WO2015027416A1 - 雪崩光电二极管 - Google Patents

雪崩光电二极管 Download PDF

Info

Publication number
WO2015027416A1
WO2015027416A1 PCT/CN2013/082504 CN2013082504W WO2015027416A1 WO 2015027416 A1 WO2015027416 A1 WO 2015027416A1 CN 2013082504 W CN2013082504 W CN 2013082504W WO 2015027416 A1 WO2015027416 A1 WO 2015027416A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
avalanche photodiode
multiplication
type contact
gradient
Prior art date
Application number
PCT/CN2013/082504
Other languages
English (en)
French (fr)
Inventor
潘旭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/082504 priority Critical patent/WO2015027416A1/zh
Priority to EP13892516.9A priority patent/EP3029745B1/en
Priority to CN201380077525.9A priority patent/CN105637657B/zh
Publication of WO2015027416A1 publication Critical patent/WO2015027416A1/zh
Priority to US15/056,385 priority patent/US20160181460A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0312Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier

Definitions

  • the present invention relates to the field of electronic devices, and in particular to an avalanche photodiode. Background technique
  • optical fiber communication technology has become the main mode of information transmission with its advantages of wide transmission frequency, high anti-interference and small signal attenuation.
  • avalanche photodiodes are important optoelectronic signal conversion devices in fiber-optic communication technology, the noise performance of avalanche photodiodes is critical to signal sensitivity. Therefore, how to reduce the noise of avalanche photodiodes becomes an important issue.
  • the material of the multiplication zone of the avalanche photodiode is replaced to reduce the excess noise factor, and the ratio of hole ionization ratio to electron ionization ratio K of the multiplication zone material after replacement is lower.
  • SiGe silicon germanium
  • the ratio K of the hole ionization rate to the electron ionization rate can be reduced, thereby reducing the excess noise factor and achieving the purpose of reducing noise. .
  • the inventors have found that the prior art has at least the following problems:
  • the noise of the avalanche photodiode is reduced by replacing the material of the multiplication zone, since the K value is an inherent property of the material, therefore, The K value of the multiplication zone after material replacement is subject to material constraints, and the excess noise factor and noise cannot be further reduced.
  • Technical Problem In order to solve the problem of further reducing the process noise factor and noise, an embodiment of the present invention provides an avalanche photodiode, which aims to solve the technical problem of how to reduce the noise factor and noise of an intrinsic material.
  • the avalanche photodiode comprises: a P-type contact layer, a light absorbing layer, a compositionally graded symmetric multiplication layer, and an N-type contact layer, Wherein the P-type contact layer is connected to the light absorbing layer, the light absorbing layer is connected to the composition gradation symmetric multiplication layer, and the component gradation symmetrical multiplication layer is connected to the N-type contact layer;
  • the component is a gradual symmetric multiplication layer for amplifying the electrical signal, and the component gradual symmetric multiplication layer has a central symmetrical structure and is composed of a plurality of gradation layers.
  • the material of the avalanche photodiode is a SiGe material.
  • the avalanche photodiode further includes: a charge layer,
  • the charge layer is used to adjust an electric field distribution of each layer, the doping concentration of the charge layer is greater than or equal to 10 17 /cm 3 , and the thickness of the charge layer ranges from 50 nm to 200 nm, and the charge layer is located at the Between the light absorbing layer and the symmetric gradient multiplication layer.
  • a doping concentration of the P-type contact layer is greater than or equal to 10 19 /cm 3 , and a thickness range of the P-type contact layer Is 100 nm -200 nm;
  • the thickness of the light absorbing layer ranges from 200 nm to 2000 nm.
  • the light absorbing layer is a P-doped light absorbing layer, and a doping concentration of the P-doped light absorbing layer is greater than or equal to 10 17 /cm 3 ;
  • the light absorbing layer is an undoped light absorbing layer, and the doping concentration of the undoped light absorbing layer is 10 16 /cm 3 or less .
  • the N-type contact layer has a doping concentration of 10 19 /cm 3 or more , and the N-type contact layer is connected to the composition-graded symmetric multiplication layer.
  • the component of the component gradient symmetric multiplication layer is a symmetric distribution of the lattice mismatch material, and the symmetric distribution refers to the component along the graded layer
  • the change in the position of the gradation symmetry multiplication layer, the content of the first crystal material in the gradation layer is increased from 0 to 100%, and then decreased from 100% to 0.
  • the forbidden band width of the two ends of the component gradation symmetry multiplication layer is smaller than the forbidden band width of the gradation layer.
  • the components are gradually symmetrical in the multiplication layer
  • the thickness of the variable layer is less than or equal to the reciprocal of the ionization rate of the multiplicative carriers of the respective graded layers.
  • the avalanche photodiode provided by the embodiment of the invention includes: a P-type contact layer, a light absorbing layer, a composition gradation symmetry multiplication layer and an N-type contact layer, and the component gradual symmetric multiplication layer is used for amplifying the electrical signal,
  • the composition gradient symmetric multiplication layer has a central symmetrical structure and is composed of a plurality of gradation layers.
  • FIG. 1 is a schematic structural view of an avalanche photodiode according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural view of an avalanche photodiode according to a second embodiment of the present invention
  • Schematic diagram of the composition of the gradual symmetric multiplication layer
  • the avalanche photodiode includes: a P-type contact layer 11, a light absorbing layer 12, a composition gradient symmetrical multiplication layer 13 and N-type contact layer 14,
  • the P-type contact layer 11 is connected to the light absorbing layer 12, and the light absorbing layer 12 is connected to the composition gradation symmetry multiplication layer 13, the composition gradation symmetrical multiplication layer 13 and the N type Contact layer 14 is connected;
