WO2015029524A1 - 半導体ウェーハの研磨方法および研磨装置 - Google Patents
半導体ウェーハの研磨方法および研磨装置 Download PDFInfo
- Publication number
- WO2015029524A1 WO2015029524A1 PCT/JP2014/064252 JP2014064252W WO2015029524A1 WO 2015029524 A1 WO2015029524 A1 WO 2015029524A1 JP 2014064252 W JP2014064252 W JP 2014064252W WO 2015029524 A1 WO2015029524 A1 WO 2015029524A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polishing
- semiconductor wafer
- aqueous solution
- shape
- acid
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
- H01L21/02005—Preparing bulk and homogeneous wafers
- H01L21/02008—Multistep processes
- H01L21/0201—Specific process step
- H01L21/02024—Mirror polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/005—Control means for lapping machines or devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
- B24B37/07—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
- B24B37/08—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/34—Accessories
- B24B37/345—Feeding, loading or unloading work specially adapted to lapping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B49/00—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
- B24B49/02—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
- B24B49/03—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent according to the final size of the previously ground workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B49/00—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
- B24B49/12—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02043—Cleaning before device manufacture, i.e. Begin-Of-Line process
- H01L21/02052—Wet cleaning only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
- H01L21/6704—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
- H01L21/67057—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67253—Process monitoring, e.g. flow or thickness monitoring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68327—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
Definitions
- the present invention relates to a semiconductor wafer polishing method and polishing apparatus.
- polishing of a semiconductor wafer is performed in multiple stages. Specifically, it is roughly classified into rough polishing for the purpose of increasing the flatness of the semiconductor wafer and finish polishing for the purpose of reducing the surface roughness.
- rough polishing for the purpose of increasing the flatness of the semiconductor wafer
- finish polishing for the purpose of reducing the surface roughness.
- studies have been made (for example, see Patent Document 1).
- a light emitting unit that emits parallel light beams and a light receiving unit that receives parallel light beams are disposed to face the internal gear.
- the parallel light is exposed from the upper and lower surface plates and The semiconductor wafer is irradiated.
- the shadow of the semiconductor wafer is detected by the light receiving portion, and the thickness of the shadow detected by the light receiving portion is directly measured as the thickness of the semiconductor wafer.
- An object of the present invention is to provide a semiconductor wafer polishing method and polishing apparatus capable of polishing a semiconductor wafer with high accuracy.
- the semiconductor wafer polishing method of the present invention includes a polishing step for polishing a semiconductor wafer, a measurement step for measuring the shape of the semiconductor wafer before the polished surface of the semiconductor wafer after polishing becomes a hydrophilic surface, and the semiconductor And a polishing condition setting step of setting polishing conditions in the polishing step based on the measurement result of the shape of the wafer.
- the polished semiconductor wafer has a hydrophobic surface, and becomes a hydrophilic surface when held in air or water for a certain period of time. When the polished surface of the semiconductor wafer becomes a hydrophilic surface, water droplets remain, and the shape of the polished semiconductor wafer cannot be measured in the measurement process.
- the shape of the semiconductor wafer is measured before the polished semiconductor wafer becomes a hydrophilic surface, that is, in the state of a hydrophobic surface.
- the shape of the semiconductor wafer after polishing can be measured with high accuracy without causing a measurement error.
- the polishing conditions for the next polishing step are set. As described above, since the measurement result after polishing can be quickly fed back to the polishing conditions of the next polishing step, as a result, a highly accurate semiconductor wafer having a flatness can be manufactured.
- an immersion step of immersing the polished semiconductor wafer in an organic acid aqueous solution before performing the measurement step, an immersion step of immersing the polished semiconductor wafer in an organic acid aqueous solution, and before an immersion time in the immersion step exceeds 60 minutes And a pulling step of pulling up the semiconductor wafer from the organic acid aqueous solution.
- the polished semiconductor wafer is immersed in the organic acid aqueous solution before performing the measurement step.
- the hydrophobic surface of the polished semiconductor wafer surface can be retained.
- the polishing slurry remaining on the surface of the semiconductor wafer rinsed with pure water after the polishing step can be neutralized.
- the concentration of the organic acid aqueous solution used in the dipping process is preferably 0.001% by mass to 10% by mass, more preferably 0.01% by mass to 1.0% by mass, and particularly preferably 0.1% by mass.
- concentration of the organic acid aqueous solution is less than 0.001% by mass, the surface of the semiconductor wafer does not become a clean hydrophobic surface, so that water droplets may remain on the surface of the semiconductor wafer pulled up in the pulling process.
- concentration of the organic acid aqueous solution exceeds 10% by mass, there is a possibility that a foreign particle mixed in the aqueous solution adheres to the surface of the semiconductor wafer.
- the pulling step pulls the semiconductor wafer at a speed of 100 mm / sec or less.
- the aqueous solution is not pulled up from the liquid surface by pulling up the semiconductor wafer at a speed of 100 mm / sec or less, water droplets do not remain on the polished surface of the semiconductor wafer after pulling up.
- the pulling speed of the semiconductor wafer from the organic acid aqueous solution exceeds 100 mm / sec, there is a possibility that water droplets are pulled from the liquid surface of the organic acid aqueous solution.
- the pulling speed of the semiconductor wafer is more preferably 10 mm / sec or more and 100 mm / sec or less, and particularly preferably 30 mm / sec or more and 60 mm / sec or less.
- the pulling step pulls up while maintaining a posture in which the polishing surface of the semiconductor wafer is substantially orthogonal to a horizontal plane.
- the polishing surface of the semiconductor wafer is maintained in a posture substantially orthogonal to the horizontal plane, water droplets are likely to fall off due to gravity, so that the water droplets disappear quickly from the polishing surface. Therefore, the transition to the measurement process can be performed quickly.
- the polishing surface is substantially orthogonal to the horizontal plane, not only in a posture in which the polishing surface is strictly orthogonal to the horizontal plane, but also to the extent that no water droplets remain on the surface of the semiconductor wafer after being pulled up, Some inclination may be produced from the orthogonal posture.
- the semiconductor wafer at the time of pulling may have an inclination of about plus or minus 5 degrees from a posture in which the polished surface is orthogonal to the horizontal plane.
- the measurement step measures the shape of the semiconductor wafer using an optical sensor or a capacitance sensor.
- the measurement time can be shortened and the measurement apparatus can be downsized. Therefore, feedback to the polishing conditions in the next polishing step can be performed more quickly.
- the organic acid used in the organic acid aqueous solution is at least one of citric acid, formic acid, acetic acid, butyric acid, oxalic acid, malonic acid, and succinic acid. It is preferable.
- the hydrophobic surface of the polished semiconductor wafer surface can be maintained by immersing in an aqueous solution using the various organic acids listed above.
- a semiconductor wafer polishing apparatus includes a polishing means for polishing a semiconductor wafer, a storage tank capable of storing the semiconductor wafer and storing an aqueous organic acid solution, a measuring means for measuring the shape of the semiconductor wafer, and the polishing means.
- a moving unit that moves the semiconductor wafer between the storage tank and the measuring unit; and a polishing condition setting unit that sets a polishing condition in the polishing unit based on a measurement result of the measuring unit. It is characterized by.
- the semiconductor wafer after polishing can be moved between the polishing means, the storage tank, and the measuring means by the moving means by providing the above configuration, the movement of the semiconductor wafer between the respective means. The time can be greatly reduced compared to the conventional method.
- the measurement result obtained by the measurement means that is, the measurement result of the shape of the polished semiconductor wafer is sent to the polishing condition setting means.
- the polishing condition setting means the polishing condition is analyzed based on the measurement result and fed back to the polishing condition in the next polishing step.
- the organic acid used in the organic acid aqueous solution is at least one of citric acid, formic acid, acetic acid, butyric acid, oxalic acid, malonic acid, and succinic acid. It is preferable.
- the hydrophobic surface of the polished semiconductor wafer surface can be maintained by immersing in an aqueous solution using the various organic acids listed above.
- FIG. 1 is a schematic view showing a semiconductor wafer polishing apparatus of the present invention.
- the semiconductor wafer polishing apparatus of the present invention includes a polishing unit 1, a storage tank 2, a measuring unit 3, a moving unit 4, and a polishing condition setting unit 51.
- the semiconductor wafer polishing apparatus of the present invention includes a storage unit 6 that can accommodate a plurality of semiconductor wafers W and a carrier 15 before polishing.
- the number of semiconductor wafers W stored in the carrier 15 is shown as one.
- the number of semiconductor wafers is not limited to one. Needless to say, it can be stored.
- the polishing means 1 of this embodiment is a double-side polishing apparatus 10 as shown in FIG.
- FIG. 2 is a schematic diagram showing the configuration of the double-side polishing apparatus in the present embodiment.
- the double-side polishing apparatus 10 includes an upper surface plate 11, a lower surface plate 12, an inner gear 13, an outer gear 14, and a plurality of carriers 15.
- a plurality of semiconductor wafers W are stored in the carrier 15.
- three semiconductor wafers W are accommodated in one carrier 15.
- the upper surface plate 11 includes a surface plate body 111 and an elevating mechanism 112 that moves the surface plate body 111 closer to and away from the lower surface plate 12.
- the surface plate body 111 is formed in a substantially disc shape, and although not shown in FIG. 2, a polishing pad 113 that contacts the semiconductor wafer W when the semiconductor wafer W is polished is provided on the lower surface thereof.
- a plurality of supply holes for supplying polishing slurry and rinsing with pure water at the time of polishing are formed on the upper surface of the surface plate body 111, and the polishing slurry and pure water are provided between the upper surface plate 11 and the lower surface plate 12. Can be supplied.
- the elevating mechanism 112 has a shaft portion provided substantially at the center of the surface plate main body 111 and is not shown in the figure, but the surface plate main body 111 is moved up and down by a motor provided in a gate-type frame arranged at the top. .
- the lower surface plate 12 is a disk-like body that is rotatably provided on the pedestal of the double-side polishing apparatus 10, and a polishing pad 121 is provided on the surface facing the upper surface plate 11 of the lower surface plate 12. When polishing, the polishing pad 121 contacts the surface of the semiconductor wafer W.
