WO2019228109A1 - 摄像模组阵列及其组装方法 - Google Patents

摄像模组阵列及其组装方法 Download PDF

Info

Publication number
WO2019228109A1
WO2019228109A1 PCT/CN2019/084451 CN2019084451W WO2019228109A1 WO 2019228109 A1 WO2019228109 A1 WO 2019228109A1 CN 2019084451 W CN2019084451 W CN 2019084451W WO 2019228109 A1 WO2019228109 A1 WO 2019228109A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
free
component
optical
camera module
Prior art date
Application number
PCT/CN2019/084451
Other languages
English (en)
French (fr)
Inventor
田中武彦
方银丽
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810541268.4A external-priority patent/CN110557523B/zh
Priority claimed from CN201820824061.3U external-priority patent/CN208572216U/zh
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to US17/057,606 priority Critical patent/US11350020B2/en
Priority to EP19810190.9A priority patent/EP3787274A4/en
Publication of WO2019228109A1 publication Critical patent/WO2019228109A1/zh
Priority to US17/702,384 priority patent/US11711604B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0277Details of the structure or mounting of specific components for a printed circuit board assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images

Definitions

  • the present application relates to the field of optical imaging technology, and in particular, the present application relates to a camera module array and an assembling method thereof.
  • a large aperture lens can bring a large field of view, however, this also causes the problem of the lens's total optical length becoming longer and the field of view angle distorting larger. For example, a 130 ° field of view lens has distortion> 10%. In the field of small-sized optical devices, the above problems will become more prominent and difficult to solve.
  • multi-camera modules are increasingly applied to smart terminal devices such as mobile phones.
  • the dual cameras in the prior art often adopt a structure of a telephoto lens and a wide-angle lens to form a dual camera, so as to give users a better camera experience.
  • a telephoto lens can be used as the main camera to take photos
  • a wide-angle lens has a larger field of view, which can be used to assist in calculating the depth information of the photo for subsequent image blurring processing.
  • TTL Total Track Length
  • TTL refers to the height from the end surface of the lens barrel to the imaging surface in the mechanism.
  • the total optical length of a telephoto lens camera module is often larger than that of a wide-angle lens camera module.
  • the baseline distance refers to the distance between two optical centers of a lens in a stereo vision system.
  • the above requirements may cause difficulties in installing such a wide-angle and telephoto dual-camera module in a compact mobile phone space.
  • the end faces of wide-angle and telephoto lenses are not flush, resulting in the need for additional brackets for fixing.
  • the two modules are respectively fixed in two accommodation holes of the bracket, and the brackets are used to ensure that the optical centers of the two camera modules are on the same horizontal line and the baseline distance is stable.
  • the free-form (FREE-FORM) technology has become increasingly mature, and free-form lenses can be obtained by using the free-form technology.
  • the progressive multifocal surface shape can be processed on the front or back surface of the lens by free-form surface design software during optical design, and then the complex surface can be processed by, for example, a lathe.
  • free-form technology has been widely used in the high-end ophthalmic lens industry. If the free-form lens is used in the field of small-sized optical devices (such as the field of mobile phone camera modules), it will help reduce the distortion of the large field of view and reduce the total optical length of the camera module to a certain extent.
  • free-form lenses can reduce or minimize the aberrations of the optical system, realize the functions of correcting aberrations and reducing distortion, and can also have the effect of reducing the overall optical length and / or the volume of the module.
  • a free-form surface is a complex aspheric surface, which in most cases is irregular and asymmetric, with multiple axes of symmetry.
  • the typical optical lenses currently on the market are assembled by piece by piece embedding. Specifically, a lens barrel having a stepped bearing surface on the inner side is prepared in advance, and then each lens is embedded piece by piece into the stepped bearing surface on the inside of the lens barrel to obtain a complete optical lens. Due to the limitations of the mounting process, the lens type selected in the lens barrel is usually spherical or aspherical with rotational symmetry. If free-form lenses are used, the traditional compact camera module lens assembly process cannot be accurately mounted.
  • the lens surface size of the camera module is often less than 0.7cm. In the installation of small-sized lenses, higher installation requirements are required, and faster installation capabilities are required. The above problems make free-form lenses difficult to apply to compact camera modules.
  • the present application aims to provide a solution capable of overcoming at least one drawback of the prior art.
  • a camera module array including: at least two camera modules, at least one of which has a free-form lens, and the free-form lens is based on an actual imaging result received by a photosensitive chip. Active calibration is performed so that the difference between the actual reference direction of the free-form lens and the reference direction determined by the optical design is not greater than 0.05 degrees.
  • the free-form lens is mounted in an optical calibration lens
  • the optical calibration lens includes: a first lens component including at least one first lens; a second lens component including a second lens barrel and At least one second lens mounted in the second lens barrel, the at least one first lens and the at least one second lens together forming an imageable optical system; and a connection medium adapted to connect the first lens
  • the lens component and the second lens component are fixed together; and the at least one first lens and the at least one second lens have at least one free-form lens.
  • the at least two camera modules include a wide-angle module and a telephoto module, and the telephoto module has the optical calibration lens; the wide-angle module and the telephoto module
  • the total height of the agencies is equal or the difference between the total heights of the two agencies is less than a preset threshold.
  • the wide-angle module has the optical calibration lens, and in the wide-angle module, the at least one first lens and the at least one second lens have at least one free-form lens.
  • the wide-angle module and the telephoto module share the same circuit board.
  • the at least two camera modules include a black and white module and a color module.
  • the free-form lens has multiple functional areas, and the multiple functional areas have different curvatures.
  • the wide-angle camera module has at least one free-form lens to reduce shooting distortion of the wide-angle camera module.
  • connection medium is an adhesive material, which is adapted to support and fix the first lens component and the second lens component, and make the first lens component and the second lens component The relative position maintains the relative position determined by the active calibration.
  • an angle between the axis of the first lens component and the axis of the second lens component is not zero; and in a direction along the optical axis of the optical lens, the first There is a gap between a lens component and the second lens component.
  • the number of the first lenses is one, and the first lenses are free-form lenses.
  • the number of the at least one second lens is plural, and the at least one second lens has one free-form lens.
  • the at least one first lens has one free-form lens
  • the at least one second lens has one free-form lens
  • the first lens component further includes a first lens barrel, and the at least one first lens is mounted inside the first lens barrel.
  • the first lens component and / or the second lens component has an identification characterizing the surface orientation information of the free-form lens included in the first lens component and / or the second lens component.
  • the free-form lens has a reference plane perpendicular to its thickness direction, the free-form lens has a reference direction in the reference plane, the first lens component and / or the second lens The component has an identification of the reference direction to represent the surface orientation information of the free-form lens.
  • connection medium is a plastic material, which is suitable for supporting and fixing the first lens component and the second lens component, and the actual reference direction and optical design of the free-form lens are determined.
  • the difference in the reference direction is not more than 0.05 degrees.
  • the at least two camera modules include two mutually asymmetric camera modules, and at least one of the two mutually asymmetric camera modules has a free-form lens so that the The total heights of the two asymmetric camera modules are equal or the difference between the total heights of the two camera modules is less than a preset threshold.
  • the front surfaces of the two asymmetric camera modules are flush.
  • a method for assembling a camera module array comprising: assembling a wide-angle lens and a telephoto lens; and mounting the wide-angle lens and the telephoto lens on the same circuit board; wherein the telephoto lens
  • the optical calibration lens includes a first lens component and a second lens component, wherein the first lens component includes at least one first lens, the second lens component includes a second lens barrel, and the first lens component is mounted on the first lens component.
  • At least one second lens in the two lens barrels, and the at least one first lens and the at least one second lens have at least one free-form lens
  • an assembling method of the optical calibration lens includes: The first lens component and the second lens component are pre-positioned so that the at least one first lens and the at least one second lens together form an imageable optical system; and adjust and determine the first lens based on active calibration. A relative position of a lens component and the second lens component; and bonding the first lens component and the second lens component with an adhesive material The head member, said first lens and said second lens member and the holding member is fixed in position relative to the determined active calibration.
  • the step of mounting the wide-angle lens and the telephoto lens on the same circuit board includes: directly attaching the wide-angle lens and the telephoto lens to a surface of the circuit board.
  • the step of mounting the wide-angle lens and the telephoto lens on the same circuit board includes: mounting two photosensitive chips corresponding to the wide-angle lens and the telephoto lens on the surface of the circuit board, respectively. Mounting or forming a lens holder surrounding the two photosensitive chips on the surface of the circuit board; and directly attaching the wide-angle lens and the telephoto lens to the top surface of the lens holder.
  • the at least one first lens has at least one free-form lens
  • the at least one second lens also has at least one free-form lens
  • the active calibration includes: adjusting and determining the first lens component by clamping or adsorbing the first lens component and / or the second lens component according to the measured resolution of the optical system. The relative positional relationship between the lens component and the second lens component.
  • the active calibration further includes: adjusting an actual reference direction of the free-form surface lens and an optical design determined by adjusting a relative position relationship between the first lens component and the second lens component.
  • the difference in the reference direction is not greater than 0.05 degrees, wherein the reference direction is used to characterize surface orientation information of the free-form surface lens.
  • the active calibration further includes: moving a first lens component along an adjustment plane, and determining a distance between the first lens and the second lens component according to a measured resolution of the optical system. A relative position in a direction of movement of the plane, wherein the movement includes rotation on the adjustment plane.
  • the movement further includes a translation on the adjustment plane.
  • the active calibration further includes: adjusting and determining an included angle of an axis of the first lens component with respect to an axis of the second lens component according to a measured resolution of the optical system.
  • the active calibration further includes: moving the first lens component in a direction perpendicular to the adjustment plane, and determining the first lens component and the first lens component according to a measured resolution of the optical system. A relative position between the second lens members in a direction perpendicular to the adjustment plane.
  • the first lens component further includes a first lens barrel, and the at least one first lens is mounted inside the first lens barrel.
  • a gap is provided between a bottom surface of the first lens component and a top surface of the second lens component; and in the bonding step, the glue material is arranged To the gap.
  • another method for assembling a camera module array including: assembling a wide-angle module and a telephoto module; and fixing the wide-angle module and the telephoto module together to form a camera.
  • Module array so that the included angle between the wide-angle module and the telephoto module is within the included threshold, and the distance between the wide-angle module and the telephoto module is within the distance threshold; wherein the telephoto module At least one of the group and the wide-angle module has a free-form lens.
  • the telephoto module includes a telephoto lens and a corresponding photosensitive chip, and the telephoto lens has a free-form lens; in the step of assembling a telephoto module, according to the output of the photosensitive chip
  • the actual imaging result is determined by the active calibration to determine the relative position of the telephoto lens and the photosensitive chip, so that the difference between the actual reference direction of the freeform lens and the reference direction determined by the optical design is not greater than 0.05 degrees, where The reference direction is used to characterize surface orientation information of the free-form lens.
  • a method for assembling a camera module array comprising: assembling at least two camera modules, at least one of which has a free-form lens; and combining the at least two modules Fixed together to form a camera module array, wherein the angle between any two camera modules of the at least two camera modules is within a threshold, and the distance between the two camera modules is within a threshold;
  • a camera module containing a free-form lens includes an optical lens including a free-form lens and a corresponding photosensitive chip.
  • the assembly of a camera module including a free-form lens includes:
  • the actual imaging results output by the photosensitive chip are determined by active calibration to determine the relative position of the optical lens containing the free-form lens and the photosensitive chip, so that the actual reference direction of the free-form lens and the optical design are determined.
  • the difference in the reference direction is not greater than 0.05 degrees, wherein the reference direction is used to characterize the surface of the free-form lens Type direction information.
  • This application can reduce the TTL of the telephoto module through free-form lenses, so that the TTL of the wide-angle module and the telephoto module are equal or close to the same, so that the dual-camera module composed of wide-angle and telephoto can be easily installed to Mobile phones and other terminal equipment.
  • the wide-angle module and the telephoto module can be made on the same substrate, and the substrate can be used to ensure that the optical centers of the two camera modules are on the same horizontal line, and the baseline distance is kept stable.
  • a bracket having two receiving holes can be eliminated, which helps to save costs and reduce process steps.
  • free-form lenses can be used to provide multiple sub-function areas.
  • a telephoto lens can clearly image multiple different depth-of-field areas, thereby providing better dual-camera or multi-camera users Camera experience.
  • Some embodiments of the present application can effectively avoid product defects caused by undesired rotation or inaccurate positioning of the free-form lens in the lens barrel during assembly.
  • the sensitivity of the free-form lens assembly error, especially the rotation error, is very high. If the optical lens or camera module containing free-form lens is assembled based on the traditional process, the free-form lens is prone to undesired rotation or positioning in the rotation direction in the lens barrel. Inaccuracy, which leads to problems such as product substandard quality and even inability to image. This application can effectively solve the above problems.
  • Some embodiments of the present application can effectively improve the installation accuracy of the free-form lens in the field of small-sized optical devices, thereby improving the imaging quality of the optical lens or camera module.
  • Some embodiments of the present application can effectively improve the production efficiency of optical lenses or camera modules containing free-form lenses and improve the product yield, which is suitable for mass production.
  • the height of the module can be effectively reduced, which helps reduce the overall size of the camera module array.
  • FIG. 1 shows a camera module array according to an embodiment of the present application
  • FIG. 2A illustrates a camera module array according to another embodiment of the present application
  • FIG. 2B illustrates a camera module array according to a modified embodiment of the present application
  • 3A illustrates a camera module array in another embodiment
  • 3B illustrates a camera module array in another embodiment
  • FIG. 5 is a schematic top view of the free-form lens in the embodiment of FIG. 4;
  • FIG. 6 shows a camera module array of a comparative example
