KR101660900B1 - 웨이퍼 연마 장치 및 이를 이용한 웨이퍼 연마 방법 - Google Patents

웨이퍼 연마 장치 및 이를 이용한 웨이퍼 연마 방법 Download PDF

Info

Publication number
KR101660900B1
KR101660900B1 KR1020150007963A KR20150007963A KR101660900B1 KR 101660900 B1 KR101660900 B1 KR 101660900B1 KR 1020150007963 A KR1020150007963 A KR 1020150007963A KR 20150007963 A KR20150007963 A KR 20150007963A KR 101660900 B1 KR101660900 B1 KR 101660900B1
Authority
KR
South Korea
Prior art keywords
wafer
thickness
unit
gbir
section
Prior art date
Application number
KR1020150007963A
Other languages
English (en)
Other versions
KR20160088635A (ko
Inventor
박우식
Original Assignee
주식회사 엘지실트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지실트론 filed Critical 주식회사 엘지실트론
Priority to KR1020150007963A priority Critical patent/KR101660900B1/ko
Priority to JP2017536284A priority patent/JP6490818B2/ja
Priority to PCT/KR2015/006129 priority patent/WO2016114458A1/ko
Priority to CN201580074296.4A priority patent/CN107210211B/zh
Priority to US15/542,646 priority patent/US10259097B2/en
Publication of KR20160088635A publication Critical patent/KR20160088635A/ko
Application granted granted Critical
Publication of KR101660900B1 publication Critical patent/KR101660900B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/205Lapping pads for working plane surfaces provided with a window for inspecting the surface of the work being lapped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

실시 예는 하정반, 상기 하정반 상에 배치되고 회전하는 상정반, 웨이퍼를 수용하고, 상기 하정반 상에 배치되는 캐리어, 및 상기 캐리어에 수용된 웨이퍼에 광을 조사하고 상기 웨이퍼에 의하여 반사된 광을 검출하고, 검출된 결과에 따른 검출 데이터를 출력하는 센서부를 포함하며, 상기 센서부는 상기 상정반과 함께 회전한다.

