WO2015037255A1 - 熱対流生成用チップ、熱対流生成装置、及び熱対流生成方法 - Google Patents

熱対流生成用チップ、熱対流生成装置、及び熱対流生成方法 Download PDF

Info

Publication number
WO2015037255A1
WO2015037255A1 PCT/JP2014/056002 JP2014056002W WO2015037255A1 WO 2015037255 A1 WO2015037255 A1 WO 2015037255A1 JP 2014056002 W JP2014056002 W JP 2014056002W WO 2015037255 A1 WO2015037255 A1 WO 2015037255A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal convection
flow path
liquid
heat
convection
Prior art date
Application number
PCT/JP2014/056002
Other languages
English (en)
French (fr)
Inventor
真人 齋藤
民谷 栄一
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to EP14844310.4A priority Critical patent/EP3045523B1/en
Priority to US15/021,087 priority patent/US10946384B2/en
Publication of WO2015037255A1 publication Critical patent/WO2015037255A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • B01L7/525Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0684Venting, avoiding backpressure, avoid gas bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/088Channel loops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0442Moving fluids with specific forces or mechanical means specific forces thermal energy, e.g. vaporisation, bubble jet
    • B01L2400/0445Natural or forced convection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0688Valves, specific forms thereof surface tension valves, capillary stop, capillary break