  • FIG. 7 is a schematic cross-sectional view of an optical calibration lens 1000 according to an embodiment of the present application.
  • FIG. 8 is a schematic perspective view of a free-form lens in an embodiment of the present application.
  • FIG. 9 is a schematic cross-sectional view of a camera module 2000 according to an embodiment of the present application.
  • FIG. 10 is a schematic cross-sectional view of an optical calibration lens 1000a according to another embodiment of the present application.
  • FIG. 11 is a schematic cross-sectional view of a photosensitive assembly 2000a based on the optical calibration lens 1000a of FIG. 10; FIG.
  • FIG. 12 is a schematic cross-sectional view of an optical calibration lens 1000b according to another embodiment of the present application.
  • FIG. 13 is a schematic cross-sectional view of a photosensitive assembly 2000b based on the optical calibration lens 1000b of FIG. 12;
  • 15a shows a relative position adjustment method in active calibration in an embodiment of the present application
  • FIG. 15c illustrates a relative position adjustment method in which v and w direction adjustments are added in active calibration according to another embodiment of the present application.
  • the expressions of the first, second, etc. are only used to distinguish one feature from another feature, and do not indicate any limitation on the feature. Therefore, without departing from the teachings of this application, the first subject discussed below may also be referred to as the second subject.
  • FIG. 1 illustrates a camera module array according to an embodiment of the present application.
  • the camera module array is a dual camera module, including a wide-angle module 10 (the wide-angle module is sometimes referred to as a wide-angle lens module in this article) and a telephoto module 20 (sometimes also in this article
  • the telephoto module is called a telephoto lens module).
  • the telephoto module 20 has an optical calibration lens 1000 and the optical calibration lens 1000 has at least one free-form lens 109, so as to reduce the overall height (TTL) of the telephoto module 20, and further make the The total height of the mechanisms of the wide-angle module 10 and the telephoto module 20 are equal or the difference between the two is less than a preset threshold.
  • TTL overall height
  • the optical calibration lens 1000 includes a first lens component 100, a second lens component 200, and a connection medium.
  • the first lens component 100 includes a first lens barrel 101 and at least one first lens 102 (the number of the first lenses 102 in this embodiment is one) installed inside the first lens barrel 101.
  • the second lens component 200 includes a second lens barrel 201 and at least one second lens 202 (the number of the first lens 102 in this embodiment is five) installed in the second lens barrel 201.
  • the at least one first lens 102 and the at least one second lens 202 together form an imageable optical system.
  • the connection medium is adapted to fix the first lens component 100 and the second lens component 200 together.
  • the at least one first lens 102 and the at least one second lens 202 have at least one free-form lens 109.
  • the second lens barrel 201 is installed in a carrier of the motor.
  • the optical calibration lens 1000 with the free-form lens 109 will be further described in combination with other embodiments.
  • the shooting areas of the wide-angle module 10 and the telephoto module 20 overlap.
  • the TTL of the telephoto module 20 can be reduced by the free-form lens 109, so that the TTL of the wide-angle module 10 and the telephoto module 20 are equal or close to each other, so that the wide-angle and telephoto
  • the composed dual camera module is easy to install in terminal equipment such as mobile phones.
  • the photosensitive centers of two camera modules can be at the same height (referring to the height in the direction of the normal line to the surface of the circuit board 301).
  • the dual-camera shooting is used to perform depth recognition on the main shooting objects (such as people and objects), and then the images obtained by telephoto and wide-angle can be processed to obtain various types of special processed images. , Such as background blur, zoom in details, and resolution enhancement.
  • the free-form lens 109 is used, when shooting with a telephoto lens module and a wide-angle lens module, the details of the subject in the image are highly consistent. Therefore, the effect of supplementing details and filling pixels can be better than the prior art.
  • FIG. 6 shows a camera module array of a comparative example. As shown in FIG. 6, in the comparative example, the telephoto module 20 is significantly higher than the wide-angle module 10, so that part of the light may not be received by the photofocus module 20 due to the blocking of the telephoto module 20.
  • FIG. 2A illustrates a camera module array according to another embodiment of the present application.
  • the wide-angle module 10 and the telephoto module 20 share the same circuit board 301.
  • two photosensitive chips corresponding to the wide-angle lens and the telephoto lens, respectively, may be mounted on the surface of the same circuit board 301; a surface surrounding the two photosensitive chips may be mounted or formed on the surface of the circuit board 301.
  • the wide-angle module 10 and the telephoto module 20 are manufactured on the same circuit board 301 (or a substrate, and the substrate may be, for example, a combination of the circuit board 301 and a lens holder).
  • the circuit board 301 (or substrate) can be used to ensure The optical center of each camera module is located on the same horizontal line, and the baseline distance is kept stable, which can eliminate the bracket with two accommodation holes, which helps save costs and reduce process steps.
  • FIG. 2B shows a camera module array according to a modified embodiment of the present application.
  • This embodiment adds a support 900 to the embodiment shown in FIG. 2A.
  • the bracket 900 only serves as a reinforcement.
  • the two camera modules mainly use a common circuit board 301 (or substrate) to ensure that the optical centers of the two camera modules are on the same horizontal line and maintain a stable baseline distance.
  • the lens mount in FIG. 2 may be eliminated, and the wide-angle lens and telephoto lens may be directly adhered to the surface of the circuit board 301.
  • the two lens holders in FIG. 2 can be replaced with a molded integral lens holder, and the molded lens holders can be connected into one body, thereby improving the structural strength and better ensuring the two lens holders.
  • the optical center of the camera module is on the same horizontal line and keeps the baseline distance stable.
  • FIG. 3A illustrates a camera module array in another embodiment.
  • the wide-angle module 10 and the telephoto module 20 do not share the same circuit board 301.
  • the wide-angle module 10 and the telephoto module 20 are fixed by a bracket 900, and the heights of the light incident surfaces of the two camera modules are the same (or it can be understood that the front surfaces of the wide-angle and telephoto lenses are on the same horizontal plane , That is, the front faces of the wide-angle and telephoto lenses are flush).
  • FIG. 3B shows a camera module array in another embodiment.
  • the TTL of the telephoto module 20 is reduced by the free-form lens, so that the wide-angle module 10 and the telephoto module 20 TTL is equal or close to equal.
  • the wide-angle module 10 and the telephoto module 20 share the same circuit board 301.
  • the photosensitive centers (the centers of the photosensitive chips) of the two camera modules are at the same height (the height in the direction of the normal to the circuit board surface), and the heights of the light incident surfaces of the two camera modules are basically the same (or can be understood (The front surfaces of the wide-angle and telephoto lenses are basically on the same horizontal plane), so that the images taken by the wide-angle and telephoto lenses are more consistent, which makes it easier to post-process and reduce distortion.
  • the camera module array is reinforced by the bracket 900, so that the wide-angle module 10 and the telephoto module 20 are more stably fixed together.
  • FIG. 4 shows a camera module array in another embodiment of the present application.
  • the free-form lens 109 has a first sub-optical sub-function area 190 and a second sub-optical function area 191.
  • FIG. 5 is a schematic top view of the free-form lens in the embodiment of FIG. 4.
  • the first sub-optical functional area 190 and the second sub-optical functional area 191 may have different surface shapes (curvature), thereby obtaining different functions.
  • the boundary line between the first sub-optical functional area 190 and the second sub-optical functional area 191 is also shown in FIG. 5, that is, the regional boundary line 192.
  • the first sub-optical functional area 190 and the second sub-optical functional area 191 may correspond to different depth-of-field intervals.
  • the telephoto module 20 can simultaneously obtain clear imaging of objects in different depth-of-field intervals, and then combine with the imaging of the wide-angle module 10 to perform Comprehensive processing can provide a better camera experience for users with dual or multiple camera modules.
  • various special processed images can be obtained by processing the images obtained by telephoto and wide-angle, such as effects such as background blurring, detail enlargement, and resolution enhancement.
  • the telephoto lens module and the wide-angle lens module have the advantage of high consistency in the details of the image when shooting.
  • Figure 4 also shows the baseline 800 (Baseline) of the dual-camera module. As shown in Figure 4, the baseline (Baseline) can also be understood as the baseline distance. The distance between the centers.
  • the free-form lens 109 is used to divide the sub-optical area, so that a part of the sub-optical functional area at the telephoto end can be closer to the field of view of the wide-angle camera module to provide more consistent image information of objects and scenes. This enables the user to capture features that they want to emphasize.
  • the first sub-optical function area 190 has a different optical area and performance than the second sub-optical function area 191 area.
  • the free-form lens 109 may be divided into two or more sub-optical functional areas, and different sub-optical functional areas may have different designs according to different design requirements.
  • the ratio of the field angle occupied by the first sub-optical functional area 190, the second sub-optical functional area 191, ..., and the n-th sub-functional area satisfies the following relational expression.
  • F i represents the field of view of the i-th sub-optical functional area
  • S i represents the area of the optical area of the i-th sub-optical functional area
  • FOV represents the total field of view
  • S represents the sum of the areas of the optical sub-functional areas.
  • the wide-angle module 10 may also have the optical calibration lens 1000.
  • the wide-angle module 10 may have the optical calibration lens 1000, and the optical calibration lens 1000 has at least one free-form lens 109. That is, in the optical calibration lens 1000, the at least one first lens 102 and the at least one second lens 202 have at least one free-form lens 109. Setting the free-form lens 109 in the wide-angle module can effectively reduce distortion.
  • the field angle of the wide-angle lens module may be, for example, 60 ° -180 °.
  • the field angle of the telephoto lens module may be, for example, 4 ° -60 °.
  • a method for assembling a camera module array is also provided.
  • the baseline in the image processing algorithm in this embodiment can be set according to the actual imaging center.
  • the dual camera module can be assembled by drawing, that is, the target is photographed by drawing, the baseline of the two camera modules, and the two camera modules such as tilt, shift, After adjustments such as rotation, the two camera modules are fixed together.
  • tilt refers to the tilt adjustment in the w and v directions
  • shift refers to the translation adjustment in the x and y directions
  • rotation refers to the rotation adjustment in the r direction on the adjustment plane (or reference plane).
  • the adjustment of the directions of w, v, x, y, r, etc. will be described in more detail in conjunction with the drawings.
  • the method of dual camera assembly includes the following steps.
  • step 1 the wide-angle lens camera module is placed in a predetermined position and fixed by a fixing device. This includes shooting the target plate after opening the wide-angle lens, and adjusting the wide-angle lens camera module to a predetermined position according to the specific position information of the target plate in the captured image.
  • Step 2 The telephoto lens camera module is placed in a predetermined position, and the target plate is opened to shoot. The position is adjusted according to the specific information of the target plate position in the image captured by the telephoto lens module.
  • the position of the telephoto lens module relative to the wide-angle lens module is adjusted to the following indicators: the base line of the telephoto lens module and the wide-angle lens module is within a preset range, and the field of view of the telephoto lens module and the wide-angle lens module has The overlapped area and the overlapped area are within a preset area.
  • the relative positions of the telephoto lens module and the wide-angle lens module include tilt, shift, and rotation.
  • Step 3 Fix the telephoto lens module and the wide-angle lens module.
  • the fixing may be fixed by a bracket, or externally fixed by the outer frame of the terminal, or may be fixed by the same substrate.
  • the telephoto and wide-angle lens modules can be fixed by using a common substrate or no common substrate. Since the free-form lens 109 is provided in this embodiment, the relative height difference of the dual-camera lens module is reduced, so the difference between the TTL values of the two camera modules can be reduced to a certain threshold range (dual-camera in this range) Module shooting does not appear the above-mentioned shading effect), so it is especially suitable for dual-camera with common substrate.
  • step 1 and step 2 the wide-angle module and the telephoto lens module may be replaced with each other.
  • optical calibration lens of the present application in combination with a series of embodiments.
  • FIG. 7 is a schematic cross-sectional view of an optical calibration lens 1000 according to an embodiment of the present application.
  • the optical calibration lens 1000 includes a first lens component 100, a second lens component 200, and an adhesive material (not shown in the figure) that bonds the first lens component 100 and the second lens component 200 together.
  • the first lens component 100 includes a first lens barrel 101 and a first lens 102, and the first lens 102 is a free-form lens.
  • the second lens component 200 includes a second lens barrel 201 and five second lenses 202.
  • the glue is arranged in the gap 400 between the first lens component 100 and the second lens component 200 to fix the first lens component 100 and the second lens component 200 together.
  • the plastic material supports and fixes the first lens component and the second lens component, and keeps the relative positions of the first lens component and the second lens component relative to each other as determined by active calibration. position.
  • the free-form lens has a complex optical surface processed based on a free-form (FREE-FORM) technology.
  • the complex optical surface can be obtained, for example, by designing a progressive multifocal surface shape on the front or rear surface of the lens through free-form surface design software during the optical design, and then by, for example, performing precision grinding and polishing on a high-precision CNC lathe.
  • FIG. 8 is a schematic perspective view of a free-form lens in an embodiment of the present application. Referring to Figure 8, it can be seen that free-form surface is a complex aspheric surface, which is irregular and asymmetric in most cases. For a free-form lens, it has a strong directivity on a plane perpendicular to its thickness direction.
  • the actual reference direction of the free-form lens and the reference determined by the optical design can be adjusted by adjusting the relative positional relationship between the first lens component 100 and the second lens component 200 in the active calibration phase.
  • the difference in directions is not greater than 0.05 degrees (where the reference direction is used to characterize the surface orientation information of the free-form lens), and then the first lens component 100 and the first lens component 100 are fixed and supported by an adhesive material located in the gap 400.
  • the second lens component 200 allows the relative positions of the first lens component 100 and the second lens component 200 to maintain the relative positions determined by active calibration, thereby ensuring the imaging quality of the optically calibrated lens.
  • non-rotationally symmetric free-form lenses have no inherent properties of optical axis symmetry, that is, they cannot rely on the optical axis of the lens to perform positioning, adjustment, and other operations on the assembly, which makes assembly extremely difficult, especially for free-form lenses in traditional processes.
  • Rotation positioning in the lens barrel is very difficult.
  • the sensitivity of assembly errors of free-form lenses, especially rotation errors is very high. If an optical calibration lens or camera module containing free-form lenses is assembled based on traditional processes, free-form lenses are prone to undesired rotation in the lens barrel. Or the positioning of the rotation direction is inaccurate, which leads to problems such as the substandard imaging quality of the product and even inability to image.
  • FIG. 9 shows a schematic cross-sectional view of a camera module 2000 according to an embodiment of the present application.
  • the camera module 2000 includes an optical calibration lens 1000 and a photosensitive component 300 as shown in FIG. 7.
  • the photosensitive assembly 300 includes a circuit board 301, a photosensitive chip 302 mounted on the circuit board 301, a cylindrical support body 303 mounted on the circuit board 301 and surrounding the photosensitive chip, and a cylindrical support body 303 mounted on Color filter 304.