- the inner gear 13 is provided substantially at the center of the disk of the lower surface plate 12 so as to rotate independently of the lower surface plate 12, and teeth 131 that mesh with the carrier 15 are formed on the outer peripheral side surface thereof.
- the outer gear 14 is composed of a ring-shaped body surrounding the lower surface plate 12, and teeth 141 that mesh with the carrier 15 are formed on the inner surface of the ring.
- the rotation centers of the upper surface plate 11, the lower surface plate 12, the inner gear 13, and the outer gear 14 are coupled to the rotation shafts of the drive motors, respectively, and are rotated independently by the respective drive motors.
- the carrier 15 is formed of a disk-like body, and teeth 151 that mesh with the inner gear 13 and the outer gear 14 are formed on the outer peripheral side surface thereof.
- a plurality of wafer holding holes 152 are formed in the disk-shaped body, and the semiconductor wafer W is stored in the wafer holding holes 152.
- the storage tank 2 is a water tank capable of accommodating a plurality of semiconductor wafers W and storing an organic acid aqueous solution, and an existing wet box can be used.
- the semiconductor wafers W are positioned so that the polished surface of the semiconductor wafers W is substantially orthogonal to the horizontal surface of the organic acid aqueous solution, and the semiconductor wafers W are not in contact with each other with a predetermined interval between them. It is preferable to be accommodated in the storage tank 2 so as to be in a dry state.
- the organic acid aqueous solution in the storage tank 2 may be stored in such an amount that the entire surface of the semiconductor wafer W is immersed in the organic acid acid aqueous solution when the semiconductor wafer W is accommodated in the storage tank 2.
- the liquid temperature of the organic acid aqueous solution should just be maintained in the range of 0 degreeC or more and 60 degrees C or less, The range of 10 degreeC or more and 40 degrees C or less is more preferable, The range of 20 degrees C or more and 30 degrees C or less is especially preferable.
- the measuring means 3 is provided for measuring the shape of the semiconductor wafer W. Specifically, the shape of the semiconductor wafer W before and after polishing or the polishing allowance shape of the semiconductor wafer W before and after polishing is measured. In the present embodiment, the shape measurement of the semiconductor wafer W after polishing will be described.
- the measuring means 3 of this embodiment is a spectral interference displacement device 30.
- the spectral interference displacement device 30 includes a sensor unit 31 that measures the shape of the semiconductor wafer W and a controller unit 32. The sensor unit 31 and the controller unit 32 are optically connected.
- the sensor unit 31 is provided at a position where the front and back surfaces of the semiconductor wafer W to be measured can be measured, and the sensor unit 31 that measures the front surface and the sensor unit 31 that measures the back surface are opposed to each other. .
- the sensor unit 31 is arranged in a posture orthogonal to the polishing surface (front surface, back surface) of the semiconductor wafer W and spaced from the polishing surface.
- the sensor unit 31 is configured to project light in a wide wavelength band onto a measurement location on the polished surface of the semiconductor wafer W and receive reflected light reflected at the measurement location.
- the controller unit 32 analyzes the reflected light received by the sensor unit 31 and calculates the distance between the sensor unit 31 and the measurement location.
- the moving means 4 is provided for moving the semiconductor wafer W among the polishing means 1, the storage tank 2, and the measuring means 3.
- the moving means 4 of this embodiment is a transfer unit 40 used in an existing wafer transfer apparatus.
- the transfer unit 40 is a 6-axis robot, and includes a wafer gripping portion 41 capable of gripping the semiconductor wafer W at a tip portion thereof.
- the double-side polishing apparatus 10, the storage tank 2, and the spectral interference displacement apparatus 30 are respectively arranged around the transfer unit 40, and the wafer holding unit 41 that holds the semiconductor wafer W is provided.
- the semiconductor wafer W is configured to be transportable to the double-side polishing apparatus 10, the storage tank 2, and the spectral interference displacement apparatus 30 by rotating and moving horizontally.
- the control device 5 is configured by combining, for example, a CPU and a memory.
- the control device 5 includes a polishing condition setting unit 51 and a polishing control unit 52.
- the polishing condition setting means 51 sets polishing conditions for the next polishing step.
- the polishing control means 52 controls the operation of the double-side polishing apparatus 10 based on predetermined polishing conditions.
- the control device 5 is electrically connected to the double-side polishing device 10 and the controller unit 32 of the measuring means 3.
- the control device 5 acquires the polishing conditions output from the double-side polishing device 10 or outputs the polishing conditions set by the polishing condition setting means 51.
- the control device 5 acquires the measurement result of the semiconductor wafer W output from the controller unit 32. Then, based on the measurement result of the semiconductor wafer W, the polishing condition setting means 51 analyzes the polishing conditions in the polishing step.
- the semiconductor wafer W before polishing accommodated in the storage unit 6 is transferred to the double-side polishing apparatus 10 by the moving means 4.
- the semiconductor wafer W before polishing of the storage unit 6 is transported together with the carrier 15 onto the lower surface plate 12 of the double-side polishing apparatus 10 that is the polishing means 1.
- the polishing control means 52 by sending an operation command from the polishing control means 52, the polishing slurry is supplied between the upper surface plate 11 and the lower surface plate 12, and the transferred semiconductor wafer W is polished under predetermined polishing conditions.
- pure water is supplied between the upper surface plate 11 and the lower surface plate 12, and the polished semiconductor wafer W is rinsed.
- the semiconductor wafer W that has been polished under the predetermined polishing conditions is taken out of the double-side polishing apparatus 10 by the moving means 4 and transferred to the storage tank 2.
- the transported semiconductor wafers W are in a posture substantially orthogonal to the horizontal surface of the organic acid aqueous solution and in a state where a predetermined interval is provided between the semiconductor wafers W so that the semiconductor wafers W do not come into contact with each other. It is immersed in the organic acid aqueous solution so that the entire surface of W is immersed in the organic acid aqueous solution.
- the semiconductor wafer W is pulled up from the organic acid aqueous solution by the moving means 4.
- the semiconductor wafer W is pulled up at a speed of 100 mm / sec or less by the moving means 4 while maintaining the posture in which the polished surface is substantially orthogonal to the horizontal plane.
- the shape of the semiconductor wafer W is measured before the polished surface of the semiconductor wafer W after polishing becomes a hydrophilic surface, that is, in a state of a hydrophobic surface.
- the semiconductor wafer W pulled up from the organic acid aqueous solution in the storage tank 2 is transported to the measuring means 3 by the moving means 4 before the immersion time in the soaking process exceeds 60 minutes.
- it is not necessary to measure the entire surface of the semiconductor wafer W and only a desired portion of the semiconductor wafer W is measured by the sensor unit 31.
- the measurement is performed at a pitch of 10 ⁇ m in the radial direction from the center of the semiconductor wafer W to the outer periphery. Note that the measurement at a plurality of locations as described above is performed by measuring by the sensor unit 31 while moving the semiconductor wafer W between the sensor units 31 and 31 by the moving unit 4.
- the measurement data collected by the sensor unit 31 is calculated by the controller unit 32, and the thickness difference at the point 1 mm inside or 2 mm inside from the outer peripheral edge of the wafer is calculated from the thickness of the wafer central part. This calculation result is used as the shape of the entire wafer surface.
- the measurement data collected by the sensor unit 31 is calculated by the controller unit 32, and the thickness of the point 1 mm inside or 2 mm inside from the outer peripheral edge of the wafer and the approximation of all the thicknesses measured within the range up to 30 mm inside. Calculate the difference from the line. This calculation result is used as the shape of the outer periphery of the wafer.
- the result calculated by the controller unit 32 is output to the control device 5.
- the semiconductor wafer W after the shape measurement by the measuring means 3 is returned to the storage tank 2 by the moving means 4.
- polishing condition setting process In the control device 5, the polishing condition output from the double-side polishing device 10 is acquired, and the shape result of the polished semiconductor wafer W output from the controller unit 32 is acquired. Then, in the polishing condition setting means 51, the polishing conditions for the next polishing step are set by analyzing the polishing conditions based on the following conditions for the shape of the entire wafer surface.
- the index value is obtained by subtracting the thickness of 1 mm inside or 2 mm inside from the outer peripheral edge of the wafer from the thickness of the center of the wafer.
- the polishing conditions for the next polishing step are automatically set according to the following conditions (A1) to (A3).
- adjustment parameters n 1 is obtained by polishing rate to adjust the polishing time in the polishing conditions This adjustment parameter.
- A2 When the index value exceeds 100 nm, the adjustment parameter n 1 is added to the polishing conditions of the previous polishing step.
- A3 When the index value is less than ⁇ 100 nm, the adjustment parameter n 1 is reduced to the polishing conditions of the previous polishing step.
- polishing process are set based on the following conditions.
- adjustment parameters m 1 is obtained by polishing rate to adjust the polishing time in the polishing conditions This adjustment parameter.
- the polishing conditions can be automatically controlled as follows.
- the moving means 4 transports the semiconductor wafer W before polishing to the measuring means 3 and measures the thickness of the semiconductor wafer W before polishing in advance.
- the prior measurement does not need to measure the entire surface of the semiconductor wafer W as in the measurement process performed after the polishing process, and the sensor unit 31 measures only a desired portion of the semiconductor wafer W.
- the semiconductor wafer W before polishing is transferred to the double-side polishing apparatus 10, and a polishing process, a dipping process, a pulling process, and a measuring process are performed. Then, an estimated polishing rate of polishing performed in the polishing step is obtained from the following formula (1).
- the semiconductor wafer W before polishing in the next polishing step is transferred to the measuring means 3 and the thickness of the semiconductor wafer W before polishing is measured in advance. Then, the polishing time (end point) of the next polishing step is obtained from the following equation (2). Note that the estimated polishing rate in the equation (2) is the estimated polishing rate of the polishing performed in the polishing step, which is obtained by the above equation (1).
- polishing conditions for the next polishing step are set based on the polishing time obtained by the above formula (2).
- the set polishing conditions are transmitted from the polishing condition setting means 51 to the polishing control means 52.
- the measurement result of the shape of the semiconductor wafer W after polishing is fed back to the polishing conditions in the next polishing step.