Description

웨이퍼 연마 장치 및 이를 이용한 웨이퍼 연마 방법{AN APPARATUS OF POLISHING A WAFER AND A METHOD OF POLISHING A WAFER USING THE SAME}
실시 예는 웨이퍼 연마 장치 및 이를 이용한 웨이퍼 연마 방법에 관한 것이다.
일반적으로 쵸크라르스키법(CZ법)에 의하여 실리콘 단결정 잉곳을 성장시키고, 얻어진 실리콘 잉곳을 와이어 쏘우를 이용하여 슬라이싱하여 슬라이싱된 웨이퍼를 제작한 후, 슬라이싱된 웨이퍼에 대하여 래핑(lapping), 에칭(etching), 세정, 및 연마(polishing) 공정을 수행하여 실리콘 웨이퍼를 얻을 수 있다.
연마 공정에서는 양면 연마 장치를 이용하여 슬라이싱된 웨이퍼의 양면을 연마함으로써 평탄화된 실리콘 웨이퍼를 얻을 수 있다.
웨이퍼의 연마 속도는 연마포, 캐리어 등의 가공 치구, 재료의 열화에 의하여 연마 공정을 수행할 때마다 달라질 수 있다. 따라서 연마 시간을 고정하여 연마를 수행할 경우 상술한 원인에 의하여 연마 속도가 달라짐에 따른 연마 후의 웨이퍼의 두께가 달라질 수 있다. 연마 중의 웨이퍼의 두께를 측정하면서, 연마의 속도 등을 조절할 필요가 있다.
실시 예는 연마되는 웨이퍼의 두께를 정확하게 측정할 수 있고, 웨이퍼의 연마 품질을 향상시킬 수 있는 웨이퍼 연마 장치, 및 웨이퍼 연마 방법을 제공한다.
실시 예에 따른 웨이퍼 연마 장치는 하정반; 상기 하정반 상에 배치되고, 회전하는 상정반; 웨이퍼를 수용하고, 상기 하정반 상에 배치되는 캐리어(carrier); 및 상기 캐리어에 수용된 웨이퍼에 광을 조사하고, 상기 웨이퍼에 의하여 반사된 광을 검출하고, 검출된 결과에 따른 검출 데이터를 출력하는 센서부를 포함하며, 상기 센서부는 상기 상정반과 함께 회전한다.
상기 상정반은 상기 센서부로부터 조사되는 광이 통과하는 하나의 관통 구멍을 구비한다.
상기 웨이퍼 연마 장치는 상기 검출 데이터에 기초하여, 연마된 웨이퍼의 두께를 산출하는 제어부를 더 포함할 수 있다.
상기 센서부는 상기 상정반과 함께 회전하며, 상기 검출 데이터를 출력하는 두께 측정 센서; 상기 검출 데이터를 상기 제어부에 전송하는 케이블(cable); 및 상기 케이블과 연결되는 로터리 커넥터(rotary connector)를 포함할 수 있다.
상기 센서부는 상기 상정반의 상부면에 고정될 수 있다.
상기 웨이퍼 연마 장치는 상기 센서부가 고정되는 상기 상정반의 상부면의 일 영역의 반대편 영역에 고정되는 제1 하중 보정부를 더 포함하며, 상기 제1 하중 보정부의 무게는 상기 센서부의 무게와 동일할 수 있다.
상기 웨이퍼 연마 장치는 상기 상정반 상에 배치되며, 상기 상정반에 슬러리를 공급하며, 상기 상정반과 함께 회전하는 슬러리 공급부를 더 포함할 수 있다. 상기 센서부는 상기 슬러리 공급부에 고정될 수 있다.
상기 웨이퍼 연마 장치는 상기 센서부가 고정되는 상기 슬러리 공급부의 일 영역의 반대편 영역에 고정되는 제2 하중 보정부를 더 포함하며, 상기 제2 하중 보정부의 무게는 상기 센서부의 무게와 동일할 수 있다.
상기 상정반의 상부면에는 상기 센서부의 일단이 삽입되어 배치되는 홈이 마련되며, 상기 관통 구멍은 상기 홈의 바닥을 관통하여 상기 상정반을 관통할 수 있다.
상기 웨이퍼 연마 장치는 상기 관통 구멍의 내벽 상에 배치되고, 상기 관통 구멍의 하단을 덮어 막는 광 투과막을 더 포함할 수 있다.
상기 제어부는 기설정된 구간마다 상기 연마된 웨이퍼의 형상 정보 및 GBIR(Global Backside reference Indicate Reading)을 취득하고, 취득된 GBIR에 기초하여 상기 연마된 웨이퍼에 대한 연마 공정 수행 여부를 결정하며, 상기 GBIR은 상기 기설정된 구간 동안 획득된 웨이퍼의 두께들 중 최대값과 최소값의 차이일 수 있다.
상기 제어부는 현 구간의 GBIR이 이전 구간의 GBIR보다 큰 경우, 상기 연마된 웨이퍼에 대한 연마를 중지할 수 있다.
상기 제어부는 상기 캐리어의 중심 이동 궤적의 좌표, 상기 캐리어에 수용된 웨이퍼의 중심 이동 궤적의 좌표, 및 상기 웨이퍼의 중심으로부터 상기 센서부에 의한 웨이퍼의 두께 측정 위치들까지의 거리들에 기초하여, 상기 연마된 웨이퍼의 형상 정보를 획득할 수 있다.
실시 예에 따른 웨이퍼의 연마 방법은 하정반, 상정반, 및 상기 상정반과 함께 회전하는 센서부를 포함하는 웨이퍼 연마 장치를 이용하여 상기 하정반 상에 배치되는 적어도 하나의 캐리어에 로딩된 웨이퍼에 대한 양면 연마를 시작함과 동시에 상기 센서부를 이용하여 연마되는 웨이퍼의 두께를 측정하는 단계; 상기 연마되는 웨이퍼의 두께가 기설정된 기준 두께에 도달하였는지 판단하는 단계; 상기 연마되는 웨이퍼의 두께가 상기 기준 두께에 도달한 경우, 기설정된 구간 동안 웨이퍼의 형상 정보를 취득하는 단계; 상기 획득된 웨이퍼의 형상 정보를 이용하여 웨이퍼의 GBIR을 산출하는 단계; 및 산출된 GBIR에 기초하여, 웨이퍼에 대한 양면 연마의 중단 여부를 결정하는 단계를 포함한다.
상기 웨이퍼의 형상 정보를 취득하는 단계는 상기 기설정된 구간 동안 랜덤한 복수 개의 두께 측정 위치들에서 상기 연마되는 웨이퍼의 두께들을 측정하는 단계; 및 상기 연마되는 웨이퍼의 측정된 두께들에 기초하여, 웨이퍼의 반경 방향으로의 웨이퍼의 두께 프로파일을 획득하는 단계를 포함할 수 있다.
상기 웨이퍼에 대한 양면 연마의 중단 여부를 결정하는 단계는 제1 구간의 웨이퍼의 GBIR이 제2 구간의 웨이퍼의 GBIR보다 크면, 상기 웨이퍼에 대한 양면 연마 공정을 중단할 수 있으며, 상기 제1 구간 및 상기 제2 구간은 상기 연마되는 웨이퍼의 두께가 상기 기준 두께에 도달한 시점 이후의 구간들로 상기 제1 구간은 상기 제2 구간의 다음에 오는 기설정된 구간일 수 있다.
상기 제1 구간의 웨이퍼의 GBIR이 상기 제2 구간의 GBIR보다 크지 않으면, 다음 번째 기설정된 구간 동안 웨이퍼의 형상 정보를 취득하고, 획득된 웨이퍼의 형상 정보를 이용하여 웨이퍼의 GBIR을 산출하고, 산출된 GBIR에 기초하여 웨이퍼에 대한 양면 연마를 중단 여부를 결정할 수 있다.
상기 웨이퍼에 대한 양면 연마의 중단 여부를 결정하는 단계는 제1 구간의 웨이퍼의 GBIR이 제2 구간의 웨이퍼의 GBIR보다 크거나 같으면, 상기 웨이퍼에 대한 양면 연마 공정을 중단하며, 상기 제1 구간 및 상기 제2 구간은 상기 연마되는 웨이퍼의 두께가 상기 기준 두께에 도달한 시점 이후의 구간들로 상기 제1 구간은 상기 제2 구간의 다음에 오는 기설정된 구간일 수 있다.
실시 예는 연마되는 웨이퍼의 두께를 정확하게 측정할 수 있고, 웨이퍼의 연마 품질을 향상시킬 수 있다.
도 1은 실시 예에 따른 양면 연마 장치의 단면도를 나타낸다.
도 2는 다른 실시 예에 따른 양면 연마 장치의 단면도를 나타낸다.
도 3은 다른 실시 예에 따른 양면 연마 장치의 단면도를 나타낸다.
도 4는 고정형 두께 측정 센서 및 회전형 두께 측정 센서에 의하여 취득되는 데이터의 양을 나타낸다.
도 5는 실시 예에 따른 광 투과막의 확대도를 나타낸다.
도 6은 도 3에 도시된 홈의 확대도를 나타낸다.
도 7은 실시 예에 따른 양면 연마 방법을 나타내는 플로차트이다.
도 8은 연마되는 웨이퍼의 두께 변화에 따른 GBIR의 변화를 나타낸다.
도 9a는 양면 연마 중의 캐리어의 중심의 이동 궤적을 나타낸다.