  • the second lens component 200 may further include a motor, and the second lens barrel 202 may be installed in a carrier of the motor.
  • the motor is mounted on the top surface of the cylindrical support body 303 so as to fix the second lens component 200 and the photosensitive assembly 300 together.
  • the motor may be replaced by other structures such as a cylindrical support, or it may be eliminated and the second lens barrel 201 may be directly mounted on the top surface of the cylindrical support 303.
  • the motor may be replaced by other types of optical actuators, such as SMA (shape memory alloy) actuators, MEMS actuators, and the like.
  • the optical actuator refers to a device for causing the optical calibration lens to move relative to the photosensitive chip.
  • the above embodiments can reduce distortion by applying free-form lenses to small-sized, large-aperture optical calibration lenses, and can reduce distortion by applying free-form lenses to high-pixel, small-sized, large-aperture camera modules;
  • the total optical length of the camera module reduces the volume of the camera module; it can effectively avoid product defects caused by undesired rotation or inaccurate positioning of the free-form lens in the lens barrel during assembly.
  • a size of the gap 400 in a direction along the optical axis of the optical calibration lens is, for example, 30 ⁇ m to 100 ⁇ m.
  • FIG. 10 shows a schematic cross-sectional view of an optical calibration lens 1000a according to another embodiment of the present application. As shown in FIG. 10, this embodiment is different from the optical calibration lens 1000 shown in FIG. 7 in that the second lens component 200 has a free-form lens 109.
  • the first lens of the first lens component 100 is a conventional lens.
  • FIG. 11 illustrates a schematic cross-sectional view of a photosensitive assembly 2000 a based on the optical calibration lens 1000 a of FIG. 10.
  • FIG. 12 shows a schematic cross-sectional view of an optical calibration lens 1000b according to another embodiment of the present application.
  • this embodiment is different from the optical calibration lens 1000 shown in FIG. 7 in that the first lens component 100 and the second lens component 200 respectively have free-form lenses 109 a and 109 b.
  • the surface directions of the free-form lenses 109a and 109b can be complemented by adjusting the relative positions of the first lens component 100 and the second lens component 200 to better adjust The actual imaging quality of the optical system.
  • FIG. 13 shows a schematic cross-sectional view of a photosensitive assembly 2000b based on the optical calibration lens 1000b of FIG. 12. Since the surface directions of the free-form lenses 109a and 109b can be complemented by adjusting the relative positions of the first lens component 100 and the second lens component 200 during the active calibration phase, the camera module 2000b can have Better imaging quality.
  • the number of lenses of the first lens component and the second lens component may be adjusted as needed.
  • the number of lenses of the first lens component and the second lens component may be two and four, respectively, three and three, four and two, and five and one, respectively.
  • the total number of lenses of the entire optical calibration lens can also be adjusted as needed.
  • the total number of lenses of the optical calibration lens can be six, or five or seven.
  • the lens components are not limited to two.
  • the number of lens components may be three or four or more than two.
  • two adjacent lens components may be regarded as the first lens component and the second lens component described above, respectively.
  • the optical calibration lens may include two first lens components and one second lens component located between the two first lens components, and the two first lens components All the first lenses of the lens component and all the second lenses of a second lens component together constitute an imageable optical system for active calibration.
  • the optical calibration lens may include two first lens components and two second lens components, and the first lens component, the second lens component, the first lens component, the first The order of the two lens components is arranged from top to bottom, and all the first lenses of the two first lens components and all the second lenses of the two second lens components together form an imageable optical system for active calibration. Other variants such as these are not repeated one by one in this article.
  • FIG. 14 shows a flowchart of an optical calibration lens assembly method in an embodiment of the present application. Referring to FIG. 14, the method includes:
  • Step 10 preparing a first lens component and a second lens component separated from each other, wherein the first lens component includes a first lens barrel and at least one first lens installed in the first lens barrel, and the second lens component
  • the lens component includes a second lens barrel and at least one second lens mounted in the second lens barrel. Among them, at least one free-form lens exists in the first lens and the second lens.
  • Step 20 Pre-position the first lens component and the second lens component, so that the at least one second lens and the at least one first lens together form an imageable optical system.
  • Step 30 Adjust and determine the relative positions of the first lens component and the second lens component based on active calibration.
  • step 40 the first lens component and the second lens component are bonded by an adhesive material.
  • the first lens component and the second lens component are supported and fixed by using a cured glue material, so that the relative positions of the first lens component and the second lens component are maintained by an active calibration mechanism. Determine the relative position.
  • step 30 glue coating may be performed on the gap between the first lens component and the second lens component, and then step 30 is performed to adjust and determine the first lens component. Relative positions of a lens component and a second lens component. After the relative position is determined, step 40 is performed to cure the glue material, so that the cured lens material is used to support the first lens component and the second lens component, so that the first lens component and the second lens are cured. The relative position of the components is maintained at the relative position determined by active calibration. In another embodiment, step 30 may be performed first to adjust and determine the relative positions of the first lens component and the second lens component.
  • the relative position After determining the relative position, temporarily move the first lens part (or the second lens part), and then apply the glue, and then move the first lens part (or the second lens part) based on the determined relative position. return. Finally, the glue is cured, so that the relative positions of the first lens component and the second lens component are maintained at the relative positions determined by active calibration.
  • FIG. 15a illustrates a relative position adjustment method in active calibration according to an embodiment of the present application.
  • the first lens component (may also be the first lens) can be moved in the x, y, and z directions relative to the second lens component (that is, the relative position adjustment in this embodiment has three Degrees of freedom).
  • the z direction is a direction along the optical axis
  • the x and y directions are directions perpendicular to the optical axis. Both the x and y directions are in an adjustment plane P, and the translation in the adjustment plane P can be decomposed into two components in the x and y directions.
  • Fig. 15b shows a rotation adjustment in active calibration according to another embodiment of the present application.
  • the relative position adjustment in addition to the three degrees of freedom of Fig. 15a, the relative position adjustment also increases the degree of freedom of rotation, that is, the adjustment in the r direction.
  • the adjustment in the r direction is a rotation in the adjustment plane P, that is, a rotation about an axis perpendicular to the adjustment plane P.
  • FIG. 15c illustrates a relative position adjustment method in which the v and w direction adjustments are added in active calibration according to another embodiment of the present application.
  • the v direction represents the rotation angle of the xoz plane
  • the w direction represents the rotation angle of the yoz plane
  • the rotation angles of the v direction and the w direction can be combined into a vector angle
  • this vector angle represents the total tilt state. That is, by adjusting the v direction and the w direction, the tilt attitude of the first lens component relative to the second lens component (that is, the optical axis of the first lens component relative to the optical axis of the second lens component can be adjusted).
  • the tilt is, by adjusting the v direction and the w direction, the tilt attitude of the first lens component relative to the second lens component (that is, the optical axis of the first lens component relative to the optical axis of the second lens component can be adjusted). The tilt).
  • the relative position adjustment method may be to adjust only any one of the above six degrees of freedom, or a combination of any two or more of them.
  • the active calibration includes at least a calibration in the r direction.
  • the active calibration step (step 30) includes: according to the measured resolution of the optical system (in this application, the resolution can be obtained from the measured MTF curve or SFR curve, but the method of obtaining the resolution is not limited to this), The relative position relationship between the first lens component and the second lens component is adjusted and determined by clamping or adsorbing the first lens component and / or the second lens component. Wherein, the first lens component is moved along the adjustment plane, and the relative position between the first lens and the second lens component in the moving direction along the plane is determined according to the measured resolution of the optical system, The movement includes rotation on the adjustment plane, that is, movement in the r direction.
  • the first lens component and / or the second lens component have an identifier that characterizes the surface orientation information of the free-form surface lens contained therein.
  • the free-form lens has a reference plane perpendicular to its thickness direction, the free-form lens has a reference direction in the reference plane, the first lens component and / or the second lens
  • the component has an identification of the reference direction to represent the surface orientation information of the free-form lens.
  • the free-form lens is very sensitive to the rotational positioning in the reference plane, and in the active calibration phase, the first lens component and the second lens component are relatively moved and adjusted in the r direction, which can improve the actual reference direction of the free-form lens Installation accuracy.
  • the difference between the actual reference direction of the free-form lens and the reference direction determined by the optical design may not be greater than 0.05 degrees, thereby obtaining a small-sized, large-aperture optical lens or camera module with high imaging quality.
  • aberration adjustment data can be collected and obtained in real time and corrected, so that the lens and / or camera module with the free-form lens can obtain better imaging. effect.
  • the adjustment index for active calibration can be set for different needs. Therefore, the optical lenses after active calibration with different adjustment indexes meet different optical performances.
  • the reference direction mark can help the free-form lens to quickly pre-position to the direction determined by the optical design, and then actively adjust based on the pre-positioning. This will help improve the production efficiency of optical lenses or camera modules.
  • the surface orientation of the free-form surface lens can also be machine-recognized based on machine vision technology, and a predetermined position in the r direction can be performed based on the recognition result, and then actively adjusted based on the predetermined position.
  • the movement further includes a translation on the adjustment plane, that is, a movement in the x and y directions.
  • the active calibration further includes: adjusting and determining an included angle of an axis of the first lens component with respect to an axis of the second lens component according to a measured resolution of the optical system, That is, adjustment in the w and v directions.
  • an angle between the axis of the first lens component and the axis of the second lens component may be non-zero.
  • the active calibration further includes: moving the first lens component (ie, adjustment in the z direction) along a direction perpendicular to the adjustment plane, and according to the measured resolution of the optical system , Determining a relative position between the first lens component and the second lens component in a direction perpendicular to the adjustment plane.
  • a gap is provided between a bottom surface of the first lens component and a top surface of the second lens component; and the bonding step (Step 40), the glue material is arranged in the gap.
  • the first lens component in the preparing step (step 10), may not have a first lens barrel.
  • the first lens component may be constituted by a single first lens.
  • the glue is The material is arranged in the gap.
  • the first lens may be formed by a plurality of sub-lenses that are fitted together to form a whole.
  • a side surface and a top surface of the non-optical surface of the first lens that are not used for imaging may form a light shielding layer.
  • the light-shielding layer may be formed by screen-printing a light-shielding material on a side surface and a top surface of the first lens.
  • the second lens component in the active calibration step, may be fixed, the first lens component may be clamped by a clamp, and the first lens component may be moved by a six-axis movement mechanism connected to the clamp, thereby realizing the first The relative movement between the lens component and the second lens component in the above six degrees of freedom.
  • the jig may be abutted or partially abutted on a side surface of the first lens component, thereby clamping the first lens component.
  • a method for assembling a camera module includes: assembling an optical calibration lens by using the optical calibration lens assembly method of any of the foregoing embodiments, and then using the assembled optical calibration lens to make Camera module.
  • a flowchart of another method for assembling a camera module includes:
  • Step 100 Prepare a first lens component and a camera module component, wherein the camera module component includes a second lens component and a photosensitive module combined together, and the first lens component includes a first lens barrel and a At least one first lens in the first lens barrel, and the second lens component includes a second lens barrel and at least one second lens installed in the second lens barrel.
  • at least one free-form lens exists in the first lens and the second lens.
  • Step 200 Pre-position the first lens component and the second lens component so that the at least one second lens and the at least one first lens together form an imageable optical system.
  • Step 300 Adjust and determine the relative positions of the first lens component and the second lens component based on active calibration.
  • step 400 the first lens component and the second lens component are bonded by an adhesive material.
  • the second lens component and the photosensitive module are assembled together to form a camera module component, and then the camera module component and the first lens component are assembled to obtain a complete Camera module.
  • the process of assembling the camera module component with the first lens component may also have various modifications. For example, reference may be made to the multiple embodiments of the optical calibration lens assembly method described above to implement the camera module component and the first lens component. Assembly.
  • the dual-camera composed of wide-angle and telephoto is only one of various common dual-camera solutions.
  • the dual camera can generally be of two types: “symmetric” and "asymmetric".
  • the "symmetrical" dual camera module can refer to two camera modules with substantially the same size, such as a "color + black and white” dual camera solution.
  • the two cameras have the same focal length and the same size, and sometimes even two cameras.
  • the pixel size of the sensor chip of the module is also the same.
  • Dual camera has improved the picture quality.
  • “Asymmetrical" dual camera module usually refers to the inconsistent size of the two camera modules, which can mean that the focal lengths of the cameras are different. For example, iPhone 7 Plus and LG G5 are examples.
  • the two modules of the dual camera can have the difference between the main camera and the sub camera. This difference can bring many functions to the dual camera.
  • the main camera is a camera that has been working for a long time when the camera module array is working.
  • the sub-shot can be used to record depth of field information to assist shooting.
  • Asymmetrical "dual camera modules have different design solutions such as” telephoto + wide angle "," telephoto + standard ", taking iPhone 7 Plus as an example, a wide-angle camera module is used as the main camera, and the main camera is shooting It will shoot the whole picture.
  • Free-form lens can be used in any of the above dual-camera modules (or multi-camera modules including the dual-camera) to reduce the total optical length.
  • one of the camera modules can reduce its total optical length through free-form lenses, so that the total optical length of the two camera modules is equal or the difference between the total optical length of the two camera modules is less than a threshold.
  • the dual-camera logic on the market includes: dual depth of field, black and white + color dual camera and dual fixed focus dual camera.
  • the size of a camera module (referring to a camera module containing a free-form lens) in the camera module array can be reduced, thereby reducing the overall size of the camera module array.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Studio Devices (AREA)
  • Cameras In General (AREA)
  • Lens Barrels (AREA)