- the shape measurement of the semiconductor wafer W is performed before the polished surface of the semiconductor wafer W after polishing becomes a hydrophilic surface, that is, in a state of a hydrophobic surface. For this reason, the shape of the semiconductor wafer W after polishing can be measured with high accuracy without causing a measurement error due to water droplets.
- the polished semiconductor wafer W is immersed in an organic acid aqueous solution.
- the polished semiconductor wafer W surface is held on the hydrophobic surface, so that the drying time of the semiconductor wafer W surface after being immersed in the organic acid aqueous solution can be shortened. Further, the polishing slurry remaining on the surface of the semiconductor wafer W rinsed with pure water after the polishing step can be neutralized.
- the semiconductor wafer W is pulled up from the organic acid aqueous solution before the soaking time in the soaking process exceeds 60 minutes. If the semiconductor wafer W is pulled up from the organic acid aqueous solution before the immersion time exceeds 60 minutes, the polished surface is held on the hydrophobic surface. Therefore, when the semiconductor wafer W is pulled up from the organic acid aqueous solution, water droplets are formed on the polished surface. Does not remain.
- the semiconductor wafer W is pulled at a speed of 100 mm / sec or less.
- the aqueous solution is not lifted from the liquid surface, so that no water droplets remain on the polished surface of the semiconductor wafer W after the pulling. Therefore, it is not necessary to provide a separate drying process after the pulling process, which leads to a reduction in the process and a reduction in time until measurement.
- the semiconductor wafer W is pulled up while maintaining a posture in which the polished surface of the semiconductor wafer W is substantially orthogonal to the horizontal plane.
- the shape of the semiconductor wafer is measured using an optical sensor.
- the measurement time can be shortened and the measuring apparatus can be downsized. Therefore, feedback to the polishing conditions in the next polishing step can be performed more quickly.
- polishing conditions for the next polishing step are set based on the measurement result in the measurement step. As described above, since the measurement result after polishing can be quickly fed back to the polishing conditions of the next polishing step, as a result, a highly accurate flatness semiconductor wafer W can be manufactured.
- the semiconductor wafer W before polishing accommodated in the storage unit 6 is transported to the measuring means 3 by the moving means 4, and the thickness of the semiconductor wafer W before polishing is measured in advance.
- the prior measurement does not need to measure the entire surface of the semiconductor wafer W as in the measurement process performed after the polishing process, and the sensor unit 31 measures only a desired portion of the semiconductor wafer W.
- the semiconductor wafer W before polishing is transferred to the double-side polishing apparatus 10, and the polishing process, the dipping process, and the pulling process are performed similarly to the first embodiment. .
- the polishing allowance shape of the semiconductor wafer W is measured before the polished surface of the semiconductor wafer W after polishing becomes a hydrophilic surface, that is, in a state of a hydrophobic surface.
- the semiconductor wafer W pulled up from the organic acid aqueous solution in the storage tank 2 is transported to the measuring means 3 by the moving means 4 before the immersion time in the soaking process exceeds 60 minutes.
- the measurement data collected by the sensor unit 31 is calculated by the controller unit 32, and the thickness difference before and after polishing at the point 1 mm inside or 2 mm inside from the outer peripheral edge of the wafer is subtracted from the thickness difference before and after polishing at the wafer center. Calculate the numerical value obtained by This calculation result is used as a polishing allowance shape on the entire surface of the wafer.
- the measurement data collected by the sensor unit 31 is calculated by the controller unit 32, and the thickness difference before and after polishing at a point 1 mm inside or 2 mm inside from the outer peripheral edge of the wafer and all measured within the range up to 30 mm inside are further measured.
- the difference from the approximate line of the thickness difference before and after polishing is calculated.
- This calculation result is used as a polishing allowance shape on the outer periphery of the wafer.
- the result calculated by the controller unit 32 is output to the control device 5.
- the semiconductor wafer W after the shape measurement by the measuring means 3 is returned to the storage tank 2 by the moving means 4.
- polishing condition setting process In the control device 5, the polishing condition output from the double-side polishing device 10 is acquired, and the shape result of the polished semiconductor wafer W output from the controller unit 32 is acquired. Then, in the polishing condition setting means 51, the polishing conditions for the next polishing step are set by analyzing the polishing conditions of the polishing allowance shape on the entire wafer surface based on the following conditions.
- an index value is obtained by subtracting the thickness difference before and after polishing at the point 1 mm inside or 2 mm inside from the wafer outer peripheral edge from the thickness difference before and after polishing at the wafer center. It is done.
- the polishing conditions for the next polishing step are automatically set according to the following conditions (C1) to (C3).
- the adjustment parameter n 2 obtained by polishing rate to adjust the polishing time in the polishing conditions This adjustment parameter. (C1): When the index value is ⁇ 50 nm or more and +50 nm or less, the polishing conditions of the previous polishing step are maintained.
- polishing process are set based on the following conditions. Based on the difference between the thickness difference before and after polishing at the point 1 mm inside or 2 mm inside from the outer peripheral edge of the wafer and the approximate line of all thickness differences before and after polishing measured within the range up to 30 mm inside, the following (D1 ) To (D3), the polishing conditions for the next polishing cycle are automatically set.
- the adjustment parameter m 2 obtained by polishing rate to adjust the polishing time in the polishing conditions This adjustment parameter.
- the polishing conditions can be automatically controlled as follows.
- the moving means 4 transports the semiconductor wafer W before polishing to the measuring means 3 and measures the thickness of the semiconductor wafer W before polishing in advance.
- the prior measurement does not need to measure the entire surface of the semiconductor wafer W as in the measurement process performed after the polishing process, and the sensor unit 31 measures only a desired portion of the semiconductor wafer W.
- the semiconductor wafer W before polishing is transferred to the double-side polishing apparatus 10, and a polishing process, a dipping process, a pulling process, and a measuring process are performed. Then, an estimated polishing rate of polishing performed in the polishing step is obtained from the following equation (3).
- the semiconductor wafer W before polishing in the next polishing step is transferred to the measuring means 3 and the thickness of the semiconductor wafer W before polishing is measured in advance. Then, the polishing time (end point) of the next polishing step is obtained from the following equation (4). Note that the estimated polishing rate in the equation (4) is the estimated polishing rate of the polishing performed in the polishing step, which is obtained by the above equation (3).
- polishing conditions for the next polishing step are set based on the polishing time obtained by the above formula (4).
- the set polishing conditions are transmitted from the polishing condition setting means 51 to the polishing control means 52.
- the measurement result of the shape of the semiconductor wafer W after polishing is fed back to the polishing conditions in the next polishing step.
- one measuring means 3 is provided for one double-side polishing apparatus 10, but one measuring means 3 is provided between the two double-side polishing apparatuses 10. It is good also as a structure which has arranged.
- the shape of the semiconductor wafer W polished by the two double-side polishing apparatuses 10 can be measured by one measuring means 3.
- the new investment cost of the measuring means 3 when installing one set of semiconductor wafer polishing apparatuses can be halved.
- the double-side polish apparatus 10 was used as the grinding
- the double-side polishing apparatus 10 has a large machining allowance of 5 ⁇ m to 30 ⁇ m and is suitable for rough polishing, whereas the single-side polishing apparatus has a small machining allowance of 0.2 ⁇ m to 1.0 ⁇ m and the surface of the semiconductor wafer It is an apparatus for making the state of this good.
- the double-side polishing apparatus is suitable for the first embodiment, and the single-side polishing apparatus is suitable for the second embodiment that profiles and feeds back the shape of the semiconductor wafer before and after polishing.
- two sensor units 31 are installed to measure the shape of the front surface side and the back surface side of the semiconductor wafer W. However, the sensor unit 31 to be installed is one. The measurement may be performed only on one side of the semiconductor wafer W.
- Such a configuration having one sensor unit 31 to be installed is suitable when the thickness of the semiconductor wafer W to be measured is as thin as 310 ⁇ m or less, for example.
- the organic acid aqueous solution is stored in the storage tank 2, but a hydrofluoric acid aqueous solution may be used instead of the organic acid aqueous solution.
- the hydrofluoric acid aqueous solution By using the hydrofluoric acid aqueous solution, the polished surface of the semiconductor wafer W can be made into a hydrophobic surface.
- Double-side polishing of the semiconductor wafer W having a diameter of 300 mm was performed by the semiconductor wafer polishing apparatus shown in FIG.
- the aqueous solution stored in the storage tank 2 is a 0.1% by mass citric acid aqueous solution kept at 25 ° C.
- the semiconductor wafer W and the carrier 15 before polishing were transferred from the storage unit 6 to the double-side polishing apparatus 10 by the transfer unit 40.
- polishing slurry was supplied, and double-side polishing of the semiconductor wafer W was performed under predetermined polishing conditions.
- pure water was supplied to rinse the polished semiconductor wafer W.
- the polished semiconductor wafer W was transferred from the double-side polishing apparatus 10 to the storage tank 2 by the transfer unit 40.
- the conveyed semiconductor wafer W was immersed in the citric acid aqueous solution of the storage tank 2, and the semiconductor wafer W was hold
- the semiconductor wafer W was pulled up at a speed of 100 mm / sec by the transfer unit 40 while maintaining the posture in which the polishing surface was substantially orthogonal to the horizontal plane.
- the semiconductor wafer W was transferred to the spectral interference displacement device 30 by the transfer unit 40.
- the semiconductor wafer W is moved at a speed of 3 mm / sec by the transport unit 40, and the radius from the center of the semiconductor wafer W toward the outer periphery is reached by the sensor unit 31 to a position 2 mm inside from the outer peripheral end. Measurements were made at 10 ⁇ m pitch in the direction. Then, the measurement data was calculated by the controller unit 32, and the shape of the entire wafer surface was calculated.
- This calculation result is output to the polishing condition setting means 51.
- the polishing condition setting means 51 calculates the thickness 2 mm inside from the wafer outer peripheral edge based on the thickness of the wafer center. The index value was obtained by subtracting. Then, from this index value, the polishing conditions of the next polishing step are adjusted according to the conditions of (A1), (A2), and (A3), polishing is performed, and the shape of the semiconductor wafer W is measured. Process capability was improved.
