WO2023124229A1 - Molecular detecting device, nucleic acid detecting chip, method of processing and detecting molecular - Google Patents

Molecular detecting device, nucleic acid detecting chip, method of processing and detecting molecular Download PDF

Info

Publication number
WO2023124229A1
WO2023124229A1 PCT/CN2022/118158 CN2022118158W WO2023124229A1 WO 2023124229 A1 WO2023124229 A1 WO 2023124229A1 CN 2022118158 W CN2022118158 W CN 2022118158W WO 2023124229 A1 WO2023124229 A1 WO 2023124229A1
Authority
WO
WIPO (PCT)
Prior art keywords
centrifugal
nucleic acid
module
heating
chip
Prior art date
Application number
PCT/CN2022/118158
Other languages
French (fr)
Inventor
Lizhong Dai
Yaping Xie
Diansu ZHENG
Bo ZENG
Biao PENG
Qiang Chen
Original Assignee
Sansure Biotech Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111679524.4A external-priority patent/CN114231408B/en
Priority claimed from CN202210586967.7A external-priority patent/CN114917972B/en
Priority claimed from CN202221315446.XU external-priority patent/CN217757412U/en
Application filed by Sansure Biotech Inc. filed Critical Sansure Biotech Inc.
Publication of WO2023124229A1 publication Critical patent/WO2023124229A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • B01L9/527Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for microfluidic devices, e.g. used for lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0677Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers

Definitions

  • the present disclosure relates to the field of molecular detection, in particular to a molecular detecting device, a nucleic acid detecting chip, and a method of processing and detecting molecular.
  • Centrifugal nucleic acid detecting chip systems refer to a microfluidic system based on the micro electromechanical processing technology, which integrates the valves, flow pipes, mixing reactors, heaters, separation devices, detectors and other components involved in the process of sampling, pretreatment, derivation, mixing and detection of chemical analysis to the chip, and uses centrifugal force as the driving force of liquid flow to realize the detection and analysis of liquid flow.
  • the nucleic acid detecting chip has the advantages of less sample consumption, fast detection speed, simple operation, multi-functional integration, small size and easy to carry, it is particularly suitable for POCT diagnosis, and has great potential to simplify the diagnosis process and improve the medical results.
  • how to use the nucleic acid detecting chip to achieve full-automatic analysis has become an urgent problem for those skilled in the art.
  • the nucleic acid detecting chip comprises a plurality of chambers for storing samples and reagent, and two adjacent chambers are communicated with each other through a communication channel.
  • the existing nucleic acid detecting chip equipment uses the change of air pressure to guide the reagent between each chamber. Before the reaction, the reagent between the chambers are easy to generate a certain cross reaction through the communication channel, thus affecting the purity of the detection reagent and reducing the detection sensitivity.
  • a molecular detecting device a nucleic acid detecting chip, and a method of processing and detecting molecular are provided.
  • a molecular detecting device configured to process and detect a target in a nucleic acid detecting chip
  • the nucleic acid detecting chip comprises a chip body provided with a plurality of chambers and a plurality of communication channels in communication with the plurality of chambers, a channel blocking member is provided in the communication channel and is configured to seal the communication channel, when a temperature of the channel blocking member is greater than a preset temperature, the channel blocking member is converted from a solid state to a fluid state
  • the molecular detecting device includes: a mounting substrate; a detection module mounted to an end of the mounting substrate; a loading module mounted to the mounting substrate and located on a side of the detection module in a first direction; a centrifugal module mounted to the loading module, wherein the centrifugal module is driven by the loading module to reciprocate in the first direction, the centrifugal module comprises a rotatable centrifugal bracket, and the centrifugal bracket is provided with a receiving groove configured to receive the nucleic acid detecting chip
  • the loading module comprises a screw motor and a screw connecting block
  • the screw motor is mounted to the mounting substrate
  • the screw connecting block is connected to an output end of the screw motor and the centrifugal module, respectively, and the centrifugal module is driven by the screw motor to move in the first direction through the screw connecting block.
  • the loading module further includes: a guide rail extending along the first direction; a sliding block mounted to the guide rail and capable of reciprocating along the guide rail in the first direction; and a loading base connected to the sliding block, wherein the centrifugal module is mounted to the loading base.
  • the centrifugal module further comprises a loading light shielding sheet
  • the loading module further comprises a loading photoelectric switch mounted to the mounting substrate, and the loading photoelectric switch is configured to identify a position of the loading light shielding sheet in the first direction.
  • an end of the loading module adjacent to the detection module is further provided with a guiding plate, the guiding plate is provided with a guiding groove extending along the first direction, the guiding groove is configured to restrict the nucleic acid detecting chip located in the receiving groove from moving along the first direction, so as to enable the nucleic acid detecting chip to be connected to the detection module.
  • the heating module further includes: a heating mounting base mounted to the mounting substrate; and at least one heating driving member is mounted to the heating mounting base, wherein each heating member is correspondingly connected to an output end of the heating driving member, and the heating member is driven by the heating driving member to rotate around an axis extending in a second direction perpendicular to the first direction.
  • the heating module includes two heating assemblies, and the two heating assemblies are staggeredly arranged in the second direction.
  • the heating module further includes: a heating light shielding sheet, each of the heating assemblies is provided with the heating light shielding sheet; a heating photoelectric switch mounted to the heating mounting base and configured to identify a position of the heating light shielding sheet.
  • the centrifugal module further includes a centrifugal fixing base and a centrifugal motor, the centrifugal fixing base is mounted to the loading module, the centrifugal motor is mounted to the centrifugal fixing base, the centrifugal bracket is connected to an output shaft of the centrifugal motor, the centrifugal bracket is driven by the centrifugal motor to rotate forward or reverse to mix the reagent and the sample in the nucleic acid detecting chip.
  • the centrifugal bracket includes: a centrifugal mounting plate provided with the receiving groove extending in the first direction and penetrating an end of the centrifugal mounting plate, wherein the receiving groove is formed by a bottom wall and side walls located on two opposite sides of the bottom wall in a second direction; a first limiting member, wherein one end of the first limiting member is located on the centrifugal mounting plate, and the other end of the first limiting member extends to the side of the receiving groove away from the bottom wall, so as to form a fixing position together with the receiving groove to fix the nucleic acid detecting chip; and a second limiting member rotatably mounted to the centrifugal mounting plate and capable of switching between an unlocked state and a locked state, when the second limiting member is switched to the unlocked state, an end of the second limiting member rotates out of the fixing position, when the second limiting member is switched to the locked state, the end of the second limiting member rotates to the fixing position and is latched to
  • one end of the second limiting member is provided with a limiting buckle, when the second limiting member is switched to the locked state, the end of the second limiting member provided with the limiting buckle rotates to the fixing position, and the limiting buckle is inserted into a groove on the nucleic acid detecting chip.
  • the centrifugal bracket further includes a restoring member, the restoring member is connected between the centrifugal mounting plate and the other end of the second limiting member away from the fixing position, and the restoring member is configured to provide a force to switch the second limiting member from the unlocked state to the locked state.
  • At least one side of the bottom wall in the second direction is provided with a guiding boss extending along the first direction.
  • the centrifugal bracket includes two groups of first limiting assemblies, the two groups of the first limiting assemblies are respectively located on two opposite sides of the receiving groove in the second direction, each group of the first limiting assemblies includes at least two first limiting members, and the first limiting members in each group of the first limiting assemblies are spaced apart in the first direction.
  • the centrifugal bracket further includes a positioning member embedded in the side wall and extending into the receiving groove, and the positioning member is capable of telescoping in the second direction to extend into or out of a recessed position of a side surface of the nucleic acid detecting chip.
  • the centrifugal bracket further includes a centrifugal light shielding sheet, one end of the centrifugal light shielding sheet is mounted to the centrifugal mounting plate, and the other end of the centrifugal light shielding sheet protrudes out of the centrifugal mounting plate.
  • a nucleic acid detecting chip includes a chip body, the chip body is provided with a plurality of chambers and a plurality of communication channels in communication with the plurality of chambers, a channel blocking member is provided in the communication channel and is configured to seal the communication channel, when a temperature of the channel blocking member is greater than a preset temperature, the channel blocking member is converted from a solid state to a fluid state; wherein when heated by the molecular detecting device, the channel blocking member is converted from the solid state to the fluid state to communicate the plurality of chambers in communication with the heated communication channels.
  • the chip body further includes a detecting cavity and a first flow channel, and one of the chambers is in communication with the detecting cavity through the first flow channel.
  • the chip body further has a control cavity, the control cavity is in communication with the first flow channel, and a flow channel blocking member is provided in the control cavity, when a temperature of the flow channel blocking member is greater than the first preset temperature, the flow channel blocking member is converted from a solid state to a fluid state, when the temperature of the flow channel blocking member is less than the first preset temperature, the flow channel blocking member is converted from the fluid state to the solid state; when the flow channel blocking member is converted to the fluid state, the flow channel blocking member is capable of flowing to the first flow channel under a centrifugal action, and the flow channel blocking member is converted to the solid state in the first flow channel to seal the first flow channel.
  • the chip body includes a first surface and a second surface opposite to the first surface, the first surface is provided with a plurality of first adding holes in communication with the plurality of chambers in one-to-one correspondence, the nucleic acid detecting chip further comprises a first cover sheet covering the first surface.
  • the first surface is provided with a second adding hole in communication with the control cavity, and a plurality of third adding holes in communication with the plurality of communication channels in one-to-one correspondence.
  • each chamber, the control cavity, the first flow channel, and each communication channel are formed by the second surface recessed inward; the nucleic acid detecting chip further comprises a second cover sheet covering the second surface, and the second cover sheet is transparent.
  • the detecting cavity penetrates the first surface and the second surface of the chip body; an area of the first cover sheet corresponding to the detecting cavity is transparent.
  • a method of processing and detecting molecular using the the above-mentioned molecular detecting device configured to process and detect sample in the nucleic acid detecting chip, comprising: S1, preloading nucleic acid extraction reagent and nucleic acid reaction reagent in each chamber of the nucleic acid detecting chip, adding the sample to the chamber preloaded with the nucleic acid extraction reagent; S2, driving the centrifugal module to move to a bin out position in the first direction to load the nucleic acid detecting chip to be detected; S3, driving the centrifugal module to move to an origin position along the first direction; S4, driving the centrifugal bracket to rotate to drive the nucleic acid detecting chip to rotate centrifugally, so as to drive the nucleic acid extraction reagent and the sample in the nucleic acid detecting chip to mix evenly; S5, driving the centrifugal module to move to a mixing position along the first direction, driving one of the heating assemblies to rotate to a heating position, and specifically heating the communication channel of the nu
  • FIG. 1 is a perspective view of a molecular detecting device according to an embodiment of the present disclosure.
  • FIG. 2 is a perspective view of a loading module of the molecular detecting device shown in FIG. 1.
  • FIG. 3 is a perspective view of a centrifugal module of the molecular detecting device shown in FIG. 1.
  • FIG. 4 is a perspective view of a centrifugal bracket of the centrifugal module shown in FIG. 3.
  • FIG. 5 is a side view of a second limiting member of the centrifugal bracket shown in FIG. 4 in a locked state.
  • FIG. 6 is a side view of the second limiting member of the centrifugal bracket shown in FIG. 4 in an unlocked state.
  • FIG. 7 is a perspective view of a heating module of the molecular detecting device shown in FIG. 1.
  • FIG. 8 is an exploded view of a nucleic acid detecting chip according to an embodiment of the present disclosure.
  • FIG. 9 is a top view of a chip body of the nucleic acid detecting chip shown in FIG. 8.
  • FIG. 10 is a bottom view of the chip body of the nucleic acid detecting chip shown in FIG. 8.
  • FIG. 11 is a flowchart of a method of processing and detecting molecular according to an embodiment of the present disclosure.
  • 100 molecular detection device; 110, mounting substrate; 120, detection module; 130, loading module; 131, screw motor; 132, screw connecting block; 133, guide rail; 134, sliding block; 135, loading base; 137, loading photoelectric switch; 138, guiding plate; 140, centrifugal module; 141, centrifugal bracket; 1412, centrifugal mounting plate; 14121, receiving groove; 14123, guiding boss; 1414, first limiting member; 1416, second limiting assembly; 14161, rotating shaft; 14163, second limiting member; 14163a, limiting buckle; 14165, positioning member; 1418, centrifugal light shielding sheet; 143, centrifugal fixing base; 144, loading light shielding sheet; 145, centrifugal motor; 147, centrifugal photoelectric switch; 150, pressing member; 160, heating module; 161, heating mounting base; 163, heating driving member; 165, heating assembly; 167, heating light shielding sheet; 169, heating photoelectric switch; 170, control
  • nucleic acid detecting chip 210, chip body; 211, chamber; 211a, first chamber; 211b, second chamber; 211c, third chamber; 2111, first adding hole; 212, detecting cavity; 213, first flow channel; 214, control cavity; 2141, second flow channel; 2142, second adding hole; 215, communication channel; 2151, third adding hole; 220, first cover sheet; 221, first sub cover sheet; 222, second sub cover sheet; 230, second cover sheet.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first” , “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “installed” , “connection” , “connected” , “fixed” and other terms should be understood in a broad sense. For example, it may be a fixed connection or a detachable connection, or integrated. It can be a mechanical connection or an electrical connection. It can be directly connected or indirectly connected through an intermediate medium. It can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • the first feature "above” or “below” the second feature may be in direct contact with the first and second features, or the first and second features may be in indirect contact through an intermediate medium.
  • the first feature being “above” and “over” the second feature may mean that the first feature is directly above or diagonally above the second feature, or it only means that the horizontal height of the first feature is higher than the second feature.
  • the first feature being “below” of the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the horizontal height of the first feature is less than that of the second feature.
  • the nucleic acid detecting chip 200 includes a chip body 210.
  • the chip body 210 is provided with a plurality of chambers 211, a detecting cavity 212, a first flow channel 213, and a plurality of communication channels 215. Adjacent two chambers 211 are communicated with each other through the communication channel 215, and one of the chambers 211 is in communication with the detecting cavity 212 through the first flow channel 213.
  • a channel blocking member is provided in each of the communication channel 215 and is configured to seal the communication channel 215.
  • the channel blocking member When a temperature of the channel blocking member is greater than a second preset temperature or exceeds a second temperature range, the channel blocking member is converted from a solid state to a fluid state. As such, when the channel blocking member is converted from the solid state to the fluid state due to the raised temperature of the channel blocking member, the communication channel 215 can be in communication with the chambers 211 at both ends thereof, so that the sample and the reagent can flow and mix between the two chambers 211 that communicate with each other.
  • the molecular detecting device 100 of the present disclosure will be described in greater detail below by taking nucleic acid in the sample being the target as an example. The following embodiments are only for illustrative purposes and do not limit an application scope of the molecular detecting device 100. It should be understood that, in other embodiments, the molecular detecting device 100 can also be configured to detect the target such as structural proteins, enzymes, antigens, and immunologically active molecular genes, and is not limited here.
  • the molecular detecting device 100 includes a mounting substrate 110, a detection module 120, a loading module 130, a centrifugal module 140, a heating module 160, and a control module 170.
  • the heating module 160 and the control module 170 are mounted to the mounting substrate 110, and the centrifugal module 140 is mounted to the loading module 130.
  • the loading module 130 is configured to drive the centrifugal module 140 to reciprocate in a direction, so as to be positioned at different locations of the mounting substrate 110.
  • the heating module 160 is configured to heat a specific communication channel 215 of the nucleic acid detecting chip 200, so as to communicate the chambers 211 by the heated communication channel 215.
  • the centrifugal module 140 is configured to drive the nucleic acid detecting chip 200 to rotate after the chamber 211 is communicated with the communication channel 215, so as to drive the reagent and the sample in the nucleic acid detecting chip 200 to flow and mix, and the detection module 120 is configured to detect the target in the nucleic acid detecting chip 200.
  • the detection module 120, the centrifugal module 140 and the heating module 160 are integrated in one molecular detecting device 100.
  • the heating module 160 can heat the nucleic acid detecting chip 200 to control a communication state of each chamber 211 in the nucleic acid detection chip 200, and the molecular detecting device 100 can automatically process and detect the target in the nucleic acid detecting chip 200, which significantly simplifies the whole process of detecting the target. Meanwhile, since the molecular detecting device 100 can automatically process and detect in a sealed environment, a risk of infection of the operator can be effectively avoided.
  • the molecular detecting device 100 can extract, amplify, and detect nucleic acids in the sample contained in the nucleic acid detecting chip 200.
  • the mounting substrate 110 is shaped as a substantially rectangular plate.
  • a length direction of the mounting substrate 110 is defined as a first direction (i.e., X direction in FIG. 1)
  • a width direction of the mounting substrate 110 is defined as a second direction (i.e., Y direction in FIG. 1)