  • the composition gradual symmetry multiplication layer 13 is configured to amplify the electrical signal, and the composition gradation symmetry multiplication layer 13 has a central symmetrical structure and is composed of a plurality of gradation layers.
  • the P-type contact layer 11 is used to form an ohmic contact on the P side of the PN junction
  • the P-type contact layer 11 has a doping concentration of 10 19 /cm 3 or greater, and the P-type contact layer 11 has a thickness ranging from 100 nm to 200 nm;
  • the P-type contact layer 11 is formed by doping a third group element in the single crystal silicon to replace the position of the silicon atom in the crystal lattice, such as boron, aluminum, gallium, indium, etc., and the silicon and the third group element pass the covalent bond. The excess is generated by the combination, and the more the third group element is doped, the more holes are generated in the P-type contact layer 11.
  • a third group element in the single crystal silicon such as boron, aluminum, gallium, indium, etc.
  • the light absorbing layer 12 is configured to absorb an optical signal and convert the optical signal into an electrical signal, and the light absorbing layer 12 is connected to the P-type contact layer 11;
  • the thickness of the light absorbing layer 12 ranges from 200 nm to 2000 nm;
  • the light absorbing layer 12 After receiving the optical signal, the light absorbing layer 12 absorbs the optical signal to generate a photogenerated electron-hole pair, and the electron-hole pair moves under the action of an electric field to form an electrical signal, and completes conversion of the optical signal to the electrical signal. .
  • the content of the crystal material in the composition gradient symmetric multiplication layer 13 is a symmetric distribution, and the symmetric distribution means that the position of the graded layer in the composition gradient symmetric multiplication layer 13 is different.
  • the content of the crystalline material in the graded layer increases from 0 to 100% and then decreases from 100% to zero.
  • the gradual symmetrical multiplication layer 13 of the composition generates a large number of electron-hole pairs by the avalanche multiplication effect, and amplifies the electric signal generated by the absorbing layer 12.
  • the avalanche multiplication effect refers to the fact that after the reverse bias is applied across the avalanche photodiode, the electron or the hole obtains energy under the action of the electric field to accelerate the movement. The higher the energy, the faster the speed, during the movement of the carrier. Collision with electrons on the covalent bond, intrinsic excitation occurs, and electron-hole pairs are generated. This process is repeated, and a large number of electron-hole pairs are generated in an instant.
  • the gradual symmetrical multiplication layer 13 of the composition comprises a plurality of gradation layers, each of which has different silicon content, and the forbidden band width of each gradation layer is different, and the generated heterostructure reduces the excessive noise factor.
  • the forbidden band width refers to the conductivity of the material.
  • the smaller the forbidden band width the stronger the conductivity.
  • the larger the forbidden band width the weaker the conductivity.
  • the semiconductor material with a small band gap when the temperature rises, the electron It can be excited to make the semiconductor material conductive, and for insulator materials with a large forbidden band width, the insulator material is a poor conductor even at higher temperatures.
  • the forbidden band can be in the energy band structure An energy region with a zero density of states, often used to represent an energy interval where the energy density between the valence band and the conduction band is zero.
  • the excess noise factor determines the noise performance of the avalanche photodiode.
  • the calculation formula for the excess noise factor is shown below:
  • M is a multiplication factor and K is the ratio of the hole ionization rate ⁇ to the electron ionization rate a, that is, ⁇ / ⁇ .
  • F A approaches 2- ⁇ - 1 and reaches a minimum.
  • the electron ionization threshold AE th decreases by ⁇ ⁇ . It is larger than the hole ionization threshold ⁇ ⁇ ⁇ reduction ⁇ ⁇ ⁇ , and the ionization rate is exponentially related to the ionization threshold. Therefore, the corresponding ⁇ value is reduced, and the avalanche photodiode having a multi-layered gradation layer has a small excess noise factor.
  • the ⁇ -type contact layer 14 is configured to form an ohmic contact on the ⁇ side of the ⁇ junction, the doping concentration of the ⁇ -type contact layer 14 is greater than or equal to 10 19 /cm 3 , and the N-type contact layer 14 and the group The gradation symmetry multiplication layer 13 is connected.
  • the N-type contact layer 14 is formed by doping a single group element in the single crystal silicon to replace the position of the silicon atom in the crystal lattice, such as phosphorus, arsenic, antimony, etc., and the silicon and the fifth group element are covalently bonded to each other. The more electrons, the more the fifth group element is doped, the more electrons are generated in the N-type contact layer 14.
  • the avalanche photodiode provided by the embodiment of the present invention includes: a P-type contact layer, a light absorbing layer, a composition gradation symmetry multiplication layer, and an N-type contact layer, and the component gradual symmetric multiplication layer is used for amplifying the electrical signal.
  • the composition gradient symmetric multiplication layer has a central symmetrical structure and is composed of a plurality of gradation layers.
  • the material of the avalanche photodiode is a SiGe material.
  • the lattice constant of silicon is 0.543 nm
  • the lattice constant of germanium is 0.565 nm. Therefore, the lattice mismatch between silicon and the fault is 4%.
  • silicon is grown on the germanium material, the silicon film is subjected to tensile stress.
  • the silicon film will have a critical thickness beyond which the silicon film will cause defects such as cracking, which will affect the quality of the film.
  • a symmetric component multiplication layer is used.
  • the lattice constant varies with the content of silicon in the graded layer from 0.543 of yttrium to 0.565 of silicon, ie 4% of the mutation due to
  • the introduction of the gradient layer becomes a slow variable, and the gradient layer effectively relieves the tensile stress.
  • a gradient layer of the mirror is used to compensate for the tensile stress.
  • the center of the entire slowly varying structure is symmetrical, and the slowly varying tensile stresses "compensate" each other.
  • the composition of the gradual symmetric multiplication layer has a top-bottom silicon content of 0, and the error content is 100%.