Definitions

  • the present invention relates to a thermal convection generation chip, a thermal convection generation apparatus, and a thermal convection generation method used for thermal convection PCR and the like.
  • PCR Polymerase Chain Reaction
  • Patent Document 1 discloses a thermal convection PCR apparatus that performs PCR by generating thermal convection by heat supplied from the bottom side of a container in an upright cylindrical container. This thermal convection PCR apparatus performs solution driving by convection, and has an advantage that a PCR solution can be fed without using an external pump.
  • Patent Document 2 a liquid contained in a cylindrical reaction vessel inclined with respect to the vertical axis is heated, and at the same time, the reaction vessel is rotated about the vertical axis to impart a centrifugal force to the liquid and heat the liquid.
  • a thermal convection PCR device adapted to promote convection is disclosed.
  • Patent Document 1 and Patent Document 2 have a problem that the apparatus is large and requires a large installation space.
  • PCR thermo convection generator
  • the thermal convection generating chip of the present invention includes at least one annular thermal convection flow path, and applies centrifugal force to the liquid in the thermal convection flow path by rotating the chip. Configured.
  • At least one liquid supply path for supplying a liquid may be provided in the heat convection flow path.
  • the thermal convection generating chip rotates around the axis and includes a plurality of thermal convection channels arranged symmetrically with respect to the axis, a plurality of liquids can be processed at the same time. improves.
  • the surface roughness Ra of the wall surface of the heat convection channel is 100 nm or less because the generation of bubbles in the liquid in the heat convection channel can be suppressed.
  • the material of the wall surface of the heat convection flow path is any of cyclic olefin, polypropylene, and polycarbonate, because the generation of bubbles in the liquid in the heat convection flow path can be suppressed.
  • the application field of the thermal convection generating chip of the present invention is not particularly limited, but can be used, for example, when performing thermal convection PCR.
  • the thermal convection generating device of the present invention includes at least one thermal convection flow path, and is capable of attaching and detaching a thermal convection generating chip that imparts centrifugal force to the liquid in the thermal convection flow path by being rotated. It includes a chip mounting portion, a heat source for heating or cooling a part of the heat convection flow path of the heat convection generating chip, and driving means for rotationally driving the heat convection generating chip.
  • the heat source includes a low temperature heat source and a high temperature heat source, the temperature difference between the heating unit of the low temperature heat source and the heating unit of the high temperature heat source is 10 ° C. or more, and the heating unit of the low temperature heat source and the heating unit of the high temperature heat source
  • the temperature difference between the gap and the heating part of the low-temperature heat source is 10 ° C. or more
  • the temperature difference between the gap and the heating part of the high-temperature heat source is 10 ° C. or more
  • the heat of the liquid in the heat convection channel It is preferable because convection can be efficiently promoted.
  • the heat convection flow path It is preferable because the thermal convection of the liquid inside can be efficiently promoted.
  • the heat convection generating device includes control means for controlling the heating temperature or cooling temperature of the heat convection flow path by the heat source, the rotation driving speed and the rotation driving time of the heat convection generating chip by the driving means. Can do.
  • the application field of the thermal convection generation device of the present invention is not particularly limited, but can be used, for example, when performing thermal convection PCR.
  • an excitation light source that irradiates the liquid in the heat convection channel with excitation light that excites the fluorescent dye contained in the liquid in the heat convection channel, and a fluorescent dye by irradiating the fluorescent dye with the excitation light
  • the real-time PCR can be executed by including a fluorescence detector that detects fluorescence emitted by the fluorescence detector and an operation control unit that calculates the amount of amplification of DNA based on the fluorescence detected by the fluorescence detector, template DNA Can be quickly determined.
  • position detection means for detecting the position of the heat convection flow channel during rotation driving of the heat convection generating chip, and light source control means for driving the excitation light source based on the detection result of the position detection means, Further, it is preferable because the accuracy of fluorescence detection is improved.
  • the excitation light source and the fluorescence detector are configured to rotate integrally with the thermal convection generating chip instead of providing the position detection means and the light source control means, the accuracy of fluorescence detection is improved and the manufacturing cost is increased. Is preferable because it is inexpensive.
  • the thermal convection generation method of the present invention also includes a thermal convection generation chip that includes at least one annular thermal convection flow channel and applies centrifugal force to the liquid in the thermal convection flow channel by rotation.
  • a tip preparation step a liquid supply step for supplying a liquid into the annular heat convection flow channel, and a part of the heat convection flow channel while rotating the heat convection generating chip to apply centrifugal force to the liquid.
  • the liquid in the heat convection flow path includes an evaporation suppressing liquid having a boiling point higher than the maximum temperature of the heat source for heating the liquid and / or a specific gravity lower than that of the liquid, the evaporation of the liquid is suppressed. Therefore, it is preferable.
  • the application field of the thermal convection generation method of the present invention is not particularly limited, but can be used, for example, when performing thermal convection PCR.
  • the liquid in the thermal convection flow path contains a fluorescent dye
  • the excitation light irradiation process for irradiating the liquid in the thermal convection flow path with excitation light that excites the fluorescent dye, and the excitation light Since real-time PCR can be performed by executing a fluorescence detection step for detecting fluorescence emitted by the fluorescent dye irradiated with, and an amplification amount calculation step for calculating the amplification amount of DNA based on the detected fluorescence
  • the template DNA can be rapidly quantified.
  • a compact thermal convection generating device can be provided because an external pump is not required.
  • the thermal convection generation apparatus 1 is an apparatus for performing thermal convection PCR, and as shown in FIGS. Stage 20, heat source 30, motor 40, and control means 50.
  • the thermal convection generating chip 10 includes a transparent disk-shaped disk-shaped substrate 11 made of, for example, a synthetic resin.
  • the disk-shaped substrate 11 is laminated on a substrate body 12 and a lower surface thereof.
  • the lid 13 is made up of.
  • a plurality of heat convection flow paths 14 are provided on the peripheral edge of the lower surface of the substrate body 12. These heat convection flow paths 14 are provided at equiangular intervals around the axis AX of the disk-shaped substrate 11 and are arranged symmetrically with respect to the axis AX.
  • the number, processing method, shape, dimensions, and the like of the heat convection flow paths 14 are not particularly limited, but in this embodiment, four heat convection flow paths having the same shape and the same size are formed on the substrate body 12 having a diameter of 40 mm by a fine processing technique. 14 is formed, and each heat convection flow path 14 is composed of a circular groove having a diameter of 5 mm, and the groove has a width of 500 ⁇ m and a depth of 300 ⁇ m.
  • the thermal convection generating chip 10 includes a plurality of thermal convection flow paths 14, a plurality of liquids can be processed at the same time, so that the processing efficiency is improved.
  • a liquid supply path 15 and a gas discharge path 16 branched in a bifurcated manner are connected in communication with the portion closest to the axis AX in the heat convection flow path 14.
  • the flow path is a bilaterally symmetric flow path formed of grooves formed by a fine processing technique.
  • the liquid supply path 15 includes, in order from the portion farthest from the heat convection flow path 14, an elongated extending portion 15 a extending in the radial direction of the disk-shaped substrate 11, and tears connected to one end thereof. It has a drop-like liquid reservoir portion 15b and a narrow communication portion 15c that connects the tip portion and the heat convection flow path 14 in communication.
  • the capacity of the liquid reservoir 15b is larger than the capacity of the heat convection flow path 14.
  • the gas discharge path 16 includes, in order from the portion farthest from the heat convection flow path 14, an elongated extending portion 16 a that extends in the radial direction of the disk-shaped substrate 11, and a teardrop-shaped gas reservoir portion 16 b that is connected to one end thereof. And a communication portion 16c having a narrow width for connecting the tip portion and the heat convection flow path 14 in communication.
  • the gas generated when the liquid in the heat convection flow path 14 is in thermal convection and the gas generated when the liquid is injected into the liquid supply path 15 are generated in the gas discharge path 16 by centrifugal force. Since the gas can be removed from the liquid by entering the liquid, thermal convection of the liquid can be performed smoothly.
  • the lid body 13 (see FIG. 3) is formed of a disk that is substantially the same diameter as the substrate body 12 and thinner than the substrate body 12, and is laminated on the lower surface of the substrate body 12 by appropriate fixing means. 12 and is detachably fixed.
  • the stage 20 (see FIG. 2) supports the heat source 30 and transmits the rotational force of the motor 40 to the thermal convection generating chip 10 and is formed of a disk made of synthetic resin, metal, or the like.
  • the stage 20 includes a coupling means for concentrically positioning the thermal convection generating chip 10 disposed above the stage 20 with respect to the stage 20 and coupling the thermal convection generating chip 10 so as not to be relatively rotatable.
  • the structure of such a connecting means is not particularly limited.
  • a concave portion or a convex portion formed at a position eccentric with respect to the central axis of the thermal convection generating chip 10 is eccentric with respect to the central axis of the stage 20. It can be set as the structure fitted with the convex part or recessed part formed in the position.
  • the stage 20 is provided with four arc-shaped heater mounting holes 21 for inserting and mounting the heat source 30. These heater mounting holes 21 are provided at an angular interval of 90 ° around the axis AX and are arranged symmetrically with respect to the axis AX.
  • the stage 20 has a pair of first screw insertion holes 22 through which a shaft portion of a screw for fixing a first heater 31 to be described later is inserted, and a shaft portion of a screw for fixing a second heater 32 to be described later. And a pair of second screw insertion holes 23 are provided.
  • the heat source 30 includes a first heater 31 as a ring-shaped low-temperature heat source and a second heater 32 as a ring-shaped high-temperature heat source disposed concentrically inside.
  • the first heater 31 includes a ring-shaped connecting portion 31a and four columnar heating portions 31b having an L-shaped cross section provided at equal intervals in the circumferential direction.
  • a pair of screw holes 31c are provided in the connecting portion 31a with an angular interval of 180 ° around the axis AX.
  • a shaft portion of a screw passing through the first screw insertion hole 22 of the stage 20 is screwed into these screw holes 31c.
  • the second heater 32 includes a ring-shaped connecting portion 32a and four columnar heating portions 32b having an L-shaped longitudinal section provided at equal intervals in the circumferential direction.
  • a pair of screw holes 32c are provided in the connecting portion 32a with an angular interval of 180 ° around the axis AX.
  • a shaft portion of a screw passing through the second screw insertion hole 23 of the stage 20 is screwed into these through holes 32c.
  • each heating unit 32b of the second heater 32 protrudes above the stage 20 (see FIG. 1).
  • the heating part 31 b of the first heater 31 is formed so that the upper surface thereof faces about the half circumference of the heat convection flow path 14.
  • the heating temperature of the heating unit 31b is about 60 ° C.
  • the heating part 32b of the second heater 32 is formed so that the upper surface thereof faces about 1/4 of the heat convection flow path 14.
  • the heating temperature of the heating unit 32b is about 95 ° C.
  • the heating temperature of the heating unit 31b and the heating temperature of the heating unit 32b are not particularly limited, but in order to efficiently promote thermal convection, the difference between the heating temperature of the heating unit 31b and the heating temperature of the heating unit 32b is 10 ° C. or more. It is preferable that The temperature difference between the gap S between the heating part 31b and the heating part 32b and the heating temperature of the heating part 31b is preferably 10 ° C. or more, and the temperature difference between the heating temperature of the gap S and the heating part 32b is 10 ° C. It is preferable that the temperature is not lower than ° C.
  • the temperatures of the area E 1 facing the heating part 31 b and the high temperature area E 2 facing the heating part 32 b are the areas E 3 other than the areas E 1 and E 2 in the heat convection flow path 14. It is preferable that the temperature is higher than that.
  • the temperature of the area facing the heat source in the heat convection flow path faces the heat source in the heat convection flow path. It is preferable that the temperature is lower than the temperature of the area other than the area to be used.
  • the shaft 41 of the motor 40 is connected to the central hole 24 of the stage 20 and the thermal convection generating chip 10. It is inserted through the center hole 17.
  • the shaft 41 and the stage 20 of the motor 40 are fixed by appropriate means.
  • control means 50 that controls the thermal convection generating device 1 includes an arithmetic control unit 51, a display unit 52, and an input unit 53.
  • the arithmetic control unit 51 is configured by a microcomputer including a CPU, a ROM, a RAM, and the like.
  • the CPU performs the first heater 31, the second heater 32, and the like according to information input from the input unit 53 and a program stored in the ROM.
  • the motor 40 is controlled.
  • the display unit 52 includes a liquid crystal display device, and the input unit 53 includes a keyboard and a mouse.
  • a heat sink 60 that dissipates heat generated by the first heater 31 and cools the first heater 31 may be provided. In this case, excess heat can be removed at a low manufacturing cost, and the accuracy of thermal convection PCR can be improved.
  • the following three cases can be considered as the cause of the generation of bubbles in the liquid in the heat convection flow path 14.
  • the first case is a case where bubbles are generated due to boiling of the liquid or precipitation of a gas dissolved in the liquid.
  • the second case is a case where the wetting residue generated when the liquid is filled in the heat convection flow path 14 becomes a gas as it is.
  • the third case is a case where gas is deposited from the material constituting the heat convection flow path 14 or the material constituting the lid 13.
  • the generation of bubbles due to boiling of the liquid is an inevitable phenomenon, and basically it is important to control the liquid to a temperature below the boiling point.
  • the cause is further divided as follows, and it is possible to take countermeasures.
  • Means for increasing the pressure in the heat convection flow path 14 include the diameter of the cross section of the heat convection flow path 14 and the length of the heat convection flow path 14 in consideration of the liquid density, flow velocity, and pipe friction coefficient. There are methods to set .
  • the boiling point is higher than the maximum temperature of the heat source 30 at the beginning and / or end of the sample liquid supplied to the heat convection flow path 14 and / or than the sample liquid. Further, by supplying an evaporation suppressing liquid having a small specific gravity, generation of gas from the sample liquid and / or growth thereof is suppressed. Examples of such an evaporation suppression liquid include mineral oil.
  • wet residue can be suppressed by using a highly hydrophilic material for the material constituting the heat convection flow path 14 or the lid 13.
  • the material constituting the heat convection flow path 14 or the material constituting the lid 13 is not highly hydrophilic, and the portion corresponding to the wall surface of the heat convection flow path 14 is coated with a highly hydrophilic substance. The method is also effective.
  • the material include cyclic olefin, polypropylene, polycarbonate, a composite of polydimethylsiloxane and glass, and acrylic.
  • cyclic olefins are most preferred in terms of excellent degassing properties and heat resistance, and low gas permeability, water absorption, and autofluorescence, followed by polypropylene and polycarbonate.
  • the wall surface of the thermal convection flow path 14 is polished to suppress the surface roughness to a certain extent, thereby suppressing the occurrence of residual wetting.
  • the surface roughness Ra of the wall surface of the heat convection channel 14 is set to 100 nm or less, but the surface roughness Ra is more preferably 50 nm or less, and particularly preferably 30 nm or less.
  • a heat convection flow path 14 is formed in the substrate body 12 by cutting, and after coating the wall surface of the heat convection flow path 14 with polyethylene glycol, the heat convection flow path 14 is filled with water containing red food.
  • the entire chip 10 for generating heat convection was heated with a 95 ° C. heater. As a result, generation of bubbles was confirmed in the water in the heat convection flow path 14 in about 1 minute.
  • a heat convection flow path 14 is formed in the substrate body 12 by cutting, the wall surface of the heat convection flow path 14 is polished to a surface roughness Ra of about 30 nm, and then water containing food red is heat convected.
  • the working flow path 14 was filled, and the entire heat convection generating chip 10 was heated with a 95 ° C. heater. As a result, no bubbles were observed in the water in the heat convection flow path 14 even after heating for 20 minutes or more.
  • FIG. 6 is a flowchart showing a thermal convection generation method using the thermal convection generation apparatus 1.
  • Step S10 a thermal convection generating chip 10 is prepared.
  • Step S10 corresponds to the chip preparation process of the present invention.
  • step S20 when the reaction reagent solution is injected into an injection port (not shown) formed on the surface of the substrate body 12 of the thermal convection generating chip 10 on the side opposite to the lid 13, this reaction
  • the reagent solution passes through the extended portion 15a of the liquid supply path 15 and flows into the liquid reservoir portion 15b by capillary action.
  • step S30 when a sample liquid such as saliva or blood is injected into the injection port, the sample liquid passes through the extending portion 15a of the liquid supply path 15 and flows into the liquid reservoir 15b by capillary action. To do.
  • a sample liquid such as saliva or blood
  • reaction reagent solution and the sample liquid pass through the extension part 15a and flow into the liquid reservoir part 15b by capillary action, but the reaction reagent solution and the sample liquid are stored in the liquid reservoir part 15b using a pipetter or the like. You may make it push in.
  • reaction reagent solution and the sample liquid that have flowed into the liquid reservoir 15b stay in the liquid reservoir 15b while the thermal convection generation chip 10 is stopped, but when the thermal convection generation chip 10 rotates, It passes through the communication portion 15 c by centrifugal force and enters the heat convection flow path 14.
  • a thin resin sheet having air tightness and liquid tightness is sandwiched between the substrate body 12 and the lid 13 so as to seal the heat convection flow path 14, the liquid supply path 15 and the gas discharge path 16. May be.
  • oil that does not inhibit PCR may be injected into the liquid supply path 15.
  • oil having a low specific gravity stays in the liquid reservoir 15b, and prevents the liquid in the heat convection flow path 14 from flowing into the liquid reservoir 15b from the communication portion 15c. While functioning as a lid, the liquid in the heat convection flow path 14 is prevented from evaporating.
  • the thermal convection generating chip 10, the first heater 31 and the second heater 32 are mounted and fixed to the stage 20, and the shaft 41 of the motor 40 is attached to the central hole 24 of the stage 20 and the central hole 17 of the thermal convection generating chip 10. And the stage 20 is fixed to the shaft 41.