  • a thickness direction of the mounting substrate 110 is defined as a third direction (i.e., Z direction in FIG. 1) .
  • the first direction, the second direction, and the third direction intersect each other.
  • the first direction, the second direction and the third direction are perpendicular to each other.
  • the detection module 120 is mounted to a side of the mounting substrate 110 in the first direction, and the detection module 120 can be configured to amplify and detect the target in the sample contained in the nucleic acid detecting chip 200.
  • the control module 170 is located at a side of the detection module 120 in the second direction.
  • the control module 170 is electrically connected to the detection module 120, the loading module 130 , the centrifugal module 140 and the heating module 160, respectively, so as to control each module. It should be understood that an internal structure of the detection module 120 is limited herein, and the detection modules 120 with different structures and functions can be selected as required.
  • the loading module 130 is mounted to the mounting substrate 110 and is located on the side of the detection module 120 in the first direction.
  • the loading module 130 is configured to mount the centrifugal module 140 and drive the centrifugal module 140 to reciprocate in the first direction, so that the centrifugal module 140 can be positioned at different locations to achieve different experimental operations.
  • the loading module 130 includes two guide rails 133, two sliding blocks 134, two loading bases 135, a screw motor 131, and a screw connecting block 132.
  • the two guide rails 133 are disposed on the mounting substrate 110 at intervals in the second direction, and each guide rail 133 extends longitudinally in the first direction.
  • the sliding block 134 is mounted to each guide rail 133, and the sliding block 134 is capable of reciprocating in the first direction along the guide rail 133.
  • Each loading base 135 is correspondingly is connected to one sliding block 134, and thus the loading base 135 can be reciprocated in the first direction along the guide rail 133 through the sliding block 134.
  • the screw motor 131 is mounted to the mounting substrate 110 and is located on the side of the detection module 120 in the second direction.
  • the screw connecting block 132 is engaged with a screw rod of the screw motor 131, and the screw motor 131 is capable of driving the screw connecting block 132 to reciprocate in the first direction.
  • the centrifugal module 140 is mounted to the two loading bases 135, and the screw connecting block 132 is connected to the centrifugal module 140. Therefore, the screw motor 131 can drive the centrifugal module 140 and the loading base 135 to reciprocate in the first direction along the guide rail 133 through the screw connecting block 132.
  • the centrifugal module 140 in order to identify the position of the centrifugal module 140 in the first direction, the centrifugal module 140 includes a loading light shielding sheet 144, and the loading module 130 includes two loading photoelectric switches 137 configured to identify a position of the loading light shielding sheet 144.
  • the two loading photoelectric switches 137 are mounted to the mounting substrate 110 and are respectively located on a side of the two guide rails 133 in the second direction, and the two loading photoelectric switches 137 are staggeredly arranged in the first direction (that is, the distances between the two loading photoelectric switches 137 and the detection module 120 are different) .
  • the two loading light shielding sheets 144 are respectively located at two opposite ends of the centrifugal module 140 in the second direction, and each loading light shielding sheet 144 is provided corresponding to one loading photoelectric switch 137.
  • the control module 170 determines that the centrifugal module 140 located on the loading module 130 is at a bin out position away from the detection module 120. At this time, the operator can place the nucleic acid detecting chip 200 in the centrifugal module 140 or take out the nucleic acid detecting chip 200 from the centrifugal module 140.
  • the control module 170 determines that the centrifugal module 140 located on the loading module 130 is at an origin position to prepare for subsequent operations.
  • the loading module 130 further includes a guiding plate 138.
  • the guiding plate 138 is located at an end of the loading module 130 adjacent to the detection module 120.
  • the guiding plate 138 is provided with a guiding groove extending along the first direction.
  • the guiding groove can play a guiding role to ensure that the nucleic acid detecting chip 200 moves in the first direction without deviation, so that the nucleic acid detecting chip 200 can be accurately connected to the detection module 120.
  • the centrifugal module 140 includes a centrifugal fixing base 143, a centrifugal motor 145, and a centrifugal bracket 141. Both ends of the centrifugal fixing base 143 in the second direction are respectively fixed to the two loading bases 135, an end of the centrifugal fixing base 143 in the second direction is fixed to the screw connecting block 132 of the loading module 130, and the two loading light shielding sheets 144 are respectively mounted to a side of the centrifugal fixing base 143 adjacent to the mounting substrate 110.
  • the centrifugal motor 145 is mounted to the side of the centrifugal fixing base 143 adjacent to the mounting substrate 110.
  • An output shaft of the centrifugal motor 145 extends through the centrifugal fixing base 143 in the direction away from the mounting substrate 110.
  • the centrifugal bracket 141 is spaced apart from the side of the centrifugal fixing base 143 away from the mounting substrate 110 and is connected to the output shaft of the centrifugal motor 145.
  • the nucleic acid detecting chip 200 may be mounted in the centrifugal bracket 141. In this way, the centrifugal bracket 141 can be driven by the centrifugal motor 145 to rotate around an axis extending in the third direction, thereby driving the nucleic acid detecting chip 200 to rotate in a centrifugal manner. In one embodiment, the centrifugal bracket 141 can be driven by the centrifugal motor 145 to rotate forward or reverse around the axis to sufficiently mix the sample and reagent in the nucleic acid detecting chip 200.
  • the centrifugal bracket 141 includes a centrifugal mounting plate 1412, two groups of first limiting assembly, and a second limiting assembly 1416.
  • the centrifugal mounting plate 1412 is fixed to the output shaft of the centrifugal motor 145 to mount the nucleic acid detecting chip 200.
  • the two groups of the first limiting assembly and the second limiting assembly 1416 are mounted to a side of the centrifugal mounting plate 1412 to restrict a movement of the nucleic acid detecting chip 200 in various directions.
  • the centrifugal mounting plate 1412 is shaped as a rectangular plate, a middle portion of the centrifugal mounting plate 1412 is fixed to the output shaft of the centrifugal motor 145.
  • the end of the centrifugal mounting plate 1412 in the first direction is provided with a receiving groove 14121 configured to receive the nucleic acid detecting chip 200.
  • the receiving groove 14121 extends along the first direction and penetrates the end of the centrifugal mounting plate 1412.
  • the receiving groove 14121 has a bottom wall perpendicular to the third direction and side walls located on two opposite sides of the bottom wall in the second direction. In this way, the nucleic acid detecting chip 200 can be inserted to the receiving groove 14121 along the first direction, and the end of the nucleic acid detecting chip 200 inserted to the receiving groove 14121 is located outside the receiving groove 14121.
  • At least one side of the bottom wall of the receiving groove 14121 in the second direction is provided with a guiding boss 14123 extending along the first direction, and the nucleic acid detecting chip 200 is provided with a fool-proof groove corresponding to the guiding boss 14123, so that the nucleic acid detecting chip 200 can be prevented from being inserted to the receiving groove 14121 in a wrong direction.
  • Two groups of first limiting assemblies are mounted to the side of the centrifugal mounting plate 1412 away from the mounting substrate 110 and are spaced on two opposite sides of the receiving groove 14121 along the second direction.
  • Each group of first limiting assemblies includes at least two first limiting members 1414. The first limiting members 1414 in each group of first limiting assemblies are spaced in the first direction.
  • each first limiting member 1414 is located on the centrifugal mounting plate 1412 and is located on the receiving groove 14121, the other end of the each first limiting member 1414 extends to the side of the receiving groove 14121 away from the bottom wall, so as to form a fixing position together with the receiving groove 14121 to fix the nucleic acid detecting chip 200, so that the movement of the nucleic acid detecting chip 200 can be restricted in the second direction and the third direction.
  • the second limiting assembly 1416 includes a rotating shaft 14161, a second limiting member 14163, and a restoring member (not shown) .
  • the rotating shaft 14161 is mounted to the centrifugal mounting plate 1412 and extends in the second direction.
  • the second limiting member 14163 is sleeved on the rotating shaft 14161 to be rotatably mounted to the centrifugal mounting plate 1412.
  • the second limiting member 14163 can be switched between a locked state and an unlocked state under an external force.
  • the end of the second limiting member 14163 is provided with a limiting buckle 14163a
  • the nucleic acid detecting chip 200 is provided with a groove matched with the limiting buckle 14163a.
  • the end of the second limiting member 14163 provided with the limiting buckle 14163a rotates to the fixing position, and the limiting buckle 14163a can be inserted into the groove on the nucleic acid detecting chip 200 to be latched to the nucleic acid detecting chip 200.
  • the second limiting member 14163 is engaged with the nucleic acid detecting chip 200, so that when the centrifugal bracket 141 moves in the first direction, the nucleic acid detecting chip 200 can be taken out from the detection module 120, thus preventing the phenomenon that the nucleic acid detecting chip 200 cannot be taken out smoothly from the detection module 120 due to thermal expansion.
  • the centrifugal bracket 141 still moves in the first direction, which causes the nucleic acid detecting chip 200 to be separated from the centrifugal bracket 141.
  • the restoring member is provided between the centrifugal mounting plate 1412 and the other end of the second limiting member 14163 away from the fixing position, and the restoring member is configured to provide a restoring force to switch the second limiting member 14163 from the unlocked state to the locked state.
  • the restoring member is a compression spring.
  • the second limiting assembly 1416 further includes two positioning members 14165 respectively embedded in the two side walls of the receiving groove 14121 in the second direction.
  • the positioning members 14165 is capable of telescoping in the second direction to extend into or out of a recessed position of a side surface of the nucleic acid detecting chip 200, so as to further limit the nucleic acid detecting chip 200 in the first direction.
  • the positioning member 14165 is a positioning ball.
  • a spring is fixed between the positioning ball and the side wall, and the positioning ball is capable of telescoping in the second direction under an action of the spring.
  • the molecular detecting device 100 further includes a pressing member 150.
  • the pressing member 150 is located the side of the centrifugal module 140 away from the mounting substrate 110.
  • the pressing member 150 can exerting pressure on the other end of the second limiting member 14163 away from the fixing position, and the second limiting member 14163 rotates to switch from the locked state to the unlocked state, so that the operator can easily remove or insert the nucleic acid detecting chip 200.
  • the pressing member 150 includes a rotatable bearing, a central axis of the bearing extends along the second direction, and an outer circumferential surface of the bearing can press the end of the second limiting member 14163 away from the fixing position to drive the second limiting member 14163 to rotate.
  • the centrifugal bracket 141 further includes a centrifugal light shielding sheet 1418.
  • One end of the centrifugal light shielding sheet 1418 is mounted to the centrifugal mounting plate 1412, and the other end of the centrifugal light shielding sheet 1418 protrudes out of the centrifugal mounting plate 1412 along the third direction.
  • the centrifugal module 140 further includes two centrifugal photoelectric switches 147, which are mounted to the centrifugal fixing base 143 and are respectively located on two opposite sides of the centrifugal fixing base 143 in the second direction. The centrifugal photoelectric switches 147 are configured to identify a position of the centrifugal light shielding sheet 1418.
  • the control module 170 determines that the end of the nucleic acid detecting chip 200 inserted in the centrifugal bracket 141 protruding out of the receiving groove 14121 is away from the detection module 120.
  • the control module 170 determines that an end to be detected of the nucleic acid detecting chip 200 inserted on the centrifugal bracket 141 protruding out of the receiving groove 14121 faces the detection module 120.
  • the loading module 130 can drive the centrifugal module 140 to move toward the detection module 120 to insert the nucleic acid detecting chip 200 to the detection module 120.
  • the heating module 160 is mounted to the mounting substrate 110 and is located on a side of the centrifugal module 140 in the third direction.
  • the heating module 160 includes a heating mounting base 161, two heating driving members 163, and two heating assemblies 165.
  • the heating mounting base 161 is mounted to the mounting substrate 110 and is located on the side of the centrifugal module 140 in the second direction and extends along the first direction.
  • the pressing member 150 is mounted to the end of the heating mounting base 161 away from the detection module 120 in the first direction.
  • the two heating driving members 163 are mounted to the heating mounting base 161 and spaced apart along the first direction.
  • Each heating assembly 165 is mounted to an output end of one heating driving member 163, and the two heating modules 165 are staggeredly arranged in the second direction.
  • Each heating assembly 165 can be driven by the heating driving member 163 to rotate around an axis extending in the second direction to align with the channel blocking member on the nucleic acid detecting chip 200, and then the heating assembly 165 heats the channel blocking member to melt the channel blocking member. Since the two heating assemblies 165 are staggeredly arranged in the second direction, the two heating assemblies 165 can be used to heat the channel blocking members at different positions.
  • the nucleic acid detecting chip 200 has two groups of chambers 211 symmetrically arranged about a rotation center thereof.
  • One group of samples and reagent can be placed in each group of chambers 211, and the two heating assemblies 165 can simultaneously heat the two groups of chambers 211 symmetrically arranged about the rotation center thereof, thereby simultaneously detecting two groups of samples and effectively improving a detection efficiency.
  • the heating module 160 further includes a heating light shielding sheet 167 and a heating photoelectric switch 169.
  • Each heating assembly 165 is mounted with one heating light shielding sheet 167.
  • the heating light shielding sheet 167 is capable of rotating with the heating assembly 165.
  • the heating photoelectric switch 169 is mounted to the heating mounting base 161 to identify a position of the heating light shielding sheet 167. When the heating photoelectric switch 169 senses the heating light shielding sheet 167, the heating photoelectric switch 169 determines that the heating assembly 165 rotates to a preset angle.
  • the chip body 210 of the nucleic acid detecting chip 200 is further provided with a control cavity 214.
  • One of the chambers 211 is in communication with the detecting cavity 212 through the first flow channel 213, and the control cavity 214 is in communication with the first flow channel 213.
  • a flow channel blocking member is provided in the control cavity 214. When a temperature of the flow channel blocking member is greater than a first preset temperature or exceeds a first temperature range, the flow channel blocking member is converted from a solid state to a fluid state, otherwise, the flow channel blocking member is converted from the fluid state to the solid state.
  • the flow channel blocking member in the control cavity 214 when the flow channel blocking member in the control cavity 214 is converted to the fluid state, the flow channel blocking member can flow to the first flow channel 213 under a centrifugal action, and the flow channel blocking member can be converted to the solid state in the first flow channel 213 to seal the first flow channel 213.
  • each reagent are preloaded in corresponding chambers 211, the flow channel blocking member in the solid state is provided in the control cavity 214, and the sample to be detected is placed in the corresponding chamber 211.
  • the chip body 210 is placed in the centrifugal module 140 of the molecular detecting device 100.
  • the heating module 160 can heat the channel blocking member in the communication channel 215 of the nucleic acid detecting chip 200 to convert the channel blocking member to the fluid state and enable the two adjacent chambers 211 to be communicated with each other.
  • the reagents and samples in the connected chambers 211 are mixed and reacted to complete the nucleic acid extraction and detection pretreatment and obtain nucleic acid detection solution. Then, under an action of centrifugal force, the nucleic acid detection solution continues to flow to the detecting cavity 212 through the first flow channel 213. Then, the heating module 160 heats the flow channel blocking member in the control cavity 214 so that the temperature of the flow channel blocking member is greater than the first preset temperature, thereby converting the flow channel blocking member from the solid state to the liquid state, and then the flow channel blocking member flows to the first flow channel 213 under the action of centrifugal force.
  • the temperature of the flow channel blocking member in the first flow channel 213 decreases to be less than the first preset temperature, and the flow channel blocking member is then converted to the solid state to seal the first flow channel 213, thereby preventing the nucleic acid detection liquid in the detecting cavity 212 from flowing back to the chamber 211 through the first flow channel 213.
  • the detection module 120 performs nucleic acid detection on the nucleic acid detection liquid in the detecting cavity 212.
  • the first preset temperature is determined according to a phase transition temperature of the flow channel blocking member, which is not limited here.
  • the flow channel blocking member flows to the first flow channel 213 under the action of centrifugal force when the flow channel blocking member is converted to the fluid state, and the flow channel blocking member reaching the first flow channel 213 is cooled and converted to the solid state to seal the first flow channel 213, which limits a backflow of the nucleic acid detection solution in the detecting cavity 212, and avoids a need to integrate a one-way valve as in the prior art, so that the manufacturing difficulty and the manufacturing cost are reduced and the volume is small enough to carry.