- GBIR Global flatness Back reference Ideal Range
- ⁇ Comparative Example 1> A double-side polishing of a semiconductor wafer W having a diameter of 300 mm was performed by the semiconductor wafer polishing apparatus shown in FIG. In the storage tank 2, pure water kept at 25 ° C. was stored. After the double-side polishing, the polished semiconductor wafer W was transferred from the double-side polishing apparatus 10 to the storage tank 2 by the transfer unit 40. The conveyed semiconductor wafer W was immersed in the pure water of the storage tank 2, and the semiconductor wafer W was hold
- Example 2 The measurement data obtained by the measurement by the sensor unit 31 of Example 1 was calculated by the controller unit 32 to calculate the shape of the wafer outer peripheral part. The calculation result is output to the polishing condition setting unit 51, and the difference from the approximate line is obtained by the polishing condition setting unit 51 based on the obtained shape result of the polished semiconductor wafer W. The difference from this approximate line is the result of measuring the shape of the semiconductor wafer W after adjusting the polishing conditions after the next time according to the conditions (B1), (B2), and (B3), and measuring the ESFQR quality. Improved process capability.
- ESFQR Error flatness metric, Sector based, Front surface referenced, least sQuares fit reference plane, Range of the data within sector
- SFQR in a sector-shaped area (sector) formed in the outer peripheral area of the entire circumference of the wafer. Is a measured value.
- SFQR divides the semiconductor wafer W into a number of sites, provides reference planes within each site, measures the maximum amount of change on the positive and negative sides at each site from the reference plane, and determines the maximum on the positive side. The absolute value of the change amount is added to the absolute value of the maximum negative change amount.
- Example 3> Instead of the double-side polishing apparatus 10 shown in FIG. 1, the final polishing of the semiconductor wafer W having a diameter of 300 mm was performed by a semiconductor wafer polishing apparatus provided with a single-side polishing apparatus (finish polishing apparatus).
- the aqueous solution stored in the storage tank 2 is a 0.1% by mass citric acid aqueous solution kept at 25 ° C.
- the semiconductor wafer W was transferred to the spectral interference displacement device 30 by the transfer unit 40.
- the semiconductor wafer W was moved at a speed of 3 mm / sec by the transport unit 40, and measured at a pitch of 10 ⁇ m in the radial direction from the center of the semiconductor wafer W toward the outer periphery by the sensor unit 31. Then, the measurement data was calculated by the controller unit 32 to calculate the polishing allowance shape on the entire surface of the wafer.
- the semiconductor wafer W and the carrier 15 before polishing were transferred from the storage unit 6 to the finish polishing apparatus by the transfer unit 40. Then, polishing slurry was supplied, and the final polishing of the semiconductor wafer W was performed under predetermined polishing conditions. After the final polishing, pure water was supplied to rinse the polished semiconductor wafer W.
- the polished semiconductor wafer W was transferred from the finish polishing apparatus to the storage tank 2 by the transfer unit 40.
- the conveyed semiconductor wafer W was immersed in the citric acid aqueous solution of the storage tank 2, and the semiconductor wafer W was hold
- the semiconductor wafer W was pulled up at a speed of 100 mm / sec by the transfer unit 40 while maintaining the posture in which the polishing surface was substantially orthogonal to the horizontal plane. When the presence or absence of water droplets on the surface (polished surface) of the pulled semiconductor wafer W was visually confirmed, it was in a hydrophobic surface state and no water droplets remained.
- the semiconductor wafer W was transferred to the spectral interference displacement device 30 by the transfer unit 40.
- the semiconductor wafer W was moved at a speed of 3 mm / sec by the transport unit 40, and measured at a pitch of 10 ⁇ m in the radial direction from the center of the semiconductor wafer W toward the outer periphery by the sensor unit 31.
- the measurement data was calculated by the controller unit 32 to calculate the polishing allowance shape on the entire surface of the wafer. This calculation result is output to the polishing condition setting means 51.
- the polishing condition setting means 51 determines from the thickness difference before and after polishing at the center of the wafer to the inner side from the outer periphery of the wafer.
- the index value was determined by subtracting the thickness difference before and after polishing at the 2 mm point. Then, from this index value, the polishing condition of the next polishing step is adjusted according to the conditions of (C1), (C2), and (C3), and polishing is performed.
- GBIR Quality process capability improved.
- a semiconductor wafer polishing apparatus equipped with a single-side polishing apparatus performs final polishing of a semiconductor wafer W having a diameter of 300 mm as in the third embodiment. went.
- pure water kept at 25 ° C. was stored.
- the polished semiconductor wafer W was transferred from the finish polishing apparatus to the storage tank 2 by the transfer unit 40.
- the conveyed semiconductor wafer W was immersed in the pure water of the storage tank 2, and the semiconductor wafer W was hold
- the semiconductor wafer W was pulled up at a speed of 100 mm / sec by the transfer unit 40 while maintaining the posture in which the polished surface was substantially orthogonal to the horizontal plane.