Abstract

本申请提供了一种摄像模组阵列,包括:至少两个摄像模组,其中至少一个摄像模组具有自由曲面镜片,并且所述自由曲面镜片根据感光芯片接收的实际成像结果进行主动校准,以使所述自由曲面镜片的实际基准方向与光学设计所确定的基准方向的差异不大于0.05度。本申请还提供了相应的摄像模组阵列组装方法。本申请可以通过自由曲面镜片降低摄像模组的TTL,从而例如使广角模组和长焦模组的TTL相等或接近于相等,进而使广角和长焦组成的双摄模组易于安装至手机等终端设备中;本申请还可以有效地提高自由曲面镜片的安装精度。

Description

摄像模组阵列及其组装方法
交叉引用
本申请要求于2018年05月30日向中国专利局提交的、发明名称为“摄像模组阵列及其组装方法”的第201810541268.4号发明专利申请、于2018年05月30日向中国专利局提交的、名称为“摄像模组阵列”的第201820824061.3号实用新型专利申请的优先权,上述专利申请的全部内容通过引用并入本文。
技术领域
本申请涉及光学成像技术领域,具体地说,本申请涉及摄像模组阵列及其组装方法。
背景技术
随着移动电子设备的普及,被应用于移动电子设备的用于帮助使用者获取影像(例如视频或者图像)的摄像模组的相关技术得到了迅猛的发展和进步,并且在近年来,摄像模组在诸如医疗、安防、工业生产等诸多的领域都得到了广泛的应用。
为了满足越来越广泛的市场需求,高像素、小尺寸、大光圈是现有摄像模组不可逆转的发展趋势。大光圈镜头可以带来大的视场角,然而,这也引发镜头的光学总长变长和视场角畸变较大的问题。比如130°视场角的手机镜头,畸变>10%。在小尺寸光学装置的领域,上述问题将更加突出,难以解决。
另一方面,多摄模组被越来越多地应用到手机等智能终端设备中。现有技术中的双摄像头,往往采用长焦镜头和广角镜头的结构组成双摄像头,以带给用户更佳的摄像体验。例如长焦镜头可以作为主摄像头来拍摄照片,广角镜头具有较大的视场,可以用来辅助计算照片的深度信息,以便进行后续的图像虚化处理。
现有技术中的广角和长焦组成的双摄像头中,往往长焦镜头与广角镜头具有不一致的机构总高(Total Track Length,缩写为TTL),有时TTL也可以被称为光学总长。这里TTL指的机构中的镜筒的端面至成像面的高度。长焦镜头摄像模组的光学总长往往大于广角镜头摄像模组。另一方面,双摄像头模组组装时,两个摄像模组之间需要保持一定的基线(base line)距离。基线距离是指立体视觉系统中透镜的两个光学中心之间的距离。以上需求可能导致这类广角和长焦组成的双摄模组在紧凑的手机空间内的安装存在困难。例如广角和长焦镜头的端面不齐平,导致需要使用额外的支架进行固定。例如两个模组分别固定于支架的两个容置孔中,通过支架来保证两个摄像模组的光学中心位于同一水平线上,以及基线距离的稳定。
再者,近年来自由曲面(FREE-FORM)技术日趋成熟,利用自由曲面技术可获得具有自由曲面的镜片。基于自由曲面技术,可以在光学设计时通过自由曲面设计软件将渐进多焦点面型加工于镜片的前或后表面,再通过例如车床加工复杂表面。目前,自由曲面技术已在高端眼镜片行业得到较为广泛的应用。如果将自由曲面镜片用于小尺寸光学装置的领域(例如手机摄像模组领域),将有助于降低大视场角的畸变、并在一定程度上降低摄像模组的光学总长。以上述130°视场角手机镜头为例,利用自由曲面镜片,预计可以降低畸变至2%以下。如果自由曲面镜片用来做普通自动对焦模组,则可以降低光学总长约10%,MTF设计值提升8%,可以降低畸变至1%以下。换言之,自由曲面镜片能够降低或者最小化光学系统的像差,实现校正像差,降低畸变的功能,还可以起到降低模组光学总长和/或模组体积的效果。
然而,自由曲面是一种复杂的非球面,在大多数情况下是无规则非对称的,具有多重对称轴。而在小尺寸光学装置的领域(例如手机摄像模组领域),目前市场上典型的光学镜头是通过逐片嵌入的方式进行组装。具体来说,预先准备内侧具有台阶状承靠面的镜筒,然后将各镜片逐片嵌入该镜筒内侧的台阶状承靠面以得到完整的光学镜头。由于安装工艺的局限性,镜筒中所选择的镜片面型通常为具有旋转对称性的球面或非球面。如果使用自由曲面镜片,传统紧凑型摄像模组 镜头的组装工艺就无法进行准确的安装。因为在具有自由曲面镜片的光学系统中,由于非旋转对称的自由曲面镜片由于不存在单一光轴使其对称,难以寻找光心,光轴对准和校正问题无法控制。摄像模组的镜片面型尺寸常常<0.7cm,在小尺寸的镜片安装中,需要更高的安装要求,也需要更加快速的安装能力。以上问题都导致自由曲面镜片难以应用于紧凑型摄像模组。
发明内容
本申请旨在提供一种能够克服现有技术的至少一个缺陷的解决方案。
根据本申请的一个方面,提供了一种摄像模组阵列,包括:至少两个摄像模组,其中至少一个摄像模组具有自由曲面镜片,并且所述自由曲面镜片根据感光芯片接收的实际成像结果进行主动校准,以使所述自由曲面镜片的实际基准方向与光学设计所确定的基准方向的差异不大于0.05度。
在一个实施例中,所述自由曲面镜片安装于光学校准镜头中,所述光学校准镜头包括:第一镜头部件,其包括至少一个第一镜片;第二镜头部件,其包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片,所述至少一个第一镜片与所述至少一个第二镜片共同构成可成像的光学系统;以及连接介质,适于将所述第一镜头部件和所述第二镜头部件固定在一起;并且,所述至少一个第一镜片与所述至少一个第二镜片中具有至少一个所述自由曲面镜片。
在一个实施例中,所述至少两个摄像模组包括广角模组和长焦模组,并且所述长焦模组具有所述光学校准镜头;所述广角模组和所述长焦模组的机构总高相等或二者的机构总高之差小于预设的阈值。
在一个实施例中,所述广角模组具有所述光学校准镜头,并且所述广角模组中,所述至少一个第一镜片与所述至少一个第二镜片中具有至少一个自由曲面镜片。
在一个实施例中,所述广角模组和所述长焦模组共用同一线路板。
在一个实施例中,所述至少两个摄像模组包括黑白模组和彩色模 组。
在一个实施例中,所述自由曲面镜片具有多个功能区,且所述多个功能区分别具有不同的曲率。
在一个实施例中,所述广角摄像模组具有至少一个自由曲面镜片以减少所述广角摄像模组的拍摄畸变。
在一个实施例中,所述连接介质为胶材,其适于支撑并固定所述第一镜头部件和所述第二镜头部件,并使得所述第一镜头部件和所述第二镜头部件的相对位置保持主动校准所确定的相对位置。
在一个实施例中,所述第一镜头部件的轴线与所述第二镜头部件的轴线之间具有不为零的夹角;以及在沿着所述光学镜头的光轴方向上,所述第一镜头部件和所述第二镜头部件之间具有间隙。
在一个实施例中,所述第一镜片的数目为一,并且所述第一镜片为自由曲面镜片。
在一个实施例中,所述至少一个第二镜片的数目为多个,并且所述至少一个第二镜片中具有一个自由曲面镜片。
在一个实施例中,所述至少一个第一镜片中具有一个自由曲面镜片,并且所述至少一个第二镜片中具有一个自由曲面镜片。
在一个实施例中,所述第一镜头部件还包括第一镜筒,并且所述至少一个第一镜片安装于所述第一镜筒的内侧。
在一个实施例中,所述第一镜头部件和/或所述第二镜头部件具有表征其所包含的所述自由曲面镜片的面型方向信息的标识。
在一个实施例中,所述自由曲面镜片具有垂直于其厚度方向的基准平面,所述自由曲面镜片在所述基准平面内具有基准方向,所述第一镜头部件和/或所述第二镜头部件具有所述基准方向的标识以表征所述自由曲面镜片的面型方向信息。
在一个实施例中,所述连接介质为胶材,其适于支撑并固定所述第一镜头部件和所述第二镜头部件,并使得所述自由曲面镜片的实际基准方向与光学设计所确定的基准方向的差异不大于0.05度。
在一个实施例中,所述至少两个摄像模组包括两个互相不对称的摄像模组,所述的两个互相不对称的摄像模组中的至少一个具有自由 曲面镜片,以使所述的两个互相不对称的摄像模组的机构总高相等或者二者的机构总高之差小于预设的阈值。
在一个实施例中,所述的两个互相不对称的摄像模组的前端面齐平。
根据本申请的另一方面,还提供了一种摄像模组阵列组装方法,包括:组装广角镜头和长焦镜头;以及将所述广角镜头和长焦镜头安装于同一线路板;其中所述长焦镜头为光学校准镜头,光学校准镜头包括第一镜头部件和第二镜头部件,其中所述第一镜头部件包括至少一个第一镜片,所述第二镜头部件包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片,并且所述至少一个第一镜片与所述至少一个第二镜片中具有至少一个自由曲面镜片,所述光学校准镜头的组装方法包括:对彼此分离的所述第一镜头部件和所述第二镜头部件进行预定位,使所述至少一个第一镜片与所述至少一个第二镜片共同构成可成像的光学系统;基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置;以及通过胶材粘结所述第一镜头部件和所述第二镜头部件,使所述第一镜头部件和所述第二镜头部件固定并保持在主动校准所确定的相对位置。
在一个实施例中,所述将所述广角镜头和长焦镜头安装于同一线路板的步骤包括:将所述广角镜头和长焦镜头直接粘贴于所述线路板的表面。
在一个实施例中,所述将所述广角镜头和长焦镜头安装于同一线路板的步骤包括:在所述线路板的表面安装分别对应于所述广角镜头和所述长焦镜头的两个感光芯片;在所述线路板的表面安装或形成围绕所述两个感光芯片的镜座;以及将所述广角镜头和长焦镜头直接粘贴于所述镜座的顶面。
在一个实施例中,所述至少一个第一镜片中具有至少一个自由曲面镜片,且所述至少一个第二镜片中也具有至少一个自由曲面镜片。
在一个实施例中,所述主动校准包括:根据所述光学系统的实测解像力,通过夹持或吸附所述第一镜头部件和/或所述第二镜头部件,来调节并确定所述第一镜头部件和所述第二镜头部件的相对位置关 系。
在一个实施例中,所述主动校准还包括:通过调节所述第一镜头部件和所述第二镜头部件的相对位置关系,来使所述自由曲面镜片的实际基准方向与光学设计所确定的基准方向的差异不大于0.05度,其中所述基准方向用于表征所述自由曲面镜片的面型方向信息。
在一个实施例中,所述主动校准还包括:沿着调整平面移动第一镜头部件,根据所述光学系统的实测解像力,确定所述第一镜片与所述第二镜头部件之间的沿着所述平面的移动方向上的相对位置,其中所述移动包括在所述调整平面上的转动。
在一个实施例中,所述主动校准步骤中,所述移动还包括在所述调整平面上的平移。
在一个实施例中,所述主动校准还包括:根据所述光学系统的实测解像力,调节并确定所述第一镜头部件的轴线相对于所述第二镜头部件的轴线的夹角。
在一个实施例中,所述主动校准还包括:沿着垂直于所述调整平面的方向移动所述第一镜头部件,根据所述光学系统的实测解像力,确定所述第一镜头部件与所述第二镜头部件之间的在垂直于所述调整平面的方向上的相对位置。
在一个实施例中,所述第一镜头部件还包括第一镜筒,并且所述至少一个第一镜片安装于所述第一镜筒的内侧。
在一个实施例中,所述预定位步骤中,使所述第一镜头部件的底面和所述第二镜头部件的顶面之间具有间隙;以及所述粘结步骤中,所述胶材布置于所述间隙。
根据本申请的另一方面,还提供了另一种摄像模组阵列组装方法,包括:组装广角模组和长焦模组;以及将所述广角模组和长焦模组固定在一起形成摄像模组阵列,并使得所述广角模组和长焦模组的夹角处于夹角阈值之内,并且广角模组和长焦模组间隔的距离处于距离阈值之内;其中所述长焦模组和所述广角模组中的至少一个具有自由曲面镜片。
在一个实施例中,所述长焦模组包括长焦镜头和对应的感光芯片, 所述长焦镜头具有自由曲面镜片;所述组装长焦模组的步骤中,根据所述感光芯片所输出的实际成像结果,通过主动校准来确定所述长焦镜头和所述感光芯片的相对位置,使所述自由曲面镜片的实际基准方向与光学设计所确定的基准方向的差异不大于0.05度,其中所述基准方向用于表征所述自由曲面镜片的面型方向信息。
根据本申请的另一方面,还提供了一种摄像模组阵列组装方法,包括:组装至少两个摄像模组,其中至少一个摄像模组具有自由曲面镜片;以及将所述至少两个模组固定在一起形成摄像模组阵列,其中使得所述至少两个摄像模组中的任意两个摄像模组的夹角处于阈值之内,并且这两个摄像模组间隔的距离处于阈值之内;其中所述组装至少两个摄像模组的步骤中,含有自由曲面镜片的摄像模组包括含有自由曲面镜片的光学镜头和对应的感光芯片,含有自由曲面镜片的摄像模组的组装包括:根据所述感光芯片所输出的实际成像结果,通过主动校准来确定所述的含有自由曲面镜片的光学镜头与所述感光芯片的相对位置,使所述自由曲面镜片的实际基准方向与光学设计所确定的基准方向的差异不大于0.05度,其中所述基准方向用于表征所述自由曲面镜片的面型方向信息。
与现有技术相比,本申请具有下列至少一个技术效果:
1、本申请可以通过自由曲面镜片降低长焦模组的TTL,从而使广角模组和长焦模组的TTL相等或接近于相等,从而使广角和长焦组成的双摄模组易于安装至手机等终端设备中。
2、本申请的一些实施例可以将广角模组和长焦模组制作于同一基板上,并通过该基板来保证两个摄像模组的光学中心位于同一水平线上,并保持基线距离稳定。
3、本申请的一些实施例可以取消具有两个容置孔的支架,有助于节省成本并减少工艺步骤。
4、本申请的一些实施例可以利用自由曲面镜片提供多个子功能区域,例如可以使长焦镜头可以对多个不同的景深区域清晰成像,从而为双摄或多摄模组用户提供更佳的摄像体验。
5、本申请的一些实施例可以有效地避免组装时自由曲面镜片在镜筒内发生不期望的旋转或旋转方向的定位不准确而导致的产品不良问题。自由曲面镜片组装误差尤其是旋转误差的敏感度很高,如果基于传统工艺组装含有自由曲面镜片的光学镜头或摄像模组,自由曲面镜片在镜筒内容易发生不期望的旋转或旋转方向的定位不准确,进而导致产品成像品质不达标甚至无法成像等问题。而本申请可以有效地解决上述问题。
6、本申请的一些实施例可以有效地提高自由曲面镜片在小尺寸光学装置领域的安装精度,从而提高光学镜头或摄像模组的成像品质。
7、本申请的一些实施例可以有效地提高含自由曲面镜片的光学镜头或摄像模组的生产效率以及提升产品良率,适合于大批量生产。
8、本申请的一些实施例中可以有效地降低模组的高度,有助于降低摄像模组阵列的整体尺寸。
附图说明
在参考附图中示出示例性实施例。本文中公开的实施例和附图应被视作说明性的,而非限制性的。
图1示出了本申请一个实施例的摄像模组阵列;
