degrees of freedom is achieved.
  • the jig may be abutted or partially abutted on a side surface of the first lens component 100 so as to clamp the first lens component 100.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

一种光学镜头,包括:第一镜头部件(100),其包括至少一个第一镜片(101);第二镜头部件(200),其包括第二镜筒和安装于第二镜筒的至少一个第二镜片(201),第一、第二镜片均具有呈曲面的光学面,至少一个第一镜片和至少一个第二镜片共同构成可成像的光学系统,并且至少一个第一镜片和至少一个第二镜片中的至少一个是具有滤色功能的镜片;以及连接胶材,其位于第一镜头部件的底面与第二镜头部件的顶面之间。本申请还提供了相应的摄像模组及光学镜头组装方法。本申请可以将滤色功能集成到透镜,从而减小摄像模组的尺寸;可以通过主动校准来补偿具有滤色功能的曲面透镜的制作公差,从而获得优异的成像品质。

Description

光学镜头及其组装方法以及摄像模组
相关申请的交叉引用
本申请要求于2018年5月30日递交于中国国家知识产权局(CNIPA)的、申请号为201810540984.0、发明名称为“光学镜头及其组装方法以及摄像模组”的中国发明专利申请以及于2018年5月30日递交于CNIPA的、申请号为201820824623.4、发明名称为“光学镜头及摄像模组”的中国实用新型专利申请的优先权和权益,这两项申请通过引用整体并入本文。
技术领域
本申请涉及光学成像技术领域,具体地说,本申请涉及光学镜头及其组装方法以及摄像模组。
背景技术
随着移动电子设备的普及,被应用于移动电子设备的用于帮助使用者获取影像(例如视频或者图像)的摄像模组的相关技术得到了迅猛的发展和进步,并且在近年来,摄像模组在诸如医疗、安防、工业生产等诸多的领域都得到了广泛的应用。
为了满足越来越广泛的市场需求,高像素、小尺寸、大光圈是现有摄像模组不可逆转的发展趋势。然而,要在同一摄像模组实现高像素、小尺寸、大光圈三个方面的需求是有很大难度的。例如,手机的紧凑型发展和手机屏占比的增加,让手机内部能够用于摄像模组的空间越来越小,而市场对摄像模组的成像质量又提出了越来越高的需求。
目前市场上主流的手机摄像模组均在透镜组(指用于成像的镜片组)与感光芯片之间设置滤色片(例如IR滤色片)以滤除红外光线,这样可以避免红外光线对感光芯片的成像结果造成干扰(人眼看不到红外光,但感光芯片却可以感应到,如果不滤除,那么感光芯片所接 收到的图像将偏离于人眼观察到的图像)。然而,随着市场对摄像模组的小型化提出了越来越高的要求,滤色片以及支撑该滤色片的结构件所占用的空间已无法忽视。在许多情形下,滤色片的存在导致摄像模组尺寸难以再进一步地缩小。
另一方面,现有技术中存在对镜片镀红外线滤光膜的技术路线。镜片的材质一般为玻璃或树脂(树脂镜片有时也被称为塑料镜片)。玻璃镜片镀红外滤光膜一般需要在玻璃镜片上镀覆有中间介质,通过中间介质再实现镀膜的处理,从而满足红外滤光膜所需要的连接强度。这是由于有机物与无机物之间粘接性能不佳,因此需要一种中间介质过渡有机物与无机物之间。然而,中间介质和红外线滤光膜均可能引入公差,使镜片的光学参数偏离原设计,造成成像质量下降。另外,镜片进行镀红外线滤光膜的时候,需要在一些特殊的环境下进行,例如在电阻式蒸发镀膜的方式中,将蒸发材料进行直接加热蒸发,蒸发后的材料依附在被镀物上后完成镀膜。该种环境下可能由于温度的影响造成镀膜时的镜片尺寸与正常环境使用下的镜片尺寸不一致。从而造成镀覆的膜发生变异,从而对镜片的成像质量造成影响。另一方面,在树脂镜片上镀覆红外线滤光膜也可能存在类似的问题,并且,树脂镜片成型时就可能存在因为材料收缩出现的变异问题,如果镀覆红外线滤光膜,这一问题将更加突显。而且在光学设计上考虑阿贝数等,很多树脂材料在设计上便不能满足需求。
再者,现有技术中还存在将染料掺杂到树脂成型材料中,然后通过注塑成型的方式获得具有滤色功能的镜片的技术路线。然而,该技术路线同样存在因引入燃料而导致的公差的问题,进而使镜片的光学参数偏离原设计。
基于上述分析可以看出,无论是对镜片镀红外线滤光膜的技术路线、还是将染料掺杂到成型材料再注塑成型的技术路线,均存在许多有待解决的难题。尤其是在紧凑型摄像模组(例如手机摄像模组)中,镜片的尺寸非常小,镜片状态(例如面型、材料的一致性等等)变化的敏感性相对较高。对于用于成像的镜片来说,镜片状态的微小变异,就可能导致成像质量不能达标,导致产品良率不足。以上诸多问题导 致现有技术中无法提供适合于大规模量产的无独立滤色片的紧凑型光学镜头或摄像模组解决方案。
发明内容
本申请旨在提供一种能够克服现有技术的至少一个缺陷的解决方案。
根据本申请的一个方面,提供了一种光学镜头,包括:第一镜头部件,其包括至少一个第一镜片,并且所述第一镜片具有呈曲面的光学面;第二镜头部件,其包括第二镜筒和安装于所述第二镜筒的至少一个第二镜片,所述第二镜片具有呈曲面的光学面,所述至少一个第一镜片和所述至少一个第二镜片共同构成可成像的光学系统,并且所述至少一个第一镜片和所述至少一个第二镜片中的至少一个是具有滤色功能的镜片;以及连接胶材,其位于所述第一镜头部件的底面与所述第二镜头部件的顶面之间,并且适于支撑所述第一镜头部件与所述第二镜头部件并固定二者之间的相对位置。