- the presence or absence of water droplets on the surface (polished surface) of the pulled-up semiconductor wafer W was visually confirmed, it was in a hydrophilic surface state and water droplets remained. Therefore, the shape measurement of the polishing allowance of the wafer by the spectral interference displacement device 30 could not be performed.
- Example 4 The measurement data obtained by the measurement by the sensor unit 31 of Example 3 was calculated by the controller unit 32, and the polishing allowance shape of the wafer outer peripheral portion was calculated. The calculation result is output to the polishing condition setting unit 51, and the difference between the thickness difference before and after polishing and an approximate line is obtained by the polishing condition setting unit 51 based on the obtained shape result of the semiconductor wafer W before and after polishing. Then, from the difference from this approximate line, the polishing conditions of the next polishing step are adjusted according to the conditions (D1), (D2), and (D3), and polishing is performed, and the polishing allowance shape of the semiconductor wafer W is measured. ESFQR quality process capability improved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
Abstract
Description
このような両面研磨装置において、発光部と受光部との光線透過領域に、キャリア、および、当該キャリアのキャリアホールに挿入された半導体ウェーハが進入すると、平行光線が上下定盤から露出したキャリアおよび半導体ウェーハに照射される。この平行光線の照射により、半導体ウェーハの影が受光部で検出され、受光部で検出された影の厚さがそのまま半導体ウェーハの厚さとして測定される。そして、影の厚さが目標値に達したことが受光部で検出されると、上下定盤の回転が停止するようになっている。
このような不具合を解消するために、研磨終了後に半導体ウェーハを研磨装置から取り出して、形状測定装置によって半導体ウェーハを測定し、この測定結果を次回以降の研磨にフィードバックすることが考えられる。
上記形状測定装置を用いた方法では、形状測定前に半導体ウェーハを洗浄して測定面を清浄にし、且つ乾燥させる必要がある。そして、清浄且つ乾燥した面に対して、形状測定装置による測定が行われる。
しかしながら、半導体ウェーハに水滴が残っていると、測定時に外乱などが生じ、測定精度が低くなる不具合が生じる。そのため、別途、水滴が残っているかどうかを検査する必要があり、また、水滴が残っている場合には水滴を除去する作業が加わるため、研磨終了からフィードバックまでの時間が長くなってしまうという別の不具合が生じる。
研磨後の半導体ウェーハは、その研磨面が疎水面の状態であり、一定時間、空気中または水中に保持しておくと、親水面となる。
半導体ウェーハの研磨面が親水面になると水滴が残り、測定工程において、研磨後の半導体ウェーハの形状が測定できない。
そのため、本発明では、研磨後の半導体ウェーハが親水面となる前に、即ち、疎水面の状態で半導体ウェーハの形状測定を行う。これにより、測定誤差を生じることなく、研磨後の半導体ウェーハの形状を高い精度で測定できる。そして、この測定結果に基づいて、次回の研磨工程の研磨条件が設定される。このように、研磨後の測定結果を、次回の研磨工程の研磨条件に、迅速にフィードバックできるため、結果として、高精度なフラットネスの半導体ウェーハを製造することができる。
本発明によれば、測定工程を行う前に、研磨後の半導体ウェーハを有機酸水溶液に浸漬する。半導体ウェーハの有機酸水溶液への浸漬によって、研磨後の半導体ウェーハ表面の疎水面を保持することができる。また、研磨工程後の純水リンスした半導体ウェーハ表面に残留している研磨スラリーなどを中和することができる。
浸漬工程で使用する有機酸水溶液の濃度は、0.001質量%以上10質量%以下が好ましく、0.01質量%以上1.0質量%以下がより好ましく、0.1質量%が特に好ましい。有機酸水溶液の濃度が0.001質量%未満では、半導体ウェーハの表面が清浄な疎水面にはならないため、引き上げ工程で引き上げた半導体ウェーハの表面に水滴が残ってしまうおそれがある。他方、有機酸水溶液の濃度が10質量%を超えると、水溶液中に混じった異物の微粒子が半導体ウェーハ表面に付着する不具合を生じるおそれがある。
そして、浸漬工程での浸漬時間が60分を超える前に、有機酸水溶液から半導体ウェーハを引き上げる。浸漬時間が60分を超えると研磨面が親水面となる。その場合有機酸水溶液から半導体ウェーハを引き上げたときに、研磨面に水滴が残ってしまう。水滴が残留すると測定できなくなるため、水滴除去するための工程が必要になる。
一方、浸漬時間が60分を超える前に、有機酸水溶液から半導体ウェーハを引き上げると、研磨面が疎水面を保持するため研磨面に水滴が残らない。
本発明によれば、半導体ウェーハを100mm/sec以下の速度で引き上げることにより、液面から水溶液を引き上げないので、引き上げ後の半導体ウェーハの研磨面に水滴が残留することがない。有機酸水溶液からの半導体ウェーハの引き上げ速度が100mm/secを超える場合には、有機酸水溶液の液面から水滴を引き上げてしまうおそれがある。このうち、半導体ウェーハの引き上げ速度は、10mm/sec以上100mm/sec以下がより好ましく、30mm/sec以上60mm/sec以下が特に好ましい。
本発明によれば、引き上げ時に、半導体ウェーハの研磨面が水平面と略直交する姿勢を維持することで、重力によって水滴が落ちやすいため、研磨面から早く水滴がなくなる。そのため、測定工程への移行を早くできる。
ここで、研磨面が水平面と略直交とは、研磨面が水平面と厳密に直交する姿勢だけでなく、引き上げた後の半導体ウェーハ表面に水滴が残留しない程度であれば、研磨面は、水平面と直交の姿勢から、多少の傾斜を生じていてもよい。例えば、引き上げ時の半導体ウェーハは、その研磨面が水平面と直交の姿勢からプラスマイナス5°程度の傾斜が生じていてもよい。
本発明によれば、測定工程に光学センサまたは静電容量センサを用いることで、測定の時間短縮化や測定装置の小型化を図ることができる。そのため、次回の研磨工程の研磨条件へのフィードバックをより一層迅速に行うことができる。
本発明によれば、上記列挙した各種有機酸を使用した水溶液へ浸漬することで、研磨後の半導体ウェーハ表面の疎水面を保持することができる。
本発明によれば、上記構成を備えることにより、移動手段によって、研磨手段と保管槽と測定手段との間で、研磨後の半導体ウェーハを移動可能にしたので、各手段間の半導体ウェーハの移動時間を従来と比較して大幅に短縮することができる。
そして、測定手段で得られた測定結果、即ち、研磨後の半導体ウェーハの形状の測定結果は、研磨条件設定手段に送られる。この研磨条件設定手段では、上記測定結果に基づいて研磨条件が解析され、次回の研磨工程の研磨条件にフィードバックされる。このように、研磨後の測定結果を、次回の研磨工程の研磨条件に、迅速にフィードバックできるため、結果として、高精度なフラットネスの半導体ウェーハを製造することができる。
本発明によれば、上記列挙した各種有機酸を使用した水溶液へ浸漬することで、研磨後の半導体ウェーハ表面の疎水面を保持することができる。
まず、本発明の第1実施形態を図面を参照して説明する。
図1は、本発明の半導体ウェーハの研磨装置を示す概略図である。
図1に示すように、本発明の半導体ウェーハの研磨装置は、研磨手段1と、保管槽2と、測定手段3と、移動手段4と、研磨条件設定手段51とを備えている。また、本発明の半導体ウェーハの研磨装置は、研磨前の複数枚の半導体ウェーハWとキャリア15とを収容可能な保管ユニット6を備えている。なお、図1では、図示を簡略化するため、キャリア15内に収納した半導体ウェーハWの枚数を1枚で示したが、本発明では、1枚の収納に限らず、複数枚の半導体ウェーハを収納可能であることはいうまでもない。
本実施形態の研磨手段1は、図2に示すように、両面研磨装置10である。
本実施形態の研磨工程に用いられる両面研磨装置10について説明する。
図2は、本実施形態における両面研磨装置の構成を表す概略図である。
図2に示すように、両面研磨装置10は、上定盤11、下定盤12、インナーギア13、アウターギア14、および、複数のキャリア15を備えて構成される。キャリア15内には、複数の半導体ウェーハWが収納される。なお、図2では、1枚のキャリア15内に3枚の半導体ウェーハWが収納されるように構成されている。
上定盤11は、定盤本体111と、この定盤本体111を下定盤12に対して接近離間させる昇降機構112とを備えて構成される。
昇降機構112は、定盤本体111の略中央に設けられる軸部を有し、図示を略したが、上部に配置される門型フレームに設けられるモータによって、定盤本体111を上下に昇降させる。
インナーギア13は、下定盤12の円板の略中心に、下定盤12と独立して回転するように設けられ、その外周側面には、キャリア15と噛合する歯131が形成されている。
アウターギア14は、下定盤12を囲むリング状体から構成され、リングの内側面には、キャリア15と噛合する歯141が形成されている。
キャリア15は、円板状体から構成され、その外周側面には前記のインナーギア13およびアウターギア14と噛合する歯151が形成される。また円板状体内部には、複数のウェーハ保持孔152が形成され、このウェーハ保持孔152内部に半導体ウェーハWが収納される。
図1に戻って、保管槽2は、複数枚の半導体ウェーハWを収容可能かつ有機酸水溶液を保管可能な水槽であり、既存のウェットボックスを使用することができる。半導体ウェーハWは、半導体ウェーハWの研磨面が有機酸水溶液の水平面と略直交するような姿勢で、かつ、各半導体ウェーハWが接触しないように、各半導体ウェーハWの間に所定の間隔をあけた状態になるように保管槽2に収容されることが好ましい。保管槽2中の有機酸水溶液は、保管槽2に半導体ウェーハWを収容したときに、半導体ウェーハWの全面が有機酸酸水溶液に浸かる程度の量が貯留されていればよい。有機酸水溶液の液温は、0℃以上60℃以下の範囲に保たれていればよく、10℃以上40℃以下の範囲がより好ましく、20℃以上30℃以下の範囲が特に好ましい。
測定手段3は、半導体ウェーハWの形状を測定するために設けられている。具体的には、研磨前後の半導体ウェーハWの形状、あるいは、研磨前後の半導体ウェーハWの研磨取代形状を測定する。本実施形態では、研磨後の半導体ウェーハWの形状測定について説明する。
本実施形態の測定手段3は、分光干渉変位装置30である。分光干渉変位装置30は、半導体ウェーハWの形状をそれぞれ測定するセンサ部31と、コントローラユニット32と、を備えている。センサ部31とコントローラユニット32とは、光学的に接続されている。
センサ部31は、測定対象である半導体ウェーハWの表面および裏面が測定可能な位置で、かつ、表面を測定するセンサ部31と裏面を測定するセンサ部31とが対向するように設けられている。また、センサ部31は、半導体ウェーハWの研磨面(表面、裏面)と直交する姿勢で、研磨面と間隔をあけて配置されている。
センサ部31は、半導体ウェーハWの研磨面の測定箇所に、広域波長帯域の光を投光するとともに、測定箇所で反射した反射光を受けるように構成されている。コントローラユニット32は、センサ部31で受けた反射光を解析し、センサ部31と測定箇所までの距離を算出する。
移動手段4は、研磨手段1と保管槽2と測定手段3との間で半導体ウェーハWを移動させるために設けられている。本実施形態の移動手段4は、既存のウェーハ搬送装置で使用されている搬送ユニット40である。
搬送ユニット40は、6軸ロボットであり、その先端部には半導体ウェーハWを把持可能なウェーハ把持部41を備えている。