图2A示出了本申请另一个实施例的摄像模组阵列;
图2B示出了本申请一个变形的实施例的摄像模组阵列;
图3A示出了另一个实施例中的摄像模组阵列;
图3B示出了另一个实施例中的摄像模组阵列;
图4示出了本申请另一个实施例中的摄像模组阵列;
图5示出了图4实施例中的自由曲面镜片的俯视示意图;
图6示出了一个比较例的摄像模组阵列;
图7示出了本申请一个实施例的光学校准镜头1000的剖面示意图;
图8示出了本申请一个实施例中的一个自由曲面镜片的立体示意图;
图9示出了本申请一个实施例的摄像模组2000的剖面示意图;
图10示出了本申请另一实施例的光学校准镜头1000a的剖面示意图;
图11示出了基于图10的光学校准镜头1000a的感光组件2000a的剖面示意图;
图12示出了本申请另一实施例的光学校准镜头1000b的剖面示意图;
图13示出了基于图12的光学校准镜头1000b的感光组件2000b的剖面示意图;
图14示出了本申请一个实施例中的光学校准镜头组装方法的流程图;
图15a示出了本申请一个实施例中的主动校准中相对位置调节方式;
图15b示出了本申请另一个实施例的主动校准中的旋转调节;
图15c示出了本申请又一个实施例的主动校准中的增加了v、w方向调节的相对位置调节方式。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一主体也可被称作第二主体。
在附图中,为了便于说明,已稍微夸大了物体的厚度、尺寸和形 状。附图仅为示例而并非严格按比例绘制。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
图1示出了本申请一个实施例的摄像模组阵列。如图1所示,该摄像模组阵列为双摄模组,包括一个广角模组10(本文中有时也将广角模组称为广角镜头模组)和一个长焦模组20(本文中有时也将长焦模组称为长焦镜头模组)。本实施例中,长焦模组20具有光学校准镜头1000并且所述光学校准镜头1000具有至少一个自由曲面镜片109,以使长焦模组20的机构总高(TTL)降低,进而使所述广角模组10和所述长焦模组20的机构总高相等或二者之差小于预设的阈值。其中,所述光学校准镜头1000包括:第一镜头部件100、第二镜头部件200和连接介质。其中,第一镜头部件100包括第一镜筒101和安装 在所述第一镜筒101内侧的至少一个第一镜片102(本实施例中第一镜片102的数目为一个)。第二镜头部件200包括第二镜筒201和安装在所述第二镜筒201内的至少一个第二镜片202(本实施例中第一镜片102的数目为五个)。所述至少一个第一镜片102与所述至少一个第二镜片202共同构成可成像的光学系统。连接介质适于将所述第一镜头部件100和所述第二镜头部件200固定在一起。并且所述长焦模组20中,所述至少一个第一镜片102与所述至少一个第二镜片202中具有至少一个自由曲面镜片109。本实施例中,第二镜筒201安装在马达的载体内。在下文中,还会结合其它实施例对具有自由曲面镜片109的光学校准镜头1000做进一步地介绍。
参考图1,所述广角模组10和所述长焦模组20的拍摄区域具有交叠。图1所示的实施例中,可以通过自由曲面镜片109降低长焦模组20的TTL,从而使广角模组10和长焦模组20的TTL相等或接近于相等,从而使广角和长焦组成的双摄模组易于安装至手机等终端设备中。例如,本实施例可以使两个摄像模组(例如广角模组10和长焦模组20)的感光中心处于同一高度(指在线路板301表面的法线方向上的高度),同时还可以使两个摄像模组的光入射面的高度基本一致(或者可以理解为广角和长焦镜头的前端面基本位于同一水平面),从而使广角和长焦镜头所拍摄的图像更具有一致性,从而更便于后期处理,减小失真。
基于上述实施例,利用双摄进行拍摄,对主要拍摄物体(例如人和物等)进行深度的识别后,可以再通过长焦和广角所获得的图像进行处理得到各类特殊化处理后的图像,例如背景虚化、细节放大、分辨率提升等效果。采用了自由曲面镜片109后,因此长焦镜头模组和广角镜头模组在拍摄时,拍摄的对象在图像中的细节存在一致性较高的情况。因此在进行细节补充、像素填充的效果上,能够比现有技术更佳。
进一步地,广角和长焦镜头的前端面位于同一水平面(或光入射面的高度基本一致),还可以避免长焦镜头模组遮挡广角镜头模组对部分光线的接收,因此可以避免广角镜头模组的阴影和遮光效应。图6 示出了一个比较例的摄像模组阵列。如图6所示,该比较例中长焦模组20明显高于广角模组10,导致一部分光线可能因长焦模组20的遮挡而无法被光焦模组20所接收。
图2A示出了本申请另一个实施例的摄像模组阵列。本实施例中,所述广角模组10和所述长焦模组20共用同一线路板301。具体来说,可以在同一线路板301的表面安装分别对应于所述广角镜头和所述长焦镜头的两个感光芯片;在所述线路板301的表面安装或形成围绕所述两个感光芯片的镜座;以及将所述广角镜头和长焦镜头直接粘贴于所述镜座的顶面。将广角模组10和长焦模组20制作于同一线路板301(或者基板,基板例如可以是线路板301和镜座的组合体)上,可以通过该线路板301(或基板)来保证两个摄像模组的光学中心位于同一水平线上,并保持基线距离稳定,从而可以取消具有两个容置孔的支架,有助于节省成本并减少工艺步骤。
图2B示出了本申请一个变形的实施例的摄像模组阵列。本实施例在图2A所示实施例的基础上增加了支架900。需注意,该支架900仅起到加固作用,两个摄像模组主要通过共用的线路板301(或基板)来保证两个摄像模组的光学中心位于同一水平线上,并保持基线距离稳定。
需注意,在另一个变形的实施例中,图2中的镜座可以被取消,所述广角镜头和长焦镜头可以直接粘贴于所述线路板301的表面。在另一个变形的实施例中,图2中的两个镜座可以用一体成型的模塑镜座替换,该模塑镜座可以连成一体,从而提高结构强度,从而更好地保证两个摄像模组的光学中心位于同一水平线上,并保持基线距离稳定。
进一步地,图3A示出了另一个实施例中的摄像模组阵列,该实施例中,所述广角模组10和所述长焦模组20不共用同一线路板301。所述广角模组10和所述长焦模组20通过支架900进行固定,并使两个摄像模组的光入射面的高度一致(或者可以理解为广角和长焦镜头的前端面位于同一水平面,即广角和长焦镜头的前端面齐平)。
进一步地,图3B示出了另一个实施例中的摄像模组阵列,该实 施例中通过自由曲面镜片降低了长焦模组20的TTL,从而使广角模组10和长焦模组20的TTL相等或接近于相等。广角模组10和长焦模组20共用同一线路板301。两个摄像模组的感光中心(感光芯片的中心)处于同一高度(指在线路板表面的法线方向上的高度),同时两个摄像模组的光入射面的高度基本一致(或者可以理解为广角和长焦镜头的前端面基本位于同一水平面),从而使广角和长焦镜头所拍摄的图像更具有一致性,从而更便于后期处理,减小失真。另一方面,所述摄像模组阵列通过支架900进行加固,使得广角模组10和长焦模组20更稳定地固定在一起。
进一步地,图4示出了本申请另一个实施例中的摄像模组阵列。本实施例的长焦模组20中,自由曲面镜片109具有第一子光学子功能区190和第二子光学功能区191。图5示出了图4实施例中的自由曲面镜片的俯视示意图。参考图5,第一子光学功能区190和第二子光学功能区191可以具有不同的面型(曲率),从而获得不同的功能。图5中还示出了第一子光学功能区190和第二子光学功能区191的分界线,即区域分界线192。例如第一子光学功能区190和第二子光学功能区191可以对应于不同的景深区间,这样长焦模组20可以同时获得不同景深区间物体的清晰成像,再结合广角模组10的成像进行综合处理,可以为双摄或多摄模组用户提供更佳的摄像体验。例如,可以通过长焦和广角所获得的图像进行处理得到各类特殊化处理后的图像,例如背景虚化、细节放大、分辨率提升等效果。并且采用了自由曲面镜片109后,长焦镜头模组和广角镜头模组在拍摄时,拍摄的对象在图像中的细节存在一致性较高的优势,因此在进行细节补充、像素填充的效果上,能够比现有技术更佳。图4中还示出了双摄模组的基线800(Base line),如图4所示,这里基线(Base line)也可以理解为基线距离,它是两个摄像模组的感光芯片的感光中心之间的距离。
在一个实施例中,可见采用自由曲面镜片109通过划分子光学区的方式,将长焦端的部分子光学功能区能更加靠近广角摄像模组的视场从而提供对象和场景更加一致的图像信息,从而能够使使用者对于想要强调的特征进行抓取。本实施例中,第一子光学功能区190具有 比第二子光学功能191区不同的光学区域和性能。在其它实施例中,自由曲面镜片109可以划分为两个以上的子光学功能区,且不同子光学功能区按照不同的设计需求可以有不同的设计。第一子光学功能区190、第二子光学功能区191,…,第n子功能区所占的视场角的比例满足以下关系式。
FOV/S=(F 1+F 2+……+F n)/(S 1+S 2+S 3+……S n),
F i代表第i子光学功能区的视场,S i代表第i子光学功能区的光学区域面积,FOV代表总视场,S代表光学子功能区的面积之和。其中i=1,2,3,…,n。
进一步地,在本申请的一个实施例中,所述广角模组10也可以具有所述光学校准镜头1000。
更进一步地,在本申请的一个实施例中,所述广角模组10可以具有所述光学校准镜头1000,并且所述光学校准镜头1000具有至少一个自由曲面镜片109。也就是说,所述的光学校准镜头1000中,所述至少一个第一镜片102和所述至少一个第二镜片202中具有至少一个自由曲面镜片109。在广角模组中设置自由曲面镜片109,可以有效地减小畸变。
进一步地,上述实施例中,广角镜头模组的视场角可以是例如60°-180°。长焦镜头模组的视场角可以是例如4°-60°。
根据本申请的一个实施例,还提供了一种摄像模组阵列组装方法。本实施例中图像处理算法中的基线(Base line)可以按照实际的成像的中心进行设置。相应地,可以通过开图的方式进行双摄像模组的组装,即通过开图的方式对标板进行拍摄,对于两个摄像模组的基线,以及两个摄像模组的诸如tilt、shift、rotation等进行调整后,在将两个摄像模组固定再一起。其中tilt指w、v方向的倾斜调整,shift指x、y方向的平移调整,rotation指在调整平面(或基准平面)上的r方向的旋转调整。在下文中,还会结合附图更加详细地介绍w、v、x、y、r等方向的调整。本实施例中,双摄组装的方法包括下列步骤。
步骤1,将广角镜头摄像模组置于预定位置,通过一固定装置进 行固定。其中包括将广角镜头开图后对标板进行拍摄,根据拍摄的图像中的标板的具体位置信息,将广角镜头摄像模组调整至预定位置处。
步骤2,将长焦镜头摄像模组置于预定位置,开图对标板进行拍摄,根据长焦镜头模组所拍摄的图像中的标板的位置的具体信息调整位置。
其中,调整长焦镜头模组相对于广角镜头模组的位置至以下指标:长焦镜头模组和广角镜头模组的Base line处于预设范围内,长焦镜头模组和广角镜头模组的视场具有重叠的区域且该重叠区域处于预设的区域范围内,综上可以涵盖为长焦镜头模组与广角镜头模组的相对位置包括tilt、shift、rotation。
步骤3:固定长焦镜头模组和广角镜头模组。
其中,固定可以是通过支架固定,也可以通过终端的外框进行外部固定,也可以通过同一块基板固定。也就是说该长焦和广角镜头模组可由共基板或者不共基板的方式进行固定。由于本实施例中设置了自由曲面镜片109,因此减少了双摄镜头模组的相对高度差,因而两个摄像模组的TTL值之差可缩小至一定的阈值范围内(该范围内双摄模组拍摄不会出现上述的遮光效应),因此特别适合于共基板的双摄。
在一个实施例中,所述步骤1和步骤2中,广角模组和长焦镜头模组可以互相替换。
下面结合一系列的实施例对本申请的光学校准镜头做进一步地描述。
图7示出了本申请一个实施例的光学校准镜头1000的剖面示意图。该光学校准镜头1000包括第一镜头部件100、第二镜头部件200和将所述第一镜头部件100和第二镜头部件200粘结在一起的胶材(图中未示出)。其中,第一镜头部件100包括第一镜筒101和一个第一镜片102,且第一镜片102为自由曲面镜片。第二镜头部件200包括第二镜筒201和五个第二镜片202。胶材被布置于第一镜头部件100和第二镜头部件200之间的间隙400,以将所述第一镜头部件100和所述第二镜头部件200固定在一起。本实施例中,该胶材支撑并固定所 述第一镜头部件和所述第二镜头部件,并使得所述第一镜头部件和所述第二镜头部件的相对位置保持主动校准所确定的相对位置。
本实施例中,自由曲面镜片具有基于自由曲面(FREE-FORM)技术加工形成复杂光学表面。该复杂光学表面例如可以在光学设计时通过自由曲面设计软件将渐进多焦点面型设计在镜片的前或后表面,再通过例如在高精度的数控车床上进行精磨和抛光等步骤加工而得到。图8示出了本申请一个实施例中的一个自由曲面镜片的立体示意图。参考图8,可以看出自由曲面是一种复杂的非球面,在大多数情况下是无规则非对称的。对于自由曲面镜片来说,其在垂直于其厚度方向的平面上具有很强的方向性。本实施例中,可以通过在主动校准阶段调节所述第一镜头部件100和所述第二镜头部件200的相对位置关系,来使所述自由曲面镜片的实际基准方向与光学设计所确定的基准方向的差异不大于0.05度(其中所述基准方向用于表征所述自由曲面镜片的面型方向信息),然后再用位于间隙400的胶材支撑并固定所述第一镜头部件100和所述第二镜头部件200,使得所述第一镜头部件100和所述第二镜头部件200的相对位置保持主动校准所确定的相对位置,从而保证光学校准镜头的成像品质。
与之对比,在传统的光学校准镜头组装工艺中,多个镜片组装于同一镜筒内。而且非旋转对称的自由曲面镜片没有光轴对称的固有性质,也就是不能依靠镜片的光轴进行组装上的定位、调整等操作,导致装配难度极大,尤其是传统工艺中的自由曲面镜片在镜筒内的旋转定位非常困难。换句话说,自由曲面镜片组装误差尤其是旋转误差的敏感度很高,如果基于传统工艺组装含有自由曲面镜片的光学校准镜头或摄像模组,自由曲面镜片在镜筒内容易发生不期望的旋转或旋转方向的定位不准确,进而导致产品成像品质不达标甚至无法成像等问题。