在一个实施例中,所述第一镜头部件还包括第一镜筒,所述至少一个第一镜片安装于所述第一镜筒内侧,所述连接胶材适于支撑和固定所述第一镜头部件与所述第二镜头部件,以使二者保持在主动校准所确定的相对位置,并且所述第一镜头部件的轴线与所述第二镜头部件的轴线之间具有不为零的夹角,其中所述主动校准是根据所述光学系统的实际成像结果而对所述第一镜头部件和所述第二镜头部件所做的相对位置调整。
在一个实施例中,所述第一镜片的光学面敏感度大于所述第二镜片。
在一个实施例中,所述具有滤色功能的镜片的数目为一,并且具有滤色功能的镜片为所述第二镜片。
在一个实施例中,所述具有滤色功能的镜片是位于所述光学镜头的最后端的所述第二镜片。
在一个实施例中,所述具有滤色功能的镜片由掺杂有光选择吸收剂的塑料以注塑成型的方式制成。
在一个实施例中,所述掺杂有光选择吸收剂的塑料为有机玻璃,并且所述有机玻璃中掺杂有含有光选择吸收剂的树脂混合物。
在一个实施例中,所述具有滤色功能的镜片由掺杂有光选择吸收剂的玻璃材料制成。
在一个实施例中,所述具有滤色功能的镜片包括注塑成型的镜片主体和镀覆于所述镜片主体的表面的滤色膜。
在一个实施例中,所述第一镜片的数目为一,并且所述具有滤色功能的镜片为所述第一镜片。
在一个实施例中,所述第一镜片包括注塑成型的镜片主体以及镀覆于所述镜片主体的表面的滤色膜和减反射膜。
在一个实施例中,所述连接胶材在所述光学镜头的光轴方向上的厚度为30-100μm。
在一个实施例中,在垂直于所述光轴的投影面上,所述第一镜头部件与所述第二镜头部件的几何中心的位置不重合。
根据本申请的另一方面,还提供了一种摄像模组,其包括前述任意一光学镜头。
在一个实施例中,所述摄像模组还包括感光组件,所述光学镜头安装于所述感光组件,所述感光组件包括感光芯片,并且所述感光芯片与所述第二镜片之间不具有表面均为平面的滤色片。
根据本申请的一个方面,还提供了一种光学镜头组装方法,包括:对第一镜头部件和第二镜头部件进行预定位,其中所述第一镜头部件包括第一镜筒和安装于所述第一镜筒的至少一个第一镜片,并且所述第一镜片具有呈曲面的光学面,所述第二镜头部件包括第二镜筒和安装于所述第二镜筒的至少一个第二镜片,并且所述第二镜片具有呈曲面的光学面,其中所述至少一个第一镜片和所述至少一个第二镜片中的至少一个是具有滤色功能的镜片,所述预定位使所述至少一个第一镜片和所述至少一个第二镜片共同构成可成像的光学系统;基于所述光学系统的实测成像结果对所述第一镜头部件和所述第二镜头部件的相对位置进行主动校准;以及用连接胶材粘合所述第一镜头部件与所述第二镜头部件,以使所述第一镜头部件与所述第二镜头部件保持在 主动校准所确定的相对位置。
在一个实施例中,所述主动校准步骤还包括:根据所述光学系统的实测解像力,通过夹持或吸附所述第一镜头部件和/或所述第二镜头部件,来调节并确定所述第一镜头部件和所述第二镜头部件的相对位置关系。
在一个实施例中,所述用连接胶材粘合的步骤包括:在所述第二镜头部件的顶面布置所述连接胶材;将所述第一镜头部件和所述第二镜头部件移动至主动校准所确定的相对位置;以及使所述连接胶材固化。
在一个实施例中,先执行所述主动校准的步骤,再执行布置所述连接胶材的步骤。
在一个实施例中,先执行布置所述连接胶材的步骤,再执行所述主动校准的步骤。
在一个实施例中,由掺杂有光选择吸收剂的塑料以注塑成型的方式制成所述的具有滤色功能的镜片。
在一个实施例中,由掺杂有光选择吸收剂的玻璃材料制成所述具有滤色功能的镜片。
在一个实施例中,所述主动校准步骤还包括:调整所述第一镜头部件和所述第二镜头部件的相对位置,直至所述光学系统的实测解像力和用于识别滤色效果的指标均达到各自对应的阈值。
在一个实施例中,所述主动校准步骤还包括:沿着调整平面移动第一镜头部件,根据所述光学系统的实测解像力,确定所述第一镜片与所述第二镜头部件之间的沿着所述调整平面的移动方向上的相对位置,其中所述移动包括在所述调整平面上的转动。
在一个实施例中,所述主动校准步骤中,所述移动还包括在所述调整平面上的平移。
在一个实施例中,所述主动校准还包括:根据所述光学系统的实测解像力,调节并确定所述第一镜头部件的轴线相对于所述第二镜头部件的轴线的夹角。
在一个实施例中,所述主动校准还包括:沿着垂直于所述调整平 面的方向移动所述第一镜头部件,根据所述光学系统的实测解像力,确定所述第一镜头部件与所述第二镜头部件之间的在垂直于所述调整平面的方向上的相对位置。
与现有技术相比,本申请具有下列至少一个技术效果:
1、本申请可以将滤色功能集成到光学面为曲面的透镜,从而可以省略额外的滤色片,进而减小摄像模组的尺寸。
2、本申请可以通过主动校准来补偿具有滤色功能的曲面透镜的制作公差,从而获得优异的成像品质。
3、本申请可以在主动校准阶段对滤色效果进行校准,从而提升摄像模组的成像品质(例如可以减小阴影问题)。
4、本申请可以减小摄像模组的沿光轴方向的尺寸。
本申请可以减小摄像模组的垂直于光轴方向的尺寸。
附图说明
在参考附图中示出示例性实施例。本文中公开的实施例和附图应被视作说明性的,而非限制性的。
图1示出了本申请一个实施例的光学镜头的剖面示意图;
图2示出了成型后的镜片面型902偏离于设计的镜片面型901示意图;
图3示出了本申请另一个实施例的光学镜头的剖面示意图;
图4示出了本申请一个实施例中的在已成型的镜片主体904的表面镀滤色膜903的示意图;
图5示出了本申请一个实施例中的摄像模组;
图6示出了本申请另一个实施例中的摄像模组;
图7示出了本申请另一个实施例中的摄像模组;
图8示出了本申请另一个实施例中的摄像模组;以及
图9示出了阴影图片的一个示例。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更 详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一主体也可被称作第二主体。