도 9b는 도 9a에 도시된 캐리어에 장착된 웨이퍼의 중심의 이동 궤적을 나타낸다.
도 10은 실시 예의 두께 측정 센서를 이용하여 측정되는 웨이퍼의 두께 측정 위치들을 나타낸다.
도 11은 웨이퍼의 반경 방향으로의 두께 프로파일 및 GBIR을 나타낸다.
도 12는 캐리어와 웨이퍼 간의 두께 차이에 의한 갭, 및 갭에 따른 웨이퍼 형상의 차이를 나타낸다.
도 13은 연마된 웨이퍼의 평균 두께와 GBIR 간의 상관성을 나타내는 그래프이다.
이하, 실시 예들은 첨부된 도면 및 실시 예들에 대한 설명을 통하여 명백하게 드러나게 될 것이다. 실시 예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상/위(on)"에 또는 "하/아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상/위(on)"와 "하/아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 상/위 또는 하/아래에 대한 기준은 도면을 기준으로 설명한다.
도면에서 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다. 또한 동일한 참조번호는 도면의 설명을 통하여 동일한 요소를 나타낸다.
도 1은 실시 예에 따른 양면 연마 장치(100)의 단면도를 나타낸다.
도 1을 참조하면, 양면 연마 장치(100)는 하정반(110), 제1 연마 패드(112), 하정반 회전부(115), 상정반(120), 제2 연마 패드(122), 선기어(sun gear, 132), 인터널 기어(internal gear, 134), 적어도 하나의 캐리어(carrier, 140), 슬러리 공급부(150), 상정반 회전부(160), 센서부(170), 및 제어부(180)를 포함할 수 있다.
하정반(110)은 적어도 하나의 캐리어(140)에 로딩(loading) 또는 수용된 웨이퍼(W)를 지지하고, 중공을 갖는 환형의 원판 형상일 수 있다. 하정반(110)의 상부면에는 웨이퍼를 연마하기 위한 제1 연마 패드(112)가 장착 또는 부착될 수 있다.
하정반 회전부(115)는 하정반(110) 아래에 배치되고, 하정반(110)을 회전시킨다.
하정반 회전부(115)는 하정반(110)을 회전시키는 제1 회전축을 구비할 수 있으며, 제1 회전축은 하정반(110)을 시계 방향 또는 시계 반대 방향으로 회전시킬 수 있다.
예컨대, 구동 모터(미도시)의 회전에 의하여 제1 회전축은 회전할 수 있고, 제1 회전축과 함께 하정반(110)은 시계 반대 방향 또는 시계 방향으로 회전할 수 있다.
상정반(120)은 하부면이 하정반(110)의 상부면과 대향하도록 하정반(110) 상에 배치될 수 있으며, 중공을 갖는 환형의 원판 형상일 수 있다. 상정반(120)의 하부면에는 웨이퍼를 연마하기 위한 제2 연마 패드(122)가 장착 또는 부착될 수 있다.
상정반(120)은 후술하는 센서부(170)로부터 조사되는 광이 통과하는 하나의 관통 구멍(125)을 구비할 수 있다. 예컨대, 관통 구멍(125)은 상정반(120) 및 제2 연마 패드(122)를 관통할 수 있다.
상정반(120)의 관통 구멍(125) 내에는 광을 투과시키는 광 투과막(310)이 배치될 수 있다.
도 5는 실시 예에 따른 광 투과막(310)의 확대도를 나타낸다.
도 5를 참조하면, 광 투과막(310)은 관통 구멍(125)의 내벽 상에 배치될 수 있으며, 관통 구멍(125)의 하단을 덮어 막을 수 있다.
예컨대, 광 투과막(310)의 일단은 체결구(312,314)에 의하여 관통 구멍(125)에 인접하는 상정반(120)의 상부면에 고정될 수 있다. 예컨대, 체결구(312,314)는 나사일 수 있으나, 이에 한정되는 것은 아니다.
광 투과막(310)은 양면 테이프 또는 접착제 등을 이용하여 관통 구멍(125)의 내벽 상에 부착될 수 있으며, 광 투과막(310)의 타단은 관통 구멍(125)의 하단을 막을 수 있다. 광 투과막(310)은 투광성 플라스틱, 예컨대, 투명 PVC일 수 있으나, 이에 한정되는 것은 아니다.
슬러리 공급부(150)는 상정반(120) 상에 배치되며, 상정반(120)에 슬러리를 공급한다. 슬러리 공급부(150)는 상정반(120)의 상부면과 연결될 수 있고, 상정반(120)과 함께 회전할 수 있다. 상정반(120)은 내부에 슬러리 공급부(150)로부터 제공되는 슬러리가 흐르는 슬러리 공급관(미도시)이 구비될 수 있으며, 슬러리 공급관을 통하여 슬러리는 적어도 하나의 캐리어(carrier, 140)에 로딩되는 웨이퍼에 공급될 수 있다.
상정반 회전부(160)는 상정반(120)을 회전시키고, 상정반(120)을 상하 운동시킬 수 있다.
상정반 회전부(160)는 슬러리 공급부(150)와 연결될 수 있고, 상정반(120)을 을 회전시키는 제2 회전축을 구비할 수 있다.
예컨대, 제2 회전축은 슬러리 공급부(150)의 상부면과 연결될 수 있고, 슬러리 공급부(150) 및 상정반(120)을 함께 시계 방향 또는 시계 반대 방향으로 회전시킬 수 있다. 예컨대, 제2 회전축은 구동 모터(미도시)에 연결될 수 있고, 구동 모터의 회전에 의하여 제2 회전축은 회전할 수 있고, 제2 회전축과 함께 상정반(120)은 시계 방향 또는 시계 반대 방향으로 회전할 수 있다.
상정반 회전부(160)는 상정반(120)을 상하 이동시킴으로써 적어도 하나의 캐리어(140)에 로딩된 웨이퍼(W)에 가해지는 상정반(110)의 하중을 조절할 수 있다.
예컨대, 제2 회전축은 공압 또는 유압 실린더(cylinder, 미도시)와 연결될 수 있고, 공압 또는 유압 실린더에 의하여 적어도 하나의 캐리어(140)에 로딩된 웨이퍼(W)에 가해지는 상정반(120)의 하중이 조절될 수 있다.
선 기어(132)는 하정반(110)의 중공 내에 배치될 수 있고, 다수의 제1 핀들을 구비하는 핀 기어 (pin gear)형태일 수 있다.
인터널 기어(134)는 하정반(110)의 가장자리 둘레에 위치할 수 있다. 예컨대, 인터널 기어(134)는 내주면이 하정반(110)의 가장자리 외주면을 감싸는 환형의 원판 형상일 수 있다. 인터널 기어(134)는 다수의 제2 핀들을 포함하는 핀 기어 형태일 수 있다.
적어도 하나의 캐리어(140)는 하정반(110)의 상부면 상에 배치되고, 연마할 웨이퍼(W)를 수용 또는 로딩(loading)할 수 있다. 예컨대, 적어도 하나의 캐리어(140)는 하정반(110) 상의 제1 연마 패드(112)와 상정반(120) 상의 제2 연마 패드(122) 사이에 배치될 수 있다.
적어도 하나의 캐리어(140)는 웨이퍼(W)를 수용하는 웨이퍼 장착 홀(미도시), 및 웨이퍼 장착 홀과 이격하고 슬러리가 통과하는 적어도 하나의 슬러리 홀이 마련되는 캐리어 몸체, 및 캐리어 몸체의 외주면에 마련되는 기어를 포함할 수 있다. 적어도 하나의 캐리어(140)는 에폭시 글래스(epoxy glass), SUS, 우레탄, 세라믹, 또는 폴리머 재질일 수 있다.
캐리어 몸체는 원반형일 수 있으나, 이에 한정되는 것은 아니다. 캐리어(140의 가장자리의 외주면에 형성되는 기어는 선 기어(132)의 제1 핀들 및 인터널 기어(134)의 제2 핀들과 서로 맞물릴 수 있다. 적어도 하나의 캐리어(140)는 선 기어(132) 및 인터널 기어(134)와 맞물려 연마 공정시 회전 운동을 할 수 있다.