  • step S40 when the user operates the input unit 53 of the control means 50 to start the motor 40, the stage 20 and the thermal convection generating chip 10 rotate. Further, as shown in step S50, the first heater 31 and the second heater 32 are energized to heat the liquid in each heat convection generating passage 14.
  • Steps S20 to S40 correspond to the liquid supply process of the present invention.
  • Steps S40 and S50 correspond to the thermal convection promoting step of the present invention.
  • a liquid mixture of the reaction reagent solution and the sample liquid is prepared in advance, and this mixed liquid is injected into the liquid supply path 15 to generate heat convection. You may make it carry out a heat convection in the channel
  • the mixed liquid in the heat convection passage 14 contains a gas
  • the gas moves in the direction of the axis AX by centrifugal force and flows into the gas discharge path 16. Gas can be removed. Thereby, the mixed liquid can be smoothly convected.
  • the mixed solution passes through the heating unit 32b of the second heater 32, it is heated by exchanging heat with the heating unit 32b (about 95 ° C.). As a result, the double-stranded DNA in the mixed solution is separated into two single-stranded DNAs.
  • the passage time of the heating unit 32b of the mixed liquid that is convection is set to about 15 seconds.
  • the mixed liquid is cooled by exchanging heat with the heating unit 31b (about 60 ° C.) when passing through the heating unit 31b of the first heater 31.
  • the heating unit 31b about 60 ° C.
  • the passage time of the heating portion 31b of the mixed liquid that undergoes heat convection is set to about 45 seconds.
  • the time for the heat convection mixture to pass through the heating part 31b of the first heater 31 and the time for the heat convection mixture to pass through the heating part 32b of the second heater 32 depends on the rotation speed of the heat convection generating chip 10 and the heat of the liquid mixture It can be shortened by controlling the convection speed and the like.
  • the driving time of the motor 40 is set so that the heating by the second heater 32 and the cooling by the first heater 31 are each performed a predetermined number of times.
  • the temperature of the first heater 31 and the second heater 32 and the rotational driving speed of the heat convection generating chip 10 by the motor 40 can be adjusted via the input unit 53 of the control means 50.
  • the thermal convection generating device 1 of the present invention is configured to cause thermal convection of the liquid, it does not require an external pump, and since the thermal convection flow path 14 is formed on the disk-shaped substrate 11, the device is It is compact. Further, since the centrifugal force is applied simultaneously with heating the liquid, the liquid can be reliably convected with heat.
  • the heat convection flow path 14 is formed in a plane perpendicular to the axis of the disk-shaped substrate 11, the resultant force in the rotational axis direction acting on the liquid while the liquid circulates in the heat convection flow path 14. Does not change, the liquid flow is stabilized. Therefore, stable heat convection can be generated reliably, so that the reliability is high.
  • the heat convection flow path 14 has a perfect circular shape, the flow path length can be minimized, and in addition, since a plurality of heat convection flow paths 14 are provided, the liquid treatment is shortened. It can be done efficiently in time.
  • the driving time of the motor 40 is 20 seconds, the driving speed is 1000 rpm, and the current value is 1.4A.
  • the temperature of the heat source 30 was set to 50 ° C., and the inside of the heat convection flow path 14 before and after the heat convection generating chip 10 was rotated was observed with a high speed camera. As a result, it was confirmed that heat convection was generated in the heat convection flow path 14 and that uncolored water and colored water were mixed.
  • thermo seal 71 60 ° C.
  • thermo seal 72 95 ° C.
  • thermo seal 73 100 ° C.
  • the temperature setting of the power source connected to the second heater 32 was set to 115 ° C.
  • the voltage of the DC power source of the motor 40 was set to 0.5 V
  • the thermal convection generating chip 10 was driven to rotate for 10 minutes.
  • the first heater 31 is not energized.
  • thermo seal 71 is purple, indicating that the temperature of the portion of the heat convection channel 14 facing the thermo seal 71 is far over 60 ° C. Therefore, in order to cool the first heater 31, a comparative study between water cooling by water circulation and heat radiation by the heat sink 60 was performed.
  • a silicon tube was passed through the heater mounting hole 21 of the stage 20, and cooling was performed by circulating water (room temperature) by using a peristaltic pump.
  • the temperature of the power source connected to the second heater 32 was set to 125 ° C.
  • the temperature of the portion of the heat convection channel 14 facing the heating portion 32b of the second heater 32 was 95 to 97 ° C.
  • the temperature of the portion of the heat convection channel 14 facing the heating portion 31b of the first heater 31 was 57.25 ° C. or lower.
  • the temperature setting of the power source connected to the second heater 32 is set to 125 ° C.
  • the heat sink 60 composed of 12 radiators is attached to the first heater 31.
  • the temperature of the portion of the path 14 facing the heating portion 32b of the second heater 32 is 95 to 97 ° C.
  • the temperature of the portion of the heat convection channel 14 facing the heating portion 31b of the first heater 31 is about 60 ° C.
  • the ideal temperature distribution was obtained.
  • the voltage of DC power supply of the motor 40 was set to 0.5V and the chip
  • FIG. 8 is an enlarged view of the heat convection flow path and the liquid supply path of the second embodiment of the present invention.
  • symbol is attached
  • the substrate body 12 (see FIG. 3) having the thermal convection flow path 14 and the liquid supply path 15 is a photo of a composite of polydimethylsiloxane (hereinafter referred to as “PDMS”) and glass. It is produced by lithography technology.
  • PDMS polydimethylsiloxane
  • the heat convection flow path 14 of the present embodiment is formed of a perfect circular groove having an outer diameter of 6 mm, and the groove has a width of 500 ⁇ m and a depth of 400 ⁇ m.
  • the end of the liquid reservoir 15b opposite to the heat convection flow path 14 is formed in a semicircular shape, and the end of the liquid reservoir 15b on the heat convection flow path 14 side is an inverted triangle.
  • the intermediate part of the liquid reservoir 15b is formed in a rectangular parallelepiped shape.
  • an extending portion 15a for introducing a liquid into the liquid reservoir portion 15b is formed in an L shape, and one end thereof is connected to an inverted triangular end portion of the liquid reservoir portion 15b.
  • thermo seals were placed on the heating unit 31b of the first heater 31 and the heating unit 32b of the second heater 32, respectively, and temperature measurement was performed to set each device.
  • the temperature of the power source of the second heater 32 is set to 140 ° C. and the temperature of the cooling water is set to 50 ° C.
  • the temperature of the portion of the heat convection channel 14 facing the heating portion 32b of the second heater 32 The temperature of the site
  • a heat sink was not used.
  • the heat convection flow path 14 was filled with a red food liquid to confirm the presence or absence of bubbles. Since PDMS has high gas permeability, bubbles may be generated at high temperatures. This bubble prevents liquid convection, making it impossible to perform heat exchange of PCR.
  • mineral oil is filled in the heat convection flow path 14 in advance, and the red erythrocyte liquid is filled in the heat convection flow path 14 in a state where PDMS has sufficiently absorbed the mineral oil.
  • the heat convection flow path 14 was heated for 30 minutes, but no bubbles were generated. It is thought that this is because the mineral oil decreased the gas permeability of PDMS and prevented the generation of bubbles. Further, the mineral oil serves as a lid that closes the communication portion 15c.
  • mineral oil has a boiling point higher than the heating temperature of the second heater 32, which is the maximum temperature of the heat source 30, it also has an effect of suppressing evaporation of the sample liquid.
  • liquids other than mineral oil can be used as the evaporation suppression liquid as long as the specific gravity is lower than the sample liquid and / or the boiling point is higher than the maximum temperature of the heat source 30.
  • FIG. 9 is a graph showing the relationship between the power supply voltage of the motor 40 (see FIG. 2) and the rotation speed of the motor 40
  • FIG. 10 is a graph showing the relationship between the relative gravitational acceleration and the power supply voltage of the motor 40.
  • the motor 40 When the heat convection flow path 14 is filled with food red liquid and water and the first heater 31 and the second heater 32 are energized, the motor 40 is rotated at a voltage equivalent to 1 G (2.12 V from FIG. 10). The liquid in the heat convection flow path 14 made a half turn in about 30 seconds. Replacing this result with a PCR thermal cycle results in one cycle per minute.
  • the passage time of the heating part 32b of the liquid second heater 32 in the heat convection flow path 14 is about 15 seconds, and the passage time of the heating part 31b of the first heater 31 is about 45 seconds. It is also possible to shorten the passage time of the liquid heating unit 32b and the heating unit 31b by controlling the rotational speed of the thermal convection generating chip 10 to control the thermal convection speed.
  • Fluorescent PCR was attempted using the ⁇ -Action gene as an index. Amplicon was used as template DNA, and after filling the heat convection flow path 14 with the PCR solution, the motor 40 was rotated at 2.12 V for 30 minutes. This corresponds to 30 cycles of PCR because the heat convection in the heat convection flow path 14 makes one round in 1 minute when the heat convection flow path 14 rotates at 1G.
  • thermal convection PCR is performed using the thermal convection generation apparatus 1 and the thermal convection generation chip 10 of the present invention.
  • the reverse operation is performed using the thermal convection generation apparatus 1 and the thermal convection generation chip 10 of the present invention.
  • Copy PCR can also be performed.
  • Organisms transcribe genetic sequence information from genomic DNA into RNA, and synthesize proteins from RNA based on the genetic information.
  • PCR is a technique for amplifying a DNA molecule from a DNA molecule.
  • Reverse transcription PCR is a technique for synthesizing DNA from RNA by the action of reverse transcriptase and performing PCR using the DNA as a template. For example, some viruses such as influenza viruses do not have DNA but only RNA. In order to prove such a virus infection, reverse transcription PCR is used.
  • Reverse transcription PCR includes a method in which reverse transcription reaction and PCR are performed separately (2-step RT-PCR) and a method in which reverse transcription reaction and PCR are performed continuously in one solution (1 step RT-PCR). In this embodiment, a procedure for performing reverse transcription PCR by one-step RT-PCR will be described.
  • reaction reagent solution examples include SuperScript III OneStep RT-PCR System and GeneAmp EZ rTth RNA PCR Kit (product names) manufactured by Life Technologies Japan, Inc., and PrimeScript II High Fidelity One Step RT-PCR Kit manufactured by Takara Bio Inc. Or Primescript High Fidelity RT-PCR Kit (all trade names) can be used.
  • influenza virus for example, influenza virus, norovirus, other infectious disease viruses, extracts of expressed RNA from cells, etc.
  • influenza virus for example, a nasal discharge or the like suspended in an appropriate solution such as a buffer or water is used.
  • norovirus for example, vomit and the like suspended in an appropriate solution such as a buffer or water are used.
  • the reaction reagent solution and the sample solution are mixed in advance to produce a mixed solution.
  • the mixed solution is injected into the liquid supply path 15 of the thermal convection generating chip 10, and the thermal convection generating chip 10 is rotated to allow the mixed solution to enter the thermal convection flow path 14.
  • the rotation of the thermal convection generating chip 10 is stopped, the first heater 31 and the second heater 32 are set to the same temperature (for example, 40 to 60 ° C.), and the mixed solution in the thermal convection flow path 14 is kept constant.
  • the reverse transcription reaction is performed by heating for a time (for example, 60 seconds).
  • the reaction reagent solution is filled in the thermal convection flow path 14 of the thermal convection generation chip 10, and then the sample liquid is injected into the liquid supply path 15 to rotate the thermal convection generation chip 10.
  • the specimen liquid in the liquid supply path 15 enters the thermal convection flow path 14.
  • the temperature of the first heater 31 and the temperature of the second heater 32 are set to different temperatures so that the liquid in the thermal convection flow path 14 is thermally convected to mix the reaction reagent solution and the sample liquid, thereby generating a mixed solution.
  • the rotation of the thermal convection generating chip 10 is stopped, the first heater 31 and the second heater 32 are set to the same temperature (for example, 40 to 60 ° C.), and the mixed solution in the thermal convection flow path 14 is kept constant.
  • the reverse transcription reaction is performed by heating for a time (for example, 60 seconds).
  • a template DNA (cDNA) is synthesized from RNA by reverse transcription reaction by any of the methods (a) and (b) described above. Then, the first heater 31 and the second heater 32 are set to temperatures suitable for PCR (for example, the temperature of the first heater 31 is set to 60 ° C. and the temperature of the second heater 32 is set to 95 ° C.), and the thermal convection PCR reaction is performed. Cause it to occur.
  • FIG. 11 is a side view of the thermal convection generating device 81
  • FIG. 12 is an enlarged view of the thermal convection flow path 14 and the liquid supply path 15 of the third embodiment
  • FIG. 13 is a block diagram of a control system of the third embodiment.
  • symbol is attached
  • the thermal convection generating device 81 is configured to perform real-time PCR.
  • Real-time PCR is a technique that enables rapid quantification of DNA as a template.
  • DNA amplification by PCR or reverse transcription PCR is measured in real time during a PCR cycle.
  • Fluorescence detection methods include an intercalator method and a hybridization method.
  • a fluorescent dye SYBR green I
  • the TagMan probe method is the most common hybridization method, and a probe in which a fluorescent dye is bound to an oligonucleotide specific to a DNA sequence is used.
  • fluorescent dyes used in the TagMan probe method include FAM (Carboxyfluorescein).
  • the thermal convection generating device 81 includes an excitation light source 91, a fluorescence detector 92, a detection light source 93, and a detection light detector 94. And as shown in FIG. 12, the to-be-detected part 95 which reflects or scatters the detection light which the detection light source 93 inject
  • the excitation light source 91 irradiates the light L1 toward the heat convection flow path 14 of the rotating heat convection generating chip 10.
  • the light L1 is light that excites the fluorescent dye contained in the liquid in the thermal convection flow path 14 (see FIG. 12) of the thermal convection generation chip 10.
  • a laser light source can be used.
  • Fluorescence detector 92 detects fluorescence.
  • the fluorescence is emitted by the fluorescent dye by irradiating the fluorescent dye contained in the liquid in the heat convection flow path 14 with the light from the excitation light source 91.
  • the fluorescence detector 92 includes, for example, a photomultiplier detector, a condenser lens, a fluorescence filter, and the like.
  • the detection light source 93 irradiates detection light L2 (for example, laser light) toward the detection point P1 on the thermal convection generation chip 10.
  • detection light L2 for example, laser light
  • the detection point P1 is a fixed point set on a rotation locus formed by the detected portion 95 (see FIG. 12) as the thermal convection generating chip 10 rotates.
  • the detection unit 95 is configured to reflect or scatter the detection light when the detection light is irradiated from the detection light source 93.
  • the detection light detector 94 detects light reflected or scattered from the detected portion 95.
  • the detection light detector 94 includes, for example, a photomultiplier detector, a condenser lens, a band pass filter, and the like.
  • FIG. 13 is a block diagram of the control means 100 for controlling the heat convection generating device 81.
  • the arithmetic control unit 96 of the control unit 100 includes an input unit 53, a fluorescence detector 92, and detection as will be described in detail later. Based on the information input from the photodetector 94, the excitation light source 91 and the detection light source 93 are controlled.
  • the arithmetic control unit 96 also determines the position of the thermal convection flow path 10 during the rotational driving of the thermal convection generation chip 10 based on the reflected light or scattered light from the detected part 95 detected by the detection light detector 94. Is detected.
  • the arithmetic control unit 96, the detection light source 93, the detection light detector 94, and the detected unit 95 function as position detection means of the present invention.
  • the arithmetic control unit 96 drives the excitation light source 91 based on the detected position of the heat convection flow path 10.
  • the arithmetic control unit 96 also functions as light source control means of the present invention.
  • FIG. 14 is a flowchart showing a DNA amplification amount calculation method using the thermal convection generation device 81.
  • the DNA amplification amount is calculated in the thermal convection promoting step (step S40 and step S50 in FIG. 6). That is, at the same time as the rotation of the thermal convection generating chip 10 starts, the detection light from the detection light source 93 is applied to the detection point P1.
  • the detected portion 95 (see FIG. 12) provided in the thermal convection flow path 14 of the thermal convection generating chip 10 passes the detection point P1
  • the detected portion 95 reflects or scatters the detection light of the detection light source 93.
  • Step S60 corresponds to the excitation light irradiation step of the present invention.
  • the excitation light is applied to the mixed solution in the heat convection flow path 14, and the fluorescence emitted from the fluorescent molecules in the mixed solution is detected by the fluorescence detector 92 as shown in step S 70.
  • Step S70 corresponds to the fluorescence detection step of the present invention.
  • Step S80 the arithmetic control unit 96 calculates the amount of DNA amplification based on the fluorescence detected by the fluorescence detector 92.
  • Step S80 corresponds to the DNA amplification amount calculation step of the present invention. Based on this amplification amount, the template DNA is quantified. Such real-time PCR is performed on all the heat convection flow paths 14 of the heat convection generating chip 10.
  • FIG. 15 is a side view of the thermal convection generating apparatus 101 of the third embodiment.
  • symbol is attached
  • the excitation light source 91 and the fluorescence detector 92 are supported on the support member 102 fixed to the stage 20, and the excitation light source 91 and the fluorescence detector 92 are integrated with the thermal convection generation chip 10. Rotate. Further, the present embodiment does not include the detection light source 93, the detection light detector 94, and the detected portion 95 of the third embodiment. Other configurations of the present embodiment are the same as those of the third embodiment.
  • the excitation light is reliably irradiated by the liquid in the thermal convection flow path 14 as compared with the case where the excitation light source 91 and the fluorescence detector 92 do not rotate integrally with the thermal convection generation chip 10. Therefore, there is an effect that the accuracy of fluorescence detection is improved.
  • the detection light source 93, the detection light detector 94, and the detected portion 95 of the third embodiment are unnecessary, the manufacturing cost is reduced.
  • the heat source 30 is provided separately from the thermal convection generation chip 10, but the heat source 30 may be provided in the thermal convection generation chip 10.
  • the heat source for example, a lightweight linear heating element with a small occupied space can be used.
  • the present invention can also be applied to apparatuses that perform processes other than thermal convection PCR and reverse transcription PCR.
  • the thermal convection generation device includes two heat sources.
  • the number of heat sources included in the thermal convection generation device may be three or more, or one.
  • the thermal convection generating chip has a disk shape, but the shape of the thermal convection generating chip may be other than the disk shape.
  • one liquid supply path is provided for one heat convection flow path, but a plurality of liquid supply paths may be provided for one heat convection flow path.
  • one gas discharge path is provided for one heat convection flow path, but a plurality of gas discharge paths may be provided for one heat convection flow path.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