在附图中,为了便于说明,已稍微夸大了物体的厚度、尺寸和形状。附图仅为示例而并非严格按比例绘制。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
图1示出了本申请一个实施例的光学镜头的剖面示意图。参考图 1,该光学镜头包括第一镜头部件100、第二镜头部件200和连接胶材300。其中第一镜头部件100包括第一镜筒102和安装于所述第一镜筒102的一个第一镜片101,所述第一镜片101具有呈曲面的光学面。第二镜头部件200包括第二镜筒202和安装于所述第二镜筒202的四个第二镜片201,所述第二镜片201均具有呈曲面的光学面。所述一个第一镜片101和所述四个第二镜片201共同构成可成像的光学系统。并且,位于最后端的第二镜片201(指离感光芯片401最近的第二镜片201,即图1中最下方的第二镜片201)具有滤色功能。连接胶材300位于所述第一镜头部件100与所述第二镜头部件200之间,并且适于支撑所述第一镜头部件100与所述第二镜头部件200并固定二者之间的相对位置,以使二者保持在主动校准所确定的相对位置,其中所述主动校准是根据所述光学系统的实际成像结果而对所述第一镜头部件100和所述第二镜头部件200所做的相对位置调整。下文中还会结合实施例进一步描述主动校准的各项技术细节。
在一个实施例中,所述具有滤色功能的镜片900由掺杂有光选择吸收剂的塑料以注塑成型的方式制成。所述的掺杂有光选择吸收剂的塑料可以是有机玻璃(即聚甲基丙烯酸甲酯,其英文缩写为PMMA),该有机玻璃中掺杂有含有光选择吸收剂的树脂混合物以便实现滤色功能。光吸收剂选择可以为:用有机或无机染料/颜料,其实例包括亚硝基,硝基,单偶氮,重氮基,二苯基甲烷,三苯基甲烷,吖嗪型,三嗪型,三唑型,喹啉型,靛蓝型,蒽醌型,酞菁型,有机化合物如镍,钴,镨,钕,钐,铕,镝。为了调整各波长带的透光率,适当选择它们可以组合1种或2种以上。
在另一个实施例中,所述具有滤色功能的镜片900可以由掺杂有光选择吸收剂的玻璃材料以注塑成型的方式制成。
在本申请的其他实施例中,用于形成具有滤色功能的镜片900的注塑成型的材料还可以由专利文献JP15560898、JP19843698、JP2003337499、JP2005292702、CN03108353.6、CN201610487336.4等任何一个中所披露的方法获得,本文中不再一一赘述。
需注意,上述实施例中,由于成型材料中掺入了光吸收剂,因此 具有滤色功能的镜片900的成型难度会大于未掺入光吸收剂的普通镜片。换句话说,具有滤色功能的镜片900的制作公差可能会大于普通镜片。尤其是当具有滤色功能的镜片900具有的光学面呈曲面时,成型难度将进一步增大,导致制作公差也相应增大。例如,掺入的光吸收剂很难绝对均匀地分散到液态的成型材料中,掺入光吸收剂还可能导致成型材料不同位置的收缩率不一致。因此成型后的镜片的光学性能可能偏离于所设计的镜片。图2示出了成型后的镜片面型902偏离于设计的镜片面型901示意图。参考图2,掺入光吸收剂后,通过注塑成型的方式获得的镜片可能相比原设计存在厚度变化,并且各个位置的收缩程度可能是不一致的,因此体现在光学性能上就有非均匀传输的特性吗,导致实际成型的镜片的光学性能偏离于原设计。并且,掺入光吸收剂后,镜片制造的一致性也难以控制。同一批次产品中的每个镜片的变异(指相对于原设计的变异)可能各不相同(例如变异的类型不同、变异的位置不同),这将给镜片的组装(尤其是大规模量产)带来很大的难题。
本申请的上述实施例可以通过分体式设计和主动校准技术很好地解决以上难题。上述实施例中,光学设计阶段将用于成像的镜片组(或者称为透镜组)分成分体式的两个群组,这两个群组分别安装在两个镜筒中,从而形成两个分离的镜头部件。然后再基于实际成像结果,对这两个镜头部件的相对位置进行主动校准,以获得成像品质达到预设设计标准的光学系统。最后,基于主动校准所获得的相对位置,用连接胶材300粘合两个镜头部件。其中连接胶材300位于所述第一镜头部件100与所述第二镜头部件200之间,并且适于支撑所述第一镜头部件100与所述第二镜头部件200并固定二者之间的相对位置,以使二者保持在主动校准所确定的相对位置。由于在主动校准阶段,所述第一镜头部件100与所述第二镜头部件200是完全分离的,因此具有足够的自由度(例如可以是六轴可调)来对光学系统进行主动校准,从而补偿具有滤色功能的镜片900的制作公差。并且,上述补偿可以是个性化的。例如,对于不同的光学镜头,其第一镜头部件100和第二镜头部件200的相对位置可以是各不相同的,因此非常适于对成型 材料中掺入了光吸收剂的以注塑成型方式形成的镜片的制作公差进行个性化的补偿,从而保障光学镜头的整体成像品质。这样,摄像模组中可以不再提供单独的滤色片(例如位于光学镜头与感光芯片401之间的专用平面滤色片),从而可以缩小摄像模组的尺寸(包括沿着光轴方向的尺寸和垂直于光轴方向的尺寸)。具体来说,一方面,由于专用平面滤色片被取消,镜片组(例如最后端的第二镜片201)可以设置在更加接近感光芯片401的位置处,因此有助于缩小摄像模组的沿着光轴方向的尺寸。另一方面,传统的专用平面滤色片需要用相应的镜座支撑,该专用平面滤色片粘附于镜座时需要占用一定的粘附面,导致摄像模组垂直于光轴方向的尺寸增大,而本实施例由于可以省略用平面滤色片,因此可以减小摄像模组垂直于光轴方向的尺寸。