센서부(170)는 슬러리 공급부(150)에 고정되고, 슬러리 공급부(150) 및 상정반(120)과 함께 회전하며, 상정반(120)의 관통 구멍(125)을 통하여 적어도 하나의 캐리어(140)에 수용된 웨이퍼(W)에 광을 조사하고, 웨이퍼(W)에 의하여 반사된 광을 검출하며, 검출된 결과에 따른 검출 데이터(WD)를 출력한다.
예컨대, 센서부(170)로부터 조사되는 광은 레이저(laser)일 수 있으나, 이에 한정되는 것은 아니다.
센서부(170)는 두께 측정 센서(172), 케이블(174), 로터리 커넥터(rotary connector, 176)를 포함한다.
두께 측정 센서(172)는 관통 구멍(125)에 정렬되도록 슬러리 공급부(150)에 고정되고, 슬러리 공급부(150) 및 상정반(120)과 함께 회전하며, 관통 구멍(125)을 통하여 웨이퍼(W)에 광을 조사하고, 웨이퍼(W)에 의하여 반사된 광을 검출할 수 있으며, 검출된 결과에 따른 검출 데이터(DW)를 출력할 수 있다.
예컨대, 두께 측정 센서(172)는 광(예컨대, 레이저)을 조사하는 광학 유닛, 및 웨이퍼(W)로부터 반사된 레이저를 검출하는 광검출기(photodetector)를 포함할 수 있다.
두께 측정 센서(172)의 중앙은 관통 구멍(125)의 중앙에 정렬될 수 있다. 예컨대, 정확한 두께 측정을 위하여 광학 유닛으로부터 조사되는 광(예컨대, 레이저)은 관통 구멍(125)의 중앙에 정렬되도록 조준될 수 있다.
두께 측정 센서(172)는 웨이퍼(W)의 표면에서 반사되는 광과 웨이퍼(W)를 투과하여 반사되는 광을 검출할 수 있으며, 검출된 결과에 따른 웨이퍼의 두께에 관한 검출 데이터(WD)를 출력할 수 있다.
케이블(174)은 로터리 커넥터(176)를 통하여 두께 측정 센서(172)와 제어부(180)를 연결하며, 두께 측정 센서(172)의 광검출기에 의하여 검출된 웨이퍼의 두께에 관한 검출 데이터(WD)는 케이블(174)을 통하여 제어부(180)로 전송된다.
로터리 커넥터(176)는 케이블(174)과 연결되며, 두께 측정 센서(172)가 회전할 때, 케이블(174)이 꼬이지 않도록 하는 역할을 할 수 있다. 로터리 커넥터(176)는 베어링 구조로 구현될 수 있으며, 케이블(174)이 상정반(120)과 함께 회전하도록 함으로써 케이블(174)과 두께 측정 센서(172) 간에 간섭이 발생하지 않도록 하는 역할을 할 수 있다.
도 4는 고정형 두께 측정 센서 및 회전형 두께 측정 센서에 의하여 취득되는 데이터의 양을 나타낸다.
고정형 두께 측정 센서는 상정반의 회전과 상관없이 고정 배치되며, 상정반에는 복수의 관통 홀들이 형성된다. 연마시 상정반이 회전할 때, 고정형 두께 센서는 회전하는 상정반에 형성되는 복수의 관통 홀들을 통하여 레이저의 조사 및 반사되는 빛을 검출할 수 있다.
도 4를 참조하면, 고정형 두께 측정 센서의 경우 검출 데이터가 취득될 수 있는 위치들(P1 내지 P5)은 상정반에 이격하여 형성되는 관통 홀들에 대응할 수 있다.
반면에, 실시 예와 같이, 상정반(120)과 함께 회전하는 회전형 두께 측정 센서(172)는 하나의 관통 홀(125)을 통하여 거의 연속적인 검출 데이터의 취득(410)이 가능할 수 있다.
제어부(180)는 케이블(174)을 통하여 전송되는 웨이퍼의 두께에 관한 검출 데이터(WD)에 기초하여 웨이퍼의 두께를 산출한다.
예컨대, 제어부(180)는 웨이퍼(W)의 표면에서 반사되는 광과 웨이퍼(W)를 투과하여 반사되는 광의 위상차를 이용하여 웨이퍼(W)의 두께를 측정할 수 있다.
두께 측정 센서(172)는 상정반(120)과 동시에 회전하기 때문에, 하나의 관통 구멍(125)을 통하여 웨이퍼의 두께에 관한 연속적인 검출 데이터를 얻을 수 있고, 이로 인하여 실시 예는 정확한 웨이퍼의 두께 측정이 가능하다.
도 2는 다른 실시 예에 따른 양면 연마 장치(200)의 단면도를 나타낸다. 도 1과 동일한 도면 부호는 동일한 구성을 나타내며, 동일한 구성에 대해서는 설명을 간략하게 하거나 생략한다.
도 2를 참조하면, 양면 연마 장치(200)는 도 1의 양면 연마 장치(100)에 하중 보정부(210)를 더 포함할 수 있다.
하중 보정부(210)는 두께 측정 센서(172)가 고정되는 슬러리 공급부(150)의 일 영역의 반대편 영역에 고정될 수 있다. 하중 보정부(210)의 무게는 두께 측정 센서(172)의 무게와 동일할 수 있다.
하중 보정부(210)는 두께 측정 센서(172)에 의하여 상정반(120)의 하중이 어느 한쪽으로 치우치는 것을 방지할 수 있다.
도 3은 다른 실시 예에 따른 양면 연마 장치(300)의 단면도를 나타낸다.
도 1과 동일한 도면 부호는 동일한 구성을 나타내며, 동일한 구성에 대해서는 설명을 간략하게 하거나 생략한다.
도 3을 참조하면, 양면 연마 장치(300)는 하정반(110), 제1 연마 패드(112), 하정반 회전부(115), 상정반(120), 제2 연마 패드(122), 선기어(sun gear, 132), 인터널 기어(internal gear, 134), 적어도 하나의 캐리어(carrier, 140), 슬러리 공급부(150), 상정반 회전부(160), 센서부(170-1), 제어부(180), 및 하중 보정부(210-1)를 포함할 수 있다.
도 1에 도시된 실시 예(100)의 두께 측정 센서(172)는 슬러리 공급부(150)에 고정되지만, 도 3의 실시 예의 센서부(170-1)의 두께 측정 센서(172-1)는 슬러리 공급부(150)와 이격하며, 상정반(120)의 상부면에 배치, 고정될 수 있다.
두께 측정 센서(172-1)는 상정반(120)의 상부면에 고정되어 상정반(120)과 함께 회전하며, 관통 구멍(125)을 통하여 웨이퍼(W)에 광을 조사하고, 웨이퍼(W)의 의하여 반사된 광을 검출할 수 있으며, 검출된 결과에 따른 검출 데이터(DW)를 출력할 수 있다.
또한 도 2의 실시 예(200)의 하중 보정부(210)는 슬러리 공급부(150)에 고정되지만, 도 3의 실시 예(300)의 하중 보정부(210-1)는 상정반(120)의 상부면에 고정될 수 있다.
예컨대, 하중 보정부(210-1)는 두께 측정 센서(172-1)가 고정되는 상정반(120)의 상부면의 일 영역의 반대편 영역에 고정될 수 있다.
상정반(120-1)의 상부면에는 두께 측정 센서(172-1)의 일단이 삽입되어 배치될 수 있는 홈(510)이 마련될 수 있다.
도 6은 도 3에 도시된 홈(510)의 확대도를 나타낸다.
도 6을 참조하면, 상정반(120-1)의 상부면의 가장 자리에 인접하는 영역에 홈(510)이 마련될 수 있다. 관통 구멍(125)은 홈(510)의 바닥을 관통하여 상정반(120)을 관통할 수 있으며, 홈(510)의 중앙은 관통 구멍(125)의 중앙에 정렬될 수 있으나, 이에 한정되는 것은 아니다.
도 5에서 설명한 바와 같이, 광 투과막(310-1)은 홈(510)의 바닥, 및 관통 구멍(125)의 내벽 상에 배치될 수 있으며, 관통 구멍(125)의 하단을 덮거나 막을 수 있다.
두께 측정 센서(172-1)의 하단의 일부는 홈(510) 내에 삽입될 수 있으며, 홈(510)의 바닥에 의하여 지지될 수 있다. 두께 측정 센서(172-1)의 하단의 일부와 홈(510) 사이에는 접착 부재(미도시)가 배치될 수 있다.
상정반(120-1)이 회전할 때, 상정반(120-1)의 홈(510)은 두께 측정 센서(172-1)를 지지 또는 고정시키는 역할을 할 수 있다.