  • the symmetrically-graded structure effectively alleviates the stress introduced by the lattice mismatch, and obtains a high-quality epitaxial film, thereby obtaining better noise performance. .
  • the avalanche photodiode further includes: a charge layer 15
  • the charge layer 15 is used to adjust the electric field distribution of each layer, the doping concentration of the charge layer 15 is greater than or equal to 10 17 /cm 3 , and the thickness of the charge layer ranges from 50 nm to 200 nm, and the charge layer is located at Between the light absorbing layer 12 and the symmetric gradient multiplication layer 13.
  • FIG. 2 is a schematic structural view of an avalanche photodiode according to a second embodiment of the present invention. Referring to FIG. 2, when the charge layer 15 is reverse biased, the electric field distribution of each layer is reasonably adjusted, so that the avalanche photodiode works at the most Excellent state.
  • charge layer 15 may be used as a portion of the absorbing layer 12, as part of the symmetrical gradient multiplication layer 13, or as a single layer.
  • An avalanche photodiode includes: a P-type contact layer, a light absorbing layer, a composition gradation symmetry multiplication layer, and an N-type contact layer, wherein the composition is a gradual symmetric multiplication layer for amplifying the electrical signal.
  • the composition gradient symmetric multiplication layer has a central symmetrical structure and is composed of a plurality of gradation layers.
  • the light absorbing layer 12 is a P-doped light absorbing layer, and the doping concentration of the P-doped light absorbing layer is greater than or equal to 10 17 /cm 3 ;
  • the light absorbing layer 12 is an undoped light absorbing layer having a doping concentration of 10 16 /cm 3 or less .
  • the doping concentration of the third group element doped in silicon is 10 16 /cm 3 , at which the electrons are realized when there is an optical signal - The excitation of the hole pairs forms an electrical signal.
  • the doping concentration is 10 16 /cm 3 or less, and the doping concentration is formed by carriers of the light absorbing layer itself. , the conversion of optical signals to electrical signals can be realized.
  • the composition of the gradation symmetry multiplication layer of the composition is a symmetric distribution of the lattice mismatch material, and the symmetrical distribution refers to a change of the position of the gradation symmetry multiplication layer of the gradation layer with the gradation layer Medium
  • the content of the first crystalline material is increased from 0 to 100% and then decreased from 100% to zero.
  • the first crystal material refers to a material having a larger forbidden band width in the gradual symmetric multiplication layer of the composition.
  • the forbidden band width of the Ge is larger than the forbidden band width of the Si
  • the first crystal material is Si.
  • the content 0 in the component gradient symmetric multiplication layer is increased to 100% and then decreased from 100% to zero.
  • the center of the entire graded structure is symmetrical, and the slowly varying tensile stresses "compensate" each other.
  • the symmetrically graded structure effectively relieves the stress introduced by the lattice mismatch and obtains a high quality epitaxial film, thereby reducing the noise of the avalanche photodiode.
  • the forbidden band width of the material at both ends of the composition gradient symmetric multiplication layer is smaller than the forbidden band width of the graded layer.
  • the change of the forbidden band width of each gradation layer from small to large, and then from large to small.
  • the material at both ends of the gradual symmetry multiplication layer is ⁇
  • the material at both ends of the gradual symmetry multiplication layer is a material having a small forbidden band width.
  • FIG. 3 is a schematic view showing the structure of a gradual symmetric multiplication layer of a composition according to a third embodiment of the present invention.
  • the material of the gradual symmetric multiplication layer comprises silicon and germanium, and the content of silicon and germanium in the composition is changed. Symmetrical distribution in symmetric multiplication layers.
  • the material of the symmetry multiplication layer of the composition is ⁇ , and the material of the middle layer is silicon.
  • the content of silicon in each graded layer is from top to bottom: from 0 to 100%, then from 100% to 0.
  • the content of bismuth in each graded layer is from top to bottom: from 100% to 0, then from 0 to 100%.
  • the chemical formula can be expressed as X with a value range of 0-1.
  • the thickness of each of the graded layers in the composition gradient symmetric multiplication layer is less than or equal to the reciprocal of the ionization rate of the multiplication carriers of the respective graded layers.
  • the ionization rate is the number of electron-hole pairs generated when a carrier passes a unit distance under the action of a strong electric field.
  • the ionization rate is related to the electric field and the forbidden band width.
  • the ionization rate increases exponentially with the increase of the electric field, and decreases exponentially with the increase of the forbidden band width.
  • the thickness of the graded layer is less than or equal to 1/ ⁇ .
  • each graded layer in the gradual symmetric multiplication layer of the composition is limited to a certain range, which is advantageous for suppressing the ionization of a certain type of carrier, thereby reducing the influence of the noise factor.
  • the avalanche photodiode provided by the embodiment of the present invention includes: a ⁇ -type contact layer, a light absorbing layer, a composition gradation symmetry multiplication layer, and a ⁇ -type contact layer, and the component gradual symmetric multiplication layer is used for amplifying the electrical signal.
  • the composition gradient symmetric multiplication layer has a central symmetrical structure and is composed of a plurality of gradation layers. Adopting this hair According to the technical solution provided by the embodiment, the ionization of a carrier in the material is suppressed by the component gradation symmetric multiplication layer, and the excessive noise factor and noise are further reduced by lowering the K value, and further, the charge layer is optimized.
  • the electric field distribution of the avalanche photodiode reduces noise.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种雪崩光电二极管,包括:P型接触层(11)、光吸收层(12)、组分渐变对称倍增层(13)和N型接触层(14),其中,所述P型接触层(11)与所述光吸收层(12)相连,所述光吸收层(12)与所述组分渐变对称倍增层(13)相连,所述组分渐变对称倍增层(13)与所述N型接触层(14)相连;所述组分渐变对称倍增层(13),用于放大所述电信号,所述组分渐变对称倍增层(13)呈中心对称结构,由多个渐变层组成。该技术方案通过多层渐变层抑制载流子的离化,降低过剩噪声因子的同时,组分渐变对称倍增层(13)的对称结构有效地缓解了大晶格失配体系应力,获得高质量外延薄膜,降低噪声性。