进一步地,如图1所示,在一个实施例中,具有滤色功能的镜片是位于最后端的第二镜片201(指离感光芯片最近的第二镜片201,即图1中最下方的第二镜片201),以便减小具有滤色功能的镜片的制作公差对成像品质的影响。主动校准需要由外部摄取机构摄取至少一个镜头部件,以便以较高的自由度(例如六轴可调)来调整两个镜头部件之间的相对位置关系。本实施例中,第一镜片101的敏感度大于第二镜片201的敏感度。通常来说,由于第一镜片相比第二镜片更加靠近物方,因此第一镜片的位置改变可能会被后端的多个第二镜片放大,造成第一镜片比第二镜片更加敏感。在一个实施例中,还可以将第一镜片101设计为曲率较高的镜片,例如第一镜片101的曲率可以大于第二镜片201的曲率半径(此处曲率是指光学面的曲率),以便以较小的位置调整获得较大的光学状态补偿效果。由于第二镜片201的敏感性相对较低,并且由于最后端的第二镜片201远离光线的入射面(即远离镜头前端),因此具有滤色功能的镜片900的制作公差对成像品质的影响可以被减小。再配合个性化的主动校准,具有滤色功能的镜片900的制作公差可以被更好地补偿,从而获得具有高成像品质的紧凑型光学镜头或摄像模组。
进一步地,图3示出了本申请另一个实施例的光学镜头的剖面示意图。本实施例与图1所示的实施例的区别在于具有滤色功能的镜片 900是第一镜片101。进一步地,在一个实施例中,该第一镜片101可以通过在已成型的镜片表面镀覆滤色膜的方式实现。本实施例中,第一镜片101上镀有红外线滤光膜,该红外线滤光膜可吸收光源中的可见光波段(较短端波长),降低可见光波段光源的干扰,因此使得镜头所成的像中排除了一些干扰波段的因素。另外由于第一镜片101本身具有屈折力,不管是正负屈折力都是光学透镜中的对光线进行折射进而实现光学系统成像。综上,本实施例中该第一镜片101起到了滤色和屈折光线的效果,因此在原有的屈折光线的效果上额外附加了过滤红外光线的效果。图4示出了本申请一个实施例中的在已成型的镜片主体904的表面镀滤色膜903的示意图。如图4所示,镜片在进行镀膜时,镜片因为出现尺寸差异的问题而导致光学性能相对于镜片的原设计发生变异。例如,材料成膜过程是材料的物质形态发生转变的过程,因此成膜的膜层中不可避免地会有应力的存在。这种情况在多层膜来说有不同膜料的组合,各个膜层采用不同材料、不同厚度时会表现出不同的应力。这些应力可以是张应力、可以是压应力,还可以是膜层及镜片的热应力等。这些应力都可能对镜片的面型造成改变,从而影响光学性能。而本实施例中,可以通过分体式设计和个性化的主动校准来补偿因镜片镀膜而造成的变异。
进一步地,在一个实施例中,除滤色膜903外,第一镜片101的表面还镀有一层抗反射光学膜(Anti-Reflective Coating,简称AR Coating)以增加光的透光性,抗反射光学膜有时也称为减反射膜。如果对滤除光线的性能进行定制时,就需要多种膜的相互配合,因此可能有许多种膜层的叠加。本实施例中,兼具滤色功能的镜片的表面即具有滤色膜903,也具有抗反射光学膜。该抗反射光学膜可以是单面的抗反射光学膜。滤光膜可以提升3~5%的透光率,如果加上双层甚至四层抗反射光学膜,兼具滤色功能的镜片可达到98%以上的透光率,从而让图像更清晰且让滤光片不容易起雾。
进一步地,在一个实施例中,由于第一镜头部件100和第二镜头部件200的相对位置是由个性化地主动校准所确定,因此所述第一镜头部件100的轴线与所述第二镜头部件200的轴线之间可以具有不为 零的夹角。
在一个实施例中,由于第一镜头部件100和第二镜头部件200的相对位置是由个性化地主动校准所确定,因此在垂直于所述光轴的投影面上,所述第一镜头部件100与所述第二镜头部件200的几何中心的位置可以是不重合的。
在一个实施例中,由于第一镜头部件100和第二镜头部件200的相对位置是由个性化地主动校准所确定,所述连接胶材300在所述光学镜头的光轴方向上的厚度可以由主动校准所确定,该厚度可以是30-100μm。
图5示出了本申请一个实施例中的摄像模组。该摄像模组可以是自动对焦(AF)模组。该摄像模组包括第一镜头部件100、第二镜头部件200和感光组件400。其中镜头部件200还包括马达500(或者其它类型的光学致动器)。第二镜筒安装于马达载体上。第一镜头部件100通过所述连接胶材300与第二镜头部件200连接。该连接胶材300可以支撑和固定第一镜头部件100与第二镜头部件200,以使二者保持主动校准所确定的相对位置关系。第二镜头部件200和感光组件400之间可以通过HA(Holder attach)工艺连接。感光组件400可以包括线路板403、安装于线路板403表面的感光芯片401,以及通过模塑工艺形成于线路板403表面的环形模塑部402,所述环形模塑部402围绕所述感光芯片401并覆盖所述感光芯片401的边缘区域(例如围绕在感光区域周围的边缘区域)。本实施例中,环形模塑部402具有平坦的顶面,所述第二镜头部件200的环形底面(本实施例中第二镜头部件200的环形底面位于马达500的基座)承靠于所述环形模塑部402的顶面4028。环形模塑部402中央形成通光孔,该通光孔的侧壁为斜面4029,并且该通光孔的面积由上至下逐渐缩小。这样,环形模塑部402可以形成光阑以防止或抑制杂散光进入感光芯片401的感光区域。另一个实施例中,第二镜头部件200可以通过AA工艺(即传统的主动校准工艺)粘结所述感光组件400。当采用HA工艺连接第二镜头部件200和感光组件400时,胶材厚度优选为30-70μm,宽度为100-150μm。当采用AA(Active Alignment)主动校准工艺连接第二镜 头部件200和感光组件400时,胶材厚度优选为100-150μm,胶材宽度为300-400μm。其中胶材厚度是指胶材在沿光轴方向的尺寸,胶材宽度是指胶材在垂直于光轴方向上的尺寸。需注意,第二镜头部件200与感光组件400之间的AA校准主要用于对像面倾斜问题进行校准,这种校准不会改变或优化光学镜头本身的光学性能。而前文中所述的第一镜头部件100和第二镜头部件200之间的主动校准是可以改变和优化光学镜头本身的光学性能的。如果没有特别说明,本文中所提及的主动校准均指第一镜头部件100和第二镜头部件200之间的主动校准。需注意,在本申请的一个实施例中,可以先完成第一镜头部件100和第二镜头部件200之间的主动校准并固化第一胶材得到光学镜头,然后进行光学镜头和感光组件400之间的AA校准和粘合得到摄像模组。在本申请的另一个实施例中,可以同时进行第一镜头部件100和第二镜头部件200之间的主动校准、以及第二镜头部件200和感光组件400之间的AA校准,然后再粘合第一镜头部件100和第二镜头部件200以及粘合第二镜头部件200和感光组件400,从而得到摄像模组。需注意,在本申请并不限于自动对焦模组,在另一实施例中,摄像模组也可以是定焦模组(FF模组),定焦模组中马达可以被取消。