상정반(120-1)의 상부면에 고정되는 두께 측정 센서(172-1)에 의하여 상정반(120-1)의 하중이 어느 한편으로 치우치는 것을 방지하기 위하여 하중 보정부(210-1)는 두께 측정 센서(172-1)가 위치하는 상정반(120-1)의 상부면의 반대편에 고정될 수 있다. 하중 보정부(210-1)의 무게는 두께 측정 센서(172-1)와 동일할 수 있다.
실시 예에 따른 양면 연마 장치(100,200, 또는 300)는 상정반(120)과 함께 회전하는 회전형 두께 측정 센서(172)를 구비하고, 회전형 두께 측정 센서(172)에 의하여 하나의 관통 홀(125)을 통하여 연속적인 검출 데이터의 취득(410)이 가능하기 때문에, 연마 과정 중에 연마되는 웨이퍼의 두께를 정확하게 측정할 수 있다.
제어부(180)는 실시 예에 따른 양면 연마 장치(100,200,또는 300)의 센서부(170)로부터 제공되는 웨이퍼의 두께에 관한 검출 데이터를 이용하여 양면 연마 과정 중에 정확한 두께 측정이 가능하며, 이를 이용하여 연마 과정의 다양한 GBIR 산포 요인의 영향을 덜 받을 수 있도록 웨이퍼를 연마할 수 있다.
먼저 연마 과정에서 웨이퍼의 형상에 영향을 주는 요인들에 대하여 설명한다.
양면 연마 과정에서 연마되는 웨이퍼의 형상은 캐리어 및 웨이퍼 간의 두께 차이에 의한 갭(gap)에 의하여 영향을 받을 수 있다.
도 12는 캐리어와 웨이퍼 간의 두께 차이에 의한 갭(Gap), 및 갭(Gap)에 따른 웨이퍼 형상의 차이를 나타낸다.
도 12를 참조하면, 캐리어 및 웨이퍼 간의 두께 차이에 의한 갭(Gap)이 클수록 웨이퍼의 형상은 볼록한 형상일 수 있다. 반면에, 캐리어 및 웨이퍼 간의 두께 차이에 의한 갭(Gap)이 작을수록 웨이퍼의 형상은 오목한 형상으로 변화할 수 있다.
예컨대, 갭(Gap)이 6mm 이상일 경우에는 연마된 웨이퍼의 형상은 볼록한 형상일 수 있고, 갭(Gap)이 6mm 미만일 경우에는 연마된 웨이퍼의 형상은 적어도 일부가 오목한 형상을 가질 수 있다.
또한 연마가 진행되면서 캐리어의 마모, 연마 패드 표면의 변화, 슬러리의 물성 변화 등 여러 가지 요인들 또한 연마되는 웨이퍼의 형상에 영향을 줄 수 있다. 상술한 요인들에 의하여 GBIR의 산포는 크게 나타날 수 있다.
상술한 요인들에 의하여 연마되는 웨이퍼의 형상이 영향을 받더라도 연마되는 웨이퍼의 두께에 따른 GBIR을 측정하고, 측정되는 결과에 기초하여 최적의 GBIR을 갖는 연마된 웨이퍼의 두께를 얻을 수 있다.
도 13은 연마된 웨이퍼의 평균 두께와 GBIR 간의 상관성을 나타내는 그래프이다.
도 13을 참조하면, 연마된 웨이퍼의 평균 두께가 774㎛ ~ 774.5㎛일 때, GBIR 값이 작은 것을 알 수 있다. 또한 작은 GBIR 값을 나타내는 연마된 웨이퍼들의 평균 두께는 774㎛ ~ 774.5㎛ 범위 내에 주로 분포하는 것을 알 수 있다.
연마가 진행되면서 연마되는 웨이퍼의 형상에 영향을 주는 요인들에 의한 GBIR의 산포를 줄이기 위해서는 웨이퍼의 최적 연마 두께를 상황에 맞추어 바꾸어 주어야 한다.
실시 예에 따른 양면 연마 방법은 정밀한 연마 두께 조절이 가능한 도 1에 도시된 양면 연마 장치(100)를 이용하여, 연마 과정에서의 웨이퍼의 형상 변화를 모니터링하고, 공정 관리 범위 내에서 가장 낮은 GBIR 품질을 가지는 연마된 웨이퍼의 두께에서 양면 연마를 종료한다.
제어부(180)는 기설정된 구간마다 연마된 웨이퍼의 형상 정보, 및 GBIR을 취득하고, 취득된 GBIR에 기초하여 연마된 웨이퍼에 대한 연마 공정 계속 수행 여부를 결정할 수 있다.
도 7은 실시 예에 따른 양면 연마 방법을 나타내는 플로차트이고, 도 8은 연마되는 웨이퍼의 두께 변화에 따른 GBIR의 변화를 나타낸다.
도 7 및 도 8을 참조하면, 양면 연마 장치(100,200,또는 300)의 두께 측정 센서(170)를 통하여 제공되는 검출 데이터에 기초하여, 제어부(180)는 하정반(110) 상에 배치되는 적어도 하나의 캐리어(140)에 로딩된 웨이퍼(W)에 대한 양면 연마를 시작함과 동시에 연마되는 웨이퍼의 두께를 측정한다(S110). 예컨대, S110 단계에서 측정되는 웨이퍼의 두께는 웨이퍼의 평균 두께일 수 있다.
도 8에 따르면, 연마 이전의 웨이퍼의 최초 두께(T3)에서 GBIR은 가장 큰 값을 갖는 것을 알 수 있다.
다음으로 제어부(180)는 연마된 웨이퍼의 두께가 기설정된 기준 두께(T2)에 도달했는지 여부를 판단한다(S120). 여기서 기준 두께(T2)는 공정 관리 기준에 부합하는 최대 두께일 수 있다.
연마된 웨이퍼의 두께가 기설정된 기준 두께(T2)에 도달하지 않은 경우에는 웨이퍼에 대한 양면 연마 및 두께 측정을 계속 수행한다.
제어부(180)는 연마된 웨이퍼의 두께가 기준 두께(T2)에 도달한 경우에는 기설정된 구간 동안 웨이퍼의 형상 정보를 취득한다(S130).
예컨대, 연마된 웨이퍼의 두께가 기준 두께(T2)에 도달한 시점부터 매 기설정된 구간마다 실시 예에 따른 양면 연마 장치(100,200,또는 300)의 두께 측정 센서(172)를 이용하여 획득한 웨이퍼들의 두께들에 기초하여, 웨이퍼의 형상 정보를 취득할 수 있다. 여기서 기설정된 구간은 연마되는 웨이퍼의 평균 두께가 0.2㎛ ~ 0.3㎛이 되는데 걸리는 시간, 예컨대, 30초 ~ 1분일 수 있으나, 이에 한정되는 것은 아니다. 예컨대, S130 단계에서 측정되는 웨이퍼의 두께는 웨이퍼의 측정 위치들 각각에서의 웨이퍼의 두께일 수 있다.
실시 예에 따른 양면 연마 장치(100,200,또는 300)의 두께 측정 센서(172)를 이용하여, 기설정된 구간 동안 웨이퍼의 두께들을 측정하고, 측정한 결과에 따라 반경 방향으로의 웨이퍼의 두께 프로파일을 획득할 수 있다.
예컨대, 제어부(180)는 캐리어(140)의 중심 이동 궤적의 좌표, 캐리어(140)에 수용된 웨이퍼(W)의 중심 이동 궤적의 좌표, 및 웨이퍼(W)의 중심으로부터 두께 측정 센서(172)에 의한 웨이퍼의 두께 측정 위치들까지의 거리들(예컨대, R1,R2)에 기초하여, 연마된 웨이퍼의 형상 정보를 획득할 수 있다.
선기어(132) 및 인터널 기어(134)에 의하여 캐리어(140)의 중심 이동 궤적을 제어할 수 있고, 캐리어(140)의 중심 이동 궤적을 제어함으로써 연마되는 웨이퍼의 중심의 이동 궤적을 제어할 수 있고, 연마되는 웨이퍼의 중심의 이동 궤적을 추정 또는 산출할 수 있다.
선기어(132) 및 인터널 기어(134)에 의한 캐리어(140)의 중심 이동 궤적의 제어를 통하여, 캐리어(140)에 장착된 웨이퍼(W)의 중심의 이동 궤적을 추정할 수 있다.
도 9a는 양면 연마 중의 캐리어의 중심(902)의 이동 궤적을 나타낸다.
캐리어 및 웨이퍼의 이동 궤적의 좌표는 XY 좌표계일 수 있고, 캐리어 및 웨이퍼의 이동 궤적의 XY 좌표계의 원점(901)은 캐리어 드라이브 중앙, 예컨대, 선기어(132)에 대응하는 좌표(X0,Y0)일 수 있다.
도 9a를 참조하면, 캐리어의 중심(902)의 이동 궤적(Xc, Yc)은 하기 수학식 1 내지 3에 의하여 산출될 수 있다.
Figure 112015004732961-pat00001
Figure 112015004732961-pat00002
Figure 112015004732961-pat00003
Vc는 캐리어의 회전 속도(예컨대, RPM)일 수 있으며, t는 시간(예컨대, second)일 수 있고, Rc는 원점(901)에서 캐리어의 중심(902)까지의 거리일 수 있다.