Description

说 明 书
雪崩光电二极管 技术领域 本发明涉及电子器件领域, 特别涉及一种雪崩光电二极管。 背景技术
随着通信技术的发展, 光纤通信技术以其传输频点宽、 抗干扰性高和信号 衰减小的优势成为信息传输的主要方式。 而雪崩光电二极管是光纤通信技术中 重要的光电信号转换器件, 雪崩光电二极管的噪声性能对于信号的灵敏度至关 重要。 因此, 如何降低雪崩光电二极管的噪声性成为一个重要问题。
现有技术中, 更换雪崩光电二极管的倍增区材料来降低过剩噪声因子, 更 换后的倍增区材料的空穴离化率与电子离化率比值 K更低。如对于 SiGe(硅锗 ) 雪崩光电二极管, 倍增层材料采用 Si材料代替 Ge材料时, 可以减小空穴离化 率与电子离化率的比值 K, 从而降低过剩噪声因子, 达到降低噪声的目的。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题: 现有技术中, 通过更换倍增区材料的方法降低雪崩光电二极管的噪声性, 由于 K值为材料固有的属性, 因此, 更换材料后的倍增区的 K值受到材料的制 约, 不能进一步减小过剩噪声因子和噪声。 技术问题 为了解决进一步降低过程噪声因子和噪声的问题, 本发明实施例提供了一 种雪崩光电二极管,旨在解决如何降低固有材料的噪声因子和噪声的技术问题。
技术解决方案 第一方面, 所述雪崩光电二极管包括: P 型接触层、 光吸收层、 组分渐变 对称倍增层和 N型接触层, 其中, 所述 P型接触层与所述光吸收层相连, 所述光吸收层与所述组分渐 变对称倍增层相连, 所述组分渐变对称倍增层与所述 N型接触层相连;
所述组分渐变对称倍增层, 用于放大所述电信号, 所述组分渐变对称倍增 层呈中心对称结构, 由多个渐变层组成。
在第一方面的第一种可能的实现方式中, 所述雪崩光电二极管的材料为 SiGe材料。
结合第一方面的第一种可能的实现方式, 在第一种可能的实现方式中, 所 述雪崩光电二极管还包括: 电荷层,
所述电荷层, 用于调节各层的电场分布, 所述电荷层的掺杂浓度大于等于 1017/cm3, 所述电荷层的厚度范围为 50 nm -200nm, 所述电荷层位于所述光吸 收层和所述对称渐变倍增层之间。
结合第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所 述 P型接触层的掺杂浓度大于等于 1019/cm3,所述 P型接触层的厚度范围为 100 nm -200nm;
结合第一方面的第一种可能的实现方式, 在第三种可能的实现方式中, 所 述光吸收层的厚度范围为 200nm-2000nm。
结合第一方面的第一种可能的实现方式, 在第四种可能的实现方式中, 所 述光吸收层为 P掺杂光吸收层, 所述 P掺杂光吸收层的掺杂浓度大于等于 1017/cm3;
或,
所述光吸收层为非掺杂光吸收层, 所述非掺杂光吸收层的掺杂浓度小于等 于 1016/cm3
在第一方面的第二种可能的实现方式, 所述 N型接触层的掺杂浓度大于等 于 1019/cm3, 所述 N型接触层与所述组分渐变对称倍增层相连。
在第一方面的第三种可能的实现方式, 所述组分渐变对称倍增层的组分为 晶格失配材料对称分布, 所述对称分布是指随着所述渐变层在所述组分渐变对 称倍增层的位置的变化, 所述渐变层中第一晶体材料的含量从 0递增到 100% , 再从 100%递减到 0。
在第一方面的第四种可能的实现方式, 所述组分渐变对称倍增层中两端材 料的禁带宽度小于所述渐变层的禁带宽度。
在第一方面的第五种可能的实现方式, 所述组分渐变对称倍增层中各个渐 变层的厚度小于等于所述各个渐变层的倍增载流子的离化率的倒数。
有益效果 本发明实施例提供的技术方案带来的有益效果是:
本发明实施例提供的雪崩光电二极管包括: P型接触层、 光吸收层、 组分 渐变对称倍增层和 N型接触层, 所述组分渐变对称倍增层, 用于放大所述电信 号, 所述组分渐变对称倍增层呈中心对称结构, 由多个渐变层组成。 采用本发 明实施例提供的技术方案, 通过组分渐变对称倍增层抑制材料中某一载流子的 离化, 通过降低 K值, 从而进一步降低过剩噪声因子和噪声。 附图说明 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所 需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明第一实施例提供的一种雪崩光电二极管结构示意图; 图 2是本发明第二实施例提供的一种雪崩光电二极管结构示意图; 图 3是本发明第三实施例提供的一种组分渐变对称倍增层结构示意图。
本发明的实施方式 为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明 实施方式作进一步地详细描述。
图 1是本发明第一实施例提供的一种雪崩光电二极管结构示意图, 参见图 1 , 该雪崩光电二级管包括: P型接触层 11、 光吸收层 12、 组分渐变对称倍增 层 13和 N型接触层 14,