 液体を加熱又は冷却すると同時に液体に遠心力を付与することにより液体の熱対流を生じさせる熱対流生成装置(1)であって、ディスク状基板(11)と、ディスク状基板における軸線(AX)と直交する面内に形成された熱対流用流路(14)とを含み、ディスク状基板の軸線周りに回転させることにより熱対流用流路内の液体に遠心力を付与するようにした熱対流生成用チップ(10)を装脱可能なステージ(20)と、熱対流用流路の一部を加熱又は冷却する熱源(30)と、熱対流生成用チップを軸線周りに回転駆動するモータ(40)と、熱源及びモータを制御する制御手段(50)とを含む。

Description

熱対流生成用チップ、熱対流生成装置、及び熱対流生成方法
 本発明は、熱対流PCR等に用いられる熱対流生成用チップ、熱対流生成装置、及び熱対流生成方法に関する。
 遺伝子増幅方法として、ポリメラーゼ連鎖反応(Polymerase Chain Reaction、以下「PCR」と称する。)が知られている。PCRは、極めて微量のDNAサンプルから特定のDNA断片を短時間に大量に増幅できる方法であり、その操作の簡便さから、現在では基礎研究のみならず、臨床遺伝子診断から食品衛生検査、犯罪捜査に至るまで、幅広い分野に応用されている。
 特許文献1には、直立したシリンダ状の容器内で、容器底部側から供給する熱により熱対流を発生させてPCRを行う熱対流PCR装置が開示されている。この熱対流PCR装置は、対流による溶液駆動を行うものであり、外部ポンプを使用せずにPCR溶液の送液が可能という利点がある。
 また、特許文献2には、鉛直軸に対して傾斜した筒状の反応容器内に収容された液体を加熱すると同時に反応容器を鉛直軸周りに回転させることにより液体に遠心力を付与して熱対流を促進するようにした熱対流PCR装置が開示されている。
WO2002/072267 WO2011/086497
 しかしながら、特許文献1及び特許文献2に開示の装置は、装置が大型で、大きな設置スペースを必要とするという問題があった。なお、PCR以外の分野においても、コンパクトで、かつ安定した熱対流を生じさせることができる熱対流生成装置が求められている。
 上記課題を解決するために、本発明の熱対流生成用チップは、少なくとも一つの環状の熱対流用流路を含み、回転させることにより熱対流用流路内の液体に遠心力を付与するように構成される。
 なお、熱対流用流路内に液体を供給するための液体供給路を少なくとも1つ設けてもよい。
 その場合、回転させることにより液体供給路内の液体を遠心力によって熱対流用流路内に進入させるようにすると、熱対流用流路への液体の供給が容易となり、操作が簡略化する。
 また、熱対流用流路内の液体中に含まれるガスを受け入れるガス排出路を少なくとも1つ設けると、液体中に含まれるガスを除去できるので、熱対流をスムーズに行うことができる。
 なお、熱対流用流路を真円状にすると、流路長を最短にできるので、液体の処理効率が向上する。
 また、熱対流生成用チップが軸線周りに回転するとともに、軸線に対して対称的に配置された複数の熱対流用流路を備えるようにすると、複数の液体を同時に処理できるので、処理効率が向上する。
 また、熱対流用流路の壁面の表面粗さRaが100nm以下であると、熱対流用流路内の液体中の気泡の発生を抑制できるので、好ましい。
 また、熱対流用流路の壁面の材質が、環状オレフィン、ポリプロピレン、及びポリカーボネートのうちのいずれかであると、熱対流用流路内の液体中の気泡の発生を抑制できるので、好ましい。
 本発明の熱対流生成用チップの適用分野は特に限定されないが、例えば熱対流PCRを行う場合に用いることができる。
 また、本発明の熱対流生成装置は、少なくとも一つの熱対流用流路を含み、回転させることにより熱対流用流路内の液体に遠心力を付与する熱対流生成用チップを装脱可能なチップ装着部と、熱対流生成用チップの熱対流用流路の一部を加熱又は冷却する熱源と、熱対流生成用チップを回転駆動する駆動手段とを含む。
 なお、熱源が低温熱源と高温熱源とを含んでおり、低温熱源の加熱部と高温熱源の加熱部との温度差が10℃以上であり、低温熱源の加熱部と高温熱源の加熱部との間の空隙と低温熱源の加熱部との温度差が10℃以上であるとともに、空隙と高温熱源の加熱部との温度差が10℃以上であると、熱対流用流路内の液体の熱対流を効率よく促進することができるので、好ましい。
 また、熱対流用流路のうち、熱源に対向するエリアの温度が、熱対流用流路のうち、熱源に対向するエリア以外のエリアの温度よりも大きいか又は小さいと、熱対流用流路内の液体の熱対流を効率よく促進することができるので、好ましい。
 また、この熱対流生成装置は、熱源による熱対流用流路の加熱温度又は冷却温度、駆動手段による熱対流生成用チップの回転駆動速度及び回転駆動時間を制御する制御手段を備えるものとすることができる。
 本発明の熱対流生成装置の適用分野は特に限定されないが、例えば熱対流PCRを行う場合に用いることができる。
 この場合、熱対流用流路内の液体に含まれる蛍光色素を励起する励起光を熱対流用流路内の液体に照射する励起光光源と、蛍光色素に励起光を照射することにより蛍光色素によって放出される蛍光を検出する蛍光検出器と、蛍光検出器によって検出された蛍光に基づいてDNAの増幅量を算出する演算制御部とを含むようにすると、リアルタイムPCRを実行できるので、鋳型DNAの定量を迅速に行うことができる。
 なお、この場合、熱対流生成用チップの回転駆動中における熱対流用流路の位置を検知する位置検知手段と、当該位置検知手段の検知結果に基づいて励起光光源を駆動する光源制御手段とをさらに含むようにすると、蛍光検出の精度が向上するので、好ましい。

 また、位置検知手段と光源制御手段とを設ける代わりに、励起光光源及び蛍光検出器が熱対流生成用チップと一体的に回転するように構成すると、蛍光検出の精度が向上するとともに、製造コストが安価になるので、好ましい。
 また、本発明の熱対流生成方法は、少なくとも一つの環状の熱対流用流路を含み、回転させることにより熱対流用流路内の液体に遠心力を付与する熱対流生成用チップを準備するチップ準備工程と、環状の熱対流用流路内に液体を供給する液体供給工程と、熱対流生成用チップを回転駆動して液体に遠心力を付与しつつ熱対流用流路の一部を加熱又は冷却する熱対流促進工程とを含む。
 なお、熱対流用流路内の液体が、液体を加熱する熱源の最高温度よりも沸点が高い及び/又は液体よりも比重が小さい蒸発抑制用液体を含むようにすると、液体の蒸発が抑制されるので、好ましい。
 本発明の熱対流生成方法の適用分野は特に限定されないが、例えば熱対流PCRを行う場合に用いることができる。
 この場合、熱対流用流路内の液体が蛍光色素を含み、熱対流促進工程において、蛍光色素を励起する励起光を熱対流用流路内の液体に照射する励起光照射工程と、励起光が照射された蛍光色素によって放出される蛍光を検出する蛍光検出工程と、検出された蛍光に基づいてDNAの増幅量を算出する増幅量算出工程とを実行することで、リアルタイムPCRを実行できるので、鋳型DNAの定量を迅速に行うことができる。
 本発明によれば、外部ポンプを必要としないためコンパクトな熱対流生成装置を提供できる。
本発明の第1実施形態の熱対流生成装置の側面図である。 第1実施形態の熱対流生成装置の分解斜視図である。 第1実施形態の熱対流生成用チップの拡大斜視図である。 第1実施形態の熱対流用流路、液体供給路及びガス排出路の拡大図である。 第1実施形態の制御系のブロック図である。 第1実施形態の熱対流生成装置を用いた熱対流生成方法を示すフローチャートである。 本発明の効果を確認するための実験方法の説明図である。 本発明の第2実施形態の熱対流用流路及び液体供給路の拡大図である。 モータの電源の電圧とモータの回転数との関係を示すグラフである。 相対重力加速度とモータの電源の電圧との関係を示すグラフである。 本発明の第3実施形態の熱対流生成装置の側面図である。 第3実施形態の熱対流用流路及び液体供給路の拡大図である。 第3実施形態の制御系のブロック図である。 第3実施形態の熱対流生成装置を用いたDNA増幅量算出方法を示すフローチャートである。 本発明の第4実施形態の熱対流生成装置の側面図である
 以下、図面を参照して本発明の実施形態を説明する。ただし、本発明は以下の実施形態に限定されない。

 本発明の第1実施形態の熱対流生成装置1は熱対流PCRを行うための装置であって、図1、2に示すように、熱対流生成用チップ10を装脱可能なチップ装着部としてのステージ20と、熱源30と、モータ40と、制御手段50とを備えている。
 図3に示すように、熱対流生成用チップ10は、例えば合成樹脂から成る透明な円盤状のディスク状基板11を備えており、このディスク状基板11は、基板本体12と、その下面に積層された蓋体13とから成っている。
 基板本体12の下面周縁部には複数の熱対流用流路14が設けられている。これらの熱対流用流路14は、ディスク状基板11の軸線AX周りに等角度間隔をおいて設けられ、軸線AXに対して対称的に配置されている。
 熱対流用流路14の数、加工方法、形状及び寸法等は特に限定されないが、本実施形態では、直径40mmの基板本体12に微細加工技術により4つの同形同大の熱対流用流路14が形成され、各熱対流用流路14は直径5mmの真円状の溝から成り、溝の幅は500μm、深さは300μmとなっている。
 熱対流用流路14内の液体に気泡が発生すると、熱対流が阻害されるという問題が生じる。熱対流用流路14内の液体中の気泡発生を抑制するための熱対流用流路14の設計方法については後述する。
 なお、熱対流用流路14は真円状であるため、流路長を最短にでき、熱対流PCRを短時間で効率良く行うことができる。また、熱対流生成用チップ10は複数の熱対流用流路14を備えているため、複数の液体を同時に処理できるので、処理効率が向上する。
 熱対流用流路14における軸線AXに最も近い部位には、二股状に分岐した液体供給路15とガス排出路16とが連通接続されている。
 液体供給路15とガス排出路16との加工方法、形状及び寸法等は特に限定されないが、本実施形態では、微細加工技術により形成された溝から成る左右対称状の流路である。
 図4に示すように、液体供給路15は、熱対流用流路14から最も離れた部位から順に、ディスク状基板11の径方向に延びる細長い伸延部15aと、その一端に連通接続された涙滴状の液溜り部15bと、その先端部と熱対流用流路14とを連通接続する幅狭の連通部15cとを有している。なお、液溜り部15bの容量は熱対流用流路14の容量よりも大きくされている。
 ガス排出路16は、熱対流用流路14から最も離れた部位から順に、ディスク状基板11の径方向に延びる細長い伸延部16aと、その一端に連通接続された涙滴状のガス溜り部16bと、その先端部と熱対流用流路14とを連通接続する幅狭の連通部16cとを有している。
 ガス排出路16を設けたことで、熱対流用流路14内の液体が熱対流する際に生じるガスや液体供給路15に液体を注入する際に生じるガスが遠心力によりガス排出路16内に進入し、液体からガスを除去できるので、液体の熱対流をスムーズに行うことができる。
 蓋体13(図3参照)は、基板本体12とほぼ同径で、かつ基板本体12よりも薄い円盤により形成され、基板本体12の下面に積層された状態で、適宜の固定手段により基板本体12と着脱可能に固定される。