도 9b는 도 9a에 도시된 캐리어에 장착된 웨이퍼의 중심(903)의 이동 궤적을 나타낸다.
도 9b를 참조하면, 웨이퍼의 중심(903)의 이동 궤적(Xw, Yw)은 수학식 4 내지 6에 의하여 산출될 수 있다.
Figure 112015004732961-pat00004
Figure 112015004732961-pat00005
Figure 112015004732961-pat00006
Rw는 캐리어의 중심(902)에서 웨이퍼의 중심(903)까지의 거리일 수 있다. Vc 및 t는 도 9a에서 설명한 바와 동일할 수 있다.
도 10은 실시 예의 두께 측정 센서(172)를 이용하여 측정되는 웨이퍼의 두께 측정 위치들(904-1, 904-2)을 나타낸다. 도 10에서는 2개의 두께 측정 위치들(904-1, 904-2)만 도시하였지만, 실질적으로 두께 측정 센서(172)는 기설정된 구간 동안 랜덤한 복수 개의 두께 측정 위치들에서 웨이퍼의 두께들을 측정할 수 있다.
여기서 두께 측정 위치는 관통 구멍(125)을 통하여 두께가 측정되는 웨이퍼의 일 영역의 위치일 수 있다.
도 10을 참조하면, 캐리어의 중심 이동 궤적의 좌표(Xc,Yc), 및 웨이퍼의 중심(903)의 이동 궤적의 좌표(Xw,Yw)를 이용하여, 웨이퍼의 중심(903)으로부터 웨이퍼의 두께 측정 위치들(904-1, 904-2)까지의 거리들(R1,R2)을 산출할 수 있다.
예컨대, 캐리어의 중심 이동 궤적의 좌표(Xc,Yc)를 이용하여, 웨이퍼의 중심 이동 궤적의 좌표(Xw,Yw)를 구할 수 있고, 웨이퍼의 중심 이동 궤적의 좌표(Xw,Yw) 및 두께 측정 위치들(904-1, 904-2)의 좌표((X1, Y1), (X2,Y2))를 이용하여, 웨이퍼의 중심(903)으로부터 두께 측정 위치들(904-1, 904-2)까지의 거리들(R1,R2)을 산출할 수 있다.
두께 측정 센서(172)에 의하여 랜덤(random)하게 웨이퍼의 두께가 측정되지만, 웨이퍼의 중심(903)으로부터 웨이퍼의 두께 측정 위치들(904-1,904-2)까지의 거리들(예컨대, R1,R2)을 산출할 수 있기 때문에, 웨이퍼의 반경 방향으로의 웨이퍼의 두께 프로파일을 얻을 수 있고, 이로 인하여 웨이퍼의 형상 정보를 획득할 수 있다. 예컨대, 웨이퍼의 반경 방향은 웨이퍼의 중심에서 웨이퍼의 에지로 향하는 방향일 수 있다.
도 11은 웨이퍼의 반경 방향으로의 두께 프로파일 및 GBIR을 나타낸다.
도 11을 참조하면, 실시 예의 두께 측정 센서(172)를 이용하여 기설정된 구간 동안 랜덤한 두께 측정 위치들에서 측정한 웨이퍼의 두께들을 웨이퍼의 중심으로부터의 이격 거리(예컨대, R1, R2)에 따라 배열함으로써, 웨이퍼의 형상 정보(웨이퍼의 두께 프로파일)을 획득할 수 있다. 예컨대, 기설정된 구간은 연마되는 웨이퍼의 평균 두께가 0.2㎛ ~ 0.3㎛가 되는데 걸리는 시간일 수 있으며, 30초 ~ 1분일 수 있으나, 이에 한정되는 것은 아니다.
다음으로 획득된 웨이퍼의 형상 정보를 이용하여, 웨이퍼의 GBIR을 산출한다(S140).
GBIR(Global Backside reference Indicate Reading)은 웨이퍼의 전체적인 평탄도를 나타내며, 웨이퍼의 전체 두께 편차를 의미하는 값으로서 웨이퍼의 최대 두께에서 최소 두께를 뺀 값으로 구할 수 있다.
도 7을 참조하면, 기설정된 구간 동안 웨이퍼의 GBIR은 기설정된 구간 동안 측정된 연마된 웨이퍼들의 두께들 중 최대값(Tmax[㎛])과 최초값(Tmin[㎛])의 차일 수 있다.
다음으로 산출된 웨이퍼의 GBIR에 기초하여 웨이퍼에 대한 양면 연마의 중단 여부를 결정한다.
제1 구간(현재 구간)의 웨이퍼의 GBIR과 제2 구간(이전 구간)의 웨이퍼의 GBIR을 비교한다(S150). S120 단계 및 S130에 따르면, 연마된 웨이퍼의 두께가 기준 두께에 도달한 시점부터 매 기설정된 구간 동안 웨이퍼의 형상 정보를 취득할 수 있고, GBIR을 산출할 수 있다. 제1 구간 및 제2 구간은 연마되는 웨이퍼의 두께가 기준 두께에 도달한 시점 이후의 기설정된 구간들일 수 있고, 제1 구간은 제2 구간의 다음에 오는 기설정된 구간일 수 있다.
예컨대, 제2 구간의 웨이퍼의 GBIR은 연마된 웨이퍼의 두께가 기준 두께에 도달한 시점부터 첫 번째 기설정된 구간 동안 획득된 GBIR일 수 있고, 제1 구간의 웨이퍼의 GBIR은 제2 구간 다음에 오는 기설정된 구간 동안 획득된 GBIR일 수 있다.
제어부(180)는 제1 구간의 웨이퍼의 GBIR이 제2 구간의 웨이퍼의 GBIR보다 크면, 웨이퍼에 대한 양면 연마 공정을 중단한다(S160).
도 8을 참조하면, 연마된 웨이퍼의 두께가 T2인 이후에 기설정된 구간마다 연마된 웨이퍼의 GBIR을 산출하면, 산출된 GBIR은 연마된 웨이퍼의 두께가 T3일 때까지는 감소하다가 연마된 웨이퍼의 두께가 T3 미만일 때에는 증가하는 것을 알 수 있다.
따라서 제1 구간의 웨이퍼의 GBIR이 제2 구간의 웨이퍼의 GBIR보다 커지는 시점 직전이 GBIR이 가장 작게 나타나는 것을 알 수 있다. 그리고 최소 GBIR을 얻기 위한 연마되는 웨이퍼의 최적 두께는 T3임을 알 수 있으며, 제1 구간의 웨이퍼의 GBIR이 제2 구간의 웨이퍼의 GBIR보다 커지는 시점이 될 때, 연마 공정을 중단될 수 있다.
반면에 제1 구간의 웨이퍼의 GBIR이 제2 구간의 웨이퍼의 GBIR보다 크지 않으며, 다음 번째의 기설정된 구간 동안 웨이퍼의 형상 정보를 취득하고, 취득된 웨이퍼의 형상 정보에 기초하여 웨이퍼의 GBIR을 산출한다(S150, S130, S140).
다른 실시 예에서는 제1 구간의 웨이퍼의 GBIR이 제2 구간의 웨이퍼의 GBIR보다 크거나 같으면, 웨이퍼에 대한 양면 연마 공정을 중단할 수도 있다. 반면에 제1 구간의 웨이퍼의 GBIR이 제2 구간의 웨이퍼의 GBIR보다 작으면, 다음 번째의 기설정된 구간 동안 웨이퍼의 형상 정보를 취득하고, 취득된 웨이퍼의 형상 정보에 기초하여 웨이퍼의 GBIR을 산출한다(S150, S130, S140).
실시 예에 따른 양면 연마 방법은 정밀한 두께 측정이 가능한 두께 측정 센서(172)를 이용하여, 매 기설정된 구간마다 웨이퍼의 형상 정보를 획득하고, 획득된 형상 정보에 기초하여 매 기설정된 구간에 대응하는 GBIR를 산출할 수 있다. 또한 실시 예에 따른 양면 연마 방법은 현 구간의 GBIR과 이전 구간의 GBIR을 비교함으로써, 가장 낮은 GBIR을 갖는 웨이퍼의 연마 두께를 획득할 수 있으며, 이로 인하여 웨이퍼의 연마 품질을 향상시킬 수 있다.
이상에서 실시 예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시 예에 포함되며, 반드시 하나의 실시 예에만 한정되는 것은 아니다. 나아가, 각 실시 예에서 예시된 특징, 구조, 효과 등은 실시 예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시 예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
110: 하정반 112: 제1 연마 패드
115: 하정반 회전부 120: 상정반
122: 제2 연마 패드 132: 선기어
134: 인터널 기어 140: 캐리어
150: 슬러리 공급부 160: 상정반 회전부
170: 센서부 180: 제어부.