其中,所述 P型接触层 11与所述光吸收层 12相连,所述光吸收层 12与所 述组分渐变对称倍增层 13相连, 所述组分渐变对称倍增层 13与所述 N型接触 层 14相连; 所述组分渐变对称倍增层 13, 用于放大所述电信号, 所述组分渐变对称倍 增层 13呈中心对称结构, 由多个渐变层组成。
其中, 所述 P型接触层 11 , 用于形成 PN结中 P侧的欧姆接触,
其中, 所述 P型接触层 11的掺杂浓度大于等于 1019/cm3, 所述 P型接触层 11的厚度范围为 100 nm -200nm;
具体地, P型接触层 11通过在单晶硅中掺杂第三族元素取代晶格中硅原子 的位置形成, 如硼、 铝、 镓、 铟等, 硅与第三族元素通过共价键结合而产生多 余的空穴, 第三族元素掺杂越多, 该 P型接触层 11中产生的空穴也越多。
当在该雪崩光电二极管两端外加电压时,其中一端与该 P型接触层 11相连, 通过该 P型接触层 11进行导电。
所述光吸收层 12, 用于吸收光信号并将所述光信号转换成电信号, 所述光 吸收层 12与所述 P型接触层 11相连;
其中, 所述光吸收层 12的厚度范围为 200nm-2000nm;
所述光吸收层 12在接收到光信号后, 吸收该光信号, 产生光生电子 -空穴 对, 该电子-空穴对在电场作用下进行移动形成电信号, 完成光信号到电信号的 转换。
其中,所述组分渐变对称倍增层 13中晶体材料的含量为对称分布,所述对 称分布是指随着所述渐变层在所述组分渐变对称倍增层 13中的位置的不同,所 述渐变层中晶体材料的含量从 0递增到 100%, 再从 100%递减到 0。
该组分渐变对称倍增层 13通过雪崩倍增效应, 产生大量的电子-空穴对, 放大该吸收层 12产生的电信号。
其中, 雪崩倍增效应是指在该雪崩光电二极管两端加反向偏压后, 电子或 空穴在电场作用下获得能量而加速运动, 能量越高, 速度越快, 该载流子运动 过程中与共价键上的电子相碰撞, 发生本征激发, 产生出电子-空穴对, 该过程 重复进行, 瞬间即可产生出大量的电子-空穴对。
该组分渐变对称倍增层 13包含了多层渐变层,各渐变层含硅量不同,则各 渐变层的禁带宽度不同, 产生的异质结构降低过剩噪声因子。
其中, 禁带宽度是指材料的导电能力, 禁带宽度越小, 导电能力越强, 禁 带宽度越大, 导电能力越弱, 如禁带宽度较小的半导体材料, 当温度升高, 电 子可以被激发, 从而使半导体材料具有导电性, 对于禁带宽度很大的绝缘体材 料, 即使在较高的温度下, 该绝缘体材料仍是不良导体。 禁带在能带结构中能 态密度为零的能量区域, 常用来表示价带和导带之间的能态密度为零的能量区 间。
过剩噪声因子决定了雪崩光电二极管的噪声性能, 过剩噪声因子的计算公 式: ¾口下所示:
FA = KM + {\ - K){2 - M 1)
其中, M为倍增因子, K为空穴离化率 β与电子离化率 a之比, 即 β / α。 当 Κ值趋近于 0时, FA趋近于 2-Μ—1, 达到最小值。 当载流子从宽禁带材料向 窄禁带材料运动时,电子离化阈值 A Eth减少量 Δ Ε。大于空穴离化阈值 Δ ΕΛ减少 量 Δ Εν, 而离化速率与离化阈值呈指数关系。 因此, 相应 Κ值减小, 则拥有多 层渐变层的雪崩光电二极管的过剩噪声因子较小。
所述 Ν型接触层 14, 用于形成 ΡΝ结中 Ν侧的欧姆接触, 所述 Ν型接触 层 14的掺杂浓度大于等于 1019/cm3, 所述 N型接触层 14与所述组分渐变对称 倍增层 13相连。
其中, N型接触层 14通过在单晶硅中掺杂第五族元素取代晶格中硅原子的 位置形成, 如磷、 砷、 锑等, 硅与第五族元素通过共价键结合而产生多余的电 子, 第五族元素掺杂越多, 该 N型接触层 14中产生的电子也越多。
当在该雪崩光电二极管两端外加电压时, 其中一端与该 N型接触层 14相 连, 通过该 N型接触层 14进行导电。
本发明实施例提供的雪崩光电二极管包括: P 型接触层、 光吸收层、 组分 渐变对称倍增层和 N型接触层, 所述组分渐变对称倍增层, 用于放大所述电信 号, 所述组分渐变对称倍增层呈中心对称结构, 由多个渐变层组成。 采用本发 明实施例提供的技术方案, 通过组分渐变对称倍增层抑制材料中某一载流子的 离化, 通过降低 K值, 从而进一步降低过剩噪声因子和噪声。
可选地, 所述雪崩光电二极管的材料为 SiGe材料。
其中, 硅的晶格常数是 0.543nm, 锗的晶格常数 0.565nm, 因此, 硅和错之 间存在的晶格失配达 4%, 在锗材料上生长硅时, 硅薄膜会受到张应力, 硅薄 膜会存在一个临界厚度, 超过该临界厚度, 硅薄膜就会产生诸如开裂的缺陷, 影响薄膜的质量。 为了緩解晶格失配导致的薄膜质量低的问题, 采用对称组分 倍增层, 晶格常数随着渐变层中硅的含量的变化从锗的 0.543到硅的 0.565, 即 4%的突变量由于渐变层的引入而变成了緩变量, 渐变层有效緩解张应力。 晶格 失配的緩变仍存在一个临界厚度, 为了抵消该张应力, 采用镜象的渐变层, 使 得整个緩变结构中心对称, 緩变的张应力互相 "抵消"。 该组分渐变对称倍增层 的上下硅含量为 0, 则错含量为 100% , 该对称緩变结构有效緩解晶格失配引入 的应力, 获得高质量的外延薄膜, 从而获得较好的噪声性能。