进一步地,图6示出了本申请另一个实施例中的摄像模组。本实施例与图5所示实施例的区别在于用环形镜座402’替换了环形模塑部402,所述第二镜头部件200的环形底面承靠于环形镜座402’的顶面,并且本实施例为定焦模组(马达被取消)。本实施例中环形镜座402’可以作为光阑以避免杂散光进入感光芯片401的感光区域。
进一步地,图7示出了本申请另一个实施例中的摄像模组。本实施例的摄像模组为自动对焦(AF)模组。其中第二镜头部件200包括马达500。连接胶材300位于第二镜筒的顶面与第一镜头部件的底面之间的间隙309。本实施例中,可以将第一镜筒的底面视为第一镜头部件的底面。
进一步地,图8示出了本申请另一个实施例中的摄像模组。本实施例的摄像模组为自动对焦(AF)模组。与图7所示的实施例的区别在于,本实施例中第一镜筒被取消,第一镜头部件100仅包括一个第 一镜片101。本实施例中,连接胶材300位于第二镜筒202的顶面与第一镜片101的底面(第一镜片的结构区的底面)之间的间隙。当第一镜筒被取消时,第一镜片的底面可以视为第一镜头部件的底面。本实施例中,第一镜片时单体镜片,需注意,本申请并不限于此,在其他实施例中,第一镜片可以由多个相互嵌合的子镜片构成。
本申请中,连接胶材被布置于第一镜头部件的底面和第二镜头部件的顶面之间,以使第一镜头部件和第二镜头部件保持在主动校准所确定的相对位置。需注意,其中第二镜头部件的顶面通常是指第二镜筒和/或第二镜片的顶面,第二镜头部件的顶面通常不包括马达的顶面。第一镜头部件的底面通常是指第一镜筒和/或第一镜片的底面。
进一步地,根据本申请的一个实施例,还提供了一种光学镜头组装方法,包括步骤S10~S40。
步骤S10,对第一镜头部件100和第二镜头部件200进行预定位。所述第一镜头部件100包括第一镜筒102和安装于所述第一镜筒102的至少一个第一镜101片,并且所述第一镜片101具有呈曲面的光学面,所述第二镜头部件200包括第二镜筒202和安装于所述第二镜筒202的至少一个第二镜片201,并且所述第二镜片201具有呈曲面的光学面,其中所述至少一个第一镜片101和所述至少一个第二镜片201中的至少一个是具有滤色功能的镜片。所述预定位使所述至少一个第一镜片101和所述至少一个第二镜片201共同构成可成像的光学系统。
步骤S20,基于所述光学系统的实测成像结果对所述第一镜头部件100和所述第二镜头部件200的相对位置进行主动校准。
步骤S30,用连接胶材300粘合所述第一镜头部件100与所述第二镜头部件200,以使所述第一镜头部件100与所述第二镜头部件200保持在主动校准所确定的相对位置。
在一个实施例中,所述步骤40包括:在所述第二镜头部件200的顶面布置所述连接胶材300;将所述第一镜头部件100和所述第二镜头部件200移动至主动校准所确定的相对位置;以及使所述连接胶材300固化。其中可以先执行所述主动校准的步骤,再执行布置所述连接胶材300的步骤,也可以先执行布置所述连接胶材300的步骤, 再执行所述主动校准的步骤。
在一个实施例中,所述步骤S30中,利用摄取机构摄取并移动第一镜头部件100,使其保持在主动校准(即步骤S30中的主动校准)所确定的位置,然后对布置好的连接胶材300进行预固化(例如通过曝光进行预固化)。然后摄取机构松开第一镜头部件100,此时通过预固化的连接胶材300支撑和固定第一镜头部件100和第二镜头部件200,使二者的相对位置仍然保持在主动校准所确定的相对位置。最后对第一镜头部件100和第二镜头部件200的结合体进行永久固化以增强第一镜头部件100和第二镜头部件200的连接强度,提升成本的可靠性。其中永久固化可以是将第一镜头部件100和第二镜头部件200的结合体下料,并在下料后进行一定时长的烘烤,使得连接胶材300永久固化。
进一步地,在一个实施例中,所述步骤S10中,具有滤色功能的镜片的制作方法可以是:在熔化的玻璃中引入有色添加剂实现着色,然后使上述熔化的玻璃成型为(例如通过注塑成型的方式)具有所需要面型的镜片。在另一个实施例中,所述步骤S10中,具有滤色功能的镜片的制作方法可以是:对塑料进行着色,然后使着色的塑料颗粒注塑成型,得到具有所需要面型的镜片。在另一个实施例中,所述步骤S10中,具有滤色功能的镜片的制作方法可以是:由硬树脂透镜浸入热的液体燃料溶液中,染料进入树脂后可获得有色透镜。