进一步地,图9示出了本申请一个实施例的摄像模组2000的剖面示意图。该摄像模组2000包括如图7所示的光学校准镜头1000和感光组件300。所述感光组件300包括线路板301、安装在线路板301上的感光芯片302、安装在线路板301上且围绕所述感光芯片的筒状 支撑体303、以及安装在筒状支撑体303上的滤色片304。进一步地,第二镜头部件200还可以包括马达,第二镜筒202可以安装在马达的载体内。所述筒状支撑体303的顶面安装所述马达从而将第二镜头部件200与感光组件300固定在一起。需要注意,在本申请的其它实施例中,马达也可以被诸如筒状支撑体的其它结构代替,或者也可以被取消并直接将第二镜筒201安装在筒状支撑体303的顶面。需注意,在其它实施例中所述马达也可以被其它类型的光学致动器替换,例如SMA(形状记忆合金)致动器,MEMS致动器等。其中,光学致动器是指用于促使光学校准镜头相对于感光芯片移动的器件。
上述实施例可以通过将自由曲面镜片应用于小尺寸、大光圈的光学校准镜头来降低畸变,可以通过将自由曲面镜片应用于高像素、小尺寸、大光圈的摄像模组来降低畸变;可以降低摄像模组光学总长,从而减小摄像模组的体积;可以有效地避免组装时自由曲面镜片在镜筒内发生不期望的旋转或旋转方向的定位不准确而导致的产品不良问题。
进一步地,在一个实施例中,所述间隙400在沿着所述光学校准镜头的光轴方向上的尺寸为例如μm30-100μm。
进一步地,图10示出了本申请另一实施例的光学校准镜头1000a的剖面示意图。如图10所示,本实施例与图7所示的光学校准镜头1000区别在于第二镜头部件200中具有自由曲面镜片109。第一镜头部件100的第一镜片采用常规镜片。进一步地,图11示出了基于图10的光学校准镜头1000a的感光组件2000a的剖面示意图。
进一步地,图12示出了本申请另一实施例的光学校准镜头1000b的剖面示意图。如图12所示,本实施例与图7所示的光学校准镜头1000区别在于第一镜头部件100和第二镜头部件200中分别具有自由曲面镜片109a和109b。这种设计下,在主动校准阶段可以通过调节所述第一镜头部件100和所述第二镜头部件200的相对位置来使自由曲面镜片109a和109b的面型方向形成互补,从而更好地调整光学系统的实际成像品质。进一步地,图13示出了基于图12的光学校准镜头1000b的感光组件2000b的剖面示意图。由于可以在主动校准阶段 可以通过调节所述第一镜头部件100和所述第二镜头部件200的相对位置来使自由曲面镜片109a和109b的面型方向形成互补,因此该摄像模组2000b可以具有更好的成像品质。
需要注意,上述实施例中,第一镜头部件和第二镜头部件的镜片数目可以根据需要调整。例如第一镜头部件和第二镜头部件的镜片数量可以分别为二和四,也可以分别为三和三,也可以分别为四和二,也可以分别为五和一。整个光学校准镜头的镜片总数也可以根据需要调整,例如光学校准镜头的镜片总数可以是六,也可以是五或七。
还需要注意,本申请的光学校准镜头,镜头部件不限于两个,例如镜头部件的数目也可以是三或四等大于二的数目。当组成光学校准镜头的镜头部件超过两个时,可以将相邻的两个镜头部件分别视为前文所述的第一镜头部件和前文所述的第二镜头部件。例如,当光学校准镜头的镜头部件的数目为三时,光学校准镜头可包括两个第一镜头部件和位于这两个第一镜头部件之间的一个第二镜头部件,并且这两个第一镜头部件的所有第一镜片和一个第二镜头部件的所有第二镜片共同构成进行主动校准的可成像光学系。当光学校准镜头的镜头部件的数目为四时,光学校准镜头可包括两个第一镜头部件和两个第二镜头部件,并按第一镜头部件、第二镜头部件、第一镜头部件、第二镜头部件的次序自上而下排列,并且这两个第一镜头部件的所有第一镜片和两个第二镜头部件的所有第二镜片共同构成进行主动校准的可成像光学系。诸如此类的其它变形本文中不再一一赘述。
进一步地,图14示出了本申请一个实施例中的光学校准镜头组装方法的流程图。参考图14,该方法包括:
步骤10,准备彼此分离的第一镜头部件和第二镜头部件,其中所述第一镜头部件包括第一镜筒和安装在所述第一镜筒内的至少一个第一镜片,所述第二镜头部件包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片。其中,第一镜片和第二镜片中,至少存在一个自由曲面镜片。
步骤20,对所述第一镜头部件和所述第二镜头部件进行预定位,使所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的 光学系。
步骤30,基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置。
步骤40,通过胶材粘结所述第一镜头部件和所述第二镜头部件。本步骤中,利用固化的胶材支撑并固定所述第一镜头部件和所述第二镜头部件,以使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。
进一步地,在一个实施例中,可以在执行步骤30前,在所述第一镜头部件和所述第二镜头部件之间的间隙进行胶材涂布,然后再执行步骤30以调整和确定第一镜头部件和第二镜头部件的相对位置。在确定该相对位置后,执行步骤40使胶材固化,从而利用固化的胶材支撑所述第一镜头部件和所述第二镜头部件,进而使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。而在另一个实施例中,可以先执行步骤30以调整和确定第一镜头部件和第二镜头部件的相对位置。在确定该相对位置后,暂时将第一镜头部件(或第二镜头部件)移开,然后进行胶材涂布,再基于所确定的相对位置将第一镜头部件(或第二镜头部件)移回。最后固化胶材,使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。
进一步地,本申请中所述的主动校准可以在多个自由度上对第一镜头部件和第二镜头部件的相对位置进行调整。图15a示出了本申请一个实施例中的主动校准中相对位置调节方式。在该调节方式中,所述第一镜头部件(也可以是第一镜片)可以相对于所述第二镜头部件沿着x、y、z方向移动(即该实施例中的相对位置调整具有三个自由度)。其中z方向为沿着光轴的方向,x,y方向为垂直于光轴的方向。x、y方向均处于一个调整平面P内,在该调整平面P内平移均可分解为x、y方向的两个分量。
图15b示出了本申请另一个实施例的主动校准中的旋转调节。在该实施例中,相对位置调整除了具有图15a的三个自由度外,还增加了旋转自由度,即r方向的调节。本实施例中,r方向的调节是在所述 调整平面P内的旋转,即围绕垂直于所述调整平面P的轴线的旋转。
进一步地,图15c示出了本申请又一个实施例的主动校准中的增加了v、w方向调节的相对位置调节方式。其中,v方向代表xoz平面的旋转角,w方向代表yoz平面的旋转角,v方向和w方向的旋转角可合成一个矢量角,这个矢量角代表总的倾斜状态。也就是说,通过v方向和w方向调节,可以调节第一镜头部件相对于第二镜头部件的倾斜姿态(也就是所述第一镜头部件的光轴相对于所述第二镜头部件的光轴的倾斜)。
上述x、y、z、r、v、w六个自由度的调节均可能影响到所述光学系的成像品质(例如影响到解像力的大小)。在本申请的其它实施例中,相对位置调节方式可以是仅调节上述六个自由度中的任一项,也可以其中任两项或者更多项的组合。
特别地,在一个实施例中,所述主动校准至少包括r方向的校准。具体来说,所述主动校准步骤(步骤30)包括:根据所述光学系统的实测解像力(本申请中,解像力可以通过实测的MTF曲线或SFR曲线获得,但获取解像力的方法不限于此),通过夹持或吸附所述第一镜头部件和/或所述第二镜头部件,来调节并确定所述第一镜头部件和所述第二镜头部件的相对位置关系。其中,沿着调整平面移动第一镜头部件,根据所述光学系统的实测解像力,确定所述第一镜片与所述第二镜头部件之间的沿着所述平面的移动方向上的相对位置,其中所述移动包括在所述调整平面上的转动,即r方向上的运动。本实施例中,所述第一镜头部件和/或所述第二镜头部件具有表征其所包含的所述自由曲面镜片的面型方向信息的标识。
在一个实施例中,所述自由曲面镜片具有垂直于其厚度方向的基准平面,所述自由曲面镜片在所述基准平面内具有基准方向,所述第一镜头部件和/或所述第二镜头部件具有所述基准方向的标识以表征所述自由曲面镜片的面型方向信息。自由曲面镜片的对在所述基准平面内的旋转定位十分敏感,而在主动校准阶段,使第一镜头部件和第二镜头部件沿r方向相对移动和调节,可以提高自由曲面镜片的实际基准方向的安装精度。例如可以使得所述自由曲面镜片的实际基准方 向与光学设计所确定的基准方向的差异不大于0.05度,进而获得具有高成像品质的小尺寸、大光圈光学镜头或摄像模组。本实施例中,在自由曲面镜片相对其他镜头进行旋转校正时,可以实时采集和得到像差调整数据并校正,最终使得所述带有自由曲面镜片的镜头和/或摄像模组得到更优成像效果。通过调整以使两个镜头部件所组成的光学系统具有较佳的成像性能,例如成像的四周畸变量小,光学系统的像差小。主动校准的调整指标可以不同的需求进行设置。从而使得不同调整指标的主动校准后的光学镜头满足不同的光学性能。
另一方面,在预定位阶段,基准方向的标识可以帮助自由曲面镜片快速预定位至光学设计所确定的方向上,然后再在预定位的基础上进行主动调整。这样将有助于提高光学镜头或摄像模组的生产效率。在另一个实施例中,也可以基于机器视觉技术对自由曲面镜片的面型方向进行机器识别,并基于识别结果进行r方向的预定位,然后再在预定位的基础上进行主动调整。
进一步地,在一个实施例中,主动校准步骤中,所述移动还包括在所述调整平面上的平移,即x、y方向上的运动。
进一步地,在一个实施例中,所述主动校准还包括:根据所述光学系统的实测解像力,调节并确定所述第一镜头部件的轴线相对于所述第二镜头部件的轴线的夹角,即w、v方向上的调节。所组装的光学镜头或摄像模组中,所述第一镜头部件的轴线与所述第二镜头部件的轴线之间可以具有不为零的夹角。
进一步地,在一个实施例中,所述主动校准还包括:沿着垂直于所述调整平面的方向移动所述第一镜头部件(即z方向上的调节),根据所述光学系统的实测解像力,确定所述第一镜头部件与所述第二镜头部件之间的在垂直于所述调整平面的方向上的相对位置。
进一步地,在一个实施例中,所述预定位步骤(步骤20)中,使所述第一镜头部件的底面和所述第二镜头部件的顶面之间具有间隙;以及所述粘结步骤(步骤40)中,所述胶材布置于所述间隙。
进一步地,在一个实施例中,所述准备步骤(步骤10)中,所述第一镜头部件还可以不具有第一镜筒。例如第一镜头部件可以由单个 第一镜片构成。所述预定位步骤(步骤20)中,使所述第一镜片的底面和所述第二镜头部件的顶面之间具有间隙;以及所述粘结步骤(步骤40)中,将所述胶材布置于所述间隙。本实施例中,第一镜片可以由互相嵌合形成一体的多个子镜片形成。本实施例中,第一镜片的不用于成像的非光学面的侧面和顶面可以形成遮光层。该遮光层可以通过在第一镜片的侧面和顶面丝网印刷遮光材料而形成。
在一个实施例中,主动校准步骤中,可以固定第二镜头部件,通过夹具夹持第一镜头部件,在与夹具连接的六轴运动机构的带动下,移动第一镜头部件,从而实现第一镜头部件和第二镜头部件之间的上述六个自由度下的相对移动。其中,夹具可以承靠于或部分承靠于第一镜头部件的侧面,从而将第一镜头部件夹起。
进一步地,根据本申请的一个实施例,还提供了一种摄像模组组装方法,包括:利用前述任一实施例的光学校准镜头组装方法组装光学校准镜头,然后利用所组装的光学校准镜头制作摄像模组。
进一步地,根据本申请的另一个实施例,还提供了另一种摄像模组组装方法的流程图,该方法包括:
步骤100,准备第一镜头部件和摄像模组部件,其中所述摄像模组部件包括结合在一起的第二镜头部件和感光模组,并且所述第一镜头部件包括第一镜筒和安装在所述第一镜筒内的至少一个第一镜片,所述第二镜头部件包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片。并且,第一镜片和第二镜片中至少存在一个自由曲面镜片。
步骤200,对所述第一镜头部件和所述第二镜头部件进行预定位,使所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系。
步骤300,基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置。
步骤400,通过胶材粘结所述第一镜头部件和所述第二镜头部件。
可以看出,与前一实施例相比,本实施例中第二镜头部件和感光模组先组装在一起构成摄像模组部件,然后再将摄像模组部件与第一 镜头部件组装,得到完整的摄像模组。将摄像模组部件与第一镜头部件组装的流程还可以有多种变形,例如可参考前文所述的光学校准镜头组装方法的多个实施例,来实现摄像模组部件与第一镜头部件的组装。
前文的实施例中,广角和长焦组成的双摄仅是各种常见双摄方案的一种。双摄大体上可以有着“对称式”和“非对称式”两种。其中“对称式”双摄模组可以指的是两个摄像模组具有大体相同的尺寸,例如“彩色+黑白”的双摄方案,两个摄像头的焦距相同,尺寸一致,有时甚至两个摄像模组的感光芯片的像素大小也相同。双摄对于画质有着提高。“非对称式”双摄模组通常指的是两个摄像模组的尺寸不一致,可以是指摄像头的焦距不一样,例如iPhone 7 Plus与LG G5为例。双摄的两个模组可以有主摄和副摄的区别,这种区别可以为双摄带来许多功能。主摄为摄像模组阵列在进行工作时,长期处于工作状态的摄像头。副摄可以用于记录景深信息,用于辅助拍摄。非对称式”双摄模组例如有着“长焦+广角”,“长焦+标准”等不同的设计方案,以iPhone 7 Plus为例,广角的摄像模组作为主摄,主摄在进行拍摄时会拍摄整体的画面。自由曲面镜片可以用于上述任一种双摄模组(或者包含上述双摄的多摄模组)中,以减小光学总长。特别地,对于“非对称式”双摄模组,其中一个摄像模组可以通过自由曲面镜片来减小自身的光学总长,使得两个摄像模组的光学总长相等或者使二者光学总长之差小于阈值。
市面上的双摄逻辑包括:景深双摄,黑白+彩色双摄和双定焦双摄。这些类型的双摄中,均可以使用自有曲面镜片来减小光学总长。通过将普通镜片替换成自由曲面镜片,可以对摄像模组阵列中摄像模组(指含有自由曲面镜片的摄像模组)的尺寸进行降低,从而降低摄像模组阵列的整体尺寸。
以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限 于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (34)