Claims (20)

  1. 하정반;
    상기 하정반 상에 배치되고, 회전하는 상정반;
    웨이퍼를 수용하고, 상기 하정반 상에 배치되는 캐리어(carrier);
    상기 상정반의 상부면에 고정되어 상기 상정반과 함께 회전하며, 상기 캐리어에 수용된 웨이퍼에 광을 조사하고, 상기 웨이퍼에 의하여 반사된 광을 검출하고, 검출된 결과에 따른 검출 데이터를 출력하는 센서부; 및
    상기 센서부가 고정되는 상기 상정반의 상부면의 일 영역의 반대편 영역에 고정되는 제1 하중 보정부를 포함하는 웨이퍼 연마 장치.
  2. 제1항에 있어서,
    상기 상정반은 상기 센서부로부터 조사되는 광이 통과하는 하나의 관통 구멍을 구비하는 웨이퍼 연마 장치.
  3. 제2항에 있어서,
    상기 검출 데이터에 기초하여, 연마된 웨이퍼의 두께를 산출하는 제어부를 더 포함하는 웨이퍼 연마 장치.
  4. 제3항에 있어서, 상기 센서부는,
    상기 상정반과 함께 회전하며, 상기 검출 데이터를 출력하는 두께 측정 센서;
    상기 검출 데이터를 상기 제어부에 전송하는 케이블(cable); 및
    상기 케이블과 연결되는 로터리 커넥터(rotary connector)를 포함하는 웨이퍼 연마 장치.
  5. 제1항에 있어서,
    상기 제1 하중 보정부의 무게는 상기 센서부의 무게와 동일한 웨이퍼 연마 장치.
  6. 제4항에 있어서,
    상기 두께 측정 센서는 상기 상정반의 상부면에 고정되고, 상기 제1 하중 보정부는 상기 두께 측정 센서가 고정되는 상기 상정반의 상부면의 일 영역의 반대편에 고정되는 웨이퍼 연마 장치.
  7. 제1항에 있어서,
    상기 상정반 상에 배치되며, 상기 상정반에 슬러리를 공급하며, 상기 상정반과 함께 회전하는 슬러리 공급부를 더 포함하는 웨이퍼 연마 장치.
  8. 하정반;
    상기 하정반 상에 배치되고, 회전하는 상정반;
    상기 상정반 상에 배치되며, 상기 상정반에 슬러리를 공급하며, 상기 상정반과 함께 회전하는 슬러리 공급부;
    웨이퍼를 수용하고, 상기 하정반 상에 배치되는 캐리어(carrier);
    상기 슬러리 공급부에 고정되고, 상기 캐리어에 수용된 웨이퍼에 광을 조사하고, 상기 웨이퍼에 의하여 반사된 광을 검출하고, 검출된 결과에 따른 검출 데이터를 출력하는 센서부; 및
    상기 센서부가 고정되는 상기 슬러리 공급부의 일 영역의 반대편 영역에 고정되는 제2 하중 보정부를 포함하는 웨이퍼 연마 장치.
  9. 제8항에 있어서,
    상기 제2 하중 보정부의 무게는 상기 센서부의 무게와 동일한 웨이퍼 연마 장치.
  10. 제2항에 있어서,
    상기 상정반의 상부면에는 상기 센서부의 일단이 삽입되어 배치되는 홈이 마련되며, 상기 관통 구멍은 상기 홈의 바닥을 관통하여 상기 상정반을 관통하는 웨이퍼 연마 장치.
  11. 제2항에 있어서,
    상기 관통 구멍의 내벽 상에 배치되고, 상기 관통 구멍의 하단을 덮어 막는 광 투과막을 더 포함하는 웨이퍼 연마 장치.
  12. 제3항에 있어서, 상기 제어부는,
    기설정된 구간마다 상기 연마된 웨이퍼의 형상 정보 및 GBIR(Global Backside reference Indicate Reading)을 취득하고, 취득된 GBIR에 기초하여 상기 연마된 웨이퍼에 대한 연마 공정 수행 여부를 결정하며,
    상기 GBIR은 상기 기설정된 구간 동안 획득된 웨이퍼의 두께들 중 최대값과 최소값의 차이인 웨이퍼 연마 장치.
  13. 제12항에 있어서, 상기 제어부는,
    현 구간의 GBIR이 이전 구간의 GBIR보다 큰 경우, 상기 연마된 웨이퍼에 대한 연마를 중지하는 웨이퍼 연마 장치.
  14. 제12항에 있어서, 상기 제어부는,
    상기 캐리어의 중심 이동 궤적의 좌표, 상기 캐리어에 수용된 웨이퍼의 중심 이동 궤적의 좌표, 및 상기 웨이퍼의 중심으로부터 상기 센서부에 의한 웨이퍼의 두께 측정 위치들까지의 거리들에 기초하여, 상기 연마된 웨이퍼의 형상 정보를 획득하는 웨이퍼 연마 장치.
  15. 제4항에 있어서, 상기 두께 측정 센서는,
    광을 조사하는 광학 유닛, 및 상기 웨이퍼로부터 반사된 광을 검출하는 광검출기를 포함하며,
    상기 광학 유닛으로부터 조사되는 광은 상기 관통 구멍의 중앙에 정렬되도록 조준되는 웨이퍼 연마 장치.
  16. 하정반, 상정반, 및 상기 상정반과 함께 회전하는 센서부를 포함하는 웨이퍼 연마 장치를 이용하여, 상기 하정반 상에 배치되는 적어도 하나의 캐리어에 로딩된 웨이퍼에 대한 양면 연마를 시작함과 동시에 상기 센서부를 이용하여 연마되는 웨이퍼의 두께를 측정하는 단계;
    상기 연마되는 웨이퍼의 두께가 기설정된 기준 두께에 도달하였는지 판단하는 단계;
    상기 연마되는 웨이퍼의 두께가 상기 기준 두께에 도달한 경우, 기설정된 구간 동안 웨이퍼의 반경 방향으로의 웨이퍼의 두께 프로파일인 웨이퍼의 형상 정보를 취득하는 단계;
    상기 취득된 웨이퍼의 형상 정보를 이용하여 웨이퍼의 GBIR(Global Backside reference Indicate Reading)을 산출하는 단계; 및
    제1 구간의 웨이퍼의 GBIR이 제2 구간의 웨이퍼의 GBIR을 비교한 결과에 기초하여, 상기 웨이퍼에 대한 양면 연마 공정을 중단하는 단계를 포함하며,
    상기 제1 구간 및 상기 제2 구간은 상기 연마되는 웨이퍼의 두께가 상기 기준 두께에 도달한 시점 이후의 구간들로 상기 제1 구간은 상기 제2 구간의 다음에 오는 기설정된 구간인 웨이퍼 연마 방법.
  17. 제16항에 있어서,상기 웨이퍼의 형상 정보를 취득하는 단계는,
    상기 기설정된 구간 동안 랜덤한 복수 개의 두께 측정 위치들에서 상기 연마되는 웨이퍼의 두께들을 측정하는 단계; 및
    상기 연마되는 웨이퍼의 측정된 두께들에 기초하여, 상기 웨이퍼의 반경 방향으로의 상기 웨이퍼의 두께 프로파일을 획득하는 단계를 포함하는 웨이퍼 연마 방법.
  18. 제16항에 있어서,
    상기 제1 및 제2 구간들 각각은 30초 ~ 1분인 시간인 웨이퍼 연마 방법.
  19. 제16항에 있어서, 상기 양면 연마 공정을 중단하는 단계는,
    상기 제1 구간의 웨이퍼의 GBIR이 상기 제2 구간의 웨이퍼의 GBIR보다 크거나 같으면, 웨이퍼에 대한 양면 연마 공정을 중단하는 단계; 및
    상기 제1 구간의 웨이퍼의 GBIR이 상기 제2 구간의 GBIR보다 크지 않으면, 다음 번째 기설정된 구간 동안 웨이퍼의 형상 정보를 취득하고, 취득된 웨이퍼의 형상 정보를 이용하여 웨이퍼의 GBIR을 산출하고, 산출된 GBIR에 기초하여 웨이퍼에 대한 양면 연마를 중단 여부를 결정하는 단계를 포함하는 웨이퍼 연마 방법.
  20. 제16항에 있어서, 상기 웨이퍼의 형상 정보를 취득하는 단계는,
    상기 캐리어의 중심 이동 궤적 좌표, 상기 캐리어에 수용된 웨이퍼의 중심 이동 궤적 좌표, 및 상기 웨이퍼의 중심으로부터 상기 센서부에 의한 상기 웨이퍼의 두께 측정 위치들까지의 거리들에 기초하여 상기 웨이퍼의 형상 정보를 취득하는 웨이퍼 연마 방법.
KR1020150007963A 2015-01-16 2015-01-16 웨이퍼 연마 장치 및 이를 이용한 웨이퍼 연마 방법 KR101660900B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020150007963A KR101660900B1 (ko) 2015-01-16 2015-01-16 웨이퍼 연마 장치 및 이를 이용한 웨이퍼 연마 방법
JP2017536284A JP6490818B2 (ja) 2015-01-16 2015-06-17 ウエハー研磨装置及びこれを用いたウエハー研磨方法
PCT/KR2015/006129 WO2016114458A1 (ko) 2015-01-16 2015-06-17 웨이퍼 연마 장치 및 이를 이용한 웨이퍼 연마 방법
CN201580074296.4A CN107210211B (zh) 2015-01-16 2015-06-17 晶片抛光装置以及使用其的晶片抛光方法
US15/542,646 US10259097B2 (en) 2015-01-16 2015-06-17 Wafer polishing apparatus and wafer polishing method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150007963A KR101660900B1 (ko) 2015-01-16 2015-01-16 웨이퍼 연마 장치 및 이를 이용한 웨이퍼 연마 방법