进一步地,在一个实施例中,所述步骤S20中包括对滤色功能的测试和校准。例如在步骤S20中,将测试光源配置为可在两种状态间切换。其中一种状态是发出含有滤色截止波段(例如700nm左右的波段)的光,另一种状态是发出不含有滤色截止波段(例如700nm左右的波段)的光。在主动校准时通过切换光源状态的方式测试光学系统的滤色功能。例如可以通过主动校准对标板拍照时的图像的质量判读滤色的效果是否达到预设标准。滤色的效果可以通过例如阴影指标(即Shading指标)等来评价。与体积庞大的单反相机不同,手机为了将拍照功能集成到狭小的机身空间内,对镜头模块进行了小型化处理。一般相机因为空间宽松,可以把焦距拉得很长,而手机则只能尽量缩短 焦距,让光在镜片组后端非常近的距离聚焦。由于焦距非常短,导致感光芯片401表面各部位获得的光能量有差异,从而导致影像四角与中心存在明暗差异。这个明暗差异就构成了阴影(Shading)问题。图9示出了阴影图片的一个示例,从图9可以看出影像四角(图中四个圆圈所圈出的区域)与中心存在明暗差异。通常来说,如果滤色效果较好,阴影问题就相对较小,如果滤色效果不好,阴影问题就相对较大。因此可以利用阴影指标来评价滤色效果的好坏。进一步地,本实施例中,可以通过比较基于含有滤色截止波段的光所拍摄的图像和基于不含有滤色截止波段的光所拍摄的图像,来获得当前光学系统的阴影指标。进一步地,在一个变形的实施例中,测试光源可以包括并排设置的两个光源,它们分别是发出含有滤色截止波段(例如700nm左右的波段)的光的第一光源,和不含有滤色截止波段(例如700nm左右的波段)的光的第二光源。所拍摄图像中会具有分别对应于第一光源和第二光源的区域。比较对应于第一光源的区域和第二光源的区域,可以获得当前光学系统的阴影指标。
基于上述分析,在一个实施例中,所述步骤S20可以包括:调整第一镜头部件100和第二镜头部件200的相对位置,使所述光学系统的实测解像力达到预设的阈值,同时还使该光学系统的阴影指标达到预设的阈值。将实测解像力和阴影指标均达标的所述相对位置作为主动校准所确定的相对位置。可以看出,与不含滤色功能的主动校准相比,本实施例的主动校准兼顾了阴影指标,即需要判断第一镜头部件100和第二镜头部件200的相对位置是否能确保光学系统的阴影指标能够达标。如果在一个相对位置下,实测解像力可以达标但阴影指标不能达标,则还需要进一步调整第一镜头部件100和第二镜头部件200的相对位置,直至实测解像力和阴影指标均达标。
进一步地,本申请中所述的主动校准可以在多个自由度上对第一镜头部件100和第二镜头部件200的相对位置进行调整。在本申请的一个实施例中,所述第一镜头部件100(也可以是第一镜片101)可以相对于所述第二镜头部件200沿着x、y、z方向移动(即该实施例中的相对位置调整具有三个自由度)。其中z方向为沿着光轴的方向,x, y方向为垂直于光轴的方向。x、y方向均处于一个调整平面P内,在该调整平面P内平移均可分解为x、y方向的两个分量。
在本申请的另一个实施例中,相对位置调整除了具有前一实施例的三个自由度外,还增加了旋转自由度,即r方向的调节。本实施例中,r方向的调节是在所述调整平面P内的旋转,即围绕垂直于所述调整平面P的轴线的旋转。
进一步地,在本申请又一个实施例中,主动校准增加了v、w方向调节的相对位置调节方式。其中,v方向代表xoz平面的旋转角,w方向代表yoz平面的旋转角,v方向和w方向的旋转角可合成一个矢量角,这个矢量角代表总的倾斜状态。也就是说,通过v方向和w方向调节,可以调节第一镜头部件100相对于第二镜头部件200的倾斜姿态(也就是所述第一镜头部件100的光轴相对于所述第二镜头部件200的光轴的倾斜)。
上述x、y、z、r、v、w六个自由度的调节均可能影响到所述光学系的成像品质(例如影响到解像力的大小)。在本申请的其它实施例中,相对位置调节方式可以是仅调节上述六个自由度中的任一项,也可以其中任两项或者更多项的组合。
进一步地,在一个实施例中,主动校准步骤中,所述移动还包括在所述调整平面上的平移,即x、y方向上的运动。
进一步地,在一个实施例中,所述主动校准还包括:根据所述光学系统的实测解像力,调节并确定所述第一镜头部件100的轴线相对于所述第二镜头部件200的轴线的夹角,即w、v方向上的调节。所组装的光学镜头或摄像模组中,所述第一镜头部件100的轴线与所述第二镜头部件200的轴线之间可以具有不为零的夹角。
进一步地,在一个实施例中,所述主动校准还包括:沿着垂直于所述调整平面的方向移动所述第一镜头部件100(即z方向上的调节),根据所述光学系统的实测解像力,确定所述第一镜头部件100与所述第二镜头部件200之间的在垂直于所述调整平面的方向上的相对位置。
进一步地,在一个实施例中,所述预定位步骤中,使所述第一镜 头部件100的底面和所述第二镜头部件200的顶面之间具有间隙;以及所述粘结步骤中,所述胶材布置于所述间隙。
在一个实施例中,主动校准步骤中,可以固定第二镜头部件200,通过夹具夹持第一镜头部件100,在与夹具连接的六轴运动机构的带动下,移动第一镜头部件100,从而实现第一镜头部件100和第二镜头部件200之间的上述六个自由度下的相对移动。其中,夹具可以承靠于或部分承靠于第一镜头部件100的侧面,从而将第一镜头部件100夹起。
以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (27)

  1. 一种光学镜头,其特征在于,包括:
    第一镜头部件,其包括至少一个第一镜片,并且所述第一镜片具有呈曲面的光学面;
    第二镜头部件,其包括第二镜筒和安装于所述第二镜筒的至少一个第二镜片,所述第二镜片具有呈曲面的光学面,所述至少一个第一镜片和所述至少一个第二镜片共同构成可成像的光学系统,并且所述至少一个第一镜片和所述至少一个第二镜片中的至少一个是具有滤色功能的镜片;以及
    连接胶材,其位于所述第一镜头部件的底面与所述第二镜头部件的顶面之间,并且适于支撑所述第一镜头部件与所述第二镜头部件并固定二者之间的相对位置。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述第一镜头部件还包括第一镜筒,所述至少一个第一镜片安装于所述第一镜筒内侧,所述连接胶材适于支撑和固定所述第一镜头部件与所述第二镜头部件,以使二者保持在主动校准所确定的相对位置,并且所述第一镜头部件的轴线与所述第二镜头部件的轴线之间具有不为零的夹角,其中所述主动校准是根据所述光学系统的实际成像结果而对所述第一镜头部件和所述第二镜头部件所做的相对位置调整。