  1. 一种摄像模组阵列,其特征在于,包括:至少两个摄像模组,其中至少一个摄像模组具有自由曲面镜片,并且所述自由曲面镜片根据感光芯片接收的实际成像结果进行主动校准,以使所述自由曲面镜片的实际基准方向与光学设计所确定的基准方向的差异不大于0.05度。
  2. 根据权利要求1所述的摄像模组阵列,其特征在于,所述自由曲面镜片安装于光学校准镜头中,所述光学校准镜头包括:
    第一镜头部件,其包括至少一个第一镜片;
    第二镜头部件,其包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片,所述至少一个第一镜片与所述至少一个第二镜片共同构成可成像的光学系统;以及
    连接介质,适于将所述第一镜头部件和所述第二镜头部件固定在一起;
    并且,所述至少一个第一镜片与所述至少一个第二镜片中具有至少一个所述自由曲面镜片。
  3. 根据权利要求2所述的摄像模组阵列,其特征在于,所述至少两个摄像模组包括广角模组和长焦模组,并且所述长焦模组具有所述光学校准镜头;所述广角模组和所述长焦模组的机构总高相等或二者的机构总高之差小于预设的阈值。
  4. 根据权利要求2所述的摄像模组阵列,其特征在于,所述广角模组具有所述光学校准镜头,并且所述广角模组中,所述至少一个第一镜片与所述至少一个第二镜片中具有至少一个自由曲面镜片。
  5. 根据权利要求2所述的摄像模组阵列,其特征在于,所述广角模组和所述长焦模组共用同一线路板。
  6. 根据权利要求2所述的摄像模组阵列,其特征在于,所述至少两个摄像模组包括黑白模组和彩色模组。
  7. 根据权利要求2所述的摄像模组阵列,其特征在于,所述自由曲面镜片具有多个功能区,且所述多个功能区分别具有不同的曲率。
  8. 根据权利要求3所述的摄像模组阵列,其特征在于,所述广角摄像模组具有至少一个自由曲面镜片以减少所述广角摄像模组的拍摄畸变。
  9. 根据权利要求2所述的摄像模组阵列,其特征在于,所述连接介质为胶材,其适于支撑并固定所述第一镜头部件和所述第二镜头部件,并使得所述第一镜头部件和所述第二镜头部件的相对位置保持主动校准所确定的相对位置。
  10. 根据权利要求9所述的摄像模组阵列,其特征在于,所述第一镜头部件的轴线与所述第二镜头部件的轴线之间具有不为零的夹角;以及在沿着所述光学镜头的光轴方向上,所述第一镜头部件和所述第二镜头部件之间具有间隙。
  11. 根据权利要求9所述的摄像模组阵列,其特征在于,所述第一镜片的数目为一,并且所述第一镜片为自由曲面镜片。
  12. 根据权利要求9所述的摄像模组阵列,其特征在于,所述至少一个第二镜片的数目为多个,并且所述至少一个第二镜片中具有一个自由曲面镜片。
  13. 根据权利要求9所述的摄像模组阵列,其特征在于,所述至少一个第一镜片中具有一个自由曲面镜片,并且所述至少一个第二镜 片中具有一个自由曲面镜片。
  14. 根据权利要求9所述的摄像模组阵列,其特征在于,所述第一镜头部件还包括第一镜筒,并且所述至少一个第一镜片安装于所述第一镜筒的内侧。
  15. 根据权利要求9所述的摄像模组阵列,其特征在于,所述第一镜头部件和/或所述第二镜头部件具有表征其所包含的所述自由曲面镜片的面型方向信息的标识。
  16. 根据权利要求15所述的摄像模组阵列,其特征在于,所述自由曲面镜片具有垂直于其厚度方向的基准平面,所述自由曲面镜片在所述基准平面内具有基准方向,所述第一镜头部件和/或所述第二镜头部件具有所述基准方向的标识以表征所述自由曲面镜片的面型方向信息。
  17. 根据权利要求16所述的摄像模组阵列,其特征在于,所述连接介质为胶材,其适于支撑并固定所述第一镜头部件和所述第二镜头部件,并使得所述自由曲面镜片的实际基准方向与光学设计所确定的基准方向的差异不大于0.05度。
  18. 根据权利要求1所述的摄像模组阵列,其特征在于,所述至少两个摄像模组包括两个互相不对称的摄像模组,所述的两个互相不对称的摄像模组中的至少一个具有自由曲面镜片,以使所述的两个互相不对称的摄像模组的机构总高相等或者二者的机构总高之差小于预设的阈值。
  19. 根据权利要求18所述的摄像模组阵列,其特征在于,所述的两个互相不对称的摄像模组的前端面齐平。
  20. 一种摄像模组阵列组装方法,其特征在于,包括:
    组装广角镜头和长焦镜头;以及
    将所述广角镜头和长焦镜头安装于同一线路板;
    其中所述长焦镜头为光学校准镜头,所述光学校准镜头包括第一镜头部件和第二镜头部件,其中所述第一镜头部件包括至少一个第一镜片,所述第二镜头部件包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片,并且所述至少一个第一镜片与所述至少一个第二镜片中具有至少一个自由曲面镜片,所述光学校准镜头的组装方法包括:
    对彼此分离的所述第一镜头部件和所述第二镜头部件进行预定位,使所述至少一个第一镜片与所述至少一个第二镜片共同构成可成像的光学系统;
    基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置;以及
    通过胶材粘结所述第一镜头部件和所述第二镜头部件,使所述第一镜头部件和所述第二镜头部件固定并保持在主动校准所确定的相对位置。
  21. 根据权利要求20所述的摄像模组阵列组装方法,其特征在于,所述将所述广角镜头和长焦镜头安装于同一线路板的步骤包括:将所述广角镜头和长焦镜头直接粘贴于所述线路板的表面。
  22. 根据权利要求20所述的摄像模组阵列组装方法,其特征在于,所述将所述广角镜头和长焦镜头安装于同一线路板的步骤包括:
    在所述线路板的表面安装分别对应于所述广角镜头和所述长焦镜头的两个感光芯片;
    在所述线路板的表面安装或形成围绕所述两个感光芯片的镜座;以及
    将所述广角镜头和长焦镜头直接粘贴于所述镜座的顶面。
  23. 根据权利要求20所述的摄像模组阵列组装方法,其特征在 于,所述至少一个第一镜片中具有至少一个自由曲面镜片,且所述至少一个第二镜片中也具有至少一个自由曲面镜片。
  24. 根据权利要求20所述的光学镜头组装方法,其特征在于,所述主动校准包括:根据所述光学系统的实测解像力,通过夹持或吸附所述第一镜头部件和/或所述第二镜头部件,来调节并确定所述第一镜头部件和所述第二镜头部件的相对位置关系。
  25. 根据权利要求21所述的光学镜头组装方法,其特征在于,所述主动校准还包括:通过调节所述第一镜头部件和所述第二镜头部件的相对位置关系,来使所述自由曲面镜片的实际基准方向与光学设计所确定的基准方向的差异不大于0.05度,其中所述基准方向用于表征所述自由曲面镜片的面型方向信息。
  26. 根据权利要求22所述的光学镜头组装方法,其特征在于,所述主动校准还包括:沿着调整平面移动第一镜头部件,根据所述光学系统的实测解像力,确定所述第一镜片与所述第二镜头部件之间的沿着所述平面的移动方向上的相对位置,其中所述移动包括在所述调整平面上的转动。
  27. 根据权利要求24所述的光学镜头组装方法,其特征在于,所述主动校准步骤中,所述移动还包括在所述调整平面上的平移。
  28. 根据权利要求23所述的光学镜头组装方法,其特征在于,所述主动校准还包括:根据所述光学系统的实测解像力,调节并确定所述第一镜头部件的轴线相对于所述第二镜头部件的轴线的夹角。
  29. 根据权利要求25所述的光学镜头组装方法,其特征在于,所述主动校准还包括:沿着垂直于所述调整平面的方向移动所述第一镜头部件,根据所述光学系统的实测解像力,确定所述第一镜头部件 与所述第二镜头部件之间的在垂直于所述调整平面的方向上的相对位置。
  30. 根据权利要求24所述的光学镜头组装方法,其特征在于,所述第一镜头部件还包括第一镜筒,并且所述至少一个第一镜片安装于所述第一镜筒的内侧。
  31. 根据权利要求24所述的光学镜头组装方法,其特征在于,所述预定位步骤中,使所述第一镜头部件的底面和所述第二镜头部件的顶面之间具有间隙;以及
    所述粘结步骤中,所述胶材布置于所述间隙。
  32. 一种摄像模组阵列组装方法,其特征在于,包括:
    组装广角模组和长焦模组;以及
    将所述广角模组和长焦模组固定在一起形成摄像模组阵列,并使得所述广角模组和长焦模组的夹角处于夹角阈值之内,并且广角模组和长焦模组间隔的距离处于距离阈值之内;
    其中所述长焦模组和所述广角模组中的至少一个具有自由曲面镜片。
  33. 根据权利要求32所述的摄像模组阵列组装方法,其特征在于,所述长焦模组包括长焦镜头和对应的感光芯片,所述长焦镜头具有自由曲面镜片;
    所述组装长焦模组的步骤中,根据所述感光芯片所输出的实际成像结果,通过主动校准来确定所述长焦镜头和所述感光芯片的相对位置,使所述自由曲面镜片的实际基准方向与光学设计所确定的基准方向的差异不大于0.05度,其中所述基准方向用于表征所述自由曲面镜片的面型方向信息。
  34. 一种摄像模组阵列组装方法,其特征在于,包括:
    组装至少两个摄像模组,其中至少一个摄像模组具有自由曲面镜片;以及
    将所述至少两个模组固定在一起形成摄像模组阵列,其中使得所述至少两个摄像模组中的任意两个摄像模组的夹角处于阈值之内,并且这两个摄像模组间隔的距离处于阈值之内;
    其中所述组装至少两个摄像模组的步骤中,含有自由曲面镜片的摄像模组包括含有自由曲面镜片的光学镜头和对应的感光芯片,含有自由曲面镜片的摄像模组的组装包括:
    根据所述感光芯片所输出的实际成像结果,通过主动校准来确定所述的含有自由曲面镜片的光学镜头与所述感光芯片的相对位置,使所述自由曲面镜片的实际基准方向与光学设计所确定的基准方向的差异不大于0.05度,其中所述基准方向用于表征所述自由曲面镜片的面型方向信息。
PCT/CN2019/084451 2018-05-30 2019-04-26 摄像模组阵列及其组装方法 WO2019228109A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/057,606 US11350020B2 (en) 2018-05-30 2019-04-26 Camera module array and assembly method therefor
EP19810190.9A EP3787274A4 (en) 2018-05-30 2019-04-26 CAMERA MODULARRAY AND METHOD OF ASSEMBLING THEREOF
US17/702,384 US11711604B2 (en) 2018-05-30 2022-03-23 Camera module array and assembly method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201820824061.3 2018-05-30
CN201810541268.4A CN110557523B (zh) 2018-05-30 2018-05-30 摄像模组阵列及其组装方法
CN201820824061.3U CN208572216U (zh) 2018-05-30 2018-05-30 摄像模组阵列
CN201810541268.4 2018-05-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/057,606 A-371-Of-International US11350020B2 (en) 2018-05-30 2019-04-26 Camera module array and assembly method therefor
US17/702,384 Division US11711604B2 (en) 2018-05-30 2022-03-23 Camera module array and assembly method therefor