  • nucleic acid extraction, detection pretreatment and nucleic acid detection are performed in a sealed space of the nucleic acid detecting chip 200, which avoids human and environmental pollution, helps to ensure detection accuracy, and reduces a requirement for professionals and a dependence on standard laboratory.
  • the flow channel blocking member and various reagents may be provided in the control cavity 214 and the chamber 211 respectively when the nucleic acid detecting chip 200 is manufactured.
  • the flow channel blocking member and various reagents may also be added by the user during use, which is not limited herein.
  • the reagent may be a capsule particle or in a lyophilized state, or may be a liquid, which is not limited herein.
  • the flow channel blocking member needs to be made of inert material to ensure that the flow channel blocking member does not react with samples and various reagent, so as to avoid adverse effects on nucleic acid extraction, detection pretreatment and nucleic acid detection.
  • the flow channel blocking member can be made of paraffin.
  • the plurality of chambers 211 and the detecting cavitys 212 are alternatively arranged and spaced apart along a predetermined direction.
  • a rotation center is adjacent to the end of the chip body 210 in the predetermined direction, so that the sample can reach each chamber 211 in sequence along the predetermined direction and finally reach the detecting cavity 212 by controlling a rotation speed.
  • the predetermined direction may be a longitudinal direction of the chip body 210.
  • three chambers 211 are provided, which are the first chamber 211a, the second chamber 211b, and the third chamber 211c, respectively.
  • the first chamber 211a is configured to accommodate the nucleic acid extraction reagent and samples
  • the second chamber 211b and the third chamber 211c are configured to accommodate the nucleic acid reaction reagent.
  • the first chamber 211a, the second chamber 211b, the third chamber 211c, and the detecting cavity 212 are alternatively arranged and spaced apart along the predetermined direction.
  • the first chamber 211a is in communication with the second chamber 211b through one communication channel 215, the second chamber 211b is in communication with the third chamber 211c through one communication channel 215, the third chamber 211c is in communication with the detecting cavity 212 through the first flow channel 213, and the control cavity 214 is in communication with the first flow channel 213 through the third chamber 211c. That is, at an initial stage, the the channel blocking member can block the transfer of the reagent between the first chamber 211a and the second chamber 211b, and the transfer of the reagent between the second chamber 211b and the third chamber 211c, so as to avoid the improper mixing of the reagent in each chamber 211 before use, which may result in poor use effect or unusable use.
  • nucleic acid extraction reagent may be a lysis reagent, etc.
  • nucleic acid reaction reagent may be a MIX reagent or a TAQ (Thermus Aquaticus) enzyme.
  • the MIX reagent may include PCR buffer and/or biological enzymes, etc., which are not limited here.
  • the vibration is generated by the centrifugal module 140, so that the sample and the nucleic acid extraction reagent are mixed in the first chamber 211a and fully reacted.
  • the heating module 160 heats the channel blocking member in the communication channel 215 between the first chamber 211a and the second chamber 211b to convert the channel blocking member to the fluid state.
  • the mixed liquid in the first chamber 211a smoothly enters the second chamber 211b, and is mixed with the nucleic acid reaction reagent in the second chamber 211b to fully react.
  • the heating module 160 heats the channel blocking member in the communication channel 215 between the second chamber 211b and the third chamber 211c to convert the channel blocking member to the fluid state.
  • the mixed liquid in the second chamber 211b smoothly enters the third chamber 211c, and is mixed with the nucleic acid reaction reagent in the third chamber 211c.
  • the mixed liquid in the third chamber 211c enters the detecting cavity 212 through the first flow channel 213.
  • the heating module 160 heats the flow channel blocking member in the control cavity 214 so that the temperature of the flow channel blocking member is greater than the first preset temperature or temperature range, and then the flow channel blocking member is converted to the fluid state. Then, under the centrifugal action of the centrifugal module 140, the flow channel blocking member in the control cavity 214 enters the first flow channel 213 through the third chamber 211c.
  • the temperature of the flow channel blocking member entering the first flow channel 213 decreases to be less than the first preset temperature or temperature range, so that the flow channel blocking member in the first flow channel 213 is converted to the solid state, thereby blocking the first flow channel 213, and preventing the nucleic acid detection solution in the detecting cavity 212 from flowing back to the third chamber 211c through the first flow channel 213 during subsequent transfer or the nucleic acid detection.
  • the chip body 210 is inserted into the detection module 120 for the nucleic acid detection.
  • the chip body 210 includes a first surface A1 and a second surface A2 opposite to the first surface A1.
  • the first surface A1 is provided with a plurality of first adding holes 2111 in communication with the plurality of chambers 211 in one-to-one correspondence.
  • the nucleic acid detecting chip 200 further includes a first cover sheet 220 covering the first surface A1, so that each first adding hole 2111 is sealed by the first cover sheet 220. In this way, various reagent can be added to the chambers 211 through the first adding holes 2111. Then, the first cover sheet 220 is covering the first surface A1 to seal the first adding holes 2111.
  • the first cover sheet 220 may be may be a film material, such as a sealing film.
  • the first cover sheet 220 may be connected to the first surface A1 by means of hot-melt adhesive packaging, adhesive packaging, etc., so as to seal the first adding holes 2111.
  • the nucleic acid detecting chip 200 further includes a plunger.
  • the plunger extends through the first cover sheet 220 and is blocked in one first adding hole 2111 corresponding to the chamber 211 in which the nucleic acid extraction reagent is preloaded. In this way, when it needs to be used, the plunger can be pulled out, and the sample can be added to the chamber 211 preloaded with the nucleic acid reaction reagent through the first adding hole 2111, and then the plunger can be blocked in the first adding hole 2111.
  • the plunger extends through the first cover sheet 220 and blocks the first adding hole 2111 (i.e., the first adding hole 2111 at the far right end in FIG. 9) in communication with the first chamber 211a.
  • the first surface A1 may also be provided with a second adding hole 2142 in communication with the control cavity 214 and a plurality of third adding holes 2151 in communication with the plurality of communication channels 215 in one-to-one correspondence.
  • the flow channel blocking member can be added to the control cavity 214 through the second adding hole 2142, and the channel blocking member can be added to the communication channels 215 through the third adding holes 2151 to block the communication channels 215.
  • the first cover sheet 220 covers the first surface A1.
  • each chamber 211, the control cavity 214, the first flow channel 213, and each communication channel 215 are formed by the second surface A2 recessed inward. That is, each chamber 211, the control cavity 214, the first flow channel 213 and each communication channels 215 have openings on the second surface A2.
  • the nucleic acid detecting chip 200 further includes a second cover sheet 230 covering the second surface A2, and the second cover sheet 230 is transparent. In this way, each chamber 211, the openings of the control cavity 214, the first flow channel 213 and each communication channel 215 on the second surface A2 are sealed by the second cover sheet 230.
  • the second cover sheet may be a film material, such as a sealing film.
  • the second cover sheet may be connected to the second surface A2 by means of hot-melt adhesive packaging, adhesive packaging, etc.
  • the chip body 210 is further provided with a second flow channel 2141.
  • One end of the second flow channel 2141 is in communication with the control cavity 214, the other end of the second flow channel 2141 is in communication with the first flow channel 213, or the chamber 211 in communication with the first flow channel 213.
  • the second flow channel 2141 is formed by the second surface A2 recessed inward, so that the flow of the flow channel blocking member can be observed through the second cover sheet.
  • the detecting cavity 212 penetrates the first surface A1 and the second surface A2 of the chip body 210.
  • An area of the first cover sheet 220 corresponding to the detecting cavity 212 is transparent.
  • the detection module 120 can perform PCR fluorescence detection on the nucleic acid detection solution in the detecting cavity 212 through the region of the first cover sheet 220 corresponding to the detecting cavity 212 and the second cover sheet 230.
  • the first surface A1 is divided to a first area and a second area.
  • Each of the chambers 211, the control cavity 214, the communication channels 215, and the second flow channel 2141 are located in the first area, the detecting cavity 212 is located in the second area, and the first flow channel 213 extends from the first area to the second area.
  • the first cover sheet 220 includes a first sub cover sheet 221 and a second sub cover sheet 222 provided separately.
  • the first sub cover sheet 221 is configured to cover the first area and the second sub cover sheet 222 is configured to cover the second area. It should be understood that the first sub cover sheet 221 is provided with a through hole for the plunger to extend through.
  • a method of processing and detecting molecular using the molecular detecting device 100 is provided, which can process and detect the samples in the nucleic acid detecting chip 200. Specifically, the method includes the following steps.
  • each chamber 211 is preloaded with the nucleic acid extraction reagent and the nucleic acid reaction reagent, and the samples is added to each chamber 211 preloaded with the nucleic acid extraction reagent.
  • the plunger in the first adding hole 2111 in communication with the first chamber 211a is pulled out, and then the sample is added to the first chamber 211a containing the nucleic acid extraction reagent from the first adding hole 2111. Then the plunger is again blocked in the first adding hole 2111.
  • the step S1 includes the following steps.
  • the first sub cover sheet 221 is covering the first area of the first surface A1 to seal each of the first adding holes 2111, the second adding holes 2142 and the third adding holes 2151, and the plunger is blocked in one of the first adding holes 2111 in communication with the chamber 211 in which the nucleic acid extraction reagent is preset.
  • the plunger in use, the plunger is pulled out, and the sample is added to the chamber 211 in which the nucleic acid extraction reagent is provided through the first adding hole 2111.
  • step S2 is performed.
  • the centrifugal module 140 is driven to move in the first direction to the bin out position to load the nucleic acid detecting chip 200 to be detected.
  • the screw motor 131 of the loading module 130 drives the centrifugal module 140 to move in the first direction away from the detection module 120 along the guide rail 133.
  • the control module 170 determines that the centrifugal module 140 on the loading module 130 is in the bin out position and controls the centrifugal module 140 to stop moving.
  • the second limiting member 14163 is located below the pressing member 150, and the second limiting member 14163 is switched from the locked state to the unlocked state under the pressure of the pressing member 150.
  • the operator can insert the nucleic acid detecting chip 200 to the receiving groove 14121 of the centrifugal module 140 along the first direction.
  • the centrifugal module 140 is driven to move to the origin position along the first direction.
  • the screw motor 131 of the loading module 130 drives the centrifugal module 140 to move toward the detection module 120 along the guide rail 133 in the first direction.
  • the loading photoelectric switch 137 adjacent to the detection module 120 senses the loading light shielding sheet 144, it is determined that the centrifugal module 140 on the loading module 130 is at the origin position and stops driving the centrifugal module 140 to move.
  • the pressing member 150 is disengaged from the second limiting member 14163, and the second limiting member 14163 is restored to the locked state under the action of the restoring member to hold the nucleic acid detecting chip 200.
  • the centrifugal bracket 141 is driven to rotate to drive the nucleic acid detecting chip 200 to rotate centrifugally, so as to drive the nucleic acid extraction reagent and the sample in the nucleic acid detecting chip 200 to flow and mix evenly.
  • the centrifugal motor 145 drives the centrifugal bracket 141 to rotate to drive the nucleic acid detecting chip 200 to rotate centrifugally, so that the sample and the nucleic acid extraction reagent in the first chamber 211a are mixed.
  • the centrifugal motor 145 drives the centrifugal bracket 141 to rotate forward or reverse to mix the nucleic acid extraction reagent with the sample.
  • the centrifugal module 140 is driven to move to the mixing position along the first direction, one of the heating assemblies 165 is driven to rotate to the heating position, and the communication channel 215 of the nucleic acid detecting chip 200 is heated specifically to enable the heated communication channel 215 to communicate with the chamber 211.
  • the screw motor 131 of the loading module 130 drives the centrifugal module 140 to move toward the detection module 120 along the guide rail 133 in the first direction.
  • the control module 170 determines that the centrifugal module 140 moves to the mixing position according to the rotation angle of the screw motor 131, one of the heating assemblies 165 is driven by the heating driving member 163 to rotate to a heating position.
  • the channel blocking member in one of the flow channels of the nucleic acid detecting chip 200 is heated and melted to communicate with the corresponding chamber 211.
  • the centrifugal bracket 141 is driven to rotate to drive the nucleic acid detecting chip 200 to rotate centrifugally, so as to drive the reagent and sample in the nucleic acid detecting chip 200 to flow and mix.
  • the centrifugal motor 145 drives the centrifugal bracket 141 to rotate to drive the nucleic acid detecting chip 200 to rotate centrifugally, so that the sample and the nucleic acid reaction reagent in the communicated chamber 211 are mixed.
  • the centrifugal motor 145 drives the centrifugal bracket 141 to rotate forward or reverse to mix the nucleic acid reaction reagent with the sample.
  • the steps S5 to S6 are repeated until the channel blocking members in all the communication channels 215 in the nucleic acid detecting chip 200 are converted to the fluid state to complete the mixing of the reagent and the sample.
  • the centrifugal bracket 141 is driven to rotate until the nucleic acid detection solution enters the detecting cavity 212 through the first flow channel 213.
  • the steps S5-S6 are performed cyclically, and a number of cycles can be set as required.
  • the centrifugal module 140 moves to different mixing positions along the first direction.
  • the heating module 165 can specifically heat different communication channels 215 in the nucleic acid detecting chip 200 to be in communication with different chambers 211.
  • the centrifugal bracket 141 is driven by the centrifugal motor 145 to enable the reagent and the sample in the conduction chamber 211 to be flow and mix.
  • the reagent and the sample are introduced to the detecting cavity 212 under the centrifugal action of the centrifugal bracket 141.
  • the centrifugal bracket 141 is driven to rotate until the end to be detected of the nucleic acid detecting chip 200 faces the detection module 120.
  • the centrifugal motor 145 drives the centrifugal bracket 141 to rotate until the control module 170 determines that the end to be detected of the nucleic acid detecting chip 200 inserted on the centrifugal bracket 141 protruding out of the receiving groove 14121 faces the detection module 120.
  • the centrifugal module 140 is driven to move to a detection position in the first direction, and the nucleic acid detecting chip 200 is inserted to the detection module 120 for detection.
  • the screw motor 131 of the loading module 130 drives the centrifugal module 140 to move toward the detection module 120 along the guide rail 133 in the first direction.
  • the control module 170 determines that the centrifugal module 140 moves to the detection position according to the rotation angle of the screw motor 131, the nucleic acid detecting chip 200 is inserted to the detection module 120 in the first direction for amplification and detection.
  • the centrifugal module 140 is driven to move to the bin out position along the first direction.
  • the screw motor 131 of the loading module 130 drives the centrifugal module 140 to move away from the detection module 120 along the guide rail 133.
  • the control module 170 determines that the centrifugal module 140 on the loading module 130 is in the bin out position and stops driving the centrifugal module 140 to move.
  • the second limiting member 14163 is switched from the locked state to the unlocked state under the pressure of the pressing member 150, and the operator can take out the nucleic acid detecting chip 200 from the receiving groove 14121.
  • the step S7 further comprises the following steps.
  • one of the heating assemblies 165 is driven to rotate to the heating position to heat the flow channel blocking member in the control cavity 214 to convert flow channel blocking member to the fluid state.
  • the flow channel blocking member in the first flow channel 213 may be cooled to the temperature lower than the first preset temperature or temperature range by cooling measures or natural cooling, so that the flow channel blocking member in the first flow channel 213 is converted to the solid state, thereby blocking the first flow channel 213.
  • the nucleic acid detecting chip 200 can be inserted to the centrifugal bracket 141.
  • the loading module 130 drives the centrifugal module 140 to move so that the nucleic acid detecting chip 200 is located at different positions in the first direction.
  • the heating module 160 can heat different communication channels 215 of the nucleic acid detecting chip 200 as required to enable the heated communication channel 215 to communicate with the chamber 211.
  • the centrifugal bracket 141 can be driven by the centrifugal motor 145 to rotate to realize the centrifugal rotation of the nucleic acid detecting chip 200 in different directions, and then the reagent in the communicated chamber 211 of the nucleic acid detecting chip 200 are mixed in a preset order. After the reagent and the sample are introduced to the detecting cavity 212 under the centrifugal action of the centrifugal bracket 141, the target in the sample is detected by the detection module 120.
  • the described molecular detecting device 100 can prevent the reagent between the chambers 211 of the nucleic acid detecting chip 200 from generating cross reactions, thereby ensuring the detection sensitivity.
  • the heating module 160 can heat different areas of the nucleic acid detecting chip 200 in the centrifugal module 140 to simultaneously detect two groups of samples. The whole device is simple in structure and convenient in operation, which realizes efficient processing and detection of nucleic acid and other targets, and significantly reduces the infection risk of the operator.