本実施形態では、図1に示すように、搬送ユニット40の周りに、両面研磨装置10と保管槽2と分光干渉変位装置30とがそれぞれ配置され、半導体ウェーハWを把持したウェーハ把持部41を水平に回転移動させることで、両面研磨装置10、保管槽2および分光干渉変位装置30にそれぞれ半導体ウェーハWを搬送可能に構成されている。
制御装置5は、例えばCPUやメモリー等が組み合わされることで構成されている。そして、制御装置5は、研磨条件設定手段51、研磨制御手段52を備えている。
研磨条件設定手段51は、次回の研磨工程の研磨条件を設定する。研磨制御手段52は、所定の研磨条件に基づき、両面研磨装置10の動作を制御する。制御装置5は、両面研磨装置10と、測定手段3のコントローラユニット32とにそれぞれ電気的に接続されている。制御装置5では、両面研磨装置10から出力された研磨条件を取得したり、研磨条件設定手段51で設定した研磨条件を出力したりする。また、制御装置5は、コントローラユニット32から出力された、半導体ウェーハWの測定結果を取得する。そして、この半導体ウェーハWの測定結果に基づいて、研磨条件設定手段51により研磨工程の研磨条件を解析する。
<研磨工程>
先ず、移動手段4により、保管ユニット6に収容された、研磨前の半導体ウェーハWが両面研磨装置10に搬送される。図1では、保管ユニット6の研磨前の半導体ウェーハWを、キャリア15とともに、研磨手段1である両面研磨装置10の下定盤12上に搬送している。そして、研磨制御手段52から動作命令を送ることで、上定盤11および下定盤12の間に研磨スラリーが供給され、搬送された半導体ウェーハWが、所定の研磨条件で研磨される。研磨後は、上定盤11および下定盤12の間に純水が供給され、研磨後の半導体ウェーハWがリンスされる。
所定の研磨条件での研磨を終えた半導体ウェーハWは、移動手段4により、両面研磨装置10から取り出され、保管槽2に搬送される。搬送された半導体ウェーハWは、有機酸水溶液の水平面と略直交する姿勢で、かつ、各半導体ウェーハWが接触しないように、各半導体ウェーハWの間に所定の間隔をあけた状態で、半導体ウェーハWの全面が有機酸水溶液に浸かるように有機酸水溶液に浸漬される。
浸漬工程での浸漬時間が60分を超える前に、移動手段4により、有機酸水溶液から半導体ウェーハWが引き上げられる。半導体ウェーハWは、移動手段4により、研磨面が水平面と略直交する姿勢を維持しながら、100mm/sec以下の速度で引き上げられる。
この測定工程では、研磨後の半導体ウェーハWの研磨面が親水面となる前に、即ち、疎水面の状態で半導体ウェーハWの形状が測定される。
上記引き上げ工程で、浸漬工程での浸漬時間が60分を超える前に、保管槽2の有機酸水溶液から引き上げられた半導体ウェーハWは、移動手段4により、測定手段3に搬送される。本発明では、半導体ウェーハWの全面を測定する必要はなく、センサ部31により、半導体ウェーハWの所望の箇所のみが測定される。例えば、半導体ウェーハWの中心から外周に向けて、半径方向に10μmピッチで測定される。なお、上記のような複数箇所の測定は、移動手段4により、センサ部31,31間で半導体ウェーハWを移動させながら、センサ部31により測定することにより行われる。
コントローラユニット32で算出された結果は、制御装置5へと出力される。
測定手段3で形状測定を終えた後の半導体ウェーハWは、移動手段4により、保管槽2に戻される。
制御装置5では、両面研磨装置10から出力された研磨条件を取得するとともに、コントローラユニット32から出力された研磨後の半導体ウェーハWの形状結果を取得する。
そして、研磨条件設定手段51において、ウェーハ全面の形状について、以下のような条件に基づいて、研磨条件を解析することで、次回の研磨工程の研磨条件が設定される。
(A1):上記指数値が-100nm以上+100nm以下の場合は、前回の研磨工程の研磨条件を保持する。
(A2):上記指数値が100nmを超える場合は、前回の研磨工程の研磨条件に調整パラメータn1を加える。
(A3):上記指数値が-100nm未満の場合は、前回の研磨工程の研磨条件に調整パラメータn1を減じる。
ウェーハ外周端より内側1mm又は内側2mmのポイントの厚みt1と、更に内側30mmまでの範囲内で測定した全ての厚みの近似線のt1の位置での厚みt2の差(t1-t2)(以下、「近似線との差」という。)に基づいて、以下の(B1)~(B3)に示す条件に従い、次回の研磨工程の研磨条件が自動設定される。なお、以下の調整パラメータm1は研磨速度により求められ、この調整パラメータにより研磨条件における研磨時間を調整する。
(B1):近似線との差が-5nm以上+5nm以下の場合は、前回の研磨工程の研磨条件を保持する。
(B2):近似線との差が5nmを超える場合は、前回の研磨工程の研磨条件に調整パラメータm1を加える。
(B3):近似線との差が-5nm未満の場合は、前回の研磨工程の研磨条件に調整パラメータm1を減じる。
移動手段4により、研磨前の半導体ウェーハWを測定手段3に搬送し、研磨前の半導体ウェーハWの厚みを事前に測定しておく。ここでの事前測定は、研磨工程後に実施される測定工程と同様に、半導体ウェーハWの全面を測定する必要はなく、センサ部31により、半導体ウェーハWの所望の箇所のみが測定される。
研磨前の半導体ウェーハWを測定した後は、研磨前の半導体ウェーハWを両面研磨装置10に搬送し、研磨工程、浸漬工程、引き上げ工程、および、測定工程をそれぞれ実施する。
そして、次の式(1)から、研磨工程において行われた研磨の推定研磨速度を求める。
このように、研磨後の半導体ウェーハWの形状の測定結果が、次回の研磨工程の研磨条件にフィードバックされる。
上述したように、上記第1実施形態では、以下のような作用効果を奏することができる。
このため、水滴による測定誤差を生じることなく、研磨後の半導体ウェーハWの形状を高い精度で測定できる。
半導体ウェーハWの有機酸水溶液への浸漬によって、研磨後の半導体ウェーハW表面が疎水面に保持されるため、有機酸水溶液に浸漬した後の半導体ウェーハW表面の乾燥時間の短縮化を図れる。また、研磨工程後の純水リンスした半導体ウェーハW表面に残留している研磨スラリーなどを中和することができる。
浸漬時間が60分を超える前に、有機酸水溶液から半導体ウェーハWを引き上げると、研磨面が疎水面に保持されるため、有機酸水溶液から半導体ウェーハWを引き上げたときに、研磨面に水滴が残らない。
このような条件で半導体ウェーハWを引き上げることにより、液面から水溶液を引き上げないので、引き上げ後の半導体ウェーハWの研磨面に水滴が残留することがない。したがって、引き上げ工程後に、乾燥工程を別途設ける必要がないため、工程の削減、並びに、測定を行うまでの時間短縮に繋がる。
引き上げ時に、半導体ウェーハWの研磨面が水平面と略直交する姿勢を維持することで、重力によって水滴が落ちやすいため、研磨面から早く水滴がなくなる。そのため、測定工程への移行を早くできる。
光学センサを用いることで、測定の時間短縮化や測定装置の小型化を図ることができる。そのため、次回の研磨工程の研磨条件へのフィードバックをより一層迅速に行うことができる。
このように、研磨後の測定結果を、次回の研磨工程の研磨条件に、迅速にフィードバックできるため、結果として、高精度なフラットネスの半導体ウェーハWを製造することができる。
次に、本発明の第2実施形態を説明する。なお、第2実施形態における半導体研磨装置の構成は、上記第1実施形態と同様であるので省略し、半導体ウェーハの研磨方法を説明する。
先ず、移動手段4により、保管ユニット6に収容された、研磨前の半導体ウェーハWを測定手段3に搬送し、研磨前の半導体ウェーハWの厚みを事前に測定しておく。ここでの事前測定は、研磨工程後に実施される測定工程と同様に、半導体ウェーハWの全面を測定する必要はなく、センサ部31により、半導体ウェーハWの所望の箇所のみが測定される。
研磨前の半導体ウェーハWを測定した後は、研磨前の半導体ウェーハWを両面研磨装置10に搬送し、上記第1実施形態と同様に、研磨工程、浸漬工程、および、引き上げ工程をそれぞれ実施する。
この測定工程では、研磨後の半導体ウェーハWの研磨面が親水面となる前に、即ち、疎水面の状態で半導体ウェーハWの研磨取代形状が測定される。
上記引き上げ工程で、浸漬工程での浸漬時間が60分を超える前に、保管槽2の有機酸水溶液から引き上げられた半導体ウェーハWは、移動手段4により、測定手段3に搬送される。本実施形態では、上記第1実施形態と同様に、半導体ウェーハWの全面を測定する必要はなく、センサ部31により、半導体ウェーハWの所望の箇所のみが測定される。
コントローラユニット32で算出された結果は、制御装置5へと出力される。
測定手段3で形状測定を終えた後の半導体ウェーハWは、移動手段4により、保管槽2に戻される。
制御装置5では、両面研磨装置10から出力された研磨条件を取得するとともに、コントローラユニット32から出力された研磨後の半導体ウェーハWの形状結果を取得する。
そして、研磨条件設定手段51において、ウェーハ全面の研磨取代形状について、以下のような条件に基づいて、研磨条件を解析することで、次回の研磨工程の研磨条件が設定される。
(C1):上記指数値が-50nm以上+50nm以下の場合は、前回の研磨工程の研磨条件を保持する。
(C2):上記指数値が+50nmを超える場合は、前回の研磨工程の研磨条件に調整パラメータn2を加える。
(C3):上記指数値が-50nm未満の場合は、前回の研磨工程の研磨条件に調整パラメータn2を減じる。
ウェーハ外周端より内側1mm又は内側2mmのポイントの研磨前後の厚み差と、更に内側30mmまでの範囲内で測定した全ての研磨前後の厚み差の近似線との差に基づいて、以下の(D1)~(D3)の条件に従い、次回の研磨サイクルの研磨条件が自動設定される。なお、以下の調整パラメータm2は研磨速度により求められ、この調整パラメータにより研磨条件における研磨時間を調整する。
(D1):近似線との差が-5nm以上+5nm以下の場合は、前回の研磨工程の研磨条件を保持する。
(D2):近似線との差が5nmを超える場合は、前回の研磨工程の研磨条件に調整パラメータm2を加える。
(D3):近似線との差が-5nm未満の場合は、前回の研磨工程の研磨条件に調整パラメータm2を減じる。
移動手段4により、研磨前の半導体ウェーハWを測定手段3に搬送し、研磨前の半導体ウェーハWの厚みを事前に測定しておく。ここでの事前測定は、研磨工程後に実施される測定工程と同様に、半導体ウェーハWの全面を測定する必要はなく、センサ部31により、半導体ウェーハWの所望の箇所のみが測定される。
研磨前の半導体ウェーハWを測定した後は、研磨前の半導体ウェーハWを両面研磨装置10に搬送し、研磨工程、浸漬工程、引き上げ工程、および、測定工程をそれぞれ実施する。
そして、次の式(3)から、研磨工程において行われた研磨の推定研磨速度を求める。
このように、研磨後の半導体ウェーハWの形状の測定結果が、次回の研磨工程の研磨条件にフィードバックされる。
第1及び第2実施形態では、1台の両面研磨装置10に対して、1台の測定手段3を備えた構成としたが、2台の両面研磨装置10の間に1台の測定手段3を配置した構成としてもよい。上記構成により、2台の両面研磨装置10でそれぞれ研磨された半導体ウェーハWの形状を、1台の測定手段3で測定することができる。その結果、半導体ウェーハの研磨装置を1セット設置する際の測定手段3の新規投資費用を半減することができる。
また、上記第2実施形態では、研磨手段1として、両面研磨装置10を使用したが、中間仕上げ研磨に使用される、片面研磨装置を使用してもよい。両面研磨装置10は、取代が5μm以上30μm以下と大きく、粗研磨に適した装置であるのに対して、片面研磨装置は、取代が0.2μm以上1.0μm以下と小さく、半導体ウェーハの表面の状態を良好にするための装置である。両面研磨装置は、第1実施形態に適しており、片面研磨装置は、研磨前後の半導体ウェーハの形状をプロファイルしてフィードバックする第2実施形態に適している。
また、第1及び第2実施形態では、センサ部31を2台設置して、半導体ウェーハWの表面側および裏面側の形状をそれぞれ測定する構成としたが、設置するセンサ部31を1台にし、半導体ウェーハWのいずれか一方の面側のみの測定にしてもよい。このような設置するセンサ部31を1台にする構成は、測定する半導体ウェーハWの厚みが、例えば、310μm以下と薄い場合に好適である。
また、第1及び第2実施形態では、保管槽2に有機酸水溶液を貯留する構成としたが、有機酸水溶液に代えて、フッ化水素酸水溶液を使用してもよい。フッ化水素酸水溶液を使用することで、半導体ウェーハWの研磨面を疎水面の状態とすることができる。
図1に示す、半導体ウェーハの研磨装置により、直径が300mmの半導体ウェーハWの両面研磨を行った。なお、保管槽2に貯留された水溶液は、25℃に保たれた0.1質量%濃度のクエン酸水溶液である。
先ず、搬送ユニット40により、保管ユニット6から研磨前の半導体ウェーハWとキャリア15とを両面研磨装置10に搬送した。そして、研磨スラリーを供給し、所定の研磨条件で、半導体ウェーハWの両面研磨を実施した。両面研磨後は、純水を供給し、研磨後の半導体ウェーハWをリンスした。
リンス後は、搬送ユニット40により、両面研磨装置10から保管槽2へと、研磨後の半導体ウェーハWを搬送した。搬送された半導体ウェーハWは、保管槽2のクエン酸水溶液に浸漬し、半導体ウェーハWをクエン酸水溶液中に1分間保持した。