 ステージ20(図2参照)は、熱源30を支持するとともにモータ40の回転力を熱対流生成用チップ10に伝達するためのものであって、合成樹脂や金属等から成る円盤により形成される。
 ステージ20は、その上方に配置される熱対流生成用チップ10をステージ20に対して同心状に位置決めするとともに熱対流生成用チップ10を相対回転不能に連結する連結手段を備えている。そのような連結手段の構造は特に限定されないが、例えば、熱対流生成用チップ10における中心軸に対して偏心した位置に形成された凹部又は凸部を、ステージ20における中心軸に対して偏心した位置に形成された凸部又は凹部と嵌合させる構造とすることができる。
 ステージ20には、熱源30を挿入装着するための4つの円弧状のヒータ装着孔21が設けられている。これらのヒータ装着孔21は軸線AX周りに90°の角度間隔をおいて設けられ、軸線AXに対して対称的に配置されている。
 また、ステージ20には、後述する第1ヒータ31を固定するためのねじの軸部を挿通する一対の第1ねじ挿通孔22と、後述する第2ヒータ32を固定するためのねじの軸部を挿通する一対の第2ねじ挿通孔23とが設けられている。
 熱源30は、リング状の低温熱源としての第1ヒータ31と、その内側に同心状に配置されるリング状の高温熱源としての第2ヒータ32とを含む。
 第1ヒータ31は、リング状の連結部31aと、その周方向に等間隔をおいて設けられた4つの横断面L字形の柱状の加熱部31bとを備えている。
 連結部31aには一対のねじ孔31cが軸線AX周りに180°の角度間隔をおいて設けられている。これらのねじ孔31cには、ステージ20の第1ねじ挿通孔22を貫通したねじの軸部が螺合する。
 第1ヒータ31をステージ20に装着した状態で、第1ヒータ32の各加熱部31bの上端部がステージ20の上方に突出した状態となる(図1参照)。
 第2ヒータ32は、リング状の連結部32aと、その周方向に等間隔をおいて設けられた4つの縦断面L字形の柱状の加熱部32bとを備えている。
 連結部32aには一対のねじ孔32cが軸線AX周りに180°の角度間隔をおいて設けられている。これらの貫通孔32cには、ステージ20の第2ねじ挿通孔23を貫通したねじの軸部が螺合する。
 第2ヒータ32をステージ20に装着した状態で、第2ヒータ32の各加熱部32bの上端部がステージ20の上方に突出した状態となる(図1参照)。
 図4に示すように、第1ヒータ31の加熱部31bは、その上面が熱対流用流路14の半周程度に対向するように形成されている。加熱部31bの加熱温度は約60℃である。
 一方、第2ヒータ32の加熱部32bは、その上面が熱対流用流路14の1/4周程度に対向するように形成されている。加熱部32bの加熱温度は約95℃である。
 加熱部31bの加熱温度と加熱部32bの加熱温度とは特に限定されないが、熱対流を効率よく促進するために、加熱部31bの加熱温度と加熱部32bの加熱温度との差は10℃以上であることが好ましい。また、加熱部31bと加熱部32bの間の空隙Sと加熱部31bの加熱温度との温度差は10℃以上であることが好ましく、空隙Sと加熱部32bの加熱温度との温度差は10℃以上であることが好ましい。
 さらに、熱対流用流路14のうち、加熱部31bに対向するエリアE1と加熱部32bに対向する高温エリアE2の温度が、熱対流用流路14のうち、エリアE1、E2以外のエリアE3の温度よりも大きいことが好ましい。なお、熱源が熱対流用流路内の液体を冷却するものである場合には、熱対流用流路のうち、熱源に対向するエリアの温度が、熱対流用流路のうち、熱源に対向するエリア以外のエリアの温度よりも小さいことが好ましい。
 図2に示す熱対流生成用チップ10、ステージ20、第1ヒータ31及び第2ヒータ32が積層された状態で、モータ40のシャフト41がステージ20の中心孔24及び熱対流生成用チップ10の中心孔17に挿通される。モータ40のシャフト41とステージ20は適宜の手段により固定される。
 熱対流生成装置1を制御する制御手段50は、図5に示すように、演算制御部51、表示部52及び入力部53を備えている。
 演算制御部51は、CPU、ROM及びRAM等を含むマイクロコンピュータにより構成され、CPUは、入力部53から入力される情報とROMに格納されたプログラムとに従って第1ヒータ31、第2ヒータ32及びモータ40を制御する。表示部52は液晶表示装置を備え、入力部53は、キーボード、マウスを備える。
 なお、図2の左側に仮想線で示すように、第1ヒータ31で発生する熱を放熱して第1ヒータ31を冷却するヒートシンク60を設けるようにしてもよい。この場合、安価な製造コストで余分な熱を除去でき、熱対流PCRの精度を向上することができる。
 次に、熱対流用流路14内の液体中の気泡発生を抑制する方法について説明する。熱対流用流路14内の液体中に気泡が発生する原因としては、以下の3つのケースが考えられる。第1のケースは、液体の沸騰あるいは液体に溶けている気体の析出により気泡が発生するケースである。第2のケースは、熱対流用流路14内に液体を満たす際に生じるぬれ残りがそのまま気体となるケースである。第3のケースは、熱対流用流路14を構成している材料あるいは蓋体13を構成している材料から気体が析出するケースである。
 上記の第1のケースについては、液体の沸騰による気泡発生は不可避な現象であり、基本は液体を沸点以下の温度に制御することが重要である。一方、元々液体に溶けている気体が析出する場合については、更に原因が下記の通り分かれ、各々対策を講じることが可能である。
 熱対流用流路14に供給される前の液体に攪拌等により気泡が浮遊混入した場合には、大気中に適度な時間放置することで大部分は排出される。仮に気泡が混入された状態のままで液体が熱対流用流路14に供給された場合でも、適度なボリュームの液溜まり部を熱対流用流路14に設けることで、液体から気体を分離/除去できることが多い。
 温度及び/又は圧力の変化により気体の溶解度が低下して気泡が発生する場合には、あらかじめ液体に真空脱気処理を施しておくことが理想であるが、この策をとれない場合でも、熱対流用流路14内の圧力を高めることで気体析出を抑制することが可能である。熱対流用流路14内の圧力を高める手段としては、熱対流用流路14の断面の径や熱対流用流路14の長さを、液体の密度や流速、管摩擦係数を考慮しながら設定する方法等がある

 本発明では、上記のような一般的手法以外に、熱対流用流路14に供給する試料液体の先頭及び/又は末尾に、熱源30の最高温度よりも沸点が高い及び/又は当該試料液体よりも比重が小さい蒸発抑制用液体を供給することにより、試料液体からの気体の発生及び/又はその成長を抑制する。斯かる蒸発抑制用液体としては、例えば、ミネラルオイルを挙げることができる。
 上記の第2のケースについては、主として熱対流用流路14の構造上ぬれ残りが生じやすい場合と、熱対流用流路14流路を構成する材質に対する液体のぬれ性が不十分なためにぬれ残りが生じる場合とが考えられる。
 前者の場合、試料液体の進行方向に沿って熱対流用流路14を辿った際に、急激な流路断面径の変化や急激な進行方向の変化等が多い場合であり、特定の機能を持たせる目的で意図的にそのような構造にする以外は、そのような構造を極力避けることで気泡の発生を抑制することができる。
 また、後者の場合、一般的には、熱対流用流路14を構成する材料又は蓋体13を構成する材料に親水性の高い材料を用いることで、ぬれ残りを抑制することができる。なお、熱対流用流路14を構成する材料又は蓋体13を構成する材料を親水性の高くない材料とし、熱対流用流路14の壁面に相当する部分に親水性の高い物質をコーティングする方法も有効である。
 なお、熱対流用流路14の壁面の材質を決定する際には、上記第3のケースも考慮して、当該材質のプラスの効果とマイナスの効果から総合的に判断することが重要である。
 当該材質の具体例としては、例えば、環状オレフィン、ポリプロピレン、ポリカーボネート、ポリジメチルシロキサンとガラスの複合体、アクリルを挙げることができる。
 上記の材質のうち、脱ガス性と耐熱性に優れ、ガス透過性、吸水性、及び自家蛍光性が低い点において、環状オレフィンが最も好ましく、次いで、ポリプロピレンとポリカーボネートとが好ましい。
 また、本実施形態では、上記のような材質選択による一般的手法の他に、熱対流用流路14の壁面を研磨して表面粗さをある程度以下に抑えることにより、ぬれ残りの発生を抑制する。具体的には、熱対流用流路14の壁面の表面粗さRaは100nm以下にされているが、当該表面粗さRaは50nm以下であればより好ましく、30nm以下が特に好ましい。
 当該研磨加工の効果を確認するために、以下の実験を行った。まず、基板本体12に切削加工により熱対流用流路14を形成し、熱対流用流路14の壁面にポリエチレングリコールをコーティングした後、食紅を含んだ水を熱対流用流路14に充填し、95℃のヒータで熱対流生成用チップ10全体を加熱した。その結果、1分程度で熱対流用流路14内の水に気泡の発生が確認された。
 一方、基板本体12に切削加工により熱対流用流路14を形成し、熱対流用流路14の壁面を研磨して表面粗さRaを30nm程度とした後、食紅を含んだ水を熱対流用流路14に充填し、95℃のヒータで熱対流生成用チップ10全体を加熱した。その結果、20分以上加熱しても、熱対流用流路14内の水に気泡の発生が見られなかった。

 次に、図6を参照して、熱対流生成装置1を用いて熱対流PCRを行う手順を説明する。図6は、熱対流生成装置1を用いた熱対流生成方法を示すフローチャートである。
 まず、ステップS10に示すように、熱対流生成用チップ10を準備する。ステップS10は、本発明のチップ準備工程に相当する。
 次に、ステップS20に示すように、熱対流生成用チップ10の基板本体12における蓋体13と反対側の面に形成された注入口(図示せず)に反応試薬溶液を注入すると、この反応試薬溶液は、毛細管現象により液体供給路15の伸延部15aを通過して液溜り部15bに流入する。
 次に、ステップS30に示すように、前記注入口に唾液や血液等の検体液を注入すると、この検体液は毛細管現象により液体供給路15の伸延部15aを通過して液溜り部15bに流入する。
 なお、本実施形態では、反応試薬溶液や検体液は毛細管現象により伸延部15aを通過して液溜り部15bに流入するが、ピペッター等を使用して反応試薬溶液や検体液を液溜り部15b内に押し込むようにしてもよい。
 液溜り部15bに流入した反応試薬溶液や検体液は、熱対流生成用チップ10が停止している間は液溜り部15b内に滞留しているが、熱対流生成用チップ10が回転すると、遠心力により連通部15cを通過して熱対流用流路14内に進入する。
 なお、基板本体12と蓋体13との間に気密性及び液密性を有する薄い樹脂製シートを挟み込んで、熱対流用流路14、液体供給路15及びガス排出路16を封閉するようにしてもよい。
 また、液体供給路15にPCRを阻害しないオイルを注入してもよい。この場合、熱対流生成用チップ10が回転すると、比重が軽いオイルは液溜り部15bに滞留し、熱対流用流路14内の液体が連通部15cから液溜り部15bに流入するのを防ぐ蓋として機能するとともに、熱対流用流路14内の液体が蒸発するのを防止する。
 次に、熱対流生成用チップ10、第1ヒータ31及び第2ヒータ32をステージ20に装着固定し、モータ40のシャフト41をステージ20の中心孔24及び熱対流生成用チップ10の中心孔17に挿入してステージ20をシャフト41に固定する。
 次に、ステップS40に示すように、ユーザが制御手段50の入力部53を操作してモータ40を起動すると、ステージ20及び熱対流生成用チップ10が回転する。また、ステップS50に示すように、第1ヒータ31及び第2ヒータ32に通電されて各熱対流生成用通路14内の液体が加熱される。
 液体供給路15は熱対流用流路14に対してディスク状基板11の軸線AXの側に配置されているため、熱対流生成用チップ10が回転すると、液体供給路15内の反応試薬溶液と検体液は遠心力により熱対流用流路14の方向に移動するので、熱対流用流路14内に進入する。ステップS20~ステップS40は、本発明の液体供給工程に相当する。
 各熱対流生成用通路14内の反応試薬溶液と検体液とは、加熱されるとともに遠心力が付与されることにより、熱対流して両液が混合する。ステップS40及びステップS50は、本発明の熱対流促進工程に相当する。