Abstract

A molecular detecting device (100), a nucleic acid detecting chip (200), a method of processing and detecting molecular are provided. The molecular detecting device (100) includes: a mounting substrate (110); a detection module (120) mounted to an end of the mounting substrate (110); a loading module (130) mounted to the mounting substrate (110) and located on a side of the detection module (120) in a first direction; a centrifugal module (140) mounted to the loading module (130), the centrifugal module (140) is driven by the loading module (130) to reciprocate in the first direction, the centrifugal module (140) comprises a rotatable centrifugal bracket (141), and the centrifugal bracket (141) is provided with a receiving groove (14121) configured to receive the nucleic acid detecting chip (200); a heating module (160) mounted to the mounting substrate (110) and located on a side of the centrifugal module (140), the heating module (160) includes at least one heating assembly (165), each heating assembly (165) is controllably rotated to face the receiving groove (14121); a control module (170) mounted to the mounting substrate (110) and connected in communication with the detection module (120), the loading module (130), the centrifugal module (140) and the heating module (160) respectively.

Description

MOLECULAR DETECTING DEVICE, NUCLEIC ACID DETECTING CHIP, METHOD OF PROCESSING AND DETECTING MOLECULAR
CROSS-REFERENCE TO RELATED DISCLOSURE
This application claims priority benefit of Chinese patent application No. 202221315446. X, filed on May 27, 2022, entitled “CENTRIFUGAL BRACKET, CENTRIFUGAL MODULE AND MOLECULAR DETECTING DEVICE” , Chinese patent application No. 202111679524.4, filed on December 31, 2021, entitled “NUCLEIC ACID DETECTING EQUIPMENT AND METHOD OF DETECTING NUCLEIC ACID” , and Chinese patent application No. 202210586967.7, filed on May 27, 2022, entitled “MOLECULAR DETECTING DEVICE, METHOD OF PROCESSING AND DETECTING MOLECULAR” , the entire contents of both disclosures are incorporated herein by reference in their entireties.
TECHNICAL FIELD
The present disclosure relates to the field of molecular detection, in particular to a molecular detecting device, a nucleic acid detecting chip, and a method of processing and detecting molecular.
BACKGROUND
Centrifugal nucleic acid detecting chip systems refer to a microfluidic system based on the micro electromechanical processing technology, which integrates the valves, flow pipes, mixing reactors, heaters, separation devices, detectors and other components involved in the process of sampling, pretreatment, derivation, mixing and detection of chemical analysis to the chip, and uses centrifugal force as the driving force of liquid flow to realize the detection and analysis of liquid flow.
Because the nucleic acid detecting chip has the advantages of less sample consumption, fast detection speed, simple operation, multi-functional integration, small size and easy to carry, it is particularly suitable for POCT diagnosis, and has great potential to simplify the diagnosis process and improve the medical results. However, how to use the nucleic acid detecting chip to achieve full-automatic analysis has become an urgent problem for those skilled in the art.
The nucleic acid detecting chip comprises a plurality of chambers for storing samples and reagent, and two adjacent chambers are communicated with each other through a communication channel. The existing nucleic acid detecting chip equipment uses the change of air pressure to guide the reagent between each chamber. Before the reaction, the reagent between the chambers are easy to generate a certain cross reaction through the communication channel, thus affecting the purity of the detection reagent and reducing the detection sensitivity.
SUMMARY
According to some embodiments, a molecular detecting device, a nucleic acid detecting chip, and a method of processing and detecting molecular are provided.
A molecular detecting device configured to process and detect a target in a nucleic acid detecting chip, wherein the nucleic acid detecting chip comprises a chip body provided with a plurality of chambers and a plurality of communication channels in communication with the plurality of chambers, a channel blocking member is provided in the communication channel and is configured to seal the communication channel, when a temperature of the channel blocking member is greater than a preset temperature, the channel blocking member is converted from a solid state to a fluid state, the molecular detecting device includes: a mounting substrate; a detection module mounted to an end of the mounting substrate; a loading module mounted to the mounting substrate and located on a side of the detection module in a first direction; a centrifugal module mounted to the loading module, wherein the centrifugal module is driven by the loading module to reciprocate in the first direction, the centrifugal module comprises a rotatable centrifugal bracket, and the centrifugal bracket is provided with a receiving groove configured to receive the nucleic acid detecting chip; a heating module mounted to the mounting substrate and located on a side of the centrifugal module, the heating module comprises at least one heating assembly, each heating assembly is controllably rotated to face the receiving groove; and a control module mounted to the mounting substrate and electrically connected with the detection module, the loading module, the centrifugal module, and the heating module, respectively; wherein under control of the control module, the heating module specifically heats the communication channel of the nucleic acid detecting chip located in the receiving groove, so as to communicate the plurality of chambers by the heated communication channels; under control of the control module, the centrifugal module drives the nucleic acid detecting chip located in the receiving groove to rotate after the plurality of chambers are communicated by the communication channel, so as to mix a reagent and a sample in the nucleic acid detecting chip to obtain nucleic acid detection solution, and the detection module is configured to detect the nucleic acid detection solution.
In one of the embodiments, the loading module comprises a screw motor and a screw connecting block, the screw motor is mounted to the mounting substrate, the screw connecting block is connected to an output end of the screw motor and the centrifugal module, respectively, and the centrifugal module is driven by the screw motor to move in the first direction through the screw connecting block.
In one of the embodiments, the loading module further includes: a guide rail extending along the first direction; a sliding block mounted to the guide rail and capable of reciprocating along the guide rail in the first direction; and a loading base connected to the sliding block, wherein the centrifugal module is mounted to the loading base.
In one of the embodiments, the centrifugal module further comprises a loading light shielding sheet, the loading module further comprises a loading photoelectric switch mounted to the mounting substrate, and the loading photoelectric switch is configured to identify a position of the loading light shielding sheet in the first direction.
In one of the embodiments, an end of the loading module adjacent to the detection module is further provided with a guiding plate, the guiding plate is provided with a guiding groove extending along the first direction, the guiding groove is configured to restrict the nucleic acid detecting chip located in the receiving groove from moving along the first direction, so as to enable the nucleic acid detecting chip to be connected to the detection module.
In one of the embodiments, the heating module further includes: a heating mounting base mounted to the mounting substrate; and at least one heating driving member is mounted to the heating mounting base, wherein each heating member is correspondingly connected to an output end of the heating driving member, and the heating member is driven by the heating driving member to rotate around an axis extending in a second direction perpendicular to the first direction.
In one of the embodiments, the heating module includes two heating assemblies, and the two heating assemblies are staggeredly arranged in the second direction.
In one of the embodiments, the heating module further includes: a heating light shielding sheet, each of the heating assemblies is provided with the heating light shielding sheet; a heating photoelectric switch mounted to the heating mounting base and configured to identify a position of the heating light shielding sheet.
In one of the embodiments, the centrifugal module further includes a centrifugal fixing base and a centrifugal motor, the centrifugal fixing base is mounted to the loading module, the centrifugal motor is mounted to the centrifugal fixing base, the centrifugal bracket is connected to an output shaft of the centrifugal motor, the centrifugal bracket is driven by the centrifugal motor to rotate forward or reverse to mix the reagent and the sample in the nucleic acid detecting chip.
In one of the embodiments, the centrifugal bracket includes: a centrifugal mounting plate provided with the receiving groove extending in the first direction and penetrating an end of the centrifugal mounting plate, wherein the receiving groove is formed by a bottom wall and side walls  located on two opposite sides of the bottom wall in a second direction; a first limiting member, wherein one end of the first limiting member is located on the centrifugal mounting plate, and the other end of the first limiting member extends to the side of the receiving groove away from the bottom wall, so as to form a fixing position together with the receiving groove to fix the nucleic acid detecting chip; and a second limiting member rotatably mounted to the centrifugal mounting plate and capable of switching between an unlocked state and a locked state, when the second limiting member is switched to the unlocked state, an end of the second limiting member rotates out of the fixing position, when the second limiting member is switched to the locked state, the end of the second limiting member rotates to the fixing position and is latched to the nucleic acid detecting chip; wherein the first direction is perpendicular to the second direction.
In one of the embodiments, one end of the second limiting member is provided with a limiting buckle, when the second limiting member is switched to the locked state, the end of the second limiting member provided with the limiting buckle rotates to the fixing position, and the limiting buckle is inserted into a groove on the nucleic acid detecting chip.
In one of the embodiments, the centrifugal bracket further includes a restoring member, the restoring member is connected between the centrifugal mounting plate and the other end of the second limiting member away from the fixing position, and the restoring member is configured to provide a force to switch the second limiting member from the unlocked state to the locked state.
In one of the embodiments, at least one side of the bottom wall in the second direction is provided with a guiding boss extending along the first direction.
In one of the embodiments, the centrifugal bracket includes two groups of first limiting assemblies, the two groups of the first limiting assemblies are respectively located on two opposite sides of the receiving groove in the second direction, each group of the first limiting assemblies includes at least two first limiting members, and the first limiting members in each group of the first limiting assemblies are spaced apart in the first direction.
In one of the embodiments, the centrifugal bracket further includes a positioning member embedded in the side wall and extending into the receiving groove, and the positioning member is capable of telescoping in the second direction to extend into or out of a recessed position of a side surface of the nucleic acid detecting chip.
In one of the embodiments, the centrifugal bracket further includes a centrifugal light shielding sheet, one end of the centrifugal light shielding sheet is mounted to the centrifugal mounting plate, and the other end of the centrifugal light shielding sheet protrudes out of the centrifugal mounting plate.
A nucleic acid detecting chip includes a chip body, the chip body is provided with a plurality of chambers and a plurality of communication channels in communication with the plurality of chambers, a channel blocking member is provided in the communication channel and is configured to seal the communication channel, when a temperature of the channel blocking member is greater than a preset temperature, the channel blocking member is converted from a solid state to a fluid state; wherein when heated by the molecular detecting device, the channel blocking member is converted from the solid state to the fluid state to communicate the plurality of chambers in communication with the heated communication channels.
In one of the embodiments, the chip body further includes a detecting cavity and a first flow channel, and one of the chambers is in communication with the detecting cavity through the first flow channel.
In one of the embodiments, the chip body further has a control cavity, the control cavity is in communication with the first flow channel, and a flow channel blocking member is provided in the control cavity, when a temperature of the flow channel blocking member is greater than the first preset temperature, the flow channel blocking member is converted from a solid state to a fluid state, when the temperature of the flow channel blocking member is less than the first preset temperature, the flow channel blocking member is converted from the fluid state to the solid state; when the flow channel blocking member is converted to the fluid state, the flow channel blocking member is capable of flowing to the first flow channel under a centrifugal action, and the flow channel blocking member is converted to the solid state in the first flow channel to seal the first flow channel.
In one of the embodiments, the chip body includes a first surface and a second surface opposite to the first surface, the first surface is provided with a plurality of first adding holes in communication with the plurality of chambers in one-to-one correspondence, the nucleic acid detecting chip further comprises a first cover sheet covering the first surface.
In one of the embodiments, the first surface is provided with a second adding hole in communication with the control cavity, and a plurality of third adding holes in communication with the plurality of communication channels in one-to-one correspondence.
In one of the embodiments, each chamber, the control cavity, the first flow channel, and each communication channel are formed by the second surface recessed inward; the nucleic acid detecting chip further comprises a second cover sheet covering the second surface, and the second cover sheet is transparent.
In one of the embodiments, the detecting cavity penetrates the first surface and the second  surface of the chip body; an area of the first cover sheet corresponding to the detecting cavity is transparent.
A method of processing and detecting molecular using the the above-mentioned molecular detecting device, configured to process and detect sample in the nucleic acid detecting chip, comprising: S1, preloading nucleic acid extraction reagent and nucleic acid reaction reagent in each chamber of the nucleic acid detecting chip, adding the sample to the chamber preloaded with the nucleic acid extraction reagent; S2, driving the centrifugal module to move to a bin out position in the first direction to load the nucleic acid detecting chip to be detected; S3, driving the centrifugal module to move to an origin position along the first direction; S4, driving the centrifugal bracket to rotate to drive the nucleic acid detecting chip to rotate centrifugally, so as to drive the nucleic acid extraction reagent and the sample in the nucleic acid detecting chip to mix evenly; S5, driving the centrifugal module to move to a mixing position along the first direction, driving one of the heating assemblies to rotate to a heating position, and specifically heating the communication channel of the nucleic acid detecting chip located in the receiving groove to enable the heated communication channel to communicate with the chamber; S6, driving the centrifugal bracket to rotate to drive the nucleic acid detecting chip to rotate centrifugally, so as to drive the sample in the nucleic acid detecting chip to flow to the chamber preloaded with the nucleic acid reaction reagent for mixing; repeating S5 to S6 until the nucleic acid reaction reagent in the nucleic acid detecting chip is mixed with the sample to obtain a nucleic acid detection solution; S7, driving the centrifugal bracket to rotate until the nucleic acid detection liquid enters the detecting cavity through the first flow channel; S8, driving the centrifugal bracket to rotate until the end to be detected of the nucleic acid detecting chip faces the detection module; S9, driving the centrifugal module to move to a detection position along the first direction, and inserting the nucleic acid detecting chip to the detection module for detection; and S10, driving the centrifugal module to move to the bin out position along the first direction after the detection is completed.
Details of one or more embodiments of the present disclosure are set forth in the following drawings and descriptions. Other features, objects and advantages of the present disclosure become apparent from the description, drawings and claims.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to more clearly explain the embodiments of the present disclosure or the technical solutions in the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. It is obvious that the drawings in the following  description are only the embodiments of the present disclosure. For those skilled in the art, other drawings can be obtained according to the disclosed drawings without paying creative labor.
FIG. 1 is a perspective view of a molecular detecting device according to an embodiment of the present disclosure.
FIG. 2 is a perspective view of a loading module of the molecular detecting device shown in FIG. 1.
FIG. 3 is a perspective view of a centrifugal module of the molecular detecting device shown in FIG. 1.
FIG. 4 is a perspective view of a centrifugal bracket of the centrifugal module shown in FIG. 3.
FIG. 5 is a side view of a second limiting member of the centrifugal bracket shown in FIG. 4 in a locked state.
FIG. 6 is a side view of the second limiting member of the centrifugal bracket shown in FIG. 4 in an unlocked state.
FIG. 7 is a perspective view of a heating module of the molecular detecting device shown in FIG. 1.
FIG. 8 is an exploded view of a nucleic acid detecting chip according to an embodiment of the present disclosure.
FIG. 9 is a top view of a chip body of the nucleic acid detecting chip shown in FIG. 8.
FIG. 10 is a bottom view of the chip body of the nucleic acid detecting chip shown in FIG. 8.
FIG. 11 is a flowchart of a method of processing and detecting molecular according to an embodiment of the present disclosure.
Description of reference numbers:
100, molecular detection device; 110, mounting substrate; 120, detection module; 130, loading module; 131, screw motor; 132, screw connecting block; 133, guide rail; 134, sliding block; 135, loading base; 137, loading photoelectric switch; 138, guiding plate; 140, centrifugal module; 141, centrifugal bracket; 1412, centrifugal mounting plate; 14121, receiving groove; 14123, guiding boss; 1414, first limiting member; 1416, second limiting assembly; 14161, rotating shaft; 14163, second limiting member; 14163a, limiting buckle; 14165, positioning member; 1418, centrifugal light shielding sheet; 143, centrifugal fixing base; 144, loading light shielding sheet; 145, centrifugal motor; 147, centrifugal photoelectric switch; 150, pressing member; 160, heating module; 161, heating mounting base; 163, heating driving member; 165, heating assembly; 167, heating light shielding sheet; 169, heating photoelectric switch; 170, control module;
200, nucleic acid detecting chip; 210, chip body; 211, chamber; 211a, first chamber; 211b, second chamber; 211c, third chamber; 2111, first adding hole; 212, detecting cavity; 213, first flow channel; 214, control cavity; 2141, second flow channel; 2142, second adding hole; 215, communication channel; 2151, third adding hole; 220, first cover sheet; 221, first sub cover sheet; 222, second sub cover sheet; 230, second cover sheet.
DETAILED DESCRIPTION OF THE EMBODIMENTS
The present disclosure will now be described in detail with reference to the accompanying drawings and embodiments in order to make the objects, technical solutions, and advantages of the present disclosure more clear. It should be understood that the specific embodiments described herein are only for explaining the present disclosure, and not intended to limit the present disclosure.
In the description of the present disclosure, it should be understood that the terms "center" , "longitudinal" , "transverse" , "length" , "width" , "thickness" , "upper" , "lower" , "front" , "rear" , "left" , "right" , "vertical" , "horizontal" , "top" , "bottom" , "inner" , "outer" , "clockwise" , "counterclockwise" , "axial" , "radial" , "circumferential" and other indicated orientations or positional relationships are based on the orientations or positional relationships shown in the accompanying drawings, and are only for the convenience of describing the present disclosure and simplifying the description, rather than indicating or implying the indicated device or elements must have a particular orientation, be constructed and operate in a particular orientation, so it should not be understood as a limitation of the invention.
In addition, the terms "first" and "second" are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with "first" , "second" may expressly or implicitly include at least one of that feature. In the description of the present disclosure, "plurality" means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
In the present disclosure, unless otherwise expressly specified and limited, the terms "installed" , "connection" , "connected" , "fixed" and other terms should be understood in a broad sense. For example, it may be a fixed connection or a detachable connection, or integrated. It can be a mechanical connection or an electrical connection. It can be directly connected or indirectly connected through an intermediate medium. It can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
In the present disclosure, unless otherwise expressly specified and limited, the first feature "above" or "below" the second feature may be in direct contact with the first and second features, or the first and second features may be in indirect contact through an intermediate medium. Moreover, the first feature being "above" and "over" the second feature may mean that the first feature is directly above or diagonally above the second feature, or it only means that the horizontal height of the first feature is higher than the second feature. The first feature being "below" of the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the horizontal height of the first feature is less than that of the second feature.
It should be noted that when an element is referred to as being "fixed to" or "disposed on" another element, it can be directly on the other element or an intervening element may also be present. When an element is referred to as being "connected" to another element, it can be directly connected to the other element or intervening elements may also be present. The terms "vertical" , "horizontal" , "upper" , "lower" , "left" , "right" and similar expressions used herein are for the purpose of illustration only and do not represent the only embodiment.
Referring to FIG. 1, an embodiment of the present disclosure provides a molecular detecting device 100 configured to process and detect a target in sample contained in a nucleic acid detecting chip 200. Referring to FIG. 8, the nucleic acid detecting chip 200 includes a chip body 210. The chip body 210 is provided with a plurality of chambers 211, a detecting cavity 212, a first flow channel 213, and a plurality of communication channels 215. Adjacent two chambers 211 are communicated with each other through the communication channel 215, and one of the chambers 211 is in communication with the detecting cavity 212 through the first flow channel 213. A channel blocking member is provided in each of the communication channel 215 and is configured to seal the communication channel 215. When a temperature of the channel blocking member is greater than a second preset temperature or exceeds a second temperature range, the channel blocking member is converted from a solid state to a fluid state. As such, when the channel blocking member is converted from the solid state to the fluid state due to the raised temperature of the channel blocking member, the communication channel 215 can be in communication with the chambers 211 at both ends thereof, so that the sample and the reagent can flow and mix between the two chambers 211 that communicate with each other.