クエン酸水溶液への一定時間保持後、搬送ユニット40により、研磨面が水平面と略直交する姿勢を維持しながら、100mm/secの速度で、半導体ウェーハWを引き上げた。
引き上げた半導体ウェーハWの表面(研磨面)の水滴の有無を目視により確認したところ、疎水面の状態であり水滴は残留していなかった。
続いて、搬送ユニット40により、半導体ウェーハWを分光干渉変位装置30に搬送した。分光干渉変位装置30では、搬送ユニット40により、半導体ウェーハWを3mm/secの速度で移動させ、センサ部31により、半導体ウェーハWの中心から外周に向けて、外周端より内側2mmの位置まで半径方向に10μmピッチで測定した。そして、測定データをコントローラユニット32により演算し、ウェーハ全面の形状を算出した。
この算出結果を研磨条件設定手段51に出力し、研磨条件設定手段51により、取得した研磨後の半導体ウェーハWの形状結果に基づき、ウェーハ中心部の厚みから、ウェーハ外周端より内側2mmの厚みを差し引くことで指数値を求めた。そして、この指数値から、(A1)、(A2)、および(A3)の条件に従って次回の研磨工程の研磨条件を調整して研磨を行い、半導体ウェーハWの形状を測定した結果、GBIR品質の工程能力が向上した。
なお、GBIR(Global flatness Back reference Ideal Range)は、平坦度を表すために標準化されたパラメータである。
図1に示す、半導体ウェーハの研磨装置により、上記実施例1と同様に、直径が300mmの半導体ウェーハWの両面研磨を行った。なお、保管槽2には、25℃に保たれた純水を貯留した。
両面研磨後は、搬送ユニット40により、両面研磨装置10から保管槽2へと、研磨後の半導体ウェーハWを搬送した。搬送された半導体ウェーハWは、保管槽2の純水に浸漬し、半導体ウェーハWを純水中に60分間保持した。
純水への一定時間保持後、搬送ユニット40により、研磨面が水平面と略直交する姿勢を維持しながら、100mm/secの速度で、半導体ウェーハWを引き上げた。
引き上げた半導体ウェーハWの表面(研磨面)の水滴の有無を目視により確認したところ、親水面となっており水滴が残留していた。そのため、分光干渉変位装置30によるウェーハ全面の形状測定ができなかった。
上記実施例1のセンサ部31による測定にて得られた測定データを、コントローラユニット32により演算し、ウェーハ外周部の形状を算出した。
この算出結果を研磨条件設定手段51に出力し、研磨条件設定手段51により、取得した研磨後の半導体ウェーハWの形状結果に基づき、近似線との差を求めた。そして、この近似線との差が、(B1)、(B2)、および(B3)の条件に従って次回以降の研磨条件を調整して研磨を行い、半導体ウェーハWの形状を測定した結果、ESFQR品質の工程能力が向上した。
なお、ESFQR(Edge flatness metric, Sector based, Front surface referenced, least sQuares fit reference plane, Range of the data within sector)は、ウェーハ全周の外周部域に形成した扇型の領域(セクター)内のSFQRを測定した値である。SFQRは、半導体ウェーハWを多数のサイトに分割し、各サイト内での基準面を設け、その基準面から各サイトでのプラス側とマイナス側の最大変化量を測定し、このプラス側の最大変化量の絶対値とマイナス側の最大変化量の絶対値とを加算したものである。
上記比較例1において、ウェーハ全面の形状を測定できなかったため、ウェーハ外周部の形状についても算出できなかった。
図1に示す、両面研磨装置10に代えて、片面研磨装置(仕上げ研磨装置)を備えた半導体ウェーハの研磨装置により、直径が300mmの半導体ウェーハWの仕上げ研磨を行った。なお、保管槽2に貯留された水溶液は、25℃に保たれた0.1質量%濃度のクエン酸水溶液である。
先ず、続いて、搬送ユニット40により、半導体ウェーハWを分光干渉変位装置30に搬送した。分光干渉変位装置30では、搬送ユニット40により、半導体ウェーハWを3mm/secの速度で移動させ、センサ部31により、半導体ウェーハWの中心から外周に向けて、半径方向に10μmピッチで測定した。そして、測定データをコントローラユニット32により演算し、ウェーハ全面の研磨取代形状を算出した。
次に、搬送ユニット40により、保管ユニット6から研磨前の半導体ウェーハWとキャリア15とを仕上げ研磨装置に搬送した。そして、研磨スラリーを供給し、所定の研磨条件で、半導体ウェーハWの仕上げ研磨を実施した。仕上げ研磨後は、純水を供給し、研磨後の半導体ウェーハWをリンスした。
仕上げ研磨後は、搬送ユニット40により、仕上げ研磨装置から保管槽2へと、研磨後の半導体ウェーハWを搬送した。搬送された半導体ウェーハWは、保管槽2のクエン酸水溶液に浸漬し、半導体ウェーハWをクエン酸水溶液中に1分間保持した。
クエン酸水溶液への一定時間保持後、搬送ユニット40により、研磨面が水平面と略直交する姿勢を維持しながら、100mm/secの速度で、半導体ウェーハWを引き上げた。
引き上げた半導体ウェーハWの表面(研磨面)の水滴の有無を目視により確認したところ、疎水面の状態であり水滴は残留していなかった。
続いて、搬送ユニット40により、半導体ウェーハWを分光干渉変位装置30に搬送した。分光干渉変位装置30では、搬送ユニット40により、半導体ウェーハWを3mm/secの速度で移動させ、センサ部31により、半導体ウェーハWの中心から外周に向けて、半径方向に10μmピッチで測定した。そして、測定データをコントローラユニット32により演算し、ウェーハ全面の研磨取代形状を算出した。
この算出結果を研磨条件設定手段51に出力し、研磨条件設定手段51により、取得した研磨後の半導体ウェーハWの形状結果に基づき、ウェーハ中心部の研磨前後の厚み差から、ウェーハ外周縁より内側2mmのポイントの研磨前後の厚み差を差し引くことで指数値を求めた。そして、この指数値から、(C1)、(C2)、および(C3)の条件に従って次回の研磨工程の研磨条件を調整して研磨を行い、半導体ウェーハWの研磨取代形状を測定した結果、GBIR品質の工程能力が向上した。
図1に示す、両面研磨装置10に代えて、片面研磨装置(仕上げ研磨装置)を備えた半導体ウェーハの研磨装置により、上記実施例3と同様に、直径が300mmの半導体ウェーハWの仕上げ研磨を行った。なお、保管槽2には、25℃に保たれた純水を貯留した。
仕上げ研磨後は、搬送ユニット40により、仕上げ研磨装置から保管槽2へと、研磨後の半導体ウェーハWを搬送した。搬送された半導体ウェーハWは、保管槽2の純水に浸漬し、半導体ウェーハWを純水中に60分間保持した。
純水への一定時間保持後、搬送ユニット40により、研磨面が水平面と略直交する姿勢を維持しながら、100mm/secの速度で、半導体ウェーハWを引き上げた。
引き上げた半導体ウェーハWの表面(研磨面)の水滴の有無を目視により確認したところ、親水面の状態であり水滴が残留していた。そのため、分光干渉変位装置30によるウェーハの研磨取代の形状測定ができなかった。
上記実施例3のセンサ部31による測定にて得られた測定データを、コントローラユニット32により演算し、ウェーハ外周部の研磨取代形状を算出した。
この算出結果を研磨条件設定手段51に出力し、研磨条件設定手段51により、取得した研磨前後の半導体ウェーハWの形状結果に基づき、研磨前後の厚みの差の近似線との差を求めた。そして、この近似線との差から(D1)、(D2)、および(D3)の条件に従って次回の研磨工程の研磨条件を調整して研磨を行い、半導体ウェーハWの研磨取代形状を測定した結果、ESFQR品質の工程能力が向上した。
上記比較例3において、ウェーハの研磨取代の形状を測定できなかったため、ウェーハ外周部の研磨取代形状についても算出できなかった。
Claims (8)
- 半導体ウェーハを研磨する研磨工程と、
研磨後の前記半導体ウェーハの研磨面が親水面となる前に、前記半導体ウェーハの形状を測定する測定工程と、
前記半導体ウェーハの形状の測定結果に基づいて、前記研磨工程での研磨条件を設定する研磨条件設定工程とを備えることを特徴とする半導体ウェーハの研磨方法。 - 請求項1に記載の半導体ウェーハの研磨方法において、
前記測定工程を行う前に、前記研磨後の半導体ウェーハを有機酸水溶液に浸漬する浸漬工程と、
前記浸漬工程での浸漬時間が60分を経過する前に、前記有機酸水溶液から前記半導体ウェーハを引き上げる引き上げ工程とを備えることを特徴とする半導体ウェーハの研磨方法。 - 請求項2に記載の半導体ウェーハの研磨方法において、
前記引き上げ工程は、前記半導体ウェーハを100mm/sec以下の速度で引き上げることを特徴とする半導体ウェーハの研磨方法。 - 請求項2または請求項3に記載の半導体ウェーハの研磨方法において、
前記引き上げ工程は、前記半導体ウェーハの研磨面が水平面と略直交する姿勢を維持しながら引き上げることを特徴とする半導体ウェーハの研磨方法。 - 請求項1から請求項4のいずれかに記載の半導体ウェーハの研磨方法において、
前記測定工程は、光学センサまたは静電容量センサを用いて、前記半導体ウェーハの形状を測定することを特徴とする半導体ウェーハの研磨方法。 - 請求項2から請求項5のいずれかに記載の半導体ウェーハの研磨方法において、
前記有機酸水溶液に使用される有機酸が、クエン酸、ギ酸、酢酸、酪酸、シュウ酸、マロン酸、およびコハク酸のうち、少なくともいずれかであることを特徴とする半導体ウェーハの研磨方法。 - 半導体ウェーハを研磨する研磨手段と、
前記半導体ウェーハを収容可能かつ有機酸水溶液を保管可能な保管槽と、
前記半導体ウェーハの形状を測定する測定手段と、
前記研磨手段と前記保管槽と前記測定手段との間で前記半導体ウェーハを移動させる移動手段と、
前記測定手段での測定結果に基づいて、前記研磨手段での研磨条件を設定する研磨条件設定手段とを備えることを特徴とする半導体ウェーハの研磨装置。 - 請求項7に記載の半導体ウェーハの研磨装置において、
前記有機酸水溶液に使用される有機酸が、クエン酸、ギ酸、酢酸、酪酸、シュウ酸、マロン酸、およびコハク酸のうち、少なくともいずれかであることを特徴とする半導体ウェーハの研磨装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112014003930.6T DE112014003930B4 (de) | 2013-08-28 | 2014-05-29 | Verfahren zum Polieren von Halbleiterwafern |
US14/912,426 US10553420B2 (en) | 2013-08-28 | 2014-05-29 | Method and device for polishing semiconductor wafer |
CN201480047485.8A CN105474367B (zh) | 2013-08-28 | 2014-05-29 | 半导体晶片的研磨方法及研磨装置 |
KR1020167005148A KR101840285B1 (ko) | 2013-08-28 | 2014-05-29 | 반도체 웨이퍼의 연마 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-176825 | 2013-08-28 | ||
JP2013176825A JP6101175B2 (ja) | 2013-08-28 | 2013-08-28 | 半導体ウェーハの研磨方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015029524A1 true WO2015029524A1 (ja) | 2015-03-05 |
Family
ID=52586103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/064252 WO2015029524A1 (ja) | 2013-08-28 | 2014-05-29 | 半導体ウェーハの研磨方法および研磨装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10553420B2 (ja) |
JP (1) | JP6101175B2 (ja) |
KR (1) | KR101840285B1 (ja) |
CN (1) | CN105474367B (ja) |
DE (1) | DE112014003930B4 (ja) |
TW (1) | TWI552217B (ja) |
WO (1) | WO2015029524A1 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101660900B1 (ko) * | 2015-01-16 | 2016-10-10 | 주식회사 엘지실트론 | 웨이퍼 연마 장치 및 이를 이용한 웨이퍼 연마 방법 |
JP6465015B2 (ja) * | 2015-12-18 | 2019-02-06 | 株式会社Sumco | 半導体ウェーハの厚み分布測定システムおよび半導体ウェーハ研磨システム、半導体ウェーハの厚み分布測定方法および半導体ウェーハの厚み取り代分布測定方法、ならびに半導体ウェーハの研磨方法 |