 なお、反応試薬溶液と検体液とを液体供給路15に注入する前に、あらかじめ反応試薬溶液と検体液との混合液を作製し、この混合液を液体供給路15に注入し、熱対流生成用通路14で熱対流させるようにしてもよい。
 なお、熱対流用通路14内の混合液中にガスが含まれている場合には、そのガスは遠心力により軸線AXの方向に移動してガス排出路16内に流入するので、混合液中のガスを除去できる。これによって、混合液がスムーズに熱対流することができる。
 混合液は第2ヒータ32の加熱部32bを通過する際に加熱部32b(約95℃)と熱交換して加熱される。これにより、混合液中の2本鎖DNAが分離して2本の1本鎖DNAとなる。なお、本実施形態では、熱対流する混合液の加熱部32bの通過時間は約15秒に設定されている。
 また、混合液は第1ヒータ31の加熱部31bを通過する際に加熱部31b(約60℃)と熱交換して冷却される。これにより、混合液中の2本の1本鎖DNAが結合して2本鎖DNAとなる。なお、本実施形態では、熱対流する混合液の加熱部31bの通過時間は約45秒に設定されている。
 なお、熱対流する混合液が第1ヒータ31の加熱部31bを通過する時間と第2ヒータ32の加熱部32bを通過する時間とは、熱対流生成用チップ10の回転数や混合液の熱対流速度等を制御することで、短縮可能である。
 モータ40の駆動時間は、第2ヒータ32による加熱と第1ヒータ31による冷却とがそれぞれ所定回数ずつ行われるように設定されている。
 なお、第1ヒータ31及び第2ヒータ32の温度及びモータ40による熱対流生成用チップ10の回転駆動速度は、制御手段50の入力部53を介して調整可能となっている。
 本発明の熱対流生成装置1は、液体を熱対流させるようにしているため、外部ポンプを必要とせず、また、ディスク状基板11に熱対流用流路14が形成されているため、装置がコンパクトである。また、液体を加熱すると同時に遠心力を付与するようにしているため、液体を確実に熱対流させることができる。
 さらに、熱対流用流路14がディスク状基板11における軸線と直交する面内に形成されているので、液体が熱対流用流路14内を循環する間に液体に作用する回転軸方向の合力が変化しないので、液体の流れが安定する。したがって、安定した熱対流を確実に生成することができるので、信頼性が高い。
 また、熱対流用流路14が真円状であるため、流路長を最短にすることができるのに加えて、熱対流用流路14が複数設けられているため、液体の処理を短時間で効率良く行うことができる。
 本発明の効果を確認するために、以下の実験を実施した。
 熱対流生成用チップ10の液体供給路15内に着色していない水と食紅等で着色した水とを注入し、最初に熱源30に通電していない状態で熱対流用流路14内の様子をハイスピードカメラによって観察した。その結果、熱対流生成用チップ10の回転前と回転後の熱対流用流路14内の液体の濃淡の変化は見られず、熱対流生成用チップ10の回転のみでは着色していない水と着色した水との混合が生じないことが確認された。なお、モータ40の駆動時間は20秒、駆動速度は1000rpm、電流値は1.4Aである。
 次に、熱源30の温度を50℃とし、熱対流生成用チップ10の回転前と回転後の熱対流用流路14内の様子をハイスピードカメラによって観察した。その結果、熱対流用流路14内に熱対流が生じ、着色していない水と着色した水とが混合してゆく様子が確認された。
 また、熱対流用流路14の温度を測定するために、熱対流生成用チップ10の下面と第1ヒータ31の加熱部31bの上面との間、及び熱対流生成用チップ10の下面と第2ヒータ32の加熱部32bの上面との間に、図7に示すように、3種類のサーモシール71(60℃)、サーモシール72(95℃)及びサーモシール73(100℃)を貼り付けた。サーモシール71~73は、温度が上昇するにしたがって、黒、茶、緑、青、紫と順に温度が変化してゆく。
 第2ヒータ32に接続されている電源の温度設定を115℃とし、モータ40のDC電源の電圧を0.5Vに設定し、熱対流生成用チップ10を10分間回転駆動した。なお、第1ヒータ31には通電していない。熱対流生成用チップ10の回転前と回転後のサーモシール72の色を比較すると、サーモシール72の色に変化は見られないため、熱対流生成用チップ10の回転による空冷の影響はないと考えられる。なお、サーモシール72の色から、熱対流用流路14におけるサーモシール72に対向する部位の温度は95℃~97℃であることが判明した。
 一方、サーモシール71の色は紫であり、熱対流用流路14におけるサーモシール71に対向する部位の温度は60℃を遥かに越えていることを示している。そこで、第1ヒータ31を冷却するべく、水の循環による水冷とヒートシンク60による放熱との比較検討を行った。
 水冷による冷却方法では、ステージ20のヒータ装着孔21にシリコンチューブを通し、ぺリスタポンプを使用することで水(常温)を循環させて冷却した。第2ヒータ32に接続されている電源の温度設定を125℃としたところ、熱対流用流路14における第2ヒータ32の加熱部32bに対向する部位の温度は95~97℃となったが、熱対流用流路14における第1ヒータ31の加熱部31bに対向する部位の温度は57.25℃以下となった。
 一方、ヒートシンク60による冷却方法では、第2ヒータ32に接続されている電源の温度設定を125℃とし、12個の放熱体からなるヒートシンク60を第1ヒータ31に取り付けたところ、熱対流用流路14における第2ヒータ32の加熱部32bに対向する部位の温度は95~97℃となり、また、熱対流用流路14における第1ヒータ31の加熱部31bに対向する部位の温度は約60℃となり、理想の温度分布が得られた。そして、モータ40のDC電源の電圧を0.5Vに設定して熱対流生成用チップ10を10分間回転させたが、温度分布に変化は見られなかった。
 次に、本発明の第2実施形態を説明する。図8は本発明の第2実施形態の熱対流用流路及び液体供給路の拡大図である。なお、先に説明した第1実施形態と対応する部位には同一の符号を付してあり、重複する説明は省略する。
 本実施形態では、熱対流用流路14と液体供給路15を有する基板本体12(図3参照)が、ポリジメチルシロキサン(以下「PDMS」と称する。)とガラスとの複合体を材料としてフォトリソグラフィー技術により作製されている。
 本実施形態の熱対流用流路14は、外側の直径が6mmの真円状の溝から成り、溝の幅は500μm、深さは400μmである。
 液体供給路15の液溜り部15bの熱対流用流路14と反対側の端部は半円形状に形成され、液溜り部15bの熱対流用流路14の側の端部は逆三角形状に形成され、液溜り部15bの中間部は直方体状に形成されている。また、液溜り部15bに液体を導入する伸延部15aがL字形に形成されるとともに、その一端が液溜り部15bの逆三角形状の端部に連通接続されている。
 本実施形態のその他の構成は先に説明した実施形態と同じである。
 先に説明した実験方法と同じ方法で第1ヒータ31の加熱部31b、第2ヒータ32の加熱部32b上にそれぞれサーモシールを配置して温度測定を行い、各機器の設定を行った。
 第2ヒータ32の電源の温度を140℃に設定し、冷却水の温度を50℃に設定したところ、熱対流用流路14における第2ヒータ32の加熱部32bに対向する部位の温度と、熱対流用流路14における第1ヒータ31の加熱部31bに対向する部位の温度は目標とする温度となった。なお、ヒートシンクは用いなかった。
 熱対流用流路14中に食紅液を充填して気泡発生の有無の確認を行った。PDMSはガス透過性が高いため、高温時に気泡が発生することがある。この気泡は液体の対流を妨げるため、PCRの熱交換ができなくなってしまう。
 そこで、本実施形態では、あらかじめミネラルオイルを熱対流用流路14に満たし、PDMSが十分にミネラルオイルを吸収した状態で食紅液を熱対流用流路14に充填した。そして、熱対流用流路14を30分間加熱したが、気泡は発生しなかった。これは、ミネラルオイルがPDMSのガス透過性を低下させ、気泡の発生を防いだと考えられる。また、ミネラルオイルは、連通部15cを塞ぐ蓋としての役割を果たす。
 さらに、ミネラルオイルは、熱源30の最高温度である第2ヒータ32の加熱温度よりも沸点が高いため、試料液体の蒸発を抑制する効果も奏する。なお、試料液体よりも比重が小さい及び/又は熱源30の最高温度よりも沸点が高い液体であれば、ミネラルオイル以外の液体を蒸発抑制用液体として用いることもできる。
 図9はモータ40(図2参照)の電源の電圧とモータ40の回転数との関係を示すグラフ、図10は相対重力加速度とモータ40の電源の電圧との関係を示すグラフである。
 図10は速度と遠心力との関係式(F=mv2/r、g=(2πN)2r)より相対重力加速度とモータ40の回転数との関係を求め、さらに電圧と相対重力加速度との関係を求めることにより作成したものである。
 熱対流用流路14に食紅液と水を充填し、第1ヒータ31と第2ヒータ32とに通電した状態で1G相当の電圧(図10より2.12V)でモータ40を回転させたところ、熱対流用流路14内の液体が30秒間でおおよそ半周した。この結果をPCRの熱サイクルに置き換えると、1分間で1サイクルすることになる。
 本実施形態では、熱対流用流路14内の液体の第2ヒータ32の加熱部32bの通過時間は約15秒、第1ヒータ31の加熱部31bの通過時間は約45秒である。なお、熱対流生成用チップ10の回転数を制御して熱対流速度を制御することで、液体の加熱部32b及び加熱部31bの通過時間をより短くすることも可能である。
 β-Action遺伝子を指標に蛍光PCRを試みた。アンプリコンをテンプレートDNAとして使用し、PCR液を熱対流用流路14に充填後、モータ40を2.12Vで30分間回転させた。これは、熱対流用流路14が1Gで回転すると、熱対流用流路14内の熱対流が1分で1周することから、PCRを30サイクル行ったことに相当する。
 30分の回転終了後に熱対流生成用チップ10の蛍光観察を行ったところ、熱対流用流路14中にDNA増幅に伴う蛍光を観察することができた。また、熱対流用流路14から反応溶液を取り出して電気泳動により増幅産物(DNA長:289bp)の確認を行ったところ、目的の長さのDNAが確認された。
 以上、本発明の熱対流生成装置1及び熱対流生成用チップ10を用いて熱対流PCRを行う場合について説明したが、本発明の熱対流生成装置1及び熱対流生成用チップ10を用いて逆転写PCRを行うこともできる。
 生物は、ゲノムDNAから、その遺伝配列情報をRNAに転写し、RNAからその遺伝情報をもとにタンパク質を合成する。PCRは、DNA分子からDNA分子を増幅させる技術であるが、逆転写PCRは、逆転写酵素の働きによりRNAからDNAを合成し、そのDNAを鋳型にしてPCRを行う技術である。例えば、インフルエンザウイルスなどの一部のウイルスはDNAをもたず、RNAしかもっていない。このようなウイルスの感染を証明する場合、逆転写PCRを用いることになる。
 本発明の熱対流生成装置1及び熱対流生成用チップ10を用いて逆転写PCRを行う手順を以下に説明する。
 逆転写PCRには、逆転写反応とPCRとを別々に行う方法(2ステップRT-PCR)と、逆転写反応とPCRとを1液で連続的に行う方法(1ステップRT-PCR)とがあり、本実施形態では、1ステップRT-PCRにより逆転写PCRを行う手順について説明する。
 反応試薬溶液としては、例えば、ライフテクノロジーズジャパン株式会社製のSuperScriptIII OneStep RT-PCR SystemやGeneAmp EZ rTth RNA PCR Kit(いずれも商品名)、タカラバイオ株式会社製のPrimeScriptII High Fidelity One Step RT-PCR KitやPrimescript High Fidelity RT-PCR Kit(いずれも商品名)等を用いることができる。
 検体としては、例えば、インフルエンザウィルスやノロウィルス、その他感染症ウィルス全般、細胞等からの発現RNAの抽出液等が用いられる。インフルエンザウィルスなら、例えば鼻汁等を緩衝液や水等の適当な溶液に懸濁したものが用いられる。また、ノロウィルスなら、例えば嘔吐物等を緩衝液や水等の適当な溶液に懸濁したものが用いられる。
 なお、本発明の熱対流生成装置1及び熱対流生成用チップ10を用いて逆転写PCRを行う場合、以下の(a)、(b)の2つの方法が考えられる。以下、図1~図4を参照して(a)、(b)の2つの方法を説明する。
 (a)あらかじめ反応試薬溶液と検体液とを混合し、混合溶液を生成する。次に、熱対流生成用チップ10の液体供給路15内に混合溶液を注入し、熱対流生成用チップ10を回転させて混合溶液を熱対流用流路14内に進入させる。その後、熱対流生成用チップ10の回転を停止させ、第1ヒータ31と第2ヒータ32とを同じ温度(例えば、40~60℃)にして、熱対流用流路14内の混合溶液を一定時間(例えば、60秒)加熱して逆転写反応させる。
 (b)先ず、熱対流生成用チップ10の熱対流用流路14内に反応試薬溶液を充填しておき、その後に液体供給路15に検体液を注入し、熱対流生成用チップ10を回転させて液体供給路15内の検体液を熱対流用流路14に進入させる。そして、第1ヒータ31の温度と第2ヒータ32の温度とを異なる温度にして熱対流用流路14内の液体を熱対流させて反応試薬溶液と検体液とを混合し、混合溶液を生成する。その後、熱対流生成用チップ10の回転を停止させ、第1ヒータ31と第2ヒータ32とを同じ温度(例えば、40~60℃)にして、熱対流用流路14内の混合溶液を一定時間(例えば、60秒)加熱して逆転写反応させる。
 上記の(a)及び(b)のいずれかの方法により、RNAから逆転写反応により鋳型DNA(cDNA)を合成する。そして、第1ヒータ31と第2ヒータ32とをPCRに適した温度(例えば、第1ヒータ31の温度を60℃、第2ヒータ32の温度を95℃)に設定して熱対流PCR反応を生じさせる。
 次に、本発明の第3実施形態を説明する。図11は熱対流生成装置81の側面図、図12は第3実施形態の熱対流用流路14及び液体供給路15の拡大図、図13は第3実施形態の制御系のブロック図である。なお、先に説明した第1実施形態と対応する部位には同一の符号を付してあり、重複する説明は省略する。
 熱対流生成装置81は、リアルタイムPCRを実施できるように構成されている。リアルタイムPCRは、鋳型となるDNAの定量を迅速に行うことができる手法である。リアルタイムPCRは、PCRや逆転写PCRによるDNAの増幅分をPCRサイクル中にリアルタイムで測定する。
 リアルタイムPCRでは、PCR増幅産物を蛍光により検出する。蛍光の検出方法には、インターカレーター法とハイブリダイゼーション法とがある。インターカレーター法では、二本鎖DNAに特異的に挿入して蛍光を発する蛍光色素 (SYBR green I) を用いる。一方、ハイブリダイゼーション法はTagManプローブ法が最も一般的であり、DNA配列に特異的なオリゴヌクレオチドに蛍光色素を結合させたプローブを用いる。TagManプローブ法に用いる蛍光色素としては、例えば、FAM(Carboxyfluorescein)を挙げることができる。
 図11に示すように、熱対流生成装置81は、励起光光源91と、蛍光検出器92と、検知光光源93と、検知光検出器94とを備える。そして、図12に示すように、本実施形態の熱対流用流路14の近傍には、検知光光源93が射出する検知光を反射又は散乱させる被検知部95が設けられている。
 図11に示すように、励起光光源91は、回転する熱対流生成用チップ10の熱対流用流路14に向けて光L1を照射する。光L1は熱対流生成用チップ10の熱対流用流路14(図12参照)内の液体に含まれる蛍光色素を励起する光である。励起光光源91としては、例えば、レーザー光源を用いることができるが、青色発光ダイオード(LED)や白色光源等を用いると、装置コストが安価になるので、好ましい。
 蛍光検出器92は蛍光を検出する。蛍光は熱対流用流路14内の液体に含まれる蛍光色素に励起光光源91の光を照射することにより蛍光色素によって放出される。蛍光検出器92は、例えば、フォトマル検出器、集光レンズ及び蛍光フィルタ等を含んで構成される。
 検知光光源93は、熱対流生成用チップ10上の検知ポイントP1に向けて検知光L2(例えば、レーザー光)を照射する。検知ポイントP1は、熱対流生成用チップ10が回転することにより被検知部95(図12参照)によって形成される回転軌跡上に設定された固定点である。
 被検知部95は、検知光光源93から検知光が照射されると、その検知光を反射又は散乱させるように構成されている。検知光検出器94は、被検知部95から反射又は散乱された光を検出する。検知光検出器94は、例えば、フォトマル検出器、集光レンズ及びバンドパスフィルタ等を含んで構成される。
 図13は熱対流生成装置81を制御する制御手段100のブロック図である。この制御手段100の演算制御部96は、第1実施形態の制御手段50の演算制御部51が実行する処理に加えて、後で詳述するように、入力部53、蛍光検出器92及び検知光検出器94から入力される情報に基づいて、励起光光源91及び検知光光源93を制御する。
 また、演算制御部96は、検知光検出器94が検出した被検知部95からの反射光又は散乱光に基づいて、熱対流生成用チップ10の回転駆動中における熱対流用流路10の位置を検知する。演算制御部96、検知光光源93、検知光検出器94、及び被検知部95は、本発明の位置検知手段として機能する。また、演算制御部96は、検知された熱対流用流路10の位置に基づいて励起光光源91を駆動する。演算制御部96は、本発明の光源制御手段としても機能する。
 次に、熱対流生成装置81を用いてリアルタイムPCRを行う手順を図11及び図14を参照して説明する。図14は、熱対流生成装置81を用いたDNA増幅量算出方法を示すフローチャートである。
 制御手段100(図13参照)の入力部53を介してリアルタイムPCRの開始を指示する情報を演算制御部96に入力すると、モータ40が駆動されるとともに、第1ヒータ31と第2ヒータ32とに通電される。これによって、熱対流生成用チップ10が回転するとともに熱対流用流路14(図12参照)内の液体が加熱され、熱対流用流路14内の液体が熱対流し始めてPCRが開始する。
 本実施形態では、熱対流促進工程(図6のステップS40及びステップS50)において、DNA増幅量の算出が実行される。すなわち、熱対流生成用チップ10の回転が開始すると同時に、検知光光源93から検知光が検知ポイントP1に照射される。熱対流生成用チップ10の熱対流用流路14に設けた被検知部95(図12参照)が検知ポイントP1を通過する際に被検知部95が検知光光源93の検知光を反射又は散乱させる。
 被検知部95によって反射又は散乱された検知光が検知光検出器94によって検出されると、図14のステップS60に示すように、励起光光源91から励起光が検知ポイントP1近傍の熱対流用流路14に照射される。ステップS60は、本発明の励起光照射工程に相当する。当該励起光は熱対流用流路14内の混合溶液に照射され、ステップS70に示すように、当該混合溶液中の蛍光分子から発せられる蛍光が蛍光検出器92によって検出される。ステップS70は、本発明の蛍光検出工程に相当する。
 そして、ステップS80に示すように、演算制御部96は、蛍光検出器92が検出した蛍光に基づいてDNAの増幅量を算出する。ステップS80は、本発明のDNA増幅量算出工程に相当する。そして、この増幅量に基づいて鋳型となるDNAの定量が行われる。このようなリアルタイムPCRが熱対流生成用チップ10の全ての熱対流用流路14に対して行われる。