  3. 根据权利要求1所述的光学镜头,其特征在于,所述第一镜片的光学面敏感度大于所述第二镜片。
  4. 根据权利要求3所述的光学镜头,其特征在于,所述具有滤色功能的镜片的数目为一,并且具有滤色功能的镜片为所述第二镜片。
  5. 根据权利要求4所述的光学镜头,其特征在于,所述具有滤色功能的镜片是位于所述光学镜头的最后端的所述第二镜片。
  6. 根据权利要求4所述的光学镜头,其特征在于,所述具有滤色功能的镜片由掺杂有光选择吸收剂的塑料以注塑成型的方式制成。
  7. 根据权利要求6所述的光学镜头,其特征在于,所述掺杂有光选择吸收剂的塑料为有机玻璃,并且所述有机玻璃中掺杂有含有光选择吸收剂的树脂混合物。
  8. 根据权利要求4所述的光学镜头,其特征在于,所述具有滤色功能的镜片由掺杂有光选择吸收剂的玻璃材料制成。
  9. 根据权利要求3所述的光学镜头,其特征在于,所述具有滤色功能的镜片包括注塑成型的镜片主体和镀覆于所述镜片主体的表面的滤色膜。
  10. 根据权利要求2所述的光学镜头,其特征在于,所述第一镜片的数目为一,并且所述具有滤色功能的镜片为所述第一镜片。
  11. 根据权利要求10所述的光学镜头,其特征在于,所述第一镜片包括注塑成型的镜片主体以及镀覆于所述镜片主体的表面的滤色膜和减反射膜。
  12. 根据权利要求2所述的光学镜头,其特征在于,所述连接胶材在所述光学镜头的光轴方向上的厚度为30-100μm。
  13. 根据权利要求2所述的光学镜头,其特征在于,在垂直于所述光轴的投影面上,所述第一镜头部件与所述第二镜头部件的几何中心的位置不重合。
  14. 一种摄像模组,其特征在于,包括:权利要求1-13中任意 一项所述的光学镜头。
  15. 根据权利要求14所述的摄像模组,其特征在于,还包括感光组件,所述光学镜头安装于所述感光组件,所述感光组件包括感光芯片,并且所述感光芯片与所述第二镜片之间不具有表面均为平面的滤色片。
  16. 一种光学镜头组装方法,其特征在于,包括:
    对第一镜头部件和第二镜头部件进行预定位,其中所述第一镜头部件包括第一镜筒和安装于所述第一镜筒的至少一个第一镜片,并且所述第一镜片具有呈曲面的光学面,所述第二镜头部件包括第二镜筒和安装于所述第二镜筒的至少一个第二镜片,并且所述第二镜片具有呈曲面的光学面,其中所述至少一个第一镜片和所述至少一个第二镜片中的至少一个是具有滤色功能的镜片,所述预定位使所述至少一个第一镜片和所述至少一个第二镜片共同构成可成像的光学系统;
    基于所述光学系统的实测成像结果对所述第一镜头部件和所述第二镜头部件的相对位置进行主动校准;以及
    用连接胶材粘合所述第一镜头部件与所述第二镜头部件,以使所述第一镜头部件与所述第二镜头部件保持在主动校准所确定的相对位置。
  17. 根据权利要求16所述的光学镜头组装方法,其特征在于,所述主动校准步骤还包括:根据所述光学系统的实测解像力,通过夹持或吸附所述第一镜头部件和/或所述第二镜头部件,来调节并确定所述第一镜头部件和所述第二镜头部件的相对位置关系。
  18. 根据权利要求17所述的光学镜头组装方法,其特征在于,所述用连接胶材粘合的步骤包括:
    在所述第二镜头部件的顶面布置所述连接胶材;
    将所述第一镜头部件和所述第二镜头部件移动至主动校准所确定 的相对位置;以及
    使所述连接胶材固化。
  19. 根据权利要求18所述的光学镜头组装方法,其特征在于,先执行所述主动校准的步骤,再执行布置所述连接胶材的步骤。
  20. 根据权利要求18所述的光学镜头组装方法,其特征在于,先执行布置所述连接胶材的步骤,再执行所述主动校准的步骤。
  21. 根据权利要求18所述的光学镜头组装方法,其特征在于,由掺杂有光选择吸收剂的塑料以注塑成型的方式制成所述的具有滤色功能的镜片。
  22. 根据权利要求18所述的光学镜头组装方法,其特征在于,由掺杂有光选择吸收剂的玻璃材料制成所述具有滤色功能的镜片。
  23. 根据权利要求17所述的光学镜头组装方法,其特征在于,所述主动校准步骤还包括:
    调整所述第一镜头部件和所述第二镜头部件的相对位置,直至所述光学系统的实测解像力和用于识别滤色效果的指标均达到各自对应的阈值。
  24. 根据权利要求17所述的光学镜头组装方法,其特征在于,所述主动校准步骤还包括:沿着调整平面移动第一镜头部件,根据所述光学系统的实测解像力,确定所述第一镜片与所述第二镜头部件之间的沿着所述调整平面的移动方向上的相对位置,其中所述移动包括在所述调整平面上的转动。
  25. 根据权利要求24所述的光学镜头组装方法,其特征在于,所述主动校准步骤中,所述移动还包括在所述调整平面上的平移。
  26. 根据权利要求17所述的光学镜头组装方法,其特征在于,所述主动校准还包括:根据所述光学系统的实测解像力,调节并确定所述第一镜头部件的轴线相对于所述第二镜头部件的轴线的夹角。
  27. 根据权利要求17所述的光学镜头组装方法,其特征在于,所述主动校准还包括:沿着垂直于所述调整平面的方向移动所述第一镜头部件,根据所述光学系统的实测解像力,确定所述第一镜头部件与所述第二镜头部件之间的在垂直于所述调整平面的方向上的相对位置。
PCT/CN2019/088813 2018-05-30 2019-05-28 光学镜头及其组装方法以及摄像模组 WO2019228347A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810540984.0 2018-05-30