CN109037025A (zh) * | 2017-06-08 | 2018-12-18 | 中芯国际集成电路制造(上海)有限公司 | 半导体结构及其形成方法 |
CN109261582A (zh) * | 2017-07-18 | 2019-01-25 | 上海新昇半导体科技有限公司 | 研磨台清洗装置及其清洗方法 |
DE102017121692A1 (de) * | 2017-09-19 | 2019-03-21 | Supfina Grieshaber Gmbh & Co. Kg | Feinbearbeitungsmaschine |
KR102546838B1 (ko) * | 2018-03-26 | 2023-06-23 | 주식회사 케이씨텍 | 기판 처리 장치 |
JP2021004796A (ja) * | 2019-06-26 | 2021-01-14 | 株式会社Sumco | 半導体ウェーハの厚み測定方法及び半導体ウェーハの厚み測定システム |
JP7363127B2 (ja) * | 2019-06-26 | 2023-10-18 | 株式会社Sumco | 半導体ウェーハの厚み測定方法 |
JP7291795B2 (ja) * | 2019-09-30 | 2023-06-15 | Hoya株式会社 | 基板配置支援治具及び基板の製造方法 |
US20210151338A1 (en) * | 2019-11-19 | 2021-05-20 | Micron Technology, Inc. | Wafer storage devices configured to measure physical properties of wafers stored therein, associated methods, and apparatus |
JPWO2022254856A1 (ja) * | 2021-06-04 | 2022-12-08 | ||
JP2023123191A (ja) * | 2022-02-24 | 2023-09-05 | 三菱マテリアルテクノ株式会社 | 搬送装置、研磨装置、及び搬送方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000254860A (ja) * | 1999-03-08 | 2000-09-19 | Nikon Corp | 研磨装置 |
WO2001071788A1 (fr) * | 2000-03-17 | 2001-09-27 | Shin-Etsu Handotai Co., Ltd. | Eau pour le stockage de plaquettes de silicium et procede de stockage |
JP2003249477A (ja) * | 2002-02-26 | 2003-09-05 | Toshiba Ceramics Co Ltd | 半導体基板用枚葉洗浄装置 |
WO2009008594A1 (en) * | 2007-07-06 | 2009-01-15 | Doosan Mecatec Co., Ltd. | End point detecting apparatus for semiconductor wafer polishing process |
JP2012508454A (ja) * | 2008-11-07 | 2012-04-05 | アプライド マテリアルズ インコーポレイテッド | インラインウェハ厚さ感知 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11285969A (ja) | 1998-04-02 | 1999-10-19 | Shin Etsu Handotai Co Ltd | 光学式定寸装置付ラップ又は研磨装置及び方法 |
US6849548B2 (en) * | 2002-04-05 | 2005-02-01 | Seh America, Inc. | Method of reducing particulate contamination during polishing of a wafer |
JP2004140196A (ja) * | 2002-10-17 | 2004-05-13 | Nec Electronics Corp | 半導体装置の製造方法および基板洗浄装置 |
US20050205835A1 (en) * | 2004-03-19 | 2005-09-22 | Tamboli Dnyanesh C | Alkaline post-chemical mechanical planarization cleaning compositions |
JP2006147980A (ja) | 2004-11-24 | 2006-06-08 | Fujitsu Ltd | 研磨方法 |
KR20070095999A (ko) * | 2005-12-06 | 2007-10-01 | 신메이와 인더스트리즈,리미티드 | 시트 플라즈마 성막장치 |
US8734661B2 (en) | 2007-10-15 | 2014-05-27 | Ebara Corporation | Flattening method and flattening apparatus |
JP5511190B2 (ja) * | 2008-01-23 | 2014-06-04 | 株式会社荏原製作所 | 基板処理装置の運転方法 |
CN102554788B (zh) | 2010-12-23 | 2015-01-07 | 中芯国际集成电路制造(北京)有限公司 | 一种抛光垫修整方法 |
-
2013
- 2013-08-28 JP JP2013176825A patent/JP6101175B2/ja active Active
-
2014
- 2014-05-19 TW TW103117454A patent/TWI552217B/zh active
- 2014-05-29 KR KR1020167005148A patent/KR101840285B1/ko active IP Right Grant
- 2014-05-29 CN CN201480047485.8A patent/CN105474367B/zh active Active
- 2014-05-29 WO PCT/JP2014/064252 patent/WO2015029524A1/ja active Application Filing
- 2014-05-29 US US14/912,426 patent/US10553420B2/en active Active
- 2014-05-29 DE DE112014003930.6T patent/DE112014003930B4/de active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000254860A (ja) * | 1999-03-08 | 2000-09-19 | Nikon Corp | 研磨装置 |
WO2001071788A1 (fr) * | 2000-03-17 | 2001-09-27 | Shin-Etsu Handotai Co., Ltd. | Eau pour le stockage de plaquettes de silicium et procede de stockage |
JP2003249477A (ja) * | 2002-02-26 | 2003-09-05 | Toshiba Ceramics Co Ltd | 半導体基板用枚葉洗浄装置 |
WO2009008594A1 (en) * | 2007-07-06 | 2009-01-15 | Doosan Mecatec Co., Ltd. | End point detecting apparatus for semiconductor wafer polishing process |
JP2012508454A (ja) * | 2008-11-07 | 2012-04-05 | アプライド マテリアルズ インコーポレイテッド | インラインウェハ厚さ感知 |
Also Published As
Publication number | Publication date |
---|---|
JP2015046488A (ja) | 2015-03-12 |
DE112014003930T5 (de) | 2016-05-19 |
TWI552217B (zh) | 2016-10-01 |
US20160196966A1 (en) | 2016-07-07 |
JP6101175B2 (ja) | 2017-03-22 |
KR20160039653A (ko) | 2016-04-11 |
US10553420B2 (en) | 2020-02-04 |
KR101840285B1 (ko) | 2018-03-20 |
CN105474367B (zh) | 2019-12-24 |
DE112014003930B4 (de) | 2024-07-04 |
CN105474367A (zh) | 2016-04-06 |
TW201517145A (zh) | 2015-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6101175B2 (ja) | 半導体ウェーハの研磨方法 | |
TWI731162B (zh) | 研磨裝置及研磨方法 | |
TWI635929B (zh) | 研磨裝置及研磨狀態監視方法 | |
US7354332B2 (en) | Technique for process-qualifying a semiconductor manufacturing tool using metrology data | |
KR20040100954A (ko) | 기판제조방법 및 기판처리장치 | |
TWI613717B (zh) | 基板處理系統、基板處理方法、程式及電腦記憶媒體 | |
US20140242731A1 (en) | System and method for performing a wet etching process | |
US10845777B2 (en) | Teaching device and teaching method | |
JP6222171B2 (ja) | 定寸装置、研磨装置、及び研磨方法 | |
JP2009522126A (ja) | 基板研磨システムにおいて基板処理回数を調整する方法 | |
WO2018207704A1 (ja) | 洗浄装置、基板処理装置、洗浄装置のメンテナンス方法、および洗浄装置のメンテナンスプログラムを含むコンピュータ読み取り可能な記録媒体 | |
CN106663597B (zh) | Soi晶圆的制造方法 | |
JP2018114582A (ja) | 研磨方法 | |
TWI738757B (zh) | 經由化學的適應性峰化來控制蝕刻速率的裝置和方法 | |
TWI553722B (zh) | Silicon wafer manufacturing method and silicon wafer | |
US20210005475A1 (en) | Wafer to wafer bonding methods and wafer to wafer bonding apparatuses | |
CN109643650B (zh) | 半导体晶片的研磨方法及半导体晶片 | |
KR102493187B1 (ko) | 기판 포지셔닝 장치 및 방법들 | |
CN110690141B (zh) | 基板清洗装置及基板清洗方法 | |
JP2007301697A (ja) | 研磨方法 | |
JP2022046137A (ja) | 基板処理方法及び基板処理システム | |
JP7542078B2 (ja) | 基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体 | |
WO2023106084A1 (ja) | 基板処理方法及び基板処理システム | |
JP2007301684A (ja) | 研磨装置、これを用いた半導体デバイス製造方法およびこの方法により製造される半導体デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480047485.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14839460 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14912426 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20167005148 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120140039306 Country of ref document: DE Ref document number: 112014003930 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14839460 Country of ref document: EP Kind code of ref document: A1 |