 次に、本発明の第4実施形態を説明する。図15は第3実施形態の熱対流生成装置101の側面図である。なお、先に説明した第3実施形態と対応する部位には同一の符号を付してあり、重複する説明は省略する。
 本実施形態では、ステージ20に固定された支持部材102に励起光光源91及び蛍光検出器92が支持されており、励起光光源91及び蛍光検出器92が熱対流生成用チップ10と一体的に回転する。また、本実施形態は、第3実施形態の検知光光源93と検知光検出器94と被検知部95とを備えていない。本実施形態のその他の構成は第3実施形態と同じである。
 本実施形態によれば、励起光光源91及び蛍光検出器92が熱対流生成用チップ10と一体的に回転しない場合と比べると、熱対流用流路14内の液体により確実に励起光を照射することができるため、蛍光検出の精度が向上するという作用効果を奏する。また、第3実施形態の検知光光源93と検知光検出器94と被検知部95とが不要であるため、製造コストが安価になる。
 以上、本発明の具体的な実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で上記実施形態に改変を施すことができる。
 例えば、上記実施形態では、熱対流生成用チップ10とは別に熱源30を設けるようにしているが、熱対流生成用チップ10に熱源30を設けるようにしてもよい。その場合、熱源としては、例えば、占有スペースが小さくて軽量の線状発熱体等を用いることができる。
 また、本発明は、熱対流PCRや逆転写PCR以外の処理を行う装置にも適用可能である。
 また、上記実施形態では、熱対流生成装置が2つの熱源を備える場合について説明したが、熱対流生成装置が備える熱源の個数は3つ以上でもよいし、1つでもよい。
 また、上記実施形態では、熱対流生成用チップがディスク状であるが、熱対流生成用チップの形状はディスク状以外の形状でもよい。
 また、上記実施形態では、1つの熱対流用流路に対して1つの液体供給路が設けられているが、1つの熱対流用流路に対して複数の液体供給路を設けてもよい。
 また、上記実施形態では、1つの熱対流用流路に対して1つのガス排出路が設けられているが、1つの熱対流用流路に対して複数のガス排出路を設けてもよい。
 その他にも、本発明の要旨を逸脱しない範囲で上記実施形態に種々の改変を施すことができる。
1 熱対流生成装置
10 熱対流生成用チップ
14 熱対流用流路
15 液体供給路
16 ガス排出路
20 ステージ(チップ装着部)
30 熱源

31 第1ヒータ(低温熱源)
31b 加熱部
32 第2ヒータ(高温熱源)
32b 加熱部
40 モータ(駆動手段)
50 制御手段
60 ヒートシンク(放熱手段)
91 励起光光源
92 蛍光検出器
93 検知光光源(位置検知手段)
94 検知光検出器(位置検知手段)
95 被検知部(位置検知手段)
96 演算制御部(位置検知手段、光源制御手段)
100 制御手段
S 空隙
E1 低温エリア
E2 空隙エリア
E3 高温エリア

Claims (21)

  1. 少なくとも一つの環状の熱対流用流路を含み、回転させることにより前記熱対流用流路内の液体に遠心力を付与する、熱対流生成用チップ。
  2.  前記熱対流用流路内に液体を供給するための液体供給路を少なくとも1つ設けた、請求項1に記載の熱対流生成用チップ。
  3.  回転させることにより前記液体供給路内の液体が遠心力によって前記熱対流用流路内に進入する、請求項2に記載の熱対流生成用チップ。
  4.  前記熱対流用流路内の液体中に含まれるガスを受け入れるガス排出路を少なくとも1つ設けた、請求項1から請求項3のうちの1項に記載の熱対流生成用チップ。
  5.  前記熱対流用流路が真円状である、請求項1から請求項4のうちの1項に記載の熱対流生成用チップ。
  6.  軸線周りに回転するとともに、前記軸線に対して対称的に配置された複数の前記熱対流用流路を備える、請求項1から請求項5のうちの1項に記載の熱対流生成用チップ。
  7.  前記熱対流用流路の壁面の表面粗さRaが100nm以下である、請求項1から請求項6のうちの1項に記載の熱対流生成用チップ。
  8.  前記熱対流用流路の壁面の材質が、環状オレフィン、ポリプロピレン、及びポリカーボネートのうちのいずれかである、請求項1から請求項7のうちの1項に記載の熱対流生成用チップ。
  9.  前記熱対流用流路内で熱対流PCRを行う、請求項1から請求項8のうちの1項に記載の熱対流生成用チップ。
  10.  少なくとも一つの熱対流用流路を含み、回転させることにより前記熱対流用流路内の液体に遠心力を付与する熱対流生成用チップを装脱可能なチップ装着部と、
     前記熱対流用流路の一部を加熱又は冷却する熱源と、
     前記熱対流生成用チップを回転駆動する駆動手段と
     を含む、熱対流生成装置。
  11.  前記熱源は、低温熱源と高温熱源とを含んでおり、
     前記低温熱源の加熱部と前記高温熱源の加熱部との温度差が10℃以上であり、
     前記低温熱源の前記加熱部と前記高温熱源の前記加熱部との間の空隙と前記低温熱源の前記加熱部との温度差が10℃以上であるとともに、前記空隙と前記高温熱源の前記加熱部との温度差が10℃以上である、請求項10に記載の熱対流生成装置。
  12.  前記熱対流用流路のうち、前記熱源に対向するエリアの温度が、前記熱対流用流路のうち、前記エリア以外のエリアの温度よりも大きいか又は小さい、請求項10又は請求項11に記載の熱対流生成装置。
  13.  前記熱源による前記熱対流用流路の加熱温度又は冷却温度、前記駆動手段による前記熱対流生成用チップの回転駆動速度及び回転駆動時間を制御する制御手段を備える、請求項10から請求項12のうちの1項に記載の熱対流生成装置。
  14.  前記熱対流用流路内で熱対流PCRを行う、請求項10から請求項13のうちの1項に記載の熱対流生成装置。
  15.  前記熱対流用流路内の前記液体に含まれる蛍光色素を励起する励起光を前記熱対流用流路内の前記液体に照射する励起光光源と、
     前記蛍光色素に前記励起光を照射することにより前記蛍光色素によって放出される蛍光を検出する蛍光検出器と、
     前記蛍光検出器によって検出された蛍光に基づいてDNAの増幅量を算出する演算制御部と
     を含む、請求項14に記載の熱対流生成装置。
  16.  前記熱対流生成用チップの回転駆動中における前記熱対流用流路の位置を検知する位置検知手段と、
     前記位置検知手段の検知結果に基づいて前記励起光光源を駆動する光源制御手段と
     をさらに含む、請求項15に記載の熱対流生成装置。
  17.  前記励起光光源及び前記蛍光検出器が前記熱対流生成用チップと一体的に回転する、請求項15に記載の熱対流生成装置。
  18.  少なくとも一つの環状の熱対流用流路を含み、回転させることにより前記熱対流用流路内の液体に遠心力を付与する熱対流生成用チップを準備するチップ準備工程と、
     前記熱対流用流路内に前記液体を供給する液体供給工程と、
     前記熱対流生成用チップを回転駆動して前記液体に遠心力を付与しつつ前記熱対流用流路の一部を加熱又は冷却する熱対流促進工程と
     を含む、熱対流生成方法。
  19.  前記液体は、前記液体を加熱する熱源の最高温度よりも沸点が高い及び/又は前記液体よりも比重が小さい蒸発抑制用液体を含む、請求項18に記載の熱対流生成方法。
  20.  前記熱対流用流路内で熱対流PCRを行う、請求項18又は請求項19に記載の熱対流生成方法。

     
  21.  前記液体が蛍光色素を含み、
     前記熱対流促進工程において、前記蛍光色素を励起する励起光を前記熱対流用流路内の前記液体に照射する励起光照射工程と、
     前記励起光が照射された前記蛍光色素によって放出される蛍光を検出する蛍光検出工程と、
     前記検出された蛍光に基づいてDNAの増幅量を算出するDNA増幅量算出工程とを実行する、請求項20に記載の熱対流生成方法。
PCT/JP2014/056002 2013-09-11 2014-03-07 熱対流生成用チップ、熱対流生成装置、及び熱対流生成方法 WO2015037255A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14844310.4A EP3045523B1 (en) 2013-09-11 2014-03-07 Thermal convection generating chip, thermal convection generating device, and thermal convection generating method
US15/021,087 US10946384B2 (en) 2013-09-11 2014-03-07 Thermal convection generating chip, thermal convection generating device, and thermal convection generating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-188277 2013-09-11
JP2013188277A JP6427753B2 (ja) 2013-09-11 2013-09-11 熱対流生成用チップ、熱対流生成装置、及び熱対流生成方法

Publications (1)

Publication Number Publication Date
WO2015037255A1 true WO2015037255A1 (ja) 2015-03-19

Family

ID=52665384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056002 WO2015037255A1 (ja) 2013-09-11 2014-03-07 熱対流生成用チップ、熱対流生成装置、及び熱対流生成方法

Country Status (4)