The molecular detecting device 100 of the present disclosure will be described in greater detail below by taking nucleic acid in the sample being the target as an example. The following embodiments are only for illustrative purposes and do not limit an application scope of the molecular detecting device 100. It should be understood that, in other embodiments, the molecular detecting device 100 can also  be configured to detect the target such as structural proteins, enzymes, antigens, and immunologically active molecular genes, and is not limited here.
Referring to FIG. 1, the molecular detecting device 100 includes a mounting substrate 110, a detection module 120, a loading module 130, a centrifugal module 140, a heating module 160, and a control module 170. The detection module 120, the loading module 130. The heating module 160 and the control module 170 are mounted to the mounting substrate 110, and the centrifugal module 140 is mounted to the loading module 130. Under control of the control module 170, the loading module 130 is configured to drive the centrifugal module 140 to reciprocate in a direction, so as to be positioned at different locations of the mounting substrate 110. The heating module 160 is configured to heat a specific communication channel 215 of the nucleic acid detecting chip 200, so as to communicate the chambers 211 by the heated communication channel 215. The centrifugal module 140 is configured to drive the nucleic acid detecting chip 200 to rotate after the chamber 211 is communicated with the communication channel 215, so as to drive the reagent and the sample in the nucleic acid detecting chip 200 to flow and mix, and the detection module 120 is configured to detect the target in the nucleic acid detecting chip 200.
In this way, the detection module 120, the centrifugal module 140 and the heating module 160 are integrated in one molecular detecting device 100. The heating module 160 can heat the nucleic acid detecting chip 200 to control a communication state of each chamber 211 in the nucleic acid detection chip 200, and the molecular detecting device 100 can automatically process and detect the target in the nucleic acid detecting chip 200, which significantly simplifies the whole process of detecting the target. Meanwhile, since the molecular detecting device 100 can automatically process and detect in a sealed environment, a risk of infection of the operator can be effectively avoided. Specifically, the molecular detecting device 100 can extract, amplify, and detect nucleic acids in the sample contained in the nucleic acid detecting chip 200.
Specifically, the mounting substrate 110 is shaped as a substantially rectangular plate. A length direction of the mounting substrate 110 is defined as a first direction (i.e., X direction in FIG. 1) , a width direction of the mounting substrate 110 is defined as a second direction (i.e., Y direction in FIG. 1) , a thickness direction of the mounting substrate 110 is defined as a third direction (i.e., Z direction in FIG. 1) . The first direction, the second direction, and the third direction intersect each other. As an embodiment, the first direction, the second direction and the third direction are perpendicular to each other.
Also referring to FIG. 1, the detection module 120 is mounted to a side of the mounting  substrate 110 in the first direction, and the detection module 120 can be configured to amplify and detect the target in the sample contained in the nucleic acid detecting chip 200. The control module 170 is located at a side of the detection module 120 in the second direction. The control module 170 is electrically connected to the detection module 120, the loading module 130 , the centrifugal module 140 and the heating module 160, respectively, so as to control each module. It should be understood that an internal structure of the detection module 120 is limited herein, and the detection modules 120 with different structures and functions can be selected as required.
Referring to FIG. 1 and FIG. 2, the loading module 130 is mounted to the mounting substrate 110 and is located on the side of the detection module 120 in the first direction. The loading module 130 is configured to mount the centrifugal module 140 and drive the centrifugal module 140 to reciprocate in the first direction, so that the centrifugal module 140 can be positioned at different locations to achieve different experimental operations.
Specifically, the loading module 130 includes two guide rails 133, two sliding blocks 134, two loading bases 135, a screw motor 131, and a screw connecting block 132. The two guide rails 133 are disposed on the mounting substrate 110 at intervals in the second direction, and each guide rail 133 extends longitudinally in the first direction. The sliding block 134 is mounted to each guide rail 133, and the sliding block 134 is capable of reciprocating in the first direction along the guide rail 133. Each loading base 135 is correspondingly is connected to one sliding block 134, and thus the loading base 135 can be reciprocated in the first direction along the guide rail 133 through the sliding block 134. The screw motor 131 is mounted to the mounting substrate 110 and is located on the side of the detection module 120 in the second direction. The screw connecting block 132 is engaged with a screw rod of the screw motor 131, and the screw motor 131 is capable of driving the screw connecting block 132 to reciprocate in the first direction. Thus, the centrifugal module 140 is mounted to the two loading bases 135, and the screw connecting block 132 is connected to the centrifugal module 140. Therefore, the screw motor 131 can drive the centrifugal module 140 and the loading base 135 to reciprocate in the first direction along the guide rail 133 through the screw connecting block 132.
Further, in some embodiments, in order to identify the position of the centrifugal module 140 in the first direction, the centrifugal module 140 includes a loading light shielding sheet 144, and the loading module 130 includes two loading photoelectric switches 137 configured to identify a position of the loading light shielding sheet 144. The two loading photoelectric switches 137 are mounted to the mounting substrate 110 and are respectively located on a side of the two guide rails 133 in the second direction, and the two loading photoelectric switches 137 are staggeredly arranged in the first direction  (that is, the distances between the two loading photoelectric switches 137 and the detection module 120 are different) . The two loading light shielding sheets 144 are respectively located at two opposite ends of the centrifugal module 140 in the second direction, and each loading light shielding sheet 144 is provided corresponding to one loading photoelectric switch 137.
When the loading photoelectric switch 137 away from the detection module 120 senses the loading light shielding sheet 144, the control module 170 determines that the centrifugal module 140 located on the loading module 130 is at a bin out position away from the detection module 120. At this time, the operator can place the nucleic acid detecting chip 200 in the centrifugal module 140 or take out the nucleic acid detecting chip 200 from the centrifugal module 140. When the loading photoelectric switch 137 adjacent to the detection module 120 senses the loading light shielding sheet 144, the control module 170 determines that the centrifugal module 140 located on the loading module 130 is at an origin position to prepare for subsequent operations.
As an embodiment, the loading module 130 further includes a guiding plate 138. The guiding plate 138 is located at an end of the loading module 130 adjacent to the detection module 120. The guiding plate 138 is provided with a guiding groove extending along the first direction. When the nucleic acid detecting chip 200 on the centrifugal module 140 is inserted to the detection module 120, the guiding groove can play a guiding role to ensure that the nucleic acid detecting chip 200 moves in the first direction without deviation, so that the nucleic acid detecting chip 200 can be accurately connected to the detection module 120.
Referring to FIGS. 1, 3 and 4, the centrifugal module 140 includes a centrifugal fixing base 143, a centrifugal motor 145, and a centrifugal bracket 141. Both ends of the centrifugal fixing base 143 in the second direction are respectively fixed to the two loading bases 135, an end of the centrifugal fixing base 143 in the second direction is fixed to the screw connecting block 132 of the loading module 130, and the two loading light shielding sheets 144 are respectively mounted to a side of the centrifugal fixing base 143 adjacent to the mounting substrate 110. The centrifugal motor 145 is mounted to the side of the centrifugal fixing base 143 adjacent to the mounting substrate 110. An output shaft of the centrifugal motor 145 extends through the centrifugal fixing base 143 in the direction away from the mounting substrate 110. The centrifugal bracket 141 is spaced apart from the side of the centrifugal fixing base 143 away from the mounting substrate 110 and is connected to the output shaft of the centrifugal motor 145. The nucleic acid detecting chip 200 may be mounted in the centrifugal bracket 141. In this way, the centrifugal bracket 141 can be driven by the centrifugal motor 145 to rotate around an axis extending in the third direction, thereby driving the nucleic acid detecting chip 200 to rotate in  a centrifugal manner. In one embodiment, the centrifugal bracket 141 can be driven by the centrifugal motor 145 to rotate forward or reverse around the axis to sufficiently mix the sample and reagent in the nucleic acid detecting chip 200.
Specifically, the centrifugal bracket 141 includes a centrifugal mounting plate 1412, two groups of first limiting assembly, and a second limiting assembly 1416. The centrifugal mounting plate 1412 is fixed to the output shaft of the centrifugal motor 145 to mount the nucleic acid detecting chip 200. The two groups of the first limiting assembly and the second limiting assembly 1416 are mounted to a side of the centrifugal mounting plate 1412 to restrict a movement of the nucleic acid detecting chip 200 in various directions.
The centrifugal mounting plate 1412 is shaped as a rectangular plate, a middle portion of the centrifugal mounting plate 1412 is fixed to the output shaft of the centrifugal motor 145. The end of the centrifugal mounting plate 1412 in the first direction is provided with a receiving groove 14121 configured to receive the nucleic acid detecting chip 200. The receiving groove 14121 extends along the first direction and penetrates the end of the centrifugal mounting plate 1412. The receiving groove 14121 has a bottom wall perpendicular to the third direction and side walls located on two opposite sides of the bottom wall in the second direction. In this way, the nucleic acid detecting chip 200 can be inserted to the receiving groove 14121 along the first direction, and the end of the nucleic acid detecting chip 200 inserted to the receiving groove 14121 is located outside the receiving groove 14121.
In an embodiment, at least one side of the bottom wall of the receiving groove 14121 in the second direction is provided with a guiding boss 14123 extending along the first direction, and the nucleic acid detecting chip 200 is provided with a fool-proof groove corresponding to the guiding boss 14123, so that the nucleic acid detecting chip 200 can be prevented from being inserted to the receiving groove 14121 in a wrong direction.
Two groups of first limiting assemblies are mounted to the side of the centrifugal mounting plate 1412 away from the mounting substrate 110 and are spaced on two opposite sides of the receiving groove 14121 along the second direction. Each group of first limiting assemblies includes at least two first limiting members 1414. The first limiting members 1414 in each group of first limiting assemblies are spaced in the first direction. An end of each first limiting member 1414 is located on the centrifugal mounting plate 1412 and is located on the receiving groove 14121, the other end of the each first limiting member 1414 extends to the side of the receiving groove 14121 away from the bottom wall, so as to form a fixing position together with the receiving groove 14121 to fix the nucleic acid detecting chip 200, so that the movement of the nucleic acid detecting chip 200 can be restricted in the second direction  and the third direction.
The second limiting assembly 1416 includes a rotating shaft 14161, a second limiting member 14163, and a restoring member (not shown) . The rotating shaft 14161 is mounted to the centrifugal mounting plate 1412 and extends in the second direction. The second limiting member 14163 is sleeved on the rotating shaft 14161 to be rotatably mounted to the centrifugal mounting plate 1412. The second limiting member 14163 can be switched between a locked state and an unlocked state under an external force.
As shown in FIG. 5, when the second limiting member 14163 is switched to the locked state, an end of the second limiting member 14163 rotates to the fixing position and engaged with the nucleic acid detecting chip 200, thereby restricting the nucleic acid detecting chip 200 from moving in the first direction. As shown in FIG. 6, when the second limiting member 14163 is switched to the unlocked state, the end of the second limiting member 14163 rotates out of the fixing position, so that the operator can easily insert the nucleic acid detecting chip 200 into the receiving groove 14121 or take the nucleic acid detecting chip 200 out of the receiving groove 14121.
As an embodiment, the end of the second limiting member 14163 is provided with a limiting buckle 14163a, and the nucleic acid detecting chip 200 is provided with a groove matched with the limiting buckle 14163a. When the second limiting member 14163 is switched to the locked state, the end of the second limiting member 14163 provided with the limiting buckle 14163a rotates to the fixing position, and the limiting buckle 14163a can be inserted into the groove on the nucleic acid detecting chip 200 to be latched to the nucleic acid detecting chip 200.
In this way, the second limiting member 14163 is engaged with the nucleic acid detecting chip 200, so that when the centrifugal bracket 141 moves in the first direction, the nucleic acid detecting chip 200 can be taken out from the detection module 120, thus preventing the phenomenon that the nucleic acid detecting chip 200 cannot be taken out smoothly from the detection module 120 due to thermal expansion. At the same time, it can also be avoided that when the nucleic acid detecting chip 200 is stuck in the detection module 120, the centrifugal bracket 141 still moves in the first direction, which causes the nucleic acid detecting chip 200 to be separated from the centrifugal bracket 141.
The restoring member is provided between the centrifugal mounting plate 1412 and the other end of the second limiting member 14163 away from the fixing position, and the restoring member is configured to provide a restoring force to switch the second limiting member 14163 from the unlocked state to the locked state. In one embodiment, the restoring member is a compression spring.
In some embodiments, the second limiting assembly 1416 further includes two positioning  members 14165 respectively embedded in the two side walls of the receiving groove 14121 in the second direction. The positioning members 14165 is capable of telescoping in the second direction to extend into or out of a recessed position of a side surface of the nucleic acid detecting chip 200, so as to further limit the nucleic acid detecting chip 200 in the first direction. Specifically, in one embodiment, the positioning member 14165 is a positioning ball. A spring is fixed between the positioning ball and the side wall, and the positioning ball is capable of telescoping in the second direction under an action of the spring.
As shown in FIG. 1, FIG. 5 and FIG. 6, as an embodiment, the molecular detecting device 100 further includes a pressing member 150. The pressing member 150 is located the side of the centrifugal module 140 away from the mounting substrate 110. When the end of the second limiting member 14163 away from the fixing position is moved below the pressing member 150, the pressing member 150 can exerting pressure on the other end of the second limiting member 14163 away from the fixing position, and the second limiting member 14163 rotates to switch from the locked state to the unlocked state, so that the operator can easily remove or insert the nucleic acid detecting chip 200. Specifically, in one embodiment, the pressing member 150 includes a rotatable bearing, a central axis of the bearing extends along the second direction, and an outer circumferential surface of the bearing can press the end of the second limiting member 14163 away from the fixing position to drive the second limiting member 14163 to rotate.
Referring to FIG. 3 and FIG. 4 again, in order to control a rotation number of the centrifugal bracket 141 relative to the centrifugal fixing base 143, the centrifugal bracket 141 further includes a centrifugal light shielding sheet 1418. One end of the centrifugal light shielding sheet 1418 is mounted to the centrifugal mounting plate 1412, and the other end of the centrifugal light shielding sheet 1418 protrudes out of the centrifugal mounting plate 1412 along the third direction. The centrifugal module 140 further includes two centrifugal photoelectric switches 147, which are mounted to the centrifugal fixing base 143 and are respectively located on two opposite sides of the centrifugal fixing base 143 in the second direction. The centrifugal photoelectric switches 147 are configured to identify a position of the centrifugal light shielding sheet 1418.
In this way, when one of the centrifugal photoelectric switches 147 senses the centrifugal light shielding sheet 1418, the control module 170 determines that the end of the nucleic acid detecting chip 200 inserted in the centrifugal bracket 141 protruding out of the receiving groove 14121 is away from the detection module 120. When the other centrifugal photoelectric switch 147 senses the centrifugal light shielding sheet 1418, the control module 170 determines that an end to be detected of the nucleic  acid detecting chip 200 inserted on the centrifugal bracket 141 protruding out of the receiving groove 14121 faces the detection module 120. At this time, the loading module 130 can drive the centrifugal module 140 to move toward the detection module 120 to insert the nucleic acid detecting chip 200 to the detection module 120.
Referring to FIGS. 1 and 7, the heating module 160 is mounted to the mounting substrate 110 and is located on a side of the centrifugal module 140 in the third direction. The heating module 160 includes a heating mounting base 161, two heating driving members 163, and two heating assemblies 165. The heating mounting base 161 is mounted to the mounting substrate 110 and is located on the side of the centrifugal module 140 in the second direction and extends along the first direction. The pressing member 150 is mounted to the end of the heating mounting base 161 away from the detection module 120 in the first direction. The two heating driving members 163 are mounted to the heating mounting base 161 and spaced apart along the first direction. Each heating assembly 165 is mounted to an output end of one heating driving member 163, and the two heating modules 165 are staggeredly arranged in the second direction. Each heating assembly 165 can be driven by the heating driving member 163 to rotate around an axis extending in the second direction to align with the channel blocking member on the nucleic acid detecting chip 200, and then the heating assembly 165 heats the channel blocking member to melt the channel blocking member. Since the two heating assemblies 165 are staggeredly arranged in the second direction, the two heating assemblies 165 can be used to heat the channel blocking members at different positions.
In some embodiments, the nucleic acid detecting chip 200 has two groups of chambers 211 symmetrically arranged about a rotation center thereof. One group of samples and reagent can be placed in each group of chambers 211, and the two heating assemblies 165 can simultaneously heat the two groups of chambers 211 symmetrically arranged about the rotation center thereof, thereby simultaneously detecting two groups of samples and effectively improving a detection efficiency.
Further, in order to control a rotation angle of the heating assembly 165, the heating module 160 further includes a heating light shielding sheet 167 and a heating photoelectric switch 169. Each heating assembly 165 is mounted with one heating light shielding sheet 167. The heating light shielding sheet 167 is capable of rotating with the heating assembly 165. The heating photoelectric switch 169 is mounted to the heating mounting base 161 to identify a position of the heating light shielding sheet 167. When the heating photoelectric switch 169 senses the heating light shielding sheet 167, the heating photoelectric switch 169 determines that the heating assembly 165 rotates to a preset angle.
As shown in FIGS. 8 to 10, in some embodiments, the chip body 210 of the nucleic acid  detecting chip 200 is further provided with a control cavity 214. One of the chambers 211 is in communication with the detecting cavity 212 through the first flow channel 213, and the control cavity 214 is in communication with the first flow channel 213. A flow channel blocking member is provided in the control cavity 214. When a temperature of the flow channel blocking member is greater than a first preset temperature or exceeds a first temperature range, the flow channel blocking member is converted from a solid state to a fluid state, otherwise, the flow channel blocking member is converted from the fluid state to the solid state. In this way, when the flow channel blocking member in the control cavity 214 is converted to the fluid state, the flow channel blocking member can flow to the first flow channel 213 under a centrifugal action, and the flow channel blocking member can be converted to the solid state in the first flow channel 213 to seal the first flow channel 213.
In this way, when the nucleic acid detecting chip 200 is in actual use, firstly, each reagent are preloaded in corresponding chambers 211, the flow channel blocking member in the solid state is provided in the control cavity 214, and the sample to be detected is placed in the corresponding chamber 211. Then, the chip body 210 is placed in the centrifugal module 140 of the molecular detecting device 100. The heating module 160 can heat the channel blocking member in the communication channel 215 of the nucleic acid detecting chip 200 to convert the channel blocking member to the fluid state and enable the two adjacent chambers 211 to be communicated with each other. Under the centrifugal action of the centrifugal module 140, the reagents and samples in the connected chambers 211 are mixed and reacted to complete the nucleic acid extraction and detection pretreatment and obtain nucleic acid detection solution. Then, under an action of centrifugal force, the nucleic acid detection solution continues to flow to the detecting cavity 212 through the first flow channel 213. Then, the heating module 160 heats the flow channel blocking member in the control cavity 214 so that the temperature of the flow channel blocking member is greater than the first preset temperature, thereby converting the flow channel blocking member from the solid state to the liquid state, and then the flow channel blocking member flows to the first flow channel 213 under the action of centrifugal force. After the heating module 160 stops heating, the temperature of the flow channel blocking member in the first flow channel 213 decreases to be less than the first preset temperature, and the flow channel blocking member is then converted to the solid state to seal the first flow channel 213, thereby preventing the nucleic acid detection liquid in the detecting cavity 212 from flowing back to the chamber 211 through the first flow channel 213. Finally, the detection module 120 performs nucleic acid detection on the nucleic acid detection liquid in the detecting cavity 212. It should be understood that the first preset temperature is determined according to a phase transition temperature of the flow channel blocking  member, which is not limited here.