Publications (2)

Publication Number Publication Date
KR20160088635A KR20160088635A (ko) 2016-07-26
KR101660900B1 true KR101660900B1 (ko) 2016-10-10

Family

ID=56405986

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150007963A KR101660900B1 (ko) 2015-01-16 2015-01-16 웨이퍼 연마 장치 및 이를 이용한 웨이퍼 연마 방법

Country Status (5)

Country Link
US (1) US10259097B2 (ko)
JP (1) JP6490818B2 (ko)
KR (1) KR101660900B1 (ko)
CN (1) CN107210211B (ko)
WO (1) WO2016114458A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200040831A (ko) * 2017-12-25 2020-04-20 가부시키가이샤 사무코 웨이퍼의 양면 연마 방법

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016116012A1 (de) * 2016-08-29 2018-03-01 Lapmaster Wolters Gmbh Verfahren zum Messen der Dicke von flachen Werkstücken
JP6323515B2 (ja) * 2016-08-31 2018-05-16 株式会社Sumco 半導体ウェーハのラッピング方法および半導体ウェーハ
JP6665827B2 (ja) * 2017-04-20 2020-03-13 信越半導体株式会社 ウェーハの両面研磨方法
US10879077B2 (en) 2017-10-30 2020-12-29 Taiwan Semiconductor Manufacturing Company Ltd. Planarization apparatus and planarization method thereof
CN108098564B (zh) * 2017-12-20 2019-10-01 何银亚 一种半导体晶圆用化学机械抛光设备
JP6844530B2 (ja) 2017-12-28 2021-03-17 株式会社Sumco ワークの両面研磨装置および両面研磨方法
JP7112273B2 (ja) * 2018-07-24 2022-08-03 株式会社ディスコ クリープフィード研削方法
CN109904094B (zh) * 2019-01-17 2021-02-19 安徽华顺半导体发展有限公司 一种多晶硅铸锭硅片清洗设备
KR102063423B1 (ko) * 2019-09-19 2020-01-07 박우식 자동 위빙용 티그용접 홀더
KR102104014B1 (ko) * 2019-10-11 2020-05-29 김병호 일면 연마가 가능한 양면연마장치
CN110695840B (zh) * 2019-11-07 2021-02-02 许昌学院 一种基于光电检测的半导体研磨装置
JP6761917B1 (ja) * 2019-11-29 2020-09-30 Jx金属株式会社 リン化インジウム基板、半導体エピタキシャルウエハ、及びリン化インジウム基板の製造方法
US11939665B2 (en) * 2020-03-10 2024-03-26 Tokyo Electron Limted Film thickness measuring apparatus and film thickness measuring method, and film forming system and film forming method
JP7435113B2 (ja) * 2020-03-23 2024-02-21 株式会社Sumco ワークの両面研磨装置
CN117769477A (zh) * 2021-06-04 2024-03-26 胜高股份有限公司 工件的双面研磨装置及双面研磨方法
JP7168109B1 (ja) 2022-01-24 2022-11-09 信越半導体株式会社 両面研磨装置
JP7218830B1 (ja) 2022-04-14 2023-02-07 信越半導体株式会社 両面研磨装置及び両面研磨方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059364A (ja) * 2000-08-23 2002-02-26 Komatsu Electronic Metals Co Ltd 平面研磨装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106769A (en) * 1979-01-31 1980-08-15 Masami Masuko Lapping method and its apparatus
JPS57168109A (en) * 1981-04-10 1982-10-16 Shinetsu Eng Kk Device for measuring thickness of work piece in lapping plate
JPH07260455A (ja) 1994-03-23 1995-10-13 Kokusai Electric Co Ltd 基板位置決め方法及び装置
JP3466374B2 (ja) * 1995-04-26 2003-11-10 富士通株式会社 研磨装置及び研磨方法
JPH1034529A (ja) * 1996-07-18 1998-02-10 Speedfam Co Ltd 自動定寸装置
JPH10202514A (ja) * 1997-01-20 1998-08-04 Speedfam Co Ltd 自動定寸装置
JP3528166B2 (ja) 1998-09-10 2004-05-17 三菱住友シリコン株式会社 高平坦度ウェーハの製造方法
JP3550644B2 (ja) 1999-01-26 2004-08-04 三菱住友シリコン株式会社 高平坦度ウェーハの再加工方法
DE10196115B4 (de) * 2000-04-24 2011-06-16 Sumitomo Mitsubishi Silicon Corp. Verfahren zum Polieren eines Halbleiterwafers
EP1489649A1 (en) * 2002-03-28 2004-12-22 Shin-Etsu Handotai Co., Ltd Double side polishing device for wafer and double side polishing method
JP2006231471A (ja) * 2005-02-25 2006-09-07 Speedfam Co Ltd 両面ポリッシュ加工機とその定寸制御方法
JP2006231470A (ja) * 2005-02-25 2006-09-07 Speedfam Co Ltd 両面ポリッシュ加工機の定寸方法及び定寸装置
JP2007220775A (ja) * 2006-02-15 2007-08-30 Mitsubishi Electric Corp 半導体基板の研削装置並びに半導体デバイスの製造方法
DE102006044367B4 (de) * 2006-09-20 2011-07-14 Siltronic AG, 81737 Verfahren zum Polieren einer Halbleiterscheibe und eine nach dem Verfahren herstellbare polierte Halbleiterscheibe
JP2008227393A (ja) * 2007-03-15 2008-09-25 Fujikoshi Mach Corp ウェーハの両面研磨装置
KR100931787B1 (ko) * 2008-04-11 2009-12-14 주식회사 실트론 양면 연마 공정에서 웨이퍼의 평탄도를 제어하는 방법
JP2010021487A (ja) * 2008-07-14 2010-01-28 Sumco Corp 半導体ウェーハおよびその製造方法
WO2010013390A1 (ja) * 2008-07-31 2010-02-04 信越半導体株式会社 ウェーハの研磨方法および両面研磨装置
JP4654275B2 (ja) * 2008-07-31 2011-03-16 信越半導体株式会社 両面研磨装置
JP5340795B2 (ja) 2009-04-27 2013-11-13 株式会社荏原製作所 研磨方法及び研磨装置
JP5099111B2 (ja) * 2009-12-24 2012-12-12 信越半導体株式会社 両面研磨装置
CN103733314B (zh) * 2011-09-01 2016-05-04 信越半导体株式会社 硅晶片的研磨方法及研磨剂
WO2014002467A1 (ja) * 2012-06-25 2014-01-03 株式会社Sumco ワークの研磨方法およびワークの研磨装置
JP5896884B2 (ja) * 2012-11-13 2016-03-30 信越半導体株式会社 両面研磨方法
JP5807648B2 (ja) * 2013-01-29 2015-11-10 信越半導体株式会社 両面研磨装置用キャリア及びウェーハの両面研磨方法
JP6101175B2 (ja) * 2013-08-28 2017-03-22 Sumco Techxiv株式会社 半導体ウェーハの研磨方法
JP6146213B2 (ja) * 2013-08-30 2017-06-14 株式会社Sumco ワークの両面研磨装置及び両面研磨方法
JP6222171B2 (ja) * 2015-06-22 2017-11-01 信越半導体株式会社 定寸装置、研磨装置、及び研磨方法
DE102016116012A1 (de) * 2016-08-29 2018-03-01 Lapmaster Wolters Gmbh Verfahren zum Messen der Dicke von flachen Werkstücken

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059364A (ja) * 2000-08-23 2002-02-26 Komatsu Electronic Metals Co Ltd 平面研磨装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200040831A (ko) * 2017-12-25 2020-04-20 가부시키가이샤 사무코 웨이퍼의 양면 연마 방법
KR102274886B1 (ko) 2017-12-25 2021-07-07 가부시키가이샤 사무코 웨이퍼의 양면 연마 방법

Also Published As

Publication number Publication date
WO2016114458A1 (ko) 2016-07-21
JP6490818B2 (ja) 2019-03-27
CN107210211A (zh) 2017-09-26
US10259097B2 (en) 2019-04-16
JP2018506182A (ja) 2018-03-01
KR20160088635A (ko) 2016-07-26
CN107210211B (zh) 2020-05-22
US20170355060A1 (en) 2017-12-14

Similar Documents

Publication Publication Date Title
KR101660900B1 (ko) 웨이퍼 연마 장치 및 이를 이용한 웨이퍼 연마 방법
KR100281723B1 (ko) 연마방법및그장치
KR101669491B1 (ko) 워크의 양면 연마 장치 및 방법
US7147541B2 (en) Thickness control method and double side polisher
US8834230B2 (en) Wafer polishing method and double-side polishing apparatus
KR101597158B1 (ko) 워크의 연마 방법 및 워크의 연마 장치
EP1066925A2 (en) Closed loop control of wafer polishing in a chemical mechanical polishing system
KR100305537B1 (ko) 연마방법및그것을사용한연마장치
US9440327B2 (en) Polishing apparatus and polishing method
KR100238938B1 (ko) 연마시스템
KR100335456B1 (ko) 기판의연마방법및그의연마장치
US7137867B2 (en) Thickness control method and double side polisher
TW202123329A (zh) 經由定向的晶圓裝載作不對稱性校正
KR102386609B1 (ko) 워크의 양면 연마 장치 및 양면 연마 방법
US6976901B1 (en) In situ feature height measurement
KR102457698B1 (ko) 웨이퍼 연마 장치와 방법
WO2017073265A1 (ja) 半導体ウェーハの両面研磨方法及びその両面研磨装置
US6102776A (en) Apparatus and method for controlling polishing of integrated circuit substrates
KR101875386B1 (ko) 화학 기계적 연마장치 및 그 제어방법
JPH1086060A (ja) 研磨量測定装置
JP2005294367A (ja) CMPin−situモニター装置

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190624

Year of fee payment: 4