可选地, 所述雪崩光电二极管还包括: 电荷层 15 ,
所述电荷层 15 , 用于调节各层的电场分布, 所述电荷层 15的掺杂浓度大 于等于 1017/cm3, 所述电荷层的厚度范围为 50nm -200nm, 所述电荷层位于所 述光吸收层 12和所述对称渐变倍增层 13之间。
图 2是本发明第二实施例提供的一种雪崩光电二极管结构示意图, 参见图 2, 该电荷层 15在反向偏压时, 合理调节各层的电场分布, 使得该雪崩光电二 极管工作在最优状态。
需要说明的是, 该电荷层 15可以作为该吸收层 12—部分, 也可以作为该 对称渐变倍增层 13的一部分, 也可以单独作为一层存在。
本本发明实施例提供的雪崩光电二极管包括: P 型接触层、 光吸收层、 组 分渐变对称倍增层和 N型接触层, 所述组分渐变对称倍增层, 用于放大所述电 信号, 所述组分渐变对称倍增层呈中心对称结构, 由多个渐变层组成。 采用本 发明实施例提供的技术方案, 通过组分渐变对称倍增层抑制材料中某一载流子 的离化, 通过降低 K值, 从而进一步降低过剩噪声因子和噪声, 进一步地, 通 过电荷层优化了该雪崩光电二极管的电场分布, 降低了噪声性。
可选地, 所述光吸收层 12为 P掺杂光吸收层, 所述 P掺杂光吸收层的掺 杂浓度大于等于 1017/cm3;
或,
所述光吸收层 12为非掺杂光吸收层,所述非掺杂光吸收层的掺杂浓度小于 等于 1016/cm3
当光吸收层 12为 P掺杂光吸收层时,在硅中掺杂的第三族元素的掺杂浓度 为 1016/cm3, 在该浓度下, 当有光信号时, 实现对电子-空穴对的激发, 形成电 信号。
当光吸收层 12为非掺杂光吸收层时, 即该光吸收层不掺杂其他材料,掺杂 浓度小于等于 1016/cm3, 该掺杂浓度由光吸收层自身的载流子形成, 即可实现 光信号到电信号的转换。
所述组分渐变对称倍增层的组分为晶格失配材料对称分布, 所述对称分布 是指随着所述渐变层在所述组分渐变对称倍增层的位置的变化, 所述渐变层中 第一晶体材料的含量从 0递增到 100%, 再从 100%递减到 0。
其中,第一晶体材料是指组分渐变对称倍增层中具有较大禁带宽度的材料, 如在 SiGe材料中, Ge的禁带宽度大于 Si的禁带宽度, 则第一晶体材料为 Si。
第一晶体材料随着所述渐变层在所述组分渐变对称倍增层的位置的变化, 在组分渐变对称倍增层中的含量 0递增到 100%, 再从 100%递减到 0。 整个緩 变结构中心对称, 緩变的张应力互相 "抵消", 该对称緩变结构有效緩解晶格失 配引入的应力, 获得高质量的外延薄膜, 从而降低该雪崩光电二极管的噪声。
可选地, 所述组分渐变对称倍增层中两端材料的禁带宽度小于所述渐变层 的禁带宽度。
由上述可知, 材料的禁带宽度越大, 导电性越差, 材料的禁带宽度越小, 导电性越好。 通过在组分渐变对称倍增层中选择禁带宽度小于个渐变层的禁带 宽度的材料, 实现了各渐变层禁带宽度的从小到大, 再从大到小的变换。 在硅 锗系材料中, 该组分渐变对称倍增层中两端的材料为锗, 在 III-V系材料中, 该 组分渐变对称倍增层中两端的材料为禁带宽度较小的材料。
图 3是本发明第三实施例提供的一种组分渐变对称倍增层结构示意图, 参 见图 3, 该组分渐变对称倍增层的材料包括硅和锗, 硅和锗的含量在该组分渐 变对称倍增层中对称分布。 该组分渐变对称倍增层两端的材料为锗, 中间一层 的材料为硅。 各渐变层中硅的含量从上至下为: 从 0到 100%, 再从 100%到 0。 各渐变层中锗的含量从上至下为: 从 100%到 0, 再从 0到 100%。 用化学式可 以表示为 X的取值范围为 0-1。
可选地, 所述组分渐变对称倍增层中各个渐变层的厚度小于等于所述各个 渐变层的倍增载流子的离化率的倒数。
其中, 离化率是一个载流子在强电场作用下, 走过单位距离时产生的电子- 空穴对的数目。 离化率与电场、 禁带宽度相关, 离化率随着电场的增强而指数 式增大, 随着禁带宽度的增大而指数式减小。 如当渐变层的倍增载流子的离化 率为 a , 则该渐变层的厚度小于等于 1/ α。
将该组分渐变对称倍增层中各个渐变层的厚度限制在一定的范围之内, 有 利于抑制某一种载流子的离化, 进而降低噪声因子的影响。
本发明实施例提供的雪崩光电二极管包括: Ρ型接触层、 光吸收层、 组分 渐变对称倍增层和 Ν型接触层, 所述组分渐变对称倍增层, 用于放大所述电信 号, 所述组分渐变对称倍增层呈中心对称结构, 由多个渐变层组成。 采用本发 明实施例提供的技术方案, 通过组分渐变对称倍增层抑制材料中某一载流子的 离化, 通过降低 K值, 从而进一步降低过剩噪声因子和噪声, 进一步地, 通过 电荷层优化了该雪崩光电二极管的电场分布, 降低了噪声性。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的 保护范围之内。