By presetting the flow channel blocking member in the control cavity 214 of the chip body 210, the flow channel blocking member flows to the first flow channel 213 under the action of centrifugal force when the flow channel blocking member is converted to the fluid state, and the flow channel blocking member reaching the first flow channel 213 is cooled and converted to the solid state to seal the first flow channel 213, which limits a backflow of the nucleic acid detection solution in the detecting cavity 212, and avoids a need to integrate a one-way valve as in the prior art, so that the manufacturing difficulty and the manufacturing cost are reduced and the volume is small enough to carry. In addition, nucleic acid extraction, detection pretreatment and nucleic acid detection are performed in a sealed space of the nucleic acid detecting chip 200, which avoids human and environmental pollution, helps to ensure detection accuracy, and reduces a requirement for professionals and a dependence on standard laboratory.
It should be noted that the flow channel blocking member and various reagents may be provided in the control cavity 214 and the chamber 211 respectively when the nucleic acid detecting chip 200 is manufactured. The flow channel blocking member and various reagents may also be added by the user during use, which is not limited herein. The reagent may be a capsule particle or in a lyophilized state, or may be a liquid, which is not limited herein. It should also be noted that the flow channel blocking member needs to be made of inert material to ensure that the flow channel blocking member does not react with samples and various reagent, so as to avoid adverse effects on nucleic acid extraction, detection pretreatment and nucleic acid detection. Optionally, the flow channel blocking member can be made of paraffin.
Specifically, in the embodiment, the plurality of chambers 211 and the detecting cavitys 212 are alternatively arranged and spaced apart along a predetermined direction. In this way, when the chip body 210 is loaded on the centrifugal module 140 for centrifugal movement, a rotation center is adjacent to the end of the chip body 210 in the predetermined direction, so that the sample can reach each chamber 211 in sequence along the predetermined direction and finally reach the detecting cavity 212 by controlling a rotation speed. Optionally, the predetermined direction may be a longitudinal direction of the chip body 210.
Specifically, in the embodiment shown in the drawings, three chambers 211 are provided, which are the first chamber 211a, the second chamber 211b, and the third chamber 211c, respectively. The first chamber 211a is configured to accommodate the nucleic acid extraction reagent and samples, and the second chamber 211b and the third chamber 211c are configured to accommodate the nucleic acid  reaction reagent. The first chamber 211a, the second chamber 211b, the third chamber 211c, and the detecting cavity 212 are alternatively arranged and spaced apart along the predetermined direction. In addition, the first chamber 211a is in communication with the second chamber 211b through one communication channel 215, the second chamber 211b is in communication with the third chamber 211c through one communication channel 215, the third chamber 211c is in communication with the detecting cavity 212 through the first flow channel 213, and the control cavity 214 is in communication with the first flow channel 213 through the third chamber 211c. That is, at an initial stage, the the channel blocking member can block the transfer of the reagent between the first chamber 211a and the second chamber 211b, and the transfer of the reagent between the second chamber 211b and the third chamber 211c, so as to avoid the improper mixing of the reagent in each chamber 211 before use, which may result in poor use effect or unusable use.
It should be understood that the nucleic acid extraction reagent may be a lysis reagent, etc., and the nucleic acid reaction reagent may be a MIX reagent or a TAQ (Thermus Aquaticus) enzyme. The MIX reagent may include PCR buffer and/or biological enzymes, etc., which are not limited here.
In this way, the vibration is generated by the centrifugal module 140, so that the sample and the nucleic acid extraction reagent are mixed in the first chamber 211a and fully reacted. Then, the heating module 160 heats the channel blocking member in the communication channel 215 between the first chamber 211a and the second chamber 211b to convert the channel blocking member to the fluid state. Under the centrifugal action of the centrifugal module 140, the mixed liquid in the first chamber 211a smoothly enters the second chamber 211b, and is mixed with the nucleic acid reaction reagent in the second chamber 211b to fully react. Then, the heating module 160 heats the channel blocking member in the communication channel 215 between the second chamber 211b and the third chamber 211c to convert the channel blocking member to the fluid state. Under the centrifugal action of the centrifugal module 140, the mixed liquid in the second chamber 211b smoothly enters the third chamber 211c, and is mixed with the nucleic acid reaction reagent in the third chamber 211c. Then, under the centrifugal action of the centrifugal module 140, the mixed liquid in the third chamber 211c enters the detecting cavity 212 through the first flow channel 213. Then, the heating module 160 heats the flow channel blocking member in the control cavity 214 so that the temperature of the flow channel blocking member is greater than the first preset temperature or temperature range, and then the flow channel blocking member is converted to the fluid state. Then, under the centrifugal action of the centrifugal module 140, the flow channel blocking member in the control cavity 214 enters the first flow channel 213 through the third chamber 211c. The temperature of the flow channel blocking member entering the first flow  channel 213 decreases to be less than the first preset temperature or temperature range, so that the flow channel blocking member in the first flow channel 213 is converted to the solid state, thereby blocking the first flow channel 213, and preventing the nucleic acid detection solution in the detecting cavity 212 from flowing back to the third chamber 211c through the first flow channel 213 during subsequent transfer or the nucleic acid detection. Finally, the chip body 210 is inserted into the detection module 120 for the nucleic acid detection.
In the illustrated embodiment, the chip body 210 includes a first surface A1 and a second surface A2 opposite to the first surface A1. The first surface A1 is provided with a plurality of first adding holes 2111 in communication with the plurality of chambers 211 in one-to-one correspondence. The nucleic acid detecting chip 200 further includes a first cover sheet 220 covering the first surface A1, so that each first adding hole 2111 is sealed by the first cover sheet 220. In this way, various reagent can be added to the chambers 211 through the first adding holes 2111. Then, the first cover sheet 220 is covering the first surface A1 to seal the first adding holes 2111. Optionally, the first cover sheet 220 may be may be a film material, such as a sealing film. The first cover sheet 220 may be connected to the first surface A1 by means of hot-melt adhesive packaging, adhesive packaging, etc., so as to seal the first adding holes 2111.
Further, the nucleic acid detecting chip 200 further includes a plunger. The plunger extends through the first cover sheet 220 and is blocked in one first adding hole 2111 corresponding to the chamber 211 in which the nucleic acid extraction reagent is preloaded. In this way, when it needs to be used, the plunger can be pulled out, and the sample can be added to the chamber 211 preloaded with the nucleic acid reaction reagent through the first adding hole 2111, and then the plunger can be blocked in the first adding hole 2111. Specifically, in the embodiment shown in the drawings, the plunger extends through the first cover sheet 220 and blocks the first adding hole 2111 (i.e., the first adding hole 2111 at the far right end in FIG. 9) in communication with the first chamber 211a.
Specifically, in the embodiment, the first surface A1 may also be provided with a second adding hole 2142 in communication with the control cavity 214 and a plurality of third adding holes 2151 in communication with the plurality of communication channels 215 in one-to-one correspondence. In this way, the flow channel blocking member can be added to the control cavity 214 through the second adding hole 2142, and the channel blocking member can be added to the communication channels 215 through the third adding holes 2151 to block the communication channels 215. After the flow channel blocking member and the channel blocking member are added, the first cover sheet 220 covers the first surface A1.
Specifically, in the embodiment, each chamber 211, the control cavity 214, the first flow channel 213, and each communication channel 215 are formed by the second surface A2 recessed inward. That is, each chamber 211, the control cavity 214, the first flow channel 213 and each communication channels 215 have openings on the second surface A2. The nucleic acid detecting chip 200 further includes a second cover sheet 230 covering the second surface A2, and the second cover sheet 230 is transparent. In this way, each chamber 211, the openings of the control cavity 214, the first flow channel 213 and each communication channel 215 on the second surface A2 are sealed by the second cover sheet 230. In addition, a flow direction of the liquid in each chamber 211, the control cavity 214, the first flow channel 213 and each communication channel 215 can be observed through the second cover sheet 230, so as to adjust the rotational speed and/or rotation direction of the centrifugal movement in time. Optionally, the second cover sheet may be a film material, such as a sealing film. The second cover sheet may be connected to the second surface A2 by means of hot-melt adhesive packaging, adhesive packaging, etc.
Further, the chip body 210 is further provided with a second flow channel 2141. One end of the second flow channel 2141 is in communication with the control cavity 214, the other end of the second flow channel 2141 is in communication with the first flow channel 213, or the chamber 211 in communication with the first flow channel 213. Optionally, the second flow channel 2141 is formed by the second surface A2 recessed inward, so that the flow of the flow channel blocking member can be observed through the second cover sheet.
Further, the detecting cavity 212 penetrates the first surface A1 and the second surface A2 of the chip body 210. An area of the first cover sheet 220 corresponding to the detecting cavity 212 is transparent. In this way, the detection module 120 can perform PCR fluorescence detection on the nucleic acid detection solution in the detecting cavity 212 through the region of the first cover sheet 220 corresponding to the detecting cavity 212 and the second cover sheet 230.
Further, the first surface A1 is divided to a first area and a second area. Each of the chambers 211, the control cavity 214, the communication channels 215, and the second flow channel 2141 are located in the first area, the detecting cavity 212 is located in the second area, and the first flow channel 213 extends from the first area to the second area. The first cover sheet 220 includes a first sub cover sheet 221 and a second sub cover sheet 222 provided separately. The first sub cover sheet 221 is configured to cover the first area and the second sub cover sheet 222 is configured to cover the second area. It should be understood that the first sub cover sheet 221 is provided with a through hole for the plunger to extend through.
Referring to FIG. 11, a method of processing and detecting molecular using the molecular detecting device 100 is provided, which can process and detect the samples in the nucleic acid detecting chip 200. Specifically, the method includes the following steps.
S1, each chamber 211 is preloaded with the nucleic acid extraction reagent and the nucleic acid reaction reagent, and the samples is added to each chamber 211 preloaded with the nucleic acid extraction reagent.
Specifically, the plunger in the first adding hole 2111 in communication with the first chamber 211a is pulled out, and then the sample is added to the first chamber 211a containing the nucleic acid extraction reagent from the first adding hole 2111. Then the plunger is again blocked in the first adding hole 2111.
Specifically, in the embodiment, the step S1 includes the following steps.
S11, various nucleic acid extraction reagent and nucleic acid reaction reagent are added to the chambers 211 through the first adding holes 2111, the flow channel blocking members are added to the control cavities 214 through the second adding holes 2142, and the channel blocking members are added to the communication channels 215 through the third adding holes 2151.
S12, the first sub cover sheet 221 is covering the first area of the first surface A1 to seal each of the first adding holes 2111, the second adding holes 2142 and the third adding holes 2151, and the plunger is blocked in one of the first adding holes 2111 in communication with the chamber 211 in which the nucleic acid extraction reagent is preset.
S13, in use, the plunger is pulled out, and the sample is added to the chamber 211 in which the nucleic acid extraction reagent is provided through the first adding hole 2111.
S14, the plunger is again blocked in the first adding hole 2111 in communication with the chamber 211 in which the nucleic acid extraction reagent is preset.
After the step S1, step S2 is performed. S2, the centrifugal module 140 is driven to move in the first direction to the bin out position to load the nucleic acid detecting chip 200 to be detected.
Specifically, the screw motor 131 of the loading module 130 drives the centrifugal module 140 to move in the first direction away from the detection module 120 along the guide rail 133. When the loading photoelectric switch 137 far away from the detection module 120 senses the loading light shielding sheet 144, the control module 170 determines that the centrifugal module 140 on the loading module 130 is in the bin out position and controls the centrifugal module 140 to stop moving. At this time, the second limiting member 14163 is located below the pressing member 150, and the second limiting member 14163 is switched from the locked state to the unlocked state under the pressure of the  pressing member 150. The operator can insert the nucleic acid detecting chip 200 to the receiving groove 14121 of the centrifugal module 140 along the first direction.
S3, the centrifugal module 140 is driven to move to the origin position along the first direction.
Specifically, the screw motor 131 of the loading module 130 drives the centrifugal module 140 to move toward the detection module 120 along the guide rail 133 in the first direction. When the loading photoelectric switch 137 adjacent to the detection module 120 senses the loading light shielding sheet 144, it is determined that the centrifugal module 140 on the loading module 130 is at the origin position and stops driving the centrifugal module 140 to move. At this time, the pressing member 150 is disengaged from the second limiting member 14163, and the second limiting member 14163 is restored to the locked state under the action of the restoring member to hold the nucleic acid detecting chip 200.
S4, the centrifugal bracket 141 is driven to rotate to drive the nucleic acid detecting chip 200 to rotate centrifugally, so as to drive the nucleic acid extraction reagent and the sample in the nucleic acid detecting chip 200 to flow and mix evenly.
Specifically, under control of the control module 170, the centrifugal motor 145 drives the centrifugal bracket 141 to rotate to drive the nucleic acid detecting chip 200 to rotate centrifugally, so that the sample and the nucleic acid extraction reagent in the first chamber 211a are mixed. As an embodiment, the centrifugal motor 145 drives the centrifugal bracket 141 to rotate forward or reverse to mix the nucleic acid extraction reagent with the sample.
S5, the centrifugal module 140 is driven to move to the mixing position along the first direction, one of the heating assemblies 165 is driven to rotate to the heating position, and the communication channel 215 of the nucleic acid detecting chip 200 is heated specifically to enable the heated communication channel 215 to communicate with the chamber 211.
Specifically, the screw motor 131 of the loading module 130 drives the centrifugal module 140 to move toward the detection module 120 along the guide rail 133 in the first direction. When the control module 170 determines that the centrifugal module 140 moves to the mixing position according to the rotation angle of the screw motor 131, one of the heating assemblies 165 is driven by the heating driving member 163 to rotate to a heating position. The channel blocking member in one of the flow channels of the nucleic acid detecting chip 200 is heated and melted to communicate with the corresponding chamber 211.
S6, the centrifugal bracket 141 is driven to rotate to drive the nucleic acid detecting chip  200 to rotate centrifugally, so as to drive the reagent and sample in the nucleic acid detecting chip 200 to flow and mix.
Specifically, after the channel blocking member is heated and melted, under control of the control module 170, the centrifugal motor 145 drives the centrifugal bracket 141 to rotate to drive the nucleic acid detecting chip 200 to rotate centrifugally, so that the sample and the nucleic acid reaction reagent in the communicated chamber 211 are mixed. As an embodiment, the centrifugal motor 145 drives the centrifugal bracket 141 to rotate forward or reverse to mix the nucleic acid reaction reagent with the sample.
The steps S5 to S6 are repeated until the channel blocking members in all the communication channels 215 in the nucleic acid detecting chip 200 are converted to the fluid state to complete the mixing of the reagent and the sample. S7, the centrifugal bracket 141 is driven to rotate until the nucleic acid detection solution enters the detecting cavity 212 through the first flow channel 213.
Specifically, the steps S5-S6 are performed cyclically, and a number of cycles can be set as required. During the cycle, the centrifugal module 140 moves to different mixing positions along the first direction. Each time the centrifugal module 140 moves to the mixing position, the heating module 165 can specifically heat different communication channels 215 in the nucleic acid detecting chip 200 to be in communication with different chambers 211. Then the centrifugal bracket 141 is driven by the centrifugal motor 145 to enable the reagent and the sample in the conduction chamber 211 to be flow and mix. After the last cycle, the reagent and the sample are introduced to the detecting cavity 212 under the centrifugal action of the centrifugal bracket 141.
S8, the centrifugal bracket 141 is driven to rotate until the end to be detected of the nucleic acid detecting chip 200 faces the detection module 120.
Specifically, after the reagent and the sample are introduced to the detecting cavity 212, under control of the control module 170 in cooperation with the centrifugal photoelectric switch 147, the centrifugal motor 145 drives the centrifugal bracket 141 to rotate until the control module 170 determines that the end to be detected of the nucleic acid detecting chip 200 inserted on the centrifugal bracket 141 protruding out of the receiving groove 14121 faces the detection module 120.
S9, the centrifugal module 140 is driven to move to a detection position in the first direction, and the nucleic acid detecting chip 200 is inserted to the detection module 120 for detection.
Specifically, the screw motor 131 of the loading module 130 drives the centrifugal module 140 to move toward the detection module 120 along the guide rail 133 in the first direction. When the  control module 170 determines that the centrifugal module 140 moves to the detection position according to the rotation angle of the screw motor 131, the nucleic acid detecting chip 200 is inserted to the detection module 120 in the first direction for amplification and detection.
S10, after the detection is completed, the centrifugal module 140 is driven to move to the bin out position along the first direction.
Specifically, after the detection is completed, the screw motor 131 of the loading module 130 drives the centrifugal module 140 to move away from the detection module 120 along the guide rail 133. When the loading photoelectric switch 137 far away from the detection module 120 senses the loading light shielding sheet 144, the control module 170 determines that the centrifugal module 140 on the loading module 130 is in the bin out position and stops driving the centrifugal module 140 to move. At this time, the second limiting member 14163 is switched from the locked state to the unlocked state under the pressure of the pressing member 150, and the operator can take out the nucleic acid detecting chip 200 from the receiving groove 14121.
In some embodiments, the step S7 further comprises the following steps.
S71, one of the heating assemblies 165 is driven to rotate to the heating position to heat the flow channel blocking member in the control cavity 214 to convert flow channel blocking member to the fluid state.
S72: the centrifugal bracket 141 is driven to rotate to drive the nucleic acid detecting chip 200 to rotate centrifugally, so that the flow channel blocking member in the fluid state flows to the first flow channel 213.
S73: the flow channel blocking member in the first flow channel 213 is cooled and converted to the solid state to seal the first flow channel 213, thereby preventing the nucleic acid detection solution in the detecting cavity 212 from flowing back to the chamber 211.
Optionally, the flow channel blocking member in the first flow channel 213 may be cooled to the temperature lower than the first preset temperature or temperature range by cooling measures or natural cooling, so that the flow channel blocking member in the first flow channel 213 is converted to the solid state, thereby blocking the first flow channel 213.
In the molecular detecting device 100 described above, the nucleic acid detecting chip 200 can be inserted to the centrifugal bracket 141. Under control of the control module 170, the loading module 130 drives the centrifugal module 140 to move so that the nucleic acid detecting chip 200 is located at different positions in the first direction. The heating module 160 can heat different communication channels 215 of the nucleic acid detecting chip 200 as required to enable the heated  communication channel 215 to communicate with the chamber 211. After the chamber 211 is communicated with the communication channel 215, the centrifugal bracket 141 can be driven by the centrifugal motor 145 to rotate to realize the centrifugal rotation of the nucleic acid detecting chip 200 in different directions, and then the reagent in the communicated chamber 211 of the nucleic acid detecting chip 200 are mixed in a preset order. After the reagent and the sample are introduced to the detecting cavity 212 under the centrifugal action of the centrifugal bracket 141, the target in the sample is detected by the detection module 120. Compared with the prior art in which the reagent are guided between the chambers 211 through changes in air pressure, the described molecular detecting device 100 can prevent the reagent between the chambers 211 of the nucleic acid detecting chip 200 from generating cross reactions, thereby ensuring the detection sensitivity. Moreover, the heating module 160 can heat different areas of the nucleic acid detecting chip 200 in the centrifugal module 140 to simultaneously detect two groups of samples. The whole device is simple in structure and convenient in operation, which realizes efficient processing and detection of nucleic acid and other targets, and significantly reduces the infection risk of the operator.
The foregoing descriptions are merely specific embodiments of the present invention, but are not intended to limit the protection scope of the present invention. Any variation or replacement readily figured out by a person skilled in the art within the technical scope disclosed in the present invention shall all fall within the protection scope of the present invention.
The above-mentioned embodiments do not constitute a limitation on the protection scope of the technical solution. Any modifications, equivalent replacements and improvements made within the spirit and principles of the above-mentioned embodiments shall be included within the protection scope of this technical solution.