Country Link
US (1) US10946384B2 (ja)
EP (1) EP3045523B1 (ja)
JP (1) JP6427753B2 (ja)
WO (1) WO2015037255A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170753A1 (ja) * 2014-05-08 2015-11-12 国立大学法人大阪大学 熱対流生成用チップ及び液体秤量具
GB2546370A (en) * 2015-11-16 2017-07-19 Mast Group Ltd Apparatus for conducting an assay
WO2017172760A1 (en) * 2016-03-29 2017-10-05 William Marsh Rice University Surface-based detection of nucleic acid in a convection flow fluidic device
WO2018143469A1 (ja) * 2017-02-06 2018-08-09 国立大学法人大阪大学 遺伝子増幅システム、流路チップ、回転駆動機構、及び遺伝子増幅方法
WO2021015145A1 (ja) * 2019-07-25 2021-01-28 コニカミノルタ株式会社 熱対流生成用チップ及び反応方法
WO2021039664A1 (ja) * 2019-08-23 2021-03-04 国立大学法人大阪大学 熱対流生成システム、流路チップ、及び熱対流生成装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11285478B2 (en) 2016-04-04 2022-03-29 Combinati Incorporated Microfluidic siphoning array for nucleic acid quantification
CN106222069B (zh) * 2016-08-31 2018-11-09 上海科源电子科技有限公司 一种圆盘式芯片pcr仪及检测方法
KR20220105173A (ko) 2016-11-17 2022-07-26 콤비네티 인코포레이티드 핵산 분석 및 정량화를 위한 방법 및 시스템
CN108410688A (zh) * 2017-02-09 2018-08-17 克雷多生物医学私人有限公司 一种热对流式聚合酶链式反应的装置
TWI679276B (zh) * 2019-04-18 2019-12-11 奎克生技光電股份有限公司 增進傳熱均勻度及熱履歷一致性的熱循環儀裝置
WO2022037772A1 (de) * 2020-08-19 2022-02-24 SpinDiag GmbH Verfahren zur vervielfältigung von dna, rotationsvorrichtung und system zur vervielfältigung von dna
DE102020212253A1 (de) * 2020-09-29 2022-03-31 SpinDiag GmbH Probenträger und Rotationsvorrichtung
CN112987816A (zh) * 2021-02-26 2021-06-18 广东长光中科生物科技有限公司 一种芯片温度控制系统及其芯片温度控制装置
CN113755316A (zh) * 2021-10-09 2021-12-07 苏州国科均豪生物科技有限公司 可切换的温育模块、pcr扩增检测仪
CN113930331A (zh) * 2021-10-09 2022-01-14 苏州国科均豪生物科技有限公司 荧光免疫检测分析仪温育温度控制方法、介质、pcr检测系统
WO2023124229A1 (en) * 2021-12-31 2023-07-06 Sansure Biotech Inc. Molecular detecting device, nucleic acid detecting chip, method of processing and detecting molecular
CN114551641B (zh) * 2022-02-10 2023-09-12 中国科学院上海技术物理研究所 一种物理隔离耦合应力的焦平面探测器热层结构
CN117816264B (zh) * 2024-03-01 2024-05-10 博奥生物集团有限公司 基于离心式微流控的双温区式极速pcr系统及空气压缩式反应芯片

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072267A1 (en) 2001-03-09 2002-09-19 The Regents Of The University Of California Convectively driven pcr thermal-cycling
JP2006511239A (ja) * 2002-12-20 2006-04-06 カリパー・ライフ・サイエンシズ・インコーポレーテッド Dnaの単一分子増幅および検出
JP2006126010A (ja) * 2004-10-28 2006-05-18 Ishikawa Seisakusho Ltd 検体試料の遠心分注方法及び遠心分注装置
JP2009136220A (ja) * 2007-12-06 2009-06-25 Seiko Epson Corp 生体試料反応用チップ、生体試料反応装置、および生体試料反応方法
JP2010519892A (ja) * 2007-03-02 2010-06-10 コーベット リサーチ プロプライエタリー リミテッド 核酸増幅のための装置および方法
JP2010533490A (ja) * 2007-07-13 2010-10-28 ハンディーラブ インコーポレイテッド 多数の生物学的サンプルについて核酸抽出及び診断試験を行う一体装置
WO2011086497A2 (en) 2010-01-12 2011-07-21 Ahram Biosystems, Inc. Three-stage thermal convection apparatus and uses thereof
JP2011152126A (ja) * 2010-10-01 2011-08-11 Seiko Epson Corp 核酸増幅方法および核酸増幅装置、ならびに核酸増幅用チップ
JP2011217699A (ja) * 2010-04-14 2011-11-04 Seiko Epson Corp バイオチップ、反応装置及び反応方法
JP2012242150A (ja) * 2011-05-17 2012-12-10 National Institute Of Advanced Industrial & Technology 円盤型マイクロ流体チップ及びそれを用いた測定システム
WO2013077391A1 (ja) * 2011-11-25 2013-05-30 凸版印刷株式会社 試料分析チップ並びに試料分析方法及び遺伝子解析方法
JP2014039498A (ja) * 2012-08-22 2014-03-06 Osaka Univ 熱対流生成用チップ及び熱対流生成装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4052840B2 (ja) * 2002-01-25 2008-02-27 松下電器産業株式会社 試料分析用ディスク
US8275554B2 (en) 2002-12-20 2012-09-25 Caliper Life Sciences, Inc. System for differentiating the lengths of nucleic acids of interest in a sample
US20050042639A1 (en) 2002-12-20 2005-02-24 Caliper Life Sciences, Inc. Single molecule amplification and detection of DNA length
US20050272144A1 (en) * 2004-06-08 2005-12-08 Konica Minolta Medical & Graphic, Inc. Micro-reactor for improving efficiency of liquid mixing and reaction
JP2006320772A (ja) * 2005-05-17 2006-11-30 Hitachi Plant Technologies Ltd マイクロ流体デバイス
US8883490B2 (en) 2006-03-24 2014-11-11 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
ES2692380T3 (es) 2006-03-24 2018-12-03 Handylab, Inc. Método para realizar PCR con un cartucho con varias pistas
US8088616B2 (en) 2006-03-24 2012-01-03 Handylab, Inc. Heater unit for microfluidic diagnostic system
TW200840641A (en) * 2007-04-03 2008-10-16 Univ Nat Taiwan Disk-shaped concentration regulation flow channel structure
US8735103B2 (en) * 2006-12-05 2014-05-27 Electronics And Telecommunications Research Institute Natural convection-driven PCR apparatus and method using disposable polymer chip
KR101221872B1 (ko) * 2009-04-16 2013-01-15 한국전자통신연구원 중합효소 연쇄반응 장치
JP5757754B2 (ja) 2011-03-07 2015-07-29 三井化学株式会社 アイオノマー樹脂の発泡体からなる油吸収材
US20120288672A1 (en) * 2011-05-12 2012-11-15 Iain Rodney George Ogilvie Solvent vapor bonding and surface treatment methods

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072267A1 (en) 2001-03-09 2002-09-19 The Regents Of The University Of California Convectively driven pcr thermal-cycling
JP2006511239A (ja) * 2002-12-20 2006-04-06 カリパー・ライフ・サイエンシズ・インコーポレーテッド Dnaの単一分子増幅および検出
JP2006126010A (ja) * 2004-10-28 2006-05-18 Ishikawa Seisakusho Ltd 検体試料の遠心分注方法及び遠心分注装置
JP2010519892A (ja) * 2007-03-02 2010-06-10 コーベット リサーチ プロプライエタリー リミテッド 核酸増幅のための装置および方法
JP2010533490A (ja) * 2007-07-13 2010-10-28 ハンディーラブ インコーポレイテッド 多数の生物学的サンプルについて核酸抽出及び診断試験を行う一体装置
JP2009136220A (ja) * 2007-12-06 2009-06-25 Seiko Epson Corp 生体試料反応用チップ、生体試料反応装置、および生体試料反応方法
WO2011086497A2 (en) 2010-01-12 2011-07-21 Ahram Biosystems, Inc. Three-stage thermal convection apparatus and uses thereof
JP2013516975A (ja) * 2010-01-12 2013-05-16 アーラム バイオシステムズ インコーポレイテッド 3段熱対流装置及びその使用法
JP2011217699A (ja) * 2010-04-14 2011-11-04 Seiko Epson Corp バイオチップ、反応装置及び反応方法
JP2011152126A (ja) * 2010-10-01 2011-08-11 Seiko Epson Corp 核酸増幅方法および核酸増幅装置、ならびに核酸増幅用チップ
JP2012242150A (ja) * 2011-05-17 2012-12-10 National Institute Of Advanced Industrial & Technology 円盤型マイクロ流体チップ及びそれを用いた測定システム
WO2013077391A1 (ja) * 2011-11-25 2013-05-30 凸版印刷株式会社 試料分析チップ並びに試料分析方法及び遺伝子解析方法
JP2014039498A (ja) * 2012-08-22 2014-03-06 Osaka Univ 熱対流生成用チップ及び熱対流生成装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MASATO SAITO ET AL.: "Enshin Sokushingata Netsu Tairyu On-chip PCR no Kaihatsu to Oyo", SOCIETY FOR CHEMISTRY AND MICRO-NANO SYSTEMS DAI 27 KAI KENKYUKAI KOEN YOSHISHU, 23 May 2013 (2013-05-23), pages 79, 3P15, XP008183037 *
MASATO SAITO ET AL.: "POCT o Shiko shita Enshin Netsu Tairyugata PCR Chip no Kento", SOCIETY FOR CHEMISTRY AND MICRO-NANO SYSTEMS DAI 28 KAI KENKYUKAI KOEN YOSHISHU, 5 December 2013 (2013-12-05), pages 76, 3P10, XP008183378 *
YUICHIRO KIRIYAMA ET AL.: "Enshin Sokushin Netsu Tairyugata PCR Chip no Sakusei to Jinsoku PCR eno Oyo", THE 61ST JSAP SPRING MEETING KOEN YOKOSHU, 3 March 2014 (2014-03-03), pages 19P-E15 - 3, XP055335249 *
YUICHIRO KIRIYAMA ET AL.: "Enshin Sokushin Netsu Tairyugata PCR no Kaihatsu to Oyo Kento", THE 60TH JSAP SPRING MEETING KOEN YOKOSHU, 11 March 2013 (2013-03-11), pages 29P-G17 - 3, XP055335253 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170753A1 (ja) * 2014-05-08 2015-11-12 国立大学法人大阪大学 熱対流生成用チップ及び液体秤量具
US10493416B2 (en) 2014-05-08 2019-12-03 Osaka University Thermal convection generating chip and liquid measuring device
GB2546370A (en) * 2015-11-16 2017-07-19 Mast Group Ltd Apparatus for conducting an assay
CN108602068A (zh) * 2015-11-16 2018-09-28 马斯特集团有限公司 用于进行试验的设备
JP6998319B2 (ja) 2016-03-29 2022-01-18 ウィリアム マーシュ ライス ユニバーシティ 対流流体装置における核酸の表面ベースの検出方法
WO2017172760A1 (en) * 2016-03-29 2017-10-05 William Marsh Rice University Surface-based detection of nucleic acid in a convection flow fluidic device
CN109477136A (zh) * 2016-03-29 2019-03-15 威廉马歇莱思大学 对流流动的流体装置中核酸基于表面的检测
JP2019509751A (ja) * 2016-03-29 2019-04-11 ウィリアム マーシュ ライス ユニバーシティWilliam Marsh Rice University 対流流体装置における核酸の表面ベースの検出方法
JP2022037151A (ja) * 2016-03-29 2022-03-08 ウィリアム マーシュ ライス ユニバーシティ 対流流体装置における核酸の表面ベースの検出方法
WO2018143469A1 (ja) * 2017-02-06 2018-08-09 国立大学法人大阪大学 遺伝子増幅システム、流路チップ、回転駆動機構、及び遺伝子増幅方法
WO2021015145A1 (ja) * 2019-07-25 2021-01-28 コニカミノルタ株式会社 熱対流生成用チップ及び反応方法
JP7549358B2 (ja) 2019-07-25 2024-09-11 国立大学法人大阪大学 熱対流生成用チップ及び反応方法
WO2021039664A1 (ja) * 2019-08-23 2021-03-04 国立大学法人大阪大学 熱対流生成システム、流路チップ、及び熱対流生成装置

Also Published As

Publication number Publication date
US10946384B2 (en) 2021-03-16
JP2015053881A (ja) 2015-03-23
JP6427753B2 (ja) 2018-11-28
EP3045523B1 (en) 2019-05-08
EP3045523A1 (en) 2016-07-20
US20160214112A1 (en) 2016-07-28
EP3045523A4 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
JP6427753B2 (ja) 熱対流生成用チップ、熱対流生成装置、及び熱対流生成方法
JP5967611B2 (ja) 熱対流生成用チップ及び熱対流生成装置
Roche et al. Real time plasmonic qPCR: how fast is ultra-fast? 30 cycles in 54 seconds
JP5912034B2 (ja) 液体還流型高速遺伝子増幅装置
US9707563B2 (en) Reagent fluid dispensing device, and method of dispensing a reagent fluid
US11142790B2 (en) Microfluidic device
TWI300129B (ja)
JP6596800B2 (ja) 熱対流生成システムおよびコンベクションpcr法
BR112015006566B1 (pt) Tubo de reação, e, método para preencher um tubo de reação
US20150079598A1 (en) High speed gene amplification detection device
US20240173719A1 (en) Devices and methods for rapid sample processing and analysis
Jalili et al. A plasmonic gold nanofilm-based microfluidic chip for rapid and inexpensive droplet-based photonic PCR
Madadelahi et al. A roadmap to high-speed polymerase chain reaction (PCR): COVID-19 as a technology accelerator
JP2009002933A (ja) 分析用媒体
WO2018143469A1 (ja) 遺伝子増幅システム、流路チップ、回転駆動機構、及び遺伝子増幅方法
Tatsumi et al. Liquid temperature measurement method in microchannels by using fluorescence polarization
Wu et al. Research to improve the efficiency of double stereo PCR microfluidic chip by passivating the Inner Surface of Steel Capillary with NOA61
WO2021039664A1 (ja) 熱対流生成システム、流路チップ、及び熱対流生成装置
JP6714277B2 (ja) 熱対流生成用チップ
JP2018014966A (ja) 熱対流生成用チップ、熱対流生成ユニット
JP2022504857A (ja) パターン化薄膜の照明による局所加熱のための方法およびシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844310

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15021087

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014844310

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014844310

Country of ref document: EP