Claims

权 利 要 求 书
1、 一种雪崩光电二极管, 其特征在于, 所述雪崩光电二极管包括: P型接 触层、 光吸收层、 组分渐变对称倍增层和 N型接触层,
其中, 所述 P型接触层与所述光吸收层相连, 所述光吸收层与所述组分渐 变对称倍增层相连, 所述组分渐变对称倍增层与所述 N型接触层相连;
所述组分渐变对称倍增层, 用于放大所述电信号, 所述组分渐变对称倍增 层呈中心对称结构, 由多个渐变层组成。
2、根据权利要求 1所述的雪崩光电二极管, 其特征在于, 所述雪崩光电二 极管的材料为 SiGe材料。
3、根据权利要求 2所述的雪崩光电二极管, 其特征在于, 所述雪崩光电二 极管还包括: 电荷层,
所述电荷层, 用于调节各层的电场分布, 所述电荷层的掺杂浓度大于等于 1017/cm3, 所述电荷层的厚度范围为 50nm -200nm, 所述电荷层位于所述光吸收 层和所述对称渐变倍增层之间。
4、根据权利要求 2所述的雪崩光电二极管, 其特征在于, 所述 P型接触层 的掺杂浓度大于等于 1019/cm3, 所述 P型接触层的厚度范围为 100 nm -200nm。
5、 根据权利要求 2所述的雪崩光电二极管, 其特征在于, 所述光吸收层的 厚度范围为 200nm-2000nm。
6、 根据权利要求 2所述的雪崩光电二极管, 其特征在于, 所述光吸收层为 P掺杂光吸收层, 所述 P掺杂光吸收层的掺杂浓度大于等于 1017/cm3;
或,
所述光吸收层为非掺杂光吸收层, 所述非掺杂光吸收层的掺杂浓度小于等 于 1016/cm3
7、 根据权利要求 1所述的雪崩光电二极管, 其特征在于, 所述 N型接触 层的掺杂浓度大于等于 1019/cm3, 所述 N型接触层与所述组分渐变对称倍增层 相连。
8、根据权利要求 1所述的雪崩光电二极管, 其特征在于, 所述组分渐变对 称倍增层的组分为晶格失配材料对称分布, 所述对称分布是指随着所述渐变层 在所述组分渐变对称倍增层的位置的变化, 所述渐变层中第一晶体材料的含量 从 0递增到 100% , 再从 100%递减到 0。
9、 根据权利要求 1所述的雪崩光电二极管, 其特征在于, 所述组分渐变对 称倍增层中两端材料的禁带宽度小于所述渐变层的禁带宽度。
10、 根据权利要求 1所述的雪崩光电二极管, 其特征在于, 所述组分渐变 对称倍增层中各个渐变层的厚度小于等于所述各个渐变层的倍增载流子的离化 率的倒数。
PCT/CN2013/082504 2013-08-28 2013-08-28 雪崩光电二极管 WO2015027416A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2013/082504 WO2015027416A1 (zh) 2013-08-28 2013-08-28 雪崩光电二极管
EP13892516.9A EP3029745B1 (en) 2013-08-28 2013-08-28 Avalanche photodiode
CN201380077525.9A CN105637657B (zh) 2013-08-28 2013-08-28 雪崩光电二极管
US15/056,385 US20160181460A1 (en) 2013-08-28 2016-02-29 Avalance Photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/082504 WO2015027416A1 (zh) 2013-08-28 2013-08-28 雪崩光电二极管