Claims (24)

  1. A molecular detecting device configured to process and detect a target in a nucleic acid detecting chip, wherein the nucleic acid detecting chip comprises a chip body provided with a plurality of chambers and a plurality of communication channels in communication with the plurality of chambers, a channel blocking member is provided in the communication channel and is configured to seal the communication channel, when a temperature of the channel blocking member is greater than a preset temperature, the channel blocking member is converted from a solid state to a fluid state, the molecular detecting device comprises:
    a mounting substrate;
    a detection module mounted to an end of the mounting substrate;
    a loading module mounted to the mounting substrate and located on a side of the detection module in a first direction;
    a centrifugal module mounted to the loading module, wherein the centrifugal module is driven by the loading module to reciprocate in the first direction, the centrifugal module comprises a rotatable centrifugal bracket, and the centrifugal bracket is provided with a receiving groove configured to receive the nucleic acid detecting chip;
    a heating module mounted to the mounting substrate and located on a side of the centrifugal module, the heating module comprises at least one heating assembly, each heating assembly is controllably rotated to face the receiving groove; and
    a control module mounted to the mounting substrate and electrically connected with the detection module, the loading module, the centrifugal module, and the heating module, respectively;
    wherein under control of the control module, the heating module specifically heats the communication channel of the nucleic acid detecting chip located in the receiving groove, so as to communicate the plurality of chambers by the heated communication channels; under control of the control module, the centrifugal module drives the nucleic acid detecting chip located in the receiving groove to rotate after the plurality of chambers are communicated by the communication channel, so as to mix a reagent and a sample in the nucleic acid detecting chip to obtain nucleic acid detection solution, and the detection module is configured to detect the nucleic acid detection solution.
  2. The molecular detecting device according to claim 1, wherein the loading module comprises a screw motor and a screw connecting block, the screw motor is mounted to the mounting substrate, the screw connecting block is connected to an output end of the screw motor and the centrifugal module,  respectively, and the centrifugal module is driven by the screw motor to move in the first direction through the screw connecting block.
  3. The molecular detecting device according to claim 2, wherein the loading module further comprises:
    a guide rail extending along the first direction;
    a sliding block mounted to the guide rail and capable of reciprocating along the guide rail in the first direction; and
    a loading base connected to the sliding block, wherein the centrifugal module is mounted to the loading base.
  4. The molecular detecting device according to claim 3, wherein the centrifugal module further comprises a loading light shielding sheet, the loading module further comprises a loading photoelectric switch mounted to the mounting substrate, and the loading photoelectric switch is configured to identify a position of the loading light shielding sheet in the first direction.
  5. The molecular detecting device according to claim 1, wherein an end of the loading module adjacent to the detection module is further provided with a guiding plate, the guiding plate is provided with a guiding groove extending along the first direction, the guiding groove is configured to restrict the nucleic acid detecting chip located in the receiving groove from moving along the first direction, so as to enable the nucleic acid detecting chip to be connected to the detection module.
  6. The molecular detecting device according to claim 1, wherein the heating module further comprises:
    a heating mounting base mounted to the mounting substrate; and
    at least one heating driving member mounted to the heating mounting base, wherein each heating member is correspondingly connected to an output end of the heating driving member, and the heating member is driven by the heating driving member to rotate around an axis extending in a second direction perpendicular to the first direction.
  7. The molecular detecting device according to claim 6, wherein the heating module comprises two heating assemblies, and the two heating assemblies are staggeredly arranged in the second direction.
  8. The molecular detecting device according to claim 6, wherein the heating module further comprises:
    a heating light shielding sheet, each of the heating assemblies is provided with the heating light shielding sheet; and
    a heating photoelectric switch mounted to the heating mounting base and configured to identify a position of the heating light shielding sheet.
  9. The molecular detecting device according to claim 1, wherein the centrifugal module further comprises a centrifugal fixing base and a centrifugal motor, the centrifugal fixing base is mounted to the loading module, the centrifugal motor is mounted to the centrifugal fixing base, the centrifugal bracket is connected to an output shaft of the centrifugal motor, the centrifugal bracket is driven by the centrifugal motor to rotate forward or reverse to mix the reagent and the sample in the nucleic acid detecting chip.
  10. The molecular detecting device according to claim 9, wherein the centrifugal bracket comprises:
    a centrifugal mounting plate provided with the receiving groove extending in the first direction and penetrating an end of the centrifugal mounting plate, wherein the receiving groove is formed by a bottom wall and side walls located on two opposite sides of the bottom wall in a second direction;
    a first limiting member, wherein one end of the first limiting member is located on the centrifugal mounting plate, and the other end of the first limiting member extends to the side of the receiving groove away from the bottom wall, so as to form a fixing position together with the receiving groove to fix the nucleic acid detecting chip; and
    a second limiting member rotatably mounted to the centrifugal mounting plate and capable of switching between an unlocked state and a locked state, when the second limiting member is switched to the unlocked state, an end of the second limiting member rotates out of the fixing position, when the second limiting member is switched to the locked state, the end of the second limiting member rotates to the fixing position and is latched to the nucleic acid detecting chip;
    wherein the first direction is perpendicular to the second direction.
  11. The molecular detecting device according to claim 10, wherein one end of the second limiting member is provided with a limiting buckle, when the second limiting member is switched to the locked state, the end of the second limiting member provided with the limiting buckle rotates to the fixing position, and the limiting buckle is inserted into a groove on the nucleic acid detecting chip.
  12. The molecular detecting device according to claim 10, wherein the centrifugal bracket further comprises a restoring member, the restoring member is connected between the centrifugal mounting plate and the other end of the second limiting member away from the fixing position, and the restoring member is configured to provide a force to switch the second limiting member from the unlocked state to the locked state.
  13. The molecular detecting device according to claim 10, wherein at least one side of the bottom wall in the second direction is provided with a guiding boss extending along the first direction.
  14. The molecular detecting device according to claim 10, wherein the centrifugal bracket comprises two groups of first limiting assemblies, the two groups of the first limiting assemblies are respectively located on two opposite sides of the receiving groove in the second direction, each group of the first limiting assemblies comprises at least two first limiting members, and the first limiting members in each group of the first limiting assemblies are spaced apart in the first direction.
  15. The molecular detecting device according to claim 10, wherein the centrifugal bracket further comprises a positioning member embedded in the side wall and extending into the receiving groove, and the positioning member is capable of telescoping in the second direction to extend into or out of a recessed position of a side surface of the nucleic acid detecting chip.
  16. The molecular detecting device according to claim 10, wherein the centrifugal bracket further comprises a centrifugal light shielding sheet, one end of the centrifugal light shielding sheet is mounted to the centrifugal mounting plate, and the other end of the centrifugal light shielding sheet protrudes out of the centrifugal mounting plate.
  17. A nucleic acid detecting chip comprising a chip body, the chip body is provided with a plurality of chambers and a plurality of communication channels in communication with the plurality of chambers, a channel blocking member is provided in the communication channel and is configured to seal the communication channel, when a temperature of the channel blocking member is greater than a preset temperature, the channel blocking member is converted from a solid state to a fluid state;
    wherein when heated by the molecular detecting device according to any one of claims 1 to 16, the channel blocking member is converted from the solid state to the fluid state to communicate the plurality  of chambers in communication with the heated communication channels.
  18. The nucleic acid detecting chip according to claim 17, wherein the chip body further comprises a detecting cavity and a first flow channel, and one of the chambers is in communication with the detecting cavity through the first flow channel.
  19. The nucleic acid detecting chip according to claim 18, wherein the chip body further has a control cavity in communication with the first flow channel, and a flow channel blocking member is provided in the control cavity, when a temperature of the flow channel blocking member is greater than a first preset temperature, the flow channel blocking member is converted from a solid state to a fluid state, when the temperature of the flow channel blocking member is less than the first preset temperature, the flow channel blocking member is converted from the fluid state to the solid state;
    when the flow channel blocking member is converted to the fluid state, the flow channel blocking member is capable of flowing to the first flow channel under a centrifugal action, and the flow channel blocking member is converted to the solid state in the first flow channel to seal the first flow channel.
  20. The nucleic acid detecting chip according to claim 19, wherein the chip body comprises a first surface and a second surface opposite to the first surface, the first surface is provided with a plurality of first adding holes in communication with the plurality of chambers in one-to-one correspondence, the nucleic acid detecting chip further comprises a first cover sheet covering the first surface.
  21. The nucleic acid detecting chip according to claim 20, wherein the first surface is provided with a second adding hole in communication with the control cavity, and a plurality of third adding holes in communication with the plurality of communication channels in one-to-one correspondence.
  22. The nucleic acid detecting chip according to claim 20, wherein each chamber, the control cavity, the first flow channel, and each communication channel are formed by the second surface recessed inward; the nucleic acid detecting chip further comprises a second cover sheet covering the second surface, and the second cover sheet is transparent.
  23. The nucleic acid detecting chip according to claim 22, wherein the detecting cavity penetrates the first surface and the second surface of the chip body; an area of the first cover sheet corresponding to  the detecting cavity is transparent.
  24. A method of processing and detecting molecular using the molecular detecting device according to any one of claims 1 to 16, configured to process and detect sample in the nucleic acid detecting chip according to claims 17 to 23, comprising:
    S1, preloading nucleic acid extraction reagent and nucleic acid reaction reagent in each chamber of the nucleic acid detecting chip, adding the sample to the chamber preloaded with the nucleic acid extraction reagent;
    S2, driving the centrifugal module to move to a bin out position in the first direction to load the nucleic acid detecting chip to be detected;
    S3, driving the centrifugal module to move to an origin position along the first direction;
    S4, driving the centrifugal bracket to rotate to drive the nucleic acid detecting chip to rotate centrifugally, so as to drive the nucleic acid extraction reagent and the sample in the nucleic acid detecting chip to mix evenly;
    S5, driving the centrifugal module to move to a mixing position along the first direction, driving one of the heating assemblies to rotate to a heating position, and specifically heating the communication channel of the nucleic acid detecting chip located in the receiving groove to enable the heated communication channel to communicate with the chamber;
    S6, driving the centrifugal bracket to rotate to drive the nucleic acid detecting chip to rotate centrifugally, so as to drive the sample in the nucleic acid detecting chip to flow to the chamber preloaded with the nucleic acid reaction reagent for mixing;
    repeating S5 to S6 until the nucleic acid reaction reagent in the nucleic acid detecting chip is mixed with the sample to obtain a nucleic acid detection solution;
    S7, driving the centrifugal bracket to rotate until the nucleic acid detection liquid enters the detecting cavity through the first flow channel;
    S8, driving the centrifugal bracket to rotate until the end to be detected of the nucleic acid detecting chip faces the detection module;
    S9, driving the centrifugal module to move to a detection position along the first direction, and inserting the nucleic acid detecting chip to the detection module for detection; and
    S10, driving the centrifugal module to move to the bin out position along the first direction after the detection is completed.
PCT/CN2022/118158 2021-12-31 2022-09-09 Molecular detecting device, nucleic acid detecting chip, method of processing and detecting molecular WO2023124229A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202111679524.4A CN114231408B (en) 2021-12-31 Nucleic acid detection chip and nucleic acid detection method
CN202111679524.4 2021-12-31
CN202210586967.7A CN114917972B (en) 2022-05-27 2022-05-27 Molecular detection device, molecular processing and detection method
CN202221315446.XU CN217757412U (en) 2022-05-27 2022-05-27 Centrifugal support, centrifugal module and molecular detection device
CN202221315446.X 2022-05-27
CN202210586967.7 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023124229A1 true WO2023124229A1 (en) 2023-07-06

Family

ID=83692655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118158 WO2023124229A1 (en) 2021-12-31 2022-09-09 Molecular detecting device, nucleic acid detecting chip, method of processing and detecting molecular

Country Status (1)

Country Link
WO (1) WO2023124229A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117165401A (en) * 2023-11-02 2023-12-05 浙江正合谷生物科技有限公司 Biochip polymorphism operation equipment, system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160214112A1 (en) * 2013-09-11 2016-07-28 Osaka University Thermal convection generating chip, thermal convection generating device, and thermal convection generating method
US20180117583A1 (en) * 2016-10-28 2018-05-03 Sysmex Corporation Liquid-sealed cartridge and liquid transferring method
US10406528B1 (en) * 2016-08-04 2019-09-10 National Technology & Engineering Solutions Of Sandia, Llc Non-contact temperature control system for microfluidic devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160214112A1 (en) * 2013-09-11 2016-07-28 Osaka University Thermal convection generating chip, thermal convection generating device, and thermal convection generating method
US10406528B1 (en) * 2016-08-04 2019-09-10 National Technology & Engineering Solutions Of Sandia, Llc Non-contact temperature control system for microfluidic devices
US20180117583A1 (en) * 2016-10-28 2018-05-03 Sysmex Corporation Liquid-sealed cartridge and liquid transferring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117165401A (en) * 2023-11-02 2023-12-05 浙江正合谷生物科技有限公司 Biochip polymorphism operation equipment, system and method
CN117165401B (en) * 2023-11-02 2024-01-26 浙江正合谷生物科技有限公司 Biochip polymorphism operation equipment, system and method

Similar Documents

Publication Publication Date Title
US20220023862A1 (en) Microfluidic cartridge for processing and detecting nucleic acids
KR101951906B1 (en) Unitary biochip providing sample-in to results-out processing and methods of manufacture
US10272436B2 (en) Assay cartridge valve system
US20050180891A1 (en) Miniaturized fluid delivery and analysis system
WO2008076395A2 (en) Mechanically actuated diagnostic device
EP1587622B1 (en) Integrated sample processing devices
CN210001849U (en) Analysis unit and portable microfluidic device
WO2023124229A1 (en) Molecular detecting device, nucleic acid detecting chip, method of processing and detecting molecular
US11485968B2 (en) Microfluidic cartridge for processing and detecting nucleic acids
US20190201899A1 (en) Solid reagent containment unit, in particular for a transportable microfluidic device for sample preparation and molecule analysis
CN111944682A (en) Nucleic acid detection chip, preparation method and nucleic acid detection method
CN108290155B (en) Lid for covering a microfluidic gap with a micro-container interface
CN113174323A (en) Microfluidic PCR chip and PCR detection method
US20190224683A1 (en) Sample container arrangement
US11491489B2 (en) Microfluidic connector group, microfluidic device and manufacturing process thereof, in particular for a cartridge for sample preparation and molecule analysis
US20230151416A1 (en) Test plate and automated biological test system
CN217757412U (en) Centrifugal support, centrifugal module and molecular detection device
CN114917972B (en) Molecular detection device, molecular processing and detection method
CN218811744U (en) Microfluidic PCR chip
US20230123901A1 (en) Random access automated molecular testing system
CN114231408B (en) Nucleic acid detection chip and nucleic acid detection method
US20160082437A1 (en) Cover with micro-container interface for covering a microfluidic gap
CN117025375A (en) Microfluidic chip, microfluidic chip assembly and digital nucleic acid detection sampling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22789832

Country of ref document: EP

Kind code of ref document: A1