CN201820824623.4 2018-05-30
CN201810540984.0A CN110554470A (zh) 2018-05-30 2018-05-30 光学镜头及其组装方法以及摄像模组
CN201820824623.4U CN208569148U (zh) 2018-05-30 2018-05-30 光学镜头及摄像模组

Publications (1)

Publication Number Publication Date
WO2019228347A1 true WO2019228347A1 (zh) 2019-12-05

Family

ID=68697859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088813 WO2019228347A1 (zh) 2018-05-30 2019-05-28 光学镜头及其组装方法以及摄像模组

Country Status (1)

Country Link
WO (1) WO2019228347A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101144883A (zh) * 2006-09-15 2008-03-19 鸿富锦精密工业(深圳)有限公司 镜头模组的组装方法及镜头模组
CN201096957Y (zh) * 2007-07-16 2008-08-06 张天琪 手机数码组合镜头
CN102262275A (zh) * 2010-05-28 2011-11-30 鸿富锦精密工业(深圳)有限公司 成像模组及其组装方法
CN103105635A (zh) * 2013-02-07 2013-05-15 杭州麦乐克电子科技有限公司 滤光透镜
CN103885153A (zh) * 2012-12-20 2014-06-25 鸿富锦精密工业(深圳)有限公司 镜头模块
CN208569148U (zh) * 2018-05-30 2019-03-01 宁波舜宇光电信息有限公司 光学镜头及摄像模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101144883A (zh) * 2006-09-15 2008-03-19 鸿富锦精密工业(深圳)有限公司 镜头模组的组装方法及镜头模组
CN201096957Y (zh) * 2007-07-16 2008-08-06 张天琪 手机数码组合镜头
CN102262275A (zh) * 2010-05-28 2011-11-30 鸿富锦精密工业(深圳)有限公司 成像模组及其组装方法
CN103885153A (zh) * 2012-12-20 2014-06-25 鸿富锦精密工业(深圳)有限公司 镜头模块
CN103105635A (zh) * 2013-02-07 2013-05-15 杭州麦乐克电子科技有限公司 滤光透镜
CN208569148U (zh) * 2018-05-30 2019-03-01 宁波舜宇光电信息有限公司 光学镜头及摄像模组

Similar Documents

Publication Publication Date Title
CN208569148U (zh) 光学镜头及摄像模组
WO2017129006A1 (zh) 光学镜头和摄像模组及其组装方法
TWI720343B (zh) 攝像模組及其組裝方法
CN112379506A (zh) 含有塑胶透镜的成像透镜组、成像镜头模块及电子装置
TWI720579B (zh) 光學鏡頭、攝像模組及其組裝方法
WO2019228109A1 (zh) 摄像模组阵列及其组装方法
TWI714272B (zh) 一體式鏡筒、光學鏡頭、攝像模組及組裝方法
CN214756582U (zh) 光学镜头及摄像模组
CN110998405A (zh) 光学镜头、摄像模组及其组装方法
CN110557523B (zh) 摄像模组阵列及其组装方法
US11899268B2 (en) Optical lens, camera module and assembly method therefor
WO2019184695A1 (zh) 光学镜头、摄像模组及其组装方法
WO2021143410A1 (zh) 分体式变焦镜头、摄像模组及相应的组装方法
JP2002131509A (ja) 複合レンズ、それを用いたレンズ装置および複合レンズの製造方法
WO2019228348A1 (zh) 光学镜头、摄像模组及其组装方法
WO2020073736A1 (zh) 光学变焦摄像模组及其组装方法
WO2019228347A1 (zh) 光学镜头及其组装方法以及摄像模组
CN110554470A (zh) 光学镜头及其组装方法以及摄像模组
CN110275264B (zh) 光学镜头、摄像模组及其组装方法
TWI708087B (zh) 光學鏡頭、攝像模組及組裝方法
JP2011070016A (ja) レンズモジュール、撮影装置、レンズモジュールの製造方法
WO2020082928A1 (zh) 光学镜头、摄像模组及其组装方法以及相应的终端设备
WO2020038161A1 (zh) 光学镜头、摄像模组及其组装方法
CN115412653A (zh) 光学镜头及摄像模组
WO2020088039A1 (zh) 光学镜头、摄像模组及其组装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812399

Country of ref document: EP

Kind code of ref document: A1