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/056,385 Continuation US20160181460A1 (en) 2013-08-28 2016-02-29 Avalance Photodiode

Publications (1)

Publication Number Publication Date
WO2015027416A1 true WO2015027416A1 (zh) 2015-03-05

Family

ID=52585395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082504 WO2015027416A1 (zh) 2013-08-28 2013-08-28 雪崩光电二极管

Country Status (4)

Country Link
US (1) US20160181460A1 (zh)
EP (1) EP3029745B1 (zh)
CN (1) CN105637657B (zh)
WO (1) WO2015027416A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630779A (zh) * 2018-05-04 2018-10-09 中国电子科技集团公司第十三研究所 碳化硅探测器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814537A (zh) * 2009-02-19 2010-08-25 中国科学院半导体研究所 氮化镓基雪崩型探测器及其制作方法
CN103022218A (zh) * 2012-12-26 2013-04-03 华中科技大学 一种InAs雪崩光电二极管及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127692A (en) * 1989-08-04 2000-10-03 Canon Kabushiki Kaisha Photoelectric conversion apparatus
JPH05335615A (ja) * 1992-05-27 1993-12-17 Canon Inc 光電変換装置
JP2845081B2 (ja) * 1993-04-07 1999-01-13 日本電気株式会社 半導体受光素子
JP2699807B2 (ja) * 1993-06-08 1998-01-19 日本電気株式会社 組成変調アバランシ・フォトダイオード
JPH07335935A (ja) * 1994-06-07 1995-12-22 Canon Inc 光電変換装置の製造方法
US7649153B2 (en) * 1998-12-11 2010-01-19 International Business Machines Corporation Method for minimizing sample damage during the ablation of material using a focused ultrashort pulsed laser beam
CN101465389A (zh) * 2007-12-19 2009-06-24 中国科学院半导体研究所 一种近红外单光子探测器
CN102157599B (zh) * 2010-09-25 2013-03-13 中国科学院上海微系统与信息技术研究所 用于雪崩光电二极管的能带递变倍增区结构及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814537A (zh) * 2009-02-19 2010-08-25 中国科学院半导体研究所 氮化镓基雪崩型探测器及其制作方法
CN103022218A (zh) * 2012-12-26 2013-04-03 华中科技大学 一种InAs雪崩光电二极管及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3029745A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630779A (zh) * 2018-05-04 2018-10-09 中国电子科技集团公司第十三研究所 碳化硅探测器及其制备方法

Also Published As

Publication number Publication date
CN105637657A (zh) 2016-06-01
EP3029745A4 (en) 2016-08-24
US20160181460A1 (en) 2016-06-23
EP3029745B1 (en) 2017-11-08
CN105637657B (zh) 2017-12-15
EP3029745A1 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP3826129B2 (ja) アバランシェ光検出器
US8938134B2 (en) Hybrid optical modulator for photonic integrated circuit devices
WO2011083657A1 (ja) アバランシェフォトダイオード及びそれを用いた受信機
JPWO2007086528A1 (ja) 半導体受光素子
JP7024918B1 (ja) アバランシェフォトダイオード
Colace et al. Waveguide photodetectors for the near-infrared in polycrystalline germanium on silicon
WO2018189898A1 (ja) 半導体受光素子
JP3652977B2 (ja) 半導体受光装置およびその製造方法
JP6507912B2 (ja) 半導体受光素子
CN107393982B (zh) 提高铟砷/镓锑超晶格红外探测器材料截止波长的方法及铟砷/镓锑ⅱ类超晶格及其应用
WO2015027416A1 (zh) 雪崩光电二极管
US11164986B2 (en) Avalanche photodiode and method of manufacturing the same
JP4941525B2 (ja) 半導体素子の製造方法
JP2703167B2 (ja) 受光素子及びその製造方法
EP2867927A2 (en) Heterojunction bipolar phototransistor device
JP6437284B2 (ja) アバランシェ受光器
JP5391945B2 (ja) 受光素子及びエピタキシャルウェハ
JP7433540B1 (ja) アバランシェフォトダイオード
JP7059771B2 (ja) 受光素子
Sahni et al. Detectors
Umezawa et al. Characterization of APD-PIN photodiodes using InAs/InAlGaAs quantum-dot absorption layer
JP5776745B2 (ja) 受光素子及びエピタキシャルウェハ
Umezawa et al. Application of InAs quantum dots for high-speed photodiodes in fiber optics
Zimmermann et al. SiGe Photodetectors
JP2014110399A (ja) 受光デバイス、半導体ウエハ、その製造方法、およびセンシング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013892516

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013892516

Country of ref document: EP