Publications (1)

Publication Number Publication Date
WO2019228109A1 true WO2019228109A1 (zh) 2019-12-05

Family

ID=68697817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084451 WO2019228109A1 (zh) 2018-05-30 2019-04-26 摄像模组阵列及其组装方法

Country Status (3)

Country Link
US (2) US11350020B2 (zh)
EP (1) EP3787274A4 (zh)
WO (1) WO2019228109A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10944915B1 (en) 2020-01-05 2021-03-09 Ningbo Sunny Opotech Co., Ltd. Multi-aperture imaging system and application thereof
US20220124232A1 (en) * 2020-10-15 2022-04-21 Samsung Electronics Co., Ltd. Camera module and electronic device having the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11665410B2 (en) * 2020-03-10 2023-05-30 Cognex Corporation Modular vision systems and methods
CN114302044B (zh) * 2021-12-30 2023-11-28 江西盛泰精密光学有限公司 一种用于医疗镜头模组的aa组装方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101637019A (zh) * 2007-03-09 2010-01-27 伊斯曼柯达公司 提供范围映射的多镜头照相机
CN102866484A (zh) * 2011-07-07 2013-01-09 佳能企业股份有限公司 变焦镜头
US20140247505A1 (en) * 2013-03-01 2014-09-04 Ability Enterprise Co., Ltd. Zoom lens
CN203909388U (zh) * 2014-05-29 2014-10-29 日立数字映像(中国)有限公司 一种短焦投射镜头改进结构
CN106790792A (zh) * 2016-12-08 2017-05-31 广东欧珀移动通信有限公司 成像模组及移动终端
CN208572216U (zh) * 2018-05-30 2019-03-01 宁波舜宇光电信息有限公司 摄像模组阵列

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8599301B2 (en) * 2006-04-17 2013-12-03 Omnivision Technologies, Inc. Arrayed imaging systems having improved alignment and associated methods
US9477061B2 (en) 2011-01-20 2016-10-25 Fivefocal Llc Passively aligned imaging optics and method of manufacturing the same
US10074683B2 (en) * 2013-08-23 2018-09-11 Semiconductor Components Industries, Llc Imaging systems having lens substrates with total internal reflection mitigation structures
JP6215348B2 (ja) * 2013-11-20 2017-10-18 シャープ株式会社 撮像モジュールの製造方法
CN112433331B (zh) * 2015-01-03 2022-07-08 核心光电有限公司 微型长焦镜头模块和使用该镜头模块的相机
CN112672024B (zh) * 2015-08-13 2022-08-02 核心光电有限公司 视频支持和切换/无切换动态控制的双孔径变焦摄影机
KR102229811B1 (ko) * 2016-10-28 2021-03-18 후아웨이 테크놀러지 컴퍼니 리미티드 단말기를 위한 촬영 방법 및 단말기
TWI615627B (zh) * 2016-11-18 2018-02-21 大立光電股份有限公司 光學攝影鏡片系統、取像裝置及電子裝置
CN106791377B (zh) * 2016-11-29 2019-09-27 Oppo广东移动通信有限公司 控制方法、控制装置及电子装置
CN109212868B (zh) * 2017-06-29 2021-03-09 致伸科技股份有限公司 多镜头相机模块及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101637019A (zh) * 2007-03-09 2010-01-27 伊斯曼柯达公司 提供范围映射的多镜头照相机
CN102866484A (zh) * 2011-07-07 2013-01-09 佳能企业股份有限公司 变焦镜头
US20140247505A1 (en) * 2013-03-01 2014-09-04 Ability Enterprise Co., Ltd. Zoom lens
CN203909388U (zh) * 2014-05-29 2014-10-29 日立数字映像(中国)有限公司 一种短焦投射镜头改进结构
CN106790792A (zh) * 2016-12-08 2017-05-31 广东欧珀移动通信有限公司 成像模组及移动终端
CN208572216U (zh) * 2018-05-30 2019-03-01 宁波舜宇光电信息有限公司 摄像模组阵列

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3787274A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10944915B1 (en) 2020-01-05 2021-03-09 Ningbo Sunny Opotech Co., Ltd. Multi-aperture imaging system and application thereof
US20220124232A1 (en) * 2020-10-15 2022-04-21 Samsung Electronics Co., Ltd. Camera module and electronic device having the same
WO2022080856A1 (en) * 2020-10-15 2022-04-21 Samsung Electronics Co., Ltd. Camera module and electronic device having the same
US11689793B2 (en) 2020-10-15 2023-06-27 Samsung Electronics Co., Ltd. Camera module with reduced base line in dual camera and electronic device having the same

Also Published As

Publication number Publication date
EP3787274A4 (en) 2021-06-16
US20210203817A1 (en) 2021-07-01
US11350020B2 (en) 2022-05-31
US20220217254A1 (en) 2022-07-07
US11711604B2 (en) 2023-07-25
EP3787274A1 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
WO2019228109A1 (zh) 摄像模组阵列及其组装方法
CN208572216U (zh) 摄像模组阵列
TWI720343B (zh) 攝像模組及其組裝方法
CN208384208U (zh) 光学镜头和摄像模组
CN106164731A (zh) 透镜元件、摄像装置和摄像透镜
JP2020533636A (ja) 撮像モジュール及びその組立方法
CN110320625A (zh) 光学镜头、摄像模组及其组装方法
CN214756582U (zh) 光学镜头及摄像模组
TW202032248A (zh) 光學鏡頭、攝像模組及其組裝方法
CN208569148U (zh) 光学镜头及摄像模组
CN110557523B (zh) 摄像模组阵列及其组装方法
WO2021143410A1 (zh) 分体式变焦镜头、摄像模组及相应的组装方法
KR102540411B1 (ko) 광학 렌즈, 촬상 모듈 및 이의 조립 방법
CN114076999B (zh) 潜望式摄像模组
EP3859419B1 (en) Optical zoom camera module and assembling method therefor
WO2021027431A1 (zh) 屏下摄像组件、摄像模组和光学镜头及其制作方法
WO2019228348A1 (zh) 光学镜头、摄像模组及其组装方法
WO2022037320A1 (zh) 潜望式摄像模组
CN110958365A (zh) 多群组镜头、摄像模组以及电子设备和组装方法
CN112824964B (zh) 潜望式摄像模组及其组装方法
CN110542969A (zh) 光学镜头、摄像模组及其组装方法
WO2020082928A1 (zh) 光学镜头、摄像模组及其组装方法以及相应的终端设备
CN115412653A (zh) 光学镜头及摄像模组
WO2020063236A1 (zh) 多群组镜头、摄像模组以及电子设备和组装方法
CN110554470A (zh) 光学镜头及其组装方法以及摄像模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810190

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 19810190.9

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019810190

Country of ref document: EP

Effective